WO2021179670A1 - 光学式指纹感测装置 - Google Patents

光学式指纹感测装置 Download PDF

Info

Publication number
WO2021179670A1
WO2021179670A1 PCT/CN2020/130251 CN2020130251W WO2021179670A1 WO 2021179670 A1 WO2021179670 A1 WO 2021179670A1 CN 2020130251 W CN2020130251 W CN 2020130251W WO 2021179670 A1 WO2021179670 A1 WO 2021179670A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
amplifier
gain
image
processing circuit
Prior art date
Application number
PCT/CN2020/130251
Other languages
English (en)
French (fr)
Inventor
孙伯伟
周正三
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Publication of WO2021179670A1 publication Critical patent/WO2021179670A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the present disclosure relates to a sensing device, in particular to an optical fingerprint sensing device.
  • fingerprint recognition technology has been widely used in various electronic devices to provide identity verification functions.
  • some fingerprint sensing solutions adopt the method of arranging the fingerprint sensing device on the back of the electronic device, but such a fingerprint sensing solution cannot be used in a situation where the electronic device is placed on a desktop.
  • fingerprint on display (FOD) sensing solutions have been developed.
  • the optical under-screen fingerprint sensing solution is to arrange the image sensor below the display panel so that the user can touch or press a finger on the top of the display panel, so that the fingerprint sensor can obtain a fingerprint image. Therefore, how to perform accurate fingerprint recognition based on the fingerprint image generated by the image sensor is a subject of considerable concern to those skilled in the art.
  • the amount of light sensed by each sensing pixel unit in the image sensor will be affected by the process conditions of the image sensor, the conditions of the illumination light source, the optical characteristics of the optical structure above the image sensor, or other factors.
  • the coating material above the image sensor may have different light transmittance due to thickness differences, so that the amount of light sensed by different sensing pixel units is affected.
  • the image sensor may affect the image quality of the fingerprint image based on the above-mentioned various factors.
  • the image sensor may generate a fingerprint image with brighter peripheral areas but darker central areas.
  • the image sensor may produce a fingerprint image in which the left area is brighter but the right area is darker.
  • FIG. 1 is an example of an image with uneven brightness generated by an image sensor of a fingerprint sensing device. Even if the ambient light sources are sufficient and consistent, the signals of the sensing signals output by the sensing pixel units in the Rth row of the sensing pixel array 10 must be inconsistent.
  • the present disclosure provides an optical fingerprint sensing device, which can improve the uneven brightness of the fingerprint image, thereby improving the image quality of the fingerprint image.
  • An embodiment of the present invention provides an optical fingerprint sensing device, which includes a sensing pixel array and a processing circuit.
  • the sensing pixel array includes P*Q sensing pixel units.
  • the aforementioned sensing pixel units are arranged in rows and columns, and each sensing pixel unit correspondingly outputs a sensing signal, where P and Q are integers greater than zero.
  • the processing circuit is coupled to the sensing pixel array and configures multiple gain parameters.
  • the processing circuit generates a fingerprint image based on the sensing signal and the gain parameter output by each sensing pixel unit, and the fingerprint image includes M*N image pixels. Where M is an integer greater than 0 and less than or equal to P, and N is an integer greater than 0 and less than or equal to Q.
  • the image pixels of the aforementioned fingerprint image are respectively associated with gain parameters.
  • the processing circuit configures one of the gain parameters to be different from the other one of the gain parameters.
  • the embodiment of the present invention by generating different image pixels on the fingerprint image according to different gain parameters, the problem of uneven brightness of the fingerprint image can be improved, thereby improving the image quality of the fingerprint image.
  • FIG. 1 is an example of an image with uneven brightness generated by an image sensor of a fingerprint sensing device
  • FIG. 2 is a schematic diagram of an optical fingerprint sensing device according to an embodiment of the invention.
  • FIG. 3 is a schematic diagram of an optical fingerprint sensing device according to an embodiment of the invention.
  • FIG. 4 is a schematic diagram of the amplifier gain of a column amplifier according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the amplifier gain of the configured sensing output amplifier according to an embodiment of the present invention.
  • FIG. 6 is an example of a sensing pixel array outputting a consistent sensing signal according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of generating a fingerprint image according to some sensing pixels in each sensing block according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a fingerprint sensing method according to an embodiment of the invention.
  • P1, Pa1, Pa2, Pb1 sensing pixel units
  • A1_1 ⁇ A1_P column amplifier
  • SW1 ⁇ SWP Reading selection device
  • A2 Sensing output amplifier
  • Z1, Z2 sensing block
  • Img_f, Img_f2 fingerprint image
  • Px1, Px2 image pixels
  • the fingerprint sensing device 100 includes a sensing pixel array 110 and a processing circuit 120.
  • the sensing pixel array 110 includes P*Q sensing pixel units (P and Q are integers greater than 0), and these sensing pixel units are arranged in rows and columns.
  • the sensing pixel units on the sensing pixel array 110 may be passive pixel sensor (Passive Pixel Sensor, PPS), active pixel sensor (Active Pixel Sensor, APS), or digital pixel sensor (Digital Pixel Sensor). Sensor, DPS), the present invention is not limited to this.
  • Each sensing pixel unit outputs a corresponding sensing signal based on the light sensing result.
  • the sensing pixel units may each include at least one photodiode for photoelectric conversion.
  • the photodiode can generate a voltage signal corresponding to the intensity of the light signal illuminating the sensing pixel unit.
  • other optical components such as lenses, collimators, filter layers, etc., may be disposed above the sensing pixel array 110, which is not limited by the present invention.
  • the processing circuit 120 is coupled to the sensing pixel array 110.
  • the processing circuit 120 may include a control circuit and a driving circuit for controlling the sensing pixel array 110, an analog-digital conversion circuit, an amplifying circuit, a pixel reading circuit, an image signal processing circuit, and so on.
  • the processing circuit 120 generates a fingerprint image according to the sensing signal corresponding to the output of each sensing pixel unit of the sensing pixel array 110 for subsequent fingerprint identification processing by a subsequent circuit (such as an application processor).
  • the sensing pixel units on the sensing pixel array 110 are exposed to fingerprint reflection light for an exposure time, and the sensing pixel units output corresponding voltage signals (ie sensing signals) row by row according to the charge generated by the photodiodes. .
  • the analog-digital conversion circuit After the aforementioned voltage signal is amplified, it is sent to an analog-digital conversion circuit, and the analog-digital conversion circuit generates corresponding digital image data according to the sensing signal output by the sensing pixel unit
  • the processing circuit 120 may be configured with multiple gain parameters, and generate a fingerprint image based on the sensing signal output by each sensing pixel unit and the corresponding gain parameter.
  • This fingerprint image may include M*N image pixels (M is an integer greater than 0 and less than or equal to P, and N is an integer greater than 0 and less than or equal to Q).
  • the image pixels of the fingerprint image are respectively associated with gain parameters.
  • the processing circuit 120 can generate an image pixel of the fingerprint image according to the sensing signal output by a sensing pixel unit and a gain parameter, that is, M is equal to P and N is equal to Q.
  • the processing circuit 120 may generate an image pixel of the fingerprint image according to the sensing signal output by the plurality of sensing pixel units and a gain parameter, that is, M is less than P and N is less than Q. It is worth mentioning that one of the configurable gain parameters of the processing circuit 120 is different from the other of the gain parameters. In other words, at least two image pixels on the fingerprint image are generated based on different gain parameters.
  • the signal level of the sensing signal output by one of the sensing pixel units is controlled by one of the gain parameters, and the signal level of the sensing signal output by the other of the sensing pixel units is controlled The other of the gain parameters.
  • these gain parameters may include the amplifier gains of multiple column amplifiers in the pixel reading circuit or the amplifier gains of one sensing output amplifier in the pixel reading circuit. That is, the two sensing signals output by at least two sensing pixel units are amplified based on different amplifier gains. At least two image pixels on the fingerprint image are generated based on different amplifier gains. In this way, by configuring different amplifier gains for different sensing positions on the sensing pixel array 110, the uneven brightness of the fingerprint image can be improved.
  • the gain parameters may include the number of sensing pixel units used to generate one image pixel of the fingerprint image, which is referred to herein as the number of superimposed pixels. That is, at least two image pixels on the fingerprint image are generated based on the sensing signals of different numbers of sensing pixel units. In this way, by configuring different numbers of superimposed pixels for different sensing positions on the sensing pixel array 110, the uneven brightness of the fingerprint image can be improved.
  • the gain parameters may include the exposure time used by each of the plurality of sensing pixel units.
  • the processing circuit 120 can configure and control the exposure time of each sensing pixel unit.
  • One of the sensing pixel units performs sensing and imaging according to the first exposure time
  • the other of the sensing pixel units performs sensing and imaging according to the second exposure time. That is, at least two of the sensing pixel units in the sensing pixel array 110 perform sensing and imaging according to the first exposure time and the second exposure time respectively, and the first exposure time is different from the second exposure time.
  • a part of the sensing pixel units located in the peripheral area of the sensing pixel array 110 can perform sensing, sensing and imaging according to the first exposure time, and another part of the sensing pixel units located in the central area of the sensing pixel array 110 can be based on
  • the second exposure time is for sensing, sensing and capturing.
  • the exposure time of each sensing pixel unit in the sensing pixel array 110 can be independently controlled, so that each sensing pixel unit can perform sensing and imaging according to the configured exposure time and output a corresponding sensor. Test signal. In this way, by configuring different exposure times for different sensing positions on the sensing pixel array 110, the uneven brightness of the fingerprint image can be improved.
  • the configurable gain parameter of the processing circuit 120 may also include the amplifier gain of an amplifier provided in each sensing pixel unit.
  • the configurable gain parameter of the processing circuit 120 may also include the capacitance value of the variable capacitor inside each sensing pixel unit.
  • FIG. 3 is a schematic diagram of an optical fingerprint sensing device according to an embodiment of the invention.
  • the processing circuit 120 may include a pixel readout circuit 121, an image signal processing circuit 122, a driving circuit 123, and a control circuit 124.
  • the control circuit 123 can perform timing control so that the driving circuit 123 drives the sensing pixel unit row by row (for example, the Pth sensing pixel unit P1 in the first row).
  • the sensing pixel unit responds to the driving of the driving circuit 123 to output sensing signals to the pixel readout circuit 121 row by row.
  • the pixel readout circuit 121 can output digital image data to the image signal processing circuit 122 so that the image signal processing circuit 122 can generate the fingerprint image Img_f.
  • the control circuit 123 can control the amplifier gain of the amplifier inside the pixel readout circuit 121.
  • the amplifier inside the pixel readout circuit 121 may include a column amplifier corresponding to each column of sensing pixel units or a shared sensing output amplifier of each sensing pixel unit.
  • the pixel readout circuit 121 may further include an integrator circuit to perform an integration operation on the sensing signals of a plurality of sensing pixel units in each sensing block, thereby generating each image on the fingerprint image. Pixels.
  • the control circuit 123 can control the number of superimposed pixels for the integration operation by switching the switch component inside the integrator circuit.
  • FIG. 4 is a schematic diagram of the amplifier gain of a column amplifier according to an embodiment of the present invention.
  • the pixel readout circuit 121 may include column amplifiers A1_1 to A1_P corresponding to multiple columns of sensing pixel units, respectively.
  • Each column amplifier A1_1 to A1_P correspondingly amplifies the sensing signal output by the sensing pixel unit of each column.
  • the column amplifier A1_1 is used to amplify the sensing signal output by the first column of sensing pixel units.
  • the column amplifier A1_2 is used to amplify the sensing signal output by the second column of sensing pixel units. So on and so forth.
  • the first column amplifier among the column amplifiers A1_1 to A1_P receives the sensing signal from one of the sensing pixel units, and the processing circuit 120 configures the first column amplifier to have the first amplifier gain.
  • the second column amplifier of the column amplifiers A1_1 to A1_P receives the sensing signal of the other one of the sensing pixel units, and the processing circuit 120 configures the second column amplifier to have a second amplifier gain.
  • the gain of the first amplifier is different from the gain of the second amplifier. That is, the amplifier gains of at least two of the column amplifiers A1_1 to A1_P are configured to be different from each other.
  • the control circuit 124 can control the amplifier gains of the column amplifiers A1_1 to A1_P by outputting the gain control signals S1 to SP.
  • the column amplifiers A1_1 to A1_P amplify the sensing signal output by the sensing pixel unit in the a-th row according to the respective amplifier gains.
  • the column amplifier A1_1 ie, the first column amplifier
  • the processing circuit 120 configures the column amplifier A1_1 to have the first amplifier gain.
  • the column amplifier A1_2 receives the sensing signal of the sensing pixel unit Pa2, and the processing circuit 120 configures the column amplifier A1_2 to have the second amplifier gain.
  • the column amplifier A1_1 can amplify the sensing signal output by the sensing pixel unit Pa1 according to the first amplifier gain
  • the column amplifier A1_2 can amplify the sensing signal output by the sensing pixel unit Pa2 according to the second amplifier gain.
  • the control circuit 124 can control the amplifier gains of the column amplifiers A1_1 to A1_P by outputting the gain control signals S1 to SP, so that the column amplifiers A1_1 to A1_P are based on their respective The gain of the amplifier is used to amplify the sensing signal output by the sensing pixel unit in the b-th row. It should be noted that, for the column amplifier A1_1, the amplifier gain used to amplify the sensing pixel unit Pb1 may be configured to be different from the amplifier gain used to amplify the sensing pixel unit Pa1.
  • FIG. 5 is a schematic diagram of the amplifier gain of the configured sensing output amplifier according to an embodiment of the present invention.
  • the pixel readout circuit 121 may include read selection devices SW1 to SW and a sense output amplifier A2.
  • the read selection devices SW1 to SWP are coupled to the input terminals of the sense output amplifier A2.
  • the sensing output amplifier A2 sequentially amplifies the sensing signal output by each sensing pixel unit.
  • the sensing output amplifier A2 receives a sensing signal from one of the sensing pixel units, and the processing circuit 120 configures the sensing output amplifier A2 to have a first amplifier gain.
  • the sensing output amplifier A2 receives the sensing signal of the other one of the sensing pixel units, and the processing circuit 120 configures the sensing output amplifier to have a second amplifier gain.
  • the gain of the first amplifier is different from the gain of the second amplifier. That is, the amplifier gains of the sense output amplifier A2 in different operating periods are configured to be different.
  • the control circuit 124 can control the amplifier gain of the sensing output amplifier A2 by outputting the gain control signal Sa, so that the sensing
  • the sensing output amplifier A2 sequentially amplifies the sensing signals output by the a-th row of sensing pixel units according to the corresponding amplifier gain. For example, during the period when the sensing pixel unit in row a is driven to output a sensing signal, the response reading selection device SW1 is turned on, the sensing output amplifier A2 receives the sensing signal of the sensing pixel unit Pa1, and the processing circuit 120
  • the sense output amplifier A2 is configured to have the first amplifier gain.
  • the sensing output amplifier A2 receives the sensing signal of the sensing pixel unit Pa2, and the processing circuit 120 configures the sensing output amplifier A2 to have a second amplifier gain.
  • the gain of the first amplifier is different from the gain of the second amplifier. Therefore, the sensing output amplifier A2 can amplify the sensing signal output by the sensing pixel unit Pa1 according to the first amplifier gain, and the sensing output amplifier A2 can amplify the sensing signal output by the sensing pixel unit Pa2 according to the second amplifier gain. Signal.
  • the sensing output amplifier A2 receives the sensing signal of the sensing pixel unit Pb1, and according to the third Amplifier gain to amplify the sensed signal.
  • the third amplifier gain described above can be configured to be different from the first amplifier gain.
  • FIG. 6 is an example of a sensor pixel array outputting a consistent sensing signal according to an embodiment of the present invention.
  • the R2 row of the sensing pixel array 110 in the fingerprint sensing device 100 senses
  • the sensing signal output by the pixel unit may be inconsistent (as shown by the curve L1).
  • the amplifier gain corresponding to each sensing pixel unit is configured according to the content disclosed in this embodiment, under the same ambient light source conditions, one row of sensing pixel units R2 of the sensing pixel array 110 in the fingerprint sensing device 100
  • the output sensing signals will tend to be consistent (as shown by curve L2).
  • the amplifier gains corresponding to the sensing pixel units located on both sides of the periphery of the sensing pixel units in the R2 row will be configured to be greater than those corresponding to the sensing pixel units located in the central area of the sensing pixel units in the R2 row
  • the amplifier gain Based on this, based on the configured amplifier gain, the image quality of the fingerprint image generated by the embodiment of the present invention can be improved.
  • FIG. 7 is a schematic diagram of generating a fingerprint image according to some sensing pixels in each sensing block according to an embodiment of the present invention.
  • the sensing pixel array 110 may be divided into a plurality of sensing blocks (for example, sensing blocks Z1, Z2) of the same size.
  • Each sensing block may include a plurality of sensing pixel units.
  • K*K sensing pixel units are taken as an example.
  • the gain parameter may include the number of superimposed pixels corresponding to each sensing block.
  • the processing circuit 120 can respectively accumulate the sensing signals of some or all of the sensing pixel units in the sensing block according to the number of superimposed pixels to generate the image pixels of the fingerprint image Img_f2.
  • the processing circuit 120 can take the sensing signals of R sensing pixel units from the sensing block Z1 (ie, the first sensing block) to generate an image of the fingerprint image Img_f2 Pixel Px1. That is, the number of superimposed pixels corresponding to the sensing block Z1 is R.
  • the processing circuit 120 takes the sensing signals of S sensing pixel units from the sensing block Z2 (ie, the second sensing block) to generate the image pixels Px2 of the fingerprint image Img_f2. That is, the number of superimposed pixels corresponding to the sensing block Z2 is S.
  • R and S are integers greater than 0 and less than or equal to K*K, and R is not equal to S.
  • the pixel readout circuit 121 may include an integrator circuit.
  • the integrator circuit can integrate the sensing signals of the R sensing pixel units in the sensing block Z1 to obtain an integrated signal for generating the image pixel Px1.
  • the integrator circuit can integrate the sensing signals of the S sensing pixel units in the sensing block Z2 to obtain the integrated signal used to generate the image pixel Px2. Based on this, based on the configured number of superimposed pixels, the image quality of the fingerprint image generated by the embodiment of the present invention can be improved.
  • the configured gain parameters can be generated based on the calibration procedure and recorded in the storage device of the processing circuit 120 for use in fingerprint sensing.
  • the processing circuit 120 initializes the gain parameter during the calibration period and obtains the non-average image according to the sensing signal output by each sensing pixel unit.
  • the processing circuit 120 can configure the gain parameter according to a plurality of image pixels of the non-average image. It should be noted that the gain parameter is configured to be inversely proportional to the pixel value of the image pixel of the non-average image.
  • the image signal processing circuit 122 may follow the pixel readout circuit 121
  • the output digital image data collects non-average images.
  • the image signal processing circuit 122 can perform statistical analysis on the image pixels of the non-average image to configure the gain parameter corresponding to each sensing pixel unit or each sensing block on the sensing pixel array 110 according to the statistical analysis result.
  • the gain parameter for example, amplifier gain
  • the gain parameter corresponding to each sensing pixel unit is configured to be inversely proportional to the pixel value of the image pixel of the non-average image.
  • the gain parameter (such as the number of superimposed pixels) corresponding to each sensing block is configured to correspond to the statistical value (such as the average value or the sum) of a plurality of pixel values in the corresponding image block of the non-average image Inversely proportional.
  • the larger the statistical value of the multiple pixel values in the image block the smaller the corresponding gain parameter is configured.
  • the processing circuit 120 initializes the gain parameter during the calibration period, and configures the gain parameter according to the sensing signal output by the sensing pixel unit.
  • the gain parameter is configured to be inversely proportional to the signal level of the sensing signal.
  • the control circuit 124 may be based on the output of each sensing pixel unit. The signal level of the sensing signal configures the gain parameter. The higher the signal level of the sensing signal output by the sensing pixel unit, the smaller the corresponding gain parameter is configured.
  • FIG. 8 is a flowchart of a fingerprint sensing method according to an embodiment of the invention.
  • the processing circuit 120 initializes the gain parameter.
  • the processing circuit 120 controls the sensing pixel array 110 to perform image sensing, and configures the gain parameter associated with each sensing pixel unit or each sensing block according to the sensing result.
  • the processing circuit 120 generates a fingerprint image according to the configured gain parameter and the sensing signal output by the sensing pixel array 110.
  • each image pixel of the fingerprint image is generated based on the configured gain parameter.
  • the gain parameter corresponding to each sensing position on the sensing pixel array will be inversely proportional to the amount of incident light. In this way, the phenomenon of uneven brightness on the fingerprint image can be significantly improved, and the image quality of the fingerprint image is improved, thereby increasing the success rate of fingerprint recognition.
  • the amount of light received by the fingerprint rod sensing array will be uneven. Therefore, the advantages of the embodiments of the present invention can be more prominent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明提出一种光学式指纹感测装置,其包括感测像素阵列与处理电路。感测像素阵列包括P*Q个感测像素单元。感测像素单元排列为多行与多列,各个感测像素单元对应输出一感测信号。处理电路耦接感测像素阵列,配置多个增益参数。处理电路基于各感测像素单元输出的感测信号与增益参数产生指纹图像,此指纹图像包括M*N个图像像素。指纹图像的图像像素分别关联于增益参数。处理电路配置增益参数其中之一相异于增益参数其中的另一。

Description

光学式指纹感测装置 技术领域
本公开涉及一种感测装置,尤其涉及一种光学式指纹感测装置。
背景技术
近年来,指纹识别技术被广泛地应用在各种电子装置上,以提供身份验证功能。目前而言,有部分指纹感测方案是采用将指纹感测装置配置于电子装置的背面的方式,但此种指纹感测方案无法在电子装置放置于桌面上的情境下使用。此外,伴随着掌上型电子装置朝向全面屏的发展趋势,屏下式指纹(Fingerprint On Display,FOD)感测方案便被发展出来。其中,光学式屏下式指纹感测方案是将图像传感器设置在显示面板下方,以让使用者可将手指接触或按压在显示面板上方,以使指纹感测器来取得指纹图像。因此,如何依据图像传感器产生的指纹图像进行准确的指纹识别为本领域技术人员相当关心的议题。
然而,于使用图像传感器感测指纹图像的过程中,图像传感器中各个感测像素单元的感测光量会受到图像传感器的制程条件、照明光源条件、图像传感器上方的光学结构的光学特性或其他因素的影响。举例而言,图像传感器上方的涂层材料可能厚度差异而具有不同的透光率,使得不同感测像素单元的感测光量受到影响。也就是说,图像传感器可能基于上述种种因素影响到指纹图像的图像质量。举例而言,图像传感器可能产生外围区域较亮但中心区域较暗的指纹图像。或者,图像传感器可能产生左侧区域较亮但右侧区域较暗的指纹图像。如图1所示,图1是指纹感测装置的图像传感器产生亮度不均匀图像的范例。即便在环境光源充足且一致的情况下,感测像素阵列10的第R行感测像素单元所输出的感测信号的信号准会有不一致的现象。
发明内容
有鉴于此,本公开提供一种光学式指纹感测装置,其可改善指纹图像亮 度不均匀的现象,从而提升指纹图像的图像质量。
本发明实施例提出一种光学式指纹感测装置,其包括感测像素阵列与处理电路。感测像素阵列包括P*Q个感测像素单元。前述感测像素单元排列为多行(row)与多列(column),各个感测像素单元对应输出一感测信号,其中P与Q为大于0的整数。处理电路耦接感测像素阵列,配置多个增益参数。处理电路基于各感测像素单元输出的感测信号与增益参数产生指纹图像,此指纹图像包括M*N个图像像素。其中M为大于0且小于等于P的整数,且N为大于0且小于等于Q的整数。前述指纹图像的图像像素分别关联于增益参数。处理电路配置增益参数其中之一相异于增益参数其中之另一。
基于上述,于本发明的实施例中,通过依据不同的增益参数来产生指纹图像上不同图像像素,可改善指纹图像亮度不均匀的问题,从而提升指纹图像的图像质量。
为让本公开的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。
附图说明
图1是指纹感测装置的图像传感器产生亮度不均匀图像的范例;
图2是依照本发明一实施例的光学式指纹感测装置的示意图;
图3是依照本发明一实施例的光学式指纹感测装置的示意图;
图4是依照本发明一实施例的配置列放大器的放大器增益的示意图;
图5是依照本发明一实施例的配置感测输出放大器的放大器增益的示意图;
图6是依照本发明一实施例的感测像素阵列输出一致感测信号的范例;
图7是依照本发明一实施例的依据各感测区块内部分感测像素产生指纹图像的示意图;
图8是依照本发明一实施例的指纹感测方法的流程图。
附图标记说明
100:指纹感测装置;
10、110:感测像素阵列;
120:处理电路;
121:像素读出电路;
122:图像信号处理电路;
123:驱动电路;
124:控制电路;
P1、Pa1、Pa2、Pb1:感测像素单元;
A1_1~A1_P:列放大器;
S1~SP、Sa:增益控制信号;
SW1~SWP:读出选择装置;
A2:感测输出放大器;
L1、L2:曲线;
Z1、Z2:感测区块;
Img_f、Img_f2:指纹图像;
Px1、Px2:图像像素;
S801~S803:步骤。
具体实施方式
现将详细地参考本公开的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同组件符号在附图和描述中用来表示相同或相似部分。
应当理解,当诸如层、膜、区域或基板的组件被称为在另一组件“上”或“连接到”另一组件时,其可以直接在另一组件上或与另一组件连接,或者中间组件可以也存在。相反,当组件被称为“直接在另一组件上”或“直接连接到”另一组件时,不存在中间组件。如本文所使用的,“连接”可以指物理和/或电性连接。再者,“电性连接”或“耦合”可以是二组件间存在其它组件。
请参照图2,指纹感测装置100包括感测像素阵列110以及处理电路120。感测像素阵列110包括P*Q个感测像素单元(P与Q为大于0的整数),这些感测像素单元排列为多行(row)与多列(column)。感测像素阵列110上的这些感测像素单元可以是被动式像素感测元件(Passive Pixel Sensor,PPS)、主动式像素感测元件(Active Pixel Sensor,APS)或数字式像素感测元件(Digital Pixel Sensor,DPS),本发明对此不限制。各个感测像素单元基于光感测结果输出对应的感测信号。具体而言,这些感测像素单元可各自包括用以进行光 电转换的至少一个光电二极管(photodiode)。光电二极管可以产生对应于照射感测像素单元的光信号强度的电压信号。此外,于一实施例中,感测像素阵列110上方还可配置有其他光学组件,像是透镜、准直器、滤光层等等,本发明对此不限制。
处理电路120耦接感测像素阵列110。处理电路120可包括控制感测像素阵列110的控制电路与驱动电路、模拟数字转换电路、放大电路、像素读取电路以及图像信号处理电路等等。处理电路120依据感测像素阵列110的各感测像素单元对应输出的感测信号产生一张指纹图像,以供后级电路(例如应用处理器)进行后续的指纹识别处理。于一实施例中,感测像素阵列110上的感测像素单元被暴露于指纹反射光一段曝光时间,感测像素单元依据光电二极管产生的电荷逐行输出对应的电压信号(即感测信号)。前述电压信号被放大之后被送至模拟数字转换电路,模拟数字转换电路再依据感测像素单元输出的感测信号产生对应的数字图像数据。
于一实施例中,处理电路120可配置多个增益参数,并基于各个感测像素单元输出的感测信号与对应的增益参数产生一张指纹图像。此指纹图像可包括M*N个图像像素(M为大于0且小于等于P的整数,N为大于0且小于等于Q的整数)。指纹图像的图像像素是分别关联于增益参数。于一实施例中,处理电路120可依据一个感测像素单元输出的感测信号与一个增益参数来产生指纹图像的一个图像像素,即M等于P且N等于Q。于另一实施例中,处理电路120可依据多个感测像素单元输出的感测信号与一个增益参数来产生指纹图像的一个图像像素,即M小于P且N小于Q。值得一提的是,处理电路120可配置增益参数其中之一相异于增益参数其中之另一。换言之,指纹图像上的至少两个图像像素是基于不同的增益参数而产生。
于一实施例中,感测像素单元其中之一输出的感测信号的信号电平受控于增益参数其中之一,感测像素单元其中的另一输出的感测信号的信号电平受控于增益参数其中的另一。详细而言,这些增益参数可包括像素读取电路中多个列放大器的放大器增益或像素读取电路中的一个感测输出放大器的放大器增益。亦即,至少两个感测像素单元所输出的两个感测信号是基于不同的放大器增益被放大。指纹图像上的至少两个图像像素是基于不同放大器增益而产生。借此,通过针对感测像素阵列110上不同感测位置配置不同放大 器增益,可改善指纹图像的亮度不均匀现象。
于一实施例中,这些增益参数可包括用以产生指纹图像的一个图像像素的感测像素单元的数量,于此称为叠加像素数量。亦即,指纹图像上的至少两个图像像素是基于不同数量的感测像素单元的感测信号而产生。借此,通过针对感测像素阵列110上不同感测位置配置不同叠加像素数量,可改善指纹图像的亮度不均匀现象。
于一实施例中,这些增益参数可包括多个感测像素单元各自使用的曝光时间。具体而言,处理电路120可配置与控制各个感测像素单元的曝光时间。感测像素单元其中之一依据第一曝光时间进行感测取像,且感测像素单元其中的另一依据第二曝光时间进行感测取像。亦即,感测像素阵列110中感测像素单元其中至少二者是分别依据第一曝光时间与第二曝光时间进行感测取像,且第一曝光时间相异于第二曝光时间。例如,感测像素阵列110中位于外围区域的一部分感测像素单元可依据第一曝光时间进行感测感测取像,而感测像素阵列110中位于中心区域的另一部分感测像素单元可依据第二曝光时间进行感测感测取像。此外,于一实施例中,感测像素阵列110中的各个感测像素单元的曝光时间可独立控制,致使各个感测像素单元可依据经配置的曝光时间进行感测取像而输出对应的感测信号。借此,通过针对感测像素阵列110上不同感测位置配置不同曝光时间,可改善指纹图像的亮度不均匀现象。
除了上述实施例,基于图像感测阵列110的不同设计原理,处理电路120可配置的增益参数还可包括设置于每一个感测像素单元内部的放大器的放大器增益。或者,处理电路120可配置的增益参数还可包括每一个感测像素单元内部的可变电容器的电容值。
图3是依照本发明一实施例的光学式指纹感测装置的示意图。请参照图3,处理电路120可包括像素读出电路121、图像信号处理电路122、驱动电路123,以及控制电路124。控制电路123可进行时序控制,使驱动电路123逐行驱动感测像素单元(例如第1行第P个感测像素单元P1)。感测像素单元反应于驱动电路123的驱动而逐行地输出感测信号给像素读出电路121。
在进行信号放大操作与模拟数字转换操作之后,像素读出电路121可输出数字图像数据给图像信号处理电路122,使图像信号处理电路122可产生 指纹图像Img_f。于一实施例中,控制电路123可控制像素读出电路121内部的放大器的放大器增益。像素读出电路121内部的放大器可包括对应至每列感测像素单元的列放大器或各个感测像素单元的共享的感测输出放大器。
此外,于一实施例中,像素读出电路121还可包括积分器电路,以对各个感测区块中的多个感测像素单元的感测信号进行积分运算,从而产生指纹图像上各个图像像素。控制电路123可通过切换积分器电路内部的开关组件来控制进行积分操作的叠加像素数量。
图4是依照本发明一实施例的配置列放大器的放大器增益的示意图。请参照图4,像素读出电路121可包括分别对应至多列感测像素单元的列放大器A1_1~A1_P。各个列放大器A1_1~A1_P对应放大各列感测像素单元输出的感测信号。举例而言,列放大器A1_1用以放大第1列感测像素单元所输出的感测信号。列放大器A1_2用以放大第2列感测像素单元所输出的感测信号。依此类推。
于一实施例中,列放大器A1_1~A1_P中的第一列放大器接收感测像素单元其中之一的感测信号,处理电路120配置第一列放大器具有第一放大器增益。列放大器A1_1~A1_P中的第二列放大器接收感测像素单元其中之另一的感测信号,处理电路120配置第二列放大器具有第二放大器增益。第一放大器增益相异于第二放大器增益。亦即,列放大器A1_1~A1_P其中至少两者的放大器增益经配置而彼此不同。
详细而言,于一实施例中,当第a行感测像素单元被驱动来输出感测信号时,控制电路124可通过输出增益控制信号S1~SP来控制列放大器A1_1~A1_P的放大器增益,致使列放大器A1_1~A1_P依据各自的放大器增益来放大第a行感测像素单元所输出的感测信号。列放大器A1_1(即第一列放大器)接收感测像素单元Pa1的感测信号,处理电路120配置列放大器A1_1具有第一放大器增益。列放大器A1_2(即第二列放大器)接收感测像素单元Pa2的感测信号,处理电路120配置列放大器A1_2具有第二放大器增益。于是,列放大器A1_1可依据第一放大器增益来放大感测像素单元Pa1所输出的感测信号,列放大器A1_2可依据第二放大器增益来放大感测像素单元Pa2所输出的感测信号。
接着,当第b行感测像素单元被驱动来输出感测信号时,控制电路124 可通过输出增益控制信号S1~SP来控制列放大器A1_1~A1_P的放大器增益,致使列放大器A1_1~A1_P依据各自的放大器增益来放大第b行感测像素单元所输出的感测信号。需说明的是,对于列放大器A1_1而言,用以放大感测像素单元Pb1的放大器增益可经配置而相异于用以放大感测像素单元Pa1的放大器增益。
图5是依照本发明一实施例的配置感测输出放大器的放大器增益的示意图。请参照图5,像素读出电路121可包括读取选择装置SW1~SW以及感测输出放大器A2。读取选择装置SW1~SWP耦接感测输出放大器A2的输入端。通过依序逐一导通读取选择装置SW1~SWP,感测输出放大器A2依序放大各个感测像素单元输出的感测信号。
于一实施例中,感测输出放大器A2接收感测像素单元其中之一的感测信号,处理电路120配置感测输出放大器A2具有第一放大器增益。感测输出放大器A2接收感测像素单元其中的另一的所述感测信号,处理电路120配置感测输出放大器具有第二放大器增益。第一放大器增益相异于第二放大器增益。亦即,感测输出放大器A2于不同操作时期的放大器增益经配置而不同。
详细而言,于一实施例中,当第a行感测像素单元被驱动来输出感测信号时,控制电路124可通过输出增益控制信号Sa来控制感测输出放大器A2的放大器增益,致使感测输出放大器A2依据对应的放大器增益而依序逐一放大第a行感测像素单元所输出的感测信号。举例而言,于第a行感测像素单元被驱动来输出感测信号的期间,反应读取选择装置SW1导通,感测输出放大器A2接收感测像素单元Pa1的感测信号,处理电路120配置感测输出放大器A2具有第一放大器增益。感测输出放大器A2接收感测像素单元Pa2的感测信号,处理电路120配置感测输出放大器A2具有第二放大器增益。第一放大器增益相异于第二放大器增益。于是,感测输出放大器A2可依据第一放大器增益来放大感测像素单元Pa1所输出的感测信号,感测输出放大器A2可依据第二放大器增益来放大感测像素单元Pa2所输出的感测信号。
同理,于第b行感测像素单元被驱动来输出感测信号的期间,反应读取选择装置SW1导通,感测输出放大器A2接收感测像素单元Pb1的感测信号,并依据第三放大器增益来放大感测信号。上述第三放大器增益可经配置而相 异于第一放大器增益。
图6是依照本发明一实施例像的感测像素阵列输出一致感测信号的范例。请参照图6,在环境光源条件相同且感测像素阵列110上的全部感测像素单元对应的放大器增益全部一样的情况下,指纹感测装置100中感测像素阵列110的第R2行感测像素单元所输出的感测信号会有不一致的现象(如曲线L1所示)。对应的,若依据本实施所公开的内容来配置各个感测像素单元对应的放大器增益,在环境光源条件相同的情况下,指纹感测装置100中感测像素阵列110的一行感测像素单元R2所输出的感测信号会趋于一致(如曲线L2所示)。于本范例中,位于第R2行感测像素单元的外围两侧的感测像素单元所对应的放大器增益将经配置而大于位于第R2行感测像素单元的中心区域的感测像素单元所对应的放大器增益。基此,基于依据经配置的放大器增益,本发明实施例所产生的指纹图像的图像质量可提升。
图7是依照本发明一实施例的依据各感测区块内部分感测像素产生指纹图像的示意图。请参照图7,于一实施例中,感测像素阵列110可划分为尺寸相同的多个感测区块(例如感测区块Z1、Z2)。各个感测区块可包括多个感测像素单元,于此以K*K个感测像素单元为例。增益参数可包括对应至各感测区块的叠加像素数量。处理电路120可依据叠加像素数量分别累加感测区块之中部分或全部的感测像素单元的感测信号来产生指纹图像Img_f2的图像像素。
如图7所示,于一实施例中,处理电路120可从感测区块Z1(即第一感测区块)之中取R个感测像素单元的感测信号产生指纹图像Img_f2的图像像素Px1。即,对应于感测区块Z1的叠加像素数量为R。处理电路120从感测区块Z2(即第二感测区块)之中取S个感测像素单元的感测信号产生指纹图像Img_f2的图像像素Px2。即,对应于感测区块Z2的叠加像素数量为S。于此,R与S为大于0且小于等于K*K的整数,且R不等于S。举例而言,于一实施例中,像素读出电路121可包括积分器电路。积分器电路可对感测区块Z1中R个感测像素单元的感测信号进行积分操作而获取用以产生图像像素Px1的积分信号。积分器电路可对感测区块Z2中S个感测像素单元的感测信号进行积分操作而获取用以产生图像像素Px2的积分信号。基此,基于依据经配置的叠加像素数量,本发明实施例所产生的指纹图像的图像质量可 提升。
需说明的是,经配置的增益参数可基于校正程序产生并记录于处理电路120的储存装置中,以于进行感测指纹时使用。于一实施例中,处理电路120于校正期间初始化增益参数并依据各感测像素单元输出的感测信号获取非平均图像。处理电路120可依据非平均图像的多个图像像素配置增益参数。需注意的是,增益参数经配置而与非平均图像的图像像素的像素值成反比。
举例而言,在初始化各个增益参数(例如将每一个列放大器的放大器设置为默认值或使感测输出放大器的放大器增益维持为默认值)之后,图像信号处理电路122可依据像素读出电路121输出的数字图像数据采集非平均图像。图像信号处理电路122可对非平均图像的图像像素进行统计分析,以依据统计分析结果来配置对应至感测像素阵列110上各个感测像素单元或各个感测区块的增益参数。于一实施例中,对应于各个感测像素单元的增益参数(例如放大器增益)经配置而与非平均图像的图像像素的像素值成反比。换言之,非平均图像的图像像素的像素值越大,则对应的增益参数被配置的越小。于一实施例中,对应于各个感测区块的增益参数(例如叠加像素数量)经配置而与非平均图像的对应图像区块内的多个像素值的统计值(例如平均值或总和)成反比。换言之,图像区块内的多个像素值的统计值越大,则对应的增益参数被配置的越小。
或者,于一实施例中,处理电路120于校正期间初始化增益参数,并依据感测像素单元输出的感测信号配置增益参数。需说明的是,增益参数经配置与感测信号的信号电平成反比。举例而言,在初始化各个增益参数(例如将每一个列放大器的放大器设置为默认值或使感测输出放大器的放大器增益维持为默认值)之后,控制电路124可基于各个感测像素单元输出的感测信号的信号电平配置增益参数。感测像素单元输出的感测信号的信号电平越高,则对应的增益参数被配置的越小。
图8是依照本发明一实施例的指纹感测方法的流程图。请参照图8,于步骤S801,于校正期间,处理电路120初始化增益参数。于步骤S802,于校正期间,处理电路120控制感测像素阵列110进行图像感测,并依据感测结果配置关联于各感测像素单元或各感测区块的增益参数。于步骤S803,于指纹感测期间,处理电路120依据经配置的增益参数与感测像素阵列110输出 的感测信号产生指纹图像。
综上所述,于本发明实施例中,指纹图像的各个图像像素是基于经配置的增益参数而产生。感测像素阵列上各个感测位置所对应的增益参数将可与入光量的大小成反比关系。借此,指纹图像上亮度不均匀的现象可明显善,提升指纹图像的图像质量,从而提升指纹识别的成功率。此外,于屏下指纹感测的应用中,基于照射光源的配置、显示面板的特性、光学组件的光学特性、或指纹传感器的机构配置等等都会造成指纹杆感测阵列的受光量不均匀,因而本发明实施例的优点可更加突显。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (11)

  1. 一种光学式指纹感测装置,其特征在于,包括:
    感测像素阵列,包括P*Q个感测像素单元,各所述感测像素单元对应输出感测信号,其中P与Q为大于0的整数;以及
    处理电路,耦接所述感测像素阵列,配置多个增益参数,基于各所述感测像素单元输出的所述感测信号与所述增益参数产生指纹图像,所述指纹图像包括M*N个图像像素,其中M为大于0且小于等于P的整数,N为大于0且小于等于Q的整数,
    其中所述指纹图像的所述图像像素分别关联于所述增益参数,所述处理电路配置所述增益参数其中之一相异于所述增益参数其中的另一。
  2. 根据权利要求1所述的光学式指纹感测装置,其特征在于,所述感测像素单元其中之一输出的所述感测信号的信号电平受控于所述增益参数其中之一,所述感测像素单元其中的另一输出的所述感测信号的信号电平受控于所述增益参数其中的另一。
  3. 根据权利要求2所述的光学式指纹感测装置,其特征在于,所述增益参数包括多个列放大器的放大器增益,所述处理电路包括像素读出电路,所述像素读出电路包括分别对应至多列感测像素单元的所述列放大器,各所述列放大器对应放大各所述多列感测像素单元输出的所述感测信号。
  4. 根据权利要求3所述的光学式指纹感测装置,其特征在于,所述列放大器中的第一列放大器接收所述感测像素单元其中之一的所述感测信号,所述处理电路配置所述第一列放大器具有第一放大器增益;所述列放大器中的第二列放大器接收所述感测像素单元其中的另一的所述感测信号,所述处理电路配置所述第二列放大器具有第二放大器增益;以及所述第一放大器增益相异于所述第二放大器增益。
  5. 根据权利要求2所述的光学式指纹感测装置,其特征在于,所述增益参数包括感测输出放大器的放大器增益,所述处理电路包括像素读出电路,所述像素读出电路包括读取选择装置以及所述感测输出放大器,所述读取选择装置耦接所述感测输出放大器的输入端,所述感测输出放大器依序放大各所述感测像素单元输出的所述感测信号。
  6. 根据权利要求5所述的光学式指纹感测装置,其特征在于,所述感测 输出放大器接收所述感测像素单元其中之一的所述感测信号,所述处理电路配置所述感测输出放大器具有第一放大器增益;所述感测输出放大器接收所述感测像素单元其中的另一的所述感测信号,所述处理电路配置所述感测输出放大器具有第二放大器增益;以及所述第一放大器增益相异于所述第二放大器增益。
  7. 根据权利要求1所述的光学式指纹感测装置,其特征在于,所述感测像素阵列划分为尺寸相同的多个感测区块,所述增益参数包括对应至各所述感测区块的叠加像素数量,所述处理电路依据所述叠加像素数量分别累加所述感测区块之中部分或全部的感测像素单元的感测信号来产生所述指纹图像的所述图像像素。
  8. 根据权利要求7所述的光学式指纹感测装置,其特征在于,所述感测区块包括第一感测区块与第二感测区块,所述处理电路从所述第一感测区块之中取R个感测像素单元的感测信号产生所述指纹图像的所述图像像素其中之一,所述处理电路从所述第二感测区块之中取S个感测像素单元的感测信号产生所述指纹图像的所述图像像素其中的另一,R不等于S。
  9. 根据权利要求1所述的光学式指纹感测装置,其特征在于,所述增益参数包括所述感测像素单元的曝光时间,所述感测像素单元其中之一依据第一曝光时间进行感测取像,所述感测像素单元其中的另一依据第二曝光时间进行感测取像,且所述第一曝光时间相异于所述第二曝光时间。
  10. 根据权利要求1所述的光学式指纹感测装置,其特征在于,所述处理电路于校正期间初始化所述增益参数并依据各所述感测像素单元输出的所述感测信号获取非平均图像,所述处理电路依据所述非平均图像的多个图像像素配置所述增益参数,所述增益参数经配置而与所述非平均图像的所述图像像素的像素值成反比。
  11. 根据权利要求1所述的光学式指纹感测装置,其特征在于,所述处理电路于校正期间初始化所述增益参数,并依据所述感测像素单元输出的所述感测信号配置所述增益参数,所述增益参数经配置而与所述感测信号的信号电平成反比。
PCT/CN2020/130251 2020-03-12 2020-11-19 光学式指纹感测装置 WO2021179670A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062988903P 2020-03-12 2020-03-12
US62/988,903 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021179670A1 true WO2021179670A1 (zh) 2021-09-16

Family

ID=74399564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130251 WO2021179670A1 (zh) 2020-03-12 2020-11-19 光学式指纹感测装置

Country Status (3)

Country Link
CN (2) CN213399617U (zh)
TW (2) TWI779401B (zh)
WO (1) WO2021179670A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230162526A1 (en) * 2021-11-23 2023-05-25 Novatek Microelectronics Corp. Fingerprint recognition device, readout circuit and operating method of fingerprint recognition device
US11657643B1 (en) * 2022-01-17 2023-05-23 Novatek Microelectronics Corp. Fingerprint sensing device
TWI822559B (zh) * 2023-01-16 2023-11-11 大陸商廣州印芯半導體技術有限公司 影像感測裝置及影像感測方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108399356A (zh) * 2017-02-08 2018-08-14 茂丞科技股份有限公司 指纹感测装置及指纹辨识方法
CN110232356A (zh) * 2018-09-21 2019-09-13 神盾股份有限公司 光学式指纹辨识器及其指纹辨识方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI564817B (zh) * 2014-08-20 2017-01-01 速博思股份有限公司 組合式感應之指紋辨識裝置及方法
CN106295473A (zh) * 2015-05-27 2017-01-04 鸿富锦精密工业(深圳)有限公司 指纹识别装置及具有该指纹识别装置的电子装置
US20180348949A1 (en) * 2017-06-02 2018-12-06 Samsung Electronics Co., Ltd. Touch controller for driving touch screen including fingerprint sensing array, driving integrated circuit, and method of operating touch screen device including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108399356A (zh) * 2017-02-08 2018-08-14 茂丞科技股份有限公司 指纹感测装置及指纹辨识方法
CN110232356A (zh) * 2018-09-21 2019-09-13 神盾股份有限公司 光学式指纹辨识器及其指纹辨识方法

Also Published As

Publication number Publication date
TW202134937A (zh) 2021-09-16
TWM610329U (zh) 2021-04-11
TWI779401B (zh) 2022-10-01
CN112287887A (zh) 2021-01-29
CN213399617U (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2021179670A1 (zh) 光学式指纹感测装置
US11115610B2 (en) Noise aware edge enhancement
US8115159B2 (en) Solid-state image pickup device including a common phase feedback circuit, a method of driving the same, a signal processing method for the same, and image pickup apparatus
JP4674589B2 (ja) 固体撮像装置および撮像装置
US7924336B2 (en) Image pickup apparatus including a driving circuit to control a clamping switch so as to hold signals in holding capacitors
JP5686765B2 (ja) 撮像装置およびその制御方法
TWI491254B (zh) 用於補償影像感測器中之行固定圖型雜訊的方法
US20090073150A1 (en) Liquid crystal display panel with image sensing system and image processing system using same
TWI493970B (zh) 用於確定影像感測器之行偏移校正的方法
KR101736074B1 (ko) 반도체 장치
JP6393083B2 (ja) 撮像素子及びその制御方法、及び撮像装置
US20130286267A1 (en) Image capturing apparatus and image capturing system
US20140027620A1 (en) Solid-state image pickup device and image pickup apparatus
TWI454143B (zh) 用於確定影像感測器之行偏移校正的方法
US20130129212A1 (en) Method for reducing image artifacts produced by a cmos camera
JP2006094263A (ja) 撮像装置
KR20170077784A (ko) 고체 촬상 소자 및 촬상장치
JP4720275B2 (ja) 撮像装置
WO2018124051A1 (ja) 画像選択装置、カメラ及び画像選択方法
JP5122405B2 (ja) キャリブレーション装置、キャリブレーション方法、センサ装置、表示装置、キャリブレーション処理プログラム、並びにキャリブレーション処理プログラムを記録した記録媒体
CN110036627B (zh) 摄像装置、照相机以及摄像方法
JP4987824B2 (ja) キャリブレーション装置、キャリブレーション方法、キャリブレーションプログラム、コンピュータ読み取り可能な記録媒体、センサ装置、及び表示装置
TWI789127B (zh) 影像補償電路及方法
US20220232178A1 (en) Image capture apparatus and image processing method
JP6470589B2 (ja) 撮像装置およびその制御方法、プログラム、並びに記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924247

Country of ref document: EP

Kind code of ref document: A1