WO2021177802A2 - 무선전력 전송장치, 무선전력 전송방법, 무선전력 수신장치 및 무선전력 수신 방법 - Google Patents

무선전력 전송장치, 무선전력 전송방법, 무선전력 수신장치 및 무선전력 수신 방법 Download PDF

Info

Publication number
WO2021177802A2
WO2021177802A2 PCT/KR2021/002813 KR2021002813W WO2021177802A2 WO 2021177802 A2 WO2021177802 A2 WO 2021177802A2 KR 2021002813 W KR2021002813 W KR 2021002813W WO 2021177802 A2 WO2021177802 A2 WO 2021177802A2
Authority
WO
WIPO (PCT)
Prior art keywords
power
wireless power
packet
received
wireless
Prior art date
Application number
PCT/KR2021/002813
Other languages
English (en)
French (fr)
Other versions
WO2021177802A3 (ko
Inventor
박용철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/909,049 priority Critical patent/US20230108768A1/en
Priority to KR1020227030787A priority patent/KR20220152216A/ko
Priority to JP2022553573A priority patent/JP2023517045A/ja
Priority to CN202180026144.2A priority patent/CN115380451A/zh
Priority to EP21765179.3A priority patent/EP4117143A4/en
Publication of WO2021177802A2 publication Critical patent/WO2021177802A2/ko
Publication of WO2021177802A3 publication Critical patent/WO2021177802A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present specification relates to a wireless power transmitter, a wireless power receiver for receiving wireless power from the wireless power transmitter, and a wireless power transmission method and wireless power reception method using the wireless power receiver and the wireless power transmitter.
  • the wireless power transmission technology is a technology for wirelessly transferring power between a power source and an electronic device.
  • the wireless power transfer technology enables charging of the battery of a wireless terminal by simply placing a wireless terminal such as a smartphone or tablet on a wireless charging pad, so that it is more efficient than a wired charging environment using a conventional wired charging connector. It can provide excellent mobility, convenience and safety.
  • wireless power transmission technology is used in various fields such as electric vehicles, wearable devices such as Bluetooth earphones and 3D glasses, home appliances, furniture, underground facilities, buildings, medical devices, robots, and leisure. It is attracting attention as it will replace the existing wired power transmission environment.
  • the wireless power transmission method is also referred to as a contactless power transmission method, a no point of contact power transmission method, or a wireless charging method.
  • a wireless power transmission system includes a wireless power transmission device for supplying electrical energy in a wireless power transmission method, and wireless power reception for receiving electrical energy wirelessly supplied from the wireless power transmission device and supplying power to a power receiving device such as a battery cell. It may consist of a device.
  • Wireless power transmission technology includes a method of transmitting power through magnetic coupling, a method of transmitting power through radio frequency (RF), a method of transmitting power through microwaves, and ultrasound
  • the magnetic coupling-based method is again classified into a magnetic induction method and a magnetic resonance method.
  • the magnetic induction method is a method of transmitting energy using a current induced in the receiving coil due to the magnetic field generated by the transmitting coil battery cell according to electromagnetic coupling between the transmitting coil and the receiving coil.
  • the magnetic resonance method is similar to the magnetic induction method in that it uses a magnetic field. However, in the magnetic resonance method, resonance occurs when a specific resonant frequency is applied to the coil of the transmitting side and the coil of the receiving side. It is different from magnetic induction.
  • An object of the present specification is to provide a wireless power transmission device, a wireless power transmission method, a wireless power reception device, a wireless power reception method, and a wireless charging system for performing power correction for detecting foreign substances during power transmission.
  • a wireless power transmitter for solving the above problems transmits wireless power to a wireless power receiver, and a power conversion circuit for transmitting the wireless power to the wireless power receiver, and the wireless power Communicate with a receiver to control the wireless power, receive information on received power values for two or more correction points for power correction from the wireless power receiver, and detect foreign substances based on the information on the received power values and a communication/control circuit constituting a power correction curve for RP), and transmits, to the wireless power receiver, a response pattern (ATN) requesting communication authority in response to the received power packet, and data requesting transmission of a data packet from the wireless power receiver Receives a Stream Response Packet (DSR), and transmits the data packet requesting initiation of a power correction protocol for updating the power correction curve in response to the DSR.
  • ATN response pattern
  • DSR Stream Response Packet
  • a wireless power transmission method for solving the above problem is a wireless power transmission method by a wireless power transmission device for transmitting wireless power to a wireless power reception device, and power correction from the wireless power reception device Receives information on the received power value for two or more correction points for, configures a power correction curve for detecting foreign substances based on the information on the received power value, and from the wireless power receiver, the wireless power Receives a reception power packet (RP) including information on reception power received by the reception device, and transmits a response pattern (ATN) requesting communication authority in response to the reception power packet to the wireless power reception device and receiving a data stream response packet (DSR) requesting transmission of a data packet from the wireless power receiver, and requesting initiation of a power compensation protocol for updating the power compensation curve in response to the DSR.
  • RP reception power packet
  • ATN response pattern
  • DSR data stream response packet
  • a wireless power receiver for solving the above problems, a power pickup circuit that receives wireless power from a wireless power transmitter, and receives the wireless power from the wireless power transmitter, and the wireless power and a communication/control circuit for communicating with a transmitting device and controlling the wireless power, wherein the communication/control circuit is the wireless power transmitting device and includes information about the received power received by the wireless power receiving device.
  • a power packet RP
  • ATN response pattern
  • DSR data stream response packet
  • a wireless power receiving method for solving the above problems is a wireless power receiving method by a wireless power receiving device for receiving wireless power from a wireless power transmitting device, the wireless power transmitting device comprising: A response pattern (ATN) for transmitting a reception power packet (RP) including information on the received power received by the wireless power receiver and requesting communication authority in response to the received power packet from the wireless power transmitter and transmits, to the wireless power transmitter, a data stream response packet (DSR) requesting transmission of a data packet in response to the ATN, and detects foreign substances from the wireless power transmitter in response to the DSR receiving the data packet requesting initiation of a power correction protocol for updating a power correction curve for The received power packet (RP/2) is transmitted, or the first received power packet (RP/1) including information on the received power value for the first correction point is transmitted.
  • ATN A response pattern
  • RP reception power packet
  • DSR data stream response packet
  • the power correction curve for detecting foreign substances may be updated according to the need of the wireless power transmitter.
  • FIG. 1 is a block diagram of a wireless power system according to an embodiment.
  • FIG. 2 is a block diagram of a wireless power system according to another embodiment.
  • 3A illustrates an embodiment of various electronic devices to which a wireless power transmission system is introduced.
  • 3B shows an example of WPC NDEF in a wireless power transmission system.
  • 4A is a block diagram of a wireless power transmission system according to another embodiment.
  • 4B is a block diagram illustrating a wireless power transmission system using BLE communication according to an example.
  • 4C is a block diagram illustrating a wireless power transmission system using BLE communication according to another example.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure.
  • FIG. 6 illustrates a power control control method according to an embodiment.
  • FIG. 7 is a block diagram of an apparatus for transmitting power wirelessly according to another embodiment.
  • FIG 8 shows an apparatus for receiving wireless power according to another embodiment.
  • 9 is a flowchart illustrating a method for correcting double-point power.
  • FIG. 10 is a graph showing an example of a power correction curve by a double-point power correction method.
  • FIG. 11 is a diagram illustrating a format of a message field of a received power packet according to an example.
  • FIG. 12 is a diagram illustrating a format of a message field of a received power packet according to another example.
  • FIG. 13 is a flowchart illustrating a power correction protocol for configuring an extended power correction curve according to an embodiment.
  • FIG. 14 is a diagram illustrating a format of a message field of a power correction request packet according to an embodiment.
  • 15 is a diagram illustrating a format of a message field of a power correction request packet according to another embodiment.
  • 16 is a diagram illustrating an example of an extended power calibration curve constructed through an extended power calibration protocol.
  • 17 is a flowchart illustrating a power calibration protocol for configuring a power recalibration curve according to an embodiment.
  • FIG. 18 is a diagram illustrating an example of a new power calibration curve constructed through a power recalibration protocol.
  • a or B (A or B) may mean “only A”, “only B”, or “both A and B”.
  • a or B (A or B)” in the present specification may be interpreted as “A and/or B (A and/or B)”.
  • A, B or C(A, B or C) herein means “only A”, “only B”, “only C”, or “any and any combination of A, B and C ( any combination of A, B and C)”.
  • a slash (/) or a comma (comma) may mean “and/or”.
  • A/B may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”.
  • A, B, C may mean “A, B, or C”.
  • At least one of A and B may mean “only A”, “only B” or “both A and B”. Also, in the present specification, the expression “at least one of A or B” or “at least one of A and/or B” means “at least one of A and/or B”. It can be interpreted the same as "A and B (at least one of A and B)”.
  • At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C” any combination of A, B and C”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means can mean “at least one of A, B and C”.
  • parentheses used herein may mean “for example”.
  • PDCCH control information
  • PDCCH control information
  • parentheses used herein may mean “for example”.
  • PDCCH control information
  • wireless power refers to any form of electric field, magnetic field, electromagnetic field, etc. transmitted from a wireless power transmitter to a wireless power receiver without the use of physical electromagnetic conductors. It is used to mean the energy of Wireless power may also be called a wireless power signal, and may refer to an oscillating magnetic flux enclosed by a primary coil and a secondary coil. Power conversion in a system is described herein for wirelessly charging devices including, for example, mobile phones, cordless phones, iPods, MP3 players, headsets, and the like.
  • the basic principle of wireless power transmission is, for example, a method of transmitting power through magnetic coupling, a method of transmitting power through a radio frequency (RF), microwave (microwave) ) includes both a method of transmitting power through an ultrasonic wave and a method of transmitting power through an ultrasonic wave.
  • RF radio frequency
  • microwave microwave
  • FIG. 1 is a block diagram of a wireless power system 10 according to an embodiment.
  • a wireless power system 10 includes a wireless power transmitter 100 and a wireless power receiver 200 .
  • the wireless power transmitter 100 receives power from an external power source S to generate a magnetic field.
  • the wireless power receiving apparatus 200 receives power wirelessly by generating a current using the generated magnetic field.
  • the wireless power transmitter 100 and the wireless power receiver 200 may transmit/receive various information required for wireless power transmission.
  • the communication between the wireless power transmitter 100 and the wireless power receiver 200 is in-band communication using a magnetic field used for wireless power transmission or out-band communication using a separate communication carrier.
  • (out-band communication) may be performed according to any one method.
  • Out-band communication may be referred to as out-of-band communication.
  • the terms are unified and described as out-band communication. Examples of out-band communication may include NFC, Bluetooth (bluetooth), BLE (bluetooth low energy), and the like.
  • the wireless power transmitter 100 may be provided as a fixed type or a mobile type.
  • the fixed type include embedded in furniture such as ceilings, walls, or tables indoors, implanted in outdoor parking lots, bus stops, subway stations, etc., or installed in vehicles or trains, etc. There is this.
  • the portable wireless power transmission device 100 may be implemented as a part of another device, such as a portable device having a movable weight or size, or a cover of a notebook computer.
  • the wireless power receiver 200 should be interpreted as a comprehensive concept including various electronic devices including batteries and various home appliances that are driven by receiving power wirelessly instead of a power cable.
  • Representative examples of the wireless power receiver 200 include a mobile terminal, a cellular phone, a smart phone, a personal digital assistant (PDA), and a portable media player (PMP: Portable Media Player), Wibro terminals, tablets, phablets, notebooks, digital cameras, navigation terminals, televisions, electric vehicles (EVs), and the like.
  • FIG. 2 is a block diagram of a wireless power system 10 according to another embodiment.
  • one wireless power transmitter 100 and the wireless power receiver 200 exchange power on a one-to-one basis, but as shown in FIG. 2 , one wireless power transmitter 100 includes a plurality of wireless power receivers. It is also possible to transfer power to (200-1, 200-2,..., 200-M). In particular, in the case of performing wireless power transmission in a magnetic resonance method, one wireless power transmission device 100 applies a simultaneous transmission method or a time division transmission method to a plurality of wireless power reception devices 200-1, 200-2, ...,200-M) can deliver power.
  • FIG. 1 shows a state in which the wireless power transmitter 100 directly transmits power to the wireless power receiver 200
  • the wireless power transmitter 100 and the wireless power receiver 200 are connected wirelessly.
  • a separate wireless power transmission/reception device such as a relay or repeater for increasing the power transmission distance may be provided.
  • power may be transferred from the wireless power transmitter 100 to the wireless power transceiver, and the wireless power transceiver may again transmit power to the wireless power receiver 200 .
  • the wireless power receiver, the power receiver, and the receiver referred to in this specification refer to the wireless power receiving apparatus 200 .
  • the wireless power transmitter, the power transmitter, and the transmitter referred to in this specification refer to the wireless power receiving and transmitting apparatus 100 .
  • 3A illustrates an embodiment of various electronic devices to which a wireless power transmission system is introduced.
  • FIG. 3A shows electronic devices classified according to the amount of power transmitted and received in the wireless power transmission system.
  • wearable devices such as a smart watch, a smart glass, a head mounted display (HMD), and a smart ring and an earphone, a remote control, a smart phone, a PDA, a tablet
  • a low-power (about 5W or less or about 20W or less) wireless charging method may be applied to mobile electronic devices (or portable electronic devices) such as a PC.
  • Medium/small power (about 50W or less or about 200W or less) wireless charging method may be applied to small and medium-sized home appliances such as laptop computers, robot cleaners, TVs, sound devices, vacuum cleaners, and monitors.
  • Kitchen appliances such as blenders, microwave ovens, and electric rice cookers, personal mobility devices (or electronic devices/mobilities) such as wheelchairs, electric kickboards, electric bicycles, and electric vehicles, use high power (about 2 kW or less or 22 kW or less)
  • a wireless charging method may be applied.
  • the electronic devices/mobile means described above may each include a wireless power receiver to be described later. Accordingly, the above-described electronic devices/mobile means may be charged by wirelessly receiving power from the wireless power transmitter.
  • Standards for wireless power transmission include a wireless power consortium (WPC), an air fuel alliance (AFA), and a power matters alliance (PMA).
  • WPC wireless power consortium
  • AFA air fuel alliance
  • PMA power matters alliance
  • the WPC standard defines a baseline power profile (BPP) and an extended power profile (EPP).
  • BPP relates to a wireless power transmitter and receiver supporting 5W power transmission
  • EPP relates to a wireless power transmitter and receiver supporting power transmission in a range greater than 5W and less than 30W.
  • the WPC classifies a wireless power transmitter and a receiver into power class (PC) -1, PC0, PC1, and PC2, and provides standard documents for each PC.
  • PC power class
  • the PC-1 standard relates to a wireless power transmitter and receiver that provide guaranteed power of less than 5W.
  • Applications of PC-1 include wearable devices such as smart watches.
  • the PC0 standard relates to a wireless power transmitter and receiver that provide a guaranteed power of 5W.
  • the PC0 standard includes EPP with guaranteed power up to 30W.
  • in-band (IB) communication is a mandatory communication protocol of PC0
  • out-band (OB) communication used as an optional backup channel may also be used.
  • the wireless power receiver may identify whether OB is supported by setting an OB flag in a configuration packet.
  • the wireless power transmitter supporting the OB may enter the OB handover phase by transmitting a bit-pattern for OB handover as a response to the configuration packet.
  • the response to the configuration packet may be NAK, ND, or a newly defined 8-bit pattern.
  • Applications of PC0 include smartphones.
  • the PC1 standard relates to a wireless power transmitter and receiver that provide guaranteed power of 30W to 150W.
  • the OB is an essential communication channel for PC1, and the IB is used as initialization and link establishment to the OB.
  • the wireless power transmitter may enter the OB handover phase by using a bit pattern for OB handover.
  • Applications of PC1 include laptops and power tools.
  • the PC2 standard relates to a wireless power transmitter and receiver that provide guaranteed power of 200W to 2kW, and its applications include kitchen appliances.
  • PCs may be distinguished according to power levels, and whether to support the same compatibility between PCs may be optional or mandatory.
  • compatibility between identical PCs means that power transmission and reception are possible between identical PCs.
  • compatibility between different PCs may also be supported.
  • compatibility between different PCs means that power transmission/reception is possible even between different PCs.
  • the wireless power transmitter having PC x can charge the wireless power receiver having PC y, it can be seen that compatibility between different PCs is maintained.
  • a wireless power receiver of the lap-top charging method that can stably charge only when power is continuously transmitted is called a wireless power transmitter of the same PC. Even so, there may be a problem in stably receiving power from the wireless power transmitter of the electric tool type that transmits power discontinuously.
  • the wireless power receiver may There is a risk of breakage. As a result, it is difficult for a PC to be an index/standard representing/indicating compatibility.
  • Wireless power transmission and reception devices may provide a very convenient user experience and interface (UX/UI). That is, a smart wireless charging service may be provided.
  • the smart wireless charging service may be implemented based on the UX/UI of a smartphone including a wireless power transmitter. For these applications, the interface between the smartphone's processor and the wireless charging receiver allows "drop and play" bidirectional communication between the wireless power transmitter and the receiver.
  • a 'profile' will be newly defined as an index/standard representing/indicating compatibility. That is, it can be interpreted that compatibility is maintained between wireless power transceivers having the same 'profile' and stable power transmission and reception is possible, and power transmission/reception is impossible between wireless power transceivers having different 'profiles'.
  • Profiles may be defined according to application and/or compatibility independent of (or independently of) power class.
  • the profile can be broadly divided into three categories: i) mobile and computing, ii) power tools, and iii) kitchen.
  • the profile can be largely divided into i) mobile, ii) electric tool, iii) kitchen, and iv) wearable.
  • PC may be defined as PC0 and/or PC1
  • communication protocol/method is IB and OB
  • operating frequency is 87 ⁇ 205kHz
  • examples of applications include smartphones, laptops, etc.
  • the PC may be defined as PC1
  • the communication protocol/method may be IB
  • the operating frequency may be defined as 87 to 145 kHz
  • an electric tool may exist as an example of the application.
  • PC may be defined as PC2
  • communication protocol/method is NFC-based
  • operating frequency is less than 100 kHz
  • examples of applications include kitchen/home appliances.
  • NFC communication can be used between the wireless power transmitter and receiver.
  • WPC NDEF NFC Data Exchange Profile Format
  • the wireless power transmitter and the receiver can confirm that they are NFC devices.
  • 3B shows an example of WPC NDEF in a wireless power transmission system.
  • the WPC NDEF is, for example, an application profile field (eg 1B), a version field (eg 1B), and profile specific data (eg 1B).
  • the application profile field indicates whether the device is i) mobile and computing, ii) powered tools, and iii) kitchen, the upper nibble of the version field indicates the major version and the lower nibble (lower nibble) indicates a minor version.
  • Profile-specific data also defines the content for the kitchen.
  • the PC may be defined as PC-1
  • the communication protocol/method may be IB
  • the operating frequency may be defined as 87 to 205 kHz
  • examples of the application may include a wearable device worn on the user's body.
  • Maintaining compatibility between the same profiles may be essential, and maintaining compatibility between different profiles may be optional.
  • profiles may be generalized and expressed as first to nth profiles, and new profiles may be added/replaced according to WPC standards and embodiments.
  • the wireless power transmitter selectively transmits power only to the wireless power receiver having the same profile as itself, thereby enabling more stable power transmission.
  • the burden on the wireless power transmitter is reduced and power transmission to an incompatible wireless power receiver is not attempted, the risk of damage to the wireless power receiver is reduced.
  • PC1 in the 'mobile' profile can be defined by borrowing optional extensions such as OB based on PC0, and in the case of the 'powered tools' profile, the PC1 'mobile' profile can be defined simply as a modified version.
  • OB optional extensions
  • the wireless power transmitter or the wireless power receiver may inform the other party of its profile through various methods.
  • the AFA standard refers to a wireless power transmitter as a power transmitting circuit (PTU), and a wireless power receiver as a power receiving circuit (PRU), and the PTU is classified into a number of classes as shown in Table 1, and the PRU is classified into a number of categories.
  • PTU power transmitting circuit
  • PRU power receiving circuit
  • the maximum output power capability of the class n PTU is greater than or equal to the P TX_IN_MAX value of the corresponding class.
  • the PRU cannot draw power greater than the power specified in that category.
  • 4A is a block diagram of a wireless power transmission system according to another embodiment.
  • the wireless power transmission system 10 includes a mobile device 450 wirelessly receiving power and a base station 400 wirelessly transmitting power.
  • the base station 400 is a device that provides inductive power or resonant power, and may include at least one wireless power transmitter 100 and a system circuit 405 .
  • the wireless power transmitter 100 may transmit inductive power or resonant power and control the transmission.
  • the wireless power transmitter 100 transmits power to an appropriate level and a power conversion circuit 110 that converts electrical energy into a power signal by generating a magnetic field through a primary coil (s)
  • a communication/control circuit 120 for controlling communication and power transfer with the wireless power receiver 200 may be included.
  • the system circuit 405 may perform input power provisioning, control of a plurality of wireless power transmitters, and other operation control of the base station 400 such as user interface control.
  • the primary coil may generate an electromagnetic field using AC power (or voltage or current).
  • the primary coil may receive AC power (or voltage or current) of a specific frequency output from the power conversion circuit 110 and may generate a magnetic field of a specific frequency accordingly.
  • the magnetic field may be generated non-radiatively or radially, and the wireless power receiving apparatus 200 receives it and generates a current. In other words, the primary coil transmits power wirelessly.
  • the primary coil and the secondary coil may have any suitable shape, for example, a copper wire wound around a high permeability formation such as ferrite or amorphous metal.
  • the primary coil may be referred to as a transmitting coil, a primary core, a primary winding, a primary loop antenna, or the like.
  • the secondary coil may be called a receiving coil, a secondary core, a secondary winding, a secondary loop antenna, a pickup antenna, etc. .
  • the primary coil and the secondary coil may be provided in the form of a primary resonance antenna and a secondary resonance antenna, respectively.
  • the resonant antenna may have a resonant structure including a coil and a capacitor.
  • the resonant frequency of the resonant antenna is determined by the inductance of the coil and the capacitance of the capacitor.
  • the coil may be formed in the form of a loop.
  • a core may be disposed inside the loop.
  • the core may include a physical core such as a ferrite core or an air core.
  • the resonance phenomenon refers to a phenomenon in which, when a near field corresponding to a resonant frequency occurs in one resonant antenna, when other resonant antennas are located around, the two resonant antennas are coupled to each other and high efficiency energy transfer occurs between the resonant antennas. .
  • a magnetic field corresponding to the resonant frequency is generated between the primary resonant antenna and the secondary resonant antenna, a phenomenon occurs in which the primary resonant antenna and the secondary resonant antenna resonate with each other.
  • the magnetic field is focused toward the secondary resonant antenna with higher efficiency compared to the case of radiation into this free space, and thus energy can be transferred from the primary resonant antenna to the secondary resonant antenna with high efficiency.
  • the magnetic induction method may be implemented similarly to the magnetic resonance method, but in this case, the frequency of the magnetic field does not need to be the resonant frequency. Instead, in the magnetic induction method, matching between the loops constituting the primary coil and the secondary coil is required, and the distance between the loops must be very close.
  • the wireless power transmitter 100 may further include a communication antenna.
  • the communication antenna may transmit and receive communication signals using a communication carrier other than magnetic field communication.
  • the communication antenna may transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 120 may transmit/receive information to and from the wireless power receiver 200 .
  • the communication/control circuit 120 may include at least one of an IB communication module and an OB communication module.
  • the IB communication module may transmit/receive information using a magnetic wave having a specific frequency as a center frequency.
  • the communication/control circuit 120 performs in-band communication by loading communication information on the operating frequency of wireless power transmission and transmitting it through the primary coil or by receiving the operating frequency containing the information through the primary coil. can do.
  • modulation schemes such as binary phase shift keying (BPSK), frequency shift keying (FSK) or amplitude shift keying (ASK) and Manchester coding or non-zero return level (NZR) -L: non-return-to-zero level
  • BPSK binary phase shift keying
  • FSK frequency shift keying
  • ASK amplitude shift keying
  • NZR non-zero return level
  • the communication/control circuit 120 may transmit/receive information up to a distance of several meters at a data rate of several kbps.
  • the OB communication module may perform out-band communication through a communication antenna.
  • the communication/control circuit 120 may be provided as a short-range communication module.
  • Examples of the short-range communication module include communication modules such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 120 may control the overall operation of the wireless power transmitter 100 .
  • the communication/control circuit 120 may perform calculation and processing of various types of information, and may control each component of the wireless power transmitter 100 .
  • the communication/control circuit 120 may be implemented in a computer or a similar device using hardware, software, or a combination thereof.
  • the communication/control circuit 120 may be provided in the form of an electronic circuit that processes electrical signals to perform a control function, and in software, in the form of a program that drives the communication/control circuit 120 in hardware. may be provided.
  • the communication/control circuit 120 may control the transmit power by controlling an operating point.
  • the operating point to be controlled may correspond to a combination of frequency (or phase), duty cycle, duty ratio, and voltage amplitude.
  • the communication/control circuit 120 may control the transmission power by adjusting at least one of a frequency (or phase), a duty cycle, a duty ratio, and a voltage amplitude.
  • the wireless power transmitter 100 may supply constant power
  • the wireless power receiver 200 may control the received power by controlling the resonance frequency.
  • the mobile device 450 receives and stores the power received from the wireless power receiver 200 and the wireless power receiver 200 that receives wireless power through a secondary coil, and supplies it to the device. Including a load (load, 455) to.
  • the wireless power receiver 200 may include a power pick-up circuit 210 and a communication/control circuit 220 .
  • the power pickup circuit 210 may receive wireless power through the secondary coil and convert it into electrical energy.
  • the power pickup circuit 210 rectifies the AC signal obtained through the secondary coil and converts it into a DC signal.
  • the communication/control circuit 220 may control transmission and reception of wireless power (transmission and reception of power).
  • the secondary coil may receive wireless power transmitted from the wireless power transmitter 100 .
  • the secondary coil may receive power using a magnetic field generated in the primary coil.
  • the specific frequency is the resonance frequency
  • a magnetic resonance phenomenon occurs between the primary coil and the secondary coil, so that power can be more efficiently transmitted.
  • the communication/control circuit 220 may further include a communication antenna.
  • the communication antenna may transmit and receive communication signals using a communication carrier other than magnetic field communication.
  • the communication antenna may transmit/receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 220 may transmit/receive information to and from the wireless power transmitter 100 .
  • the communication/control circuit 220 may include at least one of an IB communication module and an OB communication module.
  • the IB communication module may transmit/receive information using a magnetic wave having a specific frequency as a center frequency.
  • the communication/control circuit 220 may perform IB communication by loading information on a magnetic wave and transmitting it through a secondary coil or by receiving a magnetic wave containing information through a secondary coil.
  • modulation schemes such as binary phase shift keying (BPSK), frequency shift keying (FSK) or amplitude shift keying (ASK) and Manchester coding or non-zero return level (NZR) -L: non-return-to-zero level
  • BPSK binary phase shift keying
  • FSK frequency shift keying
  • ASK amplitude shift keying
  • NZR non-zero return level
  • the communication/control circuit 220 may transmit/receive information up to a distance of several meters at a data rate of several kbps.
  • the OB communication module may perform out-band communication through a communication antenna.
  • the communication/control circuit 220 may be provided as a short-range communication module.
  • Examples of the short-range communication module include communication modules such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 220 may control the overall operation of the wireless power receiver 200 .
  • the communication/control circuit 220 may perform calculation and processing of various types of information, and may control each component of the wireless power receiver 200 .
  • the communication/control circuit 220 may be implemented as a computer or a similar device using hardware, software, or a combination thereof.
  • the communication/control circuit 220 may be provided in the form of an electronic circuit that processes electrical signals to perform a control function, and in software, in the form of a program for driving the communication/control circuit 220 in hardware. may be provided.
  • the load 455 may be a battery.
  • the battery may store energy using power output from the power pickup circuit 210 .
  • the battery is not necessarily included in the mobile device 450 .
  • the battery may be provided as a detachable external configuration.
  • the wireless power receiving apparatus 200 may include a driving means for driving various operations of the electronic device instead of a battery.
  • the mobile device 450 is shown to include the wireless power receiver 200 and the base station 400 is shown to include the wireless power transmitter 100, in a broad sense, the wireless power receiver ( 200 may be identified with the mobile device 450 , and the wireless power transmitter 100 may be identified with the base station 400 .
  • wireless power transmission including the communication/control circuit 120 may be represented by a simplified block diagram as shown in FIG. 4C .
  • 4B is a block diagram illustrating a wireless power transmission system using BLE communication according to an example.
  • the wireless power transmitter 100 includes a power conversion circuit 110 and a communication/control circuit 120 .
  • the communication/control circuit 120 includes an in-band communication module 121 and a BLE communication module 122 .
  • the wireless power receiver 200 includes a power pickup circuit 210 and a communication/control circuit 220 .
  • the communication/control circuit 220 includes an in-band communication module 221 and a BLE communication module 222 .
  • the BLE communication modules 122 , 222 perform the architecture and operation according to FIG. 4B .
  • the BLE communication modules 122 and 222 may be used to establish a connection between the wireless power transmitter 100 and the wireless power receiver 200, and to exchange control information and packets necessary for wireless power transmission. have.
  • the communication/control circuit 120 may be configured to operate a profile for wireless charging.
  • the profile for wireless charging may be GATT using BLE transmission.
  • 4C is a block diagram illustrating a wireless power transmission system using BLE communication according to another example.
  • the communication/control circuits 120 and 220 include only the in-band communication modules 121 and 221, respectively, and the BLE communication modules 122 and 222 include the communication/control circuits 120, 220) and a form separately provided is also possible.
  • a coil or a coil unit may be referred to as a coil assembly, a coil cell, or a cell including a coil and at least one element adjacent to the coil.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure.
  • the power transmission from the wireless power transmitter to the receiver is largely a selection phase (selection phase, 510), a ping phase (ping phase, 520), identification and configuration phase (identification) and configuration phase 530), a negotiation phase 540, a calibration phase 550, a power transfer phase 560, and a renegotiation phase 570.
  • the selection step 510 transitions when a specific error or a specific event is detected while initiating or maintaining the power transmission - including, for example, reference numerals S502, S504, S508, S510 and S512.
  • the wireless power transmitter may monitor whether an object is present on the interface surface. If the wireless power transmitter detects that an object is placed on the interface surface, the process may shift to the ping step 520 .
  • the wireless power transmitter transmits an analog ping signal that is a power signal (or pulse) corresponding to a very short duration, and the current of the transmitting coil or the primary coil Based on the change, it is possible to detect whether an object is present in an active area of the interface surface.
  • the wireless power transmitter may measure a quality factor of a wireless power resonance circuit (eg, a power transmission coil and/or a resonance capacitor).
  • a quality factor may be measured to determine whether the wireless power receiver is placed in the charging area together with the foreign material.
  • an inductance and/or a series resistance component in the coil may be reduced due to an environmental change, thereby reducing a quality factor value.
  • the wireless power transmitter may receive a pre-measured reference quality factor value from the wireless power receiver in a state where the foreign material is not disposed in the charging area.
  • the presence of foreign substances may be determined by comparing the reference quality factor value received in the negotiation step 540 with the measured quality factor value.
  • a specific wireless power receiver may have a low reference quality factor value depending on the type, use, and characteristics of the wireless power receiver - and foreign matter is present. In this case, since there is no significant difference between the measured quality factor value and the reference quality factor value, it may be difficult to determine the presence of foreign substances. Therefore, it is necessary to further consider other determining factors or to determine the presence of foreign substances using other methods.
  • a quality factor value may be measured in a specific frequency domain (eg operating frequency domain) in order to determine whether the object is disposed with the foreign material in the charging area.
  • a specific frequency domain eg operating frequency domain
  • the inductance and/or the series resistance component in the coil may be reduced by environmental changes, and thus the resonant frequency of the coil of the wireless power transmitter may be changed (shifted). That is, the quality factor peak frequency, which is the frequency at which the maximum quality factor value within the operating frequency band is measured, may be moved.
  • the wireless power transmitter wakes up the receiver and transmits a digital ping for identifying whether the detected object is a wireless power receiver. If the wireless power transmitter does not receive a response signal to the digital ping (eg, a signal strength packet) from the receiver in the ping step 520 , the wireless power transmitter may transition back to the selection step 510 . In addition, when the wireless power transmitter receives a signal indicating that power transmission is completed from the receiver in the ping step 520 , that is, a charging complete packet, it may transition to the selection step 510 .
  • a signal indicating that power transmission is completed from the receiver in the ping step 520 that is, a charging complete packet
  • the wireless power transmitter may transition to the identification and configuration step 530 for identifying the receiver and collecting receiver configuration and state information.
  • the wireless power transmitter receives an undesired packet (unexpected packet), or a desired packet is not received for a predefined time (time out), or there is a packet transmission error (transmission error), If a power transfer contract is not established (no power transfer contract), a transition may be made to the selection step 510 .
  • the wireless power transmitter may determine whether it is necessary to enter the negotiation step 540 based on the negotiation field value of the configuration packet received in the identification and configuration step 530 . As a result of the check, if negotiation is necessary, the wireless power transmitter may enter a negotiation step 540 to perform a predetermined FOD detection procedure. On the other hand, as a result of the check, if negotiation is not required, the wireless power transmitter may directly enter the power transmission step 560 .
  • the wireless power transmitter may receive a Foreign Object Detection (FOD) status packet including a reference quality factor value.
  • FOD status packet including the reference peak frequency value may be received.
  • a status packet including a reference quality factor value and a reference peak frequency value may be received.
  • the wireless power transmitter may determine a quality factor threshold for FO detection based on the reference quality factor value.
  • the wireless power transmitter may determine a peak frequency threshold for FO detection based on a reference peak frequency value.
  • the wireless power transmitter can detect whether FO is present in the charging area using the determined quality factor threshold for FO detection and the currently measured quality factor value (quality factor value measured before the ping step), Power transmission can be controlled accordingly. For example, when the FO is detected, power transmission may be stopped, but is not limited thereto.
  • the wireless power transmitter can detect whether FO is present in the charging area using the determined peak frequency threshold for FO detection and the currently measured peak frequency value (the peak frequency value measured before the ping step), and the FO detection result is Power transmission can be controlled accordingly. For example, when the FO is detected, power transmission may be stopped, but is not limited thereto.
  • the wireless power transmitter may return to the selection step 510 .
  • the wireless power transmitter may enter the power transfer step 560 through the correction step 550 .
  • the wireless power transmitter determines the strength of power received at the receiving end in the correction step 550, and the receiving end and the receiving end to determine the intensity of power transmitted from the transmitting end. Power loss at the transmitter can be measured. That is, the wireless power transmitter may predict power loss based on the difference between the transmit power of the transmitter and the receive power of the receiver in the correction step 550 .
  • the wireless power transmitter may correct the threshold for FOD detection by reflecting the predicted power loss.
  • the wireless power transmitter receives an unwanted packet (unexpected packet), a desired packet is not received for a predefined time (time out), or a violation of a preset power transmission contract occurs Otherwise (power transfer contract violation) or when charging is completed, the process may shift to the selection step 510 .
  • the wireless power transmitter may transition to the renegotiation step 570 when it is necessary to reconfigure the power transmission contract according to a change in the state of the wireless power transmitter. At this time, when the renegotiation is normally completed, the wireless power transmitter may return to the power transmission step 560 .
  • the identifying and configuring step 530 may also be referred to as a configuration step.
  • the calibration step 550 may be integrated into the power transmission step 560. In this case, in the calibration step 550, Operations may be performed in a power transfer step 560 .
  • the power transmission contract may be established based on the state and characteristic information of the wireless power transmitter and the receiver.
  • the wireless power transmitter state information may include information on the maximum transmittable power amount, information on the maximum acceptable number of receivers, and the like
  • the receiver state information may include information on required power and the like.
  • FIG. 6 illustrates a power control control method according to an embodiment.
  • the wireless power transmitter 100 and the wireless power receiver 200 may control the amount of transmitted power by performing communication together with power transmission/reception.
  • the wireless power transmitter and the wireless power receiver operate at a specific control point.
  • the control point represents a combination of voltage and current provided from an output of the wireless power receiver when power transfer is performed.
  • the wireless power receiver selects a desired control point - a desired output current/voltage, a temperature at a specific location of the mobile device, and additionally an actual control point currently operating. ) to determine
  • the wireless power receiver may calculate a control error value using a desired control point and an actual control point, and transmit it to the wireless power transmitter as a control error packet.
  • the wireless power transmitter may control power transfer by setting/controlling a new operating point - amplitude, frequency, and duty cycle - using the received control error packet. Therefore, the control error packet is transmitted/received at regular time intervals in the strategy delivery step, and as an embodiment, the wireless power receiver sets the control error value to a negative number when trying to reduce the current of the wireless power transmitter, and a control error when trying to increase the current. It can be sent by setting the value to a positive number. As described above, in the induction mode, the wireless power receiver can control power transfer by transmitting a control error packet to the wireless power transmitter.
  • the resonance mode which will be described below, may operate in a different manner from that in the induction mode.
  • one wireless power transmitter In the resonance mode, one wireless power transmitter must be able to simultaneously serve a plurality of wireless power receivers.
  • the wireless power transmitter transmits basic power in common, and the wireless power receiver attempts to control the amount of power received by controlling its own resonance frequency.
  • the method described with reference to FIG. 6 is not completely excluded even in the resonance mode operation, and additional transmission power control may be performed by the method of FIG. 6 .
  • the 7 is a block diagram of an apparatus for transmitting power wirelessly according to another embodiment. This may belong to a wireless power transmission system of a magnetic resonance method or a shared mode.
  • the shared mode may refer to a mode in which one-to-many communication and charging are performed between the wireless power transmitter and the wireless power receiver.
  • the shared mode may be implemented in a magnetic induction method or a resonance method.
  • the wireless power transmitter 700 includes a cover 720 covering the coil assembly, a power adapter 730 for supplying power to the power transmitter 740 , a power transmitter 740 for wirelessly transmitting power, or at least one of a user interface 750 providing power transfer progress and other related information.
  • the user interface 750 may be optionally included or may be included as another user interface 750 of the wireless power transmitter 700 .
  • the power transmitter 740 may include at least one of a coil assembly 760 , an impedance matching circuit 770 , an inverter 780 , a communication circuit 790 , and a control circuit 710 .
  • the coil assembly 760 includes at least one primary coil that generates a magnetic field, and may be referred to as a coil cell.
  • the impedance matching circuit 770 may provide impedance matching between the inverter and the primary coil(s).
  • the impedance matching circuit 770 may generate a resonance at a suitable frequency to boost the primary coil current.
  • the impedance matching circuitry in the multi-coil power transmitter 740 may further include a multiplexer that routes the signal from the inverter to a subset of the primary coils.
  • the impedance matching circuit may be referred to as a tank circuit.
  • the impedance matching circuit 770 may include a capacitor, an inductor, and a switching element for switching a connection thereof. Impedance matching detects a reflected wave of wireless power transmitted through the coil assembly 760, and switches a switching element based on the detected reflected wave to adjust the connection state of the capacitor or inductor, adjust the capacitance of the capacitor, or adjust the inductance of the inductor This can be done by adjusting.
  • the impedance matching circuit 770 may be omitted, and the present specification also includes an embodiment of the wireless power transmitter 700 in which the impedance matching circuit 770 is omitted.
  • Inverter 780 may convert a DC input to an AC signal. Inverter 780 may be driven half-bridge or full-bridge to generate pulse waves of adjustable frequency and duty cycle. The inverter may also include a plurality of stages to adjust the input voltage level.
  • the communication circuit 790 may communicate with the power receiver.
  • the power receiver performs load modulation to communicate requests and information to the power transmitter.
  • the power transmitter 740 may monitor the amplitude and/or phase of the current and/or voltage of the primary coil to demodulate the data transmitted by the power receiver using the communication circuit 790 .
  • the power transmitter 740 may control the output power to transmit data using a frequency shift keying (FSK) method or the like through the communication circuit 790 .
  • FSK frequency shift keying
  • the control circuit 710 may control communication and power transmission of the power transmitter 740 .
  • the control circuit 710 may control power transmission by adjusting the above-described operating point.
  • the operating point may be determined by, for example, at least one of an operating frequency, a duty cycle, and an input voltage.
  • the communication circuit 790 and the control circuit 710 may be provided as separate circuits/devices/chipsets or as one circuit/device/chipsets.
  • FIG. 8 shows an apparatus for receiving wireless power according to another embodiment. This may belong to a wireless power transmission system of a magnetic resonance method or a shared mode.
  • a wireless power receiving device 800 includes a user interface 820 that provides power transfer progress and other related information, a power receiver 830 that receives wireless power, a load circuit 840 or a coil assembly. It may include at least one of the base 850 to support and cover. In particular, the user interface 820 may be optionally included or may be included as another user interface 82 of the power receiving equipment.
  • the power receiver 830 may include at least one of a power converter 860 , an impedance matching circuit 870 , a coil assembly 880 , a communication circuit 890 , and a control circuit 810 .
  • the power converter 860 may convert AC power received from the secondary coil into a voltage and current suitable for the load circuit.
  • the power converter 860 may include a rectifier.
  • the rectifier may rectify the received wireless power and convert it from AC to DC.
  • a rectifier may convert alternating current to direct current using a diode or a transistor, and smooth it using a capacitor and a resistor.
  • As the rectifier a full-wave rectifier, a half-wave rectifier, a voltage multiplier, etc. implemented as a bridge circuit or the like may be used. Additionally, the power converter may adapt the reflected impedance of the power receiver.
  • the impedance matching circuit 870 may provide impedance matching between the combination of the power converter 860 and the load circuit 840 and the secondary coil. As an embodiment, the impedance matching circuit may generate a resonance near 100 kHz that may enhance power transfer.
  • the impedance matching circuit 870 may include a capacitor, an inductor, and a switching element for switching a combination thereof. Impedance matching may be performed by controlling a switching element of a circuit constituting the impedance matching circuit 870 based on a voltage value, a current value, a power value, a frequency value, etc. of the received wireless power. In some cases, the impedance matching circuit 870 may be omitted, and the present specification also includes an embodiment of the wireless power receiver 200 in which the impedance matching circuit 870 is omitted.
  • the coil assembly 880 includes at least one secondary coil, and may optionally further include an element for shielding a metal part of the receiver from a magnetic field.
  • Communication circuitry 890 may perform load modulation to communicate requests and other information to the power transmitter.
  • the power receiver 830 may switch a resistor or a capacitor to change the reflected impedance.
  • the control circuit 810 may control the received power. To this end, the control circuit 810 may determine/calculate a difference between an actual operating point of the power receiver 830 and a desired operating point. In addition, the control circuit 810 may adjust/reduce the difference between the actual operating point and the desired operating point by adjusting the reflected impedance of the power transmitter and/or performing a request for adjusting the operating point of the power transmitter. When this difference is minimized, optimal power reception can be performed.
  • the communication circuit 890 and the control circuit 810 may be provided as separate devices/chipsets or as one device/chipset.
  • the wireless power transmitter transmits wireless power to the wireless power receiver using a magnetic field
  • some of the magnetic field is absorbed as the foreign substance. That is, some of the wireless power transmitted by the wireless power transmitter is supplied as a foreign material, and the rest is supplied to the wireless power receiver.
  • transmission power is lost as much as the power or energy absorbed by the foreign material.
  • P loss power loss
  • Such a foreign material detection method may be referred to as a foreign material detection method based on power loss.
  • Power lost by the foreign material may be defined as a value obtained by subtracting power P received by the wireless power receiver from power P transmitted by the wireless power transmitter. From the standpoint of the wireless power transmitter, since it knows the transmitted power (P transmitted ), the wireless power receiver can obtain the lost power if it knows the actual received power (P received ). To this end, the wireless power receiver may periodically transmit a received power data packet (RP) to the wireless power transmitter and inform the wireless power transmitter of the power P received by the wireless power receiver.
  • RP received power data packet
  • the wireless power transmitter and the wireless power receiver are composed of various circuit components therein and constitute devices independent of each other, but since wireless power transmission is made by magnetic coupling between them, the wireless power transmitter and The power receiver constitutes one wireless power transmission system.
  • the amount of power (transmission power) transmitted by the wireless power transmitter and the amount of power received by the wireless power receiver (received power) are uniquely determined by the power transmission characteristics.
  • the power transmission characteristic may be viewed as a ratio or a function of transmission power and reception power. Therefore, if the wireless power transmitter knows the power transmission characteristics in advance, it can predict how much power among the power transmitted by the wireless power transmitter will be received by the wireless power receiver.
  • the actual received power reported by the wireless power receiver is smaller than the predicted received power based on the power transmission characteristics, it can be considered that power loss has occurred in the power transmission process.
  • the foreign matter detection method based on power loss may determine that foreign matter is present in the above case. As such, the power loss used to determine the foreign material is also determined based on the power transmission characteristic. Therefore, in order to increase the reliability of the foreign material detection, the power transmission characteristic needs to be well understood.
  • Power transmission characteristics depend on unique characteristics of an environment or device for wireless power transmission.
  • the wireless power transmitter and the receiver may generally use power calibration at the start time of wireless power transmission in order to determine the power transmission characteristics in any given wireless charging environment.
  • foreign matter detection is performed accordingly.
  • FIG. 9 is a flowchart for explaining a dual-point power correction method
  • FIG. 10 is a graph illustrating an example of a power correction curve by a dual-point power correction method
  • FIG. 11 is a message field of a received power packet according to an example It is a diagram illustrating a format
  • FIG. 12 is a diagram illustrating a format of a message field of a received power packet according to another example.
  • a power correction protocol is performed, and the wireless power receiver 1002 has a first received power packet (RP/1) and a second received power packet (RP/2).
  • the wireless power transmitter 1001 configures a double-point power correction curve.
  • the wireless power receiver 1002 transmits a control error packet (CE) to the wireless power transmitter (S1101), and includes information on a first calibration data point. and transmits the first received power packet (RP/1) to the wireless power transmitter (S1102).
  • CE control error packet
  • RP/1 first received power packet
  • the control error packet includes a control error value.
  • the control error value includes information about a deviation between a target operating point and an actual operating point of the wireless power receiver 1002 . For example, if the control error value is a positive number, it means that the actual operating point is lower than the target operating point, and the wireless power transmitter 1001 receiving this may increase the power of the wireless power to be transmitted. Conversely, when the control error value is a negative number, it means that the actual operating point is higher than the target operating point, and the wireless power transmitter 1001 receiving this may lower the power of the wireless power to be transmitted.
  • the first received power packet RP/1 includes a Mode field and an Estimated Received Power Value field.
  • the wireless power transmitter 1001 transmits the received power packet (RP) received from the wireless power receiver 1002 through the value (eg, 1) of the mode field of the first received power packet (RP/1). It can be confirmed that it is the first received power packet (RP/1) including information on one correction data point, and the first correction data point is through the value of the estimated received power value field of the first received power packet (RP/1). can be checked.
  • the first calibration data point is a starting point of the power calibration curve, and may be a power level corresponding to about 10% of a reference power level of a power transfer contract established in the negotiation phase.
  • the wireless power transmitter 1001 determines whether or not the wireless power receiver 1002 has reached the desired target operating point based on the control error value included in the control error packet, and sends it to the first received power packet (RP/1). for response with ACK or NAK (S1103). More specifically, the wireless power transmitter 1001 determines whether the power level is stabilized at the first correction data point based on the control error value. For example, when the control error value is less than 3, the wireless power transmitter 1001 determines that the power level is stabilized and the wireless power receiver 1002 reaches the desired target operating point, and the first receive power packet RP /1) can be responded with ACK. When the control error value is less than 3, it is determined that the power level is not stabilized and the wireless power receiver 1002 has not reached the desired target operating point, and the wireless power transmitter 1001 sends the first received power packet (RP/1) can respond with NAK.
  • the wireless power receiver 1002 continues to transmit the first received power packet RP/1 until it receives an ACK from the wireless power transmitter 1001 (S1102). In addition, so that the power level can be stabilized at the first correction data point, the wireless power receiver 1002 also repeatedly transmits the control error packet to the wireless power transmitter 1001 (S1101).
  • the control error packet is transferred to the wireless power transmitter and transmits (S1104), the wireless power receiver 1002 transmits a second received power packet (RP/2) including information on a second calibration data point to the wireless power transmitter 1001 transmit (S1105).
  • the second received power packet RP/2 also includes a Mode field and an Estimated Received Power Value field (refer to FIG. 11 or FIG. 12).
  • the wireless power transmitter 1001 transmits the received power packet (RP) received from the wireless power receiver 1002 through the value (eg, 0) of the mode field of the second received power packet (RP/2). It can be confirmed that the second received power packet (RP/2) includes information on the two correction data points, and the second correction data point is through the value of the estimated received power value field of the second received power packet (RP/2). can be checked.
  • the second correction data point is a point for constructing a power correction curve, and may be a power level close to a reference power level of a power transfer contract established in the negotiation stage.
  • the wireless power transmitter 1001 determines whether or not the wireless power receiver 1002 has reached the desired target operating point based on the control error value included in the control error packet, and sends it to the second received power packet (RP/2). for response with ACK or NAK (S1106). More specifically, the wireless power transmitter 1001 determines whether the power level is stabilized at the second correction data point based on the control error value. For example, when the control error value is less than 3, the wireless power transmitter 1001 determines that the power level is stabilized and the wireless power receiver 1002 reaches the desired target operating point, and the second receive power packet (RP) /2) may be responded with ACK (S1106). When the control error value is less than 3, it is determined that the power level is not stabilized and the wireless power receiver 1002 has not reached the desired target operating point, and the wireless power transmitter 1001 sends the second receive power packet (RP/2) can respond with NAK.
  • the wireless power receiver 1002 continues to transmit the second received power packet RP/2 until it receives an ACK from the wireless power transmitter 1001 (S1105). In addition, so that the power level can be stabilized at the second correction data point, the wireless power receiver 1002 also repeatedly transmits the control error packet to the wireless power transmitter 1001 (S1104).
  • the power transmitter 1001 After the power level is stabilized at the second correction data point, and an ACK for the second received power packet (RP/2) is received from the wireless power transmitter 1001 (S1106), the wireless power receiver 1002 and the wireless The power transmitter 1001 enters a normal power transmission mode.
  • the wireless power transmitter 1001 configures a power calibration curve based on the first received power packet (RP/1) and the second received power packet (RP/2) to which the ACK is transmitted (refer to FIG. 10 ) ), using this, it is possible to perform foreign material detection based on the loss of transmission power (S1107).
  • the wireless power transmitter 1001 receives a received power packet (eg, RP/0 in which the mode field value is 0) from the wireless power receiver 1002 during power transmission, and receives the received power packet.
  • a received power packet eg, RP/0 in which the mode field value is 0
  • the difference between the received power value confirmed through the received power packet compared to the corrected power value calculated by confirming the received power value received by the wireless power receiver 1002 through the It can be estimated that the power loss is caused by foreign substances.
  • a power correction curve constructed by the above-described double-point power correction method will be described with reference to FIG. 10 .
  • the wireless power transmitter 1001 configures a power calibration curve (A) based on the first received power packet (RP/1) and the second received power packet (RP/2) to which the ACK is transmitted.
  • ⁇ Pt is a prediction error value of transmission power, and may include a power loss value of the wireless power transmitter itself.
  • ⁇ Pr is a prediction error value of received power, and may include a power loss value of the wireless power receiver itself.
  • the corrected power value P(cal) may be calculated by the following [Equation 2].
  • Equations 1 to 3 when it is confirmed that there is no foreign material by the pre-power FOD, the same relationship of Equations 1 to 3 is established, and the correction curve based on Equations 1 to 3 may be shown as a graph (A) as shown in FIG. 10 .
  • the power transmission characteristics may also depend on a change in a load or a change in the degree of magnetic coupling. For example, when the wireless power receiver uses multiple load steps or a load variable (or load increase), or the degree of magnetic coupling is changed due to a change in position between the wireless power transmitter and the receiver, power At least some of the transmission characteristics may change. When at least a part of the power transfer characteristic is changed, at least a part of the power correction set according to the previous power transfer characteristic becomes invalid. In addition, power loss and foreign matter detection according to the set at least part of the power correction are no longer valid. Therefore, additional power correction is required to match the changed power transmission characteristics.
  • a power correction protocol for updating the initial power correction curve configured at the start of the above-described power transmission step needs to be performed while the power transmission step is in progress.
  • the wireless power transmitter 1001 may update the power correction curve for detecting the foreign material at a desired time point by the wireless power transmitter 1001 .
  • FIG. 13 is a flowchart illustrating a power correction protocol for configuring an extended power correction curve according to an embodiment.
  • Each step shown in FIG. 13 may be performed in a power transmission step.
  • the wireless power transmitter 1001 and the wireless power receiver 1002 Before entering the power transmission phase, the wireless power transmitter 1001 and the wireless power receiver 1002 transmit power through a Ping Phase, a Configuration Phase, and a Negotiation Phase. (Power Transfer Phase) may have been entered.
  • the wireless power transmitter 1001 After entering the power transmission phase, the wireless power transmitter 1001 provides wireless power according to the power transmission contract established in the negotiation phase to the wireless power receiver 1002 .
  • the wireless power receiver 1002 transmits a received power packet (RP/0) to wireless power as information on the wireless power received from the wireless power transmitter 1001 after entering the power transmission step. It transmits to the transmission device 1001 (S1201).
  • the received power packet (RP/0) transmitted in step S1201 may be a received power packet in which the value of the mode field is set to 0, and in RP/0, the estimated received power value of the wireless power received by the wireless power receiver 1002 (Estimated Received Power Value) information is included (refer to FIG. 11 or FIG. 12).
  • the wireless power transmitter 1001 When the wireless power transmitter 1001 determines that foreign matter detection is necessary, the wireless power transmitter 1001 transmits an ATN response pattern in response to the RP/0 packet transmitted by the wireless power receiver 1002 to the wireless power receiver. It can be transmitted to (1002) (S1202).
  • the ATN response pattern is an 8-bit response pattern ('11001100' b), and when there is a data packet to be transmitted by the wireless power transmitter 1001, etc., it can be used to request a communication right from the wireless power receiver 1002. .
  • the wireless power receiver 1002 that has received the ATN transmits a data stream response packet (DSR/poll) to the wireless power transmitter 1001 to request the wireless power transmitter 1001 to transmit a data packet.
  • DSR/poll is a type of data stream response packet (DSR) transmitted by the wireless power receiver 1002 and has an 8-bit message field, and a value of 0x33 may be set in the corresponding message field.
  • the wireless power transmitter 1001 that has received the DSR/poll from the wireless power receiver 1002 transmits a data packet requesting the start of a power compensation protocol (hereinafter, referred to as a power compensation request packet) to the wireless power receiver 1002 .
  • a power compensation request packet a data packet requesting the start of a power compensation protocol (hereinafter, referred to as a power compensation request packet) to the wireless power receiver 1002 .
  • S1204 a power compensation protocol
  • FIG. 14 is a diagram illustrating a format of a message field of a power correction request packet according to an embodiment.
  • a power correction request packet may include a byte B0 including a request field and a byte B1 including a mode field.
  • the request field may include header information of a message (data packet) that the wireless power transmitter 1001 requests to be transmitted to the wireless power receiver 1002 . Since the wireless power transmitter 1001 needs to receive a received power packet (RP) from the wireless power receiver 1002 in order to perform power correction, the request field may include 0x31, which is a header value of the RP.
  • RP received power packet
  • the mode field may include a mode value of a received power packet (RP) that the wireless power transmitter 1001 requests to be transmitted to the wireless power receiver 1002 .
  • RP received power packet
  • the value of the mode field of the power correction request packet is It may be set to 1
  • the mode field of the power correction request packet The value of may be set to 2.
  • step S1204 since it is premised on the case that the wireless power transmitter 1001 wants to start a power compensation protocol for configuring the extended power compensation curve, the wireless power transmitter 1001 sets the value of the mode field to 2
  • the power correction request packet may be transmitted to the wireless power receiver 1002 .
  • 15 is a diagram illustrating a format of a message field of a power correction request packet according to another embodiment.
  • a power correction request packet may include a request field.
  • the request field may include information on the type of power compensation protocol desired by the wireless power transmitter 1001 .
  • the power calibration protocol after the initial power calibration protocol includes an extended power calibration protocol (refer to FIG. 13) that updates the power calibration curve by extending the power calibration curve configured in the initial power calibration protocol (refer to FIG. 13), and the initial power calibration protocol
  • a power recalibration protocol (refer to FIG. 17 ) for updating the power compensation curve by deleting the configured power compensation curve and constructing a new power compensation curve may be included.
  • the value of the request field of the power correction request packet of FIG. 15 may be set differently depending on whether the power correction protocol desired by the wireless power transmitter 1001 is an extended power correction protocol or a power re-calibration protocol.
  • the request field is When a power correction request packet with a value set to 1 ('01'b) is transmitted to the wireless power receiver 1002, and the wireless power transmitter 1001 wants to start an extended power correction protocol (or the mode value is In the case of receiving two received power packets (RP/2)), a power correction request packet in which the value of the request field is set to 2 ('10'b) may be transmitted to the wireless power receiver 1002 .
  • step S1204 when the wireless power transmitter 1001 wants to start the power recalibration protocol, the wireless power receiver 1002 transmits a power correction request packet in which the value of the request field is set to 2 ('10'b). and, when the wireless power transmitter 1001 wants to start the extended power compensation protocol, a power compensation request packet in which the value of the request field is set to 1 ('01'b) is sent to the wireless power receiver 1002. can be transmitted
  • the request field may consist of 2 bits, and depending on whether the power compensation protocol desired by the wireless power transmitter 1001 is an extended power compensation protocol or a power re-calibration protocol, the value of the request field may be expressed in 2 bits 0 ⁇ It can be set to any one of 4 values.
  • step S1204 since it is premised on the case that the wireless power transmitter 1001 wants to start a power compensation protocol for configuring the extended power compensation curve, the wireless power transmitter 1001 provides the power with the value of the request field extended.
  • a power correction request packet set to a value indicating a correction protocol may be transmitted to the wireless power receiver 1002 .
  • a power correction request packet may be used as a slot request packet for foreign object detection (FOD).
  • the power correction request packet includes a number of slots field (# of slot) and a slot length field in addition to the request field.
  • the slot for detecting foreign substances means a time during which the wireless power transmitter 1001 temporarily stops transmitting power to detect foreign substances and detects foreign substances during power transmission.
  • the number of slots field may include information on the number of slots required for the wireless power transmitter 1001 to detect foreign substances or a minimum value of the number of slots.
  • the slot length field may include information on the length (time) of the slot required for detecting foreign substances or the minimum value of the slot length.
  • the number of slots field may consist of 2 bits and the slot length field may consist of 3 bits, but this is only an example, and the number of bits constituting each field may be changed.
  • the value of the slot length field is, for example, '000'b means no slot is required, '001'b means 100 ⁇ s, '010'b means 110 ⁇ s, and '011'b means It can be set in such a way as to mean 120 ⁇ s. This is only one example, and the correlation between the value of the slot length field and the actually required length of the slot may be variously changed.
  • the request field has a different value than when the wireless power transmitter 1001 is an extended power correction protocol or wants a power recalibration protocol.
  • the request field may be set to 0.
  • the wireless power receiver 1002 that has received the power correction request packet transmits RP/1 or RP/2 based on the power correction request packet.
  • RP/1 or RP/2 is transmitted to the wireless power transmitter 1001 based on the value of the mode field.
  • RP/1 or RP/2 is transmitted to the wireless power transmitter 1001 based on the value of the mode field.
  • the wireless power transmitter 1001 sends a power compensation request packet in which the value of the mode field is set to 2 in step S1204.
  • the wireless power receiver 1002 transmits an additional received power packet (RP/2) including estimated received power value information, which is a third calibration data point, to the wireless power transmitter ( 1001) (S1205).
  • the wireless power receiver 1002 When the wireless power receiver 1002 receives the power correction request packet having the message field of FIG. 15 , it can transmit RP/1 or RP/2 to the wireless power transmitter 1001 based on the value of the request field. have. That is, when the value of the request field indicates the power re-calibration protocol, the wireless power receiver 1002 transmits RP/1, and when the value of the request field indicates the extended power correction protocol, the wireless power receiver 1002 1002 may transmit RP/1.
  • the wireless power transmitter 1001 in step S1204 sets the value of the request field indicating the extended power compensation protocol.
  • the wireless power receiver 1002 may transmit a control error packet before transmitting the additional received power packet (RP/2) in step S1205, and the wireless power transmitter 1001 may transmit the control error packet to the control error packet. It is determined whether the wireless power receiver 1002 has reached a desired target operating point based on the included control error value, and responds with ACK or NAK to the additional received power packet (RP/2) (S1206). For example, when the control error value is less than 3, the wireless power transmitter 1001 determines that the power level is stabilized and the wireless power receiver 1002 reaches the desired target operating point, and additionally receives power packets (RP/ 2) may be responded with ACK (S1206).
  • the wireless power transmitter 1001 sends the additional received power packet (RP/2) to the You can respond with a NAK.
  • the wireless power receiver 1002 may continue to transmit the additional received power packet (RP/2) and the control error packet until it receives the ACK from the wireless power transmitter 1001 .
  • the wireless power receiver 1002 and the wireless power transmitter 1001 may enter a normal power transmission mode.
  • the wireless power transmitter 1001 extends the existing power compensation curve based on the additional received power packet (RP/2) that has transmitted the ACK (refer to FIG. 16), and uses the extended power compensation curve to compensate for the loss of transmission power. Based on the foreign matter detection may be performed (S1207).
  • the wireless power transmitter 1001 that has detected the foreign material may transmit the foreign matter detection result to the wireless power receiver 1002 (S1208).
  • the foreign material detection result may be expressed as ACK or NAK. That is, the wireless power transmitter 1001 transmits an ACK to the wireless power receiver 1002 when it is determined that there is no foreign substance as a result of detecting the foreign substance, and when it is determined that there is a foreign substance, the wireless power receiver 1002 NAK can be transmitted to
  • the wireless power transmitter 1001 and the wireless power receiver 1002 may continuously maintain the power transmission step.
  • the wireless power receiver 1002 When it is determined that there is a foreign substance, the wireless power receiver 1002 maintains the existing operation point and receives power according to the existing power transmission contract, or is switched to a low power mode in which the received power is 5W or less, or wireless power transmission Transmitting an end power transfer data packet (EPT) to the device 1001 to stop the power transmission step, resetting the wireless power transmitting device 1001, and initializing a protocol for wireless power transmission to detect foreign substances before power transmission (pre -power transfer FOD) can be performed.
  • EPT end power transfer data packet
  • 16 is a diagram illustrating an example of an extended power calibration curve constructed through an extended power calibration protocol.
  • the wireless power transmitter 1001 transmits the ACK to the first received power packet (RP/1), the second received power packet (RP/2), and the additional received power packet (RP/2).
  • a power calibration curve is constructed based on each included calibration data point.
  • the wireless power transmitter 1001 when configuring the power correction curve based on the three correction data points, the first correction data points (Pt1, RP/1) and the second correction data points (Pt2, RP/2) and the first power correction curve (B 1) connecting the second correction data point (Pt2, RP / 2) and the third correction data points in the second power correction curve connecting (Pt3, RP / 3) ( B 2 ) can be configured.
  • the first power compensation curve (B 1 ) constructed based on the first received power packet (RP/1) and the second received power packet (RP/2) is the existing power compensation configured at the beginning of the power transmission step. It can be a curve.
  • the wireless power transmitter 1001 stores the parameters for the existing power compensation curve (B 1 ) and based on the information obtained from the additional received power packet (RP/2) that transmits the ACK in the extended power compensation protocol Acquire information on the third correction data point (Pt3, RP/3), and a second power correction curve (B) extending from the existing power correction curve (B 1 ) to the third correction data point (Pt3, RP/3) 2 ) can be configured.
  • the first power correction curve B1 and the second power correction curve B2 may be defined as linear functions having different slopes and y-intercepts, respectively, and the wireless power transmitter 1001 is thereafter the wireless power receiver 1002 ), the received power value confirmed using the received power packet (eg, RP/0).
  • the transmission power value and the parameters of the power compensation curve including the first power compensation curve B1 and the second power compensation curve B2 are used to detect foreign substances according to the loss of transmission power (S1207).
  • the wireless power transmitter 1001 can extend the power correction curve at a desired time point through the above-described extended power correction protocol, the correction range can be increased to correct a wider range of power values, and As the reliability increases, so does the reliability of foreign object detection based on power loss.
  • FIG. 17 is a flowchart illustrating a power calibration protocol (hereinafter, referred to as a power recalibration protocol) for configuring a power recalibration curve according to an embodiment.
  • a power recalibration protocol for configuring a power recalibration curve according to an embodiment.
  • Each step shown in FIG. 17 may be performed in a power transmission step.
  • steps S1201, S1202, and S1203 have been described above with reference to FIG. 13, further description thereof will be omitted.
  • the wireless power transmitter 1001 receiving the DSR/poll from the wireless power receiver 1002 may transmit a power correction request packet to the wireless power receiver 1002 (S1304).
  • the wireless power transmitter 1001 when transmitting the power correction request packet having the message field of FIG. 14 in step S1304, the wireless power transmitter 1001 sets the value of the mode field to 1 Transmits a power correction request packet set to .
  • the wireless power transmitter 1001 transmits the power correction request packet in which the value of the request field indicates the power recalibration protocol.
  • the wireless power receiver 1002 that has received the power correction request packet receives first received power including estimated received power value information that is a first calibration data point based on information included in the power correction request packet.
  • the packet (RP/1) is transmitted (S1305).
  • the first received power packet RP/1 is a received power packet having a mode value of 1.
  • the wireless power receiver 1002 may transmit a control error packet before transmitting the first received power packet (RP/1) in step S1305, and the wireless power transmitter 1001 may transmit a control error packet. It is determined whether the wireless power receiver 1002 has reached a desired target operating point based on the control error value included in , and responds with ACK or NAK to the first received power packet RP/1 (S1306). The wireless power receiver 1002 may continue to transmit the first received power packet RP/1 and the control error packet until it receives an ACK from the wireless power transmitter 1001 .
  • the wireless power receiver 1002 After the ACK for the first received power packet (RP/1) is transmitted/received (S1306), the wireless power receiver 1002 performs a second correction data point (second) based on the information included in the power correction request packet.
  • a second received power packet (RP/2) including information on the estimated received power value that is a calibration data point is transmitted (S1307).
  • the second received power packet RP/2 is a received power packet having a mode value of 2.
  • the wireless power receiver 1002 may transmit a control error packet before transmitting the second received power packet RP/2 in step S1307, and the wireless power transmitter 1001 transmits the control error packet. It is determined whether the wireless power receiver 1002 has reached a desired target operating point based on the control error value included in , and responds with ACK or NAK to the second received power packet RP/2 (S1308). The wireless power receiver 1002 may continue to transmit the second received power packet (RP/2) and the control error packet until it receives the ACK from the wireless power transmitter 1001 .
  • the wireless power receiver 1002 and the wireless power transmitter 1001 may enter a normal power transmission mode.
  • the wireless power transmitter 1001 converts the existing power correction curve (C 1 ) to a new power correction curve based on the first received power packet (RP/1) and the second received power packet (RP/2) to which the ACK is transmitted. (C 2 ) is updated (see FIG. 18 ), and foreign matter detection based on the loss of transmission power may be performed using the new power correction curve C 2 ( S1309 ).
  • the wireless power transmitter 1001 that has detected the foreign material may transmit the foreign matter detection result to the wireless power receiver 1002 (S1310).
  • the foreign material detection result may be expressed as ACK or NAK. That is, the wireless power transmitter 1001 transmits an ACK to the wireless power receiver 1002 when it is determined that there is no foreign substance as a result of detecting the foreign substance, and when it is determined that there is a foreign substance, the wireless power receiver 1002 NAK can be transmitted to
  • the wireless power transmitter 1001 and the wireless power receiver 1002 may continuously maintain the power transmission step.
  • the wireless power receiver 1002 When it is determined that there is a foreign substance, the wireless power receiver 1002 maintains the existing operation point and receives power according to the existing power transmission contract, or is switched to a low power mode in which the received power is 5W or less, or wireless power transmission Transmitting an end power transfer data packet (EPT) to the device 1001 to stop the power transmission step, resetting the wireless power transmitting device 1001, and initializing a protocol for wireless power transmission to detect foreign substances before power transmission (pre -power transfer FOD) can be performed.
  • EPT end power transfer data packet
  • FIG. 18 is a diagram illustrating an example of a new power calibration curve constructed through a power recalibration protocol.
  • the wireless power transmitter 1001 discards the existing power correction curve C 1 , and transmits an ACK to the first received power packet (RP/1) and the second received power packet (RP/). 2)
  • a new power correction curve (C 2 ) is constructed based on the correction data points included in each, and foreign matter detection according to the loss of transmission power is performed using the parameters of the new power correction curve (C 2 ) (S1309) ).
  • the wireless power transmitter 1001 does not need to reset the wireless power transmitter when necessary, for example, when the wireless power receiver changes an operating point (for example, a target rectified voltage) during power transmission, Power recalibration may be performed. Therefore, it is possible to prevent the charging time for the wireless power receiver from being increased due to the reset of the wireless power transmitter, and since the power correction curve can be updated according to the change of the operating point, the reliability of foreign matter detection is also increased.
  • an operating point for example, a target rectified voltage
  • the wireless power transmitter in the embodiment according to the above-described FIGS. 9 to 18 corresponds to the wireless power transmitter or the wireless power transmitter or the power transmitter disclosed in FIGS. 1 to 8 . Accordingly, the operation of the wireless power transmitter in the present embodiment is implemented by one or a combination of two or more of the respective components of the wireless power transmitter in FIGS. 1 to 8 .
  • transmission of a power compensation request packet by a wireless power transmitter, configuration, extension and/or reconfiguration of a power compensation curve, execution of a foreign material detection method, transmission of ACK/NAK according to the foreign material detection result, and other data packets and responses Transmission/reception of the pattern may be performed by the communication/control circuit 120 , 710 and/or 790 .
  • the wireless power receiver in the embodiment according to FIGS. 9 to 18 corresponds to the wireless power receiver or the wireless power receiver or the power receiver disclosed in FIGS. 1 to 8 . Accordingly, the operation of the wireless power receiver in this embodiment is implemented by one or a combination of two or more of each component of the wireless power receiver in FIGS. 1 to 8 .
  • the wireless power transmission apparatus and method, or the reception apparatus and method includes the above-described components. or some or all of the steps.
  • the above-described wireless power transmission apparatus and method, or the embodiment of the reception apparatus and method may be performed in combination with each other.
  • each of the above-described components or steps is not necessarily performed in the order described, and it is also possible that the steps described later are performed before the steps described earlier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

본 명세서의 일 실시예에 따른 무선전력 전송장치는, 무선전력 수신장치로부터 전력 보정을 위한 2개 이상의 보정 포인트에 대한 수신전력값에 대한 정보를 수신하고, 상기 수신전력값에 대한 정보를 기초로 이물질 검출을 위한 전력 보정 커브를 구성하고, 상기 전력 보정 커브를 갱신하기 위한 전력 보정 프로토콜의 개시를 요청하는 상기 데이터 패킷을 전송한다.

Description

무선전력 전송장치, 무선전력 전송방법, 무선전력 수신장치 및 무선전력 수신 방법
본 명세서는 무선전력 전송장치와, 무선전력 전송장치로부터 무선전력을 수신하는 무선전력 수신장치, 그리고 무선전력 수신장치와 무선전력 전송장치를 이용한 무선전력 전송방법 및 무선전력 수신방법에 관한 것이다.
무선 전력 전송 기술은 전원 소스와 전자 기기 사이에 무선으로 전력을 전달하는 기술이다. 일 예로 무선 전력 전송 기술은 스마트폰이나 태블릿 등의 무선 단말기를 단지 무선 충전 패드 상에 올려놓는 것만으로 무선 단말기의 배터리를 충전할 수 있도록 함으로써, 기존의 유선 충전 커넥터를 이용하는 유선 충전 환경에 비해 보다 뛰어난 이동성과 편의성 그리고 안전성을 제공할 수 있다. 무선 전력 전송 기술은 무선 단말기의 무선 충전 이외에도, 전기 자동차, 블루투스 이어폰이나 3D 안경 등 각종 웨어러블 디바이스(wearable device), 가전기기, 가구, 지중시설물, 건물, 의료기기, 로봇, 레저 등의 다양한 분야에서 기존의 유선 전력 전송 환경을 대체할 것으로 주목받고 있다.
무선전력 전송방식을 비접촉(contactless) 전력 전송방식 또는 무접점(no point of contact) 전력 전송방식, 무선충전(wireless charging) 방식이라 하기도 한다. 무선전력 전송 시스템은, 무선전력 전송방식으로 전기에너지를 공급하는 무선전력 전송장치와, 상기 무선전력 전송장치로부터 무선으로 공급되는 전기에너지를 수신하여 배터리셀 등 수전장치에 전력을 공급하는 무선전력 수신장치로 구성될 수 있다.
무선 전력 전송 기술은 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식 등 다양하다. 자기 커플링에 기반한 방식은 다시 자기 유도(magnetic induction) 방식과 자기 공진(magnetic resonance) 방식으로 분류된다. 자기유도 방식은 전송 측의 코일과 수신 측의 코일 간의 전자기결합에 따라 전송 측 코일배터리셀에서 발생시킨 자기장으로 인해 수신 측 코일에 유도되는 전류를 이용하여 에너지를 전송하는 방식이다. 자기공진 방식은 자기장을 이용한다는 점에서 자기유도 방식과 유사하다. 하지만, 자기공진 방식은 전송 측의 코일과 수신 측의 코일에 특정 공진 주파수가 인가될 때 공진이 발생하고, 이로 인해 전송 측과 수신 측 양단에 자기장이 집중되는 현상에 의해 에너지가 전달되는 측면에서 자기유도와는 차이가 있다.
본 명세서의 기술적 과제는 전력 전송 중에 이물질 검출을 위한 전력 보정을 수행하는 무선전력 전송장치, 무선전력 전송방법, 무선전력 수신장치, 무선전력 수신방법 및 무선충전 시스템을 제공함에 있다.
본 명세서의 기술적 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 명세서의 일 실시예에 따른 무선전력 전송장치는, 무선전력 수신장치로 무선전력을 전송하며, 상기 무선전력을 상기 무선전력 수신장치로 전송하는 전력 변환 회로 및 상기 무선전력 수신장치와 통신하고 상기 무선전력을 제어하며 상기 무선전력 수신장치로부터 전력 보정을 위한 2개 이상의 보정 포인트에 대한 수신전력값에 대한 정보를 수신하고, 상기 수신전력값에 대한 정보를 기초로 이물질 검출을 위한 전력 보정 커브를 구성하는 통신/컨트롤 회로를 포함하고, 상기 통신/컨트롤 회로는, 상기 무선전력 수신장치로부터, 상기 무선전력 수신장치가 수신한 수신전력에 대한 정보를 포함하는 수신전력패킷(RP)을 수신하고, 상기 무선전력 수신장치로, 상기 수신전력패킷에 대한 응답으로 통신 권한을 요청하는 응답 패턴(ATN)을 전송하고,상기 무선전력 수신장치로부터, 데이터 패킷의 전송을 요청하는 데이터 스트림 응답 패킷(DSR)을 수신하고, 상기 DSR에 대한 응답으로 상기 전력 보정 커브를 갱신하기 위한 전력 보정 프로토콜의 개시를 요청하는 상기 데이터 패킷을 전송한다.
상기 과제를 해결하기 위한 본 명세서의 일 실시예에 따른 무선전력 전송방법은, 무선전력 수신장치로 무선전력을 전송하는 무선전력 전송장치에 의한 무선전력 전송방법으로서, 상기 무선전력 수신장치로부터 전력 보정을 위한 2개 이상의 보정 포인트에 대한 수신전력값에 대한 정보를 수신하고, 상기 수신전력값에 대한 정보를 기초로 이물질 검출을 위한 전력 보정 커브를 구성하고, 상기 무선전력 수신장치로부터, 상기 무선전력 수신장치가 수신한 수신전력에 대한 정보를 포함하는 수신전력패킷(RP)을 수신하고, 상기 무선전력 수신장치로, 상기 수신전력패킷에 대한 응답으로 통신 권한을 요청하는 응답 패턴(ATN)을 전송하고, 상기 무선전력 수신장치로부터, 데이터 패킷의 전송을 요청하는 데이터 스트림 응답 패킷(DSR)을 수신하고, 상기 DSR에 대한 응답으로 상기 전력 보정 커브를 갱신하기 위한 전력 보정 프로토콜의 개시를 요청하는 상기 데이터 패킷을 전송한다.
상기 과제를 해결하기 위한 본 명세서의 일 실시예에 따른 무선전력 수신장치는, 무선전력 전송장치로부터 무선전력을 수신하며, 상기 무선전력 전송장치로부터 상기 무선전력을 수신하는 전력 픽업 회로 및 상기 무선전력 전송장치와 통신하고 상기 무선전력을 제어하는 통신/컨트롤 회로를 포함하고, 상기 통신/컨트롤 회로는, 상기 무선전력 전송장치로, 상기 무선전력 수신장치가 수신한 수신전력에 대한 정보를 포함하는 수신전력패킷(RP)을 전송하고, 상기 무선전력 전송장치로부터, 상기 수신전력패킷에 대한 응답으로 통신 권한을 요청하는 응답 패턴(ATN)을 수신하고, 상기 무선전력 전송장치로, 상기 ATN에 대한 응답으로 데이터 패킷의 전송을 요청하는 데이터 스트림 응답 패킷(DSR)을 전송하고, 상기 무선전력 전송장치로부터, 상기 DSR에 대한 응답으로 이물질 검출을 위한 전력 보정 커브를 갱신하기 위한 전력 보정 프로토콜의 개시를 요청하는 상기 데이터 패킷을 수신하고, 상기 데이터 패킷에 포함된 정보에 기초하여, 추가적인 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 추가 수신전력패킷(RP/2)을 전송하거나, 제1 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 제1 수신전력패킷(RP/1)을 전송한다.
상기 과제를 해결하기 위한 본 명세서의 일 실시예에 따른 무선전력 수신방법은, 무선전력 전송장치로부터 무선전력을 수신하는 무선전력 수신장치에 의한 무선전력 수신방법으로서, 상기 무선전력 전송장치로, 상기 무선전력 수신장치가 수신한 수신전력에 대한 정보를 포함하는 수신전력패킷(RP)을 전송하고, 상기 무선전력 전송장치로부터, 상기 수신전력패킷에 대한 응답으로 통신 권한을 요청하는 응답 패턴(ATN)을 수신하고, 상기 무선전력 전송장치로, 상기 ATN에 대한 응답으로 데이터 패킷의 전송을 요청하는 데이터 스트림 응답 패킷(DSR)을 전송하고, 상기 무선전력 전송장치로부터, 상기 DSR에 대한 응답으로 이물질 검출을 위한 전력 보정 커브를 갱신하기 위한 전력 보정 프로토콜의 개시를 요청하는 상기 데이터 패킷을 수신하고, 상기 데이터 패킷에 포함된 정보에 기초하여, 추가적인 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 추가 수신전력패킷(RP/2)을 전송하거나, 제1 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 제1 수신전력패킷(RP/1)을 전송한다.
본 명세서의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
전력 전송 중 무선전력 전송장치의 필요에 의해 이물질 검출을 위한 전력 보정 커브를 갱신할 수 있다.
본 명세서에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 일 실시예에 따른 무선 전력 시스템의 블록도이다.
도 2는 다른 실시예에 따른 무선 전력 시스템의 블록도이다.
도 3a는 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3b는 무선 전력 전송 시스템에서 WPC NDEF의 일례를 나타낸다.
도 4a는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 4b는 일례에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 4c는 다른 예에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다.
도 9는 이중점 전력 보정 방법을 설명하기 위한 흐름도이다.
도 10은 이중점 전력 보정 방법에 의한 전력 보정 커브의 일례를 도시한 그래프이다.
도 11은 일 예에 따른 수신전력패킷의 메시지 필드의 포맷을 도시한 도면이다.
도 12는 다른 예에 따른 수신전력패킷의 메시지 필드의 포맷을 도시한 도면이다.
도 13은 일 실시예에 따른 확장된 전력 보정 커브의 구성을 위한 전력 보정 프로토콜을 설명하기 위한 흐름도이다.
도 14는 일 실시예에 따른 전력 보정 요청 패킷의 메시지 필드의 포맷을 도시한 도면이다.
도 15는 다른 실시예에 따른 전력 보정 요청 패킷의 메시지 필드의 포맷을 도시한 도면이다.
도 16은 확장된 전력 보정 프로토콜을 통해 구성된 확장된 전력 보정 커브의 일례를 도시한 도면이다.
도 17은 일 실시예에 따른 전력 재보정 커브의 구성을 위한 전력 보정 프로토콜을 설명하기 위한 흐름도이다.
도 18은 전력 재보정 프로토콜을 통해 구성된 새로운 전력 보정 커브의 일례를 도시한 도면이다.
본 명세서에서 "A 또는 B(A or B)"는 "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 달리 표현하면, 본 명세서에서 "A 또는 B(A or B)"는 "A 및/또는 B(A and/or B)"으로 해석될 수 있다. 예를 들어, 본 명세서에서 "A, B 또는 C(A, B or C)"는 "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 "및/또는(and/or)"을 의미할 수 있다. 예를 들어, "A/B"는 "A 및/또는 B"를 의미할 수 있다. 이에 따라 "A/B"는 "오직 A", "오직 B", 또는 "A와 B 모두"를 의미할 수 있다. 예를 들어, "A, B, C"는 "A, B 또는 C"를 의미할 수 있다.
본 명세서에서 "적어도 하나의 A 및 B(at least one of A and B)"는, "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 또한, 본 명세서에서 "적어도 하나의 A 또는 B(at least one of A or B)"나 "적어도 하나의 A 및/또는 B(at least one of A and/or B)"라는 표현은 "적어도 하나의 A 및 B(at least one of A and B)"와 동일하게 해석될 수 있다.
또한, 본 명세서에서 "적어도 하나의 A, B 및 C(at least one of A, B and C)"는, "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다. 또한, "적어도 하나의 A, B 또는 C(at least one of A, B or C)"나 "적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)"는 "적어도 하나의 A, B 및 C(at least one of A, B and C)"를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 "예를 들어(for example)"를 의미할 수 있다. 구체적으로, "제어 정보(PDCCH)"로 표시된 경우, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 "제어 정보"는 "PDCCH"로 제한(limit)되지 않고, "PDDCH"가 "제어 정보"의 일례로 제안될 것일 수 있다. 또한, "제어 정보(즉, PDCCH)"로 표시된 경우에도, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다. 이하에서 사용되는 "무선 전력" 이라는 용어는, 물리적인 전자기 전도체들의 사용없이 무선전력 전송기(wireless power transmitter)로부터 무선전력 수신장치(wireless power receiver)로 전달되는 전기장, 자기장, 전자기장 등과 관련된 임의의 형태의 에너지를 의미하도록 사용된다. 무선전력은 무선 전력 신호(wireless power signal)이라고 불릴 수도 있으며, 1차 코일과 2차 코일에 의해 둘러싸이는(enclosed) 진동하는 자속(oscillating magnetic flux)을 의미할 수 있다. 예를 들어, 이동 전화기, 코드리스 전화기, iPod, MP3 플레이어, 헤드셋 등을 포함하는 디바이스들을 무선으로 충전하기 위해 시스템에서의 전력 변환이 여기에 설명된다. 일반적으로, 무선 전력 전송의 기본적인 원리는, 예를 들어, 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식을 모두 포함한다.
도 1은 일 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 1을 참조하면, 무선 전력 시스템(10)은 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)를 포함한다.
무선 전력 전송 장치(100)는 외부의 전원 소스(S)로부터 전원을 인가받아 자기장을 발생시킨다. 무선 전력 수신 장치(200)는 발생된 자기장을 이용하여 전류를 발생시켜 무선으로 전력을 수신받는다.
또한, 무선 전력 시스템(10)에서 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)는 무선 전력 전송에 필요한 다양한 정보를 송수신할 수 있다. 여기서, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)간의 통신은 무선 전력 전송에 이용되는 자기장을 이용하는 인-밴드 통신(in-band communication)이나 별도의 통신 캐리어를 이용하는 아웃-밴드 통신(out-band communication) 중 어느 하나의 방식에 따라 수행될 수 있다. 아웃-밴드 통신은 아웃-오브-밴드(out-of-band) 통신이라 불릴 수도 있다. 이하에서는 아웃-밴드 통신으로 용어를 통일하여 기술한다. 아웃-밴드 통신의 예로서 NFC, 블루투스(bluetooth), BLE(bluetooth low energy) 등을 포함할 수 있다.
여기서, 무선 전력 전송 장치(100)는 고정형 또는 이동형으로 제공될 수 있다. 고정형의 예로는 실내의 천장이나 벽면 또는 테이블 등의 가구에 임베디드(embedded)되는 형태, 실외의 주차장, 버스 정류장이나 지하철역 등에 임플란트 형식으로 설치되는 형태나 차량이나 기차 등의 운송 수단에 설치되는 형태 등이 있다. 이동형인 무선 전력 전송 장치(100)는 이동 가능한 무게나 크기의 이동형 장치나 노트북 컴퓨터의 덮개 등과 같이 다른 장치의 일부로 구현될 수 있다.
또 무선 전력 수신 장치(200)는 배터리를 구비하는 각종 전자 기기 및 전원 케이블 대신 무선으로 전원을 공급받아 구동되는 각종 가전 기기를 포함하는 포괄적인 개념으로 해석되어야 한다. 무선 전력 수신 장치(200)의 대표적인 예로는, 이동 단말기(portable terminal), 휴대 전화기(cellular phone), 스마트폰(smart phone), 개인 정보 단말기(PDA: Personal Digital Assistant), 휴대 미디어 플레이어(PMP: Portable Media Player), 와이브로 단말기(Wibro terminal), 태블릿(tablet), 패블릿(phablet), 노트북(notebook), 디지털 카메라, 네비게이션 단말기, 텔레비전, 전기차량(EV: Electronic Vehicle) 등이 있다.
도 2는 다른 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 2를 참조하면, 무선 전력 시스템(10)에서 무선 전력 수신 장치(200)는 하나 또는 복수일 수 있다. 도 1에서는 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)가 일대일로 전력을 주고 받는 것으로 표현되고 있으나, 도 2와 같이 하나의 무선 전력 전송 장치(100)가 복수의 무선 전력 수신 장치(200-1, 200-2,..., 200-M)로 전력을 전달하는 것도 가능하다. 특히, 자기 공진 방식으로 무선 전력 전송을 수행하는 경우에는 하나의 무선 전력 전송 장치(100)가 동시 전송 방식이나 시분할 전송 방식을 응용하여 동시에 여러 대의 무선 전력 수신 장치(200-1, 200-2,...,200-M)로 전력을 전달할 수 있다.
또한, 도 1에는 무선 전력 전송 장치(100)가 무선 전력 수신 장치(200)에 바로 전력을 전달하는 모습이 도시되어 있으나, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200) 사이에 무선전력 전송 거리를 증대시키기 위한 릴레이(relay) 또는 중계기(repeater)와 같은 별도의 무선 전력 송수신 장치가 구비될 수 있다. 이 경우, 무선 전력 전송 장치(100)로부터 무선 전력 송수신 장치로 전력이 전달되고, 무선 전력 송수신 장치가 다시 무선 전력 수신 장치(200)로 전력을 전달할 수 있다.
이하 본 명세서에서 언급되는 무선전력 수신기, 전력 수신기, 수신기는 무선 전력 수신 장치(200)를 지칭한다. 또한 본 명세서에서 언급되는 무선전력 전송기, 전력 전송기, 전송기는 무선 전력 수신 전송 장치(100)를 지칭한다.
도 3a은 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3a에는 무선 전력 전송 시스템에서 송신 및 수신하는 전력 양에 따라 전자 기기들을 분류하여 도시하였다. 도 3a을 참조하면, 스마트 시계(Smart watch), 스마트 글래스(Smart Glass), HMD(Head Mounted Display), 및 스마트 링(Smart ring)과 같은 웨어러블 기기들 및 이어폰, 리모콘, 스마트폰, PDA, 태블릿 PC 등의 모바일 전자 기기들(또는 포터블 전자 기기들)에는 소전력(약 5W이하 또는 약 20W 이하) 무선 충전 방식이 적용될 수 있다.
노트북, 로봇 청소기, TV, 음향 기기, 청소기, 모니터와 같은 중/소형 가전 기기들에는 중전력(약 50W이하 또는 약 200W)이하) 무선 충전 방식이 적용될 수 있다. 믹서기, 전자 레인지, 전기 밥솥과 같은 주방용 가전 기기, 휠체어, 전기 킥보드, 전기 자전거, 전기 자동차 등의 개인용 이동 기기들(또는, 전자 기기/이동 수단들)은 대전력(약 2kW 이하 또는 22kW이하) 무선 충전 방식이 적용될 수 있다.
상술한(또는 도 1에 도시된) 전자 기기들/이동 수단들은 후술하는 무선 전력 수신기를 각각 포함할 수 있다. 따라서, 상술한 전자 기기들/이동 수단들은 무선 전력 송신기로부터 무선으로 전력을 수신하여 충전될 수 있다.
이하에서는 전력 무선 충전 방식이 적용되는 모바일 기기를 중심으로 설명하나 이는 실시예에 불과하며, 본 명세서에 따른 무선 충전 방법은 상술한 다양한 전자 기기에 적용될 수 있다.
무선전력 전송에 관한 표준(standard)은 WPC(wireless power consortium), AFA(air fuel alliance), PMA(power matters alliance)을 포함한다.
WPC 표준은 기본 전력 프로파일(baseline power profile: BPP)과 확장 전력 프로파일(extended power profile: EPP)을 정의한다. BPP는 5W의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이고, EPP는 5W보다 크고 30W보다 작은 범위의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이다.
서로 다른 전력레벨(power level)을 사용하는 다양한 무선전력 전송장치와 수신장치들이 각 표준별로 커버되고, 서로 다른 전력 클래스(power class) 또는 카테고리로 분류될 수 있다.
예를 들어, WPC는 무선전력 전송장치와 수신장치를 전력 클래스(power class :PC) -1, PC0, PC1, PC2로 분류하고, 각 PC에 대한 표준문서를 제공한다. PC-1 표준은 5W 미만의 보장전력(guaranteed power)을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC-1의 어플리케이션은 스마트 시계와 같은 웨어러블 기기를 포함한다.
PC0 표준은 5W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC0 표준은 보장전력이 30W까지인 EPP를 포함한다. 인-밴드(in-band :IB) 통신이 PC0의 필수적인(mandatory) 통신 프로토콜이나, 옵션의 백업 채널로 사용되는 아웃-밴드(out-band : OB) 통신도 사용될 수 있다. 무선전력 수신장치는 OB의 지원 여부를 구성 패킷(configuration packet)내의 OB 플래그를 설정함으로써 식별할 수 있다. OB를 지원하는 무선전력 전송장치는 상기 구성 패킷에 대한 응답으로서, OB 핸드오버를 위한 비트패턴(bit-pattern)을 전송함으로써 OB 핸드오버 페이즈(handover phase)로 진입할 수 있다. 상기 구성 패킷에 대한 응답은 NAK, ND 또는 새롭게 정의되는 8비트의 패턴일 수 있다. PC0의 어플리케이션은 스마트폰을 포함한다.
PC1 표준은 30W~150W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. OB는 PC1을 위한 필수적인 통신 채널이며, IB는 OB로의 초기화 및 링크 수립(link establishment)로서 사용된다. 무선전력 전송장치는 구성 패킷에 대한 응답으로서, OB 핸드오버를 위한 비트패턴을 이용하여 OB 핸드오버 페이즈로 진입할 수 있다. PC1의 어플리케이션은 랩탑이나 전동 공구(power tool)을 포함한다.
PC2 표준은 200W~2kW의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것으로서, 그 어플리케이션은 주방가전을 포함한다.
이렇듯 전력 레벨에 따라 PC가 구별될 수 있으며, 동일한 PC간 호환성(compatibility)을 지원할지 여부는 선택 또는 필수 사항일 수 있다. 여기서 동일한 PC간 호환성은, 동일한 PC 간에는 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 동일한 PC x를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 동일한 PC간 호환성이 유지되는 것으로 볼 수 있다. 이와 유사하게 서로 다른 PC간의 호환성 역시 지원 가능할 수 있다. 여기서 서로 다른 PC간 호환성은, 서로 다른 PC 간에도 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 PC y를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 서로 다른 PC간 호환성이 유지되는 것으로 볼 수 있다.
PC간 호환성의 지원은 사용자 경험(User Experience) 및 인프라 구축 측면에서 매우 중요한 이슈이다. 다만, PC간 호환성 유지에는 기술적으로 아래와 같은 여러 문제점이 존재한다.
동일한 PC간 호환성의 경우, 예를 들어, 연속적으로 전력이 전송되는 경우에만 안정적으로 충전이 가능한 랩-탑 충전(lap-top charging) 방식의 무선 전력 수신장치는, 동일한 PC의 무선 전력 송신장치라 하더라도, 불연속적으로 전력을 전송하는 전동 툴 방식의 무선 전력 송신장치로부터 전력을 안정적으로 공급받는 데 문제가 있을 수 있다. 또한, 서로 다른 PC간 호환성의 경우, 예를 들어, 최소 보장 전력이 200W인 무선 전력 송신장치는 최대 보장 전력이 5W인 무선 전력 수신장치로 전력을 송신하는 경우, 과전압으로 인해 무선전력 수신장치가 파손될 위험이 있다. 그 결과, PC는 호환성을 대표/지시하는 지표/기준으로 삼기 어렵다.
무선전력 전송 및 수신장치들은 매우 편리한 사용자 경험과 인터페이스(UX/UI)를 제공할 수 있다. 즉, 스마트 무선충전 서비스가 제공될 수 있다, 스마트 무선충전 서비스는 무선전력 전송장치를 포함하는 스마트폰의 UX/UI에 기초하여 구현될 수 있다. 이러한 어플리케이션을 위해, 스마트폰의 프로세서와 무선충전 수신장치간의 인터페이스는 무선전력 전송장치와 수신장치간의 "드롭 앤 플레이(drop and play)" 양방향 통신을 허용한다.
이하에서는 호환성을 대표/지시하는 지표/기준으로 '프로필(profile)'을 새롭게 정의하기로 한다. 즉, 동일한 '프로필'을 갖는 무선 전력 송수신 장치간에는 호환성이 유지되어 안정적인 전력 송수신이 가능하며, 서로 다른 '프로필'을 갖는 무선 전력 송수신장치간에는 전력 송수신이 불가한 것으로 해석될 수 있다. 프로필은 전력 클래스와 무관하게(또는 독립적으로) 호환 가능 여부 및/또는 어플리케이션에 따라 정의될 수 있다.
프로필은 크게 i) 모바일 및 컴퓨팅, ii) 전동 툴, 및 iii) 주방 이렇게 3가지로 구분될 수 있다.
또는, 프로필은 크게 i) 모바일, ii) 전동 툴, iii) 주방 및 iv) 웨어러블 이렇게 4가지로 구분될 수 있다.
'모바일' 프로필의 경우, PC는 PC0 및/또는 PC1, 통신 프로토콜/방식은 IB 및 OB, 동작 주파수는 87~205kHz로 정의될 수 있으며, 어플리케이션의 예시로는 스마트폰, 랩-탑 등이 존재할 수 있다.
'전동 툴' 프로필의 경우, PC는 PC1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~145kHz로 정의될 수 있으며, 어플리케이션의 예시로는 전동 툴 등이 존재할 수 있다.
'주방' 프로필의 경우, PC는 PC2, 통신 프로토콜/방식은 NFC-기반, 동작 주파수는 100kHz 미만으로 정의될 수 있으며, 어플리케이션의 예시로는 주방/가전 기기 등이 존재할 수 있다.
전동 툴과 주방 프로필의 경우, 무선전력 전송장치와 수신장치 간에 NFC 통신이 사용될 수 있다. 무선전력 전송장치와 수신장치는 WPC NDEF(NFC Data Exchange Profile Format)을 교환함으로써 상호간에 NFC 기기임을 확인할 수 있다.
도 3b는 무선 전력 전송 시스템에서 WPC NDEF의 일례를 나타낸다.
도 3b를 참조하면, WPC NDEF는 예를 들어, 어플리케이션 프로파일(application profile) 필드(예를 들어 1B), 버전 필드(예를 들어 1B), 및 프로파일 특정 데이터(profile specific data, 예를 들어 1B)를 포함할 수 있다. 어플리케이션 프로파일 필드는 해당 장치가 i) 모바일 및 컴퓨팅, ii) 전동 툴, 및 iii) 주방 중 어느 것인지를 지시하고, 버전 필드의 상위 니블(upper nibble)은 메이저 버전(major version)을 지시하고 하위 니블(lower nibble)은 마이너 버전(minor version)을 지시한다. 또한 프로파일 특정 데이터는 주방을 위한 컨텐츠를 정의한다.
'웨어러블' 프로필의 경우, PC는 PC-1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~205kHz으로 정의될 수 있으며, 어플리케이션의 예시로는 사용자 몸에 착용하는 웨어러블 기기 등이 존재할 수 있다.
동일한 프로필간에는 호환성 유지는 필수 사항일 수 있으며, 다른 프로필간의 호환성 유지는 선택 사항일 수 있다.
상술한 프로필(모바일 프로필, 전동 툴 프로필, 주방 프로필 및 웨어러블 프로필)들은 제1 내지 제n 프로필로 일반화되어 표현될 수 있으며, WPC 규격 및 실시예에 따라 새로운 프로필이 추가/대체될 수 있다.
이와 같이 프로필이 정의되는 경우, 무선 전력 전송장치가 자신과 동일한 프로필의 무선 전력 수신장치에 대해서만 선택적으로 전력 송신을 수행하여 보다 안정적으로 전력 송신이 가능하다. 또한 무선 전력 전송장치의 부담이 줄어들고, 호환이 불가능한 무선 전력 수신장치로의 전력 송신을 시도하지 않게 되므로 무선 전력 수신장치의 파손 위험이 줄어든다는 효과가 발생한다.
'모바일' 프로필 내의 PC1은 PC0를 기반으로 OB와 같은 선택적 확장을 차용함으로써 정의될 수 있으며, '전동 툴' 프로필의 경우, PC1 '모바일' 프로필이 단순히 변경된 버전으로서 정의될 수 있다. 또한, 현재까지는 동일한 프로필간의 호환성 유지를 목적으로 정의되었으나, 추후에는 서로 다른 프로필간의 호환성 유지 방향으로 기술이 발전될 수 있다. 무선 전력 전송장치 또는 무선 전력 수신장치는 다양한 방식을 통해 자신의 프로필을 상대방에게 알려줄 수 있다.
AFA 표준은 무선 전력 전송장치를 PTU(power transmitting circuit)이라 칭하고, 무선 전력 수신장치를 PRU(power receiving circuit)이라 칭하며, PTU는 표 1과 같이 다수의 클래스로 분류되고, PRU는 표 2와 같이 다수의 카테고리로 분류된다.
PTU PTX_IN_MAX 최소 카테고리 지원 요구사항 지원되는 최대 기기 개수를 위한 최소값
Class 1 2W 1x 카테고리 1 1x 카테고리 1
Class 2 10W 1x 카테고리 3 2x 카테고리 2
Class 3 16W 1x 카테고리 4 2x 카테고리 3
Class 4 33W 1x 카테고리 5 3x 카테고리 3
Class 5 50W 1x 카테고리 6 4x 카테고리 3
Class 6 70W 1x 카테고리 7 5x 카테고리 3
PRU PRX_OUT_MAX' 예시 어플리케이션
Category 1 TBD 블루투스 헤드셋
Category 2 3.5W 피쳐폰
Category 3 6.5W 스마트폰
Category 4 13W 태블릿, 패플릿
Category 5 25W 작은 폼팩터 랩탑
Category 6 37.5W 일반 랩탑
Category 7 50W 가전
표 1에서와 같이, 클래스 n PTU의 최대 출력 전력 성능(capability)은 해당 클래스의 PTX_IN_MAX 값보다 크거나 같다. PRU는 해당 카테고리에서 명세된(specified) 전력보다 더 큰 전력을 끌어당길(draw) 수는 없다.
도 4a는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 4a를 참조하면, 무선 전력 전송 시스템(10)은 무선으로 전력을 수신하는 모바일 기기(Mobile Device)(450) 및 무선으로 전력을 송신하는 베이스 스테이션(Base Station)(400)을 포함한다.
베이스 스테이션(400)은 유도 전력 또는 공진 전력을 제공하는 장치로서, 적어도 하나의 무선 전력 전송장치(power transmitter, 100) 및 시스템 회로(405)을 포함할 수 있다. 무선 전력 전송장치(100)는 유도 전력 또는 공진 전력을 전송하고, 전송을 제어할 수 있다. 무선 전력 전송장치(100)는, 1차 코일(primary coil(s))을 통해 자기장을 생성함으로써 전기 에너지를 전력 신호로 변환하는 전력 변환 회로(power conversion circuit, 110) 및 적절한 레벨로 전력을 전달하도록 무선 전력 수신장치(200)와의 통신 및 전력 전달을 컨트롤하는 통신/컨트롤 회로(communications & control circuit, 120)을 포함할 수 있다. 시스템 회로(405)은 입력 전력 프로비저닝(provisioning), 복수의 무선전력 전송장치들의 컨트롤 및 사용자 인터페이스 제어와 같은 베이스 스테이션(400)의 기타 동작 제어를 수행할 수 있다.
1차 코일은 교류 전력(또는 전압 또는 전류)을 이용하여 전자기장을 발생시킬 수 있다. 1차 코일은 전력 변환 회로(110)에서 출력되는 특정 주파수의 교류전력(또는 전압 또는 전류)을 인가받고, 이에 따라 특정 주파수의 자기장을 발생시킬 수 있다. 자기장은 비방사형 또는 방사형으로 발생할 수 있는데, 무선 전력 수신 장치(200)는 이를 수신하여 전류를 생성하게 된다. 다시 말해 1차 코일은 무선으로 전력을 전송하는 것이다.
자기 유도 방식에서, 1차 코일과 2차 코일은 임의의 적합한 형태들을 가질 수 있으며, 예컨대, 페라이트 또는 비정질 금속과 같은 고투자율의 형성물의 주위에 감긴 동선일 수 있다. 1차 코일은 전송 코일(transmitting coil), 1차 코어(primary core), 1차 와인딩(primary winding), 1차 루프 안테나(primary loop antenna) 등으로 불릴 수도 있다. 한편, 2차 코일은 수신 코일(receiving coil), 2차 코어(secondary core), 2차 와인딩(secondary winding), 2차 루프 안테나(secondary loop antenna), 픽업 안테나(pickup antenna) 등으로 불릴 수도 있다.
자기 공진 방식을 이용하는 경우에는 1차 코일과 2차 코일은 각각 1차 공진 안테나와 2차 공진 안테나 형태로 제공될 수 있다. 공진 안테나는 코일과 캐패시터를 포함하는 공진 구조를 가질 수 있다. 이때 공진 안테나의 공진 주파수는 코일의 인덕턴스와 캐패시터의 캐패시턴스에 의해 결정된다. 여기서, 코일은 루프의 형태로 이루어질 수 있다. 또 루프의 내부에는 코어가 배치될 수 있다. 코어는 페라이트 코어(ferrite core)와 같은 물리적인 코어나 공심 코어(air core)를 포함할 수 있다.
1차 공진 안테나와 2차 공진 안테나 간의 에너지 전송은 자기장의 공진 현상을 통해 이루어질 수 있다. 공진 현상이란 하나의 공진 안테나에서 공진 주파수에 해당하는 근접장이 발생할 때 주위에 다른 공진 안테나가 위치하는 경우, 양 공진 안테나가 서로 커플링되어 공진 안테나 사이에서 높은 효율의 에너지 전달이 일어나는 현상을 의미한다. 1차 공진 안테나와 2차 공진 안테나 사이에서 공진 주파수에 해당하는 자기장이 발생하면, 1차 공진 안테나와 2차 공진 안테나가 서로 공진하는 현상이 발생되고, 이에 따라 일반적인 경우 1차 공진 안테나에서 발생한 자기장이 자유공간으로 방사되는 경우에 비해 보다 높은 효율로 2차 공진 안테나를 향해 자기장이 집속되며, 따라서 1차 공진 안테나로부터 2차 공진 안테나에 높은 효율로 에너지가 전달될 수 있다. 자기 유도 방식은 자기 공진 방식과 유사하게 구현될 수 있으나 이때에는 자기장의 주파수가 공진 주파수일 필요가 없다. 대신 자기 유도 방식에서는 1차 코일과 2차 코일을 구성하는 루프 간의 정합이 필요하며 루프 간의 간격이 매우 근접해야 한다.
도면에 도시되지 않았으나, 무선 전력 전송장치(100)는 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신 할 수 있다.
통신/컨트롤 회로(120)은 무선 전력 수신 장치(200)와 정보를 송수신할 수 있다. 통신/컨트롤 회로(120)은 IB 통신 모듈 또는 OB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 회로(120)은 무선전력 전송의 동작 주파수에 통신 정보를 실어 1차 코일을 통해 전송하거나 또는 정보가 담긴 동작 주파수를 1차 코일을 통해 수신함으로써 인-밴드 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying), 주파수 편이(FSK: Frequency Shift Keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 회로(120)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 회로(120)은 근거리 통신 모듈로 제공될 수 있다. 근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 회로(120)은 무선 전력 전송 장치(100)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 회로(120)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력 전송 장치(100)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 회로(120)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 회로(120)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 회로(120)을 구동시키는 프로그램 형태로 제공될 수 있다.
통신/컨트롤 회로(120)은 동작 포인트(operating point)를 컨트롤함으로써 송신 전력을 컨트롤할 수 있다. 컨트롤하는 동작 포인트는 주파수(또는 위상), 듀티 사이클(duty cycle), 듀티 비(duty ratio) 및 전압 진폭의 조합에 해당될 수 있다. 통신/컨트롤 회로(120)은 주파수(또는 위상), 듀티 사이클, 듀티비 및 전압 진폭 중 적어도 하나를 조절하여 송신 전력을 컨트롤할 수 있다. 또한, 무선 전력 전송장치(100)는 일정한 전력을 공급하고, 무선 전력 수신장치(200)가 공진 주파수를 컨트롤함으로써 수신 전력을 컨트롤할 수도 있다.
모바일 기기(450)는 2차 코일(Secondary Coil)을 통해 무선 전력을 수신하는 무선전력 수신장치(power receiver, 200)와 무선전력 수신장치(200)에서 수신된 전력을 전달받아 저장하고 기기에 공급하는 부하(load, 455)를 포함한다.
무선전력 수신장치(200)는 전력 픽업 회로(power pick-up circuit, 210) 및 통신/컨트롤 회로(communications & control circuit, 220)을 포함할 수 있다. 전력 픽업 회로(210)은 2차 코일을 통해 무선 전력을 수신하여 전기 에너지로 변환할 수 있다. 전력 픽업 회로(210)은 2차 코일을 통해 얻어지는 교류 신호를 정류하여 직류 신호로 변환한다. 통신/컨트롤 회로(220)은 무선 전력의 송신과 수신(전력 전달 및 수신)을 제어할 수 있다.
2차 코일은 무선 전력 전송 장치(100)에서 전송되는 무선 전력을 수신할 수 있다. 2차 코일은 1차 코일에서 발생하는 자기장을 이용하여 전력을 수신할 수 있다. 여기서, 특정 주파수가 공진 주파수인 경우에는 1차 코일과 2차 코일 간에 자기 공진 현상이 발생하여 보다 효율적으로 전력을 전달받을 수 있다.
도 4a에는 도시되지 않았으나 통신/컨트롤 회로(220)은 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신할 수 있다.
통신/컨트롤 회로(220)은 무선 전력 전송 장치(100)와 정보를 송수신할 수 있다. 통신/컨트롤 회로(220)은 IB 통신 모듈 또는 OB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 회로(220)은 자기파에 정보를 실어 2차 코일을 통해 송신하거나 또는 정보가 담긴 자기파를 2차 코일을 통해 수신함으로써 IB 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying), 주파수 편이(FSK: Frequency Shift Keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 회로(220)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 회로(220)은 근거리 통신 모듈로 제공될 수 있다.
근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 회로(220)은 무선 전력 수신 장치(200)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 회로(220)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력 수신 장치(200)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 회로(220)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 회로(220)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 회로(220)을 구동시키는 프로그램 형태로 제공될 수 있다.
다시 도 4a를 참조하면, 부하(455)는 배터리일 수 있다. 배터리는 전력 픽업 회로(210)으로부터 출력되는 전력을 이용하여 에너지를 저장할 수 있다. 한편, 모바일 기기(450)에 배터리가 반드시 포함되어야 하는 것은 아니다. 예를 들어, 배터리는 탈부착이 가능한 형태의 외부 구성으로 제공될 수 있다. 다른 예를 들어, 무선 전력 수신 장치(200)에는 전자 기기의 다양한 동작을 구동하는 구동 수단이 배터리 대신 포함될 수도 있다.
모바일 기기(450)는 무선전력 수신장치(200)을 포함하는 것을 도시되어 있고, 베이스 스테이션(400)은 무선전력 전송장치(100)를 포함하는 것으로 도시되어 있으나, 넓은 의미에서는 무선전력 수신장치(200)는 모바일 기기(450)와 동일시될 수 있고 무선전력 전송장치(100)는 베이스 스테이션(400)와 동일시 될 수도 있다.
통신/컨트롤 회로(120)과 통신/컨트롤 회로(220)이 IB 통신 모듈 이외에 OB 통신 모듈 또는 근거리 통신 모듈로서 블루투스 또는 블루투스 LE을 포함하는 경우, 통신/컨트롤 회로(120)을 포함하는 무선전력 전송장치(100)와 통신/컨트롤 회로(220)을 포함하는 무선전력 수신장치(200)은 도 4c와 같은 단순화된 블록도로 표현될 수 있다.
도 4b는 일례에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 4b를 참조하면, 무선전력 전송장치(100)는 전력 변환 회로(110)과 통신/컨트롤 회로(120)을 포함한다. 통신/컨트롤 회로(120)은 인밴드 통신 모듈(121) 및 BLE 통신 모듈(122)를 포함한다.
한편 무선전력 수신장치(200)는 전력 픽업 회로(210)과 통신/컨트롤 회로(220)을 포함한다. 통신/컨트롤 회로(220)은 인밴드 통신 모듈(221) 및 BLE 통신 모듈(222)를 포함한다.
일 측면에서, BLE 통신 모듈들(122, 222)은 도 4b에 따른 아키텍처 및 동작을 수행한다. 예를 들어, BLE 통신 모듈들(122, 222)은 무선전력 전송장치(100)와 무선전력 수신장치(200) 사이의 접속을 수립하고, 무선전력 전송에 필요한 제어 정보와 패킷들을 교환하는데 사용될 수도 있다.
다른 측면에서, 통신/컨트롤 회로(120)은 무선충전을 위한 프로파일을 동작시키도록 구성될 수 있다. 여기서, 무선충전을 위한 프로파일은 BLE 전송을 사용하는 GATT일 수 있다.
도 4c는 다른 예에 따른 BLE 통신을 사용하는 무선전력 전송 시스템을 도시한 블록도이다.
도 4c를 참조하면, 통신/컨트롤 회로들(120, 220)은 각각 인밴드 통신 모듈들(121, 221)만을 포함하고, BLE 통신 모듈들(122, 222)은 통신/컨트롤 회로들(120, 220)과 분리되어 구비되는 형태도 가능하다.
이하에서 코일 또는 코일부는 코일 및 코일과 근접한 적어도 하나의 소자를 포함하여 코일 어셈블리, 코일 셀 또는 셀로서 지칭할 수도 있다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 5를 참조하면, 본 명세서의 일 실시예에 따른 무선전력 전송장치로부터 수신기로의 파워 전송은 크게 선택 단계(selection phase, 510), 핑 단계(ping phase, 520), 식별 및 구성 단계(identification and configuration phase, 530), 협상 단계(negotiation phase, 540), 보정 단계(calibration phase, 550), 전력 전송 단계(power transfer phase, 560) 단계 및 재협상 단계(renegotiation phase, 570)로 구분될 수 있다.
선택 단계(510)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계-예를 들면, 도면 부호 S502, S504, S508, S510 및 S512를 포함함-일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(510)에서 무선전력 전송장치는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 무선전력 전송장치가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(520)로 천이할 수 있다. 선택 단계(510)에서 무선전력 전송장치는 매우 짧은 구간(duration)에 해당하는 전력 신호(또는 펄스)인 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일 또는 1차 코일(Primary Coil)의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
선택 단계(510)에서 물체가 감지되는 경우, 무선전력 전송장치는 무선전력 공진 회로(예를 들어 전력전송 코일 및/또는 공진 캐패시터)의 품질 인자를 측정할 수 있다. 본 명세서의 일 실시예에서는 선택 단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 무선전력 수신장치가 놓였는지 판단하기 위하여 품질 인자를 측정할 수 있다. 무선전력 전송장치에 구비되는 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬저항 성분이 감소될 수 있고, 이로 인해 품질 인자 값이 감소하게 된다. 측정된 품질 인자 값을 이용하여 이물질의 존재 여부를 판단하기 위해, 무선전력 전송장치는 충전 영역에 이물질이 배치되지 않은 상태에서 미리 측정된 기준 품질 인자 값을 무선전력 수신장치로부터 수신할 수 있다. 협상 단계(540)에서 수신된 기준 품질 인자 값과 측정된 품질 인자 값을 비교하여 이물질 존재 여부를 판단할 수 있다. 그러나 기준 품질 인자 값이 낮은 무선전력 수신장치의 경우-일 예로, 무선전력 수신장치의 타입, 용도 및 특성 등에 따라 특정 무선전력 수신장치는 낮은 기준 품질 인자 값을 가질 수 있음-, 이물질이 존재하는 경우에 측정되는 품질 인자 값과 기준 품질 인자 값 사이의 큰 차이가 없어 이물질 존재 여부를 판단하기 어려운 문제가 발생할 수 있다. 따라서 다른 판단 요소를 더 고려하거나, 다른 방법을 이용하여 이물질 존재 여부를 판단해야 한다.
본 명세서의 또 다른 실시예에서는 선택 단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 배치되었는지 판단하기 위하여 특정 주파수 영역 내(ex 동작 주파수 영역) 품질 인자 값을 측정할 수 있다. 무선전력 전송장치의 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬 저항 성분이 감소될 수 있고, 이로 인해 무선전력 전송장치의 코일의 공진 주파수가 변경(시프트)될 수 있다. 즉, 동작 주파수 대역 내 최대 품질 인자 값이 측정되는 주파수인 품질 인자 피크(peak) 주파수가 이동될 수 있다.
핑 단계(520)에서 무선전력 전송장치는 물체가 감지되면, 수신기를 활성화(Wake up)시키고, 감지된 물체가 무선 전력 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(520)에서 무선전력 전송장치는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 패킷-을 수신기로부터 수신하지 못하면, 다시 선택 단계(510)로 천이할 수 있다. 또한, 핑 단계(520)에서 무선전력 전송장치는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 패킷-을 수신하면, 선택 단계(510)로 천이할 수도 있다.
핑 단계(520)가 완료되면, 무선전력 전송장치는 수신기를 식별하고 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(530)로 천이할 수 있다.
식별 및 구성 단계(530)에서 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(510)로 천이할 수 있다.
무선전력 전송장치는 식별 및 구성 단계(530)에서 수신된 구성 패킷(Configuration packet)의 협상 필드(Negotiation Field) 값에 기반하여 협상 단계(540)로의 진입이 필요한지 여부를 확인할 수 있다. 확인 결과, 협상이 필요하면, 무선전력 전송장치는 협상 단계(540)로 진입하여 소정 FOD 검출 절차를 수행할 수 있다. 반면, 확인 결과, 협상이 필요하지 않은 경우, 무선전력 전송장치는 곧바로 전력 전송 단계(560)로 진입할 수도 있다.
협상 단계(540)에서, 무선전력 전송장치는 기준 품질 인자 값이 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신할 수 있다. 또는 기준 피크 주파수 값이 포함된 FOD 상태 패킷을 수신할 수 있다. 또는 기준 품질 인자 값 및 기준 피크 주파수 값이 포함된 상태 패킷을 수신할 수 있다. 이때, 무선전력 전송장치는 기준 품질 인자 값에 기반하여 FO 검출을 위한 품질 계수 임계치를 결정할 수 있다. 무선전력 전송장치는 기준 피크 주파수 값에 기반하여 FO 검출을 위한 피크 주파수 임계치를 결정할 수 있다.
무선전력 전송장치는 결정된 FO 검출을 위한 품질 계수 임계치 및 현재 측정된 품질 인자 값(핑 단계 이전에 측정된 품질인자 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
무선전력 전송장치는 결정된 FO 검출을 위한 피크 주파수 임계치 및 현재 측정된 피크 주파수 값(핑 단계 이전에 측정된 피크 주파수 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
FO가 검출된 경우, 무선전력 전송장치는 선택 단계(510)로 회귀할 수 있다. 반면, FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)를 거쳐 전력 전송 단계(560)로 진입할 수도 있다. 상세하게, 무선전력 전송장치는 FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)에서 수신단에 수신된 전력의 세기를 결정하고, 송신단에서 전송한 전력의 세기를 결정하기 위해 수신단과 송신단에서의 전력 손실을 측정할 수 있다. 즉, 무선전력 전송장치는 보정 단계(550)에서 송신단의 송신 파워와 수신단의 수신 파워 사이의 차이에 기반하여 전력 손실을 예측할 수 있다. 일 실시예에 따른 무선전력 전송장치는 예측된 전력 손실을 반영하여 FOD 검출을 위한 임계치를 보정할 수도 있다.
전력 전송 단계(560)에서, 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(510)로 천이할 수 있다.
또한, 전력 전송 단계(560)에서, 무선전력 전송장치는 무선전력 전송장치 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 재협상 단계(570)로 천이할 수 있다. 이때, 재협상이 정상적으로 완료되면, 무선전력 전송장치는 전력 전송 단계(560)로 회귀할 수 있다.
본 실시예에서는, 식별 및 구성 단계(530)는 구성 단계로 불릴 수도 있다.
본 실시예에서는 보정 단계(550과 전력 전송 단계(560)를 별개의 단계로 구분하였지만, 보정 단계(550)는 전력 전송 단계(560)에 통합될 수 있다. 이 경우 보정 단계(550)에서의 동작들은 전력 전송 단계(560)에서 수행될 수 있다.
상기한 파워 전송 계약은 무선전력 전송장치와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 무선전력 전송장치 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 6에서 전력 전송 단계(560)에서, 무선전력 전송장치(100) 및 무선전력 수신장치(200)는 전력 송수신과 함께 통신을 병행함으로써 전달되는 전력의 양을 컨트롤할 수 있다. 무선전력 전송장치 및 무선전력 수신장치는 특정 컨트롤 포인트에서 동작한다. 컨트롤 포인트는 전력 전달이 수행될 때 무선전력 수신장치의 출력단(output)에서 제공되는 전압 및 전류의 조합(combination)을 나타낸다.
더 상세히 설명하면, 무선전력 수신장치는 원하는 컨트롤 포인트(desired Control Point)- 원하는 출력 전류/전압, 모바일 기기의 특정 위치의 온도 등을 선택하고, 추가로 현재 동작하고 있는 실제 컨트롤 포인트(actual control point)를 결정한다. 무선전력 수신장치는 원하는 컨트롤 포인트와 실제 컨트롤 포인트를 사용하여, 컨트롤 에러 값(control error value)을 산출하고, 이를 컨트롤 에러 패킷으로서 무선전력 전송장치로 전송할 수 있다.
그리고 무선전력 전송장치는 수신한 컨트롤 에러 패킷을 사용하여 새로운 동작 포인트- 진폭, 주파수 및 듀티 사이클-를 설정/컨트롤하여 전력 전달을 제어할 수 있다. 따라서 컨트롤 에러 패킷은 전략 전달 단계에서 일정 시간 간격으로 전송/수신되며, 실시예로서 무선전력 수신장치는 무선전력 전송장치의 전류를 저감하려는 경우 컨트롤 에러 값을 음수로, 전류를 증가시키려는 경우 컨트롤 에러 값을 양수로 설정하여 전송할 수 있다. 이와 같이 유도 모드에서는 무선전력 수신장치가 컨트롤 에러 패킷을 무선전력 전송장치로 송신함으로써 전력 전달을 제어할 수 있다.
이하에서 설명할 공진 모드에서는 유도 모드에서와는 다른 방식으로 동작할 수 있다. 공진 모드에서는 하나의 무선전력 전송장치가 복수의 무선전력 수신장치를 동시에 서빙할 수 있어야 한다. 다만 상술한 유도 모드와 같이 전력 전달을 컨트롤하는 경우, 전달되는 전력이 하나의 무선전력 수신장치와의 통신에 의해 컨트롤되므로 추가적인 무선전력 수신장치들에 대한 전력 전달은 컨트롤이 어려울 수 있다. 따라서 본 명세서의 공진 모드에서는 무선전력 전송장치는 기본 전력을 공통적으로 전달하고, 무선전력 수신장치가 자체의 공진 주파수를 컨트롤함으로써 수신하는 전력량을 컨트롤하는 방법을 사용하고자 한다. 다만, 이러한 공진 모드의 동작에서도 도 6에서 설명한 방법이 완전히 배제되는 것은 아니며, 추가적인 송신 전력의 제어를 도 6의 방법으로 수행할 수도 있다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다. 쉐어드 모드는 무선전력 전송장치와 무선전력 수신장치간에 1대다 통신 및 충전을 수행하는 모드를 지칭할 수 있다. 쉐어드 모드는 자기 유도 방식 또는 공진 방식으로 구현될 수 있다.
도 7을 참조하면, 무선 전력 전송 장치(700)는 코일 어셈블리를 덮는 커버(720), 전력 송신기(740)로 전력을 공급하는 전력 어답터(730), 무선 전력을 송신하는 전력 송신기(740) 또는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(750) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(750)는 옵셔널하게 포함되거나, 무선 전력 전송 장치(700)의 다른 사용자 인터페이스(750)로서 포함될 수도 있다.
전력 송신기(740)는 코일 어셈블리(760), 임피던스 매칭 회로(770), 인버터(780), 통신 회로(790) 또는 컨트롤 회로(710) 중 적어도 하나를 포함할 수 있다.
코일 어셈블리(760)는 자기장을 생성하는 적어도 하나의 1차 코일을 포함하며, 코일 셀로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 인버터와 1차 코일(들) 간의 임피던스 매칭을 제공할 수 있다. 임피던스 매칭 회로(770)는 1차 코일 전류를 부스팅(boost)하는 적합한(suitable) 주파수에서 공진(resonance)을 발생시킬 수 있다. 다중-코일(multi-coil) 전력 송신기(740)에서 임피던스 매칭 회로는 인버터에서 1차 코일들의 서브세트로 신호를 라우팅하는 멀티플렉스를 추가로 포함할 수도 있다. 임피던스 매칭 회로는 탱크 회로(tank circuit)로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 캐패시터, 인덕터 및 이들의 연결을 스위칭하는 스위칭 소자를 포함할 수 있다. 임피던스의 매칭은 코일 어셈블리(760)를 통해 전송되는 무선전력의 반사파를 검출하고, 검출된 반사파에 기초하여 스위칭 소자를 스위칭하여 캐패시터나 인덕터의 연결 상태를 조정하거나 캐패시터의 캐패시턴스를 조정하거나 인덕터의 인덕턴스를 조정함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(770)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(770)가 생략된 무선전력 전송장치(700)의 실시예도 포함한다.
인버터(780)는 DC 인풋을 AC 신호로 전환할 수 있다. 인버터(780)는 가변(adjustable) 주파수의 펄스 웨이브 및 듀티 사이클을 생성하도록 하프-브리지 또는 풀-브리지로 구동될 수 있다. 또한 인버터는 입력 전압 레벨을 조정하도록 복수의 스테이지들을 포함할 수도 있다.
통신 회로(790)은 전력 수신기와의 통신을 수행할 수 있다. 전력 수신기는 전력 송신기에 대한 요청 및 정보를 통신하기 위해 로드(load) 변조를 수행한다. 따라서 전력 송신기(740)는 통신 회로(790)을 사용하여 전력 수신기가 전송하는 데이터를 복조하기 위해 1차 코일의 전류 및/또는 전압의 진폭 및/또는 위상을 모니터링할 수 있다.
또한, 전력 송신기(740)는 통신 회로(790)을 통해 FSK(Frequency Shift Keying) 방식 등을 사용하여 데이터를 전송하도록 출력 전력을 컨트롤할 수도 있다.
컨트롤 회로(710)은 전력 송신기(740)의 통신 및 전력 전달을 컨트롤할 수 있다. 컨트롤 회로(710)은 상술한 동작 포인트를 조정하여 전력 전송을 제어할 수 있다. 동작 포인트는, 예를 들면, 동작 주파수, 듀티 사이클 및 입력 전압 중 적어도 하나에 의해 결정될 수 있다.
통신 회로(790) 및 컨트롤 회로(710)은 별개의 회로/소자/칩셋으로 구비되거나, 하나의 회로/소자/칩셋으로 구비될 수도 있다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다.
도 8에서, 무선전력 수신 장치(800)는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(820), 무선 전력을 수신하는 전력 수신기(830), 로드 회로(load circuit, 840) 또는 코일 어셈블리를 받치며 커버하는 베이스(850) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(820)는 옵셔널하게 포함되거나, 전력 수신 장비의 다른 사용자 인터페이스(82)로서 포함될 수도 있다.
전력 수신기(830)는 전력 컨버터(860), 임피던스 매칭 회로(870), 코일 어셈블리(880), 통신 회로(890) 또는 컨트롤 회로(810) 중 적어도 하나를 포함할 수 있다.
전력 컨버터(860)는 2차 코일로부터 수신하는 AC 전력을 로드 회로에 적합한 전압 및 전류로 전환(convert)할 수 있다. 실시예로서, 전력 컨버터(860)는 정류기(rectifier)를 포함할 수 있다. 정류기는 수신된 무선 전력을 정류하여 교류에서 직류로 변환할 수 있다. 정류기는 다이오드나 트랜지스터를 이용하여 교류를 직류로 변환하고, 캐패시터와 저항을 이용하여 이를 평활할 수 있다. 정류기로는 브릿지 회로 등으로 구현되는 전파 정류기, 반파 정류기, 전압 체배기 등이 이용될 수 있다. 추가로, 전력 컨버터는 전력 수신기의 반사(reflected) 임피던스를 적용(adapt)할 수도 있다.
임피던스 매칭 회로(870)는 전력 컨버터(860) 및 로드 회로(840)의 조합과 2차 코일 간의 임피던스 매칭을 제공할 수 있다. 실시예로서, 임피던스 매칭 회로는 전력 전달을 강화할 수 있는 100kHz 근방의 공진을 발생시킬 수 있다. 임피던스 매칭 회로(870)는 캐패시터, 인덕터 및 이들의 조합을 스위칭하는 스위칭 소자로 구성될 수 있다. 임피던스의 정합은 수신되는 무선 전력의 전압값이나 전류값, 전력값, 주파수값 등에 기초하여 임피던스 매칭 회로(870)를 구성하는 회로의 스위칭 소자를 제어함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(870)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(870)가 생략된 무선전력 수신장치(200)의 실시예도 포함한다.
코일 어셈블리(880)는 적어도 하나의 2차 코일을 포함하며, 옵셔널하게는 자기장으로부터 수신기의 금속 부분을 쉴딩(shield)하는 엘러먼트(element)를 더 포함할 수도 있다.
통신 회로(890)은 전력 송신기로 요청(request) 및 다른 정보를 통신하기 위해 로드 변조를 수행할 수 있다.
이를 위해 전력 수신기(830)는 반사 임피던스를 변경하도록 저항 또는 커패시터를 스위칭할 수도 있다.
컨트롤 회로(810)은 수신 전력을 컨트롤할 수 있다. 이를 위해 컨트롤 회로(810)은 전력 수신기(830)의 실제 동작 포인트와 원하는 동작 포인트의 차이를 결정/산출할 수 있다. 그리고 컨트롤 회로(810)은 전력 송신기의 반사 임피던스의 조정 및/또는 전력 송신기의 동작 포인트 조정 요청을 수행함으로써 실제 동작 포인트와 원하는 동작 포인트의 차이를 조정/저감할 수 있다. 이 차이를 최소화하는 경우 최적의 전력 수신을 수행할 수 있다.
통신 회로(890) 및 컨트롤 회로(810)은 별개의 소자/칩셋으로 구비되거나, 하나의 소자/칩셋으로 구비될 수도 있다.
이하에서는, 전력 전송 단계에서의 이물질 검출 및 이물질 검출 결과에 따른 전력 보정에 대해 설명한다.
무선전력 전송장치가 자기장을 이용하여 무선전력 수신장치로 무선전력을 송출할 때 이물질이 그 주변에 존재하면 일부의 자기장이 이물질로 흡수된다. 즉, 무선전력 전송장치가 전송한 무선전력 중 일부가 이물질로 공급되고, 나머지가 무선전력 수신장치로 공급된다. 전력 전송의 효율 관점에서 보면, 이물질이 흡수한 전력 또는 에너지만큼 전송 전력의 손실이 발생한다. 이와 같이 이물질의 존재와 전력 손실(Ploss)간에는 인과관계가 성립할 수 있으므로, 무선전력 전송장치는 전력 손실이 얼만큼 발생하는지를 통해 이물질을 검출할 수 있다. 이러한 이물질 검출 방법을 전력 손실에 기반한 이물질 검출 방법이라 부를 수 있다.
이물질에 의해 손실된 전력은, 무선전력 전송장치에 의해 전송된 전력(Ptransmitted)에서 무선전력 수신장치가 실제 수신한 전력(Preceived)을 차감한 값으로 정의될 수 있다. 무선전력 전송장치의 입장에서, 자신이 전송한 전력(Ptransmitted)은 알고 있으므로, 무선전력 수신장치가 실제 수신한 전력(Preceived)을 알면 손실 전력을 구할 수 있다. 이를 위해 무선전력 수신장치는 무선전력 전송장치로 수신전력패킷(RP, received power data packet)을 주기적으로 전송하여 무선전력 전송장치에게 무선전력 수신장치가 수신한 전력(Preceived)을 알려줄 수 있다.
한편, 무선전력 전송장치와 무선전력 수신장치는 그 내부에 여러가지 회로 부품들로 구성되어 있고 서로 독립적인 장치를 구성하지만, 이들 간에 자기 커플링에 의해 무선전력 전송이 이루어지므로 무선전력 전송장치와 무선전력 수신장치는 하나의 무선전력 전송 시스템을 구성한다. 그리고 무선전력 전송장치가 전송하는 전력의 양(전송 전력)과 무선전력 수신장치가 수신하는 전력의 양(수신 전력)은 전력 전송 특성에 의해 고유하게 결정된다. 일례로서 전력 전송 특성은 전송 전력과 수신 전력의 비율 또는 함수로 볼 수 있다. 따라서 무선전력 전송장치가 전력 전송 특성을 미리 알고 있으면, 자신이 전송한 전력 중 얼마의 전력이 무선전력 수신장치에 의해 수신될 것인지를 예측할 수 있다. 만약 무선전력 수신장치에 의해 보고된 실제 수신 전력이, 전력 전송 특성을 기반으로 예측된 수신 전력보다 더 작다면, 전력 전송 과정에서 전력의 손실이 발생하였다고 볼 수 있다. 전력 손실에 기반한 이물질 검출 방법은 위와 같은 경우에 이물질이 존재한다고 판단할 수 있다. 이와 같이 이물질 판단에 사용되는 전력 손실도 전력 전송 특성을 기준으로 결정되므로, 이물질 검출의 신뢰도를 높이려면 전력 전송 특성이 잘 파악될 필요가 있다.
전력 전송 특성은 무선 전력을 전송하는 환경 또는 기기의 고유한 특성에 의존적이다. 무선전력 전송장치와 수신장치는 현재 주어진 임의의 무선충전 환경에서 전력 전송 특성을 파악하기 위해 일반적으로 무선전력 전송의 개시 시점에 전력 보정(calibration)을 이용할 수 있다. 전력 보정에 의해 전력 전송 특성이 파악 또는 설정되면 그에 따라 이물질 검출이 수행된다.
도 9는 이중점 전력 보정 방법을 설명하기 위한 흐름도이고, 도 10은 이중점 전력 보정 방법에 의한 전력 보정 커브의 일례를 도시한 그래프이고, 도 11은 일 예에 따른 수신전력패킷의 메시지 필드의 포맷을 도시한 도면이며, 도 12는 다른 예에 따른 수신전력패킷의 메시지 필드의 포맷을 도시한 도면이다.
도 9를 참조하면, 전력 전송 단계의 시작 시점에서, 전력 보정 프로토콜이 진행되며, 무선전력 수신장치(1002)는 제1 수신전력패킷(RP/1)과 제2 수신전력패킷(RP/2)을 전송하여, 무선전력 전송장치(1001)가 이중점 전력 보정 커브를 구성할 수 있도록 한다.
보다 구체적으로, 무선전력 수신장치(1002)는 제어오류패킷(CE, control error packet)을 무선전력 전송장치로 전송하고(S1101), 제1 보정 데이터 포인트(first calibration data point)에 대한 정보를 포함하는 제1 수신전력패킷(RP/1)을 무선전력 전송장치로 전송한다(S1102).
제어오류패킷은 제어오류값(Control Error Value)을 포함한다. 제어오류값은 무선전력 수신장치(1002)의 목표 동작점(target operating point)과 실제 동작점(actual operating point) 사이의 편차에 대한 정보를 포함한다. 예를 들어, 제어오류값이 양수이면 실제 동작점이 목표 동작점보다 낮은 상태를 의미하고, 이를 수신한 무선전력 전송장치(1001)는 전송하는 무선 전력의 파워를 높일 수 있다. 반대로, 제어오류값이 음수이면 실제 동작점이 목표 동작점보다 높은 상태를 의미하고, 이를 수신한 무선전력 전송장치(1001)는 전송하는 무선전력의 파워를 낮출 수 있다.
도 11 또는 도 12를 참고하면, 제1 수신전력패킷(RP/1)은 모드(Mode) 필드와 추정 수신 전력값(Estimated Received Power Value) 필드를 포함한다. 무선전력 전송장치(1001)는 제1 수신전력패킷(RP/1)의 모드 필드의 값(예를 들어, 1)을 통해 무선전력 수신장치(1002)로부터 수신된 수신전력패킷(RP)이 제1 보정 데이터 포인트에 대한 정보가 포함된 제1 수신전력패킷(RP/1)임을 확인할 수 있고, 제1 수신전력패킷(RP/1)의 추정 수신 전력값 필드의 값을 통해 제1 보정 데이터 포인트를 확인할 수 있다.
제1 보정 데이터 포인트는, 전력 보정 커브의 시작 포인트이며, 협상 단계에서 수립된 전력 전송 계약(Power Transfer Contract)의 기준 전력 레벨(Reference Power level)의 약 10%에 해당하는 전력 레벨일 수 있다.
무선전력 전송장치(1001)는 제어오류패킷에 포함된 제어오류값을 기초로 무선전력 수신장치(1002)가 원하는 목표 동작점에 도달하였는지 여부를 판단하고 제1 수신전력패킷(RP/1)에 대해 ACK 또는 NAK으로 응답한다(S1103). 보다 구체적으로, 무선전력 전송장치(1001)는 제어오류값을 기초로 전력 레벨이 제1 보정 데이터 포인트에서 안정화되었는지 판단한다. 예를 들어, 무선전력 전송장치(1001)는 제어오류값이 3 미만인 경우에 전력 레벨이 안정화되고 무선전력 수신장치(1002)가 원하는 목표 동작점에 도달하였다고 판단하고, 제1 수신전력패킷(RP/1)에 대해 ACK로 응답할 수 있다. 제어오류값이 3 미만인 경우에는 전력 레벨이 안정화되지 않았고 무선전력 수신장치(1002)가 원하는 목표 동작점에 도달하지 못했다고 판단하고 무선전력 전송장치(1001)는 제1 수신전력패킷(RP/1)에 대해 NAK으로 응답할 수 있다.
무선전력 수신장치(1002)는 무선전력 전송장치(1001)로부터 ACK을 수신할 때까지 제1 수신전력패킷(RP/1)을 계속 전송한다(S1102). 또한, 전력 레벨이 제1 보정 데이터 포인트에서 안정화될 수 있도록, 무선전력 수신장치(1002)는 무선전력 전송장치(1001)로 제어오류패킷 역시 반복적으로 전송한다(S1101).
전력 레벨이 제1 보정 데이터 포인트에서 안정화되어, 무선전력 전송장치(1001)로부터 제1 수신전력패킷(RP/1)에 대한 ACK를 수신한 후(S1103), 제어오류패킷을 무선전력 전송장치로 전송하고(S1104), 무선전력 수신장치(1002)는 제2 보정 데이터 포인트(second calibration data point)에 대한 정보를 포함하는 제2 수신전력패킷(RP/2)을 무선전력 전송장치(1001)로 전송한다(S1105).
제2 수신전력패킷(RP/2) 역시 모드(Mode) 필드와 추정 수신 전력값(Estimated Received Power Value) 필드를 포함한다(도 11 또는 도 12 참고). 무선전력 전송장치(1001)는 제2 수신전력패킷(RP/2)의 모드 필드의 값(예를 들어, 0)을 통해 무선전력 수신장치(1002)로부터 수신된 수신전력패킷(RP)이 제2 보정 데이터 포인트에 대한 정보가 포함된 제2 수신전력패킷(RP/2)임을 확인할 수 있고, 제2 수신전력패킷(RP/2)의 추정 수신 전력값 필드의 값을 통해 제2 보정 데이터 포인트를 확인할 수 있다.
제2 보정 데이터 포인트는, 전력 보정 커브를 구성하기 위한 포인트이며, 협상 단계에서 수립된 전력 전송 계약(Power Transfer Contract)의 기준 전력 레벨(Reference Power level)에 근접한 전력 레벨일 수 있다.
무선전력 전송장치(1001)는 제어오류패킷에 포함된 제어오류값을 기초로 무선전력 수신장치(1002)가 원하는 목표 동작점에 도달하였는지 여부를 판단하고 제2 수신전력패킷(RP/2)에 대해 ACK 또는 NAK으로 응답한다(S1106). 보다 구체적으로, 무선전력 전송장치(1001)는 제어오류값을 기초로 전력 레벨이 제2 보정 데이터 포인트에서 안정화되었는지 판단한다. 예를 들어, 무선전력 전송장치(1001)는 제어오류값이 3 미만인 경우에 전력 레벨이 안정화되고 무선전력 수신장치(1002)가 원하는 목표 동작점에 도달하였다고 판단하고, 제2 수신전력패킷(RP/2)에 대해 ACK로 응답할 수 있다(S1106). 제어오류값이 3 미만인 경우에는 전력 레벨이 안정화되지 않았고 무선전력 수신장치(1002)가 원하는 목표 동작점에 도달하지 못했다고 판단하고 무선전력 전송장치(1001)는 제2 수신전력패킷(RP/2)에 대해 NAK으로 응답할 수 있다.
무선전력 수신장치(1002)는 무선전력 전송장치(1001)로부터 ACK을 수신할 때까지 제2 수신전력패킷(RP/2)을 계속 전송한다(S1105). 또한, 전력 레벨이 제2 보정 데이터 포인트에서 안정화될 수 있도록, 무선전력 수신장치(1002)는 무선전력 전송장치(1001)로 제어오류패킷 역시 반복적으로 전송한다(S1104).
전력 레벨이 제2 보정 데이터 포인트에서 안정화되어, 무선전력 전송장치(1001)로부터 제2 수신전력패킷(RP/2)에 대한 ACK를 수신한 후(S1106), 무선전력 수신장치(1002)와 무선전력 전송장치(1001)는 정상적인 전력 전송 모드로 진입한다. 무선전력 전송장치(1001)는 ACK를 전송한 제1 수신전력패킷(RP/1)과 제2 수신전력패킷(RP/2)을 기초로 전력 보정 커브(calibration curve)를 구성하고(도 10 참고), 이를 이용해 전송 전력의 손실을 기반으로 한 이물질 검출을 수행할 수 있다(S1107).
보다 구체적으로, 무선전력 전송장치(1001)는 전력 전송 중에 무선전력 수신장치(1002)로부터 수신전력패킷(예를 들어, 모드 필드의 값이 0인 RP/0)을 수신하며, 수신전력패킷을 통해 무선전력 수신장치(1002)가 수신한 수신 전력값을 확인하고, 전력 보정 커브에 송신 전력값을 적용하여 연산된 보정된 전력값 대비 수신전력패킷을 통해 확인된 수신 전력값의 차이가 임계치 이상이면 이물질에 의해 전력 손실이 발생한 것으로 추정할 수 있다.
도 10을 참조하여, 상술한 이중점 전력 보정 방법에 의해 구성된 전력 보정 커브에 대해 설명한다.
무선전력 전송장치(1001)는 ACK를 전송한 제1 수신전력패킷(RP/1)과 제2 수신전력패킷(RP/2)을 기초로 전력 보정 커브(calibration curve, A)를 구성한다.
전송전력의 예측값을 Pt(est), 수신전력의 예측값을 Pr(est)라 하고, 실제 전송전력값을 Pt, 실제 수신전력값을 Pr이라 하고, 전력 전송 전 이물질 검출(pre-power FOD)을 통해 무선전력 전송장치와 무선전력 수신장치 사이에 이물질이 없는 것으로 확인된 경우, 다음의 [수학식 1]이 성립한다.
Figure PCTKR2021002813-appb-M000001
여기서, δPt는 전송전력의 예측 오차값으로, 무선전력 전송장치의 자체적인 전력 손실값 등을 포함할 수 있다. δPr는 수신전력의 예측 오차값으로, 무선전력 수신장치의 자체적인 전력 손실값 등을 포함할 수 있다.
[수학식 1]에 기반할 때, 보정된 전력값 P(cal)은 다음의 [수학식 2]에 의해 계산될 수 있다.
Figure PCTKR2021002813-appb-M000002
따라서, RP/1(제1 보정 데이터 포인트)과 RP/2(제2 보정 데이터 포인트)를 수학식 2에 대입하면 보정된 전력값은 각각 다음의 [수학식 3]과 같이 표현될 수 있다.
Figure PCTKR2021002813-appb-M000003
Figure PCTKR2021002813-appb-I000001
즉 pre-power FOD에 의해 이물질이 없음이 확인되면, 수학식 1 내지 3의 같은 관계가 성립하며, 수학식 1 내지 3에 기반한 보정 커브는 도 10과 같은 그래프(A)로 도시될 수 있다.
그러나 전력 전송 특성은 부하의 변화 또는 자기 커플링 정도의 변화에 의해서도 의존적일 수 있다. 예컨대, 무선전력 수신장치가 여러 부하 단계(multiple load steps)나 부하 가변(또는 부하 증가)을 사용하거나, 무선전력 전송장치와 수신장치간의 위치 변화 등으로 인해 자기 커플링의 정도가 변하는 경우, 전력 전송 특성의 적어도 일부가 변할 수 있다. 전력 전송 특성의 적어도 일부가 변하면 이전의 전력 전송 특성에 따라 설정된 전력 보정의 적어도 일부는 유효하지 않게 된다. 그리고 상기 설정된 적어도 일부의 전력 보정에 따른 전력 손실 및 이물질 검출도 더 이상 유효하지 않게 된다. 따라서 변화된 전력 전송 특성에 맞는 추가적인 전력 보정이 필요하다.
따라서, 상술한 전력 전송 단계의 시작 시점에서 구성된 초기 전력 보정 커브를 갱신하기 위한 전력 보정 프로토콜이 전력 전송 단계가 진행되는 중에 수행될 필요가 있다.
또한, 무선전력 전송장치(1001)는 전력 전송 단계에서 이물질의 존재가 의심되는 경우, 무선전력 전송장치(1001)가 원하는 시점에 이물질 검출을 위한 전력 보정 커브를 갱신할 수 있다.
이하에서는 무선전력 전송장치(1001)의한 전력 보정 커브를 갱신하는 방법에 대해 설명한다.
(1) 확장된 전력 보정 커브의 구성
도 13은 일 실시예에 따른 확장된 전력 보정 커브의 구성을 위한 전력 보정 프로토콜을 설명하기 위한 흐름도이다.
도 13에 도시된 각 단계는 전력 전송 단계에서 수행될 수 있다. 무선전력 전송장치(1001)와 무선전력 수신장치(1002)는 전력 전송 단계에 진입하기 이전에, 핑 단계(Ping Phase), 구성 단계(Configuration Phase) 및 협상 단계(Negotiation Phase)를 거쳐 전력 전송 단계(Power Transfer Phase)에 진입한 것일 수 있다.
무선전력 전송장치(1001)는 전력 전송 단계에 진입한 이후, 협상 단계에서 수립된 전력 전송 계약에 따른 무선 전력을 무선전력 수신장치(1002)로 제공한다.
도 13을 참조하면, 무선전력 수신장치(1002)는 전력 전송 단계에 진입한 이후, 무선전력 전송장치(1001)로부터 수신한 무선전력에 대한 정보로서, 수신전력패킷(RP/0)을 무선전력 전송장치(1001)로 전송한다(S1201). S1201 단계에서 전송되는 수신전력패킷(RP/0)은 모드 필드의 값이 0으로 설정된 수신전력패킷일 수 있으며, RP/0에는 무선전력 수신장치(1002)가 수신한 무선전력의 추정 수신 전력값(Estimated Received Power Value)에 대한 정보가 포함된다(도 11 또는 도 12 참고).
무선전력 전송장치(1001)가 이물질 검출이 필요하다고 판단한 경우, 무선전력 전송장치(1001)는 무선전력 수신장치(1002)가 전송한 RP/0 패킷에 대한 응답으로 ATN 응답 패턴을 무선전력 수신장치(1002)로 전송할 수 있다(S1202). ATN 응답 패턴은 8비트의 응답 패턴('11001100' b)으로, 무선전력 전송장치(1001)가 전송할 데이터 패킷이 있는 경우 등에, 무선전력 수신장치(1002)에게 통신 권한을 요청하기 위해 사용될 수 있다.
ATN을 수신한 무선전력 수신장치(1002)는, 무선전력 전송장치(1001)에게 데이터 패킷의 전송을 요청하기 위해, 무선전력 전송장치(1001)로 데이터 스트림 응답 패킷(DSR/poll)을 전송한다(S1203). DSR/poll은 무선전력 수신장치(1002)가 전송하는 데이터 스트림 응답 패킷(DSR)의 일종으로, 8비트의 메시지 필드를 갖고, 해당 메시지 필드에는 0x33의 값이 설정될 수 있다.
무선전력 수신장치(1002)로부터 DSR/poll을 수신한 무선전력 전송장치(1001)는 전력 보정 프로토콜의 개시를 요청하는 데이터 패킷(이하, 전력 보정 요청 패킷)을 무선전력 수신장치(1002)로 전송할 수 있다(S1204).
도 14는 일 실시예에 따른 전력 보정 요청 패킷의 메시지 필드의 포맷을 도시한 도면이다.
도 14를 참조하면, 일 실시예에 따른 전력 보정 요청 패킷은 Request 필드를 포함하는 바이트(B0)와 모드 필드를 포함하는 바이트(B1)를 포함할 수 있다
요청 필드에는 무선전력 전송장치(1001)가 무선전력 수신장치(1002)에게 보내주기를 요청하는 메시지(데이터 패킷)의 헤더 정보가 포함될 수 있다. 무선전력 전송장치(1001)가 전력 보정을 하기 위해서는 무선전력 수신장치(1002)로부터 수신전력패킷(RP)을 수신하여야 하므로, 요청 필드에는 RP의 헤더값인 0x31이 포함될 수 있다.
모드 필드에는 무선전력 전송장치(1001)가 무선전력 수신장치(1002)에게 보내주기를 요청하는 수신전력패킷(RP)의 모드 값이 포함될 수 있다. 예를 들어, 무선전력 전송장치(1001)가 제1 보정 데이터 포인트에 대한 정보를 포함하는 모드 1의 수신전력패킷(RP/1)을 수신하고자 하는 경우에는 전력 보정 요청 패킷의 모드 필드의 값은 1로 설정될 수 있고, 무선전력 전송장치(1001)가 제2 보정 데이터 포인트에 대한 정보를 포함하는 모드 2의 수신전력패킷(RP/2)을 수신하고자 하는 경우에는 전력 보정 요청 패킷의 모드 필드의 값은 2로 설정될 수 있다.
S1204 단계는, 무선전력 전송장치(1001)가 확장된 전력 보정 커브의 구성을 위한 전력 보정 프로토콜의 개시를 원하는 경우를 전제로 하므로, 무선전력 전송장치(1001)는 모드 필드의 값이 2로 설정된 전력 보정 요청 패킷을 무선전력 수신장치(1002)로 전송할 수 있다.
도 15는 다른 실시예에 따른 전력 보정 요청 패킷의 메시지 필드의 포맷을 도시한 도면이다.
도 15를 참조하면, 다른 실시예에 따른 전력 보정 요청 패킷은 요청 필드를 포함할 수 있다.
요청 필드에는 무선전력 전송장치(1001)가 원하는 전력 보정 프로토콜의 종류에 대한 정보가 포함될 수 있다.
초기 전력 보정 프로토콜(도 9 참고) 이후의 전력 보정 프로토콜은, 초기 전력 보정 프로토콜에서 구성된 전력 보정 커브를 확장하여 전력 보정 커브를 갱신하는 확장된 전력 보정 프로토콜(도 13 참고)과, 초기 전력 보정 프로토콜에서 구성된 전력 보정 커브를 삭제하고 새로운 전력 보정 커브를 구성하여 전력 보정 커브를 갱신하는 전력 재보정 프로토콜(도 17 참고)을 포함할 수 있다.
도 15의 전력 보정 요청 패킷의 요청 필드의 값은 무선전력 전송장치(1001)가 원하는 전력 보정 프로토콜이 확장된 전력 보정 프로토콜인지 아니면 전력 재보정 프로토콜인지에 따라 다르게 설정될 수 있다. 예를 들어, S1204 단계에서, 무선전력 전송장치(1001)가 전력 재보정 프로토콜의 개시를 원하는 경우(또는 모드 값이 1인 수신전력패킷(RP/1)의 수신을 원하는 경우)에는 요청 필드의 값이 1('01'b)로 설정된 전력 보정 요청 패킷을 무선전력 수신장치(1002)로 전송하고, 무선전력 전송장치(1001)가 확장된 전력 보정 프로토콜의 개시를 원하는 경우(또는 모드 값이 2인 수신전력패킷(RP/2)의 수신을 원하는 경우)에는 요청 필드의 값이 2('10'b)로 설정된 전력 보정 요청 패킷을 무선전력 수신장치(1002)로 전송할 수 있다. 또는, S1204 단계에서, 무선전력 전송장치(1001)가 전력 재보정 프로토콜의 개시를 원하는 경우에는 요청 필드의 값이 2('10'b)로 설정된 전력 보정 요청 패킷을 무선전력 수신장치(1002)로 전송하고, 무선전력 전송장치(1001)가 확장된 전력 보정 프로토콜의 개시를 원하는 경우에는 요청 필드의 값이 1('01'b)로 설정된 전력 보정 요청 패킷을 무선전력 수신장치(1002)로 전송할 수 있다. 요청 필드는 2비트로 구성될 수 있으며, 무선전력 전송장치(1001)가 원하는 전력 보정 프로토콜이 확장된 전력 보정 프로토콜인지 아니면 전력 재보정 프로토콜인지에 따라, 요청 필드의 값은 2비트로 표현할 수 있는 0~4값들 중 어느 하나로 설정될 수 있다.
S1204 단계는, 무선전력 전송장치(1001)가 확장된 전력 보정 커브의 구성을 위한 전력 보정 프로토콜의 개시를 원하는 경우를 전제로 하므로, 무선전력 전송장치(1001)는 요청 필드의 값이 확장된 전력 보정 프로토콜을 지시하는 값으로 설정된 전력 보정 요청 패킷을 무선전력 수신장치(1002)로 전송할 수 있다.
다시 도 15를 참조하면, 다른 실시예에 따른 전력 보정 요청 패킷은 이물질 검출(FOD)을 위한 슬롯 요청 패킷으로 사용될 수도 있다. 이를 위해, 전력 보정 요청 패킷은 요청 필드 이외에도 슬롯 개수 필드(# of slot) 및 슬롯 길이(Slot length) 필드를 포함한다.
이물질 검출을 위한 슬롯은, 전력 전송 중 무선전력 전송장치(1001)가 이물질 검출을 위해 전력 전송을 잠시 중단하고 이물질을 검출하는 시간을 의미한다.
슬롯 개수 필드에 무선전력 전송장치(1001)가 이물질 검출에 필요한 슬롯의 수 또는 슬롯 수의 최소값에 대한 정보가 포함될 수 있다. 슬롯 길이 필드는 이물질 검출에 필요한 슬롯의 길이(시간) 또는 슬롯 길이의 최소값에 대한 정보가 포함될 수 있다.
도 15를 참조하면, 슬롯 개수 필드는 2비트로 구성되고, 슬롯 길이 필드는 3비트로 구성될 수 있으나, 이는 하나의 예에 불과하며, 각 필드를 구성하는 비트 수는 변경될 수 있다.
슬롯 길이 필드의 값은, 예를 들어, '000'b는 슬롯이 요구되지 않음을 의미하고, '001'b는 100μs를 의미하고,'010'b는 110μs를 의미하고,'011'b는 120μs를 의미하는 방식으로 설정될 수 있다. 이는 하나의 예에 불과하며, 슬롯 길이 필드의 값과 실제 요구되는 슬롯의 길이의 상관 관계를 다양하게 변경될 수 있다.
한편, 전력 보정 요청 패킷이 이물질 검출을 위한 슬롯 요청 패킷으로 사용되는 경우, 요청 필드는, 무선전력 전송장치(1001)가 확장된 전력 보정 프로토콜인지 또는 전력 재보정 프로토콜을 원하는 경우와 다른 값을 가질 수 있다. 예를 들어, 전력 보정 요청 패킷이 이물질 검출을 위한 슬롯 요청 패킷으로 사용되는 경우, 요청 필드는 0으로 설정될 수 있다.
다시 도 13을 참조하면, 전력 보정 요청 패킷을 수신한 무선전력 수신장치(1002)는 전력 보정 요청 패킷을 기초로 RP/1 또는 RP/2를 전송한다.
즉, 무선전력 수신장치(1002)가 도 14의 메시지 필드를 갖는 전력 보정 요청 패킷을 수신한 경우에는, 모드 필드의 값을 기초로 RP/1 또는 RP/2를 무선전력 전송장치(1001)로 전송할 수 있다. 예를 들어, 모드 필드의 값이 1인 경우에는 모드 값이 1인 RP/1을 전송하고, 모드 필드의 값이 2인 경우에는 모드 값이 2인 추가 수신전력패킷(RP/2)을 전송할 수 있다.
다만, 도 13을 참조하여 설명하는 전력 보정 프로토콜은 확장된 전력 보정 커브의 구성을 위한 전력 보정 프로토콜이므로, S1204 단계에서 무선전력 전송장치(1001)는 모드 필드의 값이 2로 설정된 전력 보정 요청 패킷을 전송하였음을 전제로, 무선전력 수신장치(1002)는 제3 보정 데이터 포인트(third calibration data point)인 추정 수신 전력값 정보를 포함하는 추가 수신전력패킷(RP/2)을 무선전력 전송장치(1001)로 전송한다(S1205).
무선전력 수신장치(1002)가 도 15의 메시지 필드를 갖는 전력 보정 요청 패킷을 수신한 경우에는, 요청 필드의 값을 기초로 RP/1 또는 RP/2를 무선전력 전송장치(1001)로 전송할 수 있다. 즉, 요청 필드의 값이 전력 재보정 프로토콜을 지시하는 경우에는 무선전력 수신장치(1002)가 RP/1을 전송하고, 요청 필드의 값이 확장된 전력 보정 프로토콜을 지시하는 경우에는 무선전력 수신장치(1002)가 RP/1을 전송할 수 있다.
다만, 도 13을 참조하여 설명하는 전력 보정 프로토콜은 확장된 전력 보정 커브의 구성을 위한 전력 보정 프로토콜이므로, S1204 단계에서 무선전력 전송장치(1001)는 확장된 전력 보정 프로토콜을 지시하는 요청 필드의 값을 갖는 전력 보정 요청 패킷을 전송하였음을 전제로, 무선전력 수신장치(1002)는 추가 수신전력패킷(RP/2)을 무선전력 전송장치(1001)로 전송한다(S1205).
도시되지는 않았지만, 무선전력 수신장치(1002)는 S1205 단계에서 추가 수신전력패킷(RP/2)을 전송하기 이전에 제어오류패킷을 전송할 수 있으며, 무선전력 전송장치(1001)는 제어오류패킷에 포함된 제어오류값을 기초로 무선전력 수신장치(1002)가 원하는 목표 동작점에 도달하였는지 여부를 판단하고 추가 수신전력패킷(RP/2)에 대해 ACK 또는 NAK으로 응답한다(S1206). 예를 들어, 무선전력 전송장치(1001)는 제어오류값이 3 미만인 경우에 전력 레벨이 안정화되고 무선전력 수신장치(1002)가 원하는 목표 동작점에 도달하였다고 판단하고, 추가 수신전력패킷(RP/2)에 대해 ACK로 응답할 수 있다(S1206). 제어오류값이 3 미만인 경우에는 전력 레벨이 안정화되지 않았고 무선전력 수신장치(1002)가 원하는 목표 동작점에 도달하지 못했다고 판단하고 무선전력 전송장치(1001)는 추가 수신전력패킷(RP/2)에 대해 NAK으로 응답할 수 있다. 무선전력 수신장치(1002)는 무선전력 전송장치(1001)로부터 ACK을 수신할 때까지 추가 수신전력패킷(RP/2) 및 제어오류패킷을 계속 전송할 수 있다.
추가 수신전력패킷(RP/2)에 대한 ACK가 전송/수신 수신된 후(S1206), 무선전력 수신장치(1002)와 무선전력 전송장치(1001)는 정상적인 전력 전송 모드로 진입할 수 있다.
무선전력 전송장치(1001)는 ACK를 전송한 추가 수신전력패킷(RP/2)을 기초로 기존의 전력 보정 커브를 확장하고(도 16 참고), 확장된 전력 보정 커브를 이용해 전송 전력의 손실을 기반으로 한 이물질 검출을 수행할 수 있다(S1207).
이물질 검출을 수행한 무선전력 전송장치(1001)는 이물질 검출 결과를 무선전력 수신장치(1002)로 전송할 수 있다(S1208). 이물질 검출 결과는 ACK 또는 NAK으로 표현될 수 있다. 즉, 무선전력 전송장치(1001)는 이물질 검출을 수행한 결과, 이물질이 없는 것으로 판단되면 무선전력 수신장치(1002)에 ACK를 전송하고, 이물질이 존재하는 것으로 판단되면 무선전력 수신장치(1002)에 NAK를 전송할 수 있다.
이물질이 없는 것으로 판단된 경우, 무선전력 전송장치(1001)와 무선전력 수신장치(1002)는 전력 전송 단계를 계속하여 유지할 수 있다.
이물질이 존재하는 것으로 판단된 경우, 무선전력 수신장치(1002)는 기존의 operation point를 유지하며 기존의 전력 전송 계약에 따라 전력을 수신하거나, 수신 전력이 5W 이하인 저전력 모드로 전환되거나, 무선전력 전송장치(1001)로 EPT(End Power transfer data packet)를 전송하여 전력 전송 단계를 중단시키고, 무선전력 전송장치(1001)를 리셋하고, 무선전력전송을 위한 프로토콜을 초기화시켜 전력 전송 전 이물질 검출(pre-power transfer FOD)이 수행되도록 할 수 있다.
도 16은 확장된 전력 보정 프로토콜을 통해 구성된 확장된 전력 보정 커브의 일례를 도시한 도면이다.
도 16을 참조하면, 무선전력 전송장치(1001)는 ACK를 전송한 제1 수신전력패킷(RP/1), 제2 수신전력패킷(RP/2) 및 추가 수신전력패킷(RP/2)에 각각 포함된 보정 데이터 포인트를 기초로 전력 보정 커브를 구성한다.
무선전력 전송장치(1001)는, 3개의 보정 데이터 포인트를 기초로 전력 보정 커브를 구성하는 경우, 제1 보정 데이터 포인트(Pt1, RP/1)와 제2 보정 데이터 포인트(Pt2, RP/2)를 연결하는 제1 전력 보정 커브(B1)와, 제2 보정 데이터 포인트(Pt2, RP/2)와 제3 보정 데이터 포인트(Pt3, RP/3)를 연결하는 제2 전력 보정 커브(B2)를 구성할 수 있다.
전력 보정 커브 중, 제1 수신전력패킷(RP/1)과 제2 수신전력패킷(RP/2)을 기초로 구성한 제1 전력 보정 커브(B1)는 전력 전송 단계의 초기에 구성된 기존 전력 보정 커브일 수 있다.
무선전력 전송장치(1001)는 기존 전력 보정 커브(B1)에 대한 파라미터를 저장한 상태로 확장된 전력 보정 프로토콜에서 ACK를 전송한 추가 수신전력패킷(RP/2)으로부터 획득한 정보를 기초로 제3 보정 데이터 포인트(Pt3, RP/3)에 대한 정보를 획득하고, 기존 전력 보정 커브(B1)로부터 제3 보정 데이터 포인트(Pt3, RP/3)으로 연장되는 제2 전력 보정 커브(B2)를 구성할 수 있다.
제1 전력 보정 커브(B1)와 제2 전력 보정 커브(B2)는 각각 서로 다른 기울기 및 y 절편을 갖는 일차함수로 정의될 수 있으며, 무선전력 전송장치(1001)는 이후 무선전력 수신장치(1002)로부터 수신되는 수신전력패킷(예를 들어, RP/0)을 이용해 확인한 수신 전력값. 전송 전력값, 제1 전력 보정 커브(B1)와 제2 전력 보정 커브(B2)를 포함하는 전력 보정 커브의 파라미터를 이용하여 전송 전력의 손실에 따른 이물질 검출을 수행한다(S1207).
무선전력 전송장치(1001)는 상술한 확장된 전력 보정 프로토콜을 통해 자신이 원하는 시점에 전력 보정 커브를 확장할 수 있으므로, 보정 범위가 증가하여 더 넓은 범위의 전력값을 보정할 수 있고, 보정의 신뢰도가 증가하므로 전력 손실을 기반으로 한 이물질 검출의 신뢰도도 증가된다.
(2) 전력 재보정 커브의 구성
도 17은 일 실시예에 따른 전력 재보정 커브의 구성을 위한 전력 보정 프로토콜(이하, 전력 재보정 프로토콜)을 설명하기 위한 흐름도이다.
도 17에 도시된 각 단계는 전력 전송 단계에서 수행될 수 있다.
S1201, S1202 및 S1203 단계는 도 13을 참조로 전술하였으므로, 이에 대한 추가적인 설명은 생략한다.
무선전력 수신장치(1002)로부터 DSR/poll을 수신한 무선전력 전송장치(1001)는 전력 보정 요청 패킷을 무선전력 수신장치(1002)로 전송할 수 있다(S1304).
도 17을 참조하여 설명하는 전력 보정 프로토콜은 전력 재보정 프로토콜 이므로, S1304 단계에서 도 14의 메시지 필드를 갖는 전력 보정 요청 패킷을 전송하는 경우, 무선전력 전송장치(1001)는 모드 필드의 값이 1로 설정된 전력 보정 요청 패킷을 전송한다. S1304 단계에서 도 15의 메시지 필드를 갖는 전력 보정 요청 패킷을 전송하는 경우, 무선전력 전송장치(1001)는 요청 필드의 값이 전력 재보정 프로토콜을 지시하는 전력 보정 요청 패킷을 전송한다.
전력 보정 요청 패킷을 수신한 무선전력 수신장치(1002)는 전력 보정 요청 패킷에 포함된 정보를 기초로 제1 보정 데이터 포인트(first calibration data point)인 추정 수신 전력값 정보를 포함하는 제1 수신전력패킷(RP/1)을 전송한다(S1305). 제1 수신전력패킷(RP/1)은 모드 값이 1인 수신전력패킷이다.
도시되지는 않았지만, 무선전력 수신장치(1002)는 S1305 단계에서 제1 수신전력패킷(RP/1)을 전송하기 이전에 제어오류패킷을 전송할 수 있으며, 무선전력 전송장치(1001)는 제어오류패킷에 포함된 제어오류값을 기초로 무선전력 수신장치(1002)가 원하는 목표 동작점에 도달하였는지 여부를 판단하고 제1 수신전력패킷(RP/1)에 대해 ACK 또는 NAK으로 응답한다(S1306). 무선전력 수신장치(1002)는 무선전력 전송장치(1001)로부터 ACK을 수신할 때까지 제1 수신전력패킷(RP/1) 및 제어오류패킷을 계속 전송할 수 있다.
제1 수신전력패킷(RP/1)에 대한 ACK가 전송/수신 수신된 후(S1306), 무선전력 수신장치(1002)는 전력 보정 요청 패킷에 포함된 정보를 기초로 제2 보정 데이터 포인트(second calibration data point)인 추정 수신 전력값 정보를 포함하는 제2 수신전력패킷(RP/2)을 전송한다(S1307). 제2 수신전력패킷(RP/2)은 모드 값이 2인 수신전력패킷이다.
도시되지는 않았지만, 무선전력 수신장치(1002)는 S1307 단계에서 제2 수신전력패킷(RP/2)을 전송하기 이전에 제어오류패킷을 전송할 수 있으며, 무선전력 전송장치(1001)는 제어오류패킷에 포함된 제어오류값을 기초로 무선전력 수신장치(1002)가 원하는 목표 동작점에 도달하였는지 여부를 판단하고 제2 수신전력패킷(RP/2)에 대해 ACK 또는 NAK으로 응답한다(S1308). 무선전력 수신장치(1002)는 무선전력 전송장치(1001)로부터 ACK을 수신할 때까지 제2 수신전력패킷(RP/2) 및 제어오류패킷을 계속 전송할 수 있다.
제2 수신전력패킷(RP/2)에 대한 ACK가 전송/수신 수신된 후(S1308), 무선전력 수신장치(1002)와 무선전력 전송장치(1001)는 정상적인 전력 전송 모드로 진입할 수 있다.
무선전력 전송장치(1001)는 ACK를 전송한 제1 수신전력패킷(RP/1) 및 제2 수신전력패킷(RP/2)을 기초로 기존의 전력 보정 커브(C1)를 새로운 전력 보정 커브(C2)로 갱신하고(도 18 참고), 새로운 전력 보정 커브(C2)를 이용해 전송 전력의 손실을 기반으로 한 이물질 검출을 수행할 수 있다(S1309).
이물질 검출을 수행한 무선전력 전송장치(1001)는 이물질 검출 결과를 무선전력 수신장치(1002)로 전송할 수 있다(S1310). 이물질 검출 결과는 ACK 또는 NAK으로 표현될 수 있다. 즉, 무선전력 전송장치(1001)는 이물질 검출을 수행한 결과, 이물질이 없는 것으로 판단되면 무선전력 수신장치(1002)에 ACK를 전송하고, 이물질이 존재하는 것으로 판단되면 무선전력 수신장치(1002)에 NAK를 전송할 수 있다.
이물질이 없는 것으로 판단된 경우, 무선전력 전송장치(1001)와 무선전력 수신장치(1002)는 전력 전송 단계를 계속하여 유지할 수 있다.
이물질이 존재하는 것으로 판단된 경우, 무선전력 수신장치(1002)는 기존의 operation point를 유지하며 기존의 전력 전송 계약에 따라 전력을 수신하거나, 수신 전력이 5W 이하인 저전력 모드로 전환되거나, 무선전력 전송장치(1001)로 EPT(End Power transfer data packet)를 전송하여 전력 전송 단계를 중단시키고, 무선전력 전송장치(1001)를 리셋하고, 무선전력전송을 위한 프로토콜을 초기화시켜 전력 전송 전 이물질 검출(pre-power transfer FOD)이 수행되도록 할 수 있다.
도 18은 전력 재보정 프로토콜을 통해 구성된 새로운 전력 보정 커브의 일례를 도시한 도면이다.
도 18을 참조하면, 무선전력 전송장치(1001)는 기존의 전력 보정 커브(C1)를 폐기하고, ACK를 전송한 제1 수신전력패킷(RP/1), 제2 수신전력패킷(RP/2)에 각각 포함된 보정 데이터 포인트를 기초로 새로운 전력 보정 커브(C2)를 구성하고, 새로운 전력 보정 커브(C2)의 파라미터를 이용하여 전송 전력의 손실에 따른 이물질 검출을 수행한다(S1309).
무선전력 전송장치(1001)는, 필요에 따라, 예를 들어, 전력 전송 중 무선전력 수신장치가 동작점(예를 들어 목표 정류 전압)을 변경하는 경우, 무선전력 전송장치를 리셋할 필요없이, 전력 재보정을 수행할 수 있다. 따라서, 무선전력 전송장치의 리셋으로 인해 무선전력 수신장치에 대한 충전 시간이 늘어나는 것을 방지할 수 있으며, 동작점 변경에 따른 전력 보정 커브의 갱신이 가능하므로, 이물질 검출의 신뢰도도 증가된다.
상술한 도 9 내지 도 18에 따른 실시예에서의 무선전력 전송장치는 도 1 내지 도 8에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 8에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어 무선전력 전송장치에 의한 전력 보정 요청 패킷의 전송, 전력 보정 커브의 구성, 확장 및/또는 재구성, 이물질 검출 방법의 수행, 이물질 검출 결과에 따른 ACK/NAK의 전송, 기타 데이터 패킷 및 응답 패턴의 전송/수신 등은 통신/컨트롤 회로(120, 710 및/또는 790)에 의해 수행될 수 있다.
또한, 도 9 내지 도 18에 따른 실시예에서의 무선전력 수신장치는 도 1 내지 도 8에서 개시된 무선전력 수신장치 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 8에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 무선전력 수신장치에 의한 전력 보정 요청 패킷의 수신, 전력 보정 패킷을 기초한 수신전력패킷의 전송, 이물질 검출 결과에 따른 ACK/NAK의 수신, 기타 데이터 패킷의 수신/전송 등은 통신/컨트롤 유닛(220, 810 및/또는 890)에 의해 수행될 수 있다.
상술한 본 발명의 실시예에 따른 무선 전력 송신 방법 및 장치, 또는 수신 장치 및 방법은 모든 구성요소 또는 단계가 필수적인 것은 아니므로, 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법은 상술한 구성요소 또는 단계의 일부 또는 전부를 포함하여 수행될 수 있다. 또 상술한 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법의 실시예들은 서로 조합되어 수행될 수도 있다. 또 상술한 각 구성요소 또는 단계들은 반드시 설명한 순서대로 수행되어야 하는 것은 아니며, 나중에 설명된 단계가 먼저 설명된 단계에 앞서 수행되는 것도 가능하다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 이상에서 설명한 본 발명의 실시예들은 서로 별개로 또는 조합되어 구현되는 것도 가능하다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 무선전력 수신장치로 무선전력을 전송하는 무선전력 전송장치에 있어서,
    상기 무선전력을 상기 무선전력 수신장치로 전송하는 전력 변환 회로; 및
    상기 무선전력 수신장치와 통신하고 상기 무선전력을 제어하며, 상기 무선전력 수신장치로부터 전력 보정을 위한 2개 이상의 보정 포인트에 대한 수신전력값에 대한 정보를 수신하고, 상기 수신전력값에 대한 정보를 기초로 이물질 검출을 위한 전력 보정 커브를 구성하는 통신/컨트롤 회로를 포함하고,
    상기 통신/컨트롤 회로는,
    상기 무선전력 수신장치로부터, 상기 무선전력 수신장치가 수신한 수신전력에 대한 정보를 포함하는 수신전력패킷(RP)을 수신하고,
    상기 무선전력 수신장치로, 상기 수신전력패킷에 대한 응답으로 통신 권한을 요청하는 응답 패턴(ATN)을 전송하고,
    상기 무선전력 수신장치로부터, 데이터 패킷의 전송을 요청하는 데이터 스트림 응답 패킷(DSR)을 수신하고,
    상기 DSR에 대한 응답으로 상기 전력 보정 커브를 갱신하기 위한 전력 보정 프로토콜의 개시를 요청하는 상기 데이터 패킷을 전송하는, 무선전력 전송장치.
  2. 제1항에 있어서,
    상기 전력 보정 프로토콜은, 상기 전력 보정 커브를 확장하여 갱신하는 확장된 전력 보정 프로토콜과 상기 전력 보정 커브를 새로운 전력 보정 커브로 갱신하는 전력 재보정 프로토콜을 포함하고,
    상기 데이터 패킷은 상기 통신/컨트롤 회로가 요청하는 상기 전력 보정 프로토콜이 상기 확장된 전력 보정 프로토콜과 상기 전력 재보정 프로토콜 중 어느 것인지를 표시하는 필드를 포함하는, 무선전력 전송장치.
  3. 제2항에 있어서,
    상기 필드의 값이 상기 확장된 전력 보정 프로토콜의 개시를 요청하는 경우,
    상기 통신 컨트롤 회로는,
    상기 무선전력 수신장치로부터, 상기 데이터 패킷에 대한 응답으로 추가적인 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 수신전력패킷(RP/2)을 수신하고,
    상기 수신전력패킷(RP/2)에 포함된 정보를 기초로 상기 전력 보정 커브를 확장하는 확장된 전력 보정 커브를 구성하는, 무선전력 전송장치.
  4. 제2항에 있어서,
    상기 필드의 값이 상기 전력 재보정 프로토콜의 개시를 요청하는 경우,
    상기 통신 컨트롤 회로는,
    상기 무선전력 수신장치로부터, 상기 데이터 패킷에 대한 응답으로 제1 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 제1 수신전력패킷(RP/1)과 제2 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 제2 수신전력패킷(RP/2)을 수신하고,
    상기 제1 수신전력패킷(RP/1)과 상기 제2 수신전력패킷(RP/2)에 포함된 정보를 기초로 새로운 전력 보정 커브를 구성하는, 무선전력 전송장치.
  5. 제2항에 있어서,
    상기 필드는 2비트로 구성되는, 무선전력 전송장치.
  6. 무선전력 수신장치로 무선전력을 전송하는 무선전력 전송방법에 있어서,
    상기 무선전력 수신장치로부터 전력 보정을 위한 2개 이상의 보정 포인트에 대한 수신전력값에 대한 정보를 수신하고, 상기 수신전력값에 대한 정보를 기초로 이물질 검출을 위한 전력 보정 커브를 구성하고,
    상기 무선전력 수신장치로부터, 상기 무선전력 수신장치가 수신한 수신전력에 대한 정보를 포함하는 수신전력패킷(RP)을 수신하고,
    상기 무선전력 수신장치로, 상기 수신전력패킷에 대한 응답으로 통신 권한을 요청하는 응답 패턴(ATN)을 전송하고,
    상기 무선전력 수신장치로부터, 데이터 패킷의 전송을 요청하는 데이터 스트림 응답 패킷(DSR)을 수신하고,
    상기 DSR에 대한 응답으로 상기 전력 보정 커브를 갱신하기 위한 전력 보정 프로토콜의 개시를 요청하는 상기 데이터 패킷을 전송하는, 방법,
  7. 제6항에 있어서,
    상기 전력 보정 프로토콜은, 상기 전력 보정 커브를 확장하여 갱신하는 확장된 전력 보정 프로토콜과 상기 전력 보정 커브를 새로운 전력 보정 커브로 갱신하는 전력 재보정 프로토콜을 포함하고,
    상기 데이터 패킷은 상기 무선전력 전송장치가 요청하는 상기 전력 보정 프로토콜이 상기 확장된 전력 보정 프로토콜과 상기 전력 재보정 프로토콜 중 어느 것인지를 표시하는 필드를 포함하는, 방법.
  8. 제7항에 있어서,
    상기 필드의 값이 상기 확장된 전력 보정 프로토콜의 개시를 요청하는 경우,
    상기 무선전력 수신장치로부터, 상기 데이터 패킷에 대한 응답으로 추가적인 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 수신전력패킷(RP/2)을 수신하고,
    상기 수신전력패킷(RP/2)에 포함된 정보를 기초로 상기 전력 보정 커브를 확장하는 확장된 전력 보정 커브를 구성하는, 방법.
  9. 제7항에 있어서,
    상기 필드의 값이 상기 전력 재보정 프로토콜의 개시를 요청하는 경우,
    상기 무선전력 수신장치로부터, 상기 데이터 패킷에 대한 응답으로 제1 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 제1 수신전력패킷(RP/1)과 제2 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 제2 수신전력패킷(RP/2)을 수신하고,
    상기 제1 수신전력패킷(RP/1)과 상기 제2 수신전력패킷(RP/2)에 포함된 정보를 기초로 새로운 전력 보정 커브를 구성하는, 방법.
  10. 제7항에 있어서,
    상기 필드는 2비트로 구성되는, 방법.
  11. 무선전력 전송장치로부터 무선전력을 수신하는 무선전력 수신장치에 있어서,
    상기 무선전력 전송장치로부터 상기 무선전력을 수신하는 전력 픽업 회로; 및
    상기 무선전력 전송장치와 통신하고 상기 무선전력을 제어하는 통신/컨트롤 회로;를 포함하고,
    상기 통신/컨트롤 회로는,
    상기 무선전력 전송장치로, 상기 무선전력 수신장치가 수신한 수신전력에 대한 정보를 포함하는 수신전력패킷(RP)을 전송하고,
    상기 무선전력 전송장치로부터, 상기 수신전력패킷에 대한 응답으로 통신 권한을 요청하는 응답 패턴(ATN)을 수신하고,
    상기 무선전력 전송장치로, 상기 ATN에 대한 응답으로 데이터 패킷의 전송을 요청하는 데이터 스트림 응답 패킷(DSR)을 전송하고,
    상기 무선전력 전송장치로부터, 상기 DSR에 대한 응답으로 이물질 검출을 위한 전력 보정 커브를 갱신하기 위한 전력 보정 프로토콜의 개시를 요청하는 상기 데이터 패킷을 수신하고,
    상기 데이터 패킷에 포함된 정보에 기초하여, 추가적인 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 추가 수신전력패킷(RP/2)을 전송하거나, 제1 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 제1 수신전력패킷(RP/1)을 전송하는, 무선전력 수신장치.
  12. 제11항에 있어서,
    상기 전력 보정 프로토콜은, 기존 전력 보정 커브를 확장하여 갱신하는 확장된 전력 보정 프로토콜과 상기 기존 전력 보정 커브를 새로운 전력 보정 커브로 갱신하는 전력 재보정 프로토콜을 포함하고,
    상기 데이터 패킷은 상기 무선전력 전송장치가 요청하는 상기 전력 보정 프로토콜이 상기 확장된 전력 보정 프로토콜과 상기 전력 재보정 프로토콜 중 어느 것인지를 표시하는 필드를 포함하는, 무선전력 수신장치.
  13. 제12항에 있어서,
    상기 필드의 값이 상기 확장된 전력 보정 프로토콜의 개시를 요청하는 경우,
    상기 통신 컨트롤 회로는, 상기 무선전력 전송장치로, 상기 추가 수신전력패킷(RP/2)을 전송하는, 무선전력 수신장치.
  14. 제12항에 있어서,
    상기 필드의 값이 상기 전력 재보정 프로토콜의 개시를 요청하는 경우,
    상기 통신 컨트롤 회로는,
    상기 무선전력 전송장치로, 상기 제1 수신전력패킷(RP/1)을 전송하고, 제2 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 제2 수신전력패킷(RP/2)을 전송하는, 무선전력 수신장치.
  15. 제12항에 있어서,
    상기 필드는 2비트로 구성되는, 무선전력 수신장치.
  16. 무선전력 전송장치로부터 무선전력을 수신하는 무선전력 수신방법에 있어서,
    상기 무선전력 전송장치로, 상기 무선전력 수신장치가 수신한 수신전력에 대한 정보를 포함하는 수신전력패킷(RP)을 전송하고,
    상기 무선전력 전송장치로부터, 상기 수신전력패킷에 대한 응답으로 통신 권한을 요청하는 응답 패턴(ATN)을 수신하고,
    상기 무선전력 전송장치로, 상기 ATN에 대한 응답으로 데이터 패킷의 전송을 요청하는 데이터 스트림 응답 패킷(DSR)을 전송하고,
    상기 무선전력 전송장치로부터, 상기 DSR에 대한 응답으로 이물질 검출을 위한 전력 보정 커브를 갱신하기 위한 전력 보정 프로토콜의 개시를 요청하는 상기 데이터 패킷을 수신하고,
    상기 데이터 패킷에 포함된 정보에 기초하여, 추가적인 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 추가 수신전력패킷(RP/2)을 전송하거나, 제1 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 제1 수신전력패킷(RP/1)을 전송하는, 방법.
  17. 제16항에 있어서,
    상기 전력 보정 프로토콜은, 기존 전력 보정 커브를 확장하여 갱신하는 확장된 전력 보정 프로토콜과 상기 기존 전력 보정 커브를 새로운 전력 보정 커브로 갱신하는 전력 재보정 프로토콜을 포함하고,
    상기 데이터 패킷은 상기 무선전력 전송장치가 요청하는 상기 전력 보정 프로토콜이 상기 확장된 전력 보정 프로토콜과 상기 전력 재보정 프로토콜 중 어느 것인지를 표시하는 필드를 포함하는, 방법.
  18. 제17항에 있어서,
    상기 필드의 값이 상기 확장된 전력 보정 프로토콜의 개시를 요청하는 경우,
    상기 무선전력 전송장치로, 상기 추가 수신전력패킷(RP/2)을 전송하는, 방법.
  19. 제17항에 있어서,
    상기 필드의 값이 상기 전력 재보정 프로토콜의 개시를 요청하는 경우,
    상기 무선전력 전송장치로, 상기 제1 수신전력패킷(RP/1)을 전송하고, 제2 보정 포인트에 대한 수신 전력값에 대한 정보를 포함하는 제2 수신전력패킷(RP/2)을 전송하는, 방법.
  20. 제17항에 있어서,
    상기 필드는 2비트로 구성되는, 방법.
PCT/KR2021/002813 2020-03-06 2021-03-08 무선전력 전송장치, 무선전력 전송방법, 무선전력 수신장치 및 무선전력 수신 방법 WO2021177802A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/909,049 US20230108768A1 (en) 2020-03-06 2021-03-08 Device for transmitting wireless power, method for transmitting wireless power, device for receiving wireless power, and method for receiving wireless power
KR1020227030787A KR20220152216A (ko) 2020-03-06 2021-03-08 무선전력 전송장치, 무선전력 전송방법, 무선전력 수신장치 및 무선전력 수신 방법
JP2022553573A JP2023517045A (ja) 2020-03-06 2021-03-08 無線電力送信装置、無線電力送信方法、無線電力受信装置及び無線電力受信方法
CN202180026144.2A CN115380451A (zh) 2020-03-06 2021-03-08 发送无线功率的设备、发送无线功率的方法、接收无线功率的设备以及接收无线功率的方法
EP21765179.3A EP4117143A4 (en) 2020-03-06 2021-03-08 DEVICE FOR WIRELESS POWER TRANSMISSION, METHOD FOR WIRELESS POWER TRANSMISSION, DEVICE FOR WIRELESS POWER RECEPTION AND METHOD FOR WIRELESS POWER RECEPTION

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0028591 2020-03-06
KR20200028591 2020-03-06
KR10-2020-0037320 2020-03-27
KR20200037320 2020-03-27

Publications (2)

Publication Number Publication Date
WO2021177802A2 true WO2021177802A2 (ko) 2021-09-10
WO2021177802A3 WO2021177802A3 (ko) 2021-10-28

Family

ID=77613518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002813 WO2021177802A2 (ko) 2020-03-06 2021-03-08 무선전력 전송장치, 무선전력 전송방법, 무선전력 수신장치 및 무선전력 수신 방법

Country Status (6)

Country Link
US (1) US20230108768A1 (ko)
EP (1) EP4117143A4 (ko)
JP (1) JP2023517045A (ko)
KR (1) KR20220152216A (ko)
CN (1) CN115380451A (ko)
WO (1) WO2021177802A2 (ko)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105359373B (zh) * 2013-07-17 2018-09-11 皇家飞利浦有限公司 无线感应功率传输
KR102087479B1 (ko) * 2013-10-30 2020-03-10 로무 가부시키가이샤 와이어리스 수전 장치 및 그 제어 회로, 그것을 사용한 전자 기기, 수신 전력의 계산 방법
EP3661015A1 (en) * 2014-03-25 2020-06-03 Koninklijke Philips N.V. Wireless inductive power transfer
KR102617560B1 (ko) * 2016-08-23 2023-12-27 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치 및 시스템
EP4164091A1 (en) * 2016-11-15 2023-04-12 LG Electronics, Inc. Wireless power transferring method and device therefor
JP7233424B2 (ja) * 2017-11-02 2023-03-06 エルジー イノテック カンパニー リミテッド 無線充電方法およびそのための装置
WO2019208960A1 (ko) * 2018-04-25 2019-10-31 엘지전자 주식회사 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
BR112021013855A2 (pt) * 2019-03-25 2021-10-05 Lg Electronics Inc. Dispositivo e método para executar correção de energia no sistema de transmissão de potência sem fio
US11581746B2 (en) * 2020-02-19 2023-02-14 Schlage Lock Company Llc Battery life of battery powered wireless devices

Also Published As

Publication number Publication date
EP4117143A2 (en) 2023-01-11
EP4117143A4 (en) 2024-05-22
US20230108768A1 (en) 2023-04-06
CN115380451A (zh) 2022-11-22
WO2021177802A3 (ko) 2021-10-28
JP2023517045A (ja) 2023-04-21
KR20220152216A (ko) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2019139326A1 (ko) 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
WO2019004753A1 (ko) 멀티 코일 기반의 무선전력 전송장치 및 방법
WO2019039898A1 (ko) 무선전력 전송시스템에서 통신을 수행하는 장치 및 방법
WO2019203420A1 (ko) 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법
WO2021066611A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이들을 이용한 전력 보정 방법
WO2020222528A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 무선전력 전송방법
WO2020050592A1 (ko) 무선전력 전송 시스템에서 가변 통신 속도를 지원하는 장치 및 방법
WO2021020833A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 이물질 검출 방법
WO2019208960A1 (ko) 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
WO2020149492A1 (ko) 멀티 코일을 이용하여 다수의 기기에 무선전력을 전송하는 장치 및 방법
WO2020027521A1 (ko) 이물질 검출에 기반하여 무선전력 전송을 수행하는 장치 및 방법
WO2020130265A1 (ko) 이종 통신에 기반하여 무선전력 전송을 수행하는 장치 및 방법
WO2020222415A1 (ko) 근거리 무선통신을 이용하여 전력 클래스를 협상하는 무선충전 장치, 방법 및 시스템
WO2021201413A1 (ko) 무선전력 전송장치 및 무선전력 전송방법
WO2020190109A1 (ko) 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법
WO2021153815A1 (ko) 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법
WO2019177306A1 (ko) 무선전력 전송 시스템에서 향상된 통신 속도를 지원하는 장치 및 방법
WO2022005264A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 무선전력 전송장치와 무선전력 수신장치 사이의 통신 방법
WO2020218800A1 (ko) 펌웨어를 업데이트하는 무선충전 장치, 방법 및 시스템
WO2022075779A1 (ko) 무선전력 전송장치 및 무선전력 전송장치에 의한 무선전력 전송방법
WO2021182818A1 (ko) 무선전력 전송장치, 무선전력 수신장치 및 이들의 인증 방법
WO2021235908A1 (ko) 무선전력 전송장치, 무선전력 전송장치에 의한 무선전력 전송방법, 무선전력 수신장치 및 무선전력 수신장치에 의한 무선전력 수신방법
WO2020171316A1 (ko) 무선전력 전송 시스템에서 충전 상태 정보를 제공하는 장치 및 방법
WO2020004691A1 (ko) 무선전력 수신장치 및 방법
WO2021167341A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 데이터 전송 스트림을 이용한 무선전력 수신장치와 무선전력 전송장치 사이의 메시지 전송/수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765179

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2022553573

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021765179

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE