WO2021179307A1 - 传输流ts的处理方法、装置和系统 - Google Patents

传输流ts的处理方法、装置和系统 Download PDF

Info

Publication number
WO2021179307A1
WO2021179307A1 PCT/CN2020/079308 CN2020079308W WO2021179307A1 WO 2021179307 A1 WO2021179307 A1 WO 2021179307A1 CN 2020079308 W CN2020079308 W CN 2020079308W WO 2021179307 A1 WO2021179307 A1 WO 2021179307A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
information
frame
channel
frames
Prior art date
Application number
PCT/CN2020/079308
Other languages
English (en)
French (fr)
Inventor
江济泽
赵小祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/079308 priority Critical patent/WO2021179307A1/zh
Priority to CN202080098014.5A priority patent/CN115211127A/zh
Publication of WO2021179307A1 publication Critical patent/WO2021179307A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2385Channel allocation; Bandwidth allocation

Definitions

  • the embodiments of the present application relate to the technical field of video processing, and in particular, to a method, device, and system for processing a transport stream TS.
  • ultra-high-definition video (8K Ultra-high-definition television, 8K) technology has gradually become a new demand for people’s visual experience, and more and more terminal devices have begun to support 8K ultra-high-definition television. HD decoding.
  • the ITU-T J.183 protocol stipulates that multiple MPEG-2 TS packets plus the TSMF header are encapsulated into a single transport stream and output to the cable TV broadcast modulator interface.
  • the multiple MPEG-2 TS packets The packet multiplexes the TSMF header.
  • FIG. 1 is a schematic diagram of the TSMF frame structure, as shown in Figure 1, a TSMF frame includes 53 slots (Slot), the first slot (Slot) is the TSMF header, the remaining slots 1-slot 52 represent 52 MPEG -2 TS packets, where the TSMF header is used to store the binding information of the MPEG-2 TS packets, such as how many MPEG-2 TS packets are multiplexed with the TSMF header, and which MPEG-2 TS packets are multiplexed
  • the TSMF header, etc., 52 MPEG-2 TS packets represented by slot 1-slot 52 can come from different TS streams.
  • the TSMF header will record which TS stream each MPEG-2 TS packet belongs to, so that the receiving device can follow The recorded information restores the TS stream.
  • the embodiments of the present application provide a method, device, and system for processing a transport stream TS, which can be applied to the field of video processing to solve the problem of fixed TSMF frame length and poor application flexibility.
  • an embodiment of the present application provides a method for processing a transport stream TS, which is applied to a first device, and the method includes: grouping the TS to be sent according to the code rate of the transport stream TS to obtain multiple packet frames ; For each packet frame, add first information to the packet frame to obtain a transmission frame, the first information including the first channel information used to indicate the channel on which the transmission frame is sent; the channel indicated according to the first channel information Send the transmission frame to the second device.
  • an embodiment of the present application provides a method for processing a transport stream TS.
  • the method includes: grouping the TS to be sent according to the code rate of the transport stream TS to obtain multiple packet frames; Adding first information to each packet frame to obtain multiple transmission frames, where one packet frame corresponds to one transmission frame, and the first information includes first channel information used to indicate a channel for transmitting the transmission frame corresponding to the first information; Send the corresponding transmission frame to the second device according to the channel indicated by the first channel information corresponding to each transmission frame.
  • first information is added to each packet frame obtained after grouping, and the first information contains channel information for sending the transmission frame, so that the obtained transmission frame can be sent to the first information according to the channel indicated by the first information.
  • the second device in this way, can improve the accuracy of transmission frame sending.
  • the first information added in each packet frame will occupy channel resources, and in each packet frame, the first information of the packet frame occupies 1/(packet length+1) of the channel of the packet frame Resource, where the packet length is the number of TS packets contained in each packet frame. Since the packet length is related to the code rate of the TS to be sent, the value of the packet length is optional, while in the prior art A TSMF frame includes 53 slots, and the TSMF header usually occupies 1/53 of the channel resources. Therefore, in practical applications, when the value of the packet length is greater than 53, the channel utilization can be improved.
  • the first information further includes the number of TS packets included in the packet frame.
  • the first information added in each packet frame includes the number of TS packets included in the group frame, so that the second device can accurately receive each transmission frame according to the number. , Which can improve the accuracy of TS packet reception.
  • the number of TS packets included in each packet frame is not all the same.
  • the channel utilization rate can be improved by appropriately increasing the number of TS packets included in certain packet frames.
  • the first information further includes a packet identifier (PID), and the PID is used for the second device to identify the first information.
  • PID packet identifier
  • PID is used to distinguish the type of each TS packet in the TS.
  • the first information is a complete TS packet, and its specific structure is the same as other TS packets, but the PID included in the first information is different from the PID included in other TS packets.
  • the first device sends each transmission frame After giving it to the second device, the second device can quickly and accurately identify the first information according to the PID included in the first information, so that each transmission frame can be quickly identified.
  • the first information further includes identification information of the target transmission frame, and the identification information of the target transmission frame is used to indicate the sequence of the target transmission frame in the multiple transmission frames.
  • the second device can accurately splice the TS.
  • the grouping the TS to be transmitted according to the code rate of the TS to obtain multiple packet frames includes: determining the first channel of the TS to be transmitted according to the code rate of the TS to be transmitted Two-channel information; determine the packet length according to the code rate and the second channel information, and the packet length is used to indicate the number of TS packets contained in each packet frame; according to the packet length, the TS is grouped to obtain Multiple of this packet frame.
  • the second channel information includes the number of channels required to transmit the TS and the modulation mode of each channel.
  • the packet length can be determined according to the number of channels required to transmit the TS and the modulation mode of each channel, so as to group the TS to obtain multiple packet frames.
  • the grouping of the TS to be transmitted according to the code rate of the TS to obtain multiple grouped frames includes: judging whether the code rate of the TS is greater than a preset value; if the code rate of the TS is greater than a preset value, If the rate is greater than the preset value, the TS is grouped to obtain multiple grouped frames.
  • the first channel information includes: the number of channels required to send all the transmission frames, the modulation mode of the channel for sending the transmission frame, and the identification information of the channel for sending the transmission frame.
  • the first device can send each transmission frame to the second device through the first channel information, so that the transmission method of the transmission frame is simpler.
  • the packet length is less than a preset threshold
  • the preset threshold is related to the buffer size of the second device.
  • this can prevent the second device from needing a larger buffer to receive the transmission frame, and can reduce the hardware overhead of the second device.
  • the modulation mode includes Quadrature Amplitude Modulation (Quadrature Amplitude Modulation, QAM), 64QAM, 128QAM, or 256QAM.
  • Quadrature Amplitude Modulation Quadrature Amplitude Modulation, QAM
  • 64QAM Quadrature Amplitude Modulation
  • 128QAM 128QAM
  • 256QAM 256QAM
  • the available modulation modes include 32QAM, 64QAM, 128QAM or 256QAM, the flexibility of TS transmission can be improved.
  • adding first information to the packet frame to obtain the transmission frame includes: for each packet frame, determining the identification information of the channel through which the packet frame is sent; The identification information of the channel for sending the packet frame and the modulation mode of the channel for sending the packet frame are generated to generate the first information; and the first information is added to the packet frame.
  • the number of the transmission frames sent in each channel is the same.
  • the second device since the number of transmission frames sent in each channel is the same in the same time period, the second device only needs to identify the first information, thereby identifying each transmission frame, and extracting packet frames from the transmission frame, It suffices to splice the obtained multiple grouped frames, which can simplify the processing flow of the second device.
  • an embodiment of the present application provides a method for processing a transport stream TS.
  • the method includes: receiving a plurality of transmission frames from a first device through a plurality of channels, each of which includes first information.
  • One piece of information includes first channel information used to indicate the channel through which the transmission frame is sent; according to the first information, a packet frame is determined from each transmission frame, and the packet frame is to group the TS according to the code rate of the TS Obtained later; Combine the obtained multiple packet frames to obtain the TS.
  • multiple packet frames are grouped according to the code rate of the TS to be sent, that is, the number of TS packets included in each packet frame is related to the code rate of the TS to be sent, which can improve the TS stream application Flexibility.
  • the first information added in each packet frame will occupy channel resources, and in each packet frame, the first information of the packet frame occupies 1/(packet length+1) of the channel of the packet frame Resource, where the packet length is the number of TS packets contained in each packet frame. Since the packet length is related to the code rate of the TS to be sent, the value of the packet length is optional, while in the prior art A TSMF frame includes 53 slots, and the TSMF header usually occupies 1/53 of the channel resources. Therefore, in practical applications, when the value of the above-mentioned packet length is greater than 53, the channel utilization can be improved.
  • the first information further includes identification information of the target transmission frame, and the identification information of the target transmission frame is used to indicate the sequence of the target transmission frame in the multiple transmission frames;
  • Combining multiple packet frames to obtain the TS includes: combining the multiple packet frames according to the identification information of the target transmission frame to obtain the TS.
  • the second device can accurately splice the TS.
  • the first information further includes the number of TS packets included in the packet frame.
  • the first information added in each packet frame includes the number of TS packets included in the group frame, so that the second device can accurately receive each packet frame according to the number. , Which can improve the accuracy of TS packet reception.
  • the number of TS packets included in each packet frame is not all the same.
  • the number of TS packets included in each packet frame is not all the same in the multiple packet frames after grouping.
  • the channel resource occupied by the first information will be reduced. Therefore, the channel utilization rate can be improved by appropriately increasing the number of TS packets included in certain packet frames.
  • the first information further includes a packet identification number PID; the determining the packet frame from each transmission frame according to the first information includes: identifying each transmission frame according to the PID According to the first information, the packet frame is determined from each transmission frame.
  • PID is used to distinguish the type of each TS packet in the TS.
  • the first information is a complete TS packet, and its specific structure is the same as other TS packets, but the PID included in the first information is different from the PID included in other TS packets.
  • the first device sends each transmission frame After giving it to the second device, the second device can quickly and accurately identify the first information according to the PID included in the first information, so that each transmission frame can be quickly identified.
  • the first channel information includes: the number of channels required to send all the transmission frames, the modulation mode of the channel for sending the transmission frame, and the identification information of the channel for sending the transmission frame.
  • the first device can send each transmission frame to the second device through the first channel information, so that the transmission method of the transmission frame is simpler.
  • the packet length is less than a preset threshold
  • the preset threshold is related to the buffer size of the second device.
  • this can prevent the second device from needing a larger buffer to receive the transmission frame, and can reduce the hardware overhead of the second device.
  • the number of the transmission frames sent in each channel is the same.
  • the second device since the number of transmission frames sent in each channel is the same in the same time period, the second device only needs to identify the first information, so that each transmission frame can be identified, and the packet frame can be extracted from the transmission frame It is sufficient to splice the obtained multiple grouped frames, thereby simplifying the processing flow of the second device.
  • an embodiment of the present application provides a processing device for a transport stream TS, including: a processing unit, configured to group the TS to be sent according to the code rate of the transport stream TS to obtain multiple packet frames; this processing Unit, for each packet frame, add first information to the packet frame to obtain a transmission frame, where the first information includes first channel information for indicating the channel through which the transmission frame is sent; the sending unit is used for Send the transmission frame to the second device according to the channel indicated by the first channel information.
  • the first information further includes the number of TS packets included in the packet frame.
  • the number of TS packets included in each packet frame is not all the same.
  • the first information further includes a packet identification number PID, and the PID is used for the second device to identify the first information.
  • the first information further includes identification information of the target transmission frame, and the identification information of the target transmission frame is used to indicate the sequence of the target transmission frame in the multiple transmission frames.
  • the processing unit is specifically configured to: determine the second channel information of the channel through which the TS is sent according to the code rate of the TS to be sent; determine according to the code rate and the second channel information
  • the packet length is used to indicate the number of TS packets contained in each packet frame; according to the packet length, the TS is grouped to obtain a plurality of the packet frames.
  • the second channel information includes the number of channels required to transmit the TS and the modulation mode of each channel.
  • the processing unit is specifically configured to: determine whether the code rate of the TS is greater than a preset value; if the code rate of the TS is greater than the preset value, group the TS to obtain multiple groups frame.
  • the first channel information includes: the number of channels required to send all the transmission frames, the modulation mode of the channel for sending the transmission frame, and the identification information of the channel for sending the transmission frame.
  • the packet length is less than a preset threshold
  • the preset threshold is related to the buffer size of the second device.
  • this can prevent the second device from needing a larger buffer to receive the transmission frame, and can reduce the hardware overhead of the second device.
  • the modulation mode includes quadrature amplitude modulation 32QAM, 64QAM, 128QAM, or 256QAM.
  • the processing unit is specifically configured to: for each packet frame, determine the identification information of the channel through which the packet frame is sent; according to the identification information of the channel through which the packet frame is sent and the channel through which the packet frame is sent To generate the first information; add the first information to the packet frame.
  • the number of the transmission frames sent in each channel is the same.
  • an embodiment of the present application provides an apparatus for processing a transport stream TS, including: a receiving unit, configured to receive multiple transmission frames from a first device through multiple channels, and each transmission frame includes first information ,
  • the first information includes first channel information used to indicate the channel through which the transmission frame is sent;
  • the processing unit is configured to determine a packet frame from each transmission frame according to the first information, and the packet frame is based on the TS
  • the code rate is obtained after grouping the TS; the processing unit is also used to combine the obtained multiple grouped frames to obtain the TS.
  • the first information further includes identification information of the target transmission frame, and the identification information of the target transmission frame is used to indicate the sequence of the target transmission frame in the multiple transmission frames;
  • the processing unit is specifically used for:
  • the multiple packet frames are combined to obtain the TS.
  • the first information further includes the number of TS packets included in the packet frame.
  • the number of TS packets included in each packet frame is not all the same.
  • the first information further includes a packet identification number PID; the processing unit is specifically configured to: identify the first information in each transmission frame according to the PID; according to the first information, Determine the packet frame from each transmission frame.
  • PID packet identification number
  • the first channel information includes: the number of channels required to send all the transmission frames, the modulation mode of the channel for sending the transmission frame, and the identification information of the channel for sending the transmission frame.
  • the packet length is less than a preset threshold
  • the preset threshold is related to the buffer size of the second device.
  • this can prevent the second device from needing a larger buffer to receive the transmission frame, and can reduce the hardware overhead of the second device.
  • the number of the transmission frames sent in each channel is the same.
  • an embodiment of the present application provides a processing system for a transport stream TS, which includes the device described in the third aspect and the device described in the fourth aspect.
  • an embodiment of the present application provides a processing device for a transport stream TS.
  • the device includes a processor and a memory.
  • the memory stores a computer program.
  • the processor executes the computer program stored in the memory to make the device Perform the method according to any one of the first aspect to the second aspect.
  • an embodiment of the present application provides a processing device for a transport stream TS, including: a processor and an interface circuit; the interface circuit is coupled to the processor; the processor is used for calling the code instructions stored in the memory To perform the method described in any one of the first aspect to the second aspect.
  • the device mentioned in the third aspect of the present application may be a modulator or a chip in the modulator.
  • the modulator or chip has the function of realizing the processing method of the transport stream TS in the above aspects or any possible design.
  • the function can be realized by hardware, or by hardware executing corresponding software, or partly by hardware and partly by software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the modulator includes a processing unit and a transceiver unit.
  • the processing unit may be a processor, the transceiver unit may be a transceiver, and the transceiver includes a radio frequency circuit.
  • the modulator further includes a storage unit, which may be a memory, for example.
  • the storage unit is used to store computer-executed instructions
  • the processing unit is connected to the storage unit, and the processing unit executes the computer-executed instructions stored in the storage unit, so that the modulator executes the above aspects or any possible design.
  • the processing method of the transport stream TS is a processor, the transceiver unit may be a transceiver, and the transceiver includes a radio frequency circuit.
  • the modulator further includes a storage unit, which may be a memory, for example.
  • the storage unit is used to store computer-executed instructions
  • the processing unit is connected to the storage unit, and the processing unit executes the computer-executed instructions stored in the storage unit, so that the
  • the chip includes a processing unit and a transceiver unit.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, pin, or circuit on the chip.
  • the processing unit can execute the computer-executable instructions stored in the storage unit, so that the chip executes the processing method of the transport stream TS in the above-mentioned aspects or any possible design thereof.
  • the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), and the storage unit may also be a storage unit in the modulator located outside the chip (for example, read-only memory, ROM). )) or other types of static storage devices (for example, random access memory (RAM)) that can store static information and instructions.
  • RAM random access memory
  • the aforementioned processor may be a central processing unit (CPU), a microprocessor or an application specific integrated circuit (ASIC), or one or more for controlling the above aspects or It is an integrated circuit for program execution of any possible design of the transport stream TS processing method.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the device mentioned in the fourth aspect of the present application may be a terminal device or a chip in the terminal device.
  • the terminal device or chip has the function of realizing the processing method of the transport stream TS in the above aspects or any possible design.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the terminal device includes a processing unit and a transceiving unit.
  • the processing unit may be a processor, the transceiving unit may be a transceiver, and the transceiver includes a radio frequency circuit.
  • the terminal device further includes a storage unit, which may be a memory, for example.
  • the storage unit is used to store computer execution instructions
  • the processing unit is connected to the storage unit, and the processing unit executes the computer execution instructions stored in the storage unit, so that the terminal device executes the above aspects or any possible design.
  • the processing method of the transport stream TS is used to store computer execution instructions, the processing unit is connected to the storage unit, and the processing unit executes the computer execution instructions stored in the storage unit, so that the terminal device executes the above aspects or any possible design.
  • an embodiment of the present application provides a processing system for a transport stream TS, which includes the modulator as described in the third aspect and the terminal device as described in the fourth aspect.
  • an embodiment of the present application provides a readable storage medium for storing an instruction, and when the instruction is executed, the method in any one of the first aspect to the second aspect is realized.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer or a processor, cause the computer or the processor to execute any aspect of the first aspect to the second aspect of the embodiments of the present application Provides the processing method of the transport stream TS.
  • the TS processing method, device and system provided by the embodiments of this application group the TS according to the code rate of the TS to be sent to obtain multiple packet frames. For each packet frame, add a second packet to the packet frame. Information to obtain a transmission frame, the first information includes first channel information used to indicate a channel for sending the transmission frame, and the transmission frame is sent to the second device according to the channel indicated by the first channel information. Since multiple packet frames are grouped according to the code stream of the TS to be sent, that is, the number of TS packets included in each packet frame is related to the code rate of the TS to be sent, which can improve the flexibility of TS stream application.
  • first information is added to each packet frame obtained after grouping, and the first information contains channel information for sending the transmission frame, so that the obtained transmission frame can be sent to the channel according to the channel indicated by the first information
  • the second device in this way, can improve the accuracy of transmission frame transmission.
  • the first information added in each packet frame will occupy channel resources, and in each packet frame, the first information of the packet frame occupies 1/(packet length+1) of the channel of the packet frame Resource, where the packet length is the number of TS packets contained in each packet frame.
  • the value of the packet length is optional, while in the prior art A TSMF frame includes 53 slots, and the TSMF header usually occupies 1/53 of the channel resources. Therefore, in practical applications, the value of the packet length can be greater than 53, so that the channel utilization can be improved.
  • Figure 1 is a schematic diagram of a TSMF frame structure
  • Figure 2 is a schematic diagram of an 8K ultra-high-definition cable TV broadcast transmission system with channel binding defined in the ITU-T J.183 protocol;
  • FIG. 3 is a signaling interaction diagram of an exemplary method for processing a transport stream TS provided by an embodiment of the application;
  • Figure 4a is a schematic diagram of a single-channel cable TV transmitter
  • Fig. 4b is a schematic diagram of an exemplary three-channel cable television transmitting end provided by an embodiment of the application;
  • FIG. 5 is a schematic diagram of an exemplary transmission frame provided by an embodiment of the application.
  • Fig. 6a is a schematic diagram of an exemplary TS packet provided by an embodiment of the application.
  • Fig. 6b is a schematic diagram of an exemplary TS packet provided by an embodiment of the application.
  • Fig. 7 is a schematic diagram of a super frame in the prior art
  • FIG. 8 is a schematic diagram of a TS provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of an exemplary transport stream TS processing apparatus provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of an exemplary transport stream TS processing apparatus provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of an exemplary cable TV demodulator provided by an embodiment of the application.
  • the first device can be a device at the front end of a cable TV network, which can divide audio and video signals, distribute the divided transport stream to multiple channels, and modulate each channel.
  • the first device may be a cable TV modulator.
  • the second device can be capable of receiving the signal sent by the front end of the cable TV network, demodulating the received signal, and synchronizing and combining the demodulated signal, thereby being able to reconstruct the audio and video signal, and Equipment for playing audio and video.
  • the second device is the receiving device described in the following embodiments, and the second device may be a TV, a mobile terminal device, such as a mobile phone (or called a "cellular" phone, mobile phone), a computer, and a mobile phone.
  • Data cards for example, may be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • the second device may also be a wearable device.
  • the second device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the second device may also include a drone, such as an airborne communication device on the drone.
  • the unit in this application refers to a functional unit or a logical unit. It can be in the form of software, and its function is realized by the processor executing the program code; it can also be in the form of hardware.
  • Multiple means two or more than two, and other quantifiers are similar.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the range described as “above” or “below” includes boundary points.
  • FIG. 2 is a schematic diagram of an 8K ultra-high-definition cable broadcast transmission system with channel binding defined in the ITU-T J.183 protocol. As shown in Figure 2, the system supports Ultra High Definition Television (UHDTV) and High-Definition Television (HDTV), at the front end of the cable TV network, the compressed 8K ultra-high-definition audio and video are encapsulated into MPEG-2 TS. Due to the large bit rate, the MPEG-2 TS stream is divided.
  • UHDTV Ultra High Definition Television
  • HDTV High-Definition Television
  • the TSMF is composed and distributed to multiple channels, as shown in Figure 1 and sent to 5 channels, and finally each channel is modulated, such as using 256 quadrature amplitude modulation (Quadrature Amplitude Modulation, QAM) or 64QAM for modulation.
  • QAM Quadrature Amplitude Modulation
  • the receiving device uses the demodulation method corresponding to the front end of the cable TV network to demodulate the received signal, synchronize and combine the demodulated signal, and reconstruct the 8K ultra-high-definition MPEG- 2 TS stream, and then decode the MPEG-2 TS stream to obtain 8K ultra-high-definition audio and video signals, and finally output the 8K ultra-high-definition audio and video signals to the TV for display.
  • the current ITU-T J.183 protocol encapsulates multiple MPEG-2 TS packets plus TSMF headers into a single transport stream, and outputs them to the cable TV broadcast modulation Device interface, where the multiple MPEG-2 TS packets multiplex the TSMF header.
  • a TSMF frame includes 53 slots (Slot), the first slot (Slot) is the TSMF header, and the remaining slots 1-slot 52 represent 52 MPEG-2 TS packets.
  • the TSMF header is used to store MPEG- 2 Binding information of TS packets, such as how many MPEG-2 TS packets have multiplexed the TSMF header, which MPEG-2 TS packets have multiplexed the TSMF header, etc., slot 1-slot 52 represents 52 MPEG-2 TS packets can come from different TS streams.
  • the TSMF header will record which TS stream each MPEG-2 TS packet belongs to, so that the receiving device can restore the TS stream based on the recorded information.
  • the length of the TSMF frame is fixed, and the application flexibility is poor.
  • the TSMF header occupies one of the slots, that is, the TSMF header occupies 1/53 of the channel resources, thus making the channel The utilization rate is not high.
  • the embodiment of this application proposes a TS processing method.
  • the first device groups the TS according to the code rate of the TS to be sent to obtain multiple packet frames.
  • First information is added to the packet frame to obtain a transmission frame.
  • the first information includes first channel information for indicating a channel for sending the transmission frame, and the transmission frame is sent to the second device according to the channel indicated by the first channel information. Since multiple packet frames are grouped according to the code rate of the TS to be sent, that is, the number of TS packets included in each packet frame is related to the code rate of the TS to be sent, which can improve the flexibility of TS stream application.
  • first information is added to each packet frame obtained after grouping, and the first information contains channel information for sending the transmission frame, so that the obtained transmission frame can be sent to the channel according to the channel indicated by the first information
  • the second device in this way, can improve the accuracy of transmission frame transmission.
  • the first information added in each packet frame will occupy channel resources, and in each packet frame, the first information of the packet frame occupies 1/(packet length+1) of the channel of the packet frame Resource, where the packet length is the number of TS packets contained in each packet frame.
  • the value of the packet length is optional, while in the prior art A TSMF frame includes 53 slots, and the TSMF header usually occupies 1/53 of the channel resources. Therefore, in practical applications, when the value of the packet length is greater than 53, the channel utilization can be improved. .
  • the second device when the value of the aforementioned packet length is less than 53, the second device will quickly combine the packet frames because the number of TS packets included in each packet frame is small, so that the speed of TS reconstruction can be improved.
  • FIG. 3 is a signaling interaction diagram of the processing method of the transport stream TS of this application.
  • the information interaction between the cable TV modulator and the terminal device is used for description.
  • the processing method of the transport stream TS may include the following steps:
  • Step 301 The first device groups the TS according to the code rate of the TS to be sent to obtain multiple grouped frames.
  • the TS to be sent can be the TS obtained after the ultra-high-definition 8k video TS is merged with other TS, or it can be understood as the addition of service information (service information, SI) after the ultra-high-definition 8k video TS is merged with other TS. ) TS.
  • service information service information, SI
  • the first terminal device groups the TS according to the code rate of the TS, it first needs to determine whether the code rate of the TS is greater than the preset value, and after judging that the code rate of the TS is greater than the preset value When the time, the TS is grouped again to obtain multiple grouped frames.
  • the above-mentioned preset value can be determined according to the transmission code rate of the existing channel. For example, in practical applications, the code rate of the TS transmitted in each channel needs to be less than or equal to the highest capacity corresponding to the modulation mode of the channel. Taking the modulation mode of the channel as 256QAM as an example, the maximum capacity of 256QAM is 50.1Mbps at a symbol rate of 6.875Msps. Therefore, in a possible implementation manner, the above-mentioned preset value may be 50.1Mbps. Of course, the preset value may also be other values, and the specific value of the preset value is not limited in the embodiment of the present application.
  • judging whether the code rate of the TS is greater than the preset value can be understood as judging whether the code rate of the TS exceeds the upper limit of the transmission code rate of the existing transmission channel, and if the code rate of the TS exceeds the transmission code rate When the upper limit is set, it means that the existing transmission channel cannot carry the TS. At this time, the TS needs to be grouped to transmit through multiple channels, so that the accuracy and integrity of the TS transmission can be guaranteed.
  • Figure 4a is a schematic diagram of a single-channel cable TV transmitter.
  • the program table and other SI are inserted into the code streams of program source 1 and program source 2 to form a TS. If the code rate of the TS is less than or equal to 50.1 Mbps, the TS is modulated by a modulator digital video broadcasting-cable (DVB-C) for transmission, that is, the TS does not need to be grouped or divided, but can be transmitted through a single channel.
  • DVD-C modulator digital video broadcasting-cable
  • Figure 4b is a schematic diagram of a three-channel cable TV transmitter.
  • program source 1 is an 8K ultra-high-definition code stream. Insert program table and other SI into the code streams of program source 1 and program source 2 to form TS.
  • Program source 1 is an 8K ultra-high-definition code stream. Therefore, the bit rate of the TS is greater than 50.1 Mbps.
  • a channel cannot carry the TS. Therefore, the TS needs to be grouped or divided. Specifically, the obtained TS can be grouped Split the TS packet to obtain multiple packet frames, and insert the first information in each packet frame, such as inserting a marker packet.
  • the TS can be divided into n groups to obtain n packet frames, and the first information is added to each obtained packet frame to obtain n transmission frames, and the n transmission frames are passed through three modulators DVB -C (modulator 1DVB-C, modulator 2DVB-C and modulator 3DVB-C) for modulation, so that the modulated signal is sent through three channels, where the bit rate of TS carried in each channel needs Less than or equal to 50.1Mbps.
  • DVB -C modulator 1DVB-C, modulator 2DVB-C and modulator 3DVB-C
  • an upper limit value can be set for the TS bit rate. For example, if the buffer space of the second device can buffer 100 TS packets, the bit rate of TS can be set to be less than or equal to 148Mbps, that is, the bit rate of TS is greater than 50.1Mbps and less than or equal to 148Mbps.
  • the code rate of the transmission stream in the 256QAM mode can reach 148 Mbps, which can improve the utilization rate of the channel.
  • the first terminal device may determine the second channel information of the channel for transmitting the TS according to the code rate of the TS to be transmitted, and then determine the packet length according to the code rate and the second channel information,
  • the TS is grouped according to the packet length to obtain multiple packet frames, where the packet length is used to indicate the number of TS packets contained in each packet frame.
  • the above-mentioned second channel information includes the number of channels required to transmit the TS and the modulation mode of each channel.
  • the first device may determine the number of channels required to transmit the TS according to the code rate of the TS.
  • the code rate of the TS is larger, the number of channels required to send the TS is larger, and if the code rate of the TS is smaller, the number of channels required to send the TS is smaller.
  • the code rate of TS is 148Mbps
  • TS can be transmitted through three channels
  • the code rate of TS is 98Mbps
  • TS can be transmitted through two channels, etc.
  • the number of channels for sending TS can also be determined in other ways, such as determining the modulation mode of each channel, etc., as long as the number of channels is determined, the TS can be grouped.
  • the code rate of the TS sent through any channel is less than the highest capacity corresponding to the modulation mode of the channel.
  • the specific manner of determining the number of channels required for transmitting the TS is not limited in the embodiment of the present application.
  • the first device can also determine the modulation mode of each channel according to the bit rate of the TS and the specific channel characteristics of the relevant physical channel.
  • the modulation mode includes 32QAM, 64QAM, 128QAM or 256QAM.
  • the specific channel characteristics may include channel noise and/or frequency attenuation.
  • the channel capacity can be determined according to the channel noise and/or frequency attenuation. In this way, first The device can determine the modulation mode of each channel according to the code rate of the TS and the capacity of the channel.
  • the modulation mode of each channel for transmitting TS can be determined according to the code rate of TS, and the available modulation modes include 32QAM, 64QAM, 128QAM or 256QAM, which can improve the flexibility of TS transmission. .
  • the packet length can be determined, that is, the number of TS packets contained in each packet frame can be determined, so that the TS Perform grouping to get multiple grouped frames.
  • the packet length of each packet frame in the embodiment of the present application that is, the number of TS packets contained in each packet frame can be determined according to the number of TS packets sent. The number of required channels and the modulation mode of each channel are determined.
  • the packet length can be calculated by the channel capacity.
  • the packet length can be determined by the following formula (1):
  • Packet length rounding (code rate / (single channel capacity * channel number-code rate)) (1)
  • the packet length can be calculated to be 64, that is, the TS packet included in each packet frame is greater than or equal to 64.
  • the number of TS packets contained in each packet frame may be greater than or equal to the packet length.
  • the first device may group TS streams with more than or equal to 64 packets as a group.
  • the TS is a continuous transmission stream with a higher bit rate.
  • the multiple packet frames obtained are also continuous.
  • the packet length needs to be less than the preset value, that is, after the TS is grouped, the TS packet included in each packet frame
  • the number needs to be less than the preset value, so that the hardware overhead of the second device can be reduced.
  • the preset value can be set according to actual conditions or experience, for example, it can be set to 100, etc.
  • the specific value of the preset value is not limited in the embodiment of the present application.
  • the number of TS packets included in each packet frame is not all the same.
  • the modulation mode of each channel may not be all the same, the number of TS packets included in each packet frame after the grouping is not all the same. For example, if it is determined that three channels are required to send TS, including channel 0, channel 1, and channel 2, the modulation mode of channel 0 is 256QAM, the modulation mode of channel 1 is 64QAM, and the modulation mode of channel 2 is 256QAM, therefore,
  • the packet length of the packet frame sent through channel 0 can be determined as X
  • the packet length of the packet frame sent through channel 1 can be determined as ((X+1)*3/4-1). 2
  • the packet length of the transmitted packet frame is determined as X.
  • the channel utilization rate can be improved by appropriately increasing the number of TS packets included in certain packet frames.
  • the slot corresponding to the TS packet is no longer used, and the TS is split according to the first information (such as the tag packet) to obtain multiple packet frames.
  • the multiple packet frames are identified by the first information, and multiple packet frames are identified by the first information.
  • the length of the packet frame is not fixed, and can be flexibly set according to the code rate of the TS, thereby avoiding the problem of fixed and inflexible TSMF frame structure length in the prior art.
  • the channel resource occupied by the first information is reduced, thereby improving the utilization rate of the channel.
  • Step 302 For each packet frame, the first device adds first information to the packet frame to obtain a transmission frame.
  • the first information includes first channel information used to indicate a channel for sending the transmission frame.
  • each transmission frame includes the first information.
  • the first information includes a packet identifier (PID), and the PID is used for the second device to identify the first information.
  • PID packet identifier
  • PID is used to distinguish the type of each TS packet in the TS.
  • the first information is a complete TS packet, and its specific structure is the same as other TS packets, but the PID included in the first information is different from the PIDs in other TS packets included in the transmission frame. In this way, the first device will After each transmission frame is sent to the second device, the second device can quickly and accurately identify the first information according to the PID included in the first information, so that each transmission frame can be quickly identified.
  • FIG. 5 is a schematic diagram of a transmission frame. As shown in FIG. 5, it is assumed that a certain packet frame includes X TS packets, where X may be a positive integer greater than or equal to 52. Among them, the packet length of each TS packet is 188 bytes.
  • the first information is added to the packet frame, such as adding a tag packet, to obtain a transmission frame.
  • the first information is the first packet of the transmission frame, and the first information is also a complete TS packet.
  • the PID included in the first information is different from the PID included in other TS packets in the transmission frame, and the second device can identify and distinguish TS packets corresponding to the first information according to the PID included in the first information, and then can identify the difference Transmission frame.
  • the first information is a marked packet.
  • the first information includes first channel information used to indicate a channel through which the transmission frame is sent.
  • the foregoing first channel information may include the number of channels required to send all the transmission frames, the modulation mode of the channel for sending the transmission frame, and the identification information of the channel for sending the transmission frame.
  • the number of channels required to send all transmission frames can be understood as the number of channels required to send TS described in the foregoing embodiments.
  • the identification information of the channel through which the transmission frame is sent is the sequence number or index of the channel through which the transmission frame is sent.
  • the first device determines that three channels are required to send TS according to the code rate of TS, and the modulation modes of the three channels are 256QAM, 64QAM, and 256QAM respectively, then the first terminal device according to the method described in step 301, After determining the packet length, group the TS to obtain n packet frames, namely packet frame 1, packet frame 2,... and packet frame n, and add the first information to each packet frame to obtain n transmissions Frames are transmission frame 1, transmission frame 2... and transmission frame n.
  • the first information included in transmission frame 1 includes: three channels are required to send n transmission frames, the modulation mode of the channel for sending transmission frame 1 is 256QAM, and the channel for sending transmission frame 1 is channel 0; transmission frame 2
  • the first information included in includes: three channels are required to send n transmission frames, the modulation mode of the channel for sending transmission frame 2 is 64QAM, and the channel for sending transmission frame 2 is channel 1; ...included in transmission frame n
  • the first information includes: three channels are required to send n transmission frames, the modulation mode of the channel for sending transmission frame n is 256QAM, and the channel for sending transmission frame n is channel 2.
  • the above-mentioned first information further includes the number of TS packets included in the packet frame.
  • the first information added in each packet frame includes the number of TS packets included in the packet frame, so that the second device can accurately receive each packet frame according to the number, so that it can Improve the accuracy of TS packet reception.
  • the first information further includes identification information of the target transmission frame, and the identification information of the target transmission frame is used to indicate the sequence of the target transmission frame in the multiple transmission frames.
  • the identification information of the target transmission frame may be the sequence number or index of the target transmission frame, where the identification information of each transmission frame is different.
  • the first information included in each transmission frame includes the identification information of the transmission frame. After the first device carries the identification information of each transmission frame in the first information and sends it to the second device, the second device can According to the identification information of each transmission frame, multiple transmission frames are combined to obtain TS.
  • the second device can accurately splice the TS.
  • TS is multiple TS packets transmitted within a preset time period. Assuming that TS includes A TS packets, after grouping TS to obtain multiple packet frames, the total number of TS packets in multiple packet frames is The total is still A, that is, multiple grouped frames are simply obtained by simply grouping TS, and the content will not change after grouping.
  • the first information is added to each packet frame, and after multiple transmission frames are obtained, since the first information is a complete TS packet, the total number of all TS packets in the multiple transmission frames will be greater than A.
  • the first information can be added to each packet frame as follows: for each packet frame, the identification information of the channel for sending the packet frame is determined, and then according to the identification information of the channel for sending the packet frame And the modulation mode of the channel for transmitting the packet frame, generate first information, and add the first information to the packet frame.
  • the identification information of the channel may be the label of the channel, the index of the signal, or the sequence number of the channel, etc.
  • the first device determines the channel used to send the packet frame according to the sequence of the packet frame in all the packet frames, and after determining the channel used to send the packet frame, it can learn to send the packet frame In this way, according to the identification information of the channel that sends the packet frame and the modulation mode of the channel that sends the packet frame, the first information corresponding to the packet frame can be generated, so that the generated first information is added to In the packet frame.
  • FIG. 6a is a schematic diagram of TS grouping.
  • the TS to be sent is grouped in the manner in the foregoing embodiments to obtain n packet frames, and each packet frame includes There are X TS packages.
  • three channels are required to send n packet frames, which are channel 0, channel 1, and channel 2, and the modulation modes of these three channels are all 256QAM.
  • n packet frames which are channel 0, channel 1, and channel 2
  • the modulation modes of these three channels are all 256QAM.
  • Frame 3 is sent through channel 0..., and so on.
  • the first device can generate the first information corresponding to each packet frame according to the identification information of the channel transmitting each packet frame and the modulation mode of the channel transmitting each packet frame, and add the generated first information to each packet frame to obtain Multiple transmission frames. For example, add the corresponding first information (such as tag packet 0) to packet frame 0 to obtain transmission frame 0, where the first information includes channel 0 and 256QAM, and add the corresponding first information to packet frame 1 ( Such as marking packet 1) to obtain transmission frame 1, where the first information includes channel 1 and 256QAM, etc.
  • the way to add the first information to other packet frames is the same as adding the first information to packet frame 1 and packet frame 2.
  • the method of a message is similar, so I won't repeat it here.
  • the first information added in each of the above-mentioned packet frames also includes the number of channels required to send all packet frames.
  • the first information of each packet frame also includes 3, which is used to indicate to send all packets.
  • the number of channels required for a packet frame is 3.
  • Fig. 6b is another schematic diagram of TS grouping.
  • the TS to be sent is grouped in the manner in the foregoing embodiments to obtain n packet frames, and 3 channels are required to send n packet frames. They are channel 0, channel 1, and channel 2, and the modulation mode of channel 0 and channel 2 is 256QAM, and the modulation mode of channel 1 is 64QAM.
  • the packet frame 0 includes X TS packets
  • packet frame 1 includes Y TS packets
  • packet frame 2 includes X TS packets, etc., where the value of Y can be ((X+1)*3/4-1).
  • each packet frame it is possible to determine which channel each packet frame is sent through. For example, packet frame 0 is sent through channel 0, packet frame 1 is sent through channel 1, and packet frame 2 is sent through channel 2. Frame 3 is sent through channel 0..., and so on.
  • the first device can generate the first information corresponding to each packet frame according to the identification information of the channel transmitting each packet frame and the modulation mode of the channel transmitting each packet frame, and add the generated first information to each packet frame to obtain Multiple transmission frames.
  • the corresponding first information such as tag packet 0
  • packet frame 0 For example, add the corresponding first information (such as tag packet 0) to packet frame 0 to obtain transmission frame 0, where the first information includes channel 0 and 256QAM
  • packet frame 1 Such as marking packet 1
  • marking packet 1 For example, add the corresponding first information to packet frame 1 to obtain transmission frame 1, where the first information includes channel 1 and 64QAM, etc.
  • the way to add the first information to other packet frames is the same as adding the first information to packet frame 1 and packet frame 2.
  • the method of a message is similar, so I won't repeat it here.
  • the first information added in each of the above-mentioned packet frames also includes the number of channels required to send all packet frames.
  • the first information of each packet frame also includes 3, which is used to indicate to send all packets.
  • the number of channels required for a packet frame is 3.
  • Step 303 The first device sends a transmission frame to the second device through the channel indicated by the first channel information.
  • the first device adds the first information to each packet frame, and after obtaining multiple transmission frames, it can send the transmission frame to the second device through the channel indicated by the first channel information.
  • the second device multiple transmission frames will be received through multiple channels.
  • the transmission frame 0 can be sent to the second device through channel 0
  • the transmission frame 1 can be sent to the second device through channel 1
  • the transmission frame 2 can be sent to the second device through channel 2, and so on.
  • the number of transmission frames sent in each channel is the same in the same time period.
  • FIG. 7 is a schematic diagram of a super frame in the prior art.
  • the prior art since the code rate after 64QAM and 256QAM modulation is different, the TSMF frame after 64QAM modulation and 256QAM modulation is different. The transmission delay is also different. At the same symbol rate, the rate ratio of 256QAM to 64QAM is 4:3.
  • the prior art adopts the "super frame” method, where the "super frame” consists of multiple TSMFs. Frame structure, and use channel bonding technology to synchronize the super frame modulated by 64QAM and 256QAM in time.
  • 3 TSMF frames can be multiplexed in a 64QAM modulated super frame, and 4 TSMF frames can be multiplexed in a 256QAM modulated super frame.
  • the receiving device it not only needs to identify the TSMF frame header, but also needs to identify the "super frame", which makes the processing flow of the receiving device more complicated.
  • the second device only needs to identify the first information, thereby identifying each transmission frame, and extracting packet frames from the transmission frame to splice the obtained multiple packet frames, which can simplify the processing of the second device Process.
  • each channel may be different, and therefore, the number of TS packets included in the transmission frame sent in each channel may be different.
  • Fig. 8 is a schematic diagram of a TS provided by an embodiment of the application. As shown in Fig. 8, if the modulation mode of channel 0 is 64QAM and the modulation mode of channel 1 is 256QAM, then within 0.5ms, channel 0 and channel 1 3 transmission frames are sent, but in channel 0, the number of TS packets contained in each transmission frame is X, and in channel 1, the number of TS packets contained in each transmission frame may be Y.
  • the first device when the first device sends TS to the second device, it groups the TS according to the code rate of the TS, so that the length of each packet frame can be changed, and the specific details of each TS packet in the packet frame
  • the location does not need to be recorded in the first information (marker packet), which not only simplifies the process of processing the transmission stream by the first device and the second device, reduces the processing complexity, but also reduces the implementation cost.
  • Step 304 The second device determines a packet frame from each transmission frame according to the first information.
  • the second device can identify the first information from each transmission frame, and determine the TS packets other than the first information in each transmission frame as Packet frame.
  • the first information includes PID
  • the second device can identify the first information in each transmission frame according to the PID, and identify the other information in each transmission frame except the first information.
  • the TS packet is determined to be a packet frame. According to the above method, multiple packet frames can be determined.
  • the second device will receive multiple transmission frames, each transmission frame includes the first information and TS packets, the PID included in the first information and the other TS packets included in the transmission frame The PID is different, so that the second device can recognize the first information in each transmission frame based on the PID included in the first information.
  • the PID can quickly and accurately identify the first information in each transmission frame.
  • Step 305 Combine the obtained multiple packet frames to obtain TS.
  • the first information further includes identification information of the target transmission frame, and the identification information of the target transmission frame is used to identify the sequence of the target transmission frame in the multiple transmission frames, and the second device sets the multiple When the grouped frames are combined, multiple grouped frames can be combined according to the identification information of the target transmission frame to obtain the TS.
  • the second device can identify according to each transmission frame
  • the identification information of the target transmission frame contained in the output first information is combined with the corresponding packet frames to obtain the TS.
  • the second device can output the obtained TS to the decoder for decoding and display.
  • the first device groups the TS to obtain packet frame 0, packet frame 1, packet frame 2, packet frame 3, packet frame 4, and packet frame 5.
  • mark packets are added to each packet frame in turn to obtain multiple transmission frames. For example, mark packet 0 is added to packet frame 0 to obtain transmission frame 0, where the identification information 0 of the mark packet represents transmission frame 0 Ranked first among all transmission frames, add mark packet 1 to packet frame 1, to get transmission frame 1, where the identification information of mark packet 1 indicates that transmission frame 1 ranks second among all transmission frames, etc. , For other grouped frames, a similar way is used to add marker packets.
  • the second device After the first device sends each transmission frame to the second device, the second device recognizes the marked packet from each transmission frame, and determines other TS packets except the marked packet as packet frames, so that multiple packet frames can be obtained . The second device then combines the obtained packet frames in sequence according to the identification information of the marked packet, such as packet frame 0, packet frame 1, packet frame 2, packet frame 3, packet frame 4, and packet frame 5 in sequence. Combine, so you can get TS.
  • the splitting rules can be simplified, and the position of the MPEG-2 TS packet in the prior art needs to be carried out in the TSMF header.
  • the recording mode simplifies the processing flow of the first device and the second device.
  • the second device since the second device only needs to splice and recombine the obtained multiple packet frames according to the first information, the existing modulation device can be conveniently used to realize the transmission of the ultra-high-definition 8k video stream.
  • the first device groups the TS according to the code rate of the TS to be sent to obtain multiple packet frames, and then adds first information to the packet frame for each packet frame.
  • Obtain a transmission frame where the first information includes first channel information used to indicate a channel for sending the transmission frame, and send the transmission frame to the second device according to the channel indicated by the first channel information. Since the first device can determine the number of TS packets included in each packet frame according to the code rate of the TS to be transmitted, thereby grouping the TS, and adding the first information to the packet Information, the obtained transmission frame is sent to the second device.
  • the first device can determine the packet length X of the packet frame according to the code rate of the TS to be sent, that is, determine the number X of TS packets contained in each packet frame.
  • the first information added in each packet frame occupies channel resources, and the first information occupies 1/(X+1) channel resources, where the value of X is optional. In practical applications, the value of X Can be greater than 53, in this way, can improve channel utilization.
  • FIG. 9 is a schematic structural diagram of an apparatus 10 for processing a transport stream TS according to an embodiment of the application. Please refer to FIG. 9.
  • the apparatus 10 for processing a transport stream TS may include:
  • the processing unit 11 is configured to group the TS according to the bit rate of the transport stream to be sent to obtain multiple packet frames; the processing unit 11 is also configured to, for each packet frame, set the Add first information to the transmission frame to obtain the transmission frame, the first information includes the first channel information of the channel through which the transmission frame is sent; the sending unit 12 is configured to send to the second device according to the channel indicated by the first channel information The transmission frame.
  • the first information further includes the number of TS packets included in the packet frame.
  • the number of TS packets included in each packet frame is not all the same.
  • the first information includes a packet identification number PID, and the PID is used for the second device to identify the first information.
  • the first information further includes identification information of the target transmission frame, and the identification information of the target transmission frame is used to indicate the sequence of the target transmission frame in the multiple transmission frames.
  • the processing unit 11 is specifically configured to: determine the second channel information of the channel through which the TS is sent according to the code rate of the TS to be sent; determine according to the code rate and the second channel information
  • the packet length is used to indicate the number of TS packets included in each packet frame; according to the packet length, the TS is grouped to obtain a plurality of the packet frames.
  • the second channel information includes the number of channels required to transmit the TS and the modulation mode of each channel.
  • the processing unit 11 is specifically configured to: determine whether the code rate of the TS is greater than a preset value; if the code rate of the TS is greater than the preset value, group the TS to obtain multiple Packet frame.
  • the first channel information includes: the number of channels required to send all the transmission frames, the modulation mode of the channel for sending the transmission frames, and the identification information of the channel for sending the transmission frames.
  • the packet length is less than a preset threshold, and the preset threshold is related to a buffer size of the second device.
  • the modulation mode includes quadrature amplitude modulation 32QAM, 64QAM, 128QAM or 256QAM.
  • the processing unit 11 is specifically configured to: for each packet frame, determine the identification information of the channel through which the packet frame is sent; The modulation mode of the channel generates the first information; and the first information is added to the packet frame.
  • the number of the transmission frames sent in each channel is the same.
  • the apparatus 10 for processing a transport stream TS shown in the embodiment of the present application can execute the technical solution of the method for processing a transport stream TS shown in any one of the above embodiments, and its implementation principles and beneficial effects are similar, and will not be repeated here. .
  • FIG. 10 is a schematic structural diagram of an apparatus 20 for processing a transport stream TS according to an embodiment of the application.
  • the apparatus 20 for processing a transport stream TS may include:
  • the receiving unit 21 is configured to receive multiple transmission frames from the first device through multiple channels, each of the transmission frames includes first information, and the first information includes the first channel of the channel on which the transmission frame is sent Information; the processing unit 22 is configured to determine a packet frame from each of the transmission frames according to the first information, the packet frame is obtained by grouping the TS according to the code rate of the TS; the The processing unit 22 is further configured to combine the obtained multiple packet frames to obtain the TS.
  • the first information further includes identification information of the target transmission frame, and the identification information of the target transmission frame is used to indicate the sequence of the target transmission frame in multiple transmission frames;
  • the processing unit 22 is specifically configured to combine the multiple packet frames according to the identification information of the target transmission frame to obtain the TS.
  • the first information further includes the number of TS packets included in the packet frame.
  • the number of TS packets included in each packet frame is not all the same.
  • the first information includes a packet identification number PID
  • the processing unit 22 is specifically configured to:
  • a packet frame is determined from each of the transmission frames.
  • the first channel information includes: the number of channels required to send all the transmission frames, the modulation mode of the channel for sending the transmission frame, and identification information of the channel for sending the transmission frame.
  • the packet length is less than a preset threshold, and the preset threshold is related to a buffer size of the second device.
  • the number of the transmission frames sent in each channel is the same.
  • the transport stream TS processing apparatus 20 shown in the embodiment of the present application can execute the technical solution of the transport stream TS processing method shown in any one of the above embodiments, and its implementation principles and beneficial effects are similar, and will not be repeated here. .
  • each unit of the above device is only a division of logical functions, and may be fully or partially integrated into a physical entity during actual implementation, or may be physically separated.
  • these units can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the units can be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • the receiving unit may be a separately established processing element, or it may be integrated in a certain chip of the processing device of the transport stream TS.
  • it may also be stored in the memory of the processing device of the transport stream TS in the form of a program.
  • the function of the receiving unit is called and executed by a certain processing element of the processing device of the transport stream TS.
  • the implementation of other units is similar.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability.
  • each step of the above method or each of the above units can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the above receiving unit is a unit that controls receiving, and can receive information through the receiving device of the processing device of the transport stream TS.
  • the above units may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital singnal processors). , DSP), or, one or more field programmable gate arrays (FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 11 is a schematic structural diagram of a cable TV demodulator provided by an embodiment of the application.
  • the demodulator may include a transmitter 30, a processor 31, a memory 32, a receiver 34, and at least one communication bus 33.
  • the transmitter 30 and the receiver 34 may be a combined module, and the combined module may be, for example, a transceiver, which has the functions of the transmitter 30 and the receiver 34 at the same time.
  • the communication bus 63 is used to implement communication connections between components.
  • the memory 32 may include a high-speed RAM memory, or may also include a non-volatile storage NVM, such as at least one disk memory. Method steps.
  • the memory 32 is used to store a program that implements the above method embodiment or each unit of the embodiment shown in FIG. 3, and the processor 31 calls the program to execute the operations of the above method embodiment to implement each unit shown in FIG. 3 Corresponding function.
  • the transceiver can be connected to the antenna.
  • the transceiver can receive the information sent by the cable TV demodulator, and send the information to the processor 110 for processing.
  • the terminal device also includes a display for displaying 8K ultra-high-definition audio and video signals.
  • part or all of the above units can also be implemented by embedding on a certain chip of the terminal device in the form of an integrated circuit. And they can be implemented separately or integrated together. That is, the above units can be configured as one or more integrated circuits that implement the above methods, for example: one or more application specific integrated circuits (ASIC), or one or more digital signal processors (digital signal processors). processor, DSP), or, one or more field programmable gate arrays (FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • the present application also provides a processing device for a transport stream TS.
  • the device includes a processor and a transmission interface.
  • the processor is configured to read the program instructions stored in the memory to perform the transmission as provided in any of the foregoing embodiments.
  • the processing method of stream TS is configured to read the program instructions stored in the memory to perform the transmission as provided in any of the foregoing embodiments.
  • the present application also provides a processing system for transport stream TS, which includes the device shown in FIG. 9 and the device shown in FIG. 10.
  • the present application also provides a readable storage medium for storing instructions, and when the instructions are executed, the method for processing the transport stream TS provided in any of the foregoing embodiments is used.
  • the program product includes a computer program (that is, an execution instruction), and the computer program is stored in a readable storage medium.
  • At least one processor of the modulator can read the computer program from a readable storage medium, and at least one processor executes the computer program to make the modulator implement the transport stream TS processing method provided in the foregoing various embodiments.
  • An embodiment of the present application also provides a processing device for a transport stream TS, which includes at least one storage element and at least one processing element.
  • the at least one storage element is used to store a program.
  • the transport stream TS is The processing device performs the operation of the terminal device in any of the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本申请提供一种传输流TS的处理方法、装置和系统,该传输流TS的处理方法、装置和系统可以应用于视频处理领域中,该方法包括:根据待发送的传输流TS的码率,对所述TS进行分组,得到多个分组帧;针对每个分组帧,在所述分组帧中添加第一信息,得到传输帧,所述第一信息包括用于指示发送所述传输帧的信道的第一信道信息;根据所述第一信道信息指示的信道向第二设备发送所述传输帧。本申请提供的传输流TS的处理方法、装置和系统可以提高TS流应用的灵活性。

Description

传输流TS的处理方法、装置和系统 技术领域
本申请实施例涉及视频处理技术领域,尤其涉及一种传输流TS的处理方法、装置和系统。
背景技术
随着网络通信和视频处理技术的快速发展,超高清视频(8K Ultra-high-definition television,8K)技术逐步成为人们对视觉体验的新需求,而且越来越多的终端设备也开始支持8K超高清解码。
目前,在国际电信联盟(International Telecommunication Union,ITU)-电信标准化部门(ITU-Telecommunication Standardization Sector,ITU-T)J.183协议中,规定了将8K超高清音视频封装成运动图像专家组格式(Moving Picture Expert Group,MPEG)-2传输流(Transport Stream,TS),并对MPEG-2 TS流进行分割,组成传输流复用帧(Transport Stream Multiplexing Frame,TSMF)分发到多个信道,接收设备对接收到的信号进行同步和组合等处理,以重建出8K超高清的MPEG-2 TS流。
其中,ITU-T J.183协议中规定将多个MPEG-2 TS包加上TSMF头部封装到单个传输流中,并输出给有线电视广播调制器接口,其中,该多个MPEG-2 TS包复用该TSMF头部。其中,图1为TSMF的帧结构示意图,如图1所示,一个TSMF帧包括53个槽(Slot),第一个槽(Slot)为TSMF头部,其余槽1-槽52表示52个MPEG-2 TS包,其中,TSMF头部用于存放MPEG-2 TS包的绑定信息,例如有多少个MPEG-2 TS包复用了该TSMF头部、有哪些MPEG-2 TS包复用了该TSMF头部等,槽1-槽52表示的52个MPEG-2 TS包可以来自不同的TS流,在TSMF头部中会记录各MPEG-2 TS包属于哪个TS流,这样接收设备可以根据记录的信息恢复TS流。
然而,在上述方式中,TSMF帧的长度固定,应用灵活性较差。
发明内容
本申请实施例提供一种传输流TS的处理方法、装置和系统,可以应用于视频处理领域,以解决TSMF帧长度固定,应用灵活性较差的问题。
第一方面,本申请实施例提供一种传输流TS的处理方法,应用于第一设备,该方法包括:根据待发送的传输流TS的码率,对该TS进行分组,得到多个分组帧;针对每个分组帧,在该分组帧中添加第一信息,得到传输帧,该第一信息包括用于指示发送该传输帧的信道的第一信道信息;根据该第一信道信息指示的信道向第二设备发送该传输帧。
另外,本申请实施例提供一种传输流TS的处理方法,该方法包括:根据待发送 的传输流TS的码率,对该TS进行分组,得到多个分组帧;给该多个分组帧的每个分组帧添加第一信息,得到多个传输帧,其中一个分组帧对应一个传输帧,该第一信息包括用于指示发送与该第一信息对应的传输帧的信道的第一信道信息;根据各传输帧对应的第一信道信息指示的信道向第二设备发送对应的传输帧。
由于多个分组帧是根据待发送的TS的码率分组得到的,也即每个分组帧中包括的TS包的数量与待发送的TS的码率有关,可以提高TS流应用的灵活性。进一步的,分组后得到的每个分组帧中均添加了第一信息,该第一信息中包含了发送传输帧的信道信息,从而可以根据第一信息指示的信道将得到的传输帧发送给第二设备,这样,可以提高传输帧发送的准确率。另外,由于在每个分组帧中添加的第一信息会占用信道资源,且在每个分组帧中,该分组帧的第一信息占用了该分组帧的1/(分组长度+1)的信道资源,其中,分组长度为每个分组帧中所包含的TS包的数量,由于分组长度与待发送的TS的码率有关,因此该分组长度的值是可选地,而在现有技术中,一个TSMF帧包括53个槽,TSMF头部通常占用1/53的信道资源,因此,在实际应用中,在上述分组长度的值大于53时,就可以提高信道的利用率。
在一种可能的实现方式中,该第一信息还包括该分组帧中所包括的TS包的数量。
在本方案中,每个分组帧中添加的第一信息中,均包括有该组分组帧中所包括的TS包的数量,这样,第二设备根据该数量,即可准确的接收各传输帧,从而可以提高TS包接收的准确性。
在一种可能的实现方式中,该多个分组帧中,各分组帧所包括的TS包的个数不全相同。
在本方案中,由于根据信道的调制模式或者信道的信道特征进行分组后的多个分组帧中,各分组帧所包括的TS包的个数不全相同,当分组帧中包括的TS包的个数较多时,第一信息所占的信道资源便会减少,因此可以通过适当增加某些分组帧所包括的TS包的数量来提高信道的利用率。
在一种可能的实现方式中,该第一信息还包括包识别号(packet identifier,PID),该PID用于该第二设备识别该第一信息。
在本方案中,PID是用于区分TS中每个TS包的类型的。另外,第一信息为一个完整的TS包,其具体结构和其他TS包相同,但是该第一信息中包括的PID与其他TS包中包括的PID不同,这样,第一设备将各传输帧发送给第二设备之后,第二设备可以根据第一信息中包括的PID快速且准确的识别出该第一信息,从而可以快速的识别出各传输帧。
在一种可能的实现方式中,该第一信息还包括目标传输帧的标识信息,该目标传输帧的标识信息用于表示该目标传输帧在多个传输帧中的顺序。
在本方案中,由于第一信息还包括目标传输帧的标识信息,从而可以使第二设备准确的拼接出TS。
在一种可能的实现方式中,该根据待发送的TS的码率,对该TS进行分组,得到多个分组帧,包括:根据待发送的TS的码率,确定发送该TS的信道的第二信道信息;根据该码率和该第二信道信息,确定分组长度,该分组长度用于表示每个分组帧所包含的TS包的个数;根据该分组长度,对该TS进行分组,得到多个该分组帧。
在一种可能的实现方式中,该第二信道信息包括发送该TS所需要的信道的数量以及各信道的调制模式。
在本方案中,可以根据发送该TS所需要的信道的数量以及各信道的调制模式,确定分组长度,从而对TS进行分组,得到多个分组帧。
在一种可能的实现方式中,该根据待发送的TS的码率,对该TS进行分组,得到多个分组帧,包括:判断该TS的码率是否大于预设值;若该TS的码率大于预设值,则对该TS进行分组,得到多个分组帧。
在本方案中,在该TS的码率大于预设值时,说明目前已有的信道承载不了该TS,此时需要对该TS进行分组,以通过多个信道进行传输,这样可以保证TS传输的准确性和完整性。
在一种可能的实现方式中,该第一信道信息包括:发送所有该传输帧所需要的信道的数量、发送该传输帧的信道的调制模式和发送该传输帧的信道的标识信息。
在本方案中,第一设备通过第一信道信息,可以将各传输帧发送给第二设备,使得传输帧的发送方式更为简单。
在一种可能的实现方式中,该分组长度小于预设阈值,该预设阈值和该第二设备的缓存大小有关。
在本方案中,由于分组长度小于预设阈值,这样可以避免第二设备需要较大的缓存来接收传输帧,可以减小第二设备的硬件开销。
在一种可能的实现方式中,该调制模式包括正交振幅调制32正交振幅调制(Quadrature Amplitude Modulation,QAM)、64QAM、128QAM或256QAM。
在本方案中,由于可供选择的调制模式包括32QAM、64QAM、128QAM或256QAM,由此可以提高TS发送的灵活性。
在一种可能的实现方式中,该针对每个分组帧,在该分组帧中添加第一信息,得到传输帧,包括:针对每个分组帧,确定发送该分组帧的信道的标识信息;根据发送该分组帧的信道的标识信息以及发送该分组帧的信道的调制模式,生成该第一信息;在该分组帧中添加该第一信息。
在一种可能的实现方式中,在相同时间段内,各信道中发送的该传输帧的数量相同。
在本方案中,由于在相同时间段内,各信道中发送的传输帧的数量相同,这样第二设备只需要识别第一信息,从而识别出各传输帧,并从传输帧中提取分组帧,以将得到的多个分组帧进行拼接即可,由此可以简化第二设备的处理流程。
第二方面,本申请实施例提供一种传输流TS的处理方法,该方法包括:通过多个信道分别从第一设备接收多个传输帧,每个该传输帧中包括第一信息,该第一信息包括用于指示发送该传输帧的信道的第一信道信息;根据该第一信息,从每个该传输帧中确定分组帧,该分组帧为根据TS的码率,对该TS进行分组后得到的;将得到的多个分组帧进行合并,得到该TS。
在本方案中,多个分组帧是根据待发送的TS的码率分组得到的,也即每个分组帧中包括的TS包的数量与待发送的TS的码率有关,可以提高TS流应用的灵活性。另外,由于在每个分组帧中添加的第一信息会占用信道资源,且在每个分组帧中,该 分组帧的第一信息占用了该分组帧的1/(分组长度+1)的信道资源,其中,分组长度为每个分组帧中所包含的TS包的数量,由于分组长度与待发送的TS的码率有关,因此该分组长度的值是可选地,而在现有技术中,一个TSMF帧包括53个槽,TSMF头部通常占用1/53的信道资源,因此,在实际应用中,在上述分组长度的值大于53时,就可以提高信道的利用率。
在一种可能的实现方式中,该第一信息还包括目标传输帧的标识信息,该目标传输帧的标识信息用于表示该目标传输帧在多个传输帧中的顺序;该将得到的多个分组帧进行合并,得到该TS,包括:根据该目标传输帧的标识信息,将该多个分组帧进行合并,得到该TS。
在本方案中,由于第一信息还包括目标传输帧的标识信息,从而可以使第二设备准确的拼接出TS。
在一种可能的实现方式中,该第一信息还包括该分组帧中所包括的TS包的数量。
在本方案中,每个分组帧中添加的第一信息中,均包括有该组分组帧中所包括的TS包的数量,这样,第二设备根据该数量,即可准确的接收各分组帧,从而可以提高TS包接收的准确性。
在一种可能的实现方式中,该多个分组帧中,各分组帧所包括的TS包的个数不全相同。
在本方案中,由于根据信道的调制模式或者信道的信道特征,进行分组后的多个分组帧中,各分组帧所包括的TS包的个数不全相同,当分组帧中包括的TS包的个数较多时,第一信息所占的信道资源便会减少,因此可以通过适当增加某些分组帧所包括的TS包的数量来提高信道的利用率。
在一种可能的实现方式中,该第一信息还包括包识别号PID;该根据该第一信息,从每个该传输帧中确定分组帧,包括:根据该PID识别每个该传输帧中的该第一信息;根据该第一信息,从每个该传输帧中确定分组帧。
在本方案中,PID是用于区分TS中每个TS包的类型的。另外,第一信息为一个完整的TS包,其具体结构和其他TS包相同,但是该第一信息中包括的PID与其他TS包中包括的PID不同,这样,第一设备将各传输帧发送给第二设备之后,第二设备可以根据第一信息中包括的PID快速且准确的识别出该第一信息,从而可以快速的识别出各传输帧。
在一种可能的实现方式中,该第一信道信息包括:发送所有该传输帧所需要的信道的数量、发送该传输帧的信道的调制模式和发送该传输帧的信道的标识信息。
在本方案中,第一设备通过第一信道信息,可以将各传输帧发送给第二设备,使得传输帧的发送方式更为简单。
在一种可能的实现方式中,该分组长度小于预设阈值,该预设阈值和该第二设备的缓存大小有关。
在本方案中,由于分组长度小于预设阈值,这样可以避免第二设备需要较大的缓存来接收传输帧,可以减小第二设备的硬件开销。
在一种可能的实现方式中,在相同时间段内,各信道中发送的该传输帧的数量相同。
在本方案中,由于在相同时间段内,各信道中发送的传输帧的数量相同,这样第二设备只需要识别第一信息,从而可以识别出各传输帧,并从传输帧中提取分组帧,以将得到的多个分组帧进行拼接即可,由此可以简化第二设备的处理流程。
第三方面,本申请实施例提供一种传输流TS的处理装置,包括:处理单元,用于根据待发送的传输流TS的码率,对该TS进行分组,得到多个分组帧;该处理单元,还用于针对每个分组帧,在该分组帧中添加第一信息,得到传输帧,该第一信息包括用于指示发送该传输帧的信道的第一信道信息;发送单元,用于根据该第一信道信息指示的信道向第二设备发送该传输帧。
在一种可能的实现方式中,该第一信息还包括该分组帧中所包括的TS包的数量。
在一种可能的实现方式中,该多个分组帧中,各分组帧所包括的TS包的个数不全相同。
在一种可能的实现方式中,该第一信息还包括包识别号PID,该PID用于该第二设备识别该第一信息。
在一种可能的实现方式中,该第一信息还包括目标传输帧的标识信息,该目标传输帧的标识信息用于表示该目标传输帧在多个传输帧中的顺序。
在一种可能的实现方式中,该该处理单元具体用于:根据待发送的TS的码率,确定发送该TS的信道的第二信道信息;根据该码率和该第二信道信息,确定分组长度,该分组长度用于表示每个分组帧所包含的TS包的个数;根据该分组长度,对该TS进行分组,得到多个该分组帧。
在一种可能的实现方式中,该第二信道信息包括发送该TS所需要的信道的数量以及各信道的调制模式。
在一种可能的实现方式中,该处理单元具体用于:判断该TS的码率是否大于预设值;若该TS的码率大于预设值,则对该TS进行分组,得到多个分组帧。
在一种可能的实现方式中,该第一信道信息包括:发送所有该传输帧所需要的信道的数量、发送该传输帧的信道的调制模式和发送该传输帧的信道的标识信息。
在一种可能的实现方式中,该分组长度小于预设阈值,该预设阈值和该第二设备的缓存大小有关。
在本方案中,由于分组长度小于预设阈值,这样可以避免第二设备需要较大的缓存来接收传输帧,可以减小第二设备的硬件开销。
在一种可能的实现方式中,该调制模式包括正交振幅调制32QAM、64QAM、128QAM或256QAM。
在一种可能的实现方式中,该处理单元具体用于:针对每个分组帧,确定发送该分组帧的信道的标识信息;根据发送该分组帧的信道的标识信息以及发送该分组帧的信道的调制模式,生成该第一信息;在该分组帧中添加该第一信息。
在一种可能的实现方式中,在相同时间段内,各信道中发送的该传输帧的数量相同。
第四方面,本申请实施例提供一种传输流TS的处理装置,包括:接收单元,用于通过多个信道分别从第一设备接收多个传输帧,每个该传输帧中包括第一信息,该第一信息包括用于指示发送该传输帧的信道的第一信道信息;处理单元,用于根据该 第一信息,从每个该传输帧中确定分组帧,该分组帧为根据TS的码率,对该TS进行分组后得到的;该处理单元,还用于将得到的多个分组帧进行合并,得到该TS。
在一种可能的实现方式中,该第一信息还包括目标传输帧的标识信息,该目标传输帧的标识信息用于表示该目标传输帧在多个传输帧中的顺序;
该处理单元,具体用于:
根据该目标传输帧的标识信息,将该多个分组帧进行合并,得到该TS。
在一种可能的实现方式中,该第一信息还包括该分组帧中所包括的TS包的数量。
在一种可能的实现方式中,该多个分组帧中,各分组帧所包括的TS包的个数不全相同。
在一种可能的实现方式中,该第一信息还包括包识别号PID;该处理单元,具体用于:根据该PID识别每个该传输帧中的该第一信息;根据该第一信息,从每个该传输帧中确定分组帧。
在一种可能的实现方式中,该第一信道信息包括:发送所有该传输帧所需要的信道的数量、发送该传输帧的信道的调制模式和发送该传输帧的信道的标识信息。
在一种可能的实现方式中,该分组长度小于预设阈值,该预设阈值和该第二设备的缓存大小有关。
在本方案中,由于分组长度小于预设阈值,这样可以避免第二设备需要较大的缓存来接收传输帧,可以减小第二设备的硬件开销。
在一种可能的实现方式中,在相同时间段内,各信道中发送的该传输帧的数量相同。
第五方面,本申请实施例提供一种传输流TS的处理系统,包括如第三方面所述的装置和如第四方面所述的装置。
第六方面,本申请实施例提供一种传输流TS的处理装置,该装置包括处理器和存储器,该存储器中存储有计算机程序,该处理器执行该存储器中存储的计算机程序,以使该装置执行如第一方面至第二方面任一方面该的方法。
第七方面,本申请实施例提供一种传输流TS的处理装置,包括:处理器和接口电路;该接口电路耦合至该处理器;该处理器,用于该调用存储在存储器中的代码指令以执行如第一方面至第二方面任一方面该的方法。
本申请第三方面提到的装置,可以是调制器,也可以是调制器内的芯片,调制器或芯片具有实现上述各方面或其任意可能的设计中的传输流TS的处理方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,或者部分通过硬件实现,部分通过软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
调制器包括:处理单元和收发单元,处理单元可以是处理器,收发单元可以是收发器,收发器包括射频电路,可选地,调制器还包括存储单元,存储单元例如可以是存储器。当调制器包括存储单元时,存储单元用于存储计算机执行指令,处理单元与存储单元连接,处理单元执行存储单元存储的计算机执行指令,以使调制器执行上述各方面或其任意可能的设计中的传输流TS的处理方法。
芯片包括:处理单元和收发单元,处理单元可以是处理器,收发单元可以是芯片上的输入/输出接口、管脚或电路等。处理单元可执行存储单元存储的计算机执行指令,以 使芯片执行上述各方面或其任意可能的设计中的传输流TS的处理方法。可选地,存储单元可以是芯片内的存储单元(例如,寄存器、缓存等),存储单元还可以是调制器内的位于芯片外部的存储单元(例如,只读存储器(read-only memory,ROM))或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器(random access memory,RAM))等。
上述提到的处理器可以是一个中央处理器(central processing unit,CPU)、微处理器或专用集成电路(application specific integrated circuit,ASIC),也可以是一个或多个用于控制上述各方面或其任意可能的设计的传输流TS的处理方法的程序执行的集成电路。
本申请第四方面提到的装置,可以是终端设备,也可以是终端设备内的芯片,终端设备或芯片具有实现上述各方面或其任意可能的设计中的传输流TS的处理方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
终端设备包括:处理单元和收发单元,处理单元可以是处理器,收发单元可以是收发器,收发器包括射频电路,可选地,终端设备还包括存储单元,存储单元例如可以是存储器。当终端设备包括存储单元时,存储单元用于存储计算机执行指令,处理单元与存储单元连接,处理单元执行存储单元存储的计算机执行指令,以使终端设备执行上述各方面或其任意可能的设计中的传输流TS的处理方法。
第八方面,本申请实施例提供一种传输流TS的处理系统,包括如第三方面所述的调制器以及如第四方面所述的终端设备。
第九方面,本申请实施例提供一种可读存储介质,用于存储有指令,当该指令被执行时,使如第一方面至第二方面中任一方面该的方法被实现。
第十方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机或处理器上运行时,使得计算机或处理器执行本申请实施例的第一方面至第二方面任一方面提供的传输流TS的处理方法。
本申请实施例提供的传输流TS的处理方法、装置和系统,根据待发送的TS的码率,对TS进行分组,得到多个分组帧,针对每个分组帧,然后在分组帧中添加第一信息,得到传输帧,该第一信息包括用于指示发送传输帧的信道的第一信道信息,并根据第一信道信息指示的信道向第二设备发送传输帧。由于多个分组帧是根据待发送的TS的码流分组得到的,也即每个分组帧中包括的TS包的数量与待发送的TS的码率有关,可以提高TS流应用的灵活性。进一步的,分组后的得到的每个分组帧中均添加了第一信息,该第一信息中包含了发送传输帧的信道信息,从而可以根据第一信息指示的信道将得到的传输帧发送给第二设备,这样,可以提高传输帧发送的准确率。另外,由于在每个分组帧中添加的第一信息会占用信道资源,且在每个分组帧中,该分组帧的第一信息占用了该分组帧的1/(分组长度+1)的信道资源,其中,分组长度为每个分组帧中所包含的TS包的数量,由于分组长度与待发送的TS的码率有关,因此该分组长度的值是可选地,而在现有技术中,一个TSMF帧包括53个槽,TSMF头部通常占用1/53的信道资源,因此,在实际应用中,上述分组长度的值可以大于53,这样,就可以提高信道的利用率。
附图说明
图1为TSMF的帧结构示意图;
图2为ITU-T J.183协议定义的信道绑定的8K超高清有线电视广播发送系统示意图;
图3为本申请实施例提供的一种示例性的传输流TS的处理方法的一种信令交互图;
图4a为单信道有线电视发射端的示意图;
图4b为本申请实施例提供的一种示例性的三信道有线电视发射端的示意图;
图5为本申请实施例提供的一种示例性的传输帧的示意图;
图6a为本申请实施例提供的一种示例性的TS分组的示意图;
图6b为本申请实施例提供的一种示例性的TS分组的示意图;
图7为现有技术中超级帧的示意图;
图8为本申请实施例提供的一种TS的示意图;
图9为本申请实施例提供的一种示例性的传输流TS的处理装置的结构示意图;
图10为本申请实施例提供的一种示例性的传输流TS的处理装置的结构示意图;
图11为本申请实施例提供的一种示例性的有线电视解调器的结构示意图。
具体实施方式
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)第一设备,可以是有线电视网络前端的设备,能够对音视频信号进行分割,并将分割后的传输流分发到多个信道,并对每个信道进行调制处理的设备。其中,第一设备可以为有线电视调制器。
2)第二设备,可以为能够接收有线电视网络前端发送的信号,并对接收到的信号进行解调处理,并对解调后的信号进行同步和组合,从而能够重建出音视频信号,并且播放音视频的设备。其中,第二设备即为下述实施例中所述的接收设备,第二设备可以是电视、移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communications service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。第二设备也可以是可穿戴设备。
作为示例而非限定,在本申请实施例中,该第二设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能, 例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
另外,第二设备还可以包括无人机,如无人机上的机载通信设备等。
3)本申请中的单元是指功能单元或逻辑单元。其可以为软件形式,通过处理器执行程序代码来实现其功能;也可以为硬件形式。
4)“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“以上”或“以下”等所描述的范围包括边界点。
本领域技术人员可以理解,本申请实施例提供的传输流TS的处理方法,可适用于视频信号处理系统中,尤其适用于8K超高清有线电视广播发送系统中。图2为ITU-T J.183协议定义的信道绑定的8K超高清有线电视广播发送系统示意图,其中,如图2所示,该系统分别支持超高清电视(Ultra High Definition Television,UHDTV)和高清晰度电视(High Definition Television,HDTV),在有线电视网络前端,压缩后的8K超高清音视频被封装成MPEG-2 TS,由于码率很大,会对MPEG-2 TS流进行分割,然后组成TSMF分发到多个信道,如图1中发送到5个信道,最后对每个信道进行调制,如利用256正交振幅调制(Quadrature Amplitude Modulation,QAM)或64QAM进行调制。在接收设备侧,接收设备采用与有线电视网络前端相对应的解调方式,对接收到的信号进行解调处理,并对解调后的信号进行同步和组合,重建出8K超高清的MPEG-2 TS流,再对MPEG-2 TS流进行解码处理得到8K超高清的音视频信号,最后将8K超高清的音视频信号输出给电视机显示。
在图2所示的系统的基础上,目前ITU-T J.183协议中所规范的将多个MPEG-2 TS包加上TSMF头部封装到单个传输流中,并输出给有线电视广播调制器接口,其中,该多个MPEG-2 TS包复用该TSMF头部。其中,一个TSMF帧包括53个槽(Slot),第一个槽(Slot)为TSMF头部,其余槽1-槽52表示52个MPEG-2 TS包,其中,TSMF头部用于存放MPEG-2 TS包的绑定信息,例如有多少个MPEG-2 TS包复用了该TSMF头部、有哪些MPEG-2 TS包复用了该TSMF头部等,槽1-槽52表示的52个MPEG-2 TS包可以来自不同的TS流,在TSMF头部中会记录各MPEG-2 TS包属于哪个TS流,这样接收设备可以根据记录的信息恢复TS流。然而,在上述方式中,TSMF帧的长度固定,应用灵活性较差。另外,在ITU-T J.183协议中,由于一个TSMF帧包括53个槽,TSMF头部占用了其中的一个槽,也即该TSMF头部占用了1/53的信道资源,由此使得信道的利用率不高。
本申请实施例中考虑到上述问题,提出了一种TS的处理方法,第一设备根据待发送的TS的码率,对TS进行分组,得到多个分组帧,针对每个分组帧,然后在分组帧中添加第一信息,得到传输帧,该第一信息包括用于指示发送传输帧的信道的第一信道信息,并根据第一信道信息指示的信道向第二设备发送传输帧。由于多个分组帧是根据待发送的TS的码率分组得到的,也即每个分组帧中包括的TS包的数量与待发送的TS的码率有关,可以提高TS流应用的灵活性。进一步的,分组后的得到的每个分组帧中均添加了第一信息,该第一信息中包含了发送传输帧的信道信息,从而可以 根据第一信息指示的信道将得到的传输帧发送给第二设备,这样,可以提高传输帧发送的准确率。另外,由于在每个分组帧中添加的第一信息会占用信道资源,且在每个分组帧中,该分组帧的第一信息占用了该分组帧的1/(分组长度+1)的信道资源,其中,分组长度为每个分组帧中所包含的TS包的数量,由于分组长度与待发送的TS的码率有关,因此该分组长度的值是可选地,而在现有技术中,一个TSMF帧包括53个槽,TSMF头部通常占用1/53的信道资源,因此,在实际应用中,在上述分组长度的值大于53时,就可以提高信道的利用率。。
另外,在上述分组长度的值小于53时,由于每个分组帧中包括的TS包的数量较少,第二设备将会快速的对分组帧进行组合,从而可以提高重建TS的速度。
下面,通过具体实施例对本申请的技术方案进行详细说明。需要说明的是,下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
图3为本申请传输流TS的处理方法的一种信令交互图。本实施例以有线电视调制器和终端设备之间的信息交互进行说明。如图3所示,在本实施例中,该传输流TS的处理方法可以包括如下步骤:
步骤301:第一设备根据待发送的TS的码率,对TS进行分组,得到多个分组帧。
其中,待发送的TS,可以为超高清8k视频TS与其他TS进行合并之后得到的TS,也可以理解为在超高清8k视频TS与其他TS进行合并之后,添加了服务信息(service information,SI)的TS。
在一种可能的实现方式中,第一终端设备在根据TS的码率,对TS进行分组之前,首先需要判断TS的码率是否大于预设值,在判断出TS的码率大于预设值时,再对TS进行分组,得到多个分组帧。
其中,上述的预设值可以根据已有信道的发送码率确定,示例性的,在实际应用中,每个信道中发送的TS的码率需要小于或等于该信道的调制模式对应的最高容量,以信道的调制模式为256QAM为例,在6.875Msps符号率下256QAM的最高容量为50.1Mbps,因此,在一种可能的实现方式中,上述预设值可以为50.1Mbps。当然,该预设值也可以为其他值,对于预设值的具体取值,本申请实施例在此不做限制。
示例性的,判断TS的码率是否大于预设值,可以理解为判断TS的码率是否超过了已有发送信道的发送码率的上限值,若TS的码率超过了发送码率的上限值时,说明已有发送信道承载不了TS,此时,则需要对TS进行分组,以通过多个信道进行传输,这样可以保证TS传输的准确性和完整性。
图4a为单信道有线电视发射端的示意图,如图4a所示,在节目源1和节目源2的码流中插入节目表等SI,形成TS,若该TS的码率小于或等于50.1Mbps,则该TS通过一个调制器有线数字视频广播(digital video broadcasting-cable,DVB-C)进行调制即可进行发射,也即该TS不需要进行分组或者分割,而是通过单信道就可以发送。
图4b为三信道有线电视发射端的示意图,如图4b所示,节目源1为8K超高清的码流,在节目源1和节目源2的码流中插入节目表等SI,形成TS,由于节目源1为8K超高清的码流,因此,TS的码率大于50.1Mbps,此时,一个信道无法承载该TS,因此,需要对该TS进行分组或者分割,具体地,可以将得到的TS进行TS包的 拆分,得到多个分组帧,并在每个分组帧中插入第一信息,如插入标记包。示例性的,可以将该TS分成n组,得到n个分组帧,并在得到的每个分组帧中分别添加第一信息,得到n个传输帧,将n个传输帧通过三个调制器DVB-C(调制器1DVB-C、调制器2DVB-C和调制器3DVB-C)进行调制,从而将调制后的信号通过三个信道进行发送,其中,每个信道中承载的TS的码率需要小于或等于50.1Mbps。
需要进行说明的是,由于上述添加的第一信息也会占用部分带宽,因此,为了使得各分组帧能够成功在第二设备的缓存空间内缓存,可以为TS的码率设置一个上限值,例如若第二设备的缓存空间可以缓存100个TS包,则可以设置TS的码率小于或等于148Mbps,也即TS的码率大于50.1Mbps,且小于或等于148Mbps。
通过图4b中对传输流进行拆分的方式,考虑第一信息的开销,在256QAM模式下传输流的码率可以达到148Mbps,由此可以提高信道的利用率。
进一步地,第一终端设备在对TS进行分组时,可以根据待发送的TS的码率,确定发送TS的信道的第二信道信息,然后根据该码率和第二信道信息,确定分组长度,并根据分组长度,对TS进行分组,从而得到多个分组帧,其中,分组长度用于表示每个分组帧所包含的TS包的个数。
其中,上述第二信道信息包括发送TS所需要的信道的数量以及各信道的调制模式。
具体地,第一设备可以根据TS的码率,确定出发送TS所需要的信道的数量。
示例性的,若TS的码率较大,则发送TS所需要的信道的数量则较多,若TS的码率较小,则发送TS所需要的信道的数量则较少。例如,若TS的码率为148Mbps,则可以通过三个信道发送TS,若TS的码率为98Mbps,则可以通过两个信道发送TS等。当然,上述仅为举例,在实际应用中,也可以按照其他方式确定发送TS的信道的数量,例如结合每个信道的调制模式进行确定等,只要确定出的信道的数量,使得TS进行分组后,通过任意一个信道发送的TS的码率小于该信道的调制模式对应的最高容量即可。对于确定发送TS所需要的信道的数量的具体方式,本申请实施例不做限制。
另外,第一设备还可以根据TS的码率以及相关物理频道的具体信道特征,确定出各信道的调制模式。其中,调制模式包括32QAM、64QAM、128QAM或256QAM,具体信道特征可以包括信道的噪声和/或频率的衰减等,根据信道的噪声和/或频率的衰减可以确定出信道的容量,这样,第一设备根据TS的码率以及信道的容量,即可确定出各信道的调制模式。
在本实施例中,由于根据TS的码率,可以确定出发送TS的各信道的调制模式,且可供选择的调制模式包括32QAM、64QAM、128QAM或256QAM,由此可以提高TS发送的灵活性。
进一步地,在确定出发送TS所需要的信道的数量以及各信道的调制模式之后,将可以确定出分组长度,也即确定出每个分组帧中所包含的TS包的个数,从而对TS进行分组,得到多个分组帧。
值得注意的是,区别于现有技术中TSMF帧长度固定的方式,本申请实施例中每个分组帧的分组长度,也即每个分组帧中所包含的TS包的数量可以根据发送TS所需 要的信道的数量以及各信道的调制模式确定。
在一种可能的实现方式中,为了使得相同调制模式在相同符号率下的速率适配,且第一信息对齐,分组长度可以通过信道容量来计算。例如可以通过如下公式(1)确定分组长度:
分组长度=取整(码率/(单信道容量*信道数-码率))    (1)
举例来说,若TS的码率为148Mbps,则可以确定出需要3个调制模式为256QAM的信道来发送TS,由于一个DVB-C信道使用256QAM调制,符号率为6.875Msps,信道容量为:50.1Mbps,因此,根据上述公式(1),可以计算出分组长度为64,也即每个分组帧中包括的TS包大于或者等于64。
在实际应用中,为了提高信道的利用率,每个分组帧中所包含的TS包的个数可以大于或者等于分组长度。以上述例子来说,第一设备可以以大于或者等于64个包为一组,将TS流进行分组。其中,TS是一个连续的、且码率较高的传输流,在将TS进行分组之后,得到的多个分组帧也是连续的。
需要进行说明的是,为了避免第二设备需要较大的缓存来接收TS,分组长度需要小于预设值,也就是说,在对TS进行分组后,每个分组帧中所包括的TS包的数量需要小于预设值,这样可以降低第二设备的硬件开销。其中,该预设值可以根据实际情况或者经验进行设置,例如可以设置为100等,对于预设值的具体取值,本申请实施例在此不做限制。
进一步地,分组后得到的多个分组帧中,各分组帧所包括的TS包的个数不全相同。
具体地,由于各信道的调制模式可能不全相同,因此,分组之后各分组帧中所包括的TS包的个数也不全相同。例如,若确定发送TS需要三个信道,分别包括信道0、信道1和信道2,其中,信道0的调制模式为256QAM,信道1的调制模式为64QAM,信道2的调制模式为256QAM,因此,在分组时,可以将通过信道0发送的分组帧的分组长度确定为X,将通过信道1发送的分组帧的分组长度确定为((X+1)*3/4-1),将通过信道2发送的分组帧的分组长度确定为X。
在本实施例中,由于根据信道的调制模式或者信道的信道特征进行分组后的多个分组帧中,各分组帧所包括的TS包的个数不全相同,当分组帧中包括的TS包的个数较多时,第一信息所占的信道资源便会减少,因此可以通过适当增加某些分组帧所包括的TS包的数量来提高信道的利用率。
本申请实施例中不再使用槽(Slot)对应TS包,根据第一信息(如标记包)对TS做拆分得到多个分组帧,多个分组帧通过第一信息来识别,且多个分组帧的长度不是固定不变的,可以根据TS的码率灵活设置,从而可以避免现有技术中TSMF帧结构长度固定不灵活的问题。另外,本申请实施例中通过增加分组长度,也即增加分组帧中所包含的TS包的数量,降低第一信息所占用的信道资源,由此可以提高信道的利用率。
步骤302:针对每个分组帧,第一设备在分组帧中添加第一信息,得到传输帧,第一信息包括用于指示发送传输帧的信道的第一信道信息。
在本步骤中,针对每个分组帧,在分组帧中添加第一信息,得到传输帧后,该第 一信息可以作为传输帧的头部信息。其中,每个传输帧都包括第一信息。
在一种可能的实现方式中,该第一信息中包括有包识别号(packet identifier,PID),该PID用于第二设备识别第一信息。
具体地,PID是用于区分TS中每个TS包的类型的。另外,第一信息为一个完整的TS包,其具体结构和其他TS包相同,但是该第一信息中包括的PID与传输帧中包括的其他TS包中的PID不同,这样,第一设备将各传输帧发送给第二设备之后,第二设备可以根据第一信息中包括的PID快速且准确的识别出该第一信息,从而可以快速的识别出各传输帧。
图5为传输帧的示意图,如图5所示,假设某个分组帧中包括有X个TS包,其中,X可以为大于或等于52的正整数。其中,每个TS包的包长为188字节。在该分组帧中添加第一信息,如添加标记包,以得到传输帧,该第一信息为传输帧的第一个包,且第一信息也是一个完整的TS包。其中,第一信息中包括的PID与传输帧中其他TS包中包括的PID不同,第二设备可以根据第一信息中包括的PID识别和区分第一信息对应的TS包,进而可以识别出不同的传输帧。
在一种可能的实现方式中,该第一信息为标记包。
其中,第一信息包括用于指示发送传输帧的信道的第一信道信息。示例性的,上述第一信道信息可以包括发送所有传输帧所需要的信道的数量、发送传输帧的信道的调制模式和发送传输帧的信道的标识信息。
具体地,发送所有传输帧所需要的信道的数量,可以理解为前述各实施例中所述的发送TS所需要的信道的数量。发送传输帧的信道的标识信息为发送传输帧的信道的序号或者索引。
举例来说,第一设备根据TS的码率,确定发送TS需要三个信道,且三个信道的调制模式分别为256QAM、64QAM和256QAM,则第一终端设备根据步骤301中所述的方式,确定出分组长度之后,将TS进行分组,得到n个分组帧,分别为分组帧1、分组帧2……和分组帧n,并分别在每个分组帧中添加第一信息,得到n个传输帧,分别为传输帧1、传输帧2……和传输帧n。其中,传输帧1中包括的第一信息中包括有:发送n个传输帧需要三个信道、发送传输帧1的信道的调制模式为256QAM以及发送传输帧1的信道为信道0;传输帧2中包括的第一信息中包括有:发送n个传输帧需要三个信道、发送传输帧2的信道的调制模式为64QAM以及发送传输帧2的信道为信道1;……传输帧n中包括的第一信息中包括有:发送n个传输帧需要三个信道、发送传输帧n的信道的调制模式为256QAM以及发送传输帧n的信道为信道2。
进一步地,为了使第二设备能够准确的识别出各分组帧,上述第一信息还包括分组帧中所包括的TS包的数量。
具体地,每个分组帧中添加的第一信息中,均包括有该分组帧中所包括的TS包的数量,这样,第二设备根据该数量,即可准确的接收各分组帧,从而可以提高TS包接收的准确性。
示例性的,第一信息还包括目标传输帧的标识信息,该目标传输帧的标识信息用于表示目标传输帧在多个传输帧中的顺序。
具体地,目标传输帧的标识信息,可以为目标传输帧的序号或索引,其中,各传 输帧的标识信息不相同。另外,各传输帧中包括的第一信息中,均包括有该传输帧的标识信息,第一设备将各传输帧的标识信息携带在第一信息中发送给第二设备之后,第二设备可以按照各传输帧的标识信息,将多个传输帧进行合并,从而可以获得TS。
在本实施例中,由于第一信息还包括目标传输帧的标识信息,从而可以使第二设备准确的拼接出TS。
值得注意的是,TS为在预设时间段内传输的多个TS包,假设TS包括A个TS包,在将TS进行分组,得到多个分组帧后,多个分组帧中所有TS包的总数依然为A,也即多个分组帧仅是对TS进行简单分组得到的,分组之后内容并不会发生变化。
在每个分组帧中添加第一信息,得到多个传输帧后,由于该第一信息为一个完整的TS包,则多个传输帧中所有TS包的总数将会大于A。
在一种可能的实现方式中,可以按照如下方式在每个分组帧中添加第一信息:针对每个分组帧,确定发送分组帧的信道的标识信息,然后根据发送分组帧的信道的标识信息以及发送分组帧的信道的调制模式,生成第一信息,并在分组帧中添加该第一信息。
具体地,信道的标识信息,可以是信道的标号、信号的索引或者信道的序号等。针对每个分组帧,第一设备根据该分组帧在所有分组帧中的顺序,确定用于发送该分组帧的信道,在确定出用于发送该分组帧的信道之后,可以获知发送该分组帧的信道的调制模式,这样,根据发送该分组帧的信道的标识信息,以及发送该分组帧的信道的调制模式,可以生成该分组帧对应的第一信息,从而将生成的第一信息添加在该分组帧中。
举例来说,图6a为TS分组的一示意图,如图6a所示,按照前述各实施例中的方式,将待发送的TS进行分组,得到n个分组帧,且每个分组帧中均包括有X个TS包。另外,发送n个分组帧需要3个信道,分别为信道0、信道1和信道2,且这三个信道的调制模式均为256QAM。示例性的,按照各分组帧的顺序,可以确定出每个分组帧通过哪个信道发送,例如,分组帧0通过信道0发送,分组帧1通过信道1发送,分组帧2通过信道2发送,分组帧3通过信道0发送……,以此类推。第一设备根据发送各分组帧的信道的标识信息以及发送各分组帧的信道的调制模式,可以生成各分组帧对应的第一信息,并将生成的第一信息添加在各分组帧中,得到多个传输帧。例如,在分组帧0中添加对应的第一信息(如标记包0),得到传输帧0,其中该第一信息中包括有信道0以及256QAM,在分组帧1中添加对应的第一信息(如标记包1),得到传输帧1,其中该第一信息中包括有信道1以及256QAM等等,在其他分组帧中添加第一信息的方式,与在分组帧1和分组帧2中添加第一信息的方式类似,此处不再赘述。
值得注意的是,上述各分组帧中添加的第一信息中,还包括有发送所有分组帧所需要的信道的数量,比如每个分组帧的第一信息中还包括3,用于指示发送所有分组帧需要的信道数量为3。
图6b为TS分组的另一示意图,如图6b所示,按照前述各实施例中的方式,将待发送的TS进行分组,得到n个分组帧,且发送n个分组帧需要3个信道,分别为信道0、信道1和信道2,且信道0和信道2的调制模式为256QAM,信道1的调制模 式为64QAM,按照前述各实施例中所述的方式分组时,分组帧0中包括有X个TS包,分组帧1中包括有Y个TS包,分组帧2中包括有X个TS包等,其中,Y的值可以为((X+1)*3/4-1)。示例性的,按照各分组帧的顺序,可以确定出每个分组帧通过哪个信道发送,例如,分组帧0通过信道0发送,分组帧1通过信道1发送,分组帧2通过信道2发送,分组帧3通过信道0发送……,以此类推。第一设备根据发送各分组帧的信道的标识信息以及发送各分组帧的信道的调制模式,可以生成各分组帧对应的第一信息,并将生成的第一信息添加在各分组帧中,得到多个传输帧。例如,在分组帧0中添加对应的第一信息(如标记包0),得到传输帧0,其中该第一信息中包括有信道0以及256QAM,在分组帧1中添加对应的第一信息(如标记包1),得到传输帧1,其中该第一信息中包括有信道1以及64QAM等等,在其他分组帧中添加第一信息的方式,与在分组帧1和分组帧2中添加第一信息的方式类似,此处不再赘述。
值得注意的是,上述各分组帧中添加的第一信息中,还包括有发送所有分组帧所需要的信道的数量,比如每个分组帧的第一信息中还包括3,用于指示发送所有分组帧需要的信道数量为3。
另外,上述的X和Y均为正整数。
步骤303:第一设备通过第一信道信息指示的信道向第二设备发送传输帧。
在本步骤中,第一设备在各分组帧中添加了第一信息,得到多个传输帧后,可以通过第一信道信息所指示的信道,向第二设备发送传输帧。对于第二设备来说,会通过多个信道接收多个传输帧。
继续参照图6a和图6b所示,可以通过信道0向第二设备发送传输帧0,通过信道1向第二设备发送传输帧1,通过信道2向第二设备发送传输帧2等。
示例性的,为了使得不同调制模式下,各信道的信道速率同步,在本申请实施例中,在相同时间段内,各信道中发送的传输帧的数量相同。
具体地,图7为现有技术中超级帧的示意图,如图7所示,在现有技术中,由于64QAM与256QAM调制后的码率不同,因此,通过64QAM调制与256QAM调制后的TSMF帧的传输延迟也就不同。在相同符号率下256QAM与64QAM速率比为4:3,为了在接收端对解调后的帧进行同步,现有技术中采用“超级帧”的方式,其中,“超级帧”由多个TSMF帧构成,并采用信道绑定技术,以在时间上对由64QAM调制与256QAM调制的超级帧进行同步。可以理解,在相同时间段内,64QAM调制的超级帧中可复用3个TSMF帧,用256QAM调制的超级帧中可复用4个TSMF帧。这样,对于接收设备来说,其不仅需要识别TSMF帧头,还需要识别“超级帧”,造成接收设备的处理流程较为复杂。
为了解决这一问题,在本申请实施例中,不论每个信道的调制模式是什么,在相同时间段内,各信道中发送的传输帧的数量相同。因此,第二设备只需要识别第一信息,从而识别出各传输帧,并从传输帧中提取分组帧,以将得到的多个分组帧进行拼接即可,由此可以简化第二设备的处理流程。
需要进行说明的是,各信道的调制模式可能不同,因此,在各信道中发送的传输帧中所包括的TS包的数量可能会不同。
图8为本申请实施例提供的一种TS的示意图,如图8所示,若信道0的调制模式为64QAM,信道1的调制模式为256QAM,则在0.5ms内,信道0和信道1中均发送了3个传输帧,但是在信道0中,每个传输帧中所包含的TS包的个数为X,在信道1中,每个传输帧中所包含的TS包的个数可能为Y。
在本实施例中,第一设备在向第二设备发送TS时,是根据TS的码率,对TS进行分组,使得每个分组帧的长度可以变化,而且各TS包在分组帧中的具体位置不需要记录在第一信息(标记包)中,从而不仅可以简化第一设备和第二设备对传输流处理的流程,降低处理的复杂度,而且可以降低实现成本。
步骤304:第二设备根据第一信息,从每个传输帧中确定分组帧。
在本步骤中,第二设备在接收到多个传输帧后,可以从每个传输帧中识别出第一信息,并将每个传输帧中除第一信息之外的其他TS包,确定为分组帧。
在一种可能的实现方式中,该第一信息中包括PID,则第二设备可以根据PID识别每个传输帧中的第一信息,并将每个传输帧中除第一信息之外的其他TS包,确定为分组帧,按照上述方式,可以确定出多个分组帧。
在本实施例中,第二设备会接收到多个传输帧,每个传输帧中均包括有第一信息和TS包,第一信息中包括的PID与传输帧中包括的其他TS包中的PID不同,这样,第二设备可以基于第一信息中包括的PID识别出每个传输帧中的第一信息。
由于第一信息中包括PID,从而通过PID可以快速且准确的识别出各传输帧中的第一信息。
步骤305:将得到的多个分组帧进行合并,得到TS。
在一种可能的实现方式中,第一信息还包括目标传输帧的标识信息,该目标传输帧的标识信息用于标识目标传输帧在多个传输帧中的顺序,则第二设备将多个分组帧进行合并时,可以根据目标传输帧的标识信息,将多个分组帧进行合并,得到TS。
具体地,由于目标传输帧的标识信息为第一设备在对TS进行分组后,根据各传输帧的顺序确定的,因此,为了能够正确的重建出TS,第二设备可以按照各传输帧中识别出的第一信息中包含的目标传输帧的标识信息,将对应的各分组帧进行合并,从而可以得到TS。第二设备可以将得到的TS输出给解码器,以进行解码显示。
举例来说,若第一信息为标记包,第一设备对TS进行分组后,得到分组帧0、分组帧1、分组帧2、分组帧3、分组帧4和分组帧5,第一设备根据各分组帧的顺序,依次在各分组帧中添加标记包,得到多个传输帧,如在分组帧0中添加标记包0,得到传输帧0,其中,标记包的标识信息0表示传输帧0排在所有传输帧中的第一个,在分组帧1中添加标记包1,得到传输帧1,其中,标记包的标识信息1表示传输帧1排在所有传输帧中的第二个等等,对于其他分组帧,也采用类似的方式添加标记包。第一设备将各传输帧发送给第二设备后,第二设备从各传输帧中识别出标记包,将除标记包之外的其他TS包确定为分组帧,由此可以得到多个分组帧。第二设备再根据标记包的标识信息,依次将得到的各分组帧进行合并,如按照分组帧0、分组帧1、分组帧2、分组帧3、分组帧4和分组帧5的顺序依次进行合并,从而可以得到TS。
在本实施例中,由于可以根据目标传输帧的标识信息,将多个分组帧进行合并,得到TS,从而可以提高重建TS的准确性。
在上述各实施例中,本申请实施例中由于根据TS的码率,对TS进行分组,这样可以简化拆分规则,摈弃现有技术中MPEG-2 TS包的位置需要在TSMF头部中进行记录的模式,简化了第一设备和第二设备的处理流程。另外,由于第二设备仅需要根据第一信息对得到的多个分组帧进行拼接重组,从而可以方便的利用现有的调制设备即可实现超高清8k视频流的传输。
本申请实施例提供的TS的处理方法,第一设备根据待发送的TS的码率,对TS进行分组,得到多个分组帧,针对每个分组帧,然后在分组帧中添加第一信息,得到传输帧,该第一信息包括用于指示发送传输帧的信道的第一信道信息,并根据第一信道信息指示的信道向第二设备发送传输帧。由于第一设备可以根据待发送的TS的码率,确定每个分组帧中包括的TS包的数量,从而对TS进行分组,并对分组后的分组帧中添加第一信息,以根据第一信息,将得到的传输帧发送给第二设备,这样,每个分组帧中包括的TS包的数量与待发送的TS的码率有关,从而可以提高TS流应用的灵活性。另外,本申请实施例中由于第一设备可以根据待发送的TS的码率,确定分组帧的分组长度X,也即确定每个分组帧中所包含的TS包的个数X,由于在每个分组帧中添加的第一信息会占用信道资源,且第一信息占用了1/(X+1)的信道资源,其中,X的值是可选地,在实际应用中,该X的值可以大于53,这样,可以提高信道的利用率。
图9为本申请实施例提供的一种传输流TS的处理装置10的结构示意图,请参见图9所示,该传输流TS的处理装置10可以包括:
处理单元11,用于根据待发送的传输流TS的码率,对所述TS进行分组,得到多个分组帧;所述处理单元11,还用于针对每个分组帧,在所述分组帧中添加第一信息,得到传输帧,所述第一信息包括发送所述传输帧的信道的第一信道信息;发送单元12,用于根据所述第一信道信息指示的信道向第二设备发送所述传输帧。
可选地,所述第一信息还包括所述分组帧中所包括的TS包的数量。
可选地,所述多个分组帧中,各分组帧所包括的TS包的个数不全相同。
可选地,所述第一信息中包括包识别号PID,所述PID用于所述第二设备识别所述第一信息。
可选地,所述第一信息还包括目标传输帧的标识信息,所述目标传输帧的标识信息用于表示所述目标传输帧在多个传输帧中的顺序。
可选地,所述处理单元11,具体用于:根据待发送的TS的码率,确定发送所述TS的信道的第二信道信息;根据所述码率和所述第二信道信息,确定分组长度,所述分组长度用于表示每个分组帧所包含的TS包的个数;根据所述分组长度,对所述TS进行分组,得到多个所述分组帧。
可选地,所述第二信道信息包括发送所述TS所需要的信道的数量以及各信道的调制模式。
可选地,所述处理单元11,具体用于:判断所述TS的码率是否大于预设值;若所述TS的码率大于预设值,则对所述TS进行分组,得到多个分组帧。
可选地,所述第一信道信息包括:发送所有所述传输帧所需要的信道的数量、发 送所述传输帧的信道的调制模式和发送所述传输帧的信道的标识信息。
可选地,所述分组长度小于预设阈值,所述预设阈值和所述第二设备的缓存大小有关。
可选地,所述调制模式包括正交振幅调制32QAM、64QAM、128QAM或256QAM。
可选地,所述处理单元11,具体用于:针对每个分组帧,确定发送所述分组帧的信道的标识信息;根据发送所述分组帧的信道的标识信息以及发送所述分组帧的信道的调制模式,生成所述第一信息;在所述分组帧中添加所述第一信息。
可选地,在相同时间段内,各信道中发送的所述传输帧的数量相同。
本申请实施例所示的传输流TS的处理装置10,可以执行上述任一项实施例所示的传输流TS的处理方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图10为本申请实施例提供的一种传输流TS的处理装置20的结构示意图,请参见图10所示,该传输流TS的处理装置20可以包括:
接收单元21,用于通过多个信道分别从第一设备接收多个传输帧,每个所述传输帧中包括第一信息,所述第一信息包括发送所述传输帧的信道的第一信道信息;处理单元22,用于根据所述第一信息,从每个所述传输帧中确定分组帧,所述分组帧为根据TS的码率,对所述TS进行分组后得到的;所述处理单元22,还用于将得到的多个分组帧进行合并,得到所述TS。
可选地,所述第一信息还包括目标传输帧的标识信息,所述目标传输帧的标识信息用于表示所述目标传输帧在多个传输帧中的顺序;
所述处理单元22,具体用于:根据所述目标传输帧的标识信息,将所述多个分组帧进行合并,得到所述TS。
可选地,所述第一信息还包括所述分组帧中所包括的TS包的数量。
可选地,所述多个分组帧中,各分组帧所包括的TS包的个数不全相同。
可选地,所述第一信息中包括包识别号PID;
所述处理单元22,具体用于:
根据所述PID识别每个所述传输帧中的所述第一信息;
根据所述第一信息,从每个所述传输帧中确定分组帧。
可选地,所述第一信道信息包括:发送所有所述传输帧所需要的信道的数量、发送所述传输帧的信道的调制模式和发送所述传输帧的信道的标识信息。
可选地,所述分组长度小于预设阈值,所述预设阈值和所述第二设备的缓存大小有关。
可选地,在相同时间段内,各信道中发送的所述传输帧的数量相同。
本申请实施例所示的传输流TS的处理装置20,可以执行上述任一项实施例所示的传输流TS的处理方法的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
需要说明的是,应理解以上装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可 以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,接收单元可以为单独设立的处理元件,也可以集成在该传输流TS的处理装置的某一个芯片中实现,此外,也可以以程序的形式存储于传输流TS的处理装置的存储器中,由该传输流TS的处理装置的某一个处理元件调用并执行该接收单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。此外,以上接收单元是一种控制接收的单元,可以通过该传输流TS的处理装置的接收装置接收信息。
以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图11为本申请实施例提供的有线电视解调器的结构示意图。如图11所示,该解调器可以包括发送器30、处理器31、存储器32、接收器34和至少一个通信总线33。应当理解,发送器30和接收器34可以为一个合并的模块,该合并的模块例如可以为收发器,收发器同时具有发送器30和接收器34的功能。通信总线63用于实现元件之间的通信连接。存储器32可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,存储器32中可以存储各种计算机程序,用于完成各种处理功能以及实现前述任一实施例的方法步骤。例如,该存储器32用于存储实现以上方法实施例,或者图3所示实施例各个单元的程序,处理器31调用该程序,执行以上方法实施例的操作,以实现图3所示的各个单元对应的功能。
收发器可以与天线连接。收发器可以接收有线电视解调器发送的信息,并将信息发送给处理器110进行处理。
另外,该终端设备中还包括显示器,用于显示8K超高清的音视频信号。
或者,以上各个单元的部分或全部也可以通过集成电路的形式内嵌于该终端设备的某一个芯片上来实现。且它们可以单独实现,也可以集成在一起。即以上这些单元可以被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。
本申请还提供一种传输流TS的处理装置,所述装置包括处理器和传输接口,所述处理器被配置为读取存储器中存储的程序指令,以执行如前述任一实施例提供的传输流TS的处理方法。
本申请还提供一种传输流TS的处理系统,包括如图9所示的装置以及如图10所示的装置。
本申请还提供一种可读存储介质,用于存储有指令,当所述指令被执行时,使如前述任一实施例提供的传输流TS的处理方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。调制器的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得调制器实施前述各种实施方式提供的传输流TS的处理方法。
本申请实施例还提供了一种传输流TS的处理装置,包括至少一个存储元件和至少一个处理元件、所述至少一个存储元件用于存储程序,该程序被执行时,使得所述传输流TS的处理装置执行上述任一实施例中的终端设备的操作。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种传输流TS的处理方法,其特征在于,应用于第一设备,所述方法包括:
    根据待发送的传输流TS的码率,对所述TS进行分组,得到多个分组帧;
    针对每个分组帧,在所述分组帧中添加第一信息,得到一个传输帧,所述第一信息包括用于指示发送所述传输帧的信道的第一信道信息;
    根据所述第一信道信息指示的信道向第二设备发送所述传输帧。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息还包括所述分组帧中所包括的TS包的数量。
  3. 根据权利要求1或2所述的方法,其特征在于,所述多个分组帧中,各分组帧所包括的TS包的个数不全相同。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一信息还包括包识别号PID,所述PID用于所述第二设备识别所述第一信息。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一信息还包括目标传输帧的标识信息,所述目标传输帧的标识信息用于表示所述目标传输帧在多个传输帧中的顺序。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据待发送的TS的码率,对所述TS进行分组,得到多个分组帧,包括:
    根据待发送的TS的码率,确定发送所述TS的信道的第二信道信息;
    根据所述码率和所述第二信道信息,确定分组长度,所述分组长度用于表示每个分组帧所包含的TS包的个数;
    根据所述分组长度,对所述TS进行分组,得到多个所述分组帧。
  7. 根据权利要求6所述的方法,其特征在于,所述第二信道信息包括发送所述TS所需要的信道的数量以及各信道的调制模式。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述根据待发送的TS的码率,对所述TS进行分组,得到多个分组帧,包括:
    判断所述TS的码率是否大于预设值;
    若所述TS的码率大于预设值,则对所述TS进行分组,得到多个分组帧。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一信道信息包括:发送所有所述传输帧所需要的信道的数量、发送所述传输帧的信道的调制模式和发送所述传输帧的信道的标识信息。
  10. 根据权利要求6所述的方法,其特征在于,所述分组长度小于预设阈值,所述预设阈值和所述第二设备的缓存大小有关。
  11. 根据权利要求7所述的方法,其特征在于,所述调制模式包括正交振幅调制32QAM、64QAM、128QAM或256QAM。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述针对每个分组帧,在所述分组帧中添加第一信息,得到传输帧,包括:
    针对每个分组帧,确定发送所述分组帧的信道的标识信息;
    根据发送所述分组帧的信道的标识信息以及发送所述分组帧的信道的调制模式, 生成所述第一信息;
    在所述分组帧中添加所述第一信息。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,在相同时间段内,各信道中发送的所述传输帧的数量相同。
  14. 一种传输流TS的处理方法,其特征在于,所述方法包括:
    通过多个信道分别从第一设备接收多个传输帧,每个所述传输帧中包括第一信息,所述第一信息包括用于指示发送所述传输帧的信道的第一信道信息;
    根据所述第一信息,从每个所述传输帧中确定分组帧,所述分组帧为根据TS的码率,对所述TS进行分组后得到的;
    将得到的多个分组帧进行合并,得到所述TS。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信息还包括目标传输帧的标识信息,所述目标传输帧的标识信息用于表示所述目标传输帧在多个传输帧中的顺序;
    所述将得到的多个分组帧进行合并,得到所述TS,包括:
    根据所述目标传输帧的标识信息,将所述多个分组帧进行合并,得到所述TS。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一信息还包括所述分组帧中所包括的TS包的数量。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述多个分组帧中,各分组帧所包括的TS包的个数不全相同。
  18. 根据权利要求14-17任一项所述的方法,其特征在于,所述第一信息还包括包识别号PID;
    所述根据所述第一信息,从每个所述传输帧中确定分组帧,包括:
    根据所述PID识别每个所述传输帧中的所述第一信息;
    根据所述第一信息,从每个所述传输帧中确定分组帧。
  19. 根据权利要求14-18任一项所述的方法,其特征在于,所述第一信道信息包括:发送所有所述传输帧所需要的信道的数量、发送所述传输帧的信道的调制模式和发送所述传输帧的信道的标识信息。
  20. 根据权利要求14-19任一项所述的方法,其特征在于,所述分组长度小于预设阈值,所述预设阈值和第二设备的缓存大小有关。
  21. 根据权利要求14-20任一项所述的方法,其特征在于,在相同时间段内,各信道中发送的所述传输帧的数量相同。
  22. 一种传输流TS的处理装置,其特征在于,包括:
    处理单元,用于根据待发送的传输流TS的码率,对所述TS进行分组,得到多个分组帧;
    所述处理单元,还用于针对每个分组帧,在所述分组帧中添加第一信息,得到传输帧,所述第一信息包括用于指示发送所述传输帧的信道的第一信道信息;
    发送单元,用于根据所述第一信道信息指示的信道向第二设备发送所述传输帧。
  23. 根据权利要求22所述的装置,其特征在于,所述第一信息还包括所述分组帧中所包括的TS包的数量。
  24. 根据权利要求22或23所述的装置,其特征在于,所述处理单元,具体用于:
    根据待发送的TS的码率,确定发送所述TS的信道的第二信道信息;
    根据所述码率和所述第二信道信息,确定分组长度,所述分组长度用于表示每个分组帧所包含的TS包的个数;
    根据所述分组长度,对所述TS进行分组,得到多个所述分组帧。
  25. 根据权利要求24所述的装置,其特征在于,所述第二信道信息包括发送所述TS所需要的信道的数量以及各信道的调制模式。
  26. 一种传输流TS的处理装置,其特征在于,包括:
    接收单元,用于通过多个信道分别从第一设备接收多个传输帧,每个所述传输帧中包括第一信息,所述第一信息包括用于指示发送所述传输帧的信道的第一信道信息;
    处理单元,用于根据所述第一信息,从每个所述传输帧中确定分组帧,所述分组帧为根据TS的码率,对所述TS进行分组后得到的;
    所述处理单元,还用于将得到的多个分组帧进行合并,得到所述TS。
  27. 根据权利要求26所述的装置,其特征在于,所述第一信息还包括目标传输帧的标识信息,所述目标传输帧的标识信息用于表示所述目标传输帧在多个传输帧中的顺序;
    所述处理单元,具体用于:
    根据所述目标传输帧的标识信息,将所述多个分组帧进行合并,得到所述TS。
  28. 根据权利要求26或27所述的装置,其特征在于,所述第一信息还包括所述分组帧中所包括的TS包的数量。
  29. 根据权利要求26-28任一项所述的装置,其特征在于,所述多个分组帧中,各分组帧所包括的TS包的个数不全相同。
  30. 一种传输流TS的处理系统,其特征在于,包括如权利要求22-25任一项所述的装置和如权利要求26-29任一项所述的装置。
  31. 一种传输流TS的处理装置,其特征在于,所述装置包括处理器和传输接口,所述处理器被配置为读取存储器中存储的程序指令,以执行如权利要求1至13或14至21任一项所述的方法。
  32. 一种可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至13或14至21中任一项所述的方法被实现。
PCT/CN2020/079308 2020-03-13 2020-03-13 传输流ts的处理方法、装置和系统 WO2021179307A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/079308 WO2021179307A1 (zh) 2020-03-13 2020-03-13 传输流ts的处理方法、装置和系统
CN202080098014.5A CN115211127A (zh) 2020-03-13 2020-03-13 传输流ts的处理方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079308 WO2021179307A1 (zh) 2020-03-13 2020-03-13 传输流ts的处理方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2021179307A1 true WO2021179307A1 (zh) 2021-09-16

Family

ID=77671083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079308 WO2021179307A1 (zh) 2020-03-13 2020-03-13 传输流ts的处理方法、装置和系统

Country Status (2)

Country Link
CN (1) CN115211127A (zh)
WO (1) WO2021179307A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6961326B1 (en) * 1999-05-27 2005-11-01 Samsung Electronics Co., Ltd Apparatus and method for transmitting variable-length data according to a radio link protocol in a mobile communication system
CN103024369A (zh) * 2011-09-20 2013-04-03 中兴通讯股份有限公司 分级编码复用的发送端、终端、系统及方法
JP2015156636A (ja) * 2014-01-15 2015-08-27 日本放送協会 送信装置及び受信装置
CN109617891A (zh) * 2018-12-26 2019-04-12 北京数码视讯技术有限公司 码流传输方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100920605B1 (ko) * 2007-09-21 2009-10-08 삼성전기주식회사 적응적 엠펙-트랜스포트 스트림 집합 프레임 전송 장치 및방법
JP6120700B2 (ja) * 2013-06-28 2017-04-26 日本放送協会 送信装置及び受信装置
ITTO20130630A1 (it) * 2013-07-25 2015-01-26 Rai Radiotelevisione Italiana Sistema, decodificatore e metodo per la trasmissione satellitare di segnali

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6961326B1 (en) * 1999-05-27 2005-11-01 Samsung Electronics Co., Ltd Apparatus and method for transmitting variable-length data according to a radio link protocol in a mobile communication system
CN103024369A (zh) * 2011-09-20 2013-04-03 中兴通讯股份有限公司 分级编码复用的发送端、终端、系统及方法
JP2015156636A (ja) * 2014-01-15 2015-08-27 日本放送協会 送信装置及び受信装置
CN109617891A (zh) * 2018-12-26 2019-04-12 北京数码视讯技术有限公司 码流传输方法及装置

Also Published As

Publication number Publication date
CN115211127A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN104904233B (zh) 用于封装国际标准化组织基媒体文件中的运动图像专家组媒体传输资源的方法和装置
CA2775318C (en) Method and system for wireless communication of audio in wireless networks
CN106658597B (zh) 一种数据传输方法,发送装置及接收装置
CN103916315A (zh) 用于无线接入网和云无线接入网的以太网载无线电
JP2016519527A (ja) パケットヘッダを圧縮する方法及び装置
US10574424B2 (en) Transmission bandwidth improvements for DVB-S2X channel bonding
CN109451853A (zh) 指示多业务数据复用传输的方法及装置、终端和基站
US20180146077A1 (en) Method and apparatus for determining processing mode for data packet
CN103053151A (zh) 用于语音和数据联合传输的系统和方法
WO2021179307A1 (zh) 传输流ts的处理方法、装置和系统
WO2021052068A1 (zh) 一种背反射通信中的数据传输方法和装置
CN102263771A (zh) 移动终端、适配器及多媒体数据的播放方法和系统
CN116965011A (zh) 数据传输的加密控制方法及装置
CN112291030A (zh) 一种数据接收、数据发送方法和装置
US11889444B2 (en) Synchronization signal transmission method and terminal device
CN112436919B (zh) 流数据传输方法、装置、设备及计算机可读存储介质
WO2016138633A1 (zh) 用于调度终端设备的方法和网络设备
CN112584434A (zh) 一种数据传输方法及装置
CN110831169A (zh) 一种配置载波的方法及设备
US20240204946A1 (en) Data Transmission Method and Device
CN114567927B (zh) 基于cpri的数据传输方法、装置、设备以及存储介质
CN108900879A (zh) 高清音视频无线发送、接收方法和装置、传输方法和系统
CN116405103B (zh) 基于信道捆绑的数据传输方法和设备、存储介质
WO2024067430A1 (zh) 一种传输方法、系统及相关装置
EP4319069A1 (en) Method and apparatus for determining hyper frame number of packet data convergence protocol entity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924834

Country of ref document: EP

Kind code of ref document: A1