WO2022075779A1 - 무선전력 전송장치 및 무선전력 전송장치에 의한 무선전력 전송방법 - Google Patents

무선전력 전송장치 및 무선전력 전송장치에 의한 무선전력 전송방법 Download PDF

Info

Publication number
WO2022075779A1
WO2022075779A1 PCT/KR2021/013817 KR2021013817W WO2022075779A1 WO 2022075779 A1 WO2022075779 A1 WO 2022075779A1 KR 2021013817 W KR2021013817 W KR 2021013817W WO 2022075779 A1 WO2022075779 A1 WO 2022075779A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
power
receiver
wireless
transmitter
Prior art date
Application number
PCT/KR2021/013817
Other languages
English (en)
French (fr)
Inventor
김재열
김형석
이성훈
육경환
김홍권
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020237011871A priority Critical patent/KR20230084170A/ko
Priority to EP21878029.4A priority patent/EP4228123A1/en
Publication of WO2022075779A1 publication Critical patent/WO2022075779A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/12Measuring rate of change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas

Definitions

  • the present specification relates to a wireless power transmitter for transmitting wireless power to a wireless power receiver, and a wireless power transfer method for detecting foreign substances between the wireless power receiver and the wireless power transmitter by the wireless power transmitter.
  • the wireless power transmission technology is a technology for wirelessly transferring power between a power source and an electronic device.
  • the wireless power transfer technology enables charging of the battery of a wireless terminal by simply placing a wireless terminal such as a smartphone or tablet on a wireless charging pad, so that it is more efficient than a wired charging environment using a conventional wired charging connector. It can provide excellent mobility, convenience and safety.
  • wireless power transmission technology is used in various fields such as electric vehicles, wearable devices such as Bluetooth earphones and 3D glasses, home appliances, furniture, underground facilities, buildings, medical devices, robots, and leisure. It is attracting attention as it will replace the existing wired power transmission environment.
  • the wireless power transmission method is also referred to as a contactless power transmission method, a no point of contact power transmission method, or a wireless charging method.
  • a wireless power transmission system includes a wireless power transmission device for supplying electrical energy in a wireless power transmission method, and wireless power reception for receiving electrical energy wirelessly supplied from the wireless power transmission device and supplying power to a power receiving device such as a battery cell. It may consist of a device.
  • Wireless power transmission technology includes a method of transmitting power through magnetic coupling, a method of transmitting power through radio frequency (RF), a method of transmitting power through microwaves, and ultrasound
  • the magnetic coupling-based method is again classified into a magnetic induction method and a magnetic resonance method.
  • the magnetic induction method is a method of transmitting energy using a current induced in the receiving coil due to the magnetic field generated by the transmitting coil battery cell according to electromagnetic coupling between the transmitting coil and the receiving coil.
  • the magnetic resonance method is similar to the magnetic induction method in that it uses a magnetic field. However, in the magnetic resonance method, resonance occurs when a specific resonant frequency is applied to the coil of the transmitting side and the coil of the receiving side. It is different from magnetic induction.
  • An object of the present specification is to provide a method of more accurately detecting foreign substances while transmitting wireless power to a wireless power receiver.
  • an object of the present specification is to provide a method for detecting foreign substances in a power calibration process.
  • a wireless power transmission method for solving the above problems is a wireless power transmission method by a wireless power transmission device for transmitting wireless power to a wireless power reception device, and digital ping to the wireless power reception device ping and receiving a response to the digital ping from the wireless power receiver, a configuration step of receiving a configuration packet from the wireless power receiver, and information related to a reference quality factor value from the wireless power receiver
  • a negotiation step of receiving a foreign material detection state packet including Receives a received power packet including information related to a received power value from the wireless power receiver, stops the transmission of the wireless power for a slot time based on the received power value, a voltage or The foreign material is detected based on a change in current.
  • a wireless power transmitter for solving the above problems transmits wireless power to a wireless power receiver, and a primary coil for transmitting the wireless power to the wireless power receiver
  • a power conversion circuit comprising: a communication/control circuit communicating with the wireless power receiver and controlling the power conversion circuit, wherein the communication/control circuit transmits a digital ping to the wireless power receiver; A ping step of receiving a response to the digital ping from a wireless power receiver, a configuration step of receiving a configuration packet from the wireless power receiver, and a foreign matter detection state including information related to a reference quality factor value from the wireless power receiver A negotiation step of receiving a packet, detecting foreign substances based on the reference quality factor value, and a power transmission step of transmitting the wireless power to the wireless power receiver are performed, and in the power transmission step, the wireless power receiver Receives a received power packet including information related to a received power value from, based on the received power value, stops the transmission of the wireless power for a slot time, and the voltage of the primary coil within the slot time or The foreign
  • the wireless power transmitter temporarily stops the wireless power transmission and uses the quality factor (Q factor) to measure the change in actual power loss. It is possible to more accurately detect foreign substances during power transmission by checking whether or not it is caused by
  • more accurate power calibration can be performed by detecting foreign substances during the power calibration protocol.
  • the effect according to the present invention is not limited by the contents exemplified above, and more various effects are included in the present specification.
  • FIG. 1 is a block diagram of a wireless power system 10 according to an embodiment.
  • FIG. 2 is a block diagram of a wireless power system 10 according to another embodiment.
  • 3A illustrates an embodiment of various electronic devices to which a wireless power transmission system is introduced.
  • 3B shows an example of WPC NDEF in a wireless power transmission system.
  • FIG. 4 is a block diagram of a wireless power transmission system according to another embodiment.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure.
  • FIG. 6 illustrates a power control control method according to an embodiment.
  • FIG. 7 is a block diagram of an apparatus for transmitting power wirelessly according to another embodiment.
  • FIG 8 shows an apparatus for receiving wireless power according to another embodiment.
  • FIG. 9 is a flowchart schematically illustrating a protocol of a ping step according to an embodiment.
  • FIG. 10 is a flowchart schematically illustrating a protocol of a configuration step according to an embodiment.
  • FIG. 11 is a diagram illustrating a message field of a configuration packet (CFG) of a wireless power receiver according to an embodiment.
  • CFG configuration packet
  • FIG. 12 is a flowchart schematically illustrating a protocol of a negotiation phase or a renegotiation phase according to an embodiment.
  • FIG. 13 is a diagram illustrating a message field of a capability packet (CAP) of a wireless power transmitter according to an embodiment.
  • CAP capability packet
  • FIG. 14 is a flowchart schematically illustrating a protocol of a power transmission step according to an embodiment.
  • 15 is a schematic circuit diagram of a wireless power transmitter supporting a foreign material detection method by a slotted Q FOD.
  • 16 is a graph schematically illustrating the voltage decay waveform of the primary coil during slot time.
  • 17 is a flowchart illustrating a method for detecting a foreign material according to an exemplary embodiment.
  • 19 is a diagram for explaining a method of obtaining effective peak values according to an embodiment
  • FIG. 20 is a diagram for describing a regression analysis method according to an exemplary embodiment.
  • 21 is a flowchart illustrating a method of obtaining a reference Q factor according to an embodiment.
  • 22 is a flowchart illustrating a method for correcting double-point power.
  • FIG. 23 is a graph showing an example of a power correction curve by a double-point power correction method.
  • 24 is a diagram illustrating a format of a message field of a received power packet according to an example.
  • 25 is a diagram illustrating a format of a message field of a received power packet according to another example.
  • 26 is a flowchart illustrating an improved power correction method according to an embodiment.
  • 27 is a flowchart illustrating a method for determining foreign substances during power transmission according to an embodiment.
  • a or B (A or B) may mean “only A”, “only B” or “both A and B”.
  • a or B (A or B)” may be interpreted as “A and/or B (A and/or B)”.
  • A, B or C(A, B or C) herein means “only A”, “only B”, “only C”, or “any and any combination of A, B and C ( any combination of A, B and C)”.
  • a slash (/) or a comma (comma) used herein may mean “and/or”.
  • A/B may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”.
  • A, B, C may mean “A, B, or C”.
  • At least one of A and B may mean “only A”, “only B” or “both A and B”.
  • the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as “at least one of A and B”.
  • At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C” Any combination of A, B and C”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means may mean “at least one of A, B and C”.
  • parentheses used herein may mean “for example”. Specifically, when displayed as “control information (PDCCH)”, “PDCCH” may be proposed as an example of “control information”. In other words, “control information” of the present specification is not limited to “PDCCH”, and “PDDCH” may be proposed as an example of “control information”. Also, even when displayed as “control information (ie, PDCCH)”, “PDCCH” may be proposed as an example of “control information”.
  • wireless power refers to any form of electric field, magnetic field, electromagnetic field, etc. transmitted from a wireless power transmitter to a wireless power receiver without the use of physical electromagnetic conductors.
  • used to mean the energy of Wireless power may also be called a wireless power signal, and may refer to an oscillating magnetic flux enclosed by a primary coil and a secondary coil.
  • Power conversion in a system is described herein for wirelessly charging devices including, for example, mobile phones, cordless phones, iPods, MP3 players, headsets, and the like.
  • a basic principle of wireless power transmission is, for example, a method of transmitting power through magnetic coupling, a method of transmitting power through a radio frequency (RF), and a microwave (microwave) method.
  • RF radio frequency
  • microwave microwave
  • FIG. 1 is a block diagram of a wireless power system 10 according to an embodiment.
  • a wireless power system 10 includes a wireless power transmitter 100 and a wireless power receiver 200 .
  • the wireless power transmitter 100 receives power from an external power source S to generate a magnetic field.
  • the wireless power receiving apparatus 200 receives power wirelessly by generating a current using the generated magnetic field.
  • the wireless power transmitter 100 and the wireless power receiver 200 may transmit/receive various information required for wireless power transmission.
  • the communication between the wireless power transmitter 100 and the wireless power receiver 200 is in-band communication using a magnetic field used for wireless power transmission or out-band communication using a separate communication carrier.
  • (out-band communication) may be performed according to any one method.
  • Out-band communication may be referred to as out-of-band communication.
  • terms will be unified as out-band communication. Examples of out-band communication may include NFC, Bluetooth (bluetooth), BLE (bluetooth low energy), and the like.
  • the wireless power transmitter 100 may be provided as a fixed type or a mobile type.
  • fixed types include embedded in furniture such as ceilings, walls, tables, etc., installed in outdoor parking lots, bus stops, subway stations, etc. There is this.
  • the portable wireless power transmission device 100 may be implemented as a portable device having a movable weight or size, or as a part of another device, such as a cover of a notebook computer.
  • the wireless power receiver 200 should be interpreted as a comprehensive concept including various electronic devices including batteries and various home appliances that are driven by receiving power wirelessly instead of a power cable.
  • Representative examples of the wireless power receiver 200 include a mobile terminal, a cellular phone, a smart phone, a personal digital assistant (PDA), and a portable media player (PMP: Portable Media Player), Wibro terminals, tablets, phablets, notebooks, digital cameras, navigation terminals, televisions, electric vehicles (EVs), and the like.
  • FIG. 2 is a block diagram of a wireless power system 10 according to another embodiment.
  • the wireless power transmitter 100 and the wireless power receiver 200 exchange power on a one-to-one basis, but as shown in FIG. 2 , one wireless power transmitter 100 includes a plurality of wireless power receivers. It is also possible to transfer power to (200-1, 200-2,..., 200-M). In particular, when wireless power transmission is performed in a magnetic resonance method, one wireless power transmission device 100 applies a simultaneous transmission method or a time division transmission method to simultaneously multiple wireless power reception devices 200-1, 200-2, ...,200-M) can deliver power.
  • FIG. 1 shows a state in which the wireless power transmitter 100 directly transmits power to the wireless power receiver 200
  • the wireless power transmitter 100 and the wireless power receiver 200 are connected wirelessly.
  • a separate wireless power transmission/reception device such as a relay or repeater for increasing the power transmission distance may be provided.
  • power may be transmitted from the wireless power transmitter 100 to the wireless power transceiver, and the wireless power transceiver may again transmit power to the wireless power receiver 200 .
  • the wireless power receiver, the power receiver, and the receiver referred to in this specification refer to the wireless power receiving apparatus 200 .
  • the wireless power transmitter, the power transmitter, and the transmitter referred to in this specification refer to the wireless power receiving and transmitting apparatus 100 .
  • 3A illustrates an embodiment of various electronic devices to which a wireless power transmission system is introduced.
  • FIG. 3A shows electronic devices classified according to the amount of power transmitted and received in the wireless power transmission system.
  • wearable devices such as a smart watch, a smart glass, a head mounted display (HMD), and a smart ring and an earphone, a remote control, a smart phone, a PDA, a tablet
  • a low-power (about 5W or less or about 20W or less) wireless charging method may be applied to mobile electronic devices (or portable electronic devices) such as a PC.
  • a medium-power (about 50W or less or about 200W or less) wireless charging method can be applied to small and medium-sized home appliances such as laptop computers, robot cleaners, TVs, sound devices, vacuum cleaners, and monitors.
  • Kitchen appliances such as blenders, microwave ovens, and electric rice cookers, personal mobility devices (or electronic devices/mobilities) such as wheelchairs, electric kickboards, electric bicycles, and electric vehicles, use high power (about 2 kW or less or 22 kW or less)
  • a wireless charging method may be applied.
  • the electronic devices/mobile means described above may each include a wireless power receiver to be described later. Accordingly, the above-described electronic devices/mobile means may be charged by wirelessly receiving power from the wireless power transmitter.
  • Standards for wireless power transmission include a wireless power consortium (WPC), an air fuel alliance (AFA), and a power matters alliance (PMA).
  • WPC wireless power consortium
  • AFA air fuel alliance
  • PMA power matters alliance
  • the WPC standard defines a baseline power profile (BPP) and an extended power profile (EPP).
  • BPP relates to a wireless power transmitter and receiver supporting 5W power transmission
  • EPP relates to a wireless power transmitter and receiver supporting power transmission in a range greater than 5W and less than 30W.
  • the WPC classifies a wireless power transmitter and a receiver into power class (PC) -1, PC0, PC1, and PC2, and provides standard documents for each PC.
  • PC power class
  • the PC-1 standard relates to a wireless power transmitter and receiver that provide guaranteed power of less than 5W.
  • Applications of PC-1 include wearable devices such as smart watches.
  • the PC0 standard relates to a wireless power transmitter and receiver that provide a guaranteed power of 5W.
  • the PC0 standard includes EPP with guaranteed power up to 30W.
  • in-band (IB) communication is a mandatory communication protocol of PC0
  • out-band (OB) communication used as an optional backup channel may also be used.
  • the wireless power receiver can identify whether OB is supported by setting an OB flag in a configuration packet.
  • the wireless power transmitter supporting the OB may enter the OB handover phase by transmitting a bit-pattern for OB handover as a response to the configuration packet.
  • the response to the configuration packet may be NAK, ND, or a newly defined 8-bit pattern.
  • Applications of PC0 include smartphones.
  • the PC1 standard relates to a wireless power transmitter and receiver that provide guaranteed power of 30W to 150W.
  • the OB is an essential communication channel for PC1, and the IB is used for initialization and link establishment to the OB.
  • the wireless power transmitter may enter the OB handover phase by using a bit pattern for OB handover.
  • Applications of PC1 include laptops and power tools.
  • the PC2 standard relates to a wireless power transmitter and receiver that provide guaranteed power of 200W to 2kW, and its applications include kitchen appliances.
  • PCs may be distinguished according to the power level, and whether to support the same compatibility between PCs may be optional or mandatory.
  • compatibility between identical PCs means that power transmission and reception are possible between identical PCs.
  • compatibility between different PCs may be supported.
  • compatibility between different PCs means that power transmission/reception is possible even between different PCs.
  • the wireless power transmitter having PC x can charge the wireless power receiver having PC y, it can be seen that compatibility between different PCs is maintained.
  • a wireless power receiver of the lap-top charging method that can stably charge only when power is continuously transmitted is called a wireless power transmitter of the same PC. Even so, there may be a problem in stably receiving power from the wireless power transmitter of the electric tool type that transmits power discontinuously.
  • the wireless power receiver may There is a risk of breakage. As a result, it is difficult for a PC to be an index/standard representing/indicating compatibility.
  • Wireless power transmission and reception devices can provide a very convenient user experience and interface (UX/UI). That is, a smart wireless charging service may be provided.
  • the smart wireless charging service may be implemented based on the UX/UI of a smartphone including a wireless power transmitter.
  • the interface between the smartphone's processor and the wireless charging receiver allows "drop and play" bidirectional communication between the wireless power transmitter and the receiver.
  • a 'profile' will be newly defined as an indicator/standard representing/indicating compatibility. That is, it can be interpreted that compatibility is maintained between wireless power transceivers having the same 'profile' so that stable power transmission and reception is possible, and power transmission and reception is impossible between wireless power transceivers having different 'profiles'.
  • Profiles may be defined according to application and/or compatibility independent of (or independently of) power class.
  • the profile can be broadly divided into three categories: i) mobile and computing, ii) power tools, and iii) kitchen.
  • the profile can be largely divided into i) mobile, ii) electric tool, iii) kitchen, and iv) wearable.
  • PC can be defined as PC0 and/or PC1
  • communication protocol/method is IB and OB
  • operating frequency is 87 ⁇ 205kHz
  • examples of applications include smartphones, laptops, etc.
  • the PC may be defined as PC1
  • the communication protocol/method may be IB
  • the operating frequency may be defined as 87 to 145 kHz
  • an electric tool may exist as an example of the application.
  • the PC may be defined as PC2, the communication protocol/method is NFC-based, and the operating frequency is less than 100 kHz, and examples of the application may include kitchen/home appliances.
  • NFC communication can be used between the wireless power transmitter and the receiver.
  • WPC NDEF NFC Data Exchange Profile Format
  • the wireless power transmitter and the receiver can confirm that they are NFC devices.
  • 3B shows an example of WPC NDEF in a wireless power transmission system.
  • the WPC NDEF is, for example, an application profile field (eg 1B), a version field (eg 1B), and profile specific data (eg 1B).
  • the application profile field indicates whether the device is i) mobile and computing, ii) powered tools, and iii) kitchen, the upper nibble of the version field indicates the major version and the lower nibble (lower nibble) indicates a minor version.
  • Profile-specific data also defines the content for the kitchen.
  • the PC may be defined as PC-1
  • the communication protocol/method may be IB
  • the operating frequency may be defined as 87 to 205 kHz
  • examples of the application may include a wearable device worn on the user's body.
  • Maintaining compatibility between the same profiles may be essential, and maintaining compatibility between different profiles may be optional.
  • profiles may be generalized and expressed as first to nth profiles, and new profiles may be added/replaced according to WPC standards and embodiments.
  • the wireless power transmitter selectively transmits power only to the wireless power receiver having the same profile as itself, thereby enabling more stable power transmission.
  • the burden on the wireless power transmitter is reduced and power transmission to an incompatible wireless power receiver is not attempted, the risk of damage to the wireless power receiver is reduced.
  • PC1 in the 'mobile' profile can be defined by borrowing optional extensions such as OB based on PC0, and in the case of the 'powered tools' profile, the PC1 'mobile' profile can be defined simply as a modified version.
  • OB optional extensions
  • the wireless power transmitter or the wireless power receiver may inform the other party of its profile through various methods.
  • the AFA standard refers to the wireless power transmitter as a power transmitting unit (PTU), and the wireless power receiver as a power receiving unit (PRU), and the PTU is classified into a number of classes as shown in Table 1, and the PRU is as shown in Table 2 classified into a number of categories.
  • the maximum output power capability of the class n PTU is greater than or equal to the P TX_IN_MAX value of the corresponding class.
  • the PRU cannot draw power greater than the power specified in that category.
  • FIG. 4 is a block diagram of a wireless power transmission system according to another embodiment.
  • the wireless power transmission system 10 includes a mobile device 450 wirelessly receiving power and a base station 400 wirelessly transmitting power.
  • the base station 400 is a device that provides inductive power or resonant power, and may include at least one wireless power transmitter 100 and a system circuit 405 .
  • the wireless power transmitter 100 may transmit inductive power or resonant power and control the transmission.
  • the wireless power transmitter 100 transmits power to an appropriate level and a power conversion circuit 110 that converts electrical energy into a power signal by generating a magnetic field through a primary coil(s)
  • a communication/control circuit 120 for controlling communication and power transfer with the wireless power receiver 200 may be included.
  • the system circuit 405 may perform input power provisioning, control of a plurality of wireless power transmitters, and other operation control of the base station 400 such as user interface control.
  • the primary coil may generate an electromagnetic field using AC power (or voltage or current).
  • the primary coil may receive AC power (or voltage or current) of a specific frequency output from the power conversion circuit 110 and may generate a magnetic field of a specific frequency accordingly.
  • the magnetic field may be generated non-radiatively or radially, and the wireless power receiver 200 receives it and generates a current. In other words, the primary coil transmits power wirelessly.
  • the primary coil and the secondary coil may have any suitable shape, for example, a copper wire wound around a high permeability formation such as ferrite or amorphous metal.
  • the primary coil may be referred to as a transmitting coil, a primary core, a primary winding, a primary loop antenna, or the like.
  • the secondary coil may be called a receiving coil, a secondary core, a secondary winding, a secondary loop antenna, a pickup antenna, etc. .
  • the primary coil and the secondary coil may be provided in the form of a primary resonance antenna and a secondary resonance antenna, respectively.
  • the resonant antenna may have a resonant structure including a coil and a capacitor.
  • the resonant frequency of the resonant antenna is determined by the inductance of the coil and the capacitance of the capacitor.
  • the coil may be formed in the form of a loop.
  • a core may be disposed inside the loop.
  • the core may include a physical core such as a ferrite core or an air core.
  • the resonance phenomenon refers to a phenomenon in which, when a near field corresponding to a resonant frequency is generated in one resonant antenna, when other resonant antennas are located around, both resonant antennas are coupled to each other and high efficiency energy transfer occurs between the resonant antennas. .
  • a magnetic field corresponding to the resonant frequency is generated between the primary resonant antenna and the secondary resonant antenna, a phenomenon occurs in which the primary resonant antenna and the secondary resonant antenna resonate with each other.
  • the magnetic field is focused toward the secondary resonant antenna with higher efficiency compared to the case where the magnetic field is radiated into free space, and thus energy can be transferred from the primary resonant antenna to the secondary resonant antenna with high efficiency.
  • the magnetic induction method may be implemented similarly to the magnetic resonance method, but in this case, the frequency of the magnetic field does not need to be the resonant frequency. Instead, in the magnetic induction method, matching between the loops constituting the primary coil and the secondary coil is required, and the distance between the loops must be very close.
  • the wireless power transmitter 100 may further include a communication antenna.
  • the communication antenna may transmit and receive communication signals using a communication carrier other than magnetic field communication.
  • the communication antenna may transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 120 may transmit/receive information to and from the wireless power receiver 200 .
  • the communication/control circuit 120 may include at least one of an IB communication module and an OB communication module.
  • the IB communication module may transmit/receive information using a magnetic wave having a specific frequency as a center frequency.
  • the communication/control circuit 120 performs in-band communication by loading communication information on the operating frequency of wireless power transmission and transmitting it through the primary coil or by receiving the operating frequency containing the information through the primary coil. can do.
  • modulation schemes such as binary phase shift keying (BPSK), frequency shift keying (FSK) or amplitude shift keying (ASK) and Manchester coding or non-zero return level (NZR) -L: Non-return-to-zero level
  • BPSK binary phase shift keying
  • FSK frequency shift keying
  • ASK amplitude shift keying
  • NZR non-zero return level
  • the OB communication module may perform out-band communication through a communication antenna.
  • the communication/control circuit 120 may be provided as a short-range communication module.
  • Examples of the short-distance communication module include communication modules such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 120 may control the overall operation of the wireless power transmitter 100 .
  • the communication/control circuit 120 may perform calculation and processing of various types of information, and may control each component of the wireless power transmission apparatus 100 .
  • the communication/control circuit 120 may be implemented as a computer or a similar device using hardware, software, or a combination thereof.
  • the communication/control circuit 120 may be provided in the form of an electronic circuit that processes electrical signals to perform a control function, and in software, in the form of a program for driving the communication/control circuit 120 in hardware. can be provided.
  • the communication/control circuit 120 may control the transmit power by controlling an operating point.
  • the operating point to be controlled may correspond to a combination of frequency (or phase), duty cycle, duty ratio, and voltage amplitude.
  • the communication/control circuit 120 may control the transmission power by adjusting at least one of a frequency (or phase), a duty cycle, a duty ratio, and a voltage amplitude.
  • the wireless power transmitter 100 may supply constant power
  • the wireless power receiver 200 may control the received power by controlling the resonance frequency.
  • the mobile device 450 receives and stores the power received from the wireless power receiver 200 and the wireless power receiver 200 for receiving wireless power through a secondary coil, and stores the device. Includes a load (load, 455) to supply to.
  • the wireless power receiver 200 may include a power pick-up circuit 210 and a communication/control circuit 220 .
  • the power pickup circuit 210 may receive wireless power through the secondary coil and convert it into electrical energy.
  • the power pickup circuit 210 rectifies the AC signal obtained through the secondary coil and converts it into a DC signal.
  • the communication/control circuit 220 may control transmission and reception of wireless power (power transmission and reception).
  • the secondary coil may receive wireless power transmitted from the wireless power transmitter 100 .
  • the secondary coil may receive power using a magnetic field generated in the primary coil.
  • the specific frequency is the resonance frequency
  • a magnetic resonance phenomenon occurs between the primary coil and the secondary coil, so that power can be transmitted more efficiently.
  • the communication/control circuit 220 may further include a communication antenna.
  • the communication antenna may transmit and receive communication signals using a communication carrier other than magnetic field communication.
  • the communication antenna may transmit and receive communication signals such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 220 may transmit/receive information to and from the wireless power transmitter 100 .
  • the communication/control circuit 220 may include at least one of an IB communication module and an OB communication module.
  • the IB communication module may transmit/receive information using a magnetic wave having a specific frequency as a center frequency.
  • the communication/control circuit 220 may perform IB communication by loading information on a magnetic wave and transmitting it through a secondary coil or by receiving a magnetic wave containing information through a secondary coil.
  • modulation schemes such as binary phase shift keying (BPSK), frequency shift keying (FSK) or amplitude shift keying (ASK) and Manchester coding or non-zero return level (NZR) -L: Non-return-to-zero level
  • BPSK binary phase shift keying
  • FSK frequency shift keying
  • ASK amplitude shift keying
  • NZR non-zero return level
  • the OB communication module may perform out-band communication through a communication antenna.
  • the communication/control circuit 220 may be provided as a short-range communication module.
  • Examples of the short-distance communication module include communication modules such as Wi-Fi, Bluetooth, Bluetooth LE, ZigBee, and NFC.
  • the communication/control circuit 220 may control the overall operation of the wireless power receiver 200 .
  • the communication/control circuit 220 may perform calculation and processing of various types of information, and may control each component of the wireless power receiver 200 .
  • the communication/control circuit 220 may be implemented as a computer or a similar device using hardware, software, or a combination thereof.
  • the communication/control circuit 220 may be provided in the form of an electronic circuit that processes electrical signals to perform a control function, and in software, in the form of a program that drives the communication/control circuit 220 in hardware. can be provided.
  • the coil or the coil unit may be referred to as a coil assembly, a coil cell, or a cell including a coil and at least one element adjacent to the coil.
  • 5 is a state transition diagram for explaining a wireless power transmission procedure.
  • the power transmission from the wireless power transmitter to the receiver is largely a selection phase (selection phase, 510), a ping phase (ping phase, 520), identification and configuration phase (identification) and configuration phase, 530), a negotiation phase (540), a calibration phase (550), a power transfer phase (560), and a renegotiation phase (570). .
  • the selection step 510 transitions when a specific error or a specific event is detected while initiating or maintaining the power transmission - including, for example, reference numerals S502, S504, S508, S510 and S512.
  • the wireless power transmitter may monitor whether an object is present on the interface surface. If the wireless power transmitter detects that an object is placed on the interface surface, it may transition to the ping step 520 .
  • the wireless power transmitter transmits an analog ping signal that is a power signal (or pulse) corresponding to a very short duration, and the current of the transmitting coil or the primary coil Based on the change, it is possible to detect whether an object is present in an active area of the interface surface.
  • the wireless power transmitter may measure a quality factor of a wireless power resonance circuit (eg, a power transmission coil and/or a resonance capacitor).
  • a quality factor may be measured in order to determine whether the wireless power receiver is placed in the charging area together with the foreign material.
  • an inductance and/or a series resistance component in the coil may be reduced due to an environmental change, thereby reducing a quality factor value.
  • the wireless power transmitter may receive a pre-measured reference quality factor value from the wireless power receiver in a state in which the foreign substance is not disposed in the charging area.
  • the presence of foreign substances may be determined by comparing the reference quality factor value received in the negotiation step 540 with the measured quality factor value.
  • a specific wireless power receiving device may have a low reference quality factor value depending on the type, use, and characteristics of the wireless power receiving device. In this case, since there is no significant difference between the measured quality factor value and the reference quality factor value, it may be difficult to determine the presence of foreign substances. Therefore, it is necessary to further consider other determining factors or to determine the presence of foreign substances by using other methods.
  • a quality factor value within a specific frequency domain may be measured in order to determine whether the object is disposed with the foreign material in the charging area.
  • the inductance and/or the series resistance component in the coil may be reduced due to environmental changes, and thus the resonance frequency of the coil of the wireless power transmitter may be changed (shifted). That is, the quality factor peak frequency, which is the frequency at which the maximum quality factor value within the operating frequency band is measured, may be moved.
  • the wireless power transmitter wakes up the receiver and transmits a digital ping for identifying whether the detected object is a wireless power receiver.
  • the wireless power transmitter may transition back to the selection step 510 .
  • the wireless power transmitter receives a signal indicating that power transmission is complete from the receiver in the ping step 520 , that is, a charging complete packet, it may transition to the selection step 510 .
  • the wireless power transmitter may transition to the identification and configuration step 530 for identifying the receiver and collecting receiver configuration and state information.
  • the wireless power transmitter receives an unwanted packet (unexpected packet), or a desired packet is not received for a predefined time (time out), or there is a packet transmission error (transmission error), If a power transfer contract is not established (no power transfer contract), the transition may be performed to the selection step 510 .
  • the wireless power transmitter may determine whether it is necessary to enter the negotiation step 540 based on the negotiation field value of the configuration packet received in the identification and configuration step 530 . As a result of the check, if negotiation is necessary, the wireless power transmitter may enter a negotiation step 540 to perform a predetermined FOD detection procedure. On the other hand, as a result of the check, if negotiation is not required, the wireless power transmitter may directly enter the power transmission step 560 .
  • the wireless power transmitter may receive a Foreign Object Detection (FOD) status packet including a reference quality factor value.
  • FOD status packet including the reference peak frequency value may be received.
  • a status packet including a reference quality factor value and a reference peak frequency value may be received.
  • the wireless power transmitter may determine a quality factor threshold for FO detection based on the reference quality factor value.
  • the wireless power transmitter may determine a peak frequency threshold for FO detection based on a reference peak frequency value.
  • the wireless power transmitter can detect whether FO is present in the charging area using the determined quality factor threshold for FO detection and the currently measured quality factor value (quality factor value measured before the ping step), and Power transmission can be controlled accordingly. For example, when the FO is detected, power transmission may be stopped, but is not limited thereto.
  • the wireless power transmitter can detect whether FO is present in the charging area using the determined peak frequency threshold for FO detection and the currently measured peak frequency value (the peak frequency value measured before the ping step), and Power transmission can be controlled accordingly. For example, when the FO is detected, power transmission may be stopped, but is not limited thereto.
  • the wireless power transmitter may return to the selection step 510 .
  • the wireless power transmitter may enter the power transfer step 560 through the correction step 550 .
  • the wireless power transmitter determines the intensity of power received by the receiver in the correction step 550, and the receiver and the receiver to determine the intensity of power transmitted from the transmitter. Power loss at the transmitting end can be measured. That is, the wireless power transmitter may estimate the power loss based on the difference between the transmit power of the transmitter and the receive power of the receiver in the correction step 550 .
  • the wireless power transmitter may correct a threshold for FOD detection by reflecting the predicted power loss.
  • the wireless power transmitter receives an unwanted packet (unexpected packet), a desired packet is not received for a predefined time (time out), or a violation of a preset power transmission contract occurs Otherwise (power transfer contract violation) or when charging is completed, the process may shift to the selection step 510 .
  • the wireless power transmitter may transition to the renegotiation step 570 when it is necessary to reconfigure the power transmission contract according to a change in the state of the wireless power transmitter. In this case, when the renegotiation is normally completed, the wireless power transmitter may return to the power transmission step 560 .
  • the calibration step 550 may be integrated into the power transmission step 560. In this case, in the calibration step 550, Operations may be performed in a power transfer step 560 .
  • the power transmission contract may be established based on status and characteristic information of the wireless power transmitter and the receiver.
  • the wireless power transmitter state information may include information on the maximum transmittable power amount, information on the maximum acceptable number of receivers, and the like, and the receiver state information may include information on required power and the like.
  • FIG. 6 illustrates a power control control method according to an embodiment.
  • the wireless power transmitter 100 and the wireless power receiver 200 may control the amount of transmitted power by concurrently communicating with power transmission/reception.
  • the wireless power transmitter and the wireless power receiver operate at a specific control point.
  • the control point represents a combination of voltage and current provided from an output of the wireless power receiver when power transfer is performed.
  • the wireless power receiver selects a desired control point - a desired output current/voltage, a temperature at a specific location of the mobile device, and additionally an actual control point currently operating. ) to determine
  • the wireless power receiver may calculate a control error value using a desired control point and an actual control point, and transmit it to the wireless power transmitter as a control error packet.
  • the wireless power transmitter may control power transfer by setting/controlling a new operating point - amplitude, frequency, and duty cycle - using the received control error packet. Therefore, the control error packet is transmitted/received at regular time intervals in the strategy delivery step, and as an embodiment, the wireless power receiver sets the control error value to a negative number when trying to reduce the current of the wireless power transmitter, and a control error when trying to increase the current. It can be transmitted by setting the value to a positive number. As described above, in the induction mode, the wireless power receiver can control power transfer by transmitting a control error packet to the wireless power transmitter.
  • the resonance mode which will be described below, may operate in a different manner from that in the induction mode.
  • one wireless power transmitter In the resonance mode, one wireless power transmitter must be able to simultaneously serve a plurality of wireless power receivers.
  • the wireless power transmitter transmits basic power in common, and the wireless power receiver attempts to control the amount of power received by controlling its own resonance frequency.
  • the method described with reference to FIG. 6 is not completely excluded even in the resonance mode operation, and additional transmission power control may be performed by the method of FIG. 6 .
  • the 7 is a block diagram of an apparatus for transmitting power wirelessly according to another embodiment. This may belong to a wireless power transmission system of a magnetic resonance method or a shared mode.
  • the shared mode may refer to a mode in which one-to-many communication and charging are performed between the wireless power transmitter and the wireless power receiver.
  • the shared mode may be implemented in a magnetic induction method or a resonance method.
  • the wireless power transmitter 700 includes a cover 720 covering the coil assembly, a power adapter 730 for supplying power to the power transmitter 740 , a power transmitter 740 for wirelessly transmitting power, or at least one of a user interface 750 providing power transfer progress and other related information.
  • the user interface 750 may be optionally included or may be included as another user interface 750 of the wireless power transmitter 700 .
  • the power transmitter 740 may include at least one of a coil assembly 760 , an impedance matching circuit 770 , an inverter 780 , a communication circuit 790 , and a control circuit 710 .
  • the coil assembly 760 includes at least one primary coil that generates a magnetic field, and may be referred to as a coil cell.
  • the impedance matching circuit 770 may provide impedance matching between the inverter and the primary coil(s).
  • the impedance matching circuit 770 may generate a resonance at a suitable frequency to boost the primary coil current.
  • the impedance matching circuitry in the multi-coil power transmitter 740 may further include a multiplex to route a signal from the inverter to a subset of the primary coils.
  • the impedance matching circuit may be referred to as a tank circuit.
  • the impedance matching circuit 770 may include a capacitor, an inductor, and a switching element for switching a connection thereof. Impedance matching detects a reflected wave of wireless power transmitted through the coil assembly 760, and switches a switching element based on the detected reflected wave to adjust the connection state of the capacitor or inductor, adjust the capacitance of the capacitor, or adjust the inductance of the inductor This can be done by adjusting.
  • the impedance matching circuit 770 may be omitted, and the present specification also includes an embodiment of the wireless power transmitter 700 in which the impedance matching circuit 770 is omitted.
  • Inverter 780 may convert a DC input to an AC signal. Inverter 780 may be driven half-bridge or full-bridge to generate pulse waves of an adjustable frequency and duty cycle. The inverter may also include a plurality of stages to adjust the input voltage level.
  • the communication circuit 790 may communicate with the power receiver.
  • the power receiver performs load modulation to communicate requests and information to the power transmitter.
  • the power transmitter 740 may monitor the amplitude and/or phase of the current and/or voltage of the primary coil to demodulate data transmitted by the power receiver using the communication circuitry 790 .
  • the power transmitter 740 may control the output power to transmit data using a frequency shift keying (FSK) method or the like through the communication circuit 790 .
  • FSK frequency shift keying
  • the control circuit 710 may control communication and power transmission of the power transmitter 740 .
  • the control circuit 710 may control power transmission by adjusting the above-described operating point.
  • the operating point may be determined by, for example, at least one of an operating frequency, a duty cycle, and an input voltage.
  • the communication circuit 790 and the control circuit 710 may be provided as separate circuits/devices/chipsets or as one circuit/device/chipset.
  • FIG. 8 shows an apparatus for receiving wireless power according to another embodiment. This may belong to a wireless power transmission system of a magnetic resonance method or a shared mode.
  • the wireless power receiving device 800 includes a user interface 820 that provides power transfer progress and other related information, a power receiver 830 that receives wireless power, a load circuit 840 or a coil assembly. It may include at least one of the base 850 to support and cover. In particular, the user interface 820 may be optionally included or may be included as another user interface 82 of the power receiving equipment.
  • the power receiver 830 may include at least one of a power converter 860 , an impedance matching circuit 870 , a coil assembly 880 , a communication circuit 890 , and a control circuit 810 .
  • the power converter 860 may convert AC power received from the secondary coil into a voltage and current suitable for a load circuit.
  • the power converter 860 may include a rectifier.
  • the rectifier may rectify the received wireless power and convert it from AC to DC.
  • the rectifier may convert alternating current to direct current using a diode or transistor, and smooth it using a capacitor and a resistor.
  • a full-wave rectifier, a half-wave rectifier, and a voltage multiplier implemented as a bridge circuit or the like may be used.
  • the power converter may adapt the reflected impedance of the power receiver.
  • the impedance matching circuit 870 may provide impedance matching between the combination of the power converter 860 and the load circuit 840 and the secondary coil. As an embodiment, the impedance matching circuit may generate a resonance near 100 kHz that may enhance power transfer.
  • the impedance matching circuit 870 may include a capacitor, an inductor, and a switching element for switching a combination thereof. Impedance matching may be performed by controlling a switching element of a circuit constituting the impedance matching circuit 870 based on a voltage value, a current value, a power value, a frequency value, etc. of the received wireless power. In some cases, the impedance matching circuit 870 may be omitted, and the present specification includes an embodiment of the wireless power receiver 200 in which the impedance matching circuit 870 is omitted.
  • the coil assembly 880 includes at least one secondary coil, and may optionally further include an element for shielding a metal part of the receiver from a magnetic field.
  • Communication circuitry 890 may perform load modulation to communicate requests and other information to the power transmitter.
  • the power receiver 830 may switch a resistor or a capacitor to change the reflected impedance.
  • the control circuit 810 may control the received power. To this end, the control circuit 810 may determine/calculate a difference between an actual operating point of the power receiver 830 and a desired operating point. In addition, the control circuit 810 may adjust/reduce the difference between the actual operating point and the desired operating point by adjusting the reflected impedance of the power transmitter and/or performing a request to adjust the operating point of the power transmitter. When this difference is minimized, optimal power reception can be performed.
  • the communication circuit 890 and the control circuit 810 may be provided as separate devices/chipsets or as one device/chipset.
  • the wireless power transmitter and the wireless power receiver enter the Negotiation Phase through a ping phase, a configuration phase, or a ping phase, a configuration phase, a negotiation phase. It can enter the power transfer phase through , and then enter the re-negotiation phase.
  • FIG. 9 is a flowchart schematically illustrating a protocol of a ping step according to an embodiment.
  • the wireless power transmitter 1010 checks whether an object exists in an operating volume by transmitting an analog ping ( S1101 ).
  • the wireless power transmitter 1010 may detect whether an object exists in the working space based on a change in current of a transmission coil or a primary coil.
  • the wireless power transmitter 1010 When it is determined that there is an object in the working space by analog ping, the wireless power transmitter 1010 performs foreign material detection (FOD) before power transmission to check whether there is a foreign object in the operating volume. It can be done (S1102).
  • the wireless power transmitter 1010 may perform an operation for protecting the NFC card and/or the RFID tag.
  • the wireless power transmitter 1010 identifies the wireless power receiver 1020 by transmitting a digital ping (S1103).
  • the wireless power receiver 1020 recognizes the wireless power transmitter 1010 by receiving the digital ping.
  • the wireless power receiver 1020 Upon receiving the digital ping, the wireless power receiver 1020 transmits a signal strength data packet (SIG) to the wireless power transmitter 1010 ( S1104 ).
  • SIG signal strength data packet
  • the wireless power transmitter 1010 receiving the SIG from the wireless power receiver 1020 may identify that the wireless power receiver 1020 is located in an operating volume.
  • FIG. 10 is a flowchart schematically illustrating a protocol of a configuration step according to an embodiment.
  • the wireless power receiver 1020 transmits its identification information to the wireless power transmitter 1010 , and the wireless power receiver 1020 and the wireless power transmitter 1010 . may establish a baseline Power Transfer Contract.
  • the wireless power receiver 1020 may transmit an identification data packet (ID) to the wireless power transmitter 1010 to identify itself (S1201). Also, the wireless power receiver 1020 may transmit an extended identification data packet (XID) to the wireless power transmitter 1010 ( S1202 ). Also, the wireless power receiver 1020 may transmit a power control hold-off data packet (PCH) to the wireless power transmitter 1010 for a power transmission contract or the like (S1203). Also, the wireless power receiver 1020 may transmit a configuration data packet (CFG) to the wireless power transmitter (S1204).
  • ID identification data packet
  • XID extended identification data packet
  • PCH power control hold-off data packet
  • CFG configuration data packet
  • the wireless power transmitter 1010 may transmit an ACK in response to the CFG (S1205).
  • FIG. 11 is a diagram illustrating a message field of a configuration packet (CFG) of a wireless power receiver according to an embodiment.
  • CFG configuration packet
  • the configuration packet (CFG) may have a header value of 0x51, and referring to FIG. 14 , may include a 5-byte message field.
  • a 1-bit authentication (AI) flag and a 1-bit out-of-band (OB) flag may be included in the message field of the configuration packet (CFG).
  • the authentication flag AI indicates whether the wireless power receiver 1020 supports the authentication function. For example, if the value of the authentication flag AI is '1', it indicates that the wireless power receiver 1020 supports an authentication function or operates as an authentication initiator, and the authentication flag AI If the value of is '0', it may indicate that the wireless power receiver 1020 does not support the authentication function or cannot operate as an authentication initiator.
  • the out-band (OB) flag indicates whether the wireless power receiver 1020 supports out-band communication. For example, if the value of the out-band (OB) flag is '1', the wireless power receiver 1020 instructs out-band communication, and if the value of the out-band (OB) flag is '0', the wireless power receiver 1020 ( 1020) may indicate that out-band communication is not supported.
  • the wireless power transmitter 1010 may receive the configuration packet (CFG) of the wireless power receiver 1020 and check whether the wireless power receiver 1020 supports the authentication function and whether out-band communication is supported. .
  • CFG configuration packet
  • FIG. 12 is a flowchart schematically illustrating a protocol of a negotiation phase or a renegotiation phase according to an embodiment.
  • a power transmission contract may be renewed, or information may be exchanged for establishing out-band communication.
  • the wireless power transmitter 1010 receives information on the reference quality factor value from the wireless power receiver 1020 , compares the reference quality factor value with the measured quality factor value to obtain foreign substances existence can be determined.
  • the wireless power receiver 1020 may transmit a foreign object status packet (FOD) for foreign object detection (FOD) to the wireless power transmitter 1010. There is (S1301).
  • FOD foreign object status packet
  • S1301 foreign object detection
  • the foreign material status packet may be packets each including information related to a reference quality factor (Qt(ref)) and a reference resonance frequency (Resonance Frequency).
  • the wireless power transmitter 1010 may determine whether foreign matter exists between the wireless power transmitter 1010 and the wireless power receiver 1020 based on information included in the foreign matter status packet (FOD).
  • the wireless power transmitter 1010 may transmit an ACK if it is determined that there is no foreign material, and may transmit a NAK if it is determined that there is a foreign material (S1302).
  • the wireless power receiver 1020 transmits an identification data packet (ID) and a capabilities data packet (CAP) of the wireless power transmitter 1010 using a GRQ (General Request data packet).
  • ID identification data packet
  • CAP capabilities data packet
  • the general request packet (GRQ) may have a header value of 0x07 and may include a 1-byte message field.
  • the message field of the general request packet (GRQ) may include a header value of a data packet that the wireless power receiver 1020 requests from the wireless power transmitter 1010 using the GRQ packet. For example, when the wireless power receiver 1020 requests the ID packet of the wireless power transmitter 1010 using the GRQ packet, the wireless power receiver 1020 wirelessly enters the message field of the general request packet (GRQ).
  • a general request packet (GRQ/id) including a header value (0x30) of the ID packet of the power transmitter 1010 is transmitted.
  • the wireless power receiver 1020 transmits a GRQ packet (GRQ/id) requesting an ID packet of the wireless power transmitter 1010 to the wireless power transmitter 1010 . It can be transmitted (S1303).
  • GRQ/id GRQ/id
  • the wireless power transmitter 1010 receiving the GRQ/id may transmit the ID packet to the wireless power receiver 1020 (S1304).
  • the ID packet of the wireless power transmitter 1010 includes information on the Manufacturer Code.
  • the ID packet including information on the Manufacturer Code enables the manufacturer of the wireless power transmitter 1010 to be identified.
  • the wireless power receiver 1020 transmits a GRQ packet (GRQ/cap) requesting a performance packet (CAP) of the wireless power transmitter 1010 to the wireless power transmitter ( 1010) (S1305).
  • the message field of the GRQ/cap may include a header value (0x31) of the performance packet (CAP).
  • the wireless power transmitter 1010 may transmit a performance packet (CAP) to the wireless power receiver 1020 (S1306).
  • CAP performance packet
  • FIG. 13 is a diagram illustrating a message field of a capability packet (CAP) of a wireless power transmitter according to an embodiment.
  • CAP capability packet
  • the capability packet (CAP) may have a header value of 0x31, and referring to FIG. 16 , may include a message field of 3 bytes.
  • a 1-bit authentication (AR) flag and a 1-bit out-of-band (OB) flag may be included in the message field of the capability packet (CAP).
  • the authentication flag AR indicates whether the wireless power transmitter 1010 supports the authentication function. For example, if the value of the authentication flag AR is '1', it indicates that the wireless power transmitter 1010 supports the authentication function or can operate as an authentication responder, and If the value is '0', it may indicate that the wireless power transmitter 1010 does not support the authentication function or cannot operate as an authentication responder.
  • the out-band (OB) flag indicates whether the wireless power transmitter 1010 supports out-band communication. For example, if the value of the out-band (OB) flag is '1', the wireless power transmitter 1010 instructs out-band communication, and if the value of the out-band (OB) flag is '0', the wireless power transmitter 1010 ( 1010) may indicate that out-band communication is not supported.
  • the wireless power receiver 1020 receives the performance packet (CAP) of the wireless power transmitter 1010, and can check whether the wireless power transmitter 1010 supports the authentication function and whether out-band communication is supported. .
  • CAP performance packet
  • the wireless power receiver 1020 uses at least one specific request data packet (SRQ) in the negotiation step or the renegotiation step in relation to the power to be provided in the power transmission step.
  • SRQ specific request data packet
  • the elements of (Power Transfer Contract) may be updated, and the negotiation phase or the renegotiation phase may be terminated (S1307).
  • the wireless power transmitter 1010 may transmit only ACK, only ACK or NAK, or only ACK or ND in response to the specific request packet (SRQ) according to the type of the specific request packet (SRQ) (S1308) .
  • a data packet or message exchanged between the wireless power transmitter 1010 and the wireless power receiver 1020 in the above-described ping step, configuration step, and negotiation/renegotiation step may be transmitted/received through in-band communication.
  • FIG. 14 is a flowchart schematically illustrating a protocol of a power transmission step according to an embodiment.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 may transmit/receive wireless power based on a power transmission contract.
  • the wireless power receiver 1020 includes a control error packet (CE) including information on a difference between an actual operating point and a target operating point. control error data packet) to the wireless power transmitter 1010 (S1401).
  • CE control error packet
  • S1401 wireless power transmitter 1010
  • the wireless power receiver 1020 wirelessly transmits a Received Power data packet (RP) including information on the received power value of the wireless power received from the wireless power transmitter 1010 . It transmits to the power transmitter 1010 (S1402).
  • RP Received Power data packet
  • control error packet (CE) and the received power packet (RP) are data packets that must be repeatedly transmitted/received according to a timing constraint required for wireless power control.
  • the wireless power transmitter 1010 may control the level of wireless power transmitted based on the control error packet CE and the received power packet RP received from the wireless power receiver 1020 .
  • the wireless power transmitter 1010 may respond to the received power packet (RP) with an 8-bit bit pattern such as ACK, NAK, and ATN (S1403).
  • the wireless power transmitter 1010 When the wireless power transmitter 1010 responds with an ACK to the received power packet (RP/0) having a mode value of 0, it means that power transmission can continue to the current level.
  • the wireless power transmitter 1010 responds with NAK to the received power packet RP/0 having a mode value of 0, it means that the wireless power receiver 1020 should reduce power consumption.
  • the wireless power transmitter 1010 responds with an ACK
  • the wireless power receiver 1020 transmits the received power packet (RP/ 1 or RP/2) means that the power correction value included in it has been accepted.
  • the wireless power transmitter 1010 responds with NAK
  • the wireless power receiver 1020 transmits the received power packet (RP/ 1 or RP/2) means that the power correction value included in the value was not accepted.
  • the wireless power transmitter 1010 When the wireless power transmitter 1010 responds with the ATN to the received power packet (RP), it means that the wireless power transmitter 1010 requests permission for communication.
  • the wireless power transmitter 1010 and the wireless power receiver 1020 control the power level transmitted/received based on the response to the control error packet (CE), the received power packet (RP), and the received power packet (RP) can do.
  • CE control error packet
  • RP received power packet
  • RP received power packet
  • the wireless power receiver 1020 transmits a charge status packet (CHS, Charge Status data packet) including information on the charge state of the battery to the wireless power transmitter 1010 (S1404) .
  • the wireless power transmitter 1010 may control the power level of the wireless power based on information on the state of charge of the battery included in the state of charge packet (CHS).
  • the wireless power transmitter 1010 and/or the wireless power receiver 1020 may enter the renegotiation step to renew a power transmission contract.
  • the wireless power transmitter 1010 responds to the received power packet (RP) with ATN.
  • the wireless power receiver 1020 may transmit the DSR/poll packet to the wireless power transmitter 1010 to give the wireless power transmitter 1010 an opportunity to transmit the data packet (S1405).
  • the wireless power transmitter 1010 transmits a performance packet (CAP) to the wireless power receiver 1020 in response to the DSR/poll packet (S1406)
  • the wireless power receiver 1020 requests the progress of the renegotiation step.
  • CAP performance packet
  • NEGO renegotiation packet
  • the wireless power receiver 1020 In the power transmission step, when the wireless power receiver 1020 wants to enter the renegotiation step, the wireless power receiver 1020 transmits a renegotiation packet (NEGO) requesting the progress of the renegotiation step to the wireless power transmitter 1010. transmit (S1407), and when the wireless power transmitter 1010 responds with ACK to the renegotiation packet (NEGO) (S1408), the wireless power transmitter 1010 and the wireless power receiver 1020 enter the renegotiation phase do.
  • NEGO renegotiation packet
  • Various methods may be used as a method for detecting foreign substances during power transmission, but a method of stopping power transmission for a short time and detecting foreign substances within a short time when power transmission is stopped may be used.
  • a short time during which power transmission is stopped may be referred to as a slot time
  • a method of stopping power transmission and detecting foreign substances during the slot time may be referred to as foreign material detection using a slot, Slotted FOD, or Slot FOD.
  • a slotted FOD a method of stopping power transmission and detecting foreign substances during the slot time.
  • the Slotted FOD stops power transmission for a short time, the amount of decrease in the rectified voltage of the wireless power receiver is not large during the time when foreign substances are detected, so wireless power reception can be continued, and the operation of the wireless power receiver can be affected. There is an advantage in that the operation of the wireless power receiver can be continuously maintained.
  • the wireless power transmitter stops power transmission for a short time, and the Slotted Q FOD detects foreign substances from the change in current and/or voltage that is naturally reduced in the resonance circuit including the primary coil.
  • FIG. 15 is a schematic circuit diagram of a wireless power transmitter supporting a foreign material detection method by a slotted Q FOD
  • FIG. 16 is a graph schematically illustrating a voltage attenuation waveform of a primary coil during a slot time.
  • the power conversion circuit of the wireless power transmitter may be outlined as an LC circuit including a full-bridge inverter including four switches H1, H2, L1, and L2.
  • the wireless power transmitter receives power from a power supply expressed as an input voltage and provides wireless power to the wireless power receiver through the primary coil Lp.
  • the four switches (H1, H2, L1, L2) of the full-bridge inverter are controlled so that a circuit consisting of the input voltage-capacitor (Cp) - 1 primary coil (Lp) is configured.
  • a sine wave voltage having an almost constant peak value may be applied to the primary coil Lp in the power transfer step.
  • the full-bridge inverter switches the H1 and H2 switches to the open state, and the L1 and L2 switches to the closed state, so that the wireless power transmitter is a capacitor (Cp) - primary coil (Lp) ) to form a closed-loop resonant circuit, and the supply of power to the resonant circuit is cut off.
  • the wireless power transmitter is a capacitor (Cp) - primary coil (Lp) ) to form a closed-loop resonant circuit, and the supply of power to the resonant circuit is cut off.
  • the voltage (or current) of the primary coil (Lp) terminal during the slot time vibrates in a waveform having a resonance frequency according to the capacitance of the capacitor (Cp) and the inductance characteristics of the primary coil (Lp), It is gradually attenuated by the resistance that affects the resonance circuit.
  • the quality factor (Q factor) of the LC resonance circuit may be measured from the attenuation ratio (or attenuation coefficient) of the voltage (or current). And, when there is a foreign substance adjacent to the wireless power transmitter, the Q factor is generally measured lower, so the Q factor measured within the slot time or the voltage of the primary coil (Lp) terminal measured within the slot time (or current), it is possible to determine the presence of foreign substances from the waveform.
  • the foreign material detection method by the slotted Q FOD cuts off external power during the slot time, forms a resonance circuit including the primary coil, and the voltage (or It is a method of measuring the Q factor from the current) waveform and detecting the presence of foreign substances based on it.
  • the current flowing through the primary coil Lp and the voltage applied to the primary coil Lp are sinusoidal waves and continuously change with time. Therefore, according to the start time of the slot time, the current flowing through the primary coil Lp and the voltage applied to the primary coil Lp may vary, which is a voltage waveform at the end of the primary coil Lp during the slot time. Or, the result is that the current waveform is different each time. In addition, since the Q factor measured depending on the voltage waveform or the current waveform of the primary coil Lp is also inconsistent, the reliability of the foreign material detection result by the slotted Q FOD may be weakened.
  • 17 is a flowchart illustrating a method for detecting a foreign material according to an exemplary embodiment.
  • the communication/control circuit of the wireless power transmitter detects when the current of the primary coil Lp becomes 0 ( S1502 ).
  • the time when the current of the primary coil Lp becomes 0 is the time when the value of the alternating current flowing through the primary coil Lp is converted from a positive value to a negative value, or is converted from a negative value to a positive value. could be a point in time.
  • the wireless power transmitter includes a configuration that can monitor the current value of the primary coil (Lp)
  • the communication / control circuit of the wireless power transmitter receives the current value of the primary coil (Lp) from the configuration The point in time when the current of the primary coil Lp becomes 0 can be easily detected.
  • the communication/control circuit of the wireless power transmitter has a voltage value of the primary coil (Lp) of 0
  • a point in time having a phase difference of 90 degrees from a point in time may be detected as a point in time when the current of the primary coil Lp becomes 0. This is because the voltage and current of the primary coil Lp have a phase difference of 90 degrees.
  • the communication/control circuit of the wireless power transmitter cuts off the power transmitted to the primary coil Lp in the power transmission step when the current of the primary coil Lp becomes 0 (S1503).
  • the communication/control circuit controls the four switches (H1, H2, L1, L2) of the full-bridge inverter to consist of a capacitor (Cp) and a primary coil (Lp).
  • the power transmitted to the primary coil Lp can be cut off by configuring a closed-loop resonance circuit.
  • the power transmitted to the primary coil (Lp) is controlled to be OFF, and a closed loop resonance circuit composed of the capacitor (Cp) - 1st coil (Lp) is configured to form the primary
  • the power transmitted to the coil Lp can be cut off.
  • the slot time starts when the current of the primary coil Lp becomes 0.
  • the starting point of the slot time for the slotted Q FOD is maintained at the point in time when the current of the primary coil Lp becomes 0, a more consistent and reliable Q factor can be obtained.
  • the communication/control circuit of the wireless power transmitter acquires data about a voltage value across the primary coil Lp or a current value flowing through the primary coil Lp during the slot time (S1504).
  • the communication/control circuit of the wireless power transmitter records the voltage value across the primary coil Lp or the current value flowing in the primary coil Lp at various points in the slot time.
  • the communication/control circuit of the wireless power transmitter detects peak values of the voltage value or the current value of the primary coil Lp within the slot time based on the data obtained in step S1504 (S1505).
  • the communication/control circuit of the wireless power transmitter detects the peak values (P 1 , P 2 , P 3 , ..., Pn) of the attenuation waveform based on the values of the data obtained in step S1504.
  • the communication/control circuit of the wireless power transmitter may perform regression analysis based on the peak values detected in step S1505 (S1506).
  • the communication/control circuit of the wireless power transmitter may acquire effective peak values to be subjected to regression analysis among the peak values detected in step S1505.
  • 19 is a diagram for describing a method of obtaining effective peak values according to an exemplary embodiment.
  • the communication/control circuit of the wireless power transmitter detects peak values (P 1 , P 2 , P 3 , ..., Pn) of the peak values (P 1 ) of the initial period (S 1 ). Except for P 2 ), an effective peak value can be obtained.
  • the peak values detected within the slot time are values measured in the RLC resonant circuit, a specific exponential function should be formed. was not defined as In particular, among the peak values detected within the slot time, the peak value of the initial section (S 1 ) showed a tendency to adversely affect the regression analysis result. It is estimated that, after the resonance circuit is constructed, the voltage value or the current value of the primary coil Lp is initially in a transient state and other influences other than the resonance circuit characteristics are assumed.
  • the effective peak value is obtained except for the peak values (P 1 , P 2 ) of the initial section (S 1 ). Suggest ways to obtain it.
  • the length of the initial section S 1 may be determined differently depending on the embodiment.
  • the initial section S 1 may include only the first peak value P 1 , or may include two or more first peak values.
  • the communication / control circuit of the wireless power transmitter is effective except for the peak value (P 4 ) of the second half section (S 3 ) among the detected peak values (P 1 , P 2 , P 3 , ..., Pn) A peak value can be obtained.
  • the second half section S 3 may be a section in which the deviation of the peak values P 4 is less than or equal to a certain level.
  • the second half section S 3 may be a section in which the peak values P 4 have values substantially close to zero.
  • the peak values (P 4 ) of the latter section (S 3 ) may also act as a factor adversely affecting the regression analysis result, in the present embodiment, the detected peak values (P 1 , P 2 , P 3 , ..., Pn), a method of obtaining an effective peak value excluding the peak value P 4 of the second half section S 3 is proposed.
  • the second half section S 3 may be determined according to the number of obtained effective peak values. For example, when 15 is predetermined as the number of effective peak values for regression analysis, a section in which peak values after 15 effective peak values are obtained may be the latter section S 3 .
  • the slot time be formed within 100 ⁇ s. In order to reduce the slot time as much as possible, after a preset number of effective peak values are obtained, the slot time may end and wireless power transmission may be resumed.
  • FIG. 20 is a diagram for describing a regression analysis method according to an exemplary embodiment.
  • the communication/control circuit of the wireless power transmitter may derive an exponential function that is an envelope of the effective peak values through regression analysis based on the plurality of effective peak values.
  • the communication/control circuit of the wireless power transmitter may acquire the Q factor based on the exponential function (S1507).
  • the correlation between the Q factor, the damping ratio ( ⁇ ), and the time constant ( ⁇ ) may be expressed by the following equation.
  • the Q factor value is calculated to be about 48.17 based on the exponential function of FIG. 20D .
  • the communication/control circuit of the wireless power transmitter may calculate and obtain the value of the Q factor using the time constant ( ⁇ ) of the exponential function derived in step S1506.
  • the communication/control circuit of the wireless power transmitter may detect a foreign substance between the wireless power transmitter and the wireless power receiver using the obtained Q factor (S1508).
  • the communication/control circuit of the wireless power transmitter may estimate the presence of foreign substances by comparing the Q factor value obtained in step S1507 with a pre-stored Q factor value. That is, as the Q factor value obtained in step S1507 is lower than the previously stored Q factor value, the possibility of the presence of foreign substances increases. Accordingly, when the difference between the pre-stored Q factor value and the Q factor value obtained in step S1507 is equal to or greater than a threshold value, the communication/control circuit of the wireless power transmitter may determine that foreign matter is present.
  • the pre-stored Q factor value may be a Q factor value measured in advance in the absence of foreign substances or a Q factor value received from the wireless power receiver.
  • the communication/control circuit of the wireless power transmitter may transmit information (data packet or response pattern) according to the detection result of the foreign material to the wireless power receiver and end the Slotted Q FOD (S1509).
  • the start time of the slot time becomes the time when the current of the primary coil Lp becomes , so that more consistent and reliable Q factor acquisition is obtained. make it possible
  • an exponential function that is an envelope of effective peak values is derived through regression analysis using a plurality of effective peak values, and a Q factor is obtained based on this. , enabling a more reliable Q factor acquisition.
  • effective peak values are selected by excluding peak values of the initial section and/or the latter section among the obtained peak values, so that more reliable Q factor acquisition is possible make it
  • 21 is a flowchart illustrating a method of obtaining a reference Q factor according to an embodiment.
  • the method of obtaining the reference Q factor described with reference to FIG. 21 is performed before wireless power is transmitted to the wireless power receiver, for example, in the ping step, the operating volume of the wireless power transmitter, that is, It may be performed in a state where an object does not exist above the primary coil. Therefore, the method of obtaining the reference Q factor according to the present embodiment may be performed before transmitting the digital ping to the wireless power receiver.
  • the communication/control circuit of the wireless power transmitter provides driving power to the primary coil to obtain a reference Q factor of the wireless power transmitter (S1601).
  • the driving power may be at least one pulse signal.
  • the communication/control circuit cuts off the driving power (S1602).
  • the communication/control circuit may configure a closed-loop resonance circuit including the capacitor Cp and the primary coil Lp while blocking driving power.
  • the communication/control circuit controls the four switches (H1, H2, L1, L2) of the full-bridge inverter to control the capacitor (Cp) - primary coil (Lp) It is possible to configure a closed-loop resonant circuit composed of
  • the voltage (or current) at the end of the primary coil Lp is equal to the capacitance of the capacitor Cp It vibrates in a waveform having a resonance frequency according to the inductance characteristic of the primary coil Lp, and is gradually attenuated by the resistance that affects the resonance circuit.
  • the communication/control circuit of the wireless power transmitter acquires data about a voltage value across both ends of the primary coil Lp or a current value flowing through the primary coil Lp (S1603).
  • the communication / control circuit of the wireless power transmitter at various points in time within the slot time to the voltage value across the primary coil (Lp) or to the primary coil (Lp) Record the current flowing.
  • the communication/control circuit of the wireless power transmitter detects peak values of a voltage value or a current value of the primary coil Lp based on the data obtained in step S1603 (S1604).
  • the communication / control circuit of the wireless power transmitter can detect the peak values (P 1 , P 2 , P 3 , ..., Pn) of the attenuation waveform. there is.
  • the communication/control circuit of the wireless power transmitter may perform a regression analysis based on the peak values detected in step S1604 (S1605).
  • the communication/control circuit of the wireless power transmitter may acquire effective peak values to be subjected to regression analysis among the peak values detected in step S1604.
  • the communication/control circuit of the wireless power transmitter includes the detected peak values (P 1 , P 2 , P 3 , ..., Pn) in the initial period ( An effective peak value may be obtained by excluding the peak values (P 1 , P 2 ) of S 1 ) and/or the peak value ( P 4 ) of the second half section ( S 3 ). Since specific details thereof have been described with reference to FIG. 19 , an additional description thereof will be omitted.
  • the communication/control circuit of the wireless power transmitter may derive an exponential function that is an envelope of the effective peak values through regression analysis based on the plurality of effective peak values.
  • the communication/control circuit of the wireless power transmitter may acquire the reference Q factor based on the exponential function (S1606).
  • the method of obtaining the reference Q factor according to the present embodiment uses at least one pulse signal as driving power, it may be referred to as an impulse Q, and the obtained reference Q factor may be referred to as an impulse Q factor.
  • the communication/control circuit of the wireless power transmitter may detect an object existing in an operating volume, ie, an upper portion of the primary coil, in the ping step using the obtained reference Q factor.
  • the communication/control circuit of the wireless power transmitter compares the obtained reference Q factor with the pre-stored Q factor (the Q factor measured in a state where no object exists in the operating space) to determine the existence can be inferred. That is, as the obtained reference Q factor value is lower than the previously stored Q factor value, the possibility of the existence of the object increases. Accordingly, when the difference between the pre-stored Q factor value and the reference Q factor value obtained in step S1606 is equal to or greater than a threshold, the communication/control circuit of the wireless power transmitter may determine that the object exists in the operation space.
  • the communication/control circuit of the wireless power transmitter compares the Q factor obtained through the Slotted Q FOD performed in the power transfer step with the reference Q factor value obtained in the step S1606, and receives wireless power with the wireless power transmitter It is possible to detect foreign substances present between the devices.
  • a wireless power transmitter uses a magnetic field to transmit wireless power to a wireless power receiver, if there is a foreign substance around it, some of the magnetic field is absorbed by the foreign substance. Accordingly, some of the wireless power transmitted by the wireless power transmitter is absorbed by foreign substances, and the remainder is supplied to the wireless power receiver.
  • transmission power is lost as much as the power or energy absorbed by the foreign material.
  • the wireless power transmitter may detect a foreign material based on how much power loss occurs.
  • power transmission characteristics between the wireless power transmitter and the wireless power receiver depend on the unique characteristics of the environment or device for transmitting wireless power.
  • the wireless power transmitter and the wireless power receiver may use power calibration at the start time of wireless power transfer in order to determine the power transfer characteristics in any currently given wireless charging environment.
  • FIG. 22 is a flowchart for explaining a double-point power correction method
  • FIG. 23 is a graph illustrating an example of a power correction curve by a dual-point power correction method
  • FIG. 24 is a message field of a received power packet according to an example It is a diagram illustrating a format
  • FIG. 25 is a diagram illustrating a format of a message field of a received power packet according to another example.
  • a power correction protocol is performed, and the wireless power receiver 1020 has a first received power packet (RP/1) and a second received power packet (RP/2).
  • the wireless power transmitter 1010 configures a double-point power correction curve.
  • the wireless power receiver 1020 transmits a control error packet (CE) to the wireless power transmitter (S1701), and includes information on a first calibration data point. and transmits the first received power packet (RP/1) to the wireless power transmitter 1010 (S1702).
  • CE control error packet
  • RP/1 first received power packet
  • the control error packet includes a control error value.
  • the control error value includes information about a deviation between a target operating point and an actual operating point of the wireless power receiver 1020 . For example, if the control error value is a positive number, it means that the actual operating point is lower than the target operating point, and the wireless power transmitter 1010 receiving this may increase the power of the wireless power to be transmitted. Conversely, when the control error value is a negative number, it means that the actual operating point is higher than the target operating point, and the wireless power transmitter 1010 receiving this may lower the power of the wireless power to be transmitted.
  • the first received power packet RP/1 includes a Mode field and an Estimated Received Power Value field.
  • the wireless power transmitter 1010 transmits the received power packet (RP) received from the wireless power receiver 1020 through the value (eg, 1) of the mode field of the first received power packet (RP/1). It can be confirmed that it is the first received power packet (RP/1) including information on one correction data point, and the first correction data point through the value of the estimated received power value field of the first received power packet (RP/1) can be checked.
  • the first calibration data point is a starting point of the power calibration curve, and may be a power level corresponding to about 10% of a reference power level of a power transfer contract established in the negotiation phase.
  • the wireless power transmitter 1010 determines whether or not the wireless power receiver 1020 has reached the desired target operating point based on the control error value included in the control error packet, and sends the first received power packet RP/1. for response with ACK or NAK (S1703). More specifically, the wireless power transmitter 1010 determines whether the power level is stabilized at the first correction data point based on the control error value. For example, when the control error value is less than 3, the wireless power transmitter 1010 determines that the power level is stabilized and the wireless power receiver 1020 reaches the desired target operating point, and the first receive power packet RP /1) can be responded with ACK. When the control error value is less than 3, it is determined that the power level is not stabilized and the wireless power receiver 1020 has not reached the desired target operating point, and the wireless power transmitter 1010 transmits the first received power packet (RP/1). can respond with NAK.
  • the wireless power receiver 1020 continues to transmit the first received power packet RP/1 until it receives an ACK from the wireless power transmitter 1010 (S1702). In addition, the wireless power receiver 1020 also repeatedly transmits the control error packet to the wireless power transmitter 1010 so that the power level can be stabilized at the first correction data point (S1701).
  • the wireless power receiver 1020 receives the ACK for the first received power packet (RP/1) from the wireless power transmitter 1010 (S1703), and transmits the control error packet to the wireless power transmitter (S1704) ), and transmits a second received power packet (RP/2) including information on a second calibration data point to the wireless power transmitter 1010 (S1705).
  • the second received power packet RP/2 also includes a Mode field and an Estimated Received Power Value field (see FIG. 24 or FIG. 25 ).
  • the wireless power transmitter 1010 receives the received power packet (RP) from the wireless power receiver 1020 through the value (eg, 0) of the mode field of the second received power packet (RP/2). It can be confirmed that the second received power packet (RP/2) includes information on the two correction data points, and the second correction data point is through the value of the estimated received power value field of the second received power packet (RP/2). can be checked.
  • the second correction data point is a point for constructing a power correction curve, and may be a power level close to a reference power level of a power transfer contract established in the negotiation stage.
  • the wireless power transmitter 1010 determines whether or not the wireless power receiver 1020 has reached the desired target operating point based on the control error value included in the control error packet, and sends it to the second receive power packet (RP/2). for response with ACK or NAK (S1706). More specifically, the wireless power transmitter 1010 determines whether the power level is stabilized at the second correction data point based on the control error value. For example, when the control error value is less than 3, the wireless power transmitter 1010 determines that the power level is stabilized and the wireless power receiver 1020 reaches the desired target operating point, and the second receive power packet RP /2) may be responded with ACK (S1706). When the control error value is less than 3, it is determined that the power level is not stabilized and the wireless power receiver 1020 has not reached the desired target operating point, and the wireless power transmitter 1010 sends the second receive power packet (RP/2) can respond with NAK.
  • the wireless power receiver 1020 continues to transmit the second received power packet RP/2 until it receives an ACK from the wireless power transmitter 1010 (S1705). In addition, the wireless power receiver 1020 also repeatedly transmits the control error packet to the wireless power transmitter 1010 so that the power level can be stabilized at the second correction data point (S1704).
  • the power transmitter 1010 After the power level is stabilized at the second correction data point, and an ACK for the second received power packet (RP/2) is received from the wireless power transmitter 1010 (S1706), the wireless power receiver 1020 and the wireless The power transmitter 1010 enters a normal power transmission mode.
  • the wireless power transmitter 1010 configures a power calibration curve based on the first received power packet (RP/1) and the second received power packet (RP/2) to which the ACK is transmitted (refer to FIG. 23 ) ), using this, it is possible to perform foreign material detection based on the loss of transmission power (S1707).
  • the wireless power transmitter 1010 receives a received power packet (eg, RP/0 in which the mode field value is 0) from the wireless power receiver 1020 during power transmission, and receives the received power packet.
  • a received power packet eg, RP/0 in which the mode field value is 0
  • the wireless power receiver 1020 Check the received power value received by the wireless power receiver 1020, and the difference between the corrected power value calculated by applying the transmit power value to the power correction curve and the received power value confirmed through the received power packet is greater than or equal to the threshold In this case, it can be estimated that the power loss is caused by foreign substances.
  • the wireless power transmitter 1010 configures a power calibration curve (A) based on the first received power packet (RP/1) and the second received power packet (RP/2) to which the ACK is transmitted.
  • ⁇ Pt is a prediction error value of transmission power, and may include a power loss value of the wireless power transmitter itself.
  • ⁇ Pr is a prediction error value of received power, and may include a power loss value of the wireless power receiver itself.
  • the corrected power value P(cal) may be calculated by the following [Equation 3].
  • Equations 2 to 4 when it is confirmed that there is no foreign material by the pre-power FOD, the same relationship of Equations 2 to 4 is established, and the correction curve based on Equations 2 to 4 may be shown as a graph (A) as shown in FIG. 23 .
  • a power correction curve may be configured with three or more correction data points using additional RP/2 and foreign matter detection may be performed based on this there is.
  • the foreign matter detection method based on the loss of transmission power is between the wireless power transmitter 1010 and the wireless power receiver 1020 during the power correction process (S1701 to S1707). It is assumed that there are no foreign substances.
  • the wireless power transmitter 1010 performs accurate foreign matter detection.
  • 26 is a flowchart illustrating an improved power correction method according to an embodiment.
  • the wireless power transmitter 1010 performs slotted Q FOD after receiving the first received power packet RP/1 (S1801). . Since the specific details of the slotted Q FOD have been described above with reference to FIGS. 15 to 20 , an additional description thereof will be omitted.
  • the wireless power transmitter 1010 performs Slotted Q FOD after receiving the first received power packet (RP/1) (S1801), between the wireless power transmitter 1010 and the wireless power receiver 1020 It can be checked whether foreign matter is present.
  • the wireless power transmitter 1010 performs slotted Q FOD a plurality of times after receiving the first received power packet RP/1, and an average of a plurality of measured Q factor values or a plurality of measured values It is possible to check whether foreign matter is present by using the average of the remaining values excluding the maximum and minimum values among the Q factor values.
  • the wireless power transmitter 1010 determines that there is no foreign material, and when it is determined that the power level is stabilized at the first correction data point based on the control error value, the first received power packet ( It can respond with ACK to RP/1) (S1703).
  • the wireless power transmitter 1010 determines that foreign matter is present or that the power level is not stabilized at the first correction data point based on the control error value, the first received power It can respond with a NAK to the packet (RP/1).
  • the wireless power transmitter 1010 performs Slotted Q FOD even after receiving the second received power packet (RP/2) (S1802), and foreign substances between the wireless power transmitter 1010 and the wireless power receiver 1020 You can check whether this exists.
  • RP/2 second received power packet
  • the wireless power transmitter 1010 performs slotted Q FOD a plurality of times after receiving the second received power packet (RP/2), an average of a plurality of measured Q factor values, or a measured plurality It is possible to check whether foreign matter is present by using the average of the remaining values excluding the maximum and minimum values among the Q factor values.
  • the wireless power transmitter 1010 determines that there is no foreign material, and when it is determined that the power level is stabilized at the second correction data point based on the control error value, the second receive power packet ( It may respond with ACK for RP/2) (S1706).
  • the wireless power transmitter 1010 determines that foreign matter is present or that the power level is not stabilized at the second correction data point based on the control error value, the second received power It can respond with a NAK to the packet (RP/2).
  • a power correction curve may be configured with three or more correction data points using additional RP/2 and foreign matter detection may be performed based on this there is.
  • the wireless power transmitter 1010 performs Slotted Q FOD even after receiving the additional RP/2 to check whether foreign matter exists between the wireless power transmitter 1010 and the wireless power receiver 1020 .
  • the wireless power transmitter 1010 transmits the first received power packet RP/1 and the second received power packet RP/2 from the wireless power receiver 1020 .
  • each Slotted Q FOD is performed to check whether foreign substances exist between the wireless power transmitter 1010 and the wireless power receiver 1020, so incorrect power correction due to the presence of foreign substances during the power correction process is can be prevented from happening.
  • the wireless power transmitter causes power loss due to the foreign material. It is determined that it has occurred, and power transmission is stopped or the transmission power is reduced to 5W or less.
  • the wireless power transmitter detects that the power loss has increased based on the received power value included in the received power packet (RP/0) received from the wireless power receiver, and determines that the power loss has occurred due to foreign substances.
  • a reduction in power loss may occur during power transmission after power correction has been made.
  • the wireless power transmitter may determine that it is in an abnormal state, stop the power transmission, or reduce the level of transmission power or wireless power received by the wireless power receiver to a certain level (eg, 5W) or less.
  • the wireless power transmitter detects that the power loss has decreased based on the received power value included in the received power packet (RP/0) received from the wireless power receiver.
  • 27 is a flowchart illustrating a method for determining foreign substances during power transmission according to an embodiment.
  • the wireless power transmitter 1010 performs pre-power FOD before power transmission before entering the power transmission step (S1901).
  • Foreign matter detection before power transmission may be foreign matter detection performed in step S1101 described with reference to FIG. 9 and/or foreign matter detection performed in step S1301 described with reference to FIG. 12 .
  • the wireless power transmitter 1010 and the wireless power receiver 1020 enter the power transmission step through a ping step, a configuration step, a negotiation step, and the like (S1902).
  • the wireless power transmitter 1010 and the wireless power receiver 1020 perform power correction (S1903). Since the power correction process has been described with reference to FIGS. 22 to 25 or 26 , an additional description thereof will be omitted.
  • the wireless power transmitter 1010 transmits wireless power to the wireless power receiver 1020 , and the wireless power receiver 1020 receives wireless power from the wireless power transmitter 1010 . (S1904).
  • the wireless power receiver 1020 continuously transmits a received power packet (eg, RP/0 in which the value of the mode field is 0) to the wireless power transmitter 1010 (S1905).
  • a received power packet eg, RP/0 in which the value of the mode field is 0
  • the wireless power transmitter 1010 checks the received power value received by the wireless power receiver 1020 through the received power packet, and applies the transmit power value to the power correction curve to compare the received power value compared to the calculated power value. If the difference between the received power values confirmed through the .
  • the change in the amount of power loss may include an increase or decrease in power loss.
  • the wireless power transmitter 1010 When it is determined that a change in the amount of power loss has occurred, the wireless power transmitter 1010 performs Slotted Q FOD (S1906) to determine whether foreign matter exists between the wireless power transmitter 1010 and the wireless power receiver 1020. judge Since the specific details of the slotted Q FOD have been described above with reference to FIGS. 15 to 20 , an additional description thereof will be omitted.
  • Slotted Q FOD S1906
  • the wireless power transmitter 1010 performs the slotted Q FOD a plurality of times, and the average of the plurality of measured Q factor values or the average of the remaining values excluding the maximum and minimum values among the plurality of measured Q factor values. can be used to check whether foreign matter is present.
  • the wireless power transmitter 1010 calculates the frequency of the attenuated waveform detected within the slot time while performing the slotted Q FOD, and compares it with the reference frequency. A change in frequency can be detected.
  • the wireless power transmitter 1010 is the peak value (P 1 , P 2 , P 3 , ..., Pn) of the voltage value or current value of the primary coil (Lp) within the slot time interval of the time interval frequency can be calculated.
  • the reference frequency may be a reference resonance frequency included in the foreign matter status packet (FOD) received from the wireless power receiver 1020 or a reference frequency value stored in advance in the manufacturing process of the wireless power transmitter 1010 . .
  • the wireless power transmitter 1010 determines whether foreign matter exists between the wireless power transmitter 1010 and the wireless power receiver 1020 based on the Q factor value and/or the frequency change value confirmed as a result of performing the slotted Q FOD. estimate whether
  • the wireless power transmitter 1010 stops the transmission of wireless power, or sets the level of wireless power to be transmitted or wireless power received by the wireless power receiver 1020 to a certain level (eg, For example, 5W) or less can be reduced.
  • a certain level eg, For example, 5W
  • the wireless power transmitter 1010 may transmit a message for inducing power correction to the wireless power receiver 1020 .
  • the message for inducing power correction may be referred to as a power correction request packet.
  • the wireless power transmitter 1010 transmits an ATN response pattern in response to the received power packet (RP/0) received from the wireless power receiver 1020 in order to transmit a power correction request packet. can be sent to
  • the ATN response pattern is an 8-bit response pattern ('11001100' b), and when there is a data packet to be transmitted by the wireless power transmitter 1010, it can be used to request a communication right from the wireless power receiver 1020. .
  • the wireless power receiver 1020 that has received the ATN may transmit a data stream response packet (DSR/poll) to the wireless power transmitter 1010 to request the wireless power transmitter 1010 to transmit the data packet.
  • DSR/poll is a type of data stream response packet (DSR) transmitted by the wireless power receiver 1020 and has an 8-bit message field, and a value of 0x33 may be set in the corresponding message field.
  • the wireless power transmitter 1010 receiving the DSR/poll from the wireless power receiver 1020 may transmit a power correction request packet requesting the start of the power correction protocol to the wireless power receiver 1020 .
  • the wireless power receiver 1020 that has received the power correction request packet from the wireless power transmitter 1010 may transmit a first received power packet RP/1 to initiate a power correction protocol. Since the power correction protocol has been described with reference to FIGS. 22 to 25 or 26 , an additional description thereof will be omitted.
  • the wireless charging can be maintained by performing power recalibration without stopping the wireless charging.
  • the presence of foreign substances is determined based on the Q factor value and frequency change value calculated in the process of performing the slotted Q FOD, the presence of foreign substances can be more accurately determined regardless of the material/type of the foreign substances.
  • the wireless power transmitter in the embodiment according to the above-described FIGS. 9 to 28 corresponds to the wireless power transmitter or the wireless power transmitter or the power transmitter disclosed in FIGS. 1 to 8 . Accordingly, the operation of the wireless power transmitter in this embodiment is implemented by one or a combination of two or more of each component of the wireless power transmitter in FIGS. 1 to 8 . For example, reception/transmission of a message or data packet, detection of foreign substances, etc. according to FIGS. 9 to 28 are included in the operation of the communication/control unit.
  • the wireless power receiver in the embodiment according to the above-described FIGS. 9 to 28 corresponds to the wireless power receiver or the wireless power receiver or the power receiver disclosed in FIGS. 1 to 8 . Accordingly, the operation of the wireless power receiver in this embodiment is implemented by one or a combination of two or more of each component of the wireless power receiver in FIGS. 1 to 8 . For example, reception/transmission of a message or data packet according to FIGS. 9 to 28 may be included in the operation of the communication/control unit.
  • the wireless power transmission apparatus and method, or the reception apparatus and method includes the above-described components Or it may be performed including some or all of the steps.
  • the above-described wireless power transmission apparatus and method, or the embodiment of the reception apparatus and method may be performed in combination with each other.
  • each of the above-described components or steps does not necessarily have to be performed in the order described, and it is also possible that the steps described later are performed before the steps described earlier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 명세서의 일 실시예에 따른 무선전력 전송방법은, 전력 전송 단계에서, 무선전력 수신장치로부터 수신전력값과 관련된 정보를 포함하는 수신전력패킷을 수신하고, 상기 수신전력값을 기초로, 무선전력의 전송을 슬롯 시간 동안 중단하고, 상기 슬롯 시간 내에서의 전압 또는 전류의 변화를 기초로 상기 이물질을 검출한다.

Description

무선전력 전송장치 및 무선전력 전송장치에 의한 무선전력 전송방법
본 명세서는 무선전력 수신장치로 무선전력을 전송하는 무선전력 전송장치와, 무선전력 전송장치에 의한 무선전력 수신장치와 무선전력 전송장치 사이의 이물질을 검출하는 무선전력 전송방법 등에 관한 것이다.
무선 전력 전송 기술은 전원 소스와 전자 기기 사이에 무선으로 전력을 전달하는 기술이다. 일 예로 무선 전력 전송 기술은 스마트폰이나 태블릿 등의 무선 단말기를 단지 무선 충전 패드 상에 올려놓는 것만으로 무선 단말기의 배터리를 충전할 수 있도록 함으로써, 기존의 유선 충전 커넥터를 이용하는 유선 충전 환경에 비해 보다 뛰어난 이동성과 편의성 그리고 안전성을 제공할 수 있다. 무선 전력 전송 기술은 무선 단말기의 무선 충전 이외에도, 전기 자동차, 블루투스 이어폰이나 3D 안경 등 각종 웨어러블 디바이스(wearable device), 가전기기, 가구, 지중시설물, 건물, 의료기기, 로봇, 레저 등의 다양한 분야에서 기존의 유선 전력 전송 환경을 대체할 것으로 주목받고 있다.
무선전력 전송방식을 비접촉(contactless) 전력 전송방식 또는 무접점(no point of contact) 전력 전송방식, 무선충전(wireless charging) 방식이라 하기도 한다. 무선전력 전송 시스템은, 무선전력 전송방식으로 전기에너지를 공급하는 무선전력 전송장치와, 상기 무선전력 전송장치로부터 무선으로 공급되는 전기에너지를 수신하여 배터리셀등 수전장치에 전력을 공급하는 무선전력 수신장치로 구성될 수 있다.
무선 전력 전송 기술은 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식 등 다양하다. 자기 커플링에 기반한 방식은 다시 자기 유도(magnetic induction) 방식과 자기 공진(magnetic resonance) 방식으로 분류된다. 자기유도 방식은 전송 측의 코일과 수신 측의 코일 간의 전자기결합에 따라 전송 측 코일배터리셀에서 발생시킨 자기장로 인해 수신 측 코일에 유도되는 전류를 이용하여 에너지를 전송하는 방식이다. 자기공진 방식은 자기장을 이용한다는 점에서 자기유도 방식과 유사하다. 하지만, 자기공진 방식은 전송 측의 코일과 수신 측의 코일에 특정 공진 주파수가 인가될 때 공진이 발생하고, 이로 인해 전송 측과 수신 측 양단에 자기장이 집중되는 현상에 의해 에너지가 전달되는 측면에서 자기유도와는 차이가 있다.
본 명세서의 기술적 과제는 무선전력 수신장치로 무선전력을 전송하는 중에 보다 정확하게 이물질을 검출하는 방법 등을 제공함에 있다.
또는 본 명세서의 기술적 과제는 전력 보정 과정에서 이물질의 검출하는 방법 등을 제공함에 있다.
본 명세서의 기술적 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 명세서의 일 실시예에 따른 무선전력 전송방법은, 무선전력 수신장치로 무선전력을 전송하는 무선전력 전송장치에 의한 무선전력 전송방법이며, 상기 무선전력 수신장치로 디지털 핑을 전송하고, 상기 무선전력 수신장치로부터 상기 디지털 핑에 대한 응답을 수신하는 핑 단계, 상기 무선전력 수신장치로부터 구성 패킷을 수신하는 구성 단계, 상기 무선전력 수신장치로부터 기준 품질인자값과 관련된 정보를 포함하는 이물질 검출 상태 패킷을 수신하고, 상기 기준 품질인자값을 기초로 이물질을 검출하는 협상 단계 및 상기 무선전력 수신장치로 상기 무선전력을 전송하는 전력 전송 단계를 포함하고, 상기 전력 전송 단계에서, 상기 무선전력 수신장치로부터 수신전력값과 관련된 정보를 포함하는 수신전력패킷을 수신하고, 상기 수신전력값을 기초로, 상기 무선전력의 전송을 슬롯 시간 동안 중단하고, 상기 슬롯 시간 내에서의 전압 또는 전류의 변화를 기초로 상기 이물질을 검출한다.
상기 과제를 해결하기 위한 본 명세서의 일 실시예에 따른 무선전력 전송장치는, 무선전력 수신장치로 무선전력을 전송하며, 상기 무선전력 수신장치로 상기 무선전력을 전송하는 1차 코일(primary coil)을 포함하는 전력 변환 회로 및 상기 무선전력 수신장치와 통신하고 상기 전력 변환 회로를 제어하는 통신/컨트롤 회로를 포함하고, 상기 통신/컨트롤 회로는, 상기 무선전력 수신장치로 디지털 핑을 전송하고, 상기 무선전력 수신장치로부터 상기 디지털 핑에 대한 응답을 수신하는 핑 단계, 상기 무선전력 수신장치로부터 구성 패킷을 수신하는 구성 단계, 상기 무선전력 수신장치로부터 기준 품질인자값과 관련된 정보를 포함하는 이물질 검출 상태 패킷을 수신하고, 상기 기준 품질인자값을 기초로 이물질을 검출하는 협상 단계 및 상기 무선전력 수신장치로 상기 무선전력을 전송하는 전력 전송 단계를 수행하고, 상기 전력 전송 단계에서, 상기 무선전력 수신장치로부터 수신전력값과 관련된 정보를 포함하는 수신전력패킷을 수신하고, 상기 수신전력값을 기초로, 상기 무선전력의 전송을 슬롯 시간 동안 중단하고, 상기 슬롯 시간 내에서의 상기 1차 코일의 전압 또는 전류의 변화를 기초로 상기 이물질을 검출한다.
본 명세서의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
무선전력 수신장치로 무선전력을 전송하는 중에 전력 손실의 변화가 발생하면, 무선전력 전송장치가 일시적으로 무선전력의 전송을 중단하고 측정하는 품질 계수(Q 팩터)를 이용해 실제 전력 손실의 변화가 이물질에 의해 발생하였는지 여부를 확인하여, 보다 정확하게 전력 전송 중의 이물질 검출을 수행할 수 있다.
또는, 전력 전송 중에 발생한 전력 손실의 변화가 이물질에 의한 것이 아닌 경우, 전력 재보정이 이루어지도록 하여, 무선충전 프로토콜이 보다 효율적으로 운영되도록 한다.
또는, 무선전력의 전송을 중단하고 측정하는 품질 계수(Q 팩터)와 주파수 변화를 함께 측정하고, 양자를 이용해 이물질을 검출하므로, 보다 정확한 이물질 검출을 수행할 수 있다.
또는, 전력 보정 프로토콜 중에 이물질을 검출하여 보다 정확한 전력 보정을 수행할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 일 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 2는 다른 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 3a는 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3b는 무선 전력 전송 시스템에서 WPC NDEF의 일례를 나타낸다.
도 4는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다.
도 9는 일 실시예에 따른 핑 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
도 10은 일 실시예에 따른 구성 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
도 11은 일 실시예에 따른 무선전력 수신장치의 구성 패킷(CFG)의 메시지 필드를 도시한 도면이다.
도 12는 일 실시예에 따른 협상 단계 또는 재협상 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
도 13은 일 실시예에 따른 무선전력 전송장치의 성능 패킷(CAP)의 메시지 필드를 도시한 도면이다.
도 14는 일 실시예에 따른 전력 전송 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
도 15는 Slotted Q FOD에 의한 이물질 검출 방법을 지원하는 무선전력 전송장치의 개략적인 회로도이다.
도 16은 슬롯 시간 동안 1차 코일의 전압 감쇠 파형의 개략적으로 도시한 그래프이다.
도 17은 일 실시예에 따른 이물질 검출 방법을 도시한 순서도이다.
도 18은 S1504 단계에서 획득된 데이터의 일례를 도시한 도면이다.
도 19는 일 실시예에 따른 유효 피크값들의 획득 방법을 설명하기 위한 도면이다
도 20은 일 실시예에 따른 회귀 분석 방법을 설명하기 위한 도면이다.
도 21은 일 실시예에 따른 기준 Q 팩터를 획득하는 방법을 설명하기 위한 순서도이다.
도 22는 이중점 전력 보정 방법을 설명하기 위한 흐름도이다.
도 23은 이중점 전력 보정 방법에 의한 전력 보정 커브의 일례를 도시한 그래프이다.
도 24는 일 예에 따른 수신전력패킷의 메시지 필드의 포맷을 도시한 도면이다.
도 25는 다른 예에 따른 수신전력패킷의 메시지 필드의 포맷을 도시한 도면이다.
도 26은 일 실시예에 따른 개선된 전력 보정 방법을 설명하기 위한 흐름도이다.
도 27은 일 실시예에 따른 전력 전송 중 이물질 판별 방법을 설명하기 위한 흐름도이다.
도 28은 각국의 동전에 대한 주파수 변화 및 Q 팩터 감소의 실험값을 표시한 도표이다.
본 명세서에서 “A 또는 B(A or B)”는 “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 달리 표현하면, 본 명세서에서 “A 또는 B(A or B)”는 “A 및/또는 B(A and/or B)”으로 해석될 수 있다. 예를 들어, 본 명세서에서 “A, B 또는 C(A, B or C)”는 “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 “및/또는(and/or)”을 의미할 수 있다. 예를 들어, “A/B”는 “A 및/또는 B”를 의미할 수 있다. 이에 따라 “A/B”는 “오직 A”, “오직 B”, 또는 “A와 B 모두”를 의미할 수 있다. 예를 들어, “A, B, C”는 “A, B 또는 C”를 의미할 수 있다.
본 명세서에서 “적어도 하나의 A 및 B(at least one of A and B)”는, “오직 A”, “오직 B” 또는 “A와 B 모두”를 의미할 수 있다. 또한, 본 명세서에서 “적어도 하나의 A 또는 B(at least one of A or B)”나 “적어도 하나의 A 및/또는 B(at least one of A and/or B)”라는 표현은 “적어도 하나의 A 및 B(at least one of A and B)”와 동일하게 해석될 수 있다.
또한, 본 명세서에서 “적어도 하나의 A, B 및 C(at least one of A, B and C)”는, “오직 A”, “오직 B”, “오직 C”, 또는 “A, B 및 C의 임의의 모든 조합(any combination of A, B and C)”를 의미할 수 있다. 또한, “적어도 하나의 A, B 또는 C(at least one of A, B or C)”나 “적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)”는 “적어도 하나의 A, B 및 C(at least one of A, B and C)”를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 “예를 들어(for example)”를 의미할 수 있다. 구체적으로, “제어 정보(PDCCH)”로 표시된 경우, “제어 정보”의 일례로 “PDCCH”가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 “제어 정보”는 “PDCCH”로 제한(limit)되지 않고, “PDDCH”가 “제어 정보”의 일례로 제안될 것일 수 있다. 또한, “제어 정보(즉, PDCCH)”로 표시된 경우에도, “제어 정보”의 일례로 “PDCCH”가 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다. 이하에서 사용되는 "무선 전력" 이라는 용어는, 물리적인 전자기 전도체들의 사용없이 무선전력 전송기(wireless power transmitter)로부터 무선전력 수신장치(wireless power receiver)로 전달되는 전기장, 자기장, 전자기장 등과 관련된 임의의 형태의 에너지를 의미하도록 사용된다. 무선전력은 무선 전력 신호(wireless power signal)이라고 불릴 수도 있으며, 1차 코일과 2차 코일에 의해 둘러싸이는(enclosed) 진동하는 자속(oscillating magnetic flux)을 의미할 수 있다. 예를 들어, 이동 전화기, 코드리스 전화기, iPod, MP3 플레이어, 헤드셋 등을 포함하는 디바이스들을 무선으로 충전하기 위해 시스템에서의 전력 변환이 여기에 설명된다. 일반적으로, 무선 전력 전송의 기본적인 원리는, 예를 들어, 자기 커플링(magnetic coupling)을 통해 전력을 전달하는 방식, 무선 주파수(radio frequency: RF)를 통해 전력을 전달하는 방식, 마이크로웨이브(microwave)를 통해 전력을 전달하는 방식, 초음파를 통해 전력을 전달하는 방식을 모두 포함한다.
도 1은 일 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 1을 참조하면, 무선 전력 시스템(10)은 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)를 포함한다.
무선 전력 전송 장치(100)는 외부의 전원 소스(S)로부터 전원을 인가받아 자기장을 발생시킨다. 무선 전력 수신 장치(200)는 발생된 자기장을 이용하여 전류를 발생시켜 무선으로 전력을 수신받는다.
또한, 무선 전력 시스템(10)에서 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)는 무선 전력 전송에 필요한 다양한 정보를 송수신할 수 있다. 여기서, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)간의 통신은 무선 전력 전송에 이용되는 자기장을 이용하는 인-밴드 통신(in-band communication)이나 별도의 통신 캐리어를 이용하는 아웃-밴드 통신(out-band communication) 중 어느 하나의 방식에 따라 수행될 수 있다. 아웃-밴드 통신은 아웃-오브-밴드(out-of-band) 통신이라 불릴 수도 있다. 이하에서는 아웃-밴드 통신으로 용어를 통일하여 기술한다. 아웃-밴드 통신의 예로서 NFC, 블루투스(bluetooth), BLE(bluetooth low energy) 등을 포함할 수 있다.
여기서, 무선 전력 전송 장치(100)는 고정형 또는 이동형으로 제공될 수 있다. 고정형의 예로는 실내의 천장이나 벽면 또는 테이블 등의 가구에 임베디드(embedded)되는 형태, 실외의 주차장, 버스 정류장이나 지하철역 등에 임플란트 형식으로 설치되는 형태나 차량이나 기차 등의 운송 수단에 설치되는 형태 등이 있다. 이동형인 무선 전력 전송 장치(100)는 이동 가능한 무게나 크기의 이동형 장치나 노트북 컴퓨터의 덮개 등과 같이 다른 장치의 일부로 구현될 수 있다.
또 무선 전력 수신 장치(200)는 배터리를 구비하는 각종 전자 기기 및 전원 케이블 대신 무선으로 전원을 공급받아 구동되는 각종 가전 기기를 포함하는 포괄적인 개념으로 해석되어야 한다. 무선 전력 수신 장치(200)의 대표적인 예로는, 이동 단말기(portable terminal), 휴대 전화기(cellular phone), 스마트폰(smart phone), 개인 정보 단말기(PDA: Personal Digital Assistant), 휴대 미디어 플레이어(PMP: Portable Media Player), 와이브로 단말기(Wibro terminal), 태블릿(tablet), 패블릿(phablet), 노트북(notebook), 디지털 카메라, 네비게이션 단말기, 텔레비전, 전기차량(EV: Electronic Vehicle) 등이 있다.
도 2는 다른 실시예에 따른 무선 전력 시스템(10)의 블록도이다.
도 2를 참조하면, 무선 전력 시스템(10)에서 무선 전력 수신 장치(200)는 하나 또는 복수일 수 있다. 도 1에서는 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200)가 일대일로 전력을 주고 받는 것으로 표현되고 있으나, 도 2와 같이 하나의 무선 전력 전송 장치(100)가 복수의 무선 전력 수신 장치(200-1, 200-2,..., 200-M)로 전력을 전달하는 것도 가능하다. 특히, 자기 공진 방식으로 무선 전력 전송을 수행하는 경우에는 하나의 무선 전력 전송 장치(100)가 동시 전송 방식이나 시분할 전송 방식을 응용하여 동시에 여러 대의 무선 전력 수신 장치(200-1, 200-2,...,200-M)로 전력을 전달할 수 있다.
또한, 도 1에는 무선 전력 전송 장치(100)가 무선 전력 수신 장치(200)에 바로 전력을 전달하는 모습이 도시되어 있으나, 무선 전력 전송 장치(100)와 무선 전력 수신 장치(200) 사이에 무선전력 전송 거리를 증대시키기 위한 릴레이(relay) 또는 중계기(repeater)와 같은 별도의 무선 전력 송수신 장치가 구비될 수 있다. 이 경우, 무선 전력 전송 장치(100)로부터 무선 전력 송수신 장치로 전력이 전달되고, 무선 전력 송수신 장치가 다시 무선 전력 수신 장치(200)로 전력을 전달할 수 있다.
이하 본 명세서에서 언급되는 무선전력 수신기, 전력 수신기, 수신기는 무선 전력 수신 장치(200)를 지칭한다. 또한 본 명세서에서 언급되는 무선전력 전송기, 전력 전송기, 전송기는 무선 전력 수신 전송 장치(100)를 지칭한다.
도 3a은 무선 전력 전송 시스템이 도입되는 다양한 전자 기기들의 실시예를 나타낸다.
도 3a에는 무선 전력 전송 시스템에서 송신 및 수신하는 전력 양에 따라 전자 기기들을 분류하여 도시하였다. 도 3a을 참조하면, 스마트 시계(Smart watch), 스마트 글래스(Smart Glass), HMD(Head Mounted Display), 및 스마트 링(Smart ring)과 같은 웨어러블 기기들 및 이어폰, 리모콘, 스마트폰, PDA, 태블릿 PC 등의 모바일 전자 기기들(또는 포터블 전자 기기들)에는 소전력(약 5W이하 또는 약 20W 이하) 무선 충전 방식이 적용될 수 있다.
노트북, 로봇 청소기, TV, 음향 기기, 청소기, 모니터와 같은 중/소형 가전 기기들에는 중전력(약 50W이하 또는 약 200W)이하) 무선 충전 방식이 적용될 수 있다. 믹서기, 전자 레인지, 전기 밥솥과 같은 주방용 가전 기기, 휠체어, 전기 킥보드, 전기 자전거, 전기 자동차 등의 개인용 이동 기기들(또는, 전자 기기/이동 수단들)은 대전력(약 2kW 이하 또는 22kW이하) 무선 충전 방식이 적용될 수 있다.
상술한(또는 도 1에 도시된) 전자 기기들/이동 수단들은 후술하는 무선 전력 수신기를 각각 포함할 수 있다. 따라서, 상술한 전자 기기들/이동 수단들은 무선 전력 송신기로부터 무선으로 전력을 수신하여 충전될 수 있다.
이하에서는 전력 무선 충전 방식이 적용되는 모바일 기기를 중심으로 설명하나 이는 실시예에 불과하며, 본 명세서에 따른 무선 충전 방법은 상술한 다양한 전자 기기에 적용될 수 있다.
무선전력 전송에 관한 표준(standard)은 WPC(wireless power consortium), AFA(air fuel alliance), PMA(power matters alliance)을 포함한다.
WPC 표준은 기본 전력 프로파일(baseline power profile: BPP)과 확장 전력 프로파일(extended power profile: EPP)을 정의한다. BPP는 5W의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이고, EPP는 5W보다 크고 30W보다 작은 범위의 전력 전송을 지원하는 무선전력 전송장치와 수신장치에 관한 것이다.
서로 다른 전력레벨(power level)을 사용하는 다양한 무선전력 전송장치와 수신장치들이 각 표준별로 커버되고, 서로 다른 전력 클래스(power class) 또는 카테고리로 분류될 수 있다.
예를 들어, WPC는 무선전력 전송장치와 수신장치를 전력 클래스(power class :PC) -1, PC0, PC1, PC2로 분류하고, 각 PC에 대한 표준문서를 제공한다. PC-1 표준은 5W 미만의 보장전력(guaranteed power)을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC-1의 어플리케이션은 스마트 시계와 같은 웨어러블 기기를 포함한다.
PC0 표준은 5W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. PC0 표준은 보장전력이 30W까지인 EPP를 포함한다. 인-밴드(in-band :IB) 통신이 PC0의 필수적인(mandatory) 통신 프로토콜이나, 옵션의 백업 채널로 사용되는 아웃-밴드(out-band : OB) 통신도 사용될 수 있다. 무선전력 수신장치는 OB의 지원 여부를 구성 패킷(configuration packe)내의 OB 플래그를 설정함으로써 식별할 수 있다. OB를 지원하는 무선전력 전송장치는 상기 구성 패킷에 대한 응답으로서, OB 핸드오버를 위한 비트패턴(bit-pattern)을 전송함으로써 OB 핸드오버 페이즈(handover phase)로 진입할 수 있다. 상기 구성 패킷에 대한 응답은 NAK, ND 또는 새롭게 정의되는 8비트의 패턴일 수 있다. PC0의 어플리케이션은 스마트폰을 포함한다.
PC1 표준은 30W~150W의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것이다. OB는 PC1을 위한 필수적인 통신 채널이며, IB는 OB로의 초기화 및 링크 수립(link establishment)로서 사용된다. 무선전력 전송장치는 구성 패킷에 대한 응답으로서, OB 핸드오버를 위한 비트패턴을 이용하여 OB 핸드오버 페이즈로 진입할 수 있다. PC1의 어플리케이션은 랩탑이나 전동 공구(power tool)을 포함한다.
PC2 표준은 200W~2kW의 보장전력을 제공하는 무선전력 전송장치와 수신장치에 관한 것으로서, 그 어플리케이션은 주방가전을 포함한다.
이렇듯 전력 레벨에 따라 PC가 구별될 수 있으며, 동일한 PC간 호환성(compatibility)을 지원할지 여부는 선택 또는 필수 사항일 수 있다. 여기서 동일한 PC간 호환성은, 동일한 PC 간에는 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 동일한 PC x를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 동일한 PC간 호환성이 유지되는 것으로 볼 수 있다. 이와 유사하게 서로 다른 PC간의 호환성 역시 지원 가능할 수 있다. 여기서 서로 다른 PC간 호환성은, 서로 다른 PC 간에도 전력 송수신이 가능함을 의미한다. 예를 들어, PC x인 무선 전력 전송장치가 PC y를 갖는 무선 전력 수신장치의 충전이 가능한 경우, 서로 다른 PC간 호환성이 유지되는 것으로 볼 수 있다.
PC간 호환성의 지원은 사용자 경험(User Experience) 및 인프라 구축 측면에서 매우 중요한 이슈이다. 다만, PC간 호환성 유지에는 기술적으로 아래와 같은 여러 문제점이 존재한다.
동일한 PC간 호환성의 경우, 예를 들어, 연속적으로 전력이 전송되는 경우에만 안정적으로 충전이 가능한 랩-탑 충전(lap-top charging) 방식의 무선 전력 수신장치는, 동일한 PC의 무선 전력 송신장치라 하더라도, 불연속적으로 전력을 전송하는 전동 툴 방식의 무선 전력 송신장치로부터 전력을 안정적으로 공급받는 데 문제가 있을 수 있다. 또한, 서로 다른 PC간 호환성의 경우, 예를 들어, 최소 보장 전력이 200W인 무선 전력 송신장치는 최대 보장 전력이 5W인 무선 전력 수신장치로 전력을 송신하는 경우, 과전압으로 인해 무선전력 수신장치가 파손될 위험이 있다. 그 결과, PC는 호환성을 대표/지시하는 지표/기준으로 삼기 어렵다.
무선전력 전송 및 수신장치들은 매우 편리한 사용자 경험과 인터페이스(UX/UI)를 제공할 수 있다. 즉, 스마트 무선충전 서비스가 제공될 수 있다, 스마트 무선충전 서비스는 무선전력 전송장치를 포함하는 스마트폰의 UX/UI에 기초하여 구현될 수 있다. 이러한 어플리케이션을 위해, 스마트폰의 프로세서와 무선충전 수신장치간의 인터페이스는 무선전력 전송장치와 수신장치간의 "드롭 앤 플레이(drop and play)" 양방향 통신을 허용한다.
이하에서는 호환성을 대표/지시하는 지표/기준으로 '프로필(profile)'을 새롭게 정의하기로 한다. 즉, 동일한 '프로필'을 갖는 무선 전력 송수신 장치간에는 호환성이 유지되어 안정적인 전력 송수신이 가능하며, 서로 다른 '프로필'을 갖는 무선 전력 송수신장치간에는 전력 송수신이 불가한 것으로 해석될 수 있다. 프로필은 전력 클래스와 무관하게(또는 독립적으로) 호환 가능 여부 및/또는 어플리케이션에 따라 정의될 수 있다.
프로필은 크게 i) 모바일 및 컴퓨팅, ii) 전동 툴, 및 iii) 주방 이렇게 3가지로 구분될 수 있다.
또는, 프로필은 크게 i) 모바일, ii) 전동 툴, iii) 주방 및 iv) 웨어러블 이렇게 4가지로 구분될 수 있다.
'모바일' 프로필의 경우, PC는 PC0 및/또는 PC1, 통신 프로토콜/방식은 IB 및 OB, 동작 주파수는 87~205kHz로 정의될 수 있으며, 어플리케이션의 예시로는 스마트폰, 랩-탑 등이 존재할 수 있다.
'전동 툴' 프로필의 경우, PC는 PC1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~145kHz로 정의될 수 있으며, 어플리케이션의 예시로는 전동 툴 등이 존재할 수 있다.
'주방' 프로필의 경우, PC는 PC2, 통신 프로토콜/방식은 NFC-기반, 동작 주파수는 100kHz 미만으로 정의될 수 있으며, 어플리케이션의 예시로는 주방/가전 기기 등이 존재할 수 있다.
전동 툴과 주방 프로필의 경우, 무선전력 전송장치와 수신장치 간에 NFC 통신이 사용될 수 있다. 무선전력 전송장치와 수신장치는 WPC NDEF(NFC Data Exchange Profile Format)을 교환함으로써 상호간에 NFC 기기임을 확인할 수 있다.
도 3b는 무선 전력 전송 시스템에서 WPC NDEF의 일례를 나타낸다.
도 3b를 참조하면, WPC NDEF는 예를 들어, 어플리케이션 프로파일(application profile) 필드(예를 들어 1B), 버전 필드(예를 들어 1B), 및 프로파일 특정 데이터(profile specific data, 예를 들어 1B)를 포함할 수 있다. 어플리케이션 프로파일 필드는 해당 장치가 i) 모바일 및 컴퓨팅, ii) 전동 툴, 및 iii) 주방 중 어느 것인지를 지시하고, 버전 필드의 상위 니블(upper nibble)은 메이저 버전(major version)을 지시하고 하위 니블(lower nibble)은 마이너 버전(minor version)을 지시한다. 또한 프로파일 특정 데이터는 주방을 위한 컨텐츠를 정의한다.
'웨어러블' 프로필의 경우, PC는 PC-1, 통신 프로토콜/방식은 IB, 동작 주파수는 87~205kHz으로 정의될 수 있으며, 어플리케이션의 예시로는 사용자 몸에 착용하는 웨어러블 기기 등이 존재할 수 있다.
동일한 프로필간에는 호환성 유지는 필수 사항일 수 있으며, 다른 프로필간의 호환성 유지는 선택 사항일 수 있다.
상술한 프로필(모바일 프로필, 전동 툴 프로필, 주방 프로필 및 웨어러블 프로필)들은 제1 내지 제n 프로필로 일반화되어 표현될 수 있으며, WPC 규격 및 실시예에 따라 새로운 프로필이 추가/대체될 수 있다.
이와 같이 프로필이 정의되는 경우, 무선 전력 전송장치가 자신과 동일한 프로필의 무선 전력 수신장치에 대해서만 선택적으로 전력 송신을 수행하여 보다 안정적으로 전력 송신이 가능하다. 또한 무선 전력 전송장치의 부담이 줄어들고, 호환이 불가능한 무선 전력 수신장치로의 전력 송신을 시도하지 않게 되므로 무선 전력 수신장치의 파손 위험이 줄어든다는 효과가 발생한다.
'모바일' 프로필 내의 PC1은 PC0를 기반으로 OB와 같은 선택적 확장을 차용함으로써 정의될 수 있으며, '전동 툴' 프로필의 경우, PC1 '모바일' 프로필이 단순히 변경된 버전으로서 정의될 수 있다. 또한, 현재까지는 동일한 프로필간의 호환성 유지를 목적으로 정의되었으나, 추후에는 서로 다른 프로필간의 호환성 유지 방향으로 기술이 발전될 수 있다. 무선 전력 전송장치 또는 무선 전력 수신장치는 다양한 방식을 통해 자신의 프로필을 상대방에게 알려줄 수 있다.
AFA 표준은 무선 전력 전송장치를 PTU(power transmitting unit)이라 칭하고, 무선 전력 수신장치를 PRU(power receiving unit)이라 칭하며, PTU는 표 1과 같이 다수의 클래스로 분류되고, PRU는 표 2와 같이 다수의 카테고리로 분류된다.
PTU PTX_IN_MAX 최소 카테고리 지원 요구사항 지원되는 최대 기기 개수를 위한 최소값
Class 1 2W 1x 카테고리 1 1x 카테고리 1
Class 2 10W 1x 카테고리 3 2x 카테고리 2
Class 3 16W 1x 카테고리 4 2x 카테고리 3
Class 4 33W 1x 카테고리 5 3x 카테고리 3
Class 5 50W 1x 카테고리 6 4x 카테고리 3
Class 6 70W 1x 카테고리 7 5x 카테고리 3
PRU PRX_OUT_MAX' 예시 어플리케이션
Category 1 TBD 블루투스 헤드셋
Category 2 3.5W 피쳐폰
Category 3 6.5W 스마트폰
Category 4 13W 태블릿, 패플릿
Category 5 25W 작은 폼팩터 랩탑
Category 6 37.5W 일반 랩탑
Category 7 50W 가전
표 1에서와 같이, 클래스 n PTU의 최대 출력 전력 성능(capability)은 해당 클래스의 PTX_IN_MAX 값보다 크거나 같다. PRU는 해당 카테고리에서 명세된(specified) 전력보다 더 큰 전력을 끌어당길(draw) 수는 없다.
도 4는 다른 실시예에 따른 무선 전력 전송 시스템의 블록도이다.
도 4를 참조하면, 무선 전력 전송 시스템(10)은 무선으로 전력을 수신하는 모바일 기기(Mobile Device)(450) 및 무선으로 전력을 송신하는 베이스 스테이션(Base Station)(400)을 포함한다.
베이스 스테이션(400)은 유도 전력 또는 공진 전력을 제공하는 장치로서, 적어도 하나의 무선 전력 전송장치(power transmitter, 100) 및 시스템 회로(405)을 포함할 수 있다. 무선 전력 전송장치(100)는 유도 전력 또는 공진 전력을 전송하고, 전송을 제어할 수 있다. 무선 전력 전송장치(100)는, 1차 코일(primary coil(s))을 통해 자기장을 생성함으로써 전기 에너지를 전력 신호로 변환하는 전력 변환 회로(power conversion circuit, 110) 및 적절한 레벨로 전력을 전달하도록 무선 전력 수신장치(200)와의 통신 및 전력 전달을 컨트롤하는 통신/컨트롤 회로(communications & control circuit, 120)을 포함할 수 있다. 시스템 회로(405)은 입력 전력 프로비저닝(provisioning), 복수의 무선전력 전송장치들의 컨트롤 및 사용자 인터페이스 제어와 같은 베이스 스테이션(400)의 기타 동작 제어를 수행할 수 있다.
1차 코일은 교류 전력(또는 전압 또는 전류)을 이용하여 전자기장을 발생시킬 수 있다. 1차 코일은 전력 변환 회로(110)에서 출력되는 특정 주파수의 교류전력(또는 전압 또는 전류)을 인가받고, 이에 따라 특정 주파수의 자기장을 발생시킬 수 있다. 자기장은 비방사형 또는 방사형으로 발생할 수 있는데, 무선 전력 수신 장치(200)는 이를 수신하여 전류를 생성하게 된다. 다시 말해 1차 코일은 무선으로 전력을 전송하는 것이다.
자기 유도 방식에서, 1차 코일과 2차 코일은 임의의 적합한 형태들을 가질 수 있으며, 예컨대, 페라이트 또는 비정질 금속과 같은 고투자율의 형성물의 주위에 감긴 동선일 수 있다. 1차 코일은 전송 코일(transmitting coil), 1차 코어(primary core), 1차 와인딩(primary winding), 1차 루프 안테나(primary loop antenna) 등으로 불릴 수도 있다. 한편, 2차 코일은 수신 코일(receiving coil), 2차 코어(secondary core), 2차 와인딩(secondary winding), 2차 루프 안테나(secondary loop antenna), 픽업 안테나(pickup antenna) 등으로 불릴 수도 있다.
자기 공진 방식을 이용하는 경우에는 1차 코일과 2차 코일은 각각 1차 공진 안테나와 2차 공진 안테나 형태로 제공될 수 있다. 공진 안테나는 코일과 캐패시터를 포함하는 공진 구조를 가질 수 있다. 이때 공진 안테나의 공진 주파수는 코일의 인덕턴스와 캐패시터의 캐패시턴스에 의해 결정된다. 여기서, 코일은 루프의 형태로 이루어질 수 있다. 또 루프의 내부에는 코어가 배치될 수 있다. 코어는 페라이트 코어(ferrite core)와 같은 물리적인 코어나 공심 코어(air core)를 포함할 수 있다.
1차 공진 안테나와 2차 공진 안테나 간의 에너지 전송은 자기장의 공진 현상을 통해 이루어질 수 있다. 공진 현상이란 하나의 공진 안테나에서 공진 주파수에 해당하는 근접장이 발생할 때 주위에 다른 공진 안테나가 위치하는 경우, 양 공진 안테나가 서로 커플링되어 공진 안테나 사이에서 높은 효율의 에너지 전달이 일어나는 현상을 의미한다. 1차 공진 안테나와 2차 공진 안테나 안테나 사이에서 공진 주파수에 해당하는 자기장이 발생하면, 1차 공진 안테나와 2차 공진 안테나가 서로 공진하는 현상이 발생되고, 이에 따라 일반적인 경우 1차 공진 안테나에서 발생한 자기장이 자유공간으로 방사되는 경우에 비해 보다 높은 효율로 2차 공진 안테나를 향해 자기장이 집속되며, 따라서 1차 공진 안테나로부터 2차 공진 안테나에 높은 효율로 에너지가 전달될 수 있다. 자기 유도 방식은 자기 공진 방식과 유사하게 구현될 수 있으나 이때에는 자기장의 주파수가 공진 주파수일 필요가 없다. 대신 자기 유도 방식에서는 1차 코일과 2차 코일을 구성하는 루프 간의 정합이 필요하며 루프 간의 간격이 매우 근접해야 한다.
도면에 도시되지 않았으나, 무선 전력 전송장치(100)는 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신 할 수 있다.
통신/컨트롤 회로(120)은 무선 전력 수신 장치(200)와 정보를 송수신할 수 있다. 통신/컨트롤 회로(120)은 IB 통신 모듈 또는 OB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 회로(120)은 무선전력 전송의 동작 주파수에 통신 정보를 실어 1차 코일을 통해 전송하거나 또는 정보가 담긴 동작 주파수를 1차 코일을 통해 수신함으로써 인-밴드 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying), 주파수 편이(FSK: Frequency Shift Keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 회로(120)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 회로(120)은 근거리 통신 모듈로 제공될 수 있다. 근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 회로(120)은 무선 전력 전송 장치(100)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 회로(120)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력전송 장치(100)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 회로(120)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 회로(120)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 회로(120)을 구동시키는 프로그램 형태로 제공될 수 있다.
통신/컨트롤 회로(120)은 동작 포인트(operating point)를 컨트롤함으로써 송신 전력을 컨트롤할 수 있다. 컨트롤하는 동작 포인트는 주파수(또는 위상), 듀티 사이클(duty cycle), 듀티 비(duty ratio) 및 전압 진폭의 조합에 해당될 수 있다. 통신/컨트롤 회로(120)은 주파수(또는 위상), 듀티 사이클, 듀티비 및 전압 진폭 중 적어도 하나를 조절하여 송신 전력을 컨트롤할 수 있다. 또한, 무선 전력 전송장치(100)는 일정한 전력을 공급하고, 무선 전력 수신장치(200)가 공진 주파수를 컨트롤함으로써 수신 전력을 컨트롤할 수도 있다.
모바일 기기(450)는 2차 코일(Secondary Coil)을 통해 무선 전력을 수신하는 무선전력 수신장치(power receiver, 200)와 무선전력 수신장치(200)에서 수신된 전력을 전력을 전달받아 저장하고 기기에 공급하는 부하(load, 455)를 포함한다.
무선전력 수신장치(200)는 전력 픽업 회로(power pick-up circuit, 210) 및 통신/컨트롤 회로(communications & control circuit, 220)을 포함할 수 있다. 전력 픽업 회로(210)은 2차 코일을 통해 무선 전력을 수신하여 전기 에너지로 변환할 수 있다. 전력 픽업 회로(210)은 2차 코일을 통해 얻어지는 교류 신호를 정류하여 직류 신호로 변환한다. 통신/컨트롤 회로(220)은 무선 전력의 송신과 수신(전력 전달 및 수신)을 제어할 수 있다.
2차 코일은 무선 전력 전송 장치(100)에서 전송되는 무선 전력을 수신할 수 있다. 2차 코일은 1차 코일에서 발생하는 자기장을 이용하여 전력을 수신할 수 있다. 여기서, 특정 주파수가 공진 주파수인 경우에는 1차 코일과 2차 코일 간에 자기 공진 현상이 발생하여 보다 효율적으로 전력을 전달받을 수 있다.
도 4에는 도시되지 않았으나 통신/컨트롤 회로(220)은 통신 안테나를 더 포함할 수도 있다. 통신 안테나는 자기장 통신 이외의 통신 캐리어를 이용하여 통신 신호를 송수신할 수 있다. 예를 들어, 통신 안테나는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 신호를 송수신할 수 있다.
통신/컨트롤 회로(220)은 무선 전력 전송 장치(100)와 정보를 송수신할 수 있다. 통신/컨트롤 회로(220)은 IB 통신 모듈 또는 OB 통신 모듈 중 적어도 하나를 포함할 수 있다.
IB 통신 모듈은 특정 주파수를 중심 주파수로 하는 자기파를 이용하여 정보를 송수신할 수 있다. 예를 들어, 통신/컨트롤 회로(220)은 자기파에 정보를 실어 2차 코일을 통해 송신하거나 또는 정보가 담긴 자기파를 2차 코일을 통해 수신함으로써 IB 통신을 수행할 수 있다. 이때, 이진 위상 편이(BPSK: binary phase shift keying), 주파수 편이(FSK: Frequency Shift Keying) 또는 진폭 편이(ASK: amplitude shift keying) 등의 변조 방식과 맨체스터(Manchester) 코딩 또는 넌 제로 복귀 레벨(NZR-L: non-return-to-zero level) 코딩 등의 코딩 방식을 이용하여 자기파에 정보를 담거나 정보가 담긴 자기파를 해석할 수 있다. 이러한 IB 통신을 이용하면 통신/컨트롤 회로(220)은 수 kbps의 데이터 전송율로 수 미터에 이르는 거리까지 정보를 송수신할 수 있다.
OB 통신 모듈은 통신 안테나를 통해 아웃-밴드 통신을 수행할 수도 있다. 예를 들어, 통신/컨트롤 회로(220)은 근거리 통신 모듈로 제공될 수 있다.
근거리 통신 모듈의 예로는 와이파이(Wi-Fi), 블루투스(Bluetooth), 블루투스 LE, 직비(ZigBee), NFC 등의 통신 모듈이 있다.
통신/컨트롤 회로(220)은 무선 전력 수신 장치(200)의 전반적인 동작을 제어할 수 있다. 통신/컨트롤 회로(220)은 각종 정보의 연산 및 처리를 수행하고, 무선 전력수신 장치(200)의 각 구성 요소를 제어할 수 있다.
통신/컨트롤 회로(220)은 하드웨어, 소프트웨어 또는 이들의 조합을 이용하여 컴퓨터나 이와 유사한 장치로 구현될 수 있다. 하드웨어적으로 통신/컨트롤 회로(220)은 전기적인 신호를 처리하여 제어 기능을 수행하는 전자 회로 형태로 제공될 수 있으며, 소프트웨어적으로는 하드웨어적인 통신/컨트롤 회로(220)을 구동시키는 프로그램 형태로 제공될 수 있다.
이하에서 코일 또는 코일부는 코일 및 코일과 근접한 적어도 하나의 소자를 포함하여 코일 어셈블리, 코일 셀 또는 셀로서 지칭할 수도 있다.
도 5는 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 5를 참조하면, 본 명세서의 일 실시예에 따른 무선전력 전송장치로부터 수신기로의 파워 전송은 크게 선택 단계(selection phase, 510), 핑 단계(ping phase, 520), 식별 및 구성 단계(identification and configuration phase, 530), 협상 단계(negotiation phase, 540), 보정 단계(calibration phase, 550), 전력 전송 단계(power transfer phase, 560) 단계 및 재협상 단계(renegotiation phase, 570)로 구분될 수 있다.
선택 단계(510)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계-예를 들면, 도면 부호 S502, S504, S508, S510 및 S512를 포함함-일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(510)에서 무선전력 전송장치는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 무선전력 전송장치가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(520)로 천이할 수 있다. 선택 단계(510)에서 무선전력 전송장치는 매우 짧은 구간(duration)에 해당하는 전력 신호(또는 펄스)인 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일 또는 1차 코일(Primary Coil)의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
선택 단계(510)에서 물체가 감지되는 경우, 무선전력 전송장치는 무선전력 공진 회로(예를 들어 전력전송 코일 및/또는 공진 캐패시터)의 품질 인자를 측정할 수 있다. 본 명세서의 일 실시예에서는 선택단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 무선전력 수신장치가 놓였는지 판단하기 위하여 품질 인자를 측정할 수 있다. 무선전력 전송장치에 구비되는 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬저항 성분이 감소될 수 있고, 이로 인해 품질 인자 값이 감소하게 된다. 측정된 품질 인자 값을 이용하여 이물질의 존재 여부를 판단하기 위해, 무선전력 전송장치는 충전 영역에 이물질이 배치되지 않은 상태에서 미리 측정된 기준 품질 인자 값을 무선전력 수신장치로부터 수신할 수 있다. 협상 단계(540)에서 수신된 기준 품질 인자 값과 측정된 품질 인자 값을 비교하여 이물질 존재 여부를 판단할 수 있다. 그러나 기준 품질 인자 값이 낮은 무선전력 수신장치의 경우-일 예로, 무선전력 수신장치의 타입, 용도 및 특성 등에 따라 특정 무선전력 수신장치는 낮은 기준 품질 인자 값을 가질 수 있음-, 이물질이 존재하는 경우에 측정되는 품질 인자 값과 기준 품질 인자 값 사이의 큰 차이가 없어 이물질 존재 여부를 판단하기 어려운 문제가 발생할 수 있다. 따라서 다른 판단 요소를 더 고려하거나, 다른 방법을 이용하여 이물질 존재 여부를 판단해야 한다.
본 명세서의 또 다른 실시예에서는 선택 단계(510)에서 물체가 감지되면, 충전 영역에 이물질과 함께 배치되었는지 판단하기 위하여 특정 주파수 영역 내(ex 동작 주파수 영역) 품질 인자 값을 측정할 수 있다. 무선전력 전송장치의 코일은 환경 변화에 의해 인덕턴스 및/또는 코일 내 직렬 저항 성분이 감소될 수 있고, 이로 인해 무선전력 전송장치의 코일의 공진 주파수가 변경(시프트)될 수 있다. 즉, 동작 주파수 대역 내 최대 품질 인자 값이 측정되는 주파수인 품질 인자 피크(peak) 주파수가 이동될 수 있다.
핑 단계(520)에서 무선전력 전송장치는 물체가 감지되면, 수신기를 활성화(Wake up)시키고, 감지된 물체가 무선 전력 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송한다. 핑 단계(520)에서 무선전력 전송장치는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 패킷-을 수신기로부터 수신하지 못하면, 다시 선택 단계(510)로 천이할 수 있다. 또한, 핑 단계(520)에서 무선전력 전송장치는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 패킷-을 수신하면, 선택 단계(510)로 천이할 수도 있다.
핑 단계(520)가 완료되면, 무선전력 전송장치는 수신기를 식별하고 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(530)로 천이할 수 있다.
식별 및 구성 단계(530)에서 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(510)로 천이할 수 있다.
무선전력 전송장치는 식별 및 구성 단계(530)에서 수신된 구성 패킷(Configuration packet)의 협상 필드(Negotiation Field) 값에 기반하여 협상 단계(540)로의 진입이 필요한지 여부를 확인할 수 있다. 확인 결과, 협상이 필요하면, 무선전력 전송장치는 협상 단계(540)로 진입하여 소정 FOD 검출 절차를 수행할 수 있다. 반면, 확인 결과, 협상이 필요하지 않은 경우, 무선전력 전송장치는 곧바로 전력 전송 단계(560)로 진입할 수도 있다.
협상 단계(540)에서, 무선전력 전송장치는 기준 품질 인자 값이 포함된 FOD(Foreign Object Detection) 상태 패킷을 수신할 수 있다. 또는 기준 피크 주파수 값이 포함된 FOD 상태 패킷을 수신할 수 있다. 또는 기준 품질 인자 값 및 기준 피크 주파수 값이 포함된 상태 패킷을 수신할 수 있다. 이때, 무선전력 전송장치는 기준 품질 인자 값에 기반하여 FO 검출을 위한 품질 계수 임계치를 결정할 수 있다. 무선전력 전송장치는 기준 피크 주파수 값에 기반하여 FO 검출을 위한 피크 주파수 임계치를 결정할 수 있다.
무선전력 전송장치는 결정된 FO 검출을 위한 품질 계수 임계치 및 현재 측정된 품질 인자 값(핑 단계 이전에 측정된 품질인자 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
무선전력 전송장치는 결정된 FO 검출을 위한 피크 주파수 임계치 및 현재 측정된 피크 주파수 값(핑 단계 이전에 측정된 피크 주파수 값)을 이용하여 충전 영역에 FO가 존재하는지를 검출할 수 있으며, FO 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, FO가 검출된 경우, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
FO가 검출된 경우, 무선전력 전송장치는 선택 단계(510)로 회귀할 수 있다. 반면, FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)를 거쳐 전력 전송 단계(560)로 진입할 수도 있다. 상세하게, 무선전력 전송장치는 FO가 검출되지 않은 경우, 무선전력 전송장치는 보정 단계(550)에서 수신단에 수신된 전력의 세기를 결정하고, 송신단에서 전송한 전력의 세기를 결정하기 위해 수신단과 송신단에서의 전력 손실을 측정할 수 있다. 즉, 무선전력 전송장치는 보정 단계(550)에서 송신단의 송신 파워와 수신단의 수신 파워 사이의 차이에 기반하여 전력 손실을 예측할 수 있다. 일 실시예에 따른 무선전력 전송장치는 예측된 전력 손실을 반영하여 FOD 검출을 위한 임계치를 보정할 수도 있다.
전력 전송 단계(560)에서, 무선전력 전송장치는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(510)로 천이할 수 있다.
또한, 전력 전송 단계(560)에서, 무선전력 전송장치는 무선전력 전송장치 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 재협상 단계(570)로 천이할 수 있다. 이때, 재협상이 정상적으로 완료되면, 무선전력 전송장치는 전력 전송 단계(560)로 회귀할 수 있다.
본 실시예에서는 보정 단계(550과 전력 전송 단계(560)를 별개의 단계로 구분하였지만, 보정 단계(550)는 전력 전송 단계(560)에 통합될 수 있다. 이 경우 보정 단계(550)에서의 동작들은 전력 전송 단계(560)에서 수행될 수 있다.
상기한 파워 전송 계약은 무선전력 전송장치와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 무선전력 전송장치 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
도 6은 일 실시예에 따른 전력 제어 컨트롤 방법을 나타낸다.
도 6에서 전력 전송 단계(560)에서, 무선전력 전송장치(100) 및 무선전력 수신장치(200)는 전력 송수신과 함께 통신을 병행함으로써 전달되는 전력의 양을 컨트롤할 수 있다. 무선전력 전송장치 및 무선전력 수신장치는 특정 컨트롤 포인트에서 동작한다. 컨트롤 포인트는 전력 전달이 수행될 때 무선전력 수신장치의 출력단(output)에서 제공되는 전압 및 전류의 조합(combination)을 나타낸다.
더 상세히 설명하면, 무선전력 수신장치는 원하는 컨트롤 포인트(desired Control Point)- 원하는 출력 전류/전압, 모바일 기기의 특정 위치의 온도 등을 선택하고, 추가로 현재 동작하고 있는 실제 컨트롤 포인트(actual control point)를 결정한다. 무선전력 수신장치는 원하는 컨트롤 포인트와 실제 컨트롤 포인트를 사용하여, 컨트롤 에러 값(control error value)을 산출하고, 이를 컨트롤 에러 패킷으로서 무선전력 전송장치로 전송할 수 있다.
그리고 무선전력 전송장치는 수신한 컨트롤 에러 패킷을 사용하여 새로운 동작 포인트- 진폭, 주파수 및 듀티 사이클-를 설정/컨트롤하여 전력 전달을 제어할 수 있다. 따라서 컨트롤 에러 패킷은 전략 전달 단계에서 일정 시간 간격으로 전송/수신되며, 실시예로서 무선전력 수신장치는 무선전력 전송장치의 전류를 저감하려는 경우 컨트롤 에러 값을 음수로, 전류를 증가시키려는 경우 컨트롤 에러 값을 양수로 설정하여 전송할 수 있다. 이와 같이 유도 모드에서는 무선전력 수신장치가 컨트롤 에러 패킷을 무선전력 전송장치로 송신함으로써 전력 전달을 제어할 수 있다.
이하에서 설명할 공진 모드에서는 유도 모드에서와는 다른 방식으로 동작할 수 있다. 공진 모드에서는 하나의 무선전력 전송장치가 복수의 무선전력 수신장치를 동시에 서빙할 수 있어야 한다. 다만 상술한 유도 모드와 같이 전력 전달을 컨트롤하는 경우, 전달되는 전력이 하나의 무선전력 수신장치와의 통신에 의해 컨트롤되므로 추가적인 무선전력 수신장치들에 대한 전력 전달은 컨트롤이 어려울 수 있다. 따라서 본 명세서의 공진 모드에서는 무선전력 전송장치는 기본 전력을 공통적으로 전달하고, 무선전력 수신장치가 자체의 공진 주파수를 컨트롤함으로써 수신하는 전력량을 컨트롤하는 방법을 사용하고자 한다. 다만, 이러한 공진 모드의 동작에서도 도 6에서 설명한 방법이 완전히 배제되는 것은 아니며, 추가적인 송신 전력의 제어를 도 6의 방법으로 수행할 수도 있다.
도 7은 다른 실시예에 따른 무선 전력 전송 장치의 블록도이다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다. 쉐어드 모드는 무선전력 전송장치와 무선전력 수신장치간에 1대다 통신 및 충전을 수행하는 모드를 지칭할 수 있다. 쉐어드 모드는 자기 유도 방식 또는 공진 방식으로 구현될 수 있다.
도 7을 참조하면, 무선 전력 전송 장치(700)는 코일 어셈블리를 덮는 커버(720), 전력 송신기(740)로 전력을 공급하는 전력 어답터(730), 무선 전력을 송신하는 전력 송신기(740) 또는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(750) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(750)는 옵셔널하게 포함되거나, 무선 전력 전송 장치(700)의 다른 사용자 인터페이스(750)로서 포함될 수도 있다.
전력 송신기(740)는 코일 어셈블리(760), 임피던스 매칭 회로(770), 인버터(780), 통신 회로(790) 또는 컨트롤 회로(710) 중 적어도 하나를 포함할 수 있다.
코일 어셈블리(760)는 자기장을 생성하는 적어도 하나의 1차 코일을 포함하며, 코일 셀로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 인버터와 1차 코일(들) 간의 임피던스 매칭을 제공할 수 있다. 임피던스 매칭 회로(770)는 1차 코일 전류를 부스팅(boost)하는 적합한(suitable) 주파수에서 공진(resonance)을 발생시킬 수 있다. 다중-코일(multi-coil) 전력 송신기(740)에서 임피던스 매칭 회로는 인버터에서 1차 코일들의 서브세트로 신호를 라우팅하는 멀티플렉스를 추가로 포함할 수도 있다. 임피던스 매칭 회로는 탱크 회로(tank circuit)로 지칭될 수도 있다.
임피던스 매칭 회로(770)는 캐패시터, 인덕터 및 이들의 연결을 스위칭하는 스위칭 소자를 포함할 수 있다. 임피던스의 매칭은 코일 어셈블리(760)를 통해 전송되는 무선전력의 반사파를 검출하고, 검출된 반사파에 기초하여 스위칭 소자를 스위칭하여 캐패시터나 인덕터의 연결 상태를 조정하거나 캐패시터의 캐패시턴스를 조정하거나 인덕터의 인덕턴스를 조정함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(770)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(770)가 생략된 무선전력 전송장치(700)의 실시예도 포함한다.
인버터(780)는 DC 인풋을 AC 신호로 전환할 수 있다. 인버터(780)는 가변(adjustable) 주파수의 펄스 웨이브 및 듀티 사이클을 생성하도록 하프-브리지 또는 풀-브리지로 구동될 수 있다. 또한 인버터는 입력 전압 레벨을 조정하도록 복수의 스테이지들을 포함할 수도 있다.
통신 회로(790)은 전력 수신기와의 통신을 수행할 수 있다. 전력 수신기는 전력 송신기에 대한 요청 및 정보를 통신하기 위해 로드(load) 변조를 수행한다. 따라서 전력 송신기(740)는 통신 회로(790)을 사용하여 전력 수신기가 전송하는 데이터를 복조하기 위해 1차 코일의 전류 및/또는 전압의 진폭 및/또는 위상을 모니터링할 수 있다.
또한, 전력 송신기(740)는 통신 회로(790)을 통해 FSK(Frequency Shift Keying) 방식 등을 사용하여 데이터를 전송하도록 출력 전력을 컨트롤할 수도 있다.
컨트롤 회로(710)은 전력 송신기(740)의 통신 및 전력 전달을 컨트롤할 수 있다. 컨트롤 회로(710)은 상술한 동작 포인트를 조정하여 전력 전송을 제어할 수 있다. 동작 포인트는, 예를 들면, 동작 주파수, 듀티 사이클 및 입력 전압 중 적어도 하나에 의해 결정될 수 있다.
통신 회로(790) 및 컨트롤 회로(710)은 별개의 회로/소자/칩셋으로 구비되거나, 하나의 회로/소자/칩셋으로 구비될 수도 있다.
도 8은 다른 실시예에 따른 무선 전력 수신 장치를 나타낸다. 이는 자기 공진 방식 또는 쉐어드 모드(shared mode)의 무선 전력 전송 시스템에 속할 수 있다.
도 8에서, 무선전력 수신 장치(800)는 전력 전달 진행 및 다른 관련 정보를 제공하는 사용자 인터페이스(820), 무선 전력을 수신하는 전력 수신기(830), 로드 회로(load circuit, 840) 또는 코일 어셈블리를 받치며 커버하는 베이스(850) 중 적어도 하나를 포함할 수 있다. 특히, 사용자 인터페이스(820)는 옵셔널하게 포함되거나, 전력 수신 장비의 다른 사용자 인터페이스(82)로서 포함될 수도 있다.
전력 수신기(830)는 전력 컨버터(860), 임피던스 매칭 회로(870), 코일 어셈블리(880), 통신 회로(890) 또는 컨트롤 회로(810) 중 적어도 하나를 포함할 수 있다.
전력 컨버터(860)는 2차 코일로부터 수신하는 AC 전력을 로드 회로에 적합한 전압 및 전류로 전환(convert)할 수 있다. 실시예로서, 전력 컨버터(860)는 정류기(rectifier)를 포함할 수 있다. 정류기는 수신된 무선 전력을 정류하여 교류에서 직류로 변환할 수 있다. 정류기는 다이오드나 트랜지스터를 이용하여 교류를 직류로 변환하고, 캐패시터와 저항을 이용하여 이를 평활할 수 있다. 정류기로는 브릿지 회로 등으로 구현되는 전파 정류기, 반파 정류기, 전압 체배기 등이 이용될 수 있다. 추가로, 전력 컨버터는 전력 수신기의 반사(reflected) 임피던스를 적용(adapt)할 수도 있다.
임피던스 매칭 회로(870)는 전력 컨버터(860) 및 로드 회로(840)의 조합과 2차 코일 간의 임피던스 매칭을 제공할 수 있다. 실시예로서, 임피던스 매칭 회로는 전력 전달을 강화할 수 있는 100kHz 근방의 공진을 발생시킬 수 있다. 임피던스 매칭 회로(870)는 캐패시터, 인덕터 및 이들의 조합을 스위칭하는 스위칭 소자로 구성될 수 있다. 임피던스의 정합은 수신되는 무선 전력의 전압값이나 전류값, 전력값, 주파수값 등에 기초하여 임피던스 매칭 회로(870)를 구성하는 회로의 스위칭 소자를 제어함으로써 수행될 수 있다. 경우에 따라 임피던스 매칭 회로(870)는 생략되어 실시될 수도 있으며, 본 명세서는 임피던스 매칭 회로(870)가 생략된 무선전력 수신장치(200)의 실시예도 포함한다.
코일 어셈블리(880)는 적어도 하나의 2차 코일을 포함하며, 옵셔널하게는 자기장으로부터 수신기의 금속 부분을 쉴딩(shield)하는 엘러먼트(element)를 더 포함할 수도 있다.
통신 회로(890)은 전력 송신기로 요청(request) 및 다른 정보를 통신하기 위해 로드 변조를 수행할 수 있다.
이를 위해 전력 수신기(830)는 반사 임피던스를 변경하도록 저항 또는 커패시터를 스위칭할 수도 있다.
컨트롤 회로(810)은 수신 전력을 컨트롤할 수 있다. 이를 위해 컨트롤 회로(810)은 전력 수신기(830)의 실제 동작 포인트와 원하는 동작 포인트의 차이를 결정/산출할 수 있다. 그리고 컨트롤 회로(810)은 전력 송신기의 반사 임피던스의 조정 및/또는 전력 송신기의 동작 포인트 조정 요청을 수행함으로써 실제 동작 포인트와 원하는 동작 포인트의 차이를 조정/저감할 수 있다. 이 차이를 최소화하는 경우 최적의 전력 수신을 수행할 수 있다.
통신 회로(890) 및 컨트롤 회로(810)은 별개의 소자/칩셋으로 구비되거나, 하나의 소자/칩셋으로 구비될 수도 있다.
도 5 등에서 설명한 바와 같이, 무선전력 전송장치와 무선전력 수신장치는 핑 단계(Ping Phase), 구성 단계(Configuration Phase)를 거쳐 협상 단계(Negotiation Phase)로 진입하거나, 핑 단계, 구성 단계, 협상 단계를 거쳐 전력 전송 단계(Power Transfer Phase)에 진입하였다가 재협상 단계(Re-negotiation Phase)로 진입할 수 있다.
도 9는 일 실시예에 따른 핑 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
도 9 참조하면, 핑 단계에서, 무선전력 전송장치(1010)는 아날로그 핑을 전송하여 작동 공간(operating volume) 내에 물체가 존재하는지 여부를 확인한다(S1101). 무선전력 전송장치(1010)는 송신 코일 또는 1차 코일(Primary Coil)의 전류 변화에 기반하여 작동 공간 내에 물체가 존재하는지를 감지할 수 있다.
아날로그 핑에 의해 작동 공간 내에 물체가 존재하는 것으로 판단되면, 무선전력 전송장치(1010)는 작동 공간(operating volume) 내에 이물질이 존재하는지 여부를 확인하기 위해 전력 전송 전 이물질 검출(FOD)을 수행할 수 있다(S1102). 무선전력 전송장치(1010)는 NFC 카드 및/또는 RFID 태그를 보호하기 위한 동작을 수행할 수도 있다.
이후, 무선전력 전송장치(1010)는 디지털 핑을 전송하여 무선전력 수신장치(1020)를 식별한다(S1103). 무선전력 수신장치(1020)는 디지털 핑을 수신하여 무선전력 전송장치(1010)를 인지하게 된다.
디지털 핑을 수신한 무선전력 수신장치(1020)는 신호 세기 패킷(SIG, Signal Strength data packet)을 무선전력 전송장치(1010)로 전송한다(S1104).
무선전력 수신장치(1020)로부터 SIG를 수신한 무선전력 전송장치(1010)는 무선전력 수신장치(1020)가 작동 공간(operating volume) 내에 위치하였음을 식별할 수 있다.
도 10은 일 실시예에 따른 구성 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
구성 단계(또는 식별 및 구성 단계)에서, 무선전력 수신장치(1020)는 자신의 식별 정보를 무선전력 전송장치(1010)로 전송하고, 무선전력 수신장치(1020)와 무선전력 전송장치(1010)는 기본 전력 전송 계약(baseline Power Transfer Contract)을 수립할 수 있다.
도 10을 참조하면, 구성 단계에서, 무선전력 수신장치(1020)는, 자신을 식별시키기 위해 ID(identification data packet)을 무선전력 전송장치(1010)로 전송할 수 있다(S1201). 또한, 무선전력 수신장치(1020)는 XID(Extended Identification data packet)을 무선전력 전송장치(1010)로 전송할 수 있다(S1202). 또한, 무선전력 수신장치(1020)는 전력 전송 계약 등을 위해 PCH(Power Control Hold-off data packet)을 무선전력 전송장치(1010)로 전송할 수 있다(S1203). 또한, 무선전력 수신장치(1020)는 구성 패킷(CFG, Configuration data packet)을 무선전력 전송장치로 전송할 수 있다(S1204).
EPP를 위한 확장된 프로토콜(Extended Protocol)에 따르는 경우, 무선전력 전송장치(1010)는 CFG에 대한 응답으로 ACK를 전송할 수 있다(S1205).
도 11은 일 실시예에 따른 무선전력 수신장치의 구성 패킷(CFG)의 메시지 필드를 도시한 도면이다.
일 실시예에 따른 구성 패킷(CFG)은 0x51의 헤더값을 가질 수 있고, 도 14를 참조하면, 5 바이트의 메시지 필드를 포함할 수 있다.
도 11을 참조하면, 구성 패킷(CFG)의 메시지 필드에는 1 비트의 인증(AI) 플래그와 1 비트의 아웃밴드(OB) 플래그가 포함될 수 있다.
인증 플래그(AI)는 무선전력 수신장치(1020)가 인증 기능을 지원하는지 여부를 지시한다. 예를 들어, 인증 플래그(AI)의 값이 '1'이면 무선전력 수신장치(1020)가 인증 기능을 지원하거나 인증 개시자(Authentication Initiator)로 동작할 수 있음을 지시하고, 인증 플래그(AI)의 값이 '0'이면 무선전력 수신장치(1020)가 인증 기능을 지원하지 않거나 인증 개시자로 동작할 수 없음을 지시할 수 있다.
아웃밴드(OB) 플래그는 무선전력 수신장치(1020)가 아웃밴드 통신을 지원하는지 여부를 지시한다. 예를 들어, 아웃밴드(OB) 플래그의 값이 '1'이면 무선전력 수신장치(1020)가 아웃밴드 통신을 지시하고, 아웃밴드(OB) 플래그의 값이 '0'이면 무선전력 수신장치(1020)가 아웃밴드 통신을 지원하지 않음을 지시할 수 있다.
구성 단계에서 무선전력 전송장치(1010)는 무선전력 수신장치(1020)의 구성 패킷(CFG)을 수신하여, 무선전력 수신장치(1020)의 인증기능 지원여부 및 아웃밴드 통신 지원여부를 확인할 수 있다.
도 12는 일 실시예에 따른 협상 단계 또는 재협상 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
협상 단계 또는 재협상 단계에서, 무선전력 수신장치와 무선전력 전송장치 사이의 무선전력의 수신/전송과 관련한 전력 전송 계약(Power Transfer Contract)을 확장 또는 변경하거나, 전력 전송 계약의 요소 중 적어도 일부를 조정하는 전력 전송 계약의 갱신이 이루어지거나, 아웃밴드 통신을 수립하기 위한 정보의 교환이 이루어질 수 있다.
또한, 협상 단계 또는 재협상 단계에서, 무선전력 전송장치(1010)는 무선전력 수신장치(1020)로부터 기준 품질인자값에 대한 정보를 수신하고, 기준 품질인자값과 측정된 품질 인자 값을 비교하여 이물질 존재 여부를 판단할 수 있다.
도 12를 참조하면, 협상 단계 또는 재협상 단계에서, 무선전력 수신장치(1020)는, 이물질 검출(Foreign Object Detection, FOD)을 위한 이물질 상태 패킷(FOD)을 무선전력 전송장치(1010)로 전송할 수 있다(S1301).
이물질 상태 패킷(FOD)은 기준 품질 팩터(Reference Quality Factor, Qt(ref))와 기준 공진 주파수(Reference Resonance Frequency)와 관련된 정보를 각각 포함하는 패킷들일 수 있다. 무선전력 전송장치(1010)는 이물질 상태 패킷(FOD)에 포함된 정보를 기초로 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 이물질이 존재하는지 여부를 확인할 수 있다.
무선전력 전송장치(1010)는 이물질이 존재하지 않는 것으로 판단되면 ACK를 전송하고, 이물질이 존재하는 것으로 판단되면 NAK을 전송할 수 있다(S1302).
다시 도 12를 참조하면, 협상 단계에서, 무선전력 수신장치(1020)는 GRQ(General Request data packet)을 이용해 무선전력 전송장치(1010)의 ID(Identification data packet) 및 CAP(Capabilities data packet)을 수신할 수 있다.
일반요청패킷(GRQ)는 0x07의 헤더값을 가질 수 있고, 1바이트의 메시지 필드를 포함할 수 있다. 일반요청패킷(GRQ)의 메시지 필드에는 무선전력 수신장치(1020)가 GRQ 패킷을 이용해 무선전력 전송장치(1010)에게 요청하는 데이터 패킷의 헤더값이 포함될 수 있다. 예를 들어, 무선전력 수신장치(1020)가 GRQ 패킷을 이용해 무선전력 전송장치(1010)의 ID 패킷을 요청하는 경우, 무선전력 수신장치(1020)는 일반요청패킷(GRQ)의 메시지 필드에 무선전력 전송장치(1010)의 ID 패킷의 헤더값(0x30)이 포함된 일반요청패킷(GRQ/id)을 전송한다.
도 12를 참조하면, 협상 단계 또는 재협상 단계에서, 무선전력 수신장치(1020)는 무선전력 전송장치(1010)의 ID 패킷을 요청하는 GRQ 패킷(GRQ/id)을 무선전력 전송장치(1010)로 전송할 수 있다(S1303).
GRQ/id를 수신한 무선전력 전송장치(1010)는 ID 패킷을 무선전력 수신장치(1020)로 전송할 수 있다(S1304). 무선전력 전송장치(1010)의 ID 패킷에는 Manufacturer Code에 대한 정보가 포함된다. Manufacturer Code에 대한 정보가 포함된 ID 패킷은 무선전력 전송장치(1010)의 제조자(manufacturer)를 식별할 수 있도록 한다.
도 12를 참조하면, 협상 단계 또는 재협상 단계에서, 무선전력 수신장치(1020)는 무선전력 전송장치(1010)의 성능 패킷(CAP)을 요청하는 GRQ 패킷(GRQ/cap)을 무선전력 전송장치(1010)로 전송할 수 있다(S1305). GRQ/cap의 메시지 필드에는 성능패킷(CAP)의 헤더값(0x31)이 포함될 수 있다.
GRQ/cap를 수신한 무선전력 전송장치(1010)는 성능 패킷(CAP)을 무선전력 수신장치(1020)로 전송할 수 있다(S1306).
도 13은 일 실시예에 따른 무선전력 전송장치의 성능 패킷(CAP)의 메시지 필드를 도시한 도면이다.
일 실시예에 따른 성능 패킷(CAP)은 0x31의 헤더값을 가질 수 있고, 도 16을 참조하면, 3 바이트의 메시지 필드를 포함할 수 있다.
도 13을 참조하면, 성능 패킷(CAP)의 메시지 필드에는 1 비트의 인증(AR) 플래그와 1 비트의 아웃밴드(OB) 플래그가 포함될 수 있다.
인증 플래그(AR)는 무선전력 전송장치(1010)가 인증 기능을 지원하는지 여부를 지시한다. 예를 들어, 인증 플래그(AR)의 값이 '1'이면 무선전력 전송장치(1010)가 인증 기능을 지원하거나 인증 응답자(Authentication Responder)로 동작할 수 있음을 지시하고, 인증 플래그(AR)의 값이 '0'이면 무선전력 전송장치(1010)가 인증 기능을 지원하지 않거나 인증 응답자로 동작할 수 없음을 지시할 수 있다.
아웃밴드(OB) 플래그는 무선전력 전송장치(1010)가 아웃밴드 통신을 지원하는지 여부를 지시한다. 예를 들어, 아웃밴드(OB) 플래그의 값이 '1'이면 무선전력 전송장치(1010)가 아웃밴드 통신을 지시하고, 아웃밴드(OB) 플래그의 값이 '0'이면 무선전력 전송장치(1010)가 아웃밴드 통신을 지원하지 않음을 지시할 수 있다.
협상 단계에서 무선전력 수신장치(1020)는 무선전력 전송장치(1010)의 성능 패킷(CAP)을 수신하여, 무선전력 전송장치(1010)의 인증기능 지원여부 및 아웃밴드 통신 지원여부를 확인할 수 있다.
또한, 도 12를 참조하면, 무선전력 수신장치(1020)는 협상 단계 또는 재협상 단계에서 적어도 하나의 특정 요청 패킷(SRQ, Specific Request data packet)을 이용해 전력 전송 단계에서 제공받을 전력과 관련한 전력 전송 계약(Power Transfer Contract)의 요소들을 갱신할 수 있고, 협상 단계 또는 재협상 단계를 종료할 수 있다(S1307).
무선전력 전송장치(1010)는 특정 요청 패킷(SRQ)의 종류에 따라 특정 요청 패킷(SRQ)에 대한 응답으로 ACK만을 전송하거나, ACK 또는 NAK만을 전송하거나, ACK 또는 ND만을 전송할 수 있다(S1308).
상술한 핑 단계, 구성 단계, 협상/재협상 단계에서 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 교환되는 데이터 패킷 또는 메시지는 인밴드 통신을 통해 전송/수신될 수 있다.
도 14는 일 실시예에 따른 전력 전송 단계의 프로토콜을 개략적으로 도시한 흐름도이다.
전력 전송 단계에서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 전력 전송 계약에 기초하여 무선전력을 전송/수신할 수 있다.
도 14를 참조하면, 전력 전송 단계에서, 무선전력 수신장치(1020)는 실제 동작점(actual operating point)과 목표 동작점(target operating point)의 차이에 대한 정보를 포함하는 제어오류패킷(CE, control error data packet)을 무선전력 전송장치(1010)로 전송한다(S1401).
또한, 전력 전송 단계에서, 무선전력 수신장치(1020)는 무선전력 전송장치(1010)로부터 수신한 무선전력의 수신 전력값에 대한 정보를 포함하는 수신전력패킷(RP, Received Power data packet)을 무선전력 전송장치(1010)로 전송한다(S1402).
전력 전송 단계에서, 제어오류패킷(CE)와 수신전력패킷(RP)는, 무선전력의 제어를 위해, 요구되는 타이밍 제약(timing constraint)에 맞추어 반복적으로 전송/수신되어야 하는 데이터 패킷이다.
무선전력 전송장치(1010)는 무선전력 수신장치(1020)로부터 수신한 제어오류패킷(CE)와 수신전력패킷(RP)을 기초로 전송하는 무선전력의 레벨을 제어할 수 있다.
무선전력 전송장치(1010)는 수신전력패킷(RP)에 대해 ACK, NAK, ATN 등의 8비트의 비트 패턴으로 응답할 수 있다(S1403).
모드 값이 0인 수신전력패킷(RP/0)에 대해, 무선전력 전송장치(1010)가 ACK으로 응답하는 것은, 전력 전송이 현재의 레벨로 계속 진행될 수 있음을 의미한다.
모드 값이 0인 수신전력패킷(RP/0)에 대해, 무선전력 전송장치(1010)가 NAK으로 응답하는 것은, 무선전력 수신장치(1020)가 전력 소비를 줄여야 함을 의미한다.
모드 값이 1 또는 2인 수신전력패킷(RP/1 또는 RP/2)에 대해, 무선전력 전송장치(1010)가 ACK으로 응답하는 것은, 무선전력 수신장치(1020)가 수신전력패킷(RP/1 또는 RP/2)에 포함된 전력 보정값을 받아들였음을 의미한다.
모드 값이 1 또는 2인 수신전력패킷(RP/1 또는 RP/2)에 대해, 무선전력 전송장치(1010)가 NAK으로 응답하는 것은, 무선전력 수신장치(1020)가 수신전력패킷(RP/1 또는 RP/2)에 포함된 전력 보정값을 받아들이지 않았음을 의미한다.
수신전력패킷(RP)에 대해 무선전력 전송장치(1010)가 ATN으로 응답하는 것은, 무선전력 전송장치(1010)가 통신의 허용을 요청함을 의미한다.
무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 제어오류패킷(CE), 수신전력패킷(RP) 및 수신전력패킷(RP)에 대한 응답을 기초로 전송/수신되는 전력 레벨을 제어할 수 있다.
또한, 전력 전송 단계에서, 무선전력 수신장치(1020)는 배터리의 충전 상태에 대한 정보를 포함하는 충전상태패킷(CHS, Charge Status data packet)을 무선전력 전송장치(1010)로 전송한다(S1404). 무선전력 전송장치(1010)는 충전상태패킷(CHS)에 포함된 배터리의 충전 상태에 대한 정보를 기초로 무선전력의 전력 레벨을 제어할 수 있다.
한편, 전력 전송 단계에서, 무선전력 전송장치(1010) 및/또는 무선전력 수신장치(1020)는 전력 전송 계약의 갱신 등을 위해 재협상 단계로 진입할 수 있다.
전력 전송 단계에서, 무선전력 전송장치(1010)가 재협상 단계로 진입하고자 하는 경우, 무선전력 전송장치(1010)는 수신전력패킷(RP)에 대해 ATN으로 응답한다. 이 경우, 무선전력 수신장치(1020)는 DSR/poll 패킷을 무선전력 전송장치(1010)로 전송하여 무선전력 전송장치(1010)가 데이터 패킷을 전송할 기회를 부여할 수 있다(S1405).
무선전력 전송장치(1010)가 DSR/poll 패킷에 대한 응답으로 성능 패킷(CAP)을 무선전력 수신장치(1020)로 전송하면(S1406), 무선전력 수신장치(1020)는 재협상 단계의 진행을 요청하는 재협상 패킷(NEGO)을 무선전력 전송장치(1010)로 전송하고(S1407), 무선전력 전송장치(1010)가 재협상 패킷(NEGO)에 대해 ACK로 응답하면(S1408), 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 재협상 단계로 진입하게 된다.
전력 전송 단계에서, 무선전력 수신장치(1020)가 재협상 단계로 진입하고자 하는 경우, 무선전력 수신장치(1020)는 재협상 단계의 진행을 요청하는 재협상 패킷(NEGO)을 무선전력 전송장치(1010)로 전송하고(S1407), 무선전력 전송장치(1010)가 재협상 패킷(NEGO)에 대해 ACK로 응답하면(S1408), 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 재협상 단계로 진입하게 된다.
이하에서는, 전력 전송 중의 이물질 검출 방법에 대해 설명한다.
전력 전송 중의 이물질 검출 방법으로는 다양한 방법이 사용될 수 있지만, 짧은 시간 동안 전력 전송을 중단하고 전력 전송이 중단된 짧은 시간 내에 이물질 검출을 수행하는 방법이 사용될 수 있다. 전력 전송이 중단되는 짧은 시간은 슬롯 시간(Slot time)이라고 할 수 있으며, 슬롯 시간 동안 전력 전송을 중단하고 이물질을 검출하는 방법을 슬롯을 이용한 이물질 검출, Slotted FOD 또는 Slot FOD라고 할 수 있다. 이하에서는 Slotted FOD로 통칭한다.
Slotted FOD는 짧은 시간 동안 전력 전송이 중단되므로, 이물질을 검출하는 시간 동안 무선전력 수신장치의 정류 전압의 감소량이 크지 않아 무선전력의 수신이 계속 유지될 수 있고, 무선전력 수신장치의 동작에 영향을 주지 않으므로 무선전력 수신장치의 동작이 계속 유지될 수 있다는 장점이 있다.
Slotted FOD 중에는, 전력 전송 단계에서, 무선전력 전송장치가 짧은 시간 동안 전력 전송을 중단하고, 1차 코일을 포함하는 공진 회로에서 자연 감소되는 전류 및/또는 전압의 변화로부터 이물질을 검출하는 Slotted Q FOD가 있다.
도 15는 Slotted Q FOD에 의한 이물질 검출 방법을 지원하는 무선전력 전송장치의 개략적인 회로도이고, 도 16은 슬롯 시간 동안 1차 코일의 전압 감쇠 파형의 개략적으로 도시한 그래프이다.
도 15를 참조하면, 무선전력 전송장치의 전력 변환 회로는 4개의 스위치(H1, H2, L1, L2)를 포함하는 풀 브릿지 인버터를 포함하는 LC회로로 개략화될 수 있다.
전력 전송 단계에서, 무선전력 전송장치는 입력 전압으로 표현된 전력 공급원으로부터 전력을 공급받아 1차 코일(Lp)을 통해 무선전력을 무선전력 수신장치로 제공한다. 이 때, 풀 브릿지 인버터의 4개의 스위치(H1, H2, L1, L2)는 입력 전압-커패시터(Cp)-1차 코일(Lp)로 구성되는 회로가 구성되도록 제어된다. 도 16을 참조하면, 전력 전송 전송 단계(Power Transfer)에서 1차 코일(Lp)에는 피크값이 거의 일정한 정현파의 전압이 인가될 수 있다.
이물질 검출을 위한 슬롯 시간을 형성하는 경우, 풀 브릿지 인버터는 H1 및 H2 스위치가 열린 상태이고, L1 및 L2 스위치가 닫힌 상태로 전환되어, 무선전력 전송장치는 커패시터(Cp)-1차 코일(Lp)로 구성되는 폐루프의 공진 회로를 형성하게 되고, 공진 회로로 전력의 공급이 차단된다.
도 16을 참조하면, 슬롯 시간 동안 1차 코일(Lp) 단의 전압(또는 전류)은 커패시터(Cp)의 커패시턴스와 1차 코일(Lp)의 인덕턴스 특성에 따른 공진 주파수를 갖는 파형으로 진동하며, 공진 회로에 영향을 주는 저항에 의해 점차 감쇠하게 된다. 전압(또는 전류)의 감쇠비(또는 감쇠계수)로부터 LC 공진회로의 품질 인자(Q 팩터(Quality factor))를 측정할 수 있다. 그리고, 무선전력 전송장치에 인접한 이물질이 존재하는 경우, Q 팩터는 일반적으로 더 낮게 측정되므로, 슬롯 시간 내에서 측정된 Q 팩터 또는 슬롯 시간 내에서 측정된 1차 코일(Lp) 단의 전압(또는 전류) 파형으로부터 이물질의 존재를 판단할 수 있다.
상술한 바와 같이, Slotted Q FOD에 의한 이물질 검출 방법은 슬롯 시간 동안 외부 전력을 차단하고, 1차 코일을 포함하는 공진 회로를 형성하여, 슬롯 시간 동안의 1차 코일(Lp) 단의 전압(또는 전류) 파형으로부터 Q 팩터를 측정하고 이를 기초로 이물질의 존재를 검출하는 방법이다.
그러나, 전력 전송 단계에서 1차 코일(Lp)에 흐르는 전류 및 1차 코일(Lp)에 인가되는 전압은 정현파로서 시간에 따라 계속 변화한다. 따라서, 슬롯 시간의 시작 시간에 따라, 1차 코일(Lp)에 흐르는 전류 및 1차 코일(Lp)에 인가되는 전압이 달라질 수 있으며, 이는 슬롯 시간 동안의 1차 코일(Lp) 단의 전압 파형 또는 전류 파형이 매번 달라지는 결과를 초래한다. 그리고, 1차 코일(Lp) 단의 전압 파형 또는 전류 파형에 의존하여 측정되는 Q 팩터 역시 일관성이 떨어지므로, Slotted Q FOD에 의한 이물질 검출 결과의 신뢰성이 약화될 수 있다.
이하에서는, 슬롯 시간 내에서 측정하는 Q 팩터를 보다 정확하게 측정할 수 있는 방법 및 이를 이용한 이물질 검출 방법에 대해 설명한다.
도 17은 일 실시예에 따른 이물질 검출 방법을 도시한 순서도이다.
도 17을 참조하면, Slotted Q FOD가 시작되면(S1501), 무선전력 전송장치의 통신/컨트롤 회로는 1차 코일(Lp)의 전류가 0이 되는 시점을 검출한다(S1502).
1차 코일(Lp)의 전류가 0이 되는 시점은, 1차 코일(Lp)에 흐르는 교류 전류의 값이 양의 값에서 음의 값으로 전환되는 시점 또는 음의 값에서 양의 값으로 전환되는 시점일 수 있다.
무선전력 전송장치가 1차 코일(Lp)의 전류값을 모니터링할 수 있는 구성을 포함하는 경우에는 무선전력 전송장치의 통신/컨트롤 회로가 상기 구성으로부터 1차 코일(Lp)의 전류값을 수신하여 1차 코일(Lp)의 전류가 0이 되는 시점을 쉽게 검출할 수 있다.
다만, 무선전력 전송장치가 1차 코일(Lp)의 전류값을 모니터링할 수 있는 구성을 구비하지 않는 경우, 무선전력 전송장치의 통신/컨트롤 회로는 1차 코일(Lp)의 전압값이 0이 되는 시점으로부터 90도 위상차를 갖는 시점을 1차 코일(Lp)의 전류가 0이 되는 시점으로 검출할 수 있다. 이는 1차 코일(Lp)의 전압과 전류는 90도의 위상차를 갖는 특성을 갖기 때문이다.
무선전력 전송장치의 통신/컨트롤 회로는 1차 코일(Lp)의 전류가 0이 되는 시점에서 전력 전송 단계에서 1차 코일(Lp)로 전송하던 전력을 차단한다(S1503). 예를 들어, 도 15를 참조하여 설명한 바와 같이, 통신/컨트롤 회로는 풀 브릿지 인버터의 4개의 스위치(H1, H2, L1, L2)를 제어하여 커패시터(Cp)-1차 코일(Lp)로 구성되는 폐루프의 공진 회로를 구성하여 1차 코일(Lp)로 전송하던 전력을 차단할 수 있다. 또는, 예를 들어, 전력 전송 단계에서 1차 코일(Lp)로 전송하던 전력이 OFF되도록 제어하고, 커패시터(Cp)-1차 코일(Lp)로 구성되는 폐루프의 공진 회로를 구성하여 1차 코일(Lp)로 전송하던 전력을 차단할 수 있다.
전력 전송 단계에서 1차 코일(Lp)로 전송하던 전력을 차단되면, 슬롯 시간이 시작된다. 따라서, 1차 코일(Lp)의 전류가 0이 되는 시점에서 슬롯 시간이 시작된다. 본 실시예에 따르면, Slotted Q FOD를 위한 슬롯 시간이 시작하는 시점이 1차 코일(Lp)의 전류가 0이 되는 시점으로 유지되므로, 보다 일관적이고 신뢰성 있는 Q 팩터 획득이 가능하다.
무선전력 전송장치의 통신/컨트롤 회로는 슬롯 시간 동안 1차 코일(Lp) 양단의 전압값 또는 1차 코일(Lp)에 흐르는 전류값에 대한 데이터를 획득한다(S1504).
도 18은 S1504 단계에서 획득된 데이터의 일례를 도시한 도면이다.
도 18을 참조하면, 무선전력 전송장치의 통신/컨트롤 회로는 슬롯 시간 내의 여러 시점에서 1차 코일(Lp) 양단의 전압값 또는 1차 코일(Lp)에 흐르는 전류값을 기록한다.
이후, 무선전력 전송장치의 통신/컨트롤 회로는 S1504 단계에서 획득된 데이터들을 기초로, 슬롯 시간 내에의 1차 코일(Lp)의 전압값 또는 전류값의 피크값들을 검출한다(S1505).
도 18을 참조하면, 무선전력 전송장치의 통신/컨트롤 회로는 S1504 단계에서 획득된 데이터들의 값들을 기초로 감쇠 파형의 피크값들(P1, P2, P3, …, Pn)을 검출할 수 있다.
이후, 무선전력 전송장치의 통신/컨트롤 회로는 S1505 단계에서 검출한 피크값들을 기반으로 회귀 분석을 수행할 수 있다(S1506).
다만, 무선전력 전송장치의 통신/컨트롤 회로는 S1505 단계에서 검출한 피크값들 중 회귀 분석의 대상이 될 유효 피크값들을 획득할 수 있다.
도 19는 일 실시예에 따른 유효 피크값들의 획득 방법을 설명하기 위한 도면이다.
도 19를 참조하면, 무선전력 전송장치의 통신/컨트롤 회로는 검출된 피크값들(P1, P2, P3, …, Pn) 중, 초기 구간(S1)의 피크값(P1, P2)을 제외하고 유효 피크값을 획득할 수 있다.
이론적으로는 슬롯 시간 내에서 검출된 피크값들은 RLC 공진 회로에서 측정된 값이므로 특정 지수 함수를 형성하여야 하지만, 여러 실험을 통해 도출된 피크값들은 대체적으로 지수 함수적인 경향을 갖지만, 하나의 지수 함수로 정의되지 않았다. 특히, 슬롯 시간 내에서 검출된 피크값들 중 초기 구간(S1)의 피크값은 회귀 분석 결과에 악영향을 주는 경향을 보였다. 이는 공진 회로가 구성된 이후, 초기는 과도기적 상태로 1차 코일(Lp)의 전압값 또는 전류값에 공진 회로적 특성 이외에 다른 영향이 미치는 것으로 추정된다.
따라서, 본 실시예에서는 검출된 피크값들(P1, P2, P3, …, Pn) 중, 초기 구간(S1)의 피크값(P1, P2)을 제외하고 유효 피크값을 획득하는 방안을 제안한다.
초기 구간(S1)의 길이는 실시예에 따라 달리 정해질 수 있다. 예를 들어, 초기 구간(S1)에는 최초 피크값(P1)만이 포함될 수도 있고, 최초 2개 이상의 피크값이 포함될 수도 있다.
또한, 무선전력 전송장치의 통신/컨트롤 회로는 검출된 피크값들(P1, P2, P3, …, Pn) 중, 후반 구간(S3)의 피크값(P4)을 제외하고 유효 피크값을 획득할 수 있다.
후반 구간(S3)은 피크값(P4)들의 편차가 일정 수준 이하인 구간일 수 있다. 또는 후반 구간(S3)은 피크값(P4)들이 실질적으로 0에 근접한 값을 갖는 구간일 수 있다.
이러한 후반 구간(S3)의 피크값(P4)들 역시 회귀 분석 결과에 악영향을 주는 요소로 작용할 수 있으므로, 본 실시예에서는 검출된 피크값들(P1, P2, P3, …, Pn) 중, 후반 구간(S3)의 피크값(P4)을 제외하고 유효 피크값을 획득하는 방안을 제안한다.
또는, 후반 구간(S3)은 획득된 유효 피크값들의 수에 따라 결정될 수도 있다. 예를 들어, 회귀 분석을 위한 유효 피크값들의 개수로 15개가 미리 결정된 경우, 15개의 유효 피크값들이 획득된 이후의 피크값들이 존재하는 구간은 후반 구간(S3)이 될 수 있다.
한편, 무선전력 수신장치로의 무선 전력 제공의 연속성을 위해 슬롯 타임은 100μs 이내로 형성되는 것이 바람직하다. 슬롯 타임을 최대한 줄이기 위해, 미리 설정된 개수의 유효 피크값들이 획득된 이후에는 슬롯 타임이 종료되고, 무선전력의 전송이 재개될 수 있다.
도 20은 일 실시예에 따른 회귀 분석 방법을 설명하기 위한 도면이다.
무선전력 전송장치의 통신/컨트롤 회로는 복수의 유효 피크값들을 기초로 회귀 분석을 통해 유효 피크값들의 포락선(envelope)인 지수 함수를 도출할 수 있다.
도 20에는 9개의 유효 피크값들을 기반으로 y= 137.79e-7236x의 지수 함수가 도출된 예가 도시되어 있다.
유효 피크값들의 포락선(envelope)인 지수 함수가 도출되면, 무선전력 전송장치의 통신/컨트롤 회로는 지수 함수를 기초로 Q 팩터를 획득할 수 있다(S1507).
지수 함수는 N(t)= N0e-t/τ로 표현될 수 있으며, 도 20에 도시된 지수 함수에서는 시정수(time constant, τ)가 1/7236이 된다.
Q 팩터, 감쇠 계수(damping ratio, ζ), 시정수(τ) 사이의 상관 관계는 아래의 수식으로 표현될 수 있다.
Figure PCTKR2021013817-appb-M000001
f0 값이 111000(Hz)인 경우, 도 20d의 지수함수를 기초로, Q 팩터 값은 약 48.17으로 연산된다.
이와 같이, 무선전력 전송장치의 통신/컨트롤 회로는 S1506 단계에서 도출된 지수함수의 시정수(τ)를 이용해 Q 팩터의 값을 연산하여 획득할 수 있다.
무선전력 전송장치의 통신/컨트롤 회로는 획득된 Q 팩터를 이용하여 무선전력 전송장치와 무선전력 수신장치 사이의 이물질을 검출할 수 있다(S1508).
예를 들어, 무선전력 전송장치의 통신/컨트롤 회로는 S1507 단계에서 획득된 Q 팩터값을 미리 저장된 Q 팩터값과 비교하여 이물질의 존재를 추정할 수 있다. 즉, S1507 단계에서 획득된 Q 팩터값이 미리 저장된 Q 팩터값에 비해 낮을수록 이물질의 존재 가능성이 높아진다. 따라서, 무선전력 전송장치의 통신/컨트롤 회로는 미리 저장된 Q 팩터값과 S1507 단계에서 획득된 Q 팩터값의 차이가 임계치 이상일 경우, 이물질이 존재하는 것으로 판단할 수 있다.
미리 저장된 Q 팩터값은 이물질이 없는 상태에서 미리 측정된 Q 팩터값이거나, 무선전력 수신장치로부터 수신한 Q 팩터값일 수 있다.
무선전력 전송장치의 통신/컨트롤 회로는 이물질의 검출 결과에 따른 정보(데이터 패킷 또는 응답 패턴)를 무선전력 수신장치에게 전송하고, Slotted Q FOD를 종료할 수 있다(S1509).
상술한 바와 같이, 본 실시예에 따르면, Slotted Q FOD를 수행함에 있어서, 슬롯 시간의 시작 시점을 1차 코일(Lp)의 전류가 이 되는 시점이 되도록 하여, 보다 일관적이고 신뢰성 있는 Q 팩터 획득을 가능하게 한다.
또한, 본 실시예에 따르면, Slotted Q FOD를 수행함에 있어서, 복수의 유효 피크값들을 이용해 회귀분석을 통해 유효 피크값들의 포락선(envelope)인 지수 함수를 도출하고, 이를 기초로 Q 팩터를 획득하므로, 보다 신뢰성 있는 Q 팩터 획득을 가능하게 한다.
또한, 본 실시예에 따르면, Slotted Q FOD를 수행함에 있어서, 획득된 피크값들 중 초기 구간 및/또는 후반 구간의 피크값들을 제외하고 유효 피크값을 선별하므로, 보다 신뢰성 있는 Q 팩터 획득을 가능하게 한다.
한편, 이하에서는 S1508 단계에서 이물질의 존재 가능성을 판단할 때에 획득된 Q 팩터값의 비교 기준이 되는 기준 Q 팩터값을 획득하는 방법에 대해 설명한다.
도 21은 일 실시예에 따른 기준 Q 팩터를 획득하는 방법을 설명하기 위한 순서도이다.
도 21을 참조하여 설명하는 기준 Q 팩터를 획득하는 방법은 무선전력 수신장치로 무선전력을 전송하기 이전에 수행되며, 예를 들어, 핑 단계에서 무선전력 전송장치의 동작 공간(operating volume), 즉 1차 코일의 상부에 물체가 존재하지 않는 상태에서 수행될 수 있다. 따라서, 본 실시예에 따른 기준 Q 팩터를 획득하는 방법은 무선전력 수신장치로 디지털 핑을 전송하기 이전에 수행될 수 있다.
무선전력 전송장치의 통신/컨트롤 회로는 무선전력 전송장치의 기준 Q 팩터를 획득하기 위해, 1차 코일에 구동 전력을 제공한다(S1601).
구동 전력은 적어도 하나의 펄스 시그널일 수 있다.
적어도 하나의 펄스 시그널은 1차 코일에 제공한 이후, 통신/컨트롤 회로는 구동 전력을 차단한다(S1602).
통신/컨트롤 회로는, 구동 전력을 차단하면서, 커패시터(Cp)-1차 코일(Lp)로 구성되는 폐루프의 공진 회로를 구성할 수 있다. 예를 들어, 도 15를 참조하여 전술한 바와 같이, 통신/컨트롤 회로는, 풀 브릿지 인버터의 4개의 스위치(H1, H2, L1, L2)를 제어하여 커패시터(Cp)-1차 코일(Lp)로 구성되는 폐루프의 공진 회로를 구성할 수 있다.
인가되었던 구동 전력으로 인해, 커패시터(Cp)-1차 코일(Lp)로 구성되는 폐루프의 공진 회로 내에서, 1차 코일(Lp) 단의 전압(또는 전류)은 커패시터(Cp)의 커패시턴스와 1차 코일(Lp)의 인덕턴스 특성에 따른 공진 주파수를 갖는 파형으로 진동하며, 공진 회로에 영향을 주는 저항에 의해 점차 감쇠하게 된다.
무선전력 전송장치의 통신/컨트롤 회로는 1차 코일(Lp) 양단의 전압값 또는 1차 코일(Lp)에 흐르는 전류값에 대한 데이터를 획득한다(S1603).
전술한 실시예에서, 도 18을 참조하여 설명한 바와 유사하게, 무선전력 전송장치의 통신/컨트롤 회로는 슬롯 시간 내의 여러 시점에서 1차 코일(Lp) 양단의 전압값 또는 1차 코일(Lp)에 흐르는 전류값을 기록한다.
이후, 무선전력 전송장치의 통신/컨트롤 회로는 S1603 단계에서 획득된 데이터들을 기초로, 1차 코일(Lp)의 전압값 또는 전류값의 피크값들을 검출한다(S1604).
전술한 실시예에서, 도 18을 참조하여 설명한 바와 유사하게, 무선전력 전송장치의 통신/컨트롤 회로는 감쇠 파형의 피크값들(P1, P2, P3, …, Pn)을 검출할 수 있다.
이후, 무선전력 전송장치의 통신/컨트롤 회로는 S1604 단계에서 검출한 피크값들을 기반으로 회귀 분석을 수행할 수 있다(S1605).
다만, 무선전력 전송장치의 통신/컨트롤 회로는 S1604 단계에서 검출한 피크값들 중 회귀 분석의 대상이 될 유효 피크값들을 획득할 수 있다.
전술한 실시예에서, 도 19를 참조하여 설명한 바와 유사하게, 무선전력 전송장치의 통신/컨트롤 회로는 검출된 피크값들(P1, P2, P3, …, Pn) 중, 초기 구간(S1)의 피크값(P1, P2) 및/또는 후반 구간(S3)의 피크값(P4)을 제외하고 유효 피크값을 획득할 수 있다. 이에 대한 구체적인 내용은 도 19를 참조하여 설명한 바 있으므로, 이에 대한 추가적인 설명은 생략한다.
무선전력 전송장치의 통신/컨트롤 회로는 복수의 유효 피크값들을 기초로 회귀 분석을 통해 유효 피크값들의 포락선(envelope)인 지수 함수를 도출할 수 있다.
유효 피크값들의 포락선(envelope)인 지수 함수가 도출되면, 무선전력 전송장치의 통신/컨트롤 회로는 지수 함수를 기초로 기준 Q 팩터를 획득할 수 있다(S1606).
지수 함수의 시정수(τ)를 이용해 Q 팩터를 연산하는 방법은, 도 20 등을 참조하여 설명한 바 있으므로, 이에 대한 추가적인 설명은 생략한다.
본 실시예에 따른 기준 Q 팩터를 획득하는 방법은, 구동 전력으로 적어도 하나의 펄스 시그널을 이용하므로, Impulse Q라고 불릴 수 있으며, 획득된 기준 Q 팩터는 Impulse Q 팩터라고 불릴 수 있다.
무선전력 전송장치의 통신/컨트롤 회로는 획득된 기준 Q 팩터를 이용해 핑 단계에서 동작 공간(operating volume), 즉 1차 코일의 상부에 존재하는 물체를 감지할 수 있다.
예를 들어, 무선전력 전송장치의 통신/컨트롤 회로는 획득된 기준 Q 팩터와 미리 저장된 Q 팩터(동작 공간에 물체가 존재하지 않는 상태에서 측정된 Q 팩터)를 비교하여 동작 공간에 존재하는 물체의 존재를 추정할 수 있다. 즉, 획득된 기준 Q 팩터값이 미리 저장된 Q 팩터값에 비해 낮을수록 물체의 존재 가능성이 높아진다. 따라서, 무선전력 전송장치의 통신/컨트롤 회로는 미리 저장된 Q 팩터값과 S1606 단계에서 획득된 기준 Q 팩터값의 차이가 임계치 이상일 경우, 동작 공간에 물체가 존재하는 것으로 판단할 수 있다.
또한, 무선전력 전송장치의 통신/컨트롤 회로는, 전력 전송 단계에서 수행된 Slotted Q FOD를 통해 획득된 Q 팩터와 S1606 단계에서 획득된 기준 Q 팩터값을 비교하여, 무선전력 전송장치와 무선전력 수신장치 사이에 존재하는 이물질을 검출할 수 있다.
이하에서는, 전력 전송 단계에서 전력 손실을 기반으로 하는 이물질 검출 방법에 대해 설명한다.
무선전력 전송장치가 자기장을 이용하여 무선전력 수신장치로 무선전력을 전송할 때 그 주변에 이물질이 존재하면 일부의 자기장이 이물질로 흡수된다. 따라서, 무선전력 전송장치가 전송한 무선전력 중 일부는 이물질에 의해 흡수되고, 나머지가 무선전력 수신장치로 공급된다.
전력 전송의 효율 관점에서 보면, 이물질이 흡수한 전력 또는 에너지만큼 전송 전력의 손실이 발생한다. 이와 같이 이물질의 존재와 전력 손실(Ploss)간에는 인과관계가 성립할 수 있으므로, 무선전력 전송장치는 전력 손실이 얼만큼 발생하는지를 통해 이물질을 검출할 수 있다.
한편, 무선전력 전송장치와 무선전력 수신장치 사이의 전력 전송 특성은 무선 전력을 전송하는 환경 또는 기기의 고유한 특성에 의존적이다. 무선전력 전송장치와 무선전력 수신장치는, 현재 주어진 임의의 무선충전 환경에서 전력 전송 특성을 파악하기 위해, 무선전력 전송의 개시 시점에 전력 보정(calibration)을 이용할 수 있다.
도 22는 이중점 전력 보정 방법을 설명하기 위한 흐름도이고, 도 23은 이중점 전력 보정 방법에 의한 전력 보정 커브의 일례를 도시한 그래프이고, 도 24는 일 예에 따른 수신전력패킷의 메시지 필드의 포맷을 도시한 도면이며, 도 25는 다른 예에 따른 수신전력패킷의 메시지 필드의 포맷을 도시한 도면이다.
도 22를 참조하면, 전력 전송 단계의 시작 시점에서, 전력 보정 프로토콜이 진행되며, 무선전력 수신장치(1020)는 제1 수신전력패킷(RP/1)과 제2 수신전력패킷(RP/2)을 전송하여, 무선전력 전송장치(1010)가 이중점 전력 보정 커브를 구성할 수 있도록 한다.
보다 구체적으로, 무선전력 수신장치(1020)는 제어오류패킷(CE, control error packet)을 무선전력 전송장치로 전송하고(S1701), 제1 보정 데이터 포인트(first calibration data point)에 대한 정보를 포함하는 제1 수신전력패킷(RP/1)을 무선전력 전송장치(1010)로 전송한다(S1702).
제어오류패킷은 제어오류값(Control Error Value)을 포함한다. 제어오류값은 무선전력 수신장치(1020)의 목표 동작점(target operating point)과 실제 동작점(actual operating point) 사이의 편차에 대한 정보를 포함한다. 예를 들어, 제어오류값이 양수이면 실제 동작점이 목표 동작점보다 낮은 상태를 의미하고, 이를 수신한 무선전력 전송장치(1010)는 전송하는 무선 전력의 파워를 높일 수 있다. 반대로, 제어오류값이 음수이면 실제 동작점이 목표 동작점보다 높은 상태를 의미하고, 이를 수신한 무선전력 전송장치(1010)는 전송하는 무선전력의 파워를 낮출 수 있다.
도 24 또는 도 25를 참고하면, 제1 수신전력패킷(RP/1)은 모드(Mode) 필드와 추정 수신 전력값(Estimated Received Power Value) 필드를 포함한다. 무선전력 전송장치(1010)는 제1 수신전력패킷(RP/1)의 모드 필드의 값(예를 들어, 1)을 통해 무선전력 수신장치(1020)로부터 수신된 수신전력패킷(RP)이 제1 보정 데이터 포인트에 대한 정보가 포함된 제1 수신전력패킷(RP/1)임을 확인할 수 있고, 제1 수신전력패킷(RP/1)의 추정 수신 전력값 필드의 값을 통해 제1 보정 데이터 포인트를 확인할 수 있다.
제1 보정 데이터 포인트는, 전력 보정 커브의 시작 포인트이며, 협상 단계에서 수립된 전력 전송 계약(Power Transfer Contract)의 기준 전력 레벨(Reference Power level)의 약 10%에 해당하는 전력 레벨일 수 있다.
무선전력 전송장치(1010)는 제어오류패킷에 포함된 제어오류값을 기초로 무선전력 수신장치(1020)가 원하는 목표 동작점에 도달하였는지 여부를 판단하고 제1 수신전력패킷(RP/1)에 대해 ACK 또는 NAK으로 응답한다(S1703). 보다 구체적으로, 무선전력 전송장치(1010)는 제어오류값을 기초로 전력 레벨이 제1 보정 데이터 포인트에서 안정화 되었는지 판단한다. 예를 들어, 무선전력 전송장치(1010)는 제어오류값이 3 미만인 경우에 전력 레벨이 안정화되고 무선전력 수신장치(1020)가 원하는 목표 동작점에 도달하였다고 판단하고, 제1 수신전력패킷(RP/1)에 대해 ACK로 응답할 수 있다. 제어오류값이 3 미만인 경우에는 전력 레벨이 안정화되지 않았고 무선전력 수신장치(1020)가 원하는 목표 동작점에 도달하지 못했다고 판단하고 무선전력 전송장치(1010)는 제1 수신전력패킷(RP/1)에 대해 NAK으로 응답할 수 있다.
무선전력 수신장치(1020)는 무선전력 전송장치(1010)로부터 ACK을 수신할 때까지 제1 수신전력패킷(RP/1)을 계속 전송한다(S1702). 또한, 전력 레벨이 제1 보정 데이터 포인트에서 안정화될 수 있도록, 무선전력 수신장치(1020)는 무선전력 전송장치(1010)로 제어오류패킷 역시 반복적으로 전송한다(S1701).
무선전력 수신장치(1020)는 무선전력 전송장치(1010)로부터 제1 수신전력패킷(RP/1)에 대한 ACK를 수신한 후(S1703), 제어오류패킷을 무선전력 전송장치로 전송하고(S1704), 제2 보정 데이터 포인트(second calibration data point)에 대한 정보를 포함하는 제2 수신전력패킷(RP/2)을 무선전력 전송장치(1010)로 전송한다(S1705).
제2 수신전력패킷(RP/2) 역시 모드(Mode) 필드와 추정 수신 전력값(Estimated Received Power Value) 필드를 포함한다(도 24 또는 도 25 참고). 무선전력 전송장치(1010)는 제2 수신전력패킷(RP/2)의 모드 필드의 값(예를 들어, 0)을 통해 무선전력 수신장치(1020)로부터 수신된 수신전력패킷(RP)이 제2 보정 데이터 포인트에 대한 정보가 포함된 제2 수신전력패킷(RP/2)임을 확인할 수 있고, 제2 수신전력패킷(RP/2)의 추정 수신 전력값 필드의 값을 통해 제2 보정 데이터 포인트를 확인할 수 있다.
제2 보정 데이터 포인트는, 전력 보정 커브를 구성하기 위한 포인트이며, 협상 단계에서 수립된 전력 전송 계약(Power Transfer Contract)의 기준 전력 레벨(Reference Power level)에 근접한 전력 레벨일 수 있다.
무선전력 전송장치(1010)는 제어오류패킷에 포함된 제어오류값을 기초로 무선전력 수신장치(1020)가 원하는 목표 동작점에 도달하였는지 여부를 판단하고 제2 수신전력패킷(RP/2)에 대해 ACK 또는 NAK으로 응답한다(S1706). 보다 구체적으로, 무선전력 전송장치(1010)는 제어오류값을 기초로 전력 레벨이 제2 보정 데이터 포인트에서 안정화 되었는지 판단한다. 예를 들어, 무선전력 전송장치(1010)는 제어오류값이 3 미만인 경우에 전력 레벨이 안정화되고 무선전력 수신장치(1020)가 원하는 목표 동작점에 도달하였다고 판단하고, 제2 수신전력패킷(RP/2)에 대해 ACK로 응답할 수 있다(S1706). 제어오류값이 3 미만인 경우에는 전력 레벨이 안정화되지 않았고 무선전력 수신장치(1020)가 원하는 목표 동작점에 도달하지 못했다고 판단하고 무선전력 전송장치(1010)는 제2 수신전력패킷(RP/2)에 대해 NAK으로 응답할 수 있다.
무선전력 수신장치(1020)는 무선전력 전송장치(1010)로부터 ACK을 수신할 때까지 제2 수신전력패킷(RP/2)을 계속 전송한다(S1705). 또한, 전력 레벨이 제2 보정 데이터 포인트에서 안정화될 수 있도록, 무선전력 수신장치(1020)는 무선전력 전송장치(1010)로 제어오류패킷 역시 반복적으로 전송한다(S1704).
전력 레벨이 제2 보정 데이터 포인트에서 안정화되어, 무선전력 전송장치(1010)로부터 제2 수신전력패킷(RP/2)에 대한 ACK를 수신한 후(S1706), 무선전력 수신장치(1020)와 무선전력 전송장치(1010)는 정상적인 전력 전송 모드로 진입한다. 무선전력 전송장치(1010)는 ACK를 전송한 제1 수신전력패킷(RP/1)과 제2 수신전력패킷(RP/2)을 기초로 전력 보정 커브(calibration curve)를 구성하고(도 23 참고), 이를 이용해 전송 전력의 손실을 기반으로 한 이물질 검출을 수행할 수 있다(S1707).
보다 구체적으로, 무선전력 전송장치(1010)는 전력 전송 중에 무선전력 수신장치(1020)로부터 수신전력패킷(예를 들어, 모드 필드의 값이 0인 RP/0)을 수신하며, 수신전력패킷을 통해 무선전력 수신장치(1020)가 수신한 수신 전력값을 확인하고, 전력 보정 커브에 송신 전력값을 적용하여 연산된 보정된 전력값 대비 수신전력패킷을 통해 확인된 수신 전력값의 차이가 임계치 이상이면 이물질에 의해 전력 손실이 발생한 것으로 추정할 수 있다.
도 23을 참조하여, 상술한 이중점 전력 보정 방법에 의해 구성된 전력 보정 커브에 대해 설명한다.
무선전력 전송장치(1010)는 ACK를 전송한 제1 수신전력패킷(RP/1)과 제2 수신전력패킷(RP/2)을 기초로 전력 보정 커브(calibration curve, A)를 구성한다.
전송전력의 예측값을 Pt(est), 수신전력의 예측값을 Pr(est)라 하고, 실제 전송전력값을 Pt, 실제 수신전력값을 Pr이라 하고, 전력 전송 전 이물질 검출(pre-power FOD)을 통해 무선전력 전송장치와 무선전력 수신장치 사이에 이물질이 없는 것으로 확인된 경우, 다음의 [수학식 2]가 성립한다.
Figure PCTKR2021013817-appb-M000002
여기서, δPt는 전송전력의 예측 오차값으로, 무선전력 전송장치의 자체적인 전력 손실값 등을 포함할 수 있다. δPr는 수신전력의 예측 오차값으로, 무선전력 수신장치의 자체적인 전력 손실값 등을 포함할 수 있다.
[수학식 2]에 기반할 때, 보정된 전력값 P(cal)은 다음의 [수학식 3]에 의해 계산될 수 있다.
Figure PCTKR2021013817-appb-M000003
따라서, RP/1(제1 보정 데이터 포인트)과 RP/2(제2 보정 데이터 포인트)를 [수학식 3]에 대입하면 보정된 전력값은 각각 다음의 [수학식 4]와 같이 표현될 수 있다.
Figure PCTKR2021013817-appb-M000004
Figure PCTKR2021013817-appb-I000001
즉 pre-power FOD에 의해 이물질이 없음이 확인되면, 수학식 2 내지 4의 같은 관계가 성립하며, 수학식 2 내지 4에 기반한 보정 커브는 도 23과 같은 그래프(A)로 도시될 수 있다.
2개의 보정 데이터 포인트로 전력 보정 커브를 구성하는 예에 대해 설명하였으나, 실시예에 따라 추가적인 RP/2를 이용해 3개 이상의 보정 데이터 포인트로 전력 보정 커브를 구성하고 이를 기초로 이물질 검출을 수행할 수도 있다.
그러나, 도 22 내지 도 25를 참조하여 설명한, 전송 전력의 손실을 기반으로 한 이물질 검출 방법은 전력 보정 과정(S1701 ~ S1707) 중에 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 이물질이 없는 것을 전제로 한다.
만일, 전력 보정 과정 중 적어도 일부 단계가 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 이물질이 존재한 상태로 수행된다면, 무선전력 전송장치(1010)는 정확한 이물질 검출을 수행할 수 없다.
도 26은 일 실시예에 따른 개선된 전력 보정 방법을 설명하기 위한 흐름도이다.
도 26을 참조하면, 도 25를 참고하여 설명한 실시예와 비교하여, 무선전력 전송장치(1010)는 제1 수신전력패킷(RP/1)을 수신한 이후, Slotted Q FOD를 수행한다(S1801). Slotted Q FOD에 대한 구체적인 내용은 도 15 내지 도 20을 참조하여 전술하였으므로, 이에 대한 추가적인 설명은 생략한다.
무선전력 전송장치(1010)는 제1 수신전력패킷(RP/1)을 수신한 이후에 Slotted Q FOD를 수행하여(S1801), 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 이물질이 존재하는지 여부를 확인할 수 있다.
실시예에 따라, 무선전력 전송장치(1010)는 제1 수신전력패킷(RP/1)을 수신한 이후에 Slotted Q FOD를 복수 회 수행하고, 측정된 복수의 Q 팩터값의 평균 또는 측정된 복수의 Q 팩터값 중 최대값과 최소값을 제외한 나머지값의 평균을 이용해 이물질이 존재하는지 여부를 확인할 수 있다.
무선전력 전송장치(1010)는 Slotted Q FOD를 수행한 결과, 이물질이 없는 것으로 추정되고, 제어오류값을 기초로 전력 레벨이 제1 보정 데이터 포인트에서 안정화된 것으로 판단되면, 제1 수신전력패킷(RP/1)에 대해 ACK로 응답할 수 있다(S1703).
무선전력 전송장치(1010)는 Slotted Q FOD를 수행한 결과, 이물질이 존재하는 것으로 추정되거나, 제어오류값을 기초로 전력 레벨이 제1 보정 데이터 포인트에서 안정화되지 않은 것으로 판단되면, 제1 수신전력패킷(RP/1)에 대해 NAK로 응답할 수 있다.
무선전력 전송장치(1010)는 제2 수신전력패킷(RP/2)을 수신한 이후에도 Slotted Q FOD를 수행하여(S1802), 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 이물질이 존재하는지 여부를 확인할 수 있다.
실시예에 따라, 무선전력 전송장치(1010)는 제2 수신전력패킷(RP/2)을 수신한 이후에 Slotted Q FOD를 복수 회 수행하고, 측정된 복수의 Q 팩터값의 평균 또는 측정된 복수의 Q 팩터값 중 최대값과 최소값을 제외한 나머지값의 평균을 이용해 이물질이 존재하는지 여부를 확인할 수 있다.
무선전력 전송장치(1010)는 Slotted Q FOD를 수행한 결과, 이물질이 없는 것으로 추정되고, 제어오류값을 기초로 전력 레벨이 제2 보정 데이터 포인트에서 안정화된 것으로 판단되면, 제2 수신전력패킷(RP/2)에 대해 ACK로 응답할 수 있다(S1706).
무선전력 전송장치(1010)는 Slotted Q FOD를 수행한 결과, 이물질이 존재하는 것으로 추정되거나, 제어오류값을 기초로 전력 레벨이 제2 보정 데이터 포인트에서 안정화되지 않은 것으로 판단되면, 제2 수신전력패킷(RP/2)에 대해 NAK로 응답할 수 있다.
2개의 보정 데이터 포인트로 전력 보정 커브를 구성하는 예에 대해 설명하였으나, 실시예에 따라 추가적인 RP/2를 이용해 3개 이상의 보정 데이터 포인트로 전력 보정 커브를 구성하고 이를 기초로 이물질 검출을 수행할 수도 있다. 이 경우, 무선전력 전송장치(1010)는 추가적인 RP/2를 수신한 이후에도 Slotted Q FOD를 수행하여, 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 이물질이 존재하는지 여부를 확인할 수 있다.
도 26을 참조하여 설명한 전력 보정 방법에 따르면, 무선전력 전송장치(1010)는 무선전력 수신장치(1020)로부터 제1 수신전력패킷(RP/1)과 제2 수신전력패킷(RP/2)을 수신한 이후에 각각 Slotted Q FOD를 수행하여, 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 이물질이 존재하는지 여부를 확인하므로, 전력 보정 과정 중에 이물질 존재로 인한 잘못된 전력 보정이 이루어지는 것을 방지할 수 있다.
한편, 상술한 전송 전력의 손실을 기반으로 한 이물질 검출 방법은, 전력 보정이 이루어진 후의 전력 전송 중에 이물질이 존재하지 않음에도 전력 손실의 증가가 발생하면, 무선전력 전송장치는 이물질로 인해 전력 손실이 발생한 것으로 판단하고, 전력 전송을 중단하거나, 전송 전력을 5W 이하로 줄이게 되는 결과를 초래한다.
예를 들어, 전력 보정이 이루어진 후의 전력 전송 중에 무선전력 수신장치(1020)에 움직임이 발생하여 1차 코일과 2차 코일 사이의 정렬 상태가 불량해지면, 무선전력 수신장치가 수신하는 수신전력이 감소하게 된다. 무선전력 전송장치는 무선전력 수신장치로부터 수신한 수신전력패킷(RP/0)에 포함된 수신전력값을 기초로 전력 손실이 증가하였음을 감지하고, 이물질로 인한 전력 손실이 발생한 것으로 판단하게 된다.
또한, 전력 보정이 이루어진 후의 전력 전송 중에 전력 손실의 감소가 발생할 수도 있다. 이 경우, 무선전력 전송장치는 비정상적인 상태로 판단하고, 전력 전송을 중단하거나, 전송 전력 또는 무선전력 수신장치가 수신하는 무선전력의 레벨을 일정 수준(예를 들어, 5W) 이하로 줄일 수 있다.
예를 들어, 전력 보정 과정에서 존재하던 이물질이 제거되거나, 무선전력 수신장치(1020)에 움직임이 발생하여 1차 코일과 2차 코일 사이의 정렬 상태가 양호해지면, 무선전력 수신장치가 수신하는 수신전력이 증가하게 된다. 무선전력 전송장치는 무선전력 수신장치로부터 수신한 수신전력패킷(RP/0)에 포함된 수신전력값을 기초로 전력 손실이 감소하였음을 감지한다.
상술한 바와 같이, 전력 보정 이후 전력 전력 전송 중에 전력 손실량의 변화가 발생한 경우, 전력 손실량의 변화가 이물질로 인한 것인지 여부를 판별할 필요가 있다. 그러나, 상술한 바와 같이, 전송 전력의 손실을 기반으로 한 이물질 검출 방법은, 전력 손실의 증가를 이물질의 존재에 의한 결과로 판단하므로, 전력 손실량의 변화가 이물질로 인한 것인지 여부를 판별할 수 없다.
이하에서는, 전력 전력 중에 전력 손실량의 변화가 발생한 경우에, 전력 손실량의 변화가 이물질로 인한 것인지 여부를 판별할 수 있는 전력 전송 방법에 대해 설명한다.
도 27은 일 실시예에 따른 전력 전송 중 이물질 판별 방법을 설명하기 위한 흐름도이다.
도 27을 참조하면, 무선전력 전송장치(1010)는 전력 전송 단계에 진입하기 이전에 전력 전송 전 이물질 검출(pre-power FOD)을 수행한다(S1901). 전력 전송 전 이물질 검출(pre-power FOD)은 도 9를 참조하여 설명한 S1101 단계에서 수행되는 이물질 검출 및/또는 도 12를 참조하여 설명한 S1301 단계에서 수행되는 이물질 검출일 수 있다.
무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 핑 단계, 구성 단계, 협상 단계 등을 거쳐 전력 전송 단계로 진입한다(S1902).
전력 전송 단계의 개시 시점에서, 무선전력 전송장치(1010)와 무선전력 수신장치(1020)는 전력 보정을 수행한다(S1903). 전력 보정 과정은 도 22 내지 도 25 또는 도 26을 참조하여 설명하였으므로, 이에 대한 추가적인 설명은 생략한다.
전력 보정 과정이 완료된 이후, 무선전력 전송장치(1010)는 무선전력 수신장치(1020)로 무선전력을 전송하고, 무선전력 수신장치(1020)는 무선전력 전송장치(1010)로부터 무선전력을 수신한다(S1904).
전력 전송 단계에서, 무선전력 수신장치(1020)는 수신전력패킷(예를 들어, 모드 필드의 값이 0인 RP/0)을 무선전력 전송장치(1010)로 지속적으로 전송한다(S1905).
무선전력 전송장치(1010)는 수신전력패킷을 통해 무선전력 수신장치(1020)가 수신한 수신 전력값을 확인하고, 전력 보정 커브에 송신 전력값을 적용하여 연산된 보정된 전력값 대비 수신전력패킷을 통해 확인된 수신 전력값의 차이가 임계치 이상이면 전력 손실량의 변동이 발생한 것으로 판단할 수 있다. 전력 손실량의 변동은 전력 손실의 증가 또는 감소를 포함할 수 있다.
전력 손실량의 변동이 발생한 것으로 판단되는 경우, 무선전력 전송장치(1010)는 Slotted Q FOD를 수행하여(S1906), 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이의 이물질 존재 여부를 판단한다. Slotted Q FOD에 대한 구체적인 내용은 도 15 내지 도 20을 참조하여 전술하였으므로, 이에 대한 추가적인 설명은 생략한다.
실시예에 따라, 무선전력 전송장치(1010)는 Slotted Q FOD를 복수 회 수행하고, 측정된 복수의 Q 팩터값의 평균 또는 측정된 복수의 Q 팩터값 중 최대값과 최소값을 제외한 나머지값의 평균을 이용해 이물질이 존재하는지 여부를 확인할 수 있다.
한편, 이물질의 종류/재료에 따라, Q 팩터값이 민감하게 반응하는 이물질도 있지만, Q 팩터값보다 주파수의 변화가 민감하게 반응하는 이물질도 존재한다.
도 28은 각국의 동전에 대한 주파수 변화 및 Q 팩터 감소의 실험값을 표시한 도표이다.
도 28을 참조하면, 강철 베이스로 제조된 동전이 이물질로서 무선전력 전송장치와 무선전력 수신장치 사이에 존재하는 경우에 Q 팩터 감소가 두드러지게 나타나는 반면, 비강철 베이스로 제조된 동전이 이물질로서 무선전력 전송장치와 무선전력 수신장치 사이에 존재하는 경우에 Q 팩터 감소보다는 주파수 변화가 두드러지게 나타남을 확인할 수 있다.
Q 팩터에 미치는 영향이 적은 이물질의 검출 능력 향상을 위해, 무선전력 전송장치(1010)는 Slotted Q FOD를 수행하면서, 슬롯 시간 내에서 검출된 감쇠 파형의 주파수를 연산하고, 이를 기준 주파수와 비교하여 주파수의 변화량을 검출할 수 있다. 예를 들어, 무선전력 전송장치(1010)는 슬롯 시간 내에서 1차 코일(Lp)의 전압값 또는 전류값의 피크값들(P1, P2, P3, …, Pn)의 시간 간격을 이용해 주파수를 연산할 수 있다. 기준 주파수는 무선전력 수신장치(1020)로부터 수신한 이물질 상태 패킷(FOD)에 포함된 기준 공진 주파수(Reference Resonance Frequency)이거나, 무선전력 전송장치(1010)의 제조 과정에서 미리 저장된 기준 주파수값일 수 있다.
무선전력 전송장치(1010)는 Slotted Q FOD를 수행한 결과 확인된 Q 팩터값 및/또는 주파수 변화값을 기초로 무선전력 전송장치(1010)와 무선전력 수신장치(1020) 사이에 이물질이 존재하는지 여부를 추정한다.
이물질이 존재하는 것으로 추정된 경우, 무선전력 전송장치(1010)는 무선전력의 전송을 중단하거나, 전송하는 무선전력 또는 무선전력 수신장치(1020)가 수신하는 무선전력의 레벨을 일정 수준(예를 들어, 5W) 이하로 줄일 수 있다.
이물질이 존재하지 않는 것으로 추정된 경우, 무선전력 전송장치(1010)는 무선전력 수신장치(1020)로 전력 보정을 유도하기 위한 메시지를 전송할 수 있다. 전력 보정을 유도하기 위한 메시지는 전력 보정 요청 패킷이라고 불릴 수 있다.
무선전력 전송장치(1010)는 전력 보정 요청 패킷을 전송하기 위해, 무선전력 수신장치(1020)로부터 수신한 수신전력패킷(RP/0)에 대한 응답으로 ATN 응답 패턴을 무선전력 수신장치(1020)로 전송할 수 있다. ATN 응답 패턴은 8비트의 응답 패턴('11001100' b)으로, 무선전력 전송장치(1010)가 전송할 데이터 패킷이 있는 경우 등에, 무선전력 수신장치(1020)에게 통신 권한을 요청하기 위해 사용될 수 있다.
ATN을 수신한 무선전력 수신장치(1020)는, 무선전력 전송장치(1010)에게 데이터 패킷의 전송을 요청하기 위해, 무선전력 전송장치(1010)로 데이터 스트림 응답 패킷(DSR/poll)을 전송할 수 있다. DSR/poll은 무선전력 수신장치(1020)가 전송하는 데이터 스트림 응답 패킷(DSR)의 일종으로, 8비트의 메시지 필드를 갖고, 해당 메시지 필드에는 0x33의 값이 설정될 수 있다.
무선전력 수신장치(1020)로부터 DSR/poll을 수신한 무선전력 전송장치(1010)는 전력 보정 프로토콜의 개시를 요청하는 전력 보정 요청 패킷을 무선전력 수신장치(1020)로 전송할 수 있다.
무선전력 전송장치(1010)로부터 전력 보정 요청 패킷을 수신한 무선전력 수신장치(1020)는 제1 수신전력패킷(RP/1)을 전송하여, 전력 보정 프로토콜을 개시할 수 있다. 전력 보정 프로토콜에 대해서는 도 22 내지 도 25 또는 도 26을 참조하여 설명하였으므로, 이에 대한 추가적인 설명은 생략한다.
도 27을 참고하여 설명한 실시예에 따른 전력 전송 방법은, 전력 전력 중에 전력 손실량의 변화가 발생한 경우에, 전력 손실량의 변화가 이물질로 인한 것인지 여부를 판별할 수 있다.
따라서, 전력 손실량의 변화가 이물질로 인한 것이 아닌 경우에는, 무선충전을 중단하지 않고, 전력 재보정을 수행하여 무선충전이 유지되도록 할 수 있다.
또한, 이물질의 존재 여부를 Slotted Q FOD를 수행하는 과정에서 연산되는 Q 팩터값과 주파수 변화값을 기초로 판단하므로, 이물질의 재료/종류에 관계없이 보다 정확하게 이물질의 존재를 판단할 수 있다.
상술한 도 9 내지 도 28에 따른 실시예에서의 무선전력 전송장치는 도 1 내지 도 8에서 개시된 무선전력 전송장치 또는 무선전력 전송기 또는 전력 전송부에 해당한다. 따라서, 본 실시예에서의 무선전력 전송장치의 동작은 도 1 내지 도 8에서의 무선전력 전송장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 도 9 내지 도 28에 따른 메시지 또는 데이터 패킷의 수신/전송, 이물질 검출 등은 통신/컨트롤 유닛의 동작에 포함된다.
상술한 도 9 내지 도 28에 따른 실시예에서의 무선전력 수신장치는 도 1 내지 도 8에서 개시된 무선전력 수신 또는 무선전력 수신기 또는 전력 수신부에 해당한다. 따라서, 본 실시예에서의 무선전력 수신장치의 동작은 도 1 내지 도 8에서의 무선전력 수신장치의 각 구성요소들 중 하나 또는 둘 이상의 조합에 의해 구현된다. 예를 들어, 도 9 내지 도 28에 따른 메시지 또는 데이터 패킷의 수신/전송 등은 통신/컨트롤 유닛의 동작에 포함될 수 있다.
상술한 본 명세서의 실시예에 따른 무선 전력 송신 방법 및 장치, 또는 수신 장치 및 방법은 모든 구성요소 또는 단계가 필수적인 것은 아니므로, 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법은 상술한 구성요소 또는 단계의 일부 또는 전부를 포함하여 수행될 수 있다. 또 상술한 무선 전력 송신 장치 및 방법, 또는 수신 장치 및 방법의 실시예들은 서로 조합되어 수행될 수도 있다. 또 상술한 각 구성요소 또는 단계들은 반드시 설명한 순서대로 수행되어야 하는 것은 아니며, 나중에 설명된 단계가 먼저 설명된 단계에 앞서 수행되는 것도 가능하다.
이상의 설명은 본 명세서의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 명세서에 따른 기술이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 명세서의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 이상에서 설명한 본 명세서의 실시예들은 서로 별개로 또는 조합되어 구현되는 것도 가능하다.
따라서, 본 명세서에 개시된 실시 예들은 본 명세서의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 명세서의 기술 사상의 범위가 한정되는 것은 아니다. 본 명세서의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 명세서의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 무선전력 수신장치로 무선전력을 전송하는 무선전력 전송장치에 의한 무선전력 전송방법에 있어서,
    상기 무선전력 수신장치로 디지털 핑을 전송하고, 상기 무선전력 수신장치로부터 상기 디지털 핑에 대한 응답을 수신하는 핑 단계;
    상기 무선전력 수신장치로부터 구성 패킷을 수신하는 구성 단계;
    상기 무선전력 수신장치로부터 기준 품질인자값과 관련된 정보를 포함하는 이물질 검출 상태 패킷을 수신하고, 상기 기준 품질인자값을 기초로 이물질을 검출하는 협상 단계; 및
    상기 무선전력 수신장치로 상기 무선전력을 전송하는 전력 전송 단계;를 포함하고,
    상기 전력 전송 단계에서,
    상기 무선전력 수신장치로부터 수신전력값과 관련된 정보를 포함하는 수신전력패킷을 수신하고,
    상기 수신전력값을 기초로, 상기 무선전력의 전송을 슬롯 시간 동안 중단하고, 상기 슬롯 시간 내에서의 전압 또는 전류의 변화를 기초로 상기 이물질을 검출하는, 무선전력 전송방법.
  2. 제1항에 있어서,
    상기 수신전력값을 기초로 전력 손실의 감소가 감지되고, 상기 이물질이 검출되지 않음을 기초로,
    상기 무선전력 수신장치로 전력 보정을 유도하기 위한 메시지를 전송하는, 무선전력 전송방법.
  3. 제2항에 있어서,
    상기 전력 보정을 수행하는 과정에서,
    상기 무선전력 수신장치로부터 상기 전력 보정을 위한 제1 보정 데이터 포인트와 관련된 정보를 포함하는 제1 모드 수신전력패킷을 수신하고,
    상기 무선전력의 전송을 슬롯 시간 동안 중단하고, 상기 슬롯 시간 내에서의 전압 또는 전류의 변화를 기초로 상기 이물질을 검출하는, 무선전력 전송방법.
  4. 제3항에 있어서,
    상기 제1 모드 수신전력패킷을 수신한 이후에 상기 이물질이 검출되지 않음을 기초로 상기 무선전력 수신장치로 ACK 응답을 전송하는, 무선전력 전송방법.
  5. 제3항에 있어서,
    상기 전력 보정을 수행하는 과정에서,
    상기 무선전력 수신장치로부터 상기 전력 보정을 위한 제2 보정 데이터 포인트와 관련된 정보를 포함하는 제2 모드 수신전력패킷을 수신하고,
    상기 무선전력의 전송을 슬롯 시간 동안 중단하고, 상기 슬롯 시간 내에서의 전압 또는 전류의 변화를 기초로 상기 이물질을 검출하는, 무선전력 전송방법.
  6. 제5항에 있어서,
    상기 제2 모드 수신전력패킷을 수신한 이후에 상기 이물질이 검출되지 않음을 기초로 상기 무선전력 수신장치로 ACK 응답을 전송하는, 무선전력 전송방법.
  7. 제5항에 있어서,
    상기 전력 보정을 수행하는 과정에서,
    상기 제1 보정 데이터 포인트 및 상기 제2 보정 데이터 포인트를 기초로 전력 보정 커브를 구성하는, 무선전력 전송방법.
  8. 제1항에 있어서,
    상기 수신전력값을 기초로 전력 손실의 증가가 감지되고, 상기 이물질이 검출됨을 기초로,
    상기 무선전력의 전송을 중단하거나, 상기 무선전력의 레벨을 일정 수준 이하로 감소시키는, 무선전력 전송방법.
  9. 제1항에 있어서,
    상기 수신전력값을 기초로 전력 손실의 증가가 감지되고, 상기 이물질이 검출되지 않음을 기초로,
    상기 무선전력 수신장치로 전력 보정을 유도하기 위한 메시지를 전송하는, 무선전력 전송방법.
  10. 제1항에 있어서,
    상기 슬롯 시간 내에서의 전압 또는 전류의 변화로부터 산출되는 주파수값을 산출하고,
    상기 산출된 주파수값과 기준 주파수값의 차이를 기초로 상기 이물질을 검출하는, 무선전력 전송방법.
  11. 무선전력 수신장치로 무선전력을 전송하는 무선전력 전송장치에 있어서,
    상기 무선전력 수신장치로 상기 무선전력을 전송하는 1차 코일(primary coil)을 포함하는 전력 변환 회로; 및
    상기 무선전력 수신장치와 통신하고 상기 전력 변환 회로를 제어하는 통신/컨트롤 회로;를 포함하고,
    상기 통신/컨트롤 회로는,
    상기 무선전력 수신장치로 디지털 핑을 전송하고, 상기 무선전력 수신장치로부터 상기 디지털 핑에 대한 응답을 수신하는 핑 단계,
    상기 무선전력 수신장치로부터 구성 패킷을 수신하는 구성 단계,
    상기 무선전력 수신장치로부터 기준 품질인자값과 관련된 정보를 포함하는 이물질 검출 상태 패킷을 수신하고, 상기 기준 품질인자값을 기초로 이물질을 검출하는 협상 단계 및
    상기 무선전력 수신장치로 상기 무선전력을 전송하는 전력 전송 단계를 수행하고,
    상기 전력 전송 단계에서,
    상기 무선전력 수신장치로부터 수신전력값과 관련된 정보를 포함하는 수신전력패킷을 수신하고,
    상기 수신전력값을 기초로, 상기 무선전력의 전송을 슬롯 시간 동안 중단하고, 상기 슬롯 시간 내에서의 상기 1차 코일의 전압 또는 전류의 변화를 기초로 상기 이물질을 검출하는, 무선전력 전송장치.
  12. 제11항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 수신전력값을 기초로 전력 손실의 감소가 감지되고, 상기 이물질이 검출되지 않음을 기초로,
    상기 무선전력 수신장치로 전력 보정을 유도하기 위한 메시지를 전송하는, 무선전력 전송장치.
  13. 제12항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 보정을 수행하는 과정에서,
    상기 무선전력 수신장치로부터 상기 전력 보정을 위한 제1 보정 데이터 포인트와 관련된 정보를 포함하는 제1 모드 수신전력패킷을 수신하고,
    상기 무선전력의 전송을 슬롯 시간 동안 중단하고, 상기 슬롯 시간 내에서의 전압 또는 전류의 변화를 기초로 상기 이물질을 검출하는, 무선전력 전송장치.
  14. 제13항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 제1 모드 수신전력패킷을 수신한 이후에 상기 이물질이 검출되지 않음을 기초로 상기 무선전력 수신장치로 ACK 응답을 전송하는, 무선전력 전송장치.
  15. 제13항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 보정을 수행하는 과정에서,
    상기 무선전력 수신장치로부터 상기 전력 보정을 위한 제2 보정 데이터 포인트와 관련된 정보를 포함하는 제2 모드 수신전력패킷을 수신하고,
    상기 무선전력의 전송을 슬롯 시간 동안 중단하고, 상기 슬롯 시간 내에서의 전압 또는 전류의 변화를 기초로 상기 이물질을 검출하는, 무선전력 전송장치.
  16. 제15항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 제2 모드 수신전력패킷을 수신한 이후에 상기 이물질이 검출되지 않음을 기초로 상기 무선전력 수신장치로 ACK 응답을 전송하는, 무선전력 전송장치.
  17. 제15항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 전력 보정을 수행하는 과정에서,
    상기 제1 보정 데이터 포인트 및 상기 제2 보정 데이터 포인트를 기초로 전력 보정 커브를 구성하는, 무선전력 전송장치.
  18. 제11항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 수신전력값을 기초로 전력 손실의 증가가 감지되고, 상기 이물질이 검출됨을 기초로,
    상기 무선전력의 전송을 중단하거나, 상기 무선전력의 레벨을 일정 수준 이하로 감소시키는, 무선전력 전송장치.
  19. 제11항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 수신전력값을 기초로 전력 손실의 증가가 감지되고, 상기 이물질이 검출되지 않음을 기초로,
    상기 무선전력 수신장치로 전력 보정을 유도하기 위한 메시지를 전송하는, 무선전력 전송장치.
  20. 제11항에 있어서,
    상기 통신/컨트롤 회로는,
    상기 슬롯 시간 내에서의 상기 1차 코일의 전압 또는 전류의 변화로부터 산출되는 주파수값을 산출하고,
    상기 산출된 주파수값과 기준 주파수값의 차이를 기초로 상기 이물질을 검출하는, 무선전력 전송장치.
PCT/KR2021/013817 2020-10-07 2021-10-07 무선전력 전송장치 및 무선전력 전송장치에 의한 무선전력 전송방법 WO2022075779A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237011871A KR20230084170A (ko) 2020-10-07 2021-10-07 무선전력 전송장치 및 무선전력 전송장치에 의한 무선전력 전송방법
EP21878029.4A EP4228123A1 (en) 2020-10-07 2021-10-07 Wireless power transmitter and wireless power transmission method by wireless power transmitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200129084 2020-10-07
KR10-2020-0129084 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075779A1 true WO2022075779A1 (ko) 2022-04-14

Family

ID=81125921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013817 WO2022075779A1 (ko) 2020-10-07 2021-10-07 무선전력 전송장치 및 무선전력 전송장치에 의한 무선전력 전송방법

Country Status (3)

Country Link
EP (1) EP4228123A1 (ko)
KR (1) KR20230084170A (ko)
WO (1) WO2022075779A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024117576A1 (ko) * 2022-12-02 2024-06-06 삼성전자 주식회사 이물질 검출 방법 및 그 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194969A1 (en) * 2014-06-20 2015-12-23 Powerbyproxi Limited Foreign object detection in inductive power transfer field
KR20160012889A (ko) * 2014-07-24 2016-02-03 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
KR20170044495A (ko) * 2015-10-15 2017-04-25 삼성전기주식회사 무선 전력 송신 장치 및 그 제어 방법
US20170273025A1 (en) * 2016-03-21 2017-09-21 Apple Inc. Techniques for Managing Wireless Transmission Energy Budget
KR20180025602A (ko) * 2016-09-01 2018-03-09 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194969A1 (en) * 2014-06-20 2015-12-23 Powerbyproxi Limited Foreign object detection in inductive power transfer field
KR20160012889A (ko) * 2014-07-24 2016-02-03 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
KR20170044495A (ko) * 2015-10-15 2017-04-25 삼성전기주식회사 무선 전력 송신 장치 및 그 제어 방법
US20170273025A1 (en) * 2016-03-21 2017-09-21 Apple Inc. Techniques for Managing Wireless Transmission Energy Budget
KR20180025602A (ko) * 2016-09-01 2018-03-09 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024117576A1 (ko) * 2022-12-02 2024-06-06 삼성전자 주식회사 이물질 검출 방법 및 그 전자 장치

Also Published As

Publication number Publication date
KR20230084170A (ko) 2023-06-12
EP4228123A1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2019139326A1 (ko) 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
WO2020017859A1 (ko) 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법
WO2019039898A1 (ko) 무선전력 전송시스템에서 통신을 수행하는 장치 및 방법
WO2019208960A1 (ko) 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법
WO2020222528A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이를 이용한 무선전력 전송방법
WO2019194524A1 (ko) 무선전력 전송 시스템에서 전력 전송을 제어하는 장치 및 방법
WO2021066611A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 이들을 이용한 전력 보정 방법
WO2020027521A1 (ko) 이물질 검출에 기반하여 무선전력 전송을 수행하는 장치 및 방법
WO2020149492A1 (ko) 멀티 코일을 이용하여 다수의 기기에 무선전력을 전송하는 장치 및 방법
WO2020004940A1 (ko) 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법
WO2020036357A1 (ko) 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법
WO2020222415A1 (ko) 근거리 무선통신을 이용하여 전력 클래스를 협상하는 무선충전 장치, 방법 및 시스템
WO2020085614A1 (ko) 무선전력 전송 시스템에서 데이터를 전송하는 방법 및 장치
WO2020130265A1 (ko) 이종 통신에 기반하여 무선전력 전송을 수행하는 장치 및 방법
WO2020085828A1 (ko) 무선 전력 전송 시스템에서 데이터를 전송 또는 수신하는 장치 및 방법
WO2019240565A1 (ko) 타 통신카드의 검출을 수행하는 무선전력 전송장치 및 방법
WO2022005258A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 무선전력 전송장치와 무선전력 수신장치 사이의 통신 방법
WO2021006475A1 (ko) 무선전력 전송장치
WO2020185051A1 (ko) 저전력 및 중전력 호환 무선충전 수신 장치 및 방법
WO2020190109A1 (ko) 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법
WO2021153815A1 (ko) 무선충전 장치, 방법 및 시스템에서 아웃밴드 통신이 가능한 장치 및 방법
WO2020171316A1 (ko) 무선전력 전송 시스템에서 충전 상태 정보를 제공하는 장치 및 방법
WO2022005264A1 (ko) 무선전력 수신장치, 무선전력 전송장치 및 무선전력 전송장치와 무선전력 수신장치 사이의 통신 방법
WO2021215793A1 (ko) 무선전력 수신장치 및 무선전력 전송장치
WO2021201413A1 (ko) 무선전력 전송장치 및 무선전력 전송방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021878029

Country of ref document: EP

Effective date: 20230508