WO2021179098A1 - Bomba rotodinámica de flujo cónico-helicoidal - Google Patents

Bomba rotodinámica de flujo cónico-helicoidal Download PDF

Info

Publication number
WO2021179098A1
WO2021179098A1 PCT/CL2020/050017 CL2020050017W WO2021179098A1 WO 2021179098 A1 WO2021179098 A1 WO 2021179098A1 CL 2020050017 W CL2020050017 W CL 2020050017W WO 2021179098 A1 WO2021179098 A1 WO 2021179098A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
rotodynamic pump
angle
pump
pump according
Prior art date
Application number
PCT/CL2020/050017
Other languages
English (en)
French (fr)
Inventor
Pablo FAUNDEZ ESTEVEZ
Original Assignee
Faundez Estevez Pablo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faundez Estevez Pablo filed Critical Faundez Estevez Pablo
Priority to PCT/CL2020/050017 priority Critical patent/WO2021179098A1/es
Publication of WO2021179098A1 publication Critical patent/WO2021179098A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow

Definitions

  • the technical object of this application is a rotodynamic type pump, without vanes or mechanical seals, in which the intake and outlet ducts rotate jointly and whose longitudinal axes form an angle other than zero.
  • the pump is characterized in that the fluid follows a conical-helical type path when passing through the impeller.
  • the pump is suitable for use with corrosive fluids, abrasive fluids, fluids that contain solids, or those fluids that due to their own nature or due to the nature or size of the structures or substances that it transports, it is not possible or convenient to pass through the impeller blades of a bladed centrifugal pump or by an axial pump.
  • Fluids with high hygienic demands i) Fluids with high hygienic demands; ii) Fluids in which it is desired to transfer heat from or to the fluid at the same time as it is pumped; iii) Fluid spraying for both fire control and crop irrigation; iv) Fluids with a large amount of dissolved or entrained gases.
  • Rotodynamic type pumps without vanes are based on the transfer of movement to the fluid from one or more rotating discs, due to viscous drag.
  • the original patent for this type of pump corresponds to US Patent No. 1,061,142 of 1913 in the name of Nikola Tesla. Variations of this machine are found in various patents, for example US Patent No. 4,025,225 of 1977 in the name of Donald Durant and US Patent No. 7,097,416 of 2006 in the name of Max Gurth.
  • These pumps require mechanical seals, their performance is highly dependent on the viscosity of the fluid and a considerable part of the energy supplied is dissipated in the form of heat and turbulence.
  • the proposed device consists of one or more inclined ducts [7] that rotate around a vertical axis. This vertical axis passes through the lower end of the inclined ducts forming with them an angle "a" [8]. The rotation is produced by the action of a driving source [2] applied directly or by means of a transmission system to the set of inclined ducts [7].
  • the advantages of the proposed device lie in the possibility of achieving greater energy efficiency in certain combinations of flow and head gain compared to existing pumps, in the increased availability and reliability associated with the absence of mechanical seals, in the possibility of prolonged operation without performance degradation, in the simplicity of construction reducing manufacturing and maintenance costs, in the possibility of driving fluids containing fragile, large objects and / or large amounts of entrained or dissolved gases and in the possibility to maintain high hygienic demands due to the absence of corners or edges in the fluid path.
  • Figure 1 Shows a view of the elevation of the pump, configured for use as a fluid lifter, which implies the installation of a collection casing [4] in the upper part.
  • Figure 2 Shows an elevation view of the pump, configured for use in fluid spraying, for which spray nozzles [17] are used in the end of the inclined ducts and an aerodynamic system to compensate for the imbalance produced during cyclical operation. It contains an indication of the AB and CD cuts that give rise to Figures 3 and 4, respectively.
  • Figure 4 Mounting detail of the proximity sensor and power supply system (Section C-D of Figure 2).
  • Figure 6 Shows an elevation view of the pump without a vertical intake duct.
  • the pump ( Figure 1) consists of an impeller assembly [6 and 7], a support structure [1], a motive source [2] with a power transmission means [3], a casing of collection [4] and a non-return type valve [5].
  • the impeller assembly [6 and 7] consists of a vertical intake duct [6] whose existence is not essential as explained below, and at least one inclined duct [7] an angle "a" [8] other than zero with respect to from the vertical such that it allows the appearance of a centrifugal acceleration on the fluid capable of overcoming the acceleration of gravity when the impeller assembly [6 and 7] is rotating with an angular velocity "w" [9].
  • the intake duct [6] has a cap [10] that directs the flow towards the inclined ducts [7].
  • the continuation of the intake duct [11] on this cover [10] allows supporting as many reinforcing bars [12] as necessary to support the inclined ducts [7] and the collection casing [4].
  • In the lower part of the intake duct [6] there are two lower bearings or bearings [13] that are attached to the support structure [1] and allow to keep the impeller assembly [6 and 7] in place.
  • the motive source [2] allows the impeller assembly to rotate by means of a direct coupling or through elements of transmission of mechanical power [3], for example one or more belts, chains or shafts, and as necessary, reductions or amplifications of the angular velocity.
  • the collection casing [4] is located at the top of the impeller assembly, attached to it by means of one or more rests or upper bearings [14] such that they allow keep the casing stopped while the drive assembly [6 and 7] rotates.
  • There is a priming system consisting of a pump [16] capable of driving fluid through a conduit allowing the initial filling of the inclined conduits [7] while the impeller assembly [6 and 7] is stopped and the type valve is closed.
  • This electronic controller [19] will be located on the cover [10] located at the upper end of the intake duct [6] and will determine the state of the cyclical action valves [18] based on the position along the angular travel of the impeller assembly [6 and 7].
  • the electronic controller [19] is supplied with energy from a battery [20] which is also located on the cover [10] of the intake duct [6]. In turn, the battery [20] is kept charged thanks to the action of a charge regulator [21], an AC-DC rectifier [22] and an alternator [23] that rotate integrally to the impeller assembly [6 and 7].
  • the alternator [23] is driven by a driving wheel [24] that is in contact with a static ring [25] that is attached to the support structure [1] ( Figures 2 and 4).
  • the unbalance produced by the variation of the fluid reaction force on the impeller assembly [6 and 7] during cyclical operation will be counteracted by the force exerted by aerodynamic surfaces [26] whose angle of attack will be variable and controlled by the electronic controller [19] by means of electric step motors [27] whose drive axles [34] will be integral with the aerodynamic surfaces [26] ( Figure 3).
  • the cyclically acting valve control system determines the angular velocity of the impeller assembly and the angular position of the inclined ducts [7]. For this, there is a proximity sensor [28] attached to the intake duct [6] and at least one detectable element [29] attached to the static ring [25] ( Figure 4).
  • Both the cyclical control to direct the discharge of fluid to certain sectors during the operation of the pump in the spray mode, as well as the flow rate and the height gain of the fluid during the operation in the fluid lift mode, can be carried out by varying the angle "a" [8] formed between the longitudinal axis of the intake duct [6] and the longitudinal axis of the inclined ducts [7].
  • a flexible coupling [30] between these conduits plus some reinforcing bars that allow the distance "L” [31] ( Figure 5) to be varied, together with a means of exerting force on the inclined conduits [7] constitute an alternative configuration of the proposed invention.
  • the force necessary to vary the angle "a” comes from mechanical means, for example linear actuators [32] with trunnion couplings [33], or aerodynamic surfaces with variable pitch angle. These elements are controlled by the electronic pump controller [19].
  • the lower end of the inclined duct [7] must be submerged in the fluid and have the non-return valve [5] attached to allow priming ( Figure 6).
  • the rotary movement [9] of the inclined duct [7] comes from a drive shaft [35] in which The lower end is a socket [36] that supports the inclined duct [7] at an angle "a" [8] with respect to the vertical.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Una bomba rotodinámica consistente en al menos un conducto inclinado [7], una fuente motriz [2] y opcionalmente un conducto de admisión vertical [6]. En el caso de existir este conducto de admisión vertical, su eje longitudinal forma un ángulo [8] con el eje longitudinal del conducto inclinado. El movimiento del fluido se produce al girar los conductos [7] y [8] solidariamente por acción de la fuente motriz a una velocidad angular [9] tal que permite a la aceleración centrífuga superar la aceleración de gravedad sobre el fluido. La bomba se caracteriza porque el fluido sigue una trayectoria del tipo cónico-helicoidal al pasar por el impulsor.

Description

Bomba rotodinámica de flujo cónico-helicoidal
El objeto técnico de esta solicitud es una bomba de tipo rotodinámico, sin aspas ni sellos mecánicos en que los conductos de admisión y de egreso giran solidariamente y cuyos ejes longitudinales forman un ángulo distinto de cero. La bomba se caracteriza porque el fluido sigue una trayectoria del tipo cónico- helicoidal al pasar por el impulsor. La bomba es adecuada para usarse con fluidos corrosivos, fluidos abrasivos, fluidos que contengan sólidos, o aquéllos fluidos que debido a su naturaleza propia o debido a la naturaleza o tamaño de las estructuras o sustancias que transporta, no sea posible o conveniente hacer pasar por las aspas del impulsor de una bomba centrífuga con aspas o por una bomba axial. También es aplicable a: i) Fluidos con altas exigencias higiénicas; ii) Fluidos en los que se quiera realizar transferencia de calor desde o hacia el fluido al mismo tiempo que es bombeado; iii) Aspersión de fluidos tanto para el control de incendios como para el riego de cultivos; iv) Fluidos con gran cantidad de gases disueltos o arrastrados.
Estado de la Técnica
Las bombas del tipo rotodinámico sin aspas, se basan en la transferencia de movimiento hacia el fluido desde uno o más discos giratorios, debido al arrastre viscoso. La patente originaria de este tipo de bombas corresponde a la US Patent No. 1.061.142 de 1913 a nombre de Nikola Tesla. Variaciones de esta máquina se encuentran en varias patentes, por ejemplo US Patent No. 4.025.225 de 1977 a nombre de Donald Durant y US Patent No. 7.097.416 de 2006 a nombre de Max Gurth. Estas bombas necesitan sellos mecánicos, su desempeño es altamente dependiente de la viscosidad del fluido y una parte considerable de la energía provista se disipa en forma de calor y turbulencia. Otros problemas de este tipo de bombas son las fallas de sellos mecánicos y la imposibilidad de impulsar sustancias que no resistan la gradiente de velocidad generada por el impulsor, ni sólidos de mayor tamaño que la separación entre discos. Además, los discos están sometidos a la erosión producto del deslizamiento con el fluido y sus partículas. Por estos motivos este tipo de máquinas no se han popularizado, siendo su uso mucho menor que el de las bombas de desplazamiento positivo y el de las bombas con impulsores de álabes. i El dispositivo propuesto consiste en uno o varios conductos inclinados [7] que giran en torno a un eje vertical. Este eje vertical pasa por el extremo inferior de los conductos inclinados formando con ellos un ángulo "a" [8]. El giro se produce por acción de una fuente motriz [2] aplicada en forma directa o por medio de un sistema de transmisión al conjunto de conductos inclinados [7]. En operación normal el fluido sube por un conducto de admisión [6] y por los conductos inclinados [7] como consecuencia de la aceleración centrífuga en un movimiento cuya componente principal es a lo largo del eje longitudinal de los mismos. En el extremo superior del conducto inclinado [7], el fluido es descargado a presión atmosférica en un recolector, habiendo ganado principalmente energía potencial. Un modo de operación alternativo de la bomba es aquel en el cual el ángulo de los conductos inclinados [7] y la velocidad de rotación se escogen para maximizar la ganancia de energía cinética del fluido. Este modo de operación es apropiado para la aspersión de fluido.
Las ventajas que presenta el dispositivo propuesto radican en la posibilidad de alcanzar una mayor eficiencia energética en ciertas combinaciones de caudal y altura ganada en comparación con las bombas existentes, en el aumento de la disponibilidad y confiabilidad asociada a la ausencia de sellos mecánicos, en la posibilidad de operación prolongada sin degradación del desempeño, en la simplicidad de construcción reduciéndose los costos de fabricación y mantenimiento, en la posibilidad de impulsar fluidos que contengan objetos frágiles, de gran tamaño y/o grandes cantidades de gases arrastrados o disueltos y en la posibilidad de mantener altas exigencias higiénicas debido a la ausencia de esquinas o bordes en el recorrido del fluido.
Breve Descripción de las Figuras
Figura 1: Muestra una vista de la elevación de la bomba, configurada para su uso como elevadora de fluido, lo cual implica la instalación de una carcasa de recolección [4] en la parte superior.
Figura 2: Muestra una vista de elevación de la bomba, configurada para su uso en la aspersión de fluidos, para lo cual se usan boquillas aspersoras [17] en el extremo de los conductos inclinados y un sistema aerodinámico para la compensación del desbalance producido durante la operación cíclica. Contiene indicación de los cortes A-B y C-D que dan origen a las figuras 3 y 4, respectivamente. Figura 3. Detalle del mecanismo de accionamiento de las superficies aerodinámicas (Corte A-B de la Figura 2).
Figura 4: Detalle de montaje del sensor de proximidad y sistema de provisión de energía (Corte C-D de la Figura 2).
Figura 5. Control de la bomba por medio de la regulación del ángulo entre los conductos inclinados y el conducto de admisión.
Figura 6. Muestra una vista de elevación de la bomba sin un conducto de admisión vertical.
Descripción Detallada de la Invención La bomba (Figura 1) consta de un conjunto impulsor [6 y 7], una estructura de soporte [1], una fuente motriz [2] con un medio de transmisión de potencia [3], una carcasa de recolección [4] y una válvula del tipo anti-retorno [5]. El conjunto impulsor [6 y 7] consta de un conducto de admisión vertical [6] cuya existencia no es indispensable según se explica más adelante, y al menos un conducto inclinado [7] un ángulo "a" [8] distinto de cero respecto de la vertical tal que permite la aparición de una aceleración centrífuga sobre el fluido capaz de vencer la aceleración de la gravedad cuando el conjunto impulsor [6 y 7] se encuentra girando con una velocidad angular "w" [9]. A lo largo de los conductos inclinados el fluido describe una trayectoria del tipo cónico- helicoidal. El conducto de admisión [6] cuenta con una tapa [10] que dirige el flujo hacia los conductos inclinados [7]. La continuación del conducto de admisión [11] sobre esta tapa [10] permite dar soporte a tantas barras de refuerzo [12] como sea necesario para sostener los conductos inclinados [7] y la carcasa de recolección [4]. En la parte baja del conducto de admisión [6] se hallan dos descansos o rodamientos inferiores [13] que se encuentran unidos a la estructura de soporte [1] y permiten mantener el conjunto impulsor [6 y 7] en su lugar. La fuente motriz [2], permite al conjunto impulsor girar por medio de un acople directo o a través de elementos de transmisión de potencia mecánica [3], por ejemplo una o varias correas, cadenas o ejes, y según sea necesario, reducciones o amplificaciones de la velocidad angular.
Para la recolección del fluido a una altura mayor a la que se encontraba originalmente, en la parte superior del conjunto impulsor se ubica la carcasa de recolección [4], unida a este mediante uno o más descansos o rodamientos superiores [14] tales que permitan a la carcasa mantenerse detenida mientras el conjunto impulsor [6 y 7] gira. El torque transmitido por el conjunto impulsor [6 y 7] a la carcasa de recolección [4] debido a la fricción del o de los rodamientos o descansos superiores [14], es anulado mediante el tubo de evacuación [15], que permite también la salida del fluido desde la carcasa de recolección [4]. Se dispone de un sistema de cebado consistente en una bomba [16] capaz de impulsar fluido a través de un conducto permitiendo el llenado inicial de los conductos inclinados [7] mientras el conjunto impulsor [6 y 7] está detenido y cerrada la válvula tipo anti-retorno [5] ubicada en el conducto de admisión [6]. Esta válvula permanece cerrada hasta que el conjunto impulsor alcanza la velocidad angular que equilibra las aceleraciones centrífugas con el peso del fluido, momento en el cual el déficit de presión del fluido que se encuentra girando vence la fuerza que mantiene la válvula cerrada.
En el caso de operar la bomba para la aspersión de fluido, en lugar de la carcasa de recolección [4] se dispone de boquillas aspersoras [17] en los extremos superiores de los conductos inclinados [7] (Figura 2), a través de las cuales el fluido será expulsado siguiendo una gradiente de presión. Con el propósito de dirigir la aspersión a ciertos sectores del recorrido angular de los conductos secundarios, se cuenta con válvulas de acción cíclica [18] que permiten regular el flujo que sale por las boquillas aspersoras [17]. Estas válvulas de acción cíclica [18] serán gobernadas por un sistema de control basado en un controlador electrónico [19]. Este controlador electrónico [19] se ubicará sobre la tapa [10] ubicada en el extremo superior del conducto de admisión [6] y determinará el estado de las válvulas de acción cíclica [18] en función de la posición a lo largo del recorrido angular del conjunto impulsor [6 y 7]. El controlador electrónico [19] se abastece de energía desde una batería [20] que también se ubica sobre la tapa [10] del conducto de admisión [6]. A su vez la batería [20] se mantiene cargada gracias a la acción de un regulador de carga [21], un rectificador CA-CC [22] y un alternador [23] que giran solidariamente al conjunto impulsor [6 y 7]. El alternador [23] es accionado por una rueda motriz [24] que está en contacto con un anillo estático [25] que se encuentra adosado a la estructura de soporte [1] (Figuras 2 y 4). El desbalance producido por la variación de la fuerza de reacción del fluido sobre el conjunto impulsor [6 y 7] durante la operación cíclica, será contrarrestado por la fuerza ejercida por unas superficies aerodinámicas [26] cuyo ángulo de ataque será variable y controlado por el controlador electrónico [19] mediante motores eléctricos de paso [27] cuyos ejes motrices [34] serán solidarios a las superficies aerodinámicas [26] (Figura 3).
Para enviar las señales de apertura y cierre a las válvulas de acción cíclica [18] y determinar el ángulo de paso de las superficies aerodinámicas [26], el sistema de control de las válvulas de acción cíclica determina la velocidad angular del conjunto impulsor y la posición angular de los conductos inclinados [7]. Para esto se dispone de un sensor de proximidad [28] adosado al conducto de admisión [6] y al menos un elemento detectable [29] adosado al anillo estático [25] (Figura 4).
Tanto el control cíclico para dirigir la descarga de fluido a ciertos sectores durante la operación de la bomba en el modo de aspersión, como el caudal y la ganancia de altura del fluido durante la operación en el modo de elevación de fluido, pueden efectuarse variando el ángulo "a" [8] que se forma entre el eje longitudinal del conducto de admisión [6] y el eje longitudinal de los conductos inclinados [7]. Un acople flexible [30] entre estos conductos más unas barras de refuerzo que permitan variar la distancia "L" [31] (Figura 5) junto con un medio de ejercer fuerza sobre los conductos inclinados [7], constituyen una configuración alternativa de la invención propuesta. La fuerza necesaria para variar el ángulo "a" proviene de medios mecánicos, por ejemplo actuadores lineales [32] con acoples de muñón [33], o superficies aerodinámicas con ángulo de paso variable. El control de dichos elementos es efectuado por el controlador electrónico de la bomba [19].
En el caso de no existir el conducto de admisión [6], el extremo inferior del conducto inclinado [7] deberá estar sumergido en el fluido y tener adosada la válvula anti-retorno [5] que permite el cebado (Figura 6). El movimiento giratorio [9] del conducto inclinado [7] proviene de un eje motriz [35] en cuyo extremo inferior se halla una toma [36] que sostiene al conducto inclinado [7] en un ángulo "a" [8] respecto a la vertical.

Claims

Reivindicaciones
1. Una bomba rotodinámica CARACTERIZADA por poseer un conducto de admisión [6] que gira en el sentido axial y al cual se encuentra solidariamente unido al menos un conducto inclinado [7], formándose un ángulo "a" (8) distinto de cero entre sus ejes longitudinales y que posee de una válvula tipo anti-retorno [5] ubicada en el conducto de admisión [6].
2. Bomba rotodinámica de acuerdo a la reivindicación 1, CARACTERIZADA por poseer un controlador electrónico [19], un anillo estático [25], un sensor de proximidad [28], un alternador [21], un rectificador AC-DC [22], un regulador de carga [23] y una rueda motriz [24].
3. Bomba rotodinámica de acuerdo a las reivindicaciones 1 y 2, CARACTERIZADA por poseer un conjunto de superficies aerodinámicas [26] cuyo ángulo de ataque es variado cíclicamente mediante la acción de motores eléctricos [27] gobernados por un controlador electrónico [19].
4. Bomba rotodinámica de acuerdo a la reivindicación 1 y 2, CARACTERIZADA por poseer un ángulo "a" [8] variable por la acción de medios mecánicos o aerodinámicos gobernados por un controlador electrónico [19], además de acoples flexibles [30] en los conductos secundarios.
5. Bomba rotodinámica de acuerdo a la reivindicación 1, CARACTERIZADA por estar el extremo inferior de su o sus conductos inclinados [7] directamente sumergido(s) en el fluido a bombear, por estar la válvula anti-retorno [5] directamente acoplada en el extremo inferior de dicho conducto y por estar este o estos conductos insertos en una toma [36] mediante la cual un eje motriz [35] les imparte una velocidad angular "w" [9]
PCT/CL2020/050017 2020-03-10 2020-03-10 Bomba rotodinámica de flujo cónico-helicoidal WO2021179098A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2020/050017 WO2021179098A1 (es) 2020-03-10 2020-03-10 Bomba rotodinámica de flujo cónico-helicoidal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2020/050017 WO2021179098A1 (es) 2020-03-10 2020-03-10 Bomba rotodinámica de flujo cónico-helicoidal

Publications (1)

Publication Number Publication Date
WO2021179098A1 true WO2021179098A1 (es) 2021-09-16

Family

ID=77671084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050017 WO2021179098A1 (es) 2020-03-10 2020-03-10 Bomba rotodinámica de flujo cónico-helicoidal

Country Status (1)

Country Link
WO (1) WO2021179098A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995015287A1 (en) * 1993-12-03 1995-06-08 Neste Oy Apparatus for heating and discharging of a reservoir
US5711655A (en) * 1991-06-07 1998-01-27 Lundbaeck; Stig Pump system using a vacuum chamber and mechanical pump combinations
ES2157012T3 (es) * 1995-10-14 2001-08-01 Petro Man Ltd Llenado de tanques.
US7507298B2 (en) * 2001-09-07 2009-03-24 Alfa Laval Tank Equipment A/S Cleaning equipment and use thereof
CN201521494U (zh) * 2009-09-11 2010-07-07 蔡瑞安 无叶片式节能抽水机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711655A (en) * 1991-06-07 1998-01-27 Lundbaeck; Stig Pump system using a vacuum chamber and mechanical pump combinations
WO1995015287A1 (en) * 1993-12-03 1995-06-08 Neste Oy Apparatus for heating and discharging of a reservoir
ES2157012T3 (es) * 1995-10-14 2001-08-01 Petro Man Ltd Llenado de tanques.
US7507298B2 (en) * 2001-09-07 2009-03-24 Alfa Laval Tank Equipment A/S Cleaning equipment and use thereof
CN201521494U (zh) * 2009-09-11 2010-07-07 蔡瑞安 无叶片式节能抽水机

Similar Documents

Publication Publication Date Title
US5947678A (en) Water wheel with cylindrical blades
EP2133557B1 (en) Water wheel type power generator
CN107551341B (zh) 转动平稳的离心血泵
AU2011217078B2 (en) Improved pump
KR101822619B1 (ko) 선회류 방지장치를 구비한 원심펌프
AU552439B2 (en) Single stage high pressure centrifugal slurry pump
GB2205615A (en) A water powered motor
WO2021179098A1 (es) Bomba rotodinámica de flujo cónico-helicoidal
ES2343139T3 (es) Rotor para una turbo maquina y una turbo maquina.
US7246529B1 (en) Oscillating vane actuator apparatus and method for active flow control
CN208885512U (zh) 单叶片转子泵
WO2014194438A1 (es) Dispositivo convertidor de energia cinetica de mareas en electrica que posee una hidroturbina de flujo transversal capaz de direccionar los flujos captados de una manera optima redirigiendo y acelerandolos hacia un rodete interno de la h idroturbina y una planta generadora de electr1cidad que ocupa a dicho dispositivo.
ES2798948T3 (es) Turbina de aire para extraer energía de los dispositivos de columna de agua oscilante
AU2019203242A1 (en) Harnessing wave power
CN107878718B (zh) 一种基于压缩空气提供动力的水下航行器
CN106837853A (zh) 叶轮及使用该叶轮的泵机和流体输送装置
CN209083661U (zh) 一种可变叶宽的水泵用叶轮
ES2767181T3 (es) Disposición de palas de turbina
CN111980941A (zh) 离心风机和干衣机
KR101608489B1 (ko) 양방향 축류펌프
CN219654918U (zh) 一种输送腐蚀性及有毒气体专用鼓风机
JP2003155970A (ja) 水中発電装置
CN219587789U (zh) 一种微型流体泵
CN214499456U (zh) 一种防止多级离心泵卡涩的调节机构
CN209115338U (zh) 一种高温泵体的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924221

Country of ref document: EP

Kind code of ref document: A1