WO2021179502A1 - 一种单三相兼容的转换电路及车载充电机 - Google Patents

一种单三相兼容的转换电路及车载充电机 Download PDF

Info

Publication number
WO2021179502A1
WO2021179502A1 PCT/CN2020/101126 CN2020101126W WO2021179502A1 WO 2021179502 A1 WO2021179502 A1 WO 2021179502A1 CN 2020101126 W CN2020101126 W CN 2020101126W WO 2021179502 A1 WO2021179502 A1 WO 2021179502A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
phase
emc
filter
switch
Prior art date
Application number
PCT/CN2020/101126
Other languages
English (en)
French (fr)
Inventor
刘钧
冯颖盈
姚顺
冯仁伟
Original Assignee
深圳威迈斯新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳威迈斯新能源股份有限公司 filed Critical 深圳威迈斯新能源股份有限公司
Priority to DE112020000086.9T priority Critical patent/DE112020000086T5/de
Publication of WO2021179502A1 publication Critical patent/WO2021179502A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/40Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries adapted for charging from various sources, e.g. AC, DC or multivoltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention belongs to the technical field of electric vehicle charging, and specifically relates to a single-three-phase compatible conversion circuit and a vehicle-mounted charger.
  • On-board chargers are an important part of electric vehicles, which help electric vehicles realize the non-fixed area and form of energy.
  • the single three-phase compatible on-board chargers are widely used and can be applied to various grid environments. In particular, the three-phase on-board chargers can reduce the waiting time for charging.
  • the single-three-phase compatible on-board charger can switch between single-phase and three-phase operating modes according to the actual charging environment.
  • the midpoint (O) of the DC side is connected to the N line through a capacitor so that the noise is transmitted to the N line instead of the ground, and the interference is reduced directly through
  • the ground is transmitted to the component outside the module, and at the same time, a Y capacitor can be connected to the midpoint of the DC bus to filter out noise.
  • the midpoint (O) of the DC side When switching to single-phase operation mode, the midpoint (O) of the DC side will form an interference source, and this capacitor will increase the common mode noise on the AC side and the DC side.
  • some literatures reduce the common mode interference during three-phase operation by connecting the N wire to the midpoint of the bus. However, this leads to the limited voltage regulation range of the PFC bus, and space vector control cannot be used to make the bus voltage wider. The range of the N-wire is also difficult to be compatible with single-phase input.
  • the purpose of the present invention is to provide a single-three-phase compatible conversion circuit structure and a vehicle-mounted charger in view of the different common-mode noise sources and paths in the three-phase charging mode and the single-phase charging mode of the vehicle-mounted charger in the above-mentioned prior art.
  • a single three-phase compatible conversion circuit which includes: an EMC module, a PFC module, a switch K1, and a control module.
  • the EMC module is connected to the A, B, C, and N lines of the power grid.
  • the three wires A1, B1, and C1 from the EMC module are connected to the PFC module, and the three wires A1, B1, and C1 are respectively connected to the set virtual midpoint through capacitors CX1, CX2, and CX3,
  • the virtual midpoint is connected to the bus midpoint of the PFC module through the switch K1, and the control module is used to detect the grid input signal and control the state of the switch K1 according to the type of the grid input signal.
  • the virtual midpoint is grounded through the capacitor CY1.
  • the control module when the power grid is connected to three-phase power, the control module controls the switch K1 to be turned on, and when single-phase power is connected, the control module controls the switch K1 to be turned off.
  • the EMC module includes an EMC filter and a switching device.
  • the EMC filter is composed of filter units that filter lines A, B, C, and N respectively.
  • the switching device is composed of , B, C, and N lines are composed of switches, which are used to switch the form of the EMC filter.
  • the switching device when the power grid is connected to three-phase power, sets the EMC filter to filter the lines A, B, C, and N of the power grid; when single-phase power is connected At this time, the switching module sets the EMC filter to a two-way filtering form.
  • K1 is a single-pole double-throw switch.
  • the control module controls the switch K1 to turn on the virtual midpoint and the bus midpoint of the PFC module.
  • the N line of the power grid is output through one of the three lines A1, B1, and C1 from the EMC module, and the control module controls the switch K1 to turn on the virtual midpoint and the N line output by the EMC module .
  • a single-three-phase compatible conversion circuit which includes: an EMC module, a PFC module, a single-pole double-throw switch K2, and a control module.
  • the EMC module is connected to A, B, and C of the power grid. Between the N line and the PFC module, the EMC module leads out A1, B1, and C1 to connect to the PFC module input, and the A1, B1, and C1 three lines are connected to the set via capacitors CX1, CX2, and CX3, respectively.
  • a virtual midpoint, the virtual midpoint is connected to the fixed contact of the single-pole double-throw switch K2, a series freewheeling device is also arranged between the bus bars of the PFC module, and the midpoint of the series freewheeling device is connected to the slave
  • the N1 line drawn from the EMC module is connected, the first dynamic contact of the SPDT switch K2 is connected to the midpoint of the bus bar of the PFC module, and the second dynamic contact of the SPDT switch K2 is connected to the slave
  • the N1 line from the EMC module is connected, and the control module is used to detect the grid input signal and control the state of the single-pole double-throw switch K2 according to the type of the grid input signal.
  • the series freewheeling device includes at least two series-connected diodes or two series-connected transistors.
  • the control module when the grid is connected to three-phase power, the control module controls the first dynamic contact of the single-pole double-throw switch K2 to conduct. When single-phase power is connected, the control module controls the The second dynamic contact of the single-pole double-throw switch K2 is turned on.
  • the EMC module includes an EMC filter and a switching device.
  • the EMC filter is composed of filter units that filter lines A, B, C, and N respectively.
  • the switching device is composed of , B, C, and N lines are composed of switches, which are used to switch the form of the EMC filter.
  • the switching device when the power grid is connected to three-phase power, sets the EMC filter to filter the lines A, B, C, and N of the power grid; when single-phase power is connected
  • the switching module controls the filter unit of the filter line A to be connected to the PFC module alone, or the filter unit of the filter line A is connected in parallel with the filter unit of the line B or the filter unit of the line C
  • the filter unit connected to the PFC module or the filter A line of the filter is connected in parallel with the filter unit of the B line and the filter unit of the C line and then connected to the PFC module.
  • the present invention also provides a vehicle-mounted charger, which adopts the above-mentioned single three-phase compatible conversion circuit.
  • the virtual midpoint formed by the capacitors CX1 ⁇ CX3 can be shorted to the busbar midpoint through K1 to form a common mode current loop.
  • the common mode noise output to the grid, and the virtual midpoint voltage is not equal to the N-line voltage, so the PFC stage can use space vector control to adjust the bus voltage in a larger range.
  • the virtual midpoint voltage is relative to the N-line voltage.
  • the control disconnects the virtual midpoint and the bus midpoint to isolate the common mode noise caused by the midpoint of the DC side.
  • the invention can simultaneously reduce EMC noise in the three-phase conversion mode and the single-phase conversion mode, and can also adopt an optimized control method (such as space vector control) in the three-phase conversion mode to adjust the PFC bus voltage in a wide range to optimize the whole machine Performance; single-phase operation reduces the input ripple through interleaving while disconnecting noise, and maximizes the use of filter components through EMC filter switching.
  • an optimized control method such as space vector control
  • Fig. 1 is a circuit diagram of a first single-three-phase compatible conversion circuit according to an embodiment of the present invention.
  • Figure 2 is a circuit diagram of a single three-phase compatible conversion circuit in three-phase mode.
  • Figure 3 is a schematic diagram of the bus midpoint voltage versus the N line or ground voltage in the three-phase mode.
  • Figure 4 is a schematic diagram of the point-to-ground interference voltage of the PFC bus in single-phase mode.
  • Figure 5 is a diagram of an example switching topology in single-phase mode.
  • Figure 6 uses two four-wire common-mode inductors for single-phase work switching topology.
  • Figure 7 is a circuit diagram of the optional impedance Zsel in series between the switch K1 and the midpoint O, the virtual midpoint is connected to a Y capacitor, and K1 uses single-pole double-throw.
  • Fig. 8 is a schematic diagram of a second single-three-phase compatible conversion circuit according to an embodiment of the present invention.
  • Fig. 9 is a circuit diagram of a second single-three-phase compatible conversion circuit in a three-phase mode according to an embodiment of the present invention.
  • FIG. 10 is a circuit example diagram of the second single-three-phase compatible conversion circuit adopting a switching method in the single-phase mode according to the embodiment of the present invention.
  • Figure 1 shows the circuit structure of a single three-phase compatible conversion circuit with a virtual midpoint, which includes EMC module, PFC (Power Factor Correction) module, neutral clamp point switch K1, and control module And load.
  • the EMC module is connected between the A, B, C, and N lines of the power grid and the PFC module.
  • the EMC module leads to the A1, B1, and C1 lines corresponding to the A, B, and C lines of the power grid.
  • the PFC modules are connected, and the three wires A1, B1, and C1 are respectively connected to the virtual midpoint O1 through capacitors CX1, CX2, and CX3, and the virtual midpoint O1 is connected to the bus midpoint O of the PFC module through the switch K1.
  • the control module is used to detect the grid input signal and control the state of the switch K1 according to the type of the grid input signal.
  • the PFC module is used to convert the power input from the grid into direct current and supply power to the load.
  • the topology structure of the PFC module can adopt a three-phase two-level topology structure, or can adopt a three-phase Vienna or three-phase buck topology structure.
  • the single-three-phase compatible conversion circuit can be used in a charger.
  • the working principle of the above-mentioned single-three-phase compatible conversion circuit will be described below.
  • the control module collects the signals on the A, B, C, and N lines input by the power grid, and then determines its working mode, and controls the connection of the switch K1 accordingly.
  • the switch K1 can also be implemented by a relay, or a semiconductor switch, such as a switching circuit formed by a MOS, an IGBT, a bidirectional thyristor, etc., which is not limited by the present invention.
  • FIG. 2 shows an example topology in the three-phase working mode. In this mode, the inductance and capacitance of the filter on the A line, B line, C line, and N line are in working condition.
  • the control module determines that the single-three-phase compatible conversion circuit is in the three-phase operating mode
  • the control module closes the switch K1 so that the midpoint O on the DC bus side is connected to the virtual midpoint O1 and the capacitor CY1.
  • line A1, line B1, and line C1 form a loop with the midpoint capacitance of the bus through capacitors CX1, CX2, and CX3, so that common mode interference can be transmitted through this low impedance path, reducing the component of bus noise transmitted to the input side;
  • the capacitor CY1 It can absorb the common mode noise on the DC side, thereby reducing the common mode noise in the entire loop.
  • the bus midpoint-to-ground voltage When the converter is in single-phase operation mode, the bus midpoint-to-ground voltage will periodically change between +Vdc and -Vdc and superimpose AC voltage during single-phase rectification (as shown in Figure 4, the bus midpoint voltage and ground Between the voltage), this voltage contains high dv/dt noise components near the input zero-crossing point. If K1 is closed (the midpoint of the busbar is still connected to the ground through the Y capacitor), the noise on the DC bus side is coupled to the ground through the virtual midpoint, resulting in greater interference noise and causing greater EMC problems.
  • Figure 5 shows an example topology in single-phase working mode. In this mode, only the inductance and capacitance of the filter on the A line and the N line are in working condition. In single-phase operating mode, disconnecting K1 will disconnect the path from the bus midpoint voltage to the ground, making the EMC goal easier to achieve.
  • the EMC module includes an EMC filter and a switching device.
  • the EMC filter is composed of filter units that filter lines A, B, C, and N respectively.
  • the switching device is composed of The switches (K11, K12, K13, K14) between the lines B, C, and N are used to switch the form of the EMC filter.
  • the switching device can be arranged before the EMC filter, and can also be arranged between and after the EMC filter, and the present invention does not limit its position.
  • the switching device maintains the A, B, C, and N four-way filtering of the EMC filter.
  • the switching device switches the EMC filter to a two-way filter.
  • the switching device can make a one-wire, two-wire or three-wire filter work. When a two-wire or three-wire filter is working, it can make all
  • the PFC module works in the interleaved mode to further reduce the input ripple current and reduce EMC interference.
  • the second stage shown in Figure 5 uses a three-wire filter. When single-phase is working, K11, K12, K13 are closed, and K1 is disconnected.
  • phase A and N enter through the first stage filter, phase A is filtered through K11 and K12 using two windings of the second filter and then output to the PFC module, and line N is filtered through K13 using one winding of the second filter and output To the PFC module.
  • the second stage of the EMC module uses a four-wire filter, and K11, K12, K13, and K14 are closed during single-phase operation, and K1 is disconnected.
  • AC input A and N enter through the first stage filter, phase A is filtered through K11 and K12 using the two windings of the second filter and then output to the PFC module, and the N line is passed through K13 and K14 using the two windings of the second filter. After filtering, output to the PFC module.
  • the windings of the second filter are all used, so that the current of each winding can be reduced, the overall design cost can be reduced, and the efficiency can be improved.
  • the L1L2 corresponding module in the PFC module can work in interleaved mode to reduce the input differential mode current.
  • the switch K11, K13 can also be moved to the input port, so that the input first-stage filter can also be used more optimally.
  • the virtual midpoint O1 can also be grounded through a capacitor CY1, and an optional impedance Zsel can be connected in series between the switch K1 and the DC side midpoint O.
  • the switch K1 can also be a single-pole double-throw switch.
  • the control module controls the switch K1 to conduct the virtual midpoint and the bus midpoint of the PFC module.
  • the N line of the power grid is output through the C1 line drawn from the EMC module (at this time, in the EMC module, the N line and the C line are connected in parallel, and the N line is output through the C1 line. It can also be output through the A1 line or B1 line. Line), the control module controls the switch K1 to turn on the virtual midpoint and the N line output by the EMC module.
  • the second single-three-phase compatible conversion circuit structure provided by the present invention is shown in Figure 8, which includes an EMC module, a PFC module, a single-pole double-throw switch K2 and a control module.
  • the A1, B1, and C1 three lines corresponding to the power grid A, B, and C lines are drawn through the EMC module to connect with the input of the PFC module, and the A1, B1, and C1 three lines Are respectively connected to a virtual midpoint O1 through capacitors CX1, CX2, and CX3, the virtual midpoint is connected to the fixed contact of the single-pole double-throw switch K2, and a series freewheeling device is also provided between the bus bars of the PFC module,
  • the midpoint of the series freewheeling device is connected to the N1 line corresponding to the N line of the power grid derived from the EMC module, and the first dynamic contact of the single-pole double-throw switch K2 is connected to the midpoint of the busbar of the PFC module O is connected, the
  • the virtual midpoint O1 can also be grounded through the capacitor CY1, and an impedance Zsel can also be connected in series between the switch K2 and the DC side midpoint O.
  • the continuous current device includes at least two diodes or transistors connected in series. The midpoint of the two diodes is directly connected to the N1 line. It should be noted that the function of the serial current freewheeling device is freewheeling or commutation, and it can also be composed of only two series-connected diodes or two series-connected transistors. In three-phase operation, this series structure can be used for rectification or commutation, so that the conversion units of L1, L2, and L3 do not need to be occupied, so that single-phase conversion with higher power can be realized.
  • Figure 9 shows a typical configuration example for three-phase input.
  • K11, K12, K13, and K14 are all disconnected, and K2 is set at 1.
  • the N1 line is connected to the PFC output bus through a freewheeling device, since the voltage only floats between the buses, the freewheeling device does not conduct, so it is equivalent to an open circuit.
  • This configuration can achieve the same function as Figure 2 and reduce EMC interference during three-phase operation.
  • Figure 10 shows a typical configuration example for single-phase input.
  • K11, K12, K13, and K14 are all closed, and K2 is set at 2.
  • the PFC module can adopt an interleaved working mode to reduce the ripple current of the A-phase input differential mode ripple current and the ripple current of the PFC DC side capacitor in the EMC filter.
  • the currents flowing on the first three lines in the EMC filter L21 are equal and are all one-third of the single-phase input current. Therefore, this design also helps to improve the utilization of the filter during single-phase operation, reduce the cost of components, and improve efficiency.
  • the switching module controls the filter unit of line A of the filter to be connected in parallel with the filter unit of line B and the filter unit of line C.
  • the PFC module can also control the filter unit of the filter A line to be connected to the PFC module alone, or the filter unit of the filter A line and the filter unit of the B line or the filter unit of the C line are connected in parallel.
  • the PFC module controls the filter unit of line A of the filter to be connected in parallel with the filter unit of line B and the filter unit of line C.
  • the single-pole double-throw switch K2 can also be replaced by a single-pole single-throw switch or two switches connected between the bus midpoint and the virtual midpoint of the PFC module. Both switches can be implemented using semiconductor switches.
  • the single-three-phase compatible conversion circuit of the present invention can be flexibly switched between single-phase and three-phase working modes, adapts to the requirements of different single-phase and three-phase noise sources on the filter structure, and is compatible with reducing single-phase and three-phase operation.
  • EMC noise in working mode; and in three-phase working mode, optimized control methods (such as space vector control) can be used to maintain a wide output voltage adjustment range, thereby improving converter performance; at the same time, the switching circuit can make full use of EMC common mode Inductance, reduce product cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Rectifiers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种单三相兼容的转换电路,其包括:EMC模块、PFC模块、开关K1及控制模块,EMC模块连接于电网的A、B、C、N线和PFC模块之间,EMC模块引出A1、B1、C1三线与PFC模块相连接,且A1、B1、C1三线分别通过电容CX1、CX2和CX3连接至设置的虚拟中点,虚拟中点通过开关K1与PFC模块的母线中点相连,控制模块用于检测电网输入信号并根据电网输入信号的类型来控制开关K1的状态。单三相兼容的转换电路可降低三相转换模式共模噪音,同时保证三相转换模式可采用较大母线调压范围的控制方式;切换到单相转换模式时也能减少直流侧的共模噪声对输入EMC的影响。

Description

一种单三相兼容的转换电路及车载充电机 技术领域
本发明属于电动汽车充电技术领域,具体涉及一种单三相兼容的转换电路及车载充电机。
背景技术
随着节能减排,倡导绿色出行,新能源汽车的需求日益增加,其中电动汽车是新能源汽车的主力军。车载充电机是电动汽车的重要组成部分,有助于电动汽车实现能量的无固定区域及形式。而单三相兼容的车载充电机应用非常广泛,可以适用于各种电网环境中,尤其三相的车载充电机能够减少充电等待时间。
尽管单三相兼容的车载充电机能够给电动汽车充电带来各种便利,但其主电路的设计存在诸多挑战。单三相兼容的车载充电机会根据实际的充电环境在单相和三相两种工作模式之间进行切换。通常,在三相工作模式下,为了减少交流侧和直流侧的共模噪声,直流侧的中点(O)通过电容连接到N线使得噪音传递到N线而不是地上,而且减少干扰直接通过地传送到模块外面的分量,同时可以连接Y电容到直流母线中点以滤除噪音。当切换到单相工作模式下,直流侧的中点(O)会形成干扰源,该电容会增加交流侧和直流侧的共模噪声。另外,也有的文献通过将N线连接到母线中点来减少三相工作时的共模干扰,但是这样导致PFC母线调压范围受限,不能使用空间矢量控制等方式使得母线电压可以在较宽的范围进行调整,同时N线的连接也难以兼容单相输入情况。
发明内容
本发明的目的是针对上述现有技术中车载充电机在三相充电模式和单相充电模式时存在共模噪声源和路径不同,提出一种单三相兼容的转换电路结构及车载充电机。
本发明实施例中,提供了一种单三相兼容的转换电路,其包括:EMC模块、PFC模块、开关K1及控制模块,所述EMC模块连接于电网的A、B、C、N线和所述PFC模块之间,所述EMC模块引出的A1、B1、C1三线与所述PFC模 块相连接,且A1、B1、C1三线分别通过电容CX1、CX2和CX3连接至设置的虚拟中点,所述虚拟中点通过所述开关K1与所述PFC模块的母线中点相连,所述控制模块用于检测电网输入信号并根据电网输入信号的类型来控制所述开关K1的状态。
本发明实施例中,所述虚拟中点经过电容CY1接地。
本发明实施例中,当电网接入三相电时,所述控制模块控制开关K1导通,当接入单相电时,所述控制模块控制开关K1断开。
本发明实施例中,所述EMC模块包括EMC滤波器和切换装置,所述EMC滤波器由分别对A、B、C、N各线进行滤波的滤波单元组成,所述切换装置由设置于A、B、C、N各线之间的开关组成,用于切换所述EMC滤波器的形态。
本发明实施例中,当电网接入三相电时,所述切换装置将所述EMC滤波器设置为对电网的A、B、C、N各线进行滤波的形态;当接入单相电时,所述切换模块将所述EMC滤波器设置为两路滤波形态。
本发明实施例中,K1为单刀双掷开关,当电网接入三相电时,所述控制模块控制开关K1导通所述虚拟中点与所述PFC模块的母线中点,当接入单相电时,电网的N线通过所述EMC模块引出的A1、B1、C1三线中的一线输出,所述控制模块控制开关K1导通所述虚拟中点与所述EMC模块输出的N线上。
本发明实施例中,还提供了一种单三相兼容的转换电路,其包括:EMC模块、PFC模块、单刀双掷开关K2及控制模块,所述EMC模块连接于电网的A、B、C、N线和所述PFC模块之间,所述EMC模块引出A1、B1、C1三线与所述PFC模块输入相连接,且A1、B1、C1三线分别通过电容CX1、CX2和CX3连接至设置的虚拟中点,所述虚拟中点与所述单刀双掷开关K2的固定触点相连,所述PFC模块的母线之间还设置了串联续流装置,所述串联续流装置的中点与从所述EMC模块引出的N1线相连,所述单刀双掷开关K2的第一动态触点与所述PFC模块的母线中点相连,所述单刀双掷开关K2的第二动态触点与从所述EMC模块引出的N1线相连,所述控制模块用于检测电网输入信号并根据电网输入信号的类型来控制所述单刀双掷开关K2的状态。
本发明实施例中,所述串联续流装置包括至少两个串联的二极管或者两个 串联的晶体管。
本发明实施例中,当电网接入三相电时,所述控制模块控制所述单刀双掷开关K2的第一动态触点导通,当接入单相电时,所述控制模块控制所述单刀双掷开关K2的第二动态触点导通。
本发明实施例中,所述EMC模块包括EMC滤波器和切换装置,所述EMC滤波器由分别对A、B、C、N各线进行滤波的滤波单元组成,所述切换装置由设置于A、B、C、N各线之间的开关组成,用于切换所述EMC滤波器的形态。
本发明实施例中,当电网接入三相电时,所述切换装置将所述EMC滤波器设置为对电网的A、B、C、N各线进行滤波的形态;当接入单相电时,所述切换模块控制所述滤波器A线的滤波单元单独接入到所述PFC模块、或者所述滤波器A线的滤波单元与B线的滤波单元或者C线的滤波单元并联后接入到所述PFC模块、或者所述滤波器A线的滤波单元与B线的滤波单元及C线的滤波单元并联后接入到所述PFC模块。
本发明还提供了一种车载充电机,其采用了上述的单三相兼容的转换电路。
与现有技术相比较,采用本发明的单三相兼容的转换电路,在三相工作模式下,电容CX1~CX3形成的虚拟中点可以通过K1短接到母线中点形成共模电流回路减少输出到电网的共模噪声,同时虚拟中点电压并不等于N线电压,所以PFC级可以采用空间矢量控制等方式在较大范围内调整母线电压,此时虚拟中点电压相对于N线电压产生3倍工频的低频变化波动和极小的高频噪音;在单相工作模式下,控制断开虚拟中点与母线中点的连接,隔断了直流侧中点引起的共模噪声,同时通过切换所述EMC滤波电路的形态以实现单相滤波,切换可以完全利用三相滤波器的绕组,从而提高绕组利用率,减少元器件的成本。
本发明可同时兼容降低三相转换模式和单相转换模式EMC噪声,还可在三相转换模式采用优化控制方式(如空间矢量控制)使得PFC母线电压在较宽范围内调整,以优化整机性能;单相工作在断开噪音的同时,通过交错减少输入纹波,通过EMC滤波器切换最大化利用滤波元件。
附图说明
图1是本发明实施例第一种单三相兼容的转换电路的电路图。
图2是三相模式下单三相兼容的转换电路的电路图。
图3是三相模式下母线中点电压对N线或者地的电压的示意图。
图4是单相模式下PFC母线中点对地的干扰电压示意图。
图5是单相模式下一种示例切换拓扑结构图。
图6使用两个四线共模电感的单相工作切换拓扑结构图。
图7是开关K1和中点O之间串联可选的阻抗Zsel,虚拟中点接入Y电容,K1使用单刀双掷的电路图。
图8是本发明实施例第二种单三相兼容的转换电路的示意图。
图9是本发明实施例第二种单三相兼容的转换电路在三相模式下的电路图。
图10是本发明实施例第二种单三相兼容的转换电路在单相模式下采用一种切换方式的电路示例图。
具体实施方式
图1给出了一种带虚拟中点的单三相兼容的转换电路的电路结构,其包括EMC模块、PFC(Power Factor Correction,功率因数校正)模块、中性钳位点开关K1、控制模块及负载。所述EMC模块连接于电网的A、B、C、N线和所述PFC模块之间,所述EMC模块引出与电网的A、B、C线相对应的A1、B1、C1三线与所述PFC模块相连接,且A1、B1、C1三线分别通过电容CX1、CX2和CX3连接至虚拟中点O1,所述虚拟中点O1通过所述开关K1与所述PFC模块的母线中点O相连。所述控制模块用于检测电网输入信号并根据电网输入信号的类型来控制所述开关K1的状态。所述PFC模块用于将电网输入的电源转换为直流电,并给所述负载供电。所述PFC模块的拓扑结构可以采用三相两电平的拓扑结构,也可采用三相维也纳或者三相buck等拓扑结构。
所述单三相兼容的转换电路可用于充电机中,下面对上述单三相兼容的转换电路的工作原理进行说明。
首先通过所述控制模块采集电网输入的A、B、C和N线上的信号,然后判断其工作模式,并据此来控制开关K1的连通。开关K1还可以采用继电器实现, 也可以是半导体开关,如MOS、IGBT,双向晶闸管等形成的开关电路,本发明对此不进行限制。
假设通过所述控制模块已经确定充电机处于三相的工作模式下,若没有K1连接母线中点和虚拟中点,则母线与地之间产生的高频的共模干扰噪声会通过Y电容或者寄生电容传递到输入端口,造成电源难以通过EMC测试。针对这个问题,图2给出了三相工作模式下的一种示例拓扑结构,此模式下,A线、B线、C线、N线上滤波器的电感和电容处于工作状态。如图2所示,当控制模块判定单三相兼容的转换电路处于三相工作模式下,控制模块闭合开关K1,使得直流母线侧的中点O与虚拟中点O1和电容CY1相连。此时A1线、B1线、C1线通过电容CX1、CX2和CX3与母线中点电容形成回路,使得共模干扰可以通过这个低阻抗路径传输,减少母线噪音传递到输入侧的分量;同时电容CY1可以吸收直流侧的共模噪声,从而减少整个回路中的共模噪声。此外,由于母线中点没有被N线钳位,所有连接都是电容连接;因此可以采用空间矢量的调制方式使直流侧电容电压获得更宽的调节范围。如图3所示为使用空间矢量控制时,母线中点O相对N线或者地的电压,此为一个低频的电压,几乎没有高频信号,从而减少系统的EMC干扰。
变换器处于单相的工作模式下,由于母线中点对地电压在单相整流时会在+Vdc和-Vdc之间周期变化并叠加交流电压(如图4所示为母线中点电压与地之间的电压),此电压在输入过零点附近包含高dv/dt的噪音分量。若K1闭合(母线中点仍通过Y电容与地连接),则导致直流母线侧噪音通过虚拟中点耦合到地,产生较大干扰噪音,造成较大EMC问题。
针对这个问题,图5给出了单相工作模式下的一种示例拓扑结构,此模式下,只有A线和N线上的滤波器的电感和电容处于工作状态。在单相工作模式下,断开K1就断开了母线中点电压传递到地线的路径,使得EMC目标更加容易达成。
需要说明的是,所述EMC模块包括EMC滤波器和切换装置,所述EMC滤波器由分别对A、B、C、N各线进行滤波的滤波单元组成,所述切换装置由设置于A、B、C、N各线之间的开关(K11、K12、K13、K14)组成,用于 切换所述EMC滤波器的形态。切换装置可以设置于EMC滤波器之前,也可以设置于EMC滤波器之间和滤波器之后,本发明不对其位置进行限制。
在三相模式下,所述切换装置保持EMC滤波器的A、B、C、N四路滤波。在单相模式下,所述切换装置将EMC滤波器切换为两路滤波,所述切换装置可以让一线、两线或者三线的滤波器工作,两线或者三线的滤波器工作时,可以使所述PFC模块工作在交错模式进一步降低输入纹波电流,减少EMC干扰。图5所示第二级使用三线滤波器,单相工作时闭合K11、K12、K13,断开K1。交流输入A和N通过第一级滤波器进入,A相通过K11和K12使用第二滤波器的两个绕组滤波后输出到PFC模块,N线通过K13使用第二滤波器的一个绕组滤波后输出到PFC模块。
如图6所示,所述EMC模块第二级使用四线滤波器,单相工作时闭合K11、K12、K13、K14,断开K1。交流输入A和N通过第一级滤波器进入,A相通过K11和K12使用第二滤波器的两个绕组滤波后输出到PFC模块,N线通过K13和K14使用第二滤波器的两个绕组滤波后输出到PFC模块。单相工作时第二滤波器绕组全部得到利用,从而可以降低每个绕组电流,降低整体设计成本并提高效率。同时,PFC模块中L1L2对应模块可以工作在交错模式,降低输入差模电流。注意此处切换开关K11、K13也可以移动到输入端口,使得输入第一级滤波器也可以得到更优利用。
如图7所示,在图1所示的电路的基础上,所述虚拟中点O1还可以经过电容CY1接地,开关K1和直流侧中点O之间还可以串联一个可选的阻抗Zsel。开关K1还可以采用单刀双掷开关,当电网接入三相电时,所述控制模块控制开关K1导通所述虚拟中点与所述PFC模块的母线中点,当接入单相电时,电网的N线通过所述EMC模块引出的C1线输出(此时,在所述EMC模块内部,将N线与C线并接,N线通过C1线输出,也可以通过A1线或者B1输出线),所述控制模块控制开关K1导通所述虚拟中点与所述EMC模块输出的N线。
本发明提供的第二种单三相兼容的转换电路结构如图8所示,其包括EMC模块、PFC模块、单刀双掷开关K2及控制模块,所述EMC模块连接于电网的A、B、C、N线和所述PFC模块之间,经所述EMC模块引出与电网A、B、C 线对应的A1、B1、C1三线与所述PFC模块输入相连接,且A1、B1、C1三线分别通过电容CX1、CX2和CX3连接至虚拟中点O1,所述虚拟中点与所述单刀双掷开关K2的固定触点相连,所述PFC模块的母线之间还设置了串联续流装置,所述串联续流装置的中点与从所述EMC模块的引出的与电网N线对应的N1线相连,所述单刀双掷开关K2的第一动态触点与所述PFC模块的母线中点O相连,所述单刀双掷开关K2的第二动态触点与从所述EMC模块的引出的N1线相连,所述控制模块用于检测电网输入信号并根据电网输入信号的类型来控制所述单刀双掷开关K2的状态。
如前所述所述虚拟中点O1还可以经过电容CY1接地,开关K2和直流侧中点O之间同样可以串联一个阻抗Zsel。
所述串流续流装置至少包括两个串联的二极管或者晶体管。所述两个二极管的中点直接与N1线相连。需要说明的是,所述串流续流装置的作用是续流或者换向,也可以只采用两个串联的二极管组成或者两个串联的晶体管组成。在三相工作时可以使用此串联结构进行整流或者换向,从而使得不必占用L1、L2、L3的变换单元,如此可以实现更大功率的单相转换。
图9为三相输入时典型配置示例图。三相输入时K11、K12、K13、K14均断开,K2置位于1处。N1线虽然通过续流装置连接到PFC输出母线,但由于电压仅在母线间浮动,续流装置并不导通,因此等效于断路。此配置可以实现与图2相同的功能,减少三相工作时候的EMC干扰。
图10为单相输入时的典型配置示例图。单相输入时,K11、K12、K13、K14均闭合,K2置位于2处。此时PFC模块可以采用交错的工作方式,从而减少EMC滤波器中A相输入差模纹波电流以及PFC直流侧电容的纹波电流。其次,EMC滤波器L21中前三线路上流过的电流相等且都是单相输入电流的三分之一。因此,此设计也有助于提高单相工作时滤波器的利用率,降低元器件的成本,提高效率。
需要说明的是,当接入单相电时,在图10中,所述切换模块控制所述滤波器A线的滤波单元与B线的滤波单元及C线的滤波单元并联后接入到所述PFC模块,还可以控制所述滤波器A线的滤波单元单独接入到所述PFC模块、或者 所述滤波器A线的滤波单元与B线的滤波单元或者C线的滤波单元并联后接入到所述PFC模块。
还需要说明的是,本发明实施例中,单刀双掷开关K2也可以采用连接于所述PFC模块的母线中点和虚拟中点之间的单刀单掷开关或者两个开关来替代,所有切换开关都可以使用半导体开关实现。
综上所述,本发明的单三相兼容的转换电路可在单相和三相工作模式之间可以灵活切换,适应单三相不同的噪声源对滤波器结构的要求,兼容降低单三相工作模式下的EMC噪声;且能在三相工作模式下采用优化控制方式(如空间矢量控制)保持较宽输出电压的调节范围,从而提高变换器性能;同时切换电路可以充分利用了EMC共模电感,降低产品成本。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种单三相兼容的转换电路,其特征在于,包括:EMC模块、PFC模块、开关K1及控制模块,所述EMC模块连接于电网的A、B、C、N线和所述PFC模块之间,所述EMC模块引出的A1、B1、C1三线与所述PFC模块相连接,且A1、B1、C1三线分别通过电容CX1、CX2和CX3连接至设置的虚拟中点,所述虚拟中点通过所述开关K1与所述PFC模块的母线中点相连,所述控制模块用于检测电网输入信号并根据电网输入信号的类型来控制所述开关K1的状态。
  2. 如权利要求1所述的单三相兼容的转换电路,其特征在于,所述虚拟中点经过电容CY1接地。
  3. 如权利要求1或2所述的单三相兼容的转换电路,其特征在于,当电网接入三相电时,所述控制模块控制开关K1导通,当接入单相电时,所述控制模块控制开关K1断开。
  4. 如权利要求1或2所述的单三相兼容的转换电路,其特征在于,所述EMC模块包括EMC滤波器和切换装置,所述EMC滤波器由分别对A、B、C、N各线进行滤波的滤波单元组成,所述切换装置由设置于A、B、C、N各线之间的开关组成,用于切换所述EMC滤波器的形态。
  5. 如权利要求4所述的单三相兼容的转换电路,其特征在于,当电网接入三相电时,所述切换装置将所述EMC滤波器设置为对电网的A、B、C、N各线进行滤波的形态;当接入单相电时,所述切换模块将所述EMC滤波器设置为两路滤波形态。
  6. 如权利要求1或2所述的单三相兼容的转换电路,其特征在于,K1为单刀双掷开关,当电网接入三相电时,所述控制模块控制开关K1导通所述虚拟中点与所述PFC模块的母线中点,当接入单相电时,电网的N线通过所述EMC模块引出的A1、B1、C1三线中的一线输出,所述控制模块控制开关K1导通所述虚拟中点与所述EMC模块输出的N线上。
  7. 一种单三相兼容的转换电路,其特征在于,包括:EMC模块、PFC模块、单刀双掷开关K2及控制模块,所述EMC模块连接于电网的A、B、C、N线和所述PFC模块之间,所述EMC模块引出A1、B1、C1三线与所述PFC模块输 入相连接,且A1、B1、C1三线分别通过电容CX1、CX2和CX3连接至设置的虚拟中点,所述虚拟中点与所述单刀双掷开关K2的固定触点相连,所述PFC模块的母线之间还设置了串联续流装置,所述串联续流装置的中点与从所述EMC模块引出的N1线相连,所述单刀双掷开关K2的第一动态触点与所述PFC模块的母线中点相连,所述单刀双掷开关K2的第二动态触点与从所述EMC模块引出的N1线相连,所述控制模块用于检测电网输入信号并根据电网输入信号的类型来控制所述单刀双掷开关K2的状态。
  8. 如权利要求7所述的单三相兼容的转换电路,其特征在于,所述串联续流装置包括至少两个串联的二极管或者两个串联的晶体管。
  9. 如权利要求7或8所述的单三相兼容的转换电路,其特征在于,当电网接入三相电时,所述控制模块控制所述单刀双掷开关K2的第一动态触点导通,当接入单相电时,所述控制模块控制所述单刀双掷开关K2的第二动态触点导通。
  10. 如权利要求7或8所述的单三相兼容的转换电路,其特征在于,所述EMC模块包括EMC滤波器和切换装置,所述EMC滤波器由分别对A、B、C、N各线进行滤波的滤波单元组成,所述切换装置由设置于A、B、C、N各线之间的开关组成,用于切换所述EMC滤波器的形态。
  11. 如权利要求7或8所述的单三相兼容的转换电路,当电网接入三相电时,所述切换装置将所述EMC滤波器设置为对电网的A、B、C、N各线进行滤波的形态;当接入单相电时,所述切换模块控制所述滤波器A线的滤波单元单独接入到所述PFC模块、或者所述滤波器A线的滤波单元与B线的滤波单元或者C线的滤波单元并联后接入到所述PFC模块、或者所述滤波器A线的滤波单元与B线的滤波单元及C线的滤波单元并联后接入到所述PFC模块。
  12. 一种车载充电机,其特征在于,包括如权利要求1-11任一项所述的单三相兼容的转换电路。
PCT/CN2020/101126 2020-03-12 2020-07-09 一种单三相兼容的转换电路及车载充电机 WO2021179502A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020000086.9T DE112020000086T5 (de) 2020-03-12 2020-07-09 Umwandlungsschaltung, die mit einphasiger Leistung und dreiphasiger Leistung kompatibel ist, und Ladegerät für Fahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010172650.XA CN111146851A (zh) 2020-03-12 2020-03-12 一种单三相兼容的转换电路及车载充电机
CN202010172650.X 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021179502A1 true WO2021179502A1 (zh) 2021-09-16

Family

ID=70528661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101126 WO2021179502A1 (zh) 2020-03-12 2020-07-09 一种单三相兼容的转换电路及车载充电机

Country Status (7)

Country Link
US (1) US11664723B2 (zh)
JP (1) JP7126725B2 (zh)
KR (1) KR102532347B1 (zh)
CN (1) CN111146851A (zh)
DE (1) DE112020000086T5 (zh)
FR (1) FR3108213A1 (zh)
WO (1) WO2021179502A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019131410A1 (de) * 2019-11-21 2021-05-27 Ebm-Papst Mulfingen Gmbh & Co. Kg Vorrichtung zur effizienten netzartunabhängigen Zwischenkreisaufbereitung
CN111146851A (zh) * 2020-03-12 2020-05-12 深圳威迈斯新能源股份有限公司 一种单三相兼容的转换电路及车载充电机
CN112003486A (zh) * 2020-08-13 2020-11-27 宁波吉利汽车研究开发有限公司 单相三相互用的功率因数校正拓扑电路、控制系统及车辆
US11958075B2 (en) * 2020-11-09 2024-04-16 Cirrus Logic Inc. Driver circuitry
DE102021202042A1 (de) * 2021-03-03 2022-09-08 Valeo Siemens Eautomotive Germany Gmbh Stromrichter für ein Bordnetz eines elektrisch antreibbaren Fahrzeugs und Bordnetz für ein elektrisch antreibbares Fahrzeug
CN114665727B (zh) * 2022-05-24 2022-08-26 浙江大学杭州国际科创中心 一种三单相兼容misn变换器
CN115987116A (zh) * 2023-03-22 2023-04-18 广东东菱电源科技有限公司 一种大功率电源低待机功耗控制电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142740A (ja) * 2010-01-07 2011-07-21 Mitsubishi Electric Corp 電力変換装置
CN103227575A (zh) * 2012-01-31 2013-07-31 台达电子工业股份有限公司 三相软切换pfc整流器
CN104143931A (zh) * 2013-05-08 2014-11-12 Abb公司 用于逆变器的开关布置以及逆变器
CN111146851A (zh) * 2020-03-12 2020-05-12 深圳威迈斯新能源股份有限公司 一种单三相兼容的转换电路及车载充电机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121408A (ja) * 1992-10-06 1994-04-28 Hitachi Ltd バッテリ充電システム
JP2005033895A (ja) * 2003-07-10 2005-02-03 Toshiba Corp 電力変換装置
JP2007325377A (ja) * 2006-05-31 2007-12-13 Nippon Reliance Kk 電力変換装置
JP5279381B2 (ja) * 2008-07-17 2013-09-04 三菱電機株式会社 電力変換装置
WO2013097815A1 (zh) * 2011-12-31 2013-07-04 深圳市比亚迪汽车研发有限公司 电动汽车及在充放电和驱动功能之间切换的动力系统
JP6187318B2 (ja) * 2014-03-03 2017-08-30 オムロン株式会社 電力変換装置および制御装置
FR3060230B1 (fr) * 2016-12-14 2019-01-25 Renault S.A.S Procede de commande d'un dispositif de charge embarque sur un vehicule electrique ou hybride.
KR102486104B1 (ko) * 2018-04-03 2023-01-09 현대자동차주식회사 전기 자동차의 충전 장치
CN110048626B (zh) * 2019-05-22 2020-08-28 阳光电源股份有限公司 逆变器交流合闸共模冲击电流抑制方法及其应用装置
DE102019129754A1 (de) * 2019-05-23 2020-11-26 Universität Paderborn Vorrichtung und Verfahren zur Ladung eines elektrischen Batteriefahrzeugs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142740A (ja) * 2010-01-07 2011-07-21 Mitsubishi Electric Corp 電力変換装置
CN103227575A (zh) * 2012-01-31 2013-07-31 台达电子工业股份有限公司 三相软切换pfc整流器
CN104143931A (zh) * 2013-05-08 2014-11-12 Abb公司 用于逆变器的开关布置以及逆变器
CN111146851A (zh) * 2020-03-12 2020-05-12 深圳威迈斯新能源股份有限公司 一种单三相兼容的转换电路及车载充电机

Also Published As

Publication number Publication date
US11664723B2 (en) 2023-05-30
FR3108213A1 (fr) 2021-09-17
JP7126725B2 (ja) 2022-08-29
KR102532347B1 (ko) 2023-05-15
CN111146851A (zh) 2020-05-12
KR20210116306A (ko) 2021-09-27
US20210288575A1 (en) 2021-09-16
DE112020000086T5 (de) 2022-04-07
JP2021145543A (ja) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2021179502A1 (zh) 一种单三相兼容的转换电路及车载充电机
CN109842287B (zh) 一种兼容单相和三相交流输入的pfc电路及其控制方法
CN101001051B (zh) 无输出变压器的ups
CN111434513B (zh) 一种车辆及其能量转换装置与动力系统
US11139754B1 (en) Inverter circuit for realizing high-efficiency control of single-phase power of single-phase three-wire power supply
CN203368362U (zh) 三相和单相共用的光伏逆变器系统、三相及单相系统
CN111434514A (zh) 能量转换装置、动力系统及车辆
CN112224060B (zh) 一种车辆及其能量转换装置与动力系统
CN110957934A (zh) 一种变压器绕组切换方法及装置
CN112297894A (zh) 一种宽范围输出的集成车载充电机
CN213661257U (zh) 充电装置和车辆
CN112224058B (zh) 能量转换装置、动力系统以及车辆
CN112224064B (zh) 一种能量转换装置、动力系统及车辆
CN212366904U (zh) 一种单三相兼容的转换电路及车载充电机
CN204794089U (zh) 一种三相三线和四线串联型动态电压补偿器
CN112224055B (zh) 能量转换装置、动力系统以及车辆
CN112224062B (zh) 能量转换装置、动力系统以及车辆
CN112224052B (zh) 能量转换装置、动力系统以及车辆
CN112224038B (zh) 一种能量转换装置、动力系统及车辆
CN112224050B (zh) 能量转换装置、动力系统以及车辆
CN213861886U (zh) 一种宽范围输出的集成车载充电机
CN114337313B (zh) 一种一体化供电及多通道辅助传动系统
CN204391753U (zh) 一种三相三线串联型动态电压补偿器
CN114285296B (zh) 一种一体化供电及辅助传动系统
CN116155121A (zh) 单级功率变换电路及其应用装置和控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924573

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20924573

Country of ref document: EP

Kind code of ref document: A1