WO2021177191A1 - Refrigerant distributor - Google Patents

Refrigerant distributor Download PDF

Info

Publication number
WO2021177191A1
WO2021177191A1 PCT/JP2021/007539 JP2021007539W WO2021177191A1 WO 2021177191 A1 WO2021177191 A1 WO 2021177191A1 JP 2021007539 W JP2021007539 W JP 2021007539W WO 2021177191 A1 WO2021177191 A1 WO 2021177191A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
shunt
throttle portion
downstream end
collision surface
Prior art date
Application number
PCT/JP2021/007539
Other languages
French (fr)
Japanese (ja)
Inventor
太照 岩成
恒星 酒井
康平 深渡瀬
博 鳥越
濱本 浩
Original Assignee
株式会社日本クライメイトシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本クライメイトシステムズ filed Critical 株式会社日本クライメイトシステムズ
Priority to CN202180017778.1A priority Critical patent/CN115210514B/en
Priority to EP21763817.0A priority patent/EP4102156A4/en
Publication of WO2021177191A1 publication Critical patent/WO2021177191A1/en
Priority to US17/898,597 priority patent/US20220412620A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/48Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow path resistance control on the downstream side of the diverging point, e.g. by an orifice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present invention relates to a refrigerant shunt that divides the inflowing refrigerant into a plurality of flow paths.
  • a heat exchanger used as a refrigerant evaporator in a refrigeration cycle may be provided with a plurality of heat transfer tubes.
  • a refrigerant shunt for dividing the refrigerant flowing from the inflow pipe into each heat transfer pipe may be used (see, for example, Patent Document 1).
  • the refrigerant shunt of Patent Document 1 includes a first body in which a refrigerant supply path and a throttle portion are formed, and a second body in which a refrigerant flow collision portion and first and second shunts are formed. It is configured by fitting and integrating with each other.
  • the throttle portion is formed by reducing the flow path diameter at the downstream end of the refrigerant supply path via the tapered surface.
  • the refrigerant flow collision portion of the second body is arranged so as to face the downstream end opening of the refrigerant supply path, and is composed of a hemispherical concave surface.
  • the first and second branch channels are open to the outside of the refrigerant flow collision portion. Then, the refrigerant flowing in the refrigerant supply path passes through the throttle portion, collides with the refrigerant flow collision portion, and then diverges into the first and second branch flow paths and flows.
  • Patent Document 1 since the refrigerant flow collision portion faces the opening of the throttle portion, if the refrigerant flowing out from the throttle portion is not flowed straight, the refrigerant may collide with the refrigerant flow collision portion as intended. It is a configuration that cannot be done.
  • the throttle portion is only provided in a tapered shape at the downstream end of the refrigerant supply path, the length of the throttle portion is short, and it is difficult to control the outflow direction of the refrigerant by the throttle portion. Therefore, the pipe communicating with the throttle portion is formed into a straight pipe shape over a predetermined length, and the outflow direction of the refrigerant is set so that the refrigerant collides with the refrigerant flow collision portion as intended by the straight pipe shape portion. I had to keep it. If a straight pipe-shaped portion is provided with a predetermined length, it may be difficult to lay out the piping around the refrigerant shunt.
  • the present invention has been made in view of this point, and an object of the present invention is to enable the desired refrigerant diversion regardless of the shape of the pipe located upstream of the throttle portion.
  • the length of the throttle portion is secured to be long, and the refrigerant collision surface is provided so as to face the opening of the throttle portion.
  • the first invention is a refrigerant diversion device that divides the refrigerant flowing from the refrigerant supply pipe into the first and second refrigerant outflow pipes from a supply path to which the refrigerant supply pipe is connected and a downstream end of the supply path.
  • a refrigerant stirring chamber that extends linearly and has a diameter smaller than that of the supply path, a refrigerant stirring chamber that communicates with the downstream end of the throttle and agitates the refrigerant that has flowed in from the throttle, and the downstream end of the throttle.
  • One of the refrigerant collision surfaces that are arranged so as to face each other at a predetermined distance and collide with the refrigerant flowing out from the throttle portion, and the upstream end communicates with a portion of the refrigerant stirring chamber that is separated from the refrigerant collision surface.
  • the downstream end is a portion away from the refrigerant collision surface in the refrigerant stirring chamber and the upstream end is separated from the upstream end of the first refrigerant flow path and the first branch flow path communicating with the first refrigerant outflow pipe.
  • the downstream end is provided with a second branch flow path that communicates with the second refrigerant outflow pipe while communicating with the portion.
  • the refrigerant flowing through the refrigerant supply pipe flows into the supply path and then into the throttle portion. Since the throttle portion extends linearly, the refrigerant not only increases the flow velocity by flowing through the throttle portion, but also controls the outflow direction when the refrigerant flows out from the throttle portion. In particular, by controlling the outflow direction of the refrigerant in a state where the flow velocity is high, the controllability of the outflow direction is improved. Then, the refrigerant flowing into the refrigerant stirring chamber from the throttle portion vigorously collides with the refrigerant collision surface, so that the liquid phase refrigerant and the vapor phase refrigerant are satisfactorily agitated in the refrigerant stirring chamber. After being agitated, the refrigerant in the refrigerant stirring chamber is divided into the first refrigerant outflow pipe and the second refrigerant outflow pipe via the first branch flow path and the second branch flow path, respectively.
  • the refrigerant collision surface is arranged on an extension of the axis of the throttle portion from the downstream end portion of the throttle portion, and the first branch flow path and the upstream end of the second branch flow path are the refrigerant.
  • the wall surface of the stirring chamber is characterized by having an opening between the downstream end of the throttle portion and the refrigerant collision surface.
  • the upstream ends of the first branch flow path and the second branch flow path are opened closer to the throttle portion than the central portion between the downstream end portion of the throttle portion and the refrigerant collision surface. It is characterized by doing.
  • the upstream ends of the first branch flow path and the second branch flow path are separated from the refrigerant collision surface, so that the refrigerant in a state of colliding with the refrigerant collision surface and sufficiently agitated is used in the first branch flow path and It can flow into the upstream end of the second branch flow path.
  • the fourth invention is characterized in that the upstream ends of the first branch flow path and the second branch flow path are arranged on the wall surface of the refrigerant stirring chamber so as to be spaced apart from each other around the extension line.
  • the upstream end of the first branch flow path and the upstream end of the second branch flow path can be arranged apart from each other, so that the refrigerant in a sufficiently agitated state can flow into each of them. Can be done.
  • the first shunt component provided with the supply path and the throttle portion, the refrigerant stirring chamber, the refrigerant collision surface, the first shunt flow path and the second shunt flow path are provided.
  • the first shunt component is provided with a second shunt component, the first shunt component is provided with the throttle portion inside, and has a protruding cylinder portion on the tip surface at which the downstream end of the throttle portion opens.
  • the shunt component has a fitting hole into which the protruding cylinder portion is fitted, and the refrigerant stirring chamber is provided so as to communicate with the inner side of the fitting hole.
  • the protruding cylinder portion of the first shunt component is used as a fitting hole for the second shunt component.
  • they can be integrated in a state where they are positioned relative to each other.
  • a throttle portion is provided in the protruding cylinder portion of the first shunt component member, and a refrigerant stirring chamber is provided in the second shunt component member so as to communicate with the fitting hole, so that the refrigerant flowing out from the throttle portion can be discharged. It can be agitated by flowing into the refrigerant stirring chamber.
  • the sixth invention is characterized in that the diameter of the fitting hole is set to be larger than the diameter of the refrigerant stirring chamber.
  • the seventh invention is characterized in that the supply path extends in a direction intersecting an extension line of the axis of the throttle portion.
  • the extension direction of the supply path intersects the extension line of the axis of the throttle portion due to the influence of the routing of the refrigerant supply pipe, etc., but in the present invention, the throttle portion extends linearly. Therefore, regardless of the extending direction of the supply path, the outflow direction can be controlled by the throttle portion to cause the refrigerant to collide with the refrigerant collision surface as intended.
  • the eighth invention is characterized in that the supply path extends substantially coaxially with an extension line of the axis of the throttle portion.
  • the refrigerant collision surface has a circular shape, and the downstream end of the throttle portion is arranged so that an extension of the axis of the throttle portion passes through the center of the refrigerant collision surface. It is characterized by.
  • the refrigerant flowing out from the throttle portion collides with the center of the refrigerant collision surface, so that the flow is less likely to be biased, and the liquid phase refrigerant and the gas phase refrigerant can be satisfactorily agitated.
  • the tenth invention is characterized in that the refrigerant collision surface and the extension line of the axis of the throttle portion are substantially orthogonal to each other.
  • the refrigerant flowing out from the throttle portion extending linearly from the downstream end of the supply path to which the refrigerant supply pipe is connected collides with the refrigerant collision surface of the refrigerant stirring chamber to form a liquid phase refrigerant and a gas phase refrigerant. Can be mixed well. Since the first branch flow path and the second branch flow path are communicated with the refrigerant stirring chamber, it is possible to enable the desired refrigerant flow regardless of the shape of the pipe located upstream of the throttle portion.
  • FIG. 6 is a cross-sectional view taken along the line VII-VII in FIG. It is a figure corresponding to FIG. 2 which concerns on Embodiment 2 of this invention.
  • FIG. 8 is a cross-sectional view taken along the line IX-IX in FIG.
  • FIG. 1 is a circuit configuration diagram of a battery cooling device 100 provided with a refrigerant shunt 1 according to a first embodiment of the present invention.
  • the battery cooling device 100 is a device for cooling the battery 200 mounted on, for example, an electric vehicle, a hybrid vehicle (including a plug-in type), and the like.
  • the battery 200 is for supplying electric power to a traveling motor of an automobile.
  • the battery 200 can be charged by regenerative control of a traveling motor or driving a generator by an engine.
  • the battery 200 can be charged from a commercial power source (not shown) or the like, or the battery 200 can be charged by regenerative control of a traveling motor.
  • the temperature of the battery 200 rises during charging and discharging.
  • the battery 200 can be cooled by the battery cooling device 100 in order to suppress this temperature rise.
  • the battery cooling device 100 includes at least a compressor 101, a condenser 102, a receiver tank 103, a battery cooler expansion valve 104, a battery cooler 105, and an accumulator 106.
  • the battery cooling device 100 is configured to also perform air conditioning in the vehicle interior. Therefore, the battery cooling device 100 includes an evaporator 107 as a cooling heat exchanger for cooling the air conditioning air and air conditioning. It is provided with an expansion valve 108 for use.
  • the compressor 101 is composed of an electric compressor.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 101 flows into the condenser 102. External air is blown to the condenser 102 by a fan 102a. After flowing into the receiver tank 103, the refrigerant that has passed through the condenser 102 flows into one or both of the bypass pipe 100a and the battery cooler side pipe 100b.
  • the battery cooler side piping 100b is provided with a battery cooler side sluice valve 100c.
  • the battery cooler side sluice valve 100c is a valve for opening and closing the battery cooler side pipe 100b.
  • a battery cooler expansion valve 104 is provided on the downstream side of the battery cooler side sluice valve 100c in the battery cooler side pipe 100b.
  • the refrigerant that has passed through the expansion valve 104 for the battery cooler is depressurized.
  • the shunt 1 according to the present invention is provided on the downstream side of the battery cooler expansion valve 104 in the battery cooler side pipe 100b.
  • the shunt shunt 1 is for shunting the refrigerant flowing from the battery cooler side pipe (refrigerant supply pipe) 100b into the first refrigerant outflow pipe 100f and the second refrigerant outflow pipe 100g.
  • the battery cooler 105 is composed of a heat exchanger (evaporator) that supplies cold heat for cooling the battery 200 to the battery 200.
  • the battery cooler 105 has a plurality of tubes (not shown). It is provided.
  • a shunt shunt 1 is provided in each tube to shunt the refrigerant. In this example, the case where the refrigerant is divided into two will be described, but the refrigerant can be divided into three or more.
  • the refrigerant may be evenly diverted into the first refrigerant outflow pipe 100f and the second refrigerant outflow pipe 100g, and the shunt flow rate to one side is larger than the shunt flow rate to the other side. You may divide the flow as follows.
  • the battery cooler side pipe 100b, the first refrigerant outflow pipe 100f, and the second refrigerant outflow pipe 100g may all have the same diameter or may have different diameters.
  • the battery cooler side pipe 100b, the first refrigerant outflow pipe 100f, and the second refrigerant outflow pipe 100g are made of, for example, aluminum alloy piping members. Further, the cross section of the battery cooler side pipe 100b, the first refrigerant outflow pipe 100f, and the second refrigerant outflow pipe 100g is substantially circular.
  • the bypass pipe 100a is provided with a bypass side sluice valve 100d.
  • the bypass side sluice valve 100d is a valve for opening and closing the bypass pipe 100a.
  • the bypass pipe 100a is connected to the evaporator 107.
  • An air conditioning expansion valve 108 is provided on the downstream side of the bypass side sluice valve 100d in the bypass pipe 100a.
  • the refrigerant flowing out of the evaporator 107 flows into the accumulator 106 and then is sucked into the compressor 101.
  • Air conditioning air is blown to the evaporator 107 by the blower 120. After the air conditioning air is cooled by the evaporator 107, it is supplied to the vehicle interior.
  • the refrigerant shunt 1 includes a first shunt component 10 and a second shunt component 20.
  • the first shunt component 10 and the second shunt component 20 are made of, for example, a block material made of an aluminum alloy.
  • the first shunt component 10 includes a base 11 and a protruding tubular portion 12 projecting from the base 11.
  • the cross-sectional shape of the protruding cylinder portion 12 is circular.
  • the base portion 11 and the protruding cylinder portion 12 may be integrally molded, or the base portion 11 and the protruding cylinder portion 12 may be formed of separate members and then combined and integrated.
  • the base portion 11 is formed with a supply-side pipe connection hole 11a to be connected with the downstream end of the battery cooler-side pipe 100b inserted.
  • the cross-sectional shape of the supply-side pipe connection hole 11a is circular.
  • the outer peripheral surface of the battery cooler side pipe 100b is brazed to the inner peripheral surface of the supply side pipe connection hole 11a over the entire circumference.
  • the base 11 is provided with a supply path 11b that communicates with the back side (downstream side in the refrigerant flow direction) of the supply side pipe connection hole 11a.
  • the supply-side pipe connection hole 11a is open on the upper surface of the base 11.
  • the cross-sectional shape of the supply path 11b is a circle smaller than the cross-sectional shape of the supply-side pipe connection hole 11a.
  • the supply path 11b extends straight, and the axis of the supply path 11b coincides with the axis of the supply-side pipe connection hole 11a.
  • a step portion 11c is formed at a boundary portion between the supply path 11b and the supply side pipe connection hole 11a.
  • the insertion depth is set by contacting the downstream end of the battery cooler side pipe 100b with the step portion 11c while being inserted into the supply side pipe connection hole 11a.
  • the battery cooler side pipe 100b is connected to the supply path 11b in a state of being inserted into the supply side pipe connection hole 11a.
  • the downstream end of the supply path 11b is composed of a tapered surface 11d.
  • the tapered surface 11d is formed so as to reduce its diameter toward the downstream side in the refrigerant flow direction.
  • the axis of the tapered surface 11d and the axis of the supply path 11b coincide with each other.
  • the first shunt component 10 is provided with a throttle portion 12a extending linearly from the downstream end portion of the supply passage 11b and having a diameter smaller than that of the portion other than the tapered surface 11d in the supply passage 11b.
  • a throttle portion 12a is provided inside the protruding cylinder portion 12 of the first shunt component 10.
  • the downstream end of the throttle portion 12a is open to the central portion of the tip surface of the protruding cylinder portion 12.
  • the cross-sectional shape of the drawing portion 12a is circular, and the downstream end of the drawing portion 12a that opens to the tip surface of the protruding cylinder portion 12 is also circular.
  • the diameter of the throttle portion 12a is set equally from the upstream end to the downstream end thereof.
  • the length of the throttle portion 12a is set to be longer than the length including the tapered surface 11d of the supply path 11b. As a result, the throttle portion 12a has a shape in which the same inner diameter is continuous over a predetermined length.
  • the length dimension of the drawing portion 12a is longer.
  • the length of the throttle portion 12a can be set to, for example, 7 mm or more, preferably 10 mm or more.
  • the inner diameter of the throttle portion 12a can be set so that, for example, the refrigerant flow rate per unit area is in the range of 1.0 to 4.0 g / s ⁇ mm 2. By setting this range, the mixture of the liquid-phase refrigerant and the gas-phase refrigerant in the refrigerant stirring chamber, which will be described later, can be improved and the pressure loss can be reduced.
  • a part of the drawing portion 12a may be formed inside the base portion 11.
  • An annular groove 12b is formed on the outer peripheral surface of the protruding cylinder portion 12.
  • An O-ring 13 as a sealing material made of rubber or the like is fitted in the annular groove 12b.
  • the second shunt component 20 has a fitting hole 21 into which the protruding cylinder portion 12 is fitted.
  • the fitting hole 21 is opened on the upper surface of the second shunt component 20, and its cross-sectional shape is circular.
  • the length of the fitting hole 21 is set to be substantially equal to the protruding length of the protruding cylinder portion 12. Therefore, when the protruding cylinder portion 12 is inserted into the fitting hole 21 and fitted, the lower surface of the base portion 11 of the first shunt constituent member 10 comes into contact with the upper surface of the second shunt constituent member 20. In this state, although not shown, the first shunt component 10 and the second shunt component 20 can be fastened with bolts or the like.
  • FIG. 4 shows a screw hole 20a into which the bolt is screwed. When the protruding cylinder portion 12 is inserted into the fitting hole 21, the O-ring 13 seals between the two.
  • the second shunt component 20 is provided with a refrigerant stirring chamber 22 behind the fitting hole 21.
  • the refrigerant stirring chamber 22 communicates with the inner side of the fitting hole 21.
  • the cross-sectional shape of the refrigerant stirring chamber 22 is a circle smaller than the cross-sectional shape of the fitting hole 21. Therefore, the diameter of the fitting hole 21 is set to be larger than the diameter of the refrigerant stirring chamber 22, and the step portion 20b is formed at the boundary portion between the fitting hole 21 and the refrigerant stirring chamber 22.
  • the step portion 20b can be formed of a tapered surface. Further, as shown in FIG.
  • the cross-sectional shape of the refrigerant stirring chamber 22 is smaller than the cross-sectional shape of the fitting hole 21, when forming the refrigerant stirring chamber 22 and the fitting hole 21, for example, a rotary tool is used.
  • the refrigerant stirring chamber 22 can be formed first and the fitting hole 21 can be formed later, or the fitting hole 21 can be formed first and the refrigerant stirring chamber 22 can be formed later.
  • the downstream end of the throttle portion 12a and the refrigerant stirring chamber 22 communicate with each other.
  • the refrigerant stirring chamber 22 forms a space for stirring the refrigerant flowing in from the throttle portion 12a.
  • the length of the refrigerant stirring chamber 22 in the axial direction can be set to be about the same as the length of the throttle portion 12a, but may be longer or shorter than the length of the throttle portion 12a.
  • the axial length B of the refrigerant stirring chamber 22 can be set to 10 mm or more, preferably 15 mm or more.
  • the diameter of the refrigerant stirring chamber 22 is set sufficiently larger than the diameter of the throttle portion 12a so that a sufficient space necessary for stirring the refrigerant flowing in from the throttle portion 12a can be secured in the refrigerant stirring chamber 22. It has become. Since the refrigerant flowing in from the throttle portion 12a flows through the expansion valve 104 for the battery cooler, it may be a gas-liquid two-layer refrigerant in which a liquid-phase refrigerant and a gas-phase refrigerant are mixed. By stirring the gas-liquid two-layer refrigerant in the refrigerant stirring chamber 22, the liquid-phase refrigerant and the gas-phase refrigerant can be mixed.
  • the second shunt component 20 is provided with a refrigerant collision surface 24 on which the refrigerant flowing out from the throttle portion 12a collides.
  • the refrigerant collision surface 24 is arranged so as to face the downstream end portion of the throttle portion 12a at a predetermined distance.
  • the refrigerant collision surface 24 has a circular shape.
  • the refrigerant collision surface 24 is arranged on an extension of the axis of the throttle portion 12a from the downstream end portion of the throttle portion 12a.
  • the downstream end of the throttle portion 12a is arranged so that an extension of the axis of the throttle portion 12a passes through the center of the refrigerant collision surface 24.
  • the refrigerant collision surface 24 may be formed of a flat surface or a curved surface. When the refrigerant collision surface 24 is a flat surface, the refrigerant collision surface 24 and the extension line of the axis of the throttle portion 12a are substantially orthogonal to each other.
  • the second shunt component 20 is provided with a first shunt 25 and a second shunt 26.
  • the upstream ends of the first branch flow path 25 and the second branch flow path 26 communicate with each other in the refrigerant stirring chamber 22 away from the refrigerant collision surface 24. That is, the upstream ends of the first branch flow path 25 and the second branch flow path 26 are open between the downstream end portion of the throttle portion 12a on the wall surface of the refrigerant stirring chamber 22 and the refrigerant collision surface 24. More specifically, the upstream ends of the first branch flow path 25 and the second branch flow path 26 are opened closer to the throttle portion 12a than the central portion between the downstream end portion of the throttle portion 12a and the refrigerant collision surface 24. doing.
  • the refrigerant collision surface 24 can be separated from the upstream ends of the first branch flow path 25 and the second branch flow path 26.
  • the separation distance A between the refrigerant collision surface 24 and the central portion of the upstream end of the first branch flow path 25 and the second branch flow path 26 can be set to 9 mm or more and 13.5 mm or less.
  • the upstream ends of the first branch flow path 25 and the second branch flow path 26 may be opened in the central portion between the downstream end portion of the throttle portion 12a and the refrigerant collision surface 24, and the refrigerant may be opened more than the central portion. It may be opened on the side closer to the collision surface 24.
  • the upstream ends of the first branch flow path 25 and the second branch flow path 26 are arranged on the wall surface of the refrigerant stirring chamber 22 at intervals around the extension line of the axis of the throttle portion 12a. That is, the upstream end of the first branch flow path 25 and the upstream end of the second branch flow path 26 are arranged at intervals in the circumferential direction of the wall surface of the refrigerant stirring chamber 22, and are separated by a predetermined distance in the circumferential direction. ing. As shown in FIG. 7, the upstream ends of the first branch flow path 25 and the second branch flow path 26 are closest to each other, and the distance between them becomes longer as they approach the downstream end.
  • the second shunt component 20 is formed with a first outflow side pipe connection hole 20c that is connected with the upstream end of the first refrigerant outflow pipe 100f inserted.
  • the cross-sectional shape of the first outflow side pipe connection hole 20c is circular.
  • the axis of the first outflow side pipe connection hole 20c and the axis of the first branch flow path 25 intersect each other. Further, the downstream end of the first branch flow path 25 communicates with a portion radially away from the axis of the first outflow side pipe connection hole 20c.
  • the outer peripheral surface of the first refrigerant outflow pipe 100f is brazed to the inner peripheral surface of the first outflow side pipe connection hole 20c over the entire circumference. As a result, the downstream end of the first branch flow path 25 and the upstream end of the first refrigerant outflow pipe 100f communicate with each other.
  • the second shunt component 20 is formed with a second outflow side pipe connection hole 20d to be connected with the upstream end of the second refrigerant outflow pipe 100 g inserted.
  • the cross-sectional shape of the second outflow side pipe connection hole 20d is circular.
  • the axis of the second outflow side pipe connection hole 20d and the axis of the second branch flow path 26 intersect each other.
  • the downstream end of the second branch flow path 26 communicates with a portion radially separated from the axis of the second outflow side pipe connection hole 20d.
  • the outer peripheral surface of the second refrigerant outflow pipe 100 g is brazed to the inner peripheral surface of the second outflow side pipe connection hole 20d over the entire circumference. As a result, the downstream end of the second branch flow path 26 and the upstream end of the second refrigerant outflow pipe 100 g communicate with each other.
  • the refrigerant flowing into the refrigerant stirring chamber 22 from the throttle portion 12a vigorously collides with the refrigerant collision surface 24, so that the liquid phase refrigerant and the gas phase refrigerant are satisfactorily agitated in the refrigerant stirring chamber 22.
  • the refrigerant in the refrigerant stirring chamber 22 is uniformly divided into the first refrigerant outflow pipe 100f and the second refrigerant outflow pipe 100g via the first branch flow path 25 and the second branch flow path 26, respectively.
  • the flow velocity distribution of the refrigerant flowing into the refrigerant shunt 1 is biased, but in this embodiment, the throttle portion 12a is straight. Since it has a shape, it is possible to reduce the deviation of the flow velocity distribution of the refrigerant while flowing inside the throttle portion 12a. As a result, the refrigerant shunt can be made uniform regardless of the shape of the pipe located immediately upstream of the refrigerant shunt 1.
  • FIG. 8 relates to the second embodiment of the present invention.
  • the second embodiment is different from that of the first embodiment in that the refrigerant is divided in four directions and the axial directions of the battery cooler side pipe 100b and the throttle portion 12a intersect each other.
  • the same parts as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be described in detail.
  • the supply path 11b extends in a direction intersecting the extension line of the axis of the throttle portion 12a. That is, as shown in FIG. 8, the supply path 11b is formed so as to extend in the horizontal direction, while the throttle portion 12a is formed so as to extend in the vertical direction. As a result, the extending direction of the supply path 11b and the axis of the throttle portion 12a are in a positional relationship that is substantially orthogonal to each other.
  • the second shunt component 20 is provided with a third shunt 27 and a fourth shunt 28 in addition to the first shunt 25 and the second shunt 26.
  • the second shunt component 20 is formed with a third outflow side pipe connection hole 20e that is connected with the upstream end of the third refrigerant outflow pipe (not shown) inserted.
  • the downstream end of the third branch flow path 27 communicates with the third outflow side pipe connection hole 20e.
  • the second shunt component 20 is formed with a fourth outflow side pipe connection hole 20f which is connected with the upstream end of the fourth refrigerant outflow pipe (not shown) inserted.
  • the downstream end of the fourth branch flow path 28 communicates with the fourth outflow side pipe connection hole 20f.
  • the same action and effect as that of the first embodiment can be obtained, and the refrigerant can be divided in four directions.
  • the extension direction of the supply path 11b is a direction that intersects the extension line of the axis of the throttle portion 12a due to the influence of the routing of the pipe or the like, the throttle portion 12a extends linearly, so that the supply path 11b Regardless of the extending direction, the outflow direction can be controlled by the throttle portion 12a to collide with the refrigerant collision surface 24 as intended.
  • the refrigerant shunt 1 can be applied not only to the battery cooling device 100 but also to a case where the refrigerant is diverted to a tube constituting a heat exchanger of an air conditioner.
  • the extending direction of the first branch flow path 25, the second branch flow path 26, the third branch flow path 27, and the fourth branch flow path 28 can be any direction.
  • the number of branch channels may be three or five or more.
  • the refrigerant shunt according to the present invention can be used, for example, in a battery cooling device or an air conditioner.
  • Refrigerant shunt 10 1st shunt component 11b Supply path 12 Overhanging cylinder 12a Squeezing 20 2nd shunt component 21 Fitting hole 22 Refrigerant stirring chamber 24 Refrigerant collision surface 25 1st shunt 26 2nd shunt 100b Battery cooler side piping (refrigerant supply pipe) 100f 1st refrigerant outflow pipe 100g 2nd refrigerant outflow pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

A refrigerant distributor 1 is provided with: a throttle section 12a extending linearly from a downstream end section of a supply path 11b to which a refrigerant supply tube 100b is connected, and having a smaller diameter than the supply path 11b; a refrigerant agitation chamber 22 in which a refrigerant, that has flowed thereto from the throttle section 12a, is agitated; a refrigerant collision surface 24 into which the refrigerant collides; and a first distribution path 25 and a second distribution path 26 which communicate with the refrigerant agitation chamber 22.

Description

冷媒分流器Refrigerant shunt
 本発明は、流入した冷媒を複数の流路に分流させる冷媒分流器に関する。 The present invention relates to a refrigerant shunt that divides the inflowing refrigerant into a plurality of flow paths.
 従来より、例えば冷凍サイクルの冷媒蒸発器として用いられる熱交換器が複数の伝熱管を備えている場合がある。この場合、流入管から流入した冷媒を各伝熱管に分流させるための冷媒分流器が用いられることがある(例えば、特許文献1参照)。 Conventionally, for example, a heat exchanger used as a refrigerant evaporator in a refrigeration cycle may be provided with a plurality of heat transfer tubes. In this case, a refrigerant shunt for dividing the refrigerant flowing from the inflow pipe into each heat transfer pipe may be used (see, for example, Patent Document 1).
 特許文献1の冷媒分流器は、冷媒供給路及び絞り部が形成された第1の器体と、冷媒流衝突部及び第1、第2の分流路が形成された第2の器体とを互いに嵌合させて一体化することによって構成されている。冷媒供給路の下流端部の流路径を、テーパ面を介して縮小することによって絞り部が形成されている。一方、第2の器体の冷媒流衝突部は、冷媒供給路の下流端開口に対向するように配置されており、半球状の凹面で構成されている。第1、第2の分流路は、冷媒流衝突部の外方に開口している。そして、冷媒供給路を流れる冷媒は絞り部を通過してから冷媒流衝突部に衝突した後、第1、第2の分流路に分流して流れるようになっている。 The refrigerant shunt of Patent Document 1 includes a first body in which a refrigerant supply path and a throttle portion are formed, and a second body in which a refrigerant flow collision portion and first and second shunts are formed. It is configured by fitting and integrating with each other. The throttle portion is formed by reducing the flow path diameter at the downstream end of the refrigerant supply path via the tapered surface. On the other hand, the refrigerant flow collision portion of the second body is arranged so as to face the downstream end opening of the refrigerant supply path, and is composed of a hemispherical concave surface. The first and second branch channels are open to the outside of the refrigerant flow collision portion. Then, the refrigerant flowing in the refrigerant supply path passes through the throttle portion, collides with the refrigerant flow collision portion, and then diverges into the first and second branch flow paths and flows.
特開平11-257801号公報Japanese Unexamined Patent Publication No. 11-257801
 ところで、特許文献1では、冷媒流衝突部が絞り部の開口に対向しているので、絞り部から流出する冷媒をまっすぐに流さなければ、冷媒を冷媒流衝突部に狙い通りに衝突させることができない構成となっている。 By the way, in Patent Document 1, since the refrigerant flow collision portion faces the opening of the throttle portion, if the refrigerant flowing out from the throttle portion is not flowed straight, the refrigerant may collide with the refrigerant flow collision portion as intended. It is a configuration that cannot be done.
 ところが、絞り部は冷媒供給路の下流端部においてテーパ状に設けられているだけなので、絞り部の長さが短くなっており、絞り部によって冷媒の流出方向をコントロールすることは困難である。このため、絞り部に連通する配管を所定長さにわたって直管形状にしておき、この直管形状の部分により、冷媒が冷媒流衝突部に狙い通りに衝突するように冷媒の流出方向を設定しておく必要があった。直管形状の部分を所定長さ設けようとすると、冷媒分流器周辺の配管レイアウトが困難になる場合が考えられる。 However, since the throttle portion is only provided in a tapered shape at the downstream end of the refrigerant supply path, the length of the throttle portion is short, and it is difficult to control the outflow direction of the refrigerant by the throttle portion. Therefore, the pipe communicating with the throttle portion is formed into a straight pipe shape over a predetermined length, and the outflow direction of the refrigerant is set so that the refrigerant collides with the refrigerant flow collision portion as intended by the straight pipe shape portion. I had to keep it. If a straight pipe-shaped portion is provided with a predetermined length, it may be difficult to lay out the piping around the refrigerant shunt.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、絞り部の上流に位置する配管の形状に依らず、狙い通りの冷媒分流を可能にすることにある。 The present invention has been made in view of this point, and an object of the present invention is to enable the desired refrigerant diversion regardless of the shape of the pipe located upstream of the throttle portion.
 上記目的を達成するために、本発明では、絞り部の長さを長く確保し、その絞り部の開口と対向するように冷媒衝突面を設けるようにした。 In order to achieve the above object, in the present invention, the length of the throttle portion is secured to be long, and the refrigerant collision surface is provided so as to face the opening of the throttle portion.
 第1の発明は、冷媒供給管から流入した冷媒を第1及び第2冷媒流出管に分流する冷媒分流器において、前記冷媒供給管が接続される供給路と、前記供給路の下流端部から直線状に延び、前記供給路よりも小径とされた絞り部と、前記絞り部の下流端部に連通し、前記絞り部から流入した冷媒を攪拌する冷媒攪拌室と、前記絞り部の下流端部と所定の間隔をあけて対向するように配置され、前記絞り部から流出した冷媒が衝突する冷媒衝突面と、上流端が前記冷媒攪拌室における前記冷媒衝突面から離れた部分に連通する一方、下流端が前記第1冷媒流出管に連通する第1分流路と、上流端が前記冷媒攪拌室における前記冷媒衝突面から離れた部分であってかつ前記第1分流路の上流端から離れた部分に連通する一方、下流端が前記第2冷媒流出管に連通する第2分流路とを備えていることを特徴とする。 The first invention is a refrigerant diversion device that divides the refrigerant flowing from the refrigerant supply pipe into the first and second refrigerant outflow pipes from a supply path to which the refrigerant supply pipe is connected and a downstream end of the supply path. A refrigerant stirring chamber that extends linearly and has a diameter smaller than that of the supply path, a refrigerant stirring chamber that communicates with the downstream end of the throttle and agitates the refrigerant that has flowed in from the throttle, and the downstream end of the throttle. One of the refrigerant collision surfaces that are arranged so as to face each other at a predetermined distance and collide with the refrigerant flowing out from the throttle portion, and the upstream end communicates with a portion of the refrigerant stirring chamber that is separated from the refrigerant collision surface. The downstream end is a portion away from the refrigerant collision surface in the refrigerant stirring chamber and the upstream end is separated from the upstream end of the first refrigerant flow path and the first branch flow path communicating with the first refrigerant outflow pipe. The downstream end is provided with a second branch flow path that communicates with the second refrigerant outflow pipe while communicating with the portion.
 この構成によれば、冷媒供給管を流れる冷媒は、供給路に流入した後、絞り部に流入する。この絞り部が直線状に延びているので、冷媒は絞り部を流れることで流速が高められるだけでなく、絞り部から流出するときの流出方向がコントロールされる。特に、流速の高い状態の冷媒の流出方向をコントロールすることで、流出方向のコントロール性が良好になる。そして、絞り部から冷媒攪拌室に流入した冷媒は、勢いよく冷媒衝突面に衝突するので、液相冷媒と気相冷媒とが冷媒攪拌室で良好に攪拌される。冷媒攪拌室の冷媒は、攪拌された後、第1分流路及び第2分流路を介してそれぞれ第1冷媒流出管及び第2冷媒流出管に分流する。 According to this configuration, the refrigerant flowing through the refrigerant supply pipe flows into the supply path and then into the throttle portion. Since the throttle portion extends linearly, the refrigerant not only increases the flow velocity by flowing through the throttle portion, but also controls the outflow direction when the refrigerant flows out from the throttle portion. In particular, by controlling the outflow direction of the refrigerant in a state where the flow velocity is high, the controllability of the outflow direction is improved. Then, the refrigerant flowing into the refrigerant stirring chamber from the throttle portion vigorously collides with the refrigerant collision surface, so that the liquid phase refrigerant and the vapor phase refrigerant are satisfactorily agitated in the refrigerant stirring chamber. After being agitated, the refrigerant in the refrigerant stirring chamber is divided into the first refrigerant outflow pipe and the second refrigerant outflow pipe via the first branch flow path and the second branch flow path, respectively.
 第2の発明は、前記冷媒衝突面は、前記絞り部の下流端部から当該絞り部の軸線の延長線上に配置され、前記第1分流路及び前記第2分流路の上流端は、前記冷媒攪拌室の壁面において前記絞り部の下流端部と前記冷媒衝突面との間に開口していることを特徴とする。 In the second invention, the refrigerant collision surface is arranged on an extension of the axis of the throttle portion from the downstream end portion of the throttle portion, and the first branch flow path and the upstream end of the second branch flow path are the refrigerant. The wall surface of the stirring chamber is characterized by having an opening between the downstream end of the throttle portion and the refrigerant collision surface.
 第3の発明は、前記第1分流路及び前記第2分流路の上流端は、前記絞り部の下流端部と前記冷媒衝突面との間の中央部よりも前記絞り部に近い側に開口していることを特徴とする。 In the third invention, the upstream ends of the first branch flow path and the second branch flow path are opened closer to the throttle portion than the central portion between the downstream end portion of the throttle portion and the refrigerant collision surface. It is characterized by doing.
 この構成によれば、第1分流路及び第2分流路の上流端が冷媒衝突面から離れることになるので、冷媒衝突面に衝突して十分に攪拌された状態の冷媒を第1分流路及び第2分流路の上流端に流入させることができる。 According to this configuration, the upstream ends of the first branch flow path and the second branch flow path are separated from the refrigerant collision surface, so that the refrigerant in a state of colliding with the refrigerant collision surface and sufficiently agitated is used in the first branch flow path and It can flow into the upstream end of the second branch flow path.
 第4の発明は、前記第1分流路及び前記第2分流路の上流端は、前記冷媒攪拌室の壁面において前記延長線まわりに互いに間隔をあけて配置されていることを特徴とする。 The fourth invention is characterized in that the upstream ends of the first branch flow path and the second branch flow path are arranged on the wall surface of the refrigerant stirring chamber so as to be spaced apart from each other around the extension line.
 この構成によれば、第1分流路の上流端と、第2分流路の上流端とを互いに離して配置することができるので、各々に対して十分に攪拌された状態の冷媒を流入させることができる。 According to this configuration, the upstream end of the first branch flow path and the upstream end of the second branch flow path can be arranged apart from each other, so that the refrigerant in a sufficiently agitated state can flow into each of them. Can be done.
 第5の発明は、前記供給路及び前記絞り部が設けられた第1分流器構成部材と、前記冷媒攪拌室、前記冷媒衝突面、前記第1分流路及び前記第2分流路が設けられた第2分流器構成部材とを備え、前記第1分流器構成部材は、内部に前記絞り部が設けられ、先端面に前記絞り部の下流端が開口する突出筒部を有し、前記第2分流器構成部材は、前記突出筒部が嵌合する嵌合孔を有し、前記冷媒攪拌室は、前記嵌合孔の奥側に連通するように設けられていることを特徴とする。 In the fifth invention, the first shunt component provided with the supply path and the throttle portion, the refrigerant stirring chamber, the refrigerant collision surface, the first shunt flow path and the second shunt flow path are provided. The first shunt component is provided with a second shunt component, the first shunt component is provided with the throttle portion inside, and has a protruding cylinder portion on the tip surface at which the downstream end of the throttle portion opens. The shunt component has a fitting hole into which the protruding cylinder portion is fitted, and the refrigerant stirring chamber is provided so as to communicate with the inner side of the fitting hole.
 この構成によれば、第1分流器構成部材と第2分流器構成部材とを一体化する際には、第1分流器構成部材の突出筒部を第2分流器構成部材の嵌合孔に嵌合させることにより、互いの相対的な位置決めを行った状態で一体化することができる。そして、第1分流器構成部材の突出筒部に絞り部を設け、第2分流器構成部材に嵌合孔に連通するように冷媒攪拌室が設けられているので、絞り部から流出した冷媒を冷媒攪拌室に流入させて攪拌することができる。 According to this configuration, when the first shunt component and the second shunt component are integrated, the protruding cylinder portion of the first shunt component is used as a fitting hole for the second shunt component. By fitting, they can be integrated in a state where they are positioned relative to each other. Then, a throttle portion is provided in the protruding cylinder portion of the first shunt component member, and a refrigerant stirring chamber is provided in the second shunt component member so as to communicate with the fitting hole, so that the refrigerant flowing out from the throttle portion can be discharged. It can be agitated by flowing into the refrigerant stirring chamber.
 第6の発明は、前記嵌合孔の径は、前記冷媒攪拌室の径よりも大きく設定されていることを特徴とする。 The sixth invention is characterized in that the diameter of the fitting hole is set to be larger than the diameter of the refrigerant stirring chamber.
 この構成によれば、第2分流器構成部材の嵌合孔の径を大きくすることで、第1分流器構成部材の突出筒部が大径であっても嵌合させることができる。これにより、第1分流器構成部材の強度及び嵌合時における冷媒分流器の強度を高めることができる。また、第2分流器構成部材の嵌合孔の径が大きく、冷媒攪拌室の径が小さくなるので、嵌合孔及び冷媒攪拌室の加工が容易になる。 According to this configuration, by increasing the diameter of the fitting hole of the second shunt component, even if the protruding cylinder portion of the first shunt component has a large diameter, it can be fitted. Thereby, the strength of the first shunt component and the strength of the refrigerant shunt at the time of fitting can be increased. Further, since the diameter of the fitting hole of the second shunt component member is large and the diameter of the refrigerant stirring chamber is small, the fitting hole and the refrigerant stirring chamber can be easily processed.
 第7の発明は、前記供給路は、前記絞り部の軸線の延長線と交差する方向に延びていることを特徴とする。 The seventh invention is characterized in that the supply path extends in a direction intersecting an extension line of the axis of the throttle portion.
 すなわち、供給路の延びる方向が、冷媒供給管の取り回し等の影響によって絞り部の軸線の延長線と交差する方向となる場合が考えられるが、この発明では、絞り部が直線状に延びているので、供給路の延びる方向がどのような方向であっても、絞り部によって流出方向をコントロールして冷媒衝突面に狙い通りに衝突させることができる。 That is, it is conceivable that the extension direction of the supply path intersects the extension line of the axis of the throttle portion due to the influence of the routing of the refrigerant supply pipe, etc., but in the present invention, the throttle portion extends linearly. Therefore, regardless of the extending direction of the supply path, the outflow direction can be controlled by the throttle portion to cause the refrigerant to collide with the refrigerant collision surface as intended.
 第8の発明は、前記供給路は、前記絞り部の軸線の延長線と略同軸上に延びていることを特徴とする。 The eighth invention is characterized in that the supply path extends substantially coaxially with an extension line of the axis of the throttle portion.
 この構成によれば、供給路から絞り部に至る冷媒の流れがスムーズになる。 According to this configuration, the flow of refrigerant from the supply path to the throttle section becomes smooth.
 第9の発明は、前記冷媒衝突面は、円形状とされ、前記絞り部の下流端部は、当該絞り部の軸線の延長線が前記冷媒衝突面の中心を通るように配置されていることを特徴とする。 In the ninth invention, the refrigerant collision surface has a circular shape, and the downstream end of the throttle portion is arranged so that an extension of the axis of the throttle portion passes through the center of the refrigerant collision surface. It is characterized by.
 この構成によれば、絞り部から流出した冷媒が冷媒衝突面の中心に衝突するようになるので、流れが偏り難くなり、液相冷媒と気相冷媒とを良好に攪拌することができる。 According to this configuration, the refrigerant flowing out from the throttle portion collides with the center of the refrigerant collision surface, so that the flow is less likely to be biased, and the liquid phase refrigerant and the gas phase refrigerant can be satisfactorily agitated.
 第10の発明は、前記冷媒衝突面と前記絞り部の軸線の延長線とが略直交していることを特徴とする。 The tenth invention is characterized in that the refrigerant collision surface and the extension line of the axis of the throttle portion are substantially orthogonal to each other.
 この構成によれば、冷媒の流れが冷媒衝突面に対して略直交するので、冷媒衝突面に衝突した冷媒の流れの分流性を向上させることができる。 According to this configuration, since the refrigerant flow is substantially orthogonal to the refrigerant collision surface, it is possible to improve the diversion property of the refrigerant flow that collides with the refrigerant collision surface.
 本発明によれば、冷媒供給管が接続される供給路の下流端部から直線状に延びる絞り部から流出した冷媒を冷媒攪拌室の冷媒衝突面に衝突させて液相冷媒と気相冷媒とを良好に混合させることができる。そして、この冷媒攪拌室に第1分流路及び第2分流路を連通させたので、絞り部の上流に位置する配管の形状に依らず、狙い通りの冷媒分流を可能にすることができる。 According to the present invention, the refrigerant flowing out from the throttle portion extending linearly from the downstream end of the supply path to which the refrigerant supply pipe is connected collides with the refrigerant collision surface of the refrigerant stirring chamber to form a liquid phase refrigerant and a gas phase refrigerant. Can be mixed well. Since the first branch flow path and the second branch flow path are communicated with the refrigerant stirring chamber, it is possible to enable the desired refrigerant flow regardless of the shape of the pipe located upstream of the throttle portion.
本発明の実施形態1に係る冷媒分流器を備えたバッテリ冷却装置の回路構成図である。It is a circuit block diagram of the battery cooling device provided with the refrigerant shunt which concerns on Embodiment 1 of this invention. 冷媒分流器の断面図である。It is sectional drawing of the refrigerant shunt. 第1分流器構成部材を第2分流器構成部材に固定する前の状態を示す断面図である。It is sectional drawing which shows the state before fixing the 1st shunt component to the 2nd shunt component. 第2分流器構成部材の平面図である。It is a top view of the 2nd shunt component. 第2分流器構成部材の側面図である。It is a side view of the 2nd shunt component. 第2分流器構成部材の背面図である。It is a rear view of the 2nd shunt component. 図6におけるVII-VII線断面図である。FIG. 6 is a cross-sectional view taken along the line VII-VII in FIG. 本発明の実施形態2に係る図2相当図である。It is a figure corresponding to FIG. 2 which concerns on Embodiment 2 of this invention. 図8におけるIX-IX線断面図である。FIG. 8 is a cross-sectional view taken along the line IX-IX in FIG.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following description of the preferred embodiment is essentially merely an example and is not intended to limit the present invention, its application or its use.
 (実施形態1)
 図1は、本発明の実施形態1に係る冷媒分流器1を備えたバッテリ冷却装置100の回路構成図である。バッテリ冷却装置100は、例えば、電気自動車やハイブリッド自動車(プラグインタイプを含む)等に搭載されるバッテリ200を冷却するための装置である。バッテリ200は、図示しないが自動車の走行用モータに電力を供給するためのものである。ハイブリッド自動車の場合、走行用モータの回生制御やエンジンによる発電機の駆動によってバッテリ200を充電することができる。電気自動車及びプラグインタイプのハイブリッド自動車の場合、図示しない商用電源等からバッテリ200を充電したり、走行用モータの回生制御によってバッテリ200を充電することができる。バッテリ200は充電時や放電時に温度上昇する。この温度上昇を抑制するためにバッテリ冷却装置100によってバッテリ200を冷却することができるようになっている。
(Embodiment 1)
FIG. 1 is a circuit configuration diagram of a battery cooling device 100 provided with a refrigerant shunt 1 according to a first embodiment of the present invention. The battery cooling device 100 is a device for cooling the battery 200 mounted on, for example, an electric vehicle, a hybrid vehicle (including a plug-in type), and the like. Although not shown, the battery 200 is for supplying electric power to a traveling motor of an automobile. In the case of a hybrid vehicle, the battery 200 can be charged by regenerative control of a traveling motor or driving a generator by an engine. In the case of an electric vehicle and a plug-in type hybrid vehicle, the battery 200 can be charged from a commercial power source (not shown) or the like, or the battery 200 can be charged by regenerative control of a traveling motor. The temperature of the battery 200 rises during charging and discharging. The battery 200 can be cooled by the battery cooling device 100 in order to suppress this temperature rise.
 (バッテリ冷却装置100の構成)
 バッテリ冷却装置100は、圧縮機101と、コンデンサ102と、レシーバタンク103と、バッテリクーラ用膨張弁104と、バッテリクーラ105と、アキュムレータ106とを少なくとも備えている。この実施形態では、バッテリ冷却装置100が車室内の空調も行えるように構成されており、従って、バッテリ冷却装置100は、空調用空気を冷却する冷却用熱交換器としての蒸発器107と、空調用膨張弁108とを備えている。
(Configuration of Battery Cooling Device 100)
The battery cooling device 100 includes at least a compressor 101, a condenser 102, a receiver tank 103, a battery cooler expansion valve 104, a battery cooler 105, and an accumulator 106. In this embodiment, the battery cooling device 100 is configured to also perform air conditioning in the vehicle interior. Therefore, the battery cooling device 100 includes an evaporator 107 as a cooling heat exchanger for cooling the air conditioning air and air conditioning. It is provided with an expansion valve 108 for use.
 圧縮機101は、電動コンプレッサで構成されている。圧縮機101から吐出された高温高圧冷媒はコンデンサ102に流入する。コンデンサ102には、ファン102aによって外部空気が送風されるようになっている。コンデンサ102を通過した冷媒はレシーバタンク103に流入した後、バイパス配管100aと、バッテリクーラ側配管100bとの一方または両方に流れるようになっている。 The compressor 101 is composed of an electric compressor. The high-temperature and high-pressure refrigerant discharged from the compressor 101 flows into the condenser 102. External air is blown to the condenser 102 by a fan 102a. After flowing into the receiver tank 103, the refrigerant that has passed through the condenser 102 flows into one or both of the bypass pipe 100a and the battery cooler side pipe 100b.
 バッテリクーラ側配管100bには、バッテリクーラ側仕切弁100cが設けられている。このバッテリクーラ側仕切弁100cは、バッテリクーラ側配管100bを開閉するための弁である。バッテリクーラ側配管100bにおけるバッテリクーラ側仕切弁100cよりも下流側には、バッテリクーラ用膨張弁104が設けられている。バッテリクーラ用膨張弁104を通過した冷媒は減圧される。バッテリクーラ側配管100bにおけるバッテリクーラ用膨張弁104よりも下流側には、本発明に係る分媒分流器1が設けられている。 The battery cooler side piping 100b is provided with a battery cooler side sluice valve 100c. The battery cooler side sluice valve 100c is a valve for opening and closing the battery cooler side pipe 100b. A battery cooler expansion valve 104 is provided on the downstream side of the battery cooler side sluice valve 100c in the battery cooler side pipe 100b. The refrigerant that has passed through the expansion valve 104 for the battery cooler is depressurized. The shunt 1 according to the present invention is provided on the downstream side of the battery cooler expansion valve 104 in the battery cooler side pipe 100b.
 分媒分流器1は、バッテリクーラ側配管(冷媒供給管)100bから流入した冷媒を第1冷媒流出管100f及び第2冷媒流出管100gに分流するためのものである。すなわち、バッテリクーラ105は、バッテリ200を冷却するための冷熱を当該バッテリ200に供給する熱交換器(蒸発器)で構成されているが、このバッテリクーラ105には、図示しないが複数のチューブが設けられている。各チューブに冷媒を分流させるために分媒分流器1が設けられている。本例では、冷媒を2つに分流する場合について説明するが、冷媒は3つ以上に分流することもできる。また、分媒分流器1は、第1冷媒流出管100f及び第2冷媒流出管100gに冷媒を均等に分流させてもよいし、一方への分流量が他方への分流量に比べて多くなるように分流させてもよい。 The shunt shunt 1 is for shunting the refrigerant flowing from the battery cooler side pipe (refrigerant supply pipe) 100b into the first refrigerant outflow pipe 100f and the second refrigerant outflow pipe 100g. That is, the battery cooler 105 is composed of a heat exchanger (evaporator) that supplies cold heat for cooling the battery 200 to the battery 200. The battery cooler 105 has a plurality of tubes (not shown). It is provided. A shunt shunt 1 is provided in each tube to shunt the refrigerant. In this example, the case where the refrigerant is divided into two will be described, but the refrigerant can be divided into three or more. Further, in the shunt shunt 1, the refrigerant may be evenly diverted into the first refrigerant outflow pipe 100f and the second refrigerant outflow pipe 100g, and the shunt flow rate to one side is larger than the shunt flow rate to the other side. You may divide the flow as follows.
 バッテリクーラ側配管100b、第1冷媒流出管100f及び第2冷媒流出管100gは全て同径であってもよいし、径が異なっていてもよい。また、バッテリクーラ側配管100b、第1冷媒流出管100f及び第2冷媒流出管100gは、例えばアルミニウム合金製の配管部材で構成されている。さらに、バッテリクーラ側配管100b、第1冷媒流出管100f及び第2冷媒流出管100gの断面は略円形とされている。 The battery cooler side pipe 100b, the first refrigerant outflow pipe 100f, and the second refrigerant outflow pipe 100g may all have the same diameter or may have different diameters. The battery cooler side pipe 100b, the first refrigerant outflow pipe 100f, and the second refrigerant outflow pipe 100g are made of, for example, aluminum alloy piping members. Further, the cross section of the battery cooler side pipe 100b, the first refrigerant outflow pipe 100f, and the second refrigerant outflow pipe 100g is substantially circular.
 バイパス配管100aには、バイパス側仕切弁100dが設けられている。このバイパス側仕切弁100dは、バイパス配管100aを開閉するための弁である。バイパス配管100aは蒸発器107に接続されている。バイパス配管100aにおけるバイパス側仕切弁100dよりも下流側には、空調用膨張弁108が設けられている。蒸発器107から流出した冷媒は、アキューレータ106に流入した後、圧縮機101に吸入される。尚、蒸発器107には、ブロワ120によって空調用空気が送風されるようになっている。空調用空気が蒸発器107により冷却された後、車室に供給される。 The bypass pipe 100a is provided with a bypass side sluice valve 100d. The bypass side sluice valve 100d is a valve for opening and closing the bypass pipe 100a. The bypass pipe 100a is connected to the evaporator 107. An air conditioning expansion valve 108 is provided on the downstream side of the bypass side sluice valve 100d in the bypass pipe 100a. The refrigerant flowing out of the evaporator 107 flows into the accumulator 106 and then is sucked into the compressor 101. Air conditioning air is blown to the evaporator 107 by the blower 120. After the air conditioning air is cooled by the evaporator 107, it is supplied to the vehicle interior.
 したがって、バッテリクーラ側仕切弁100c及びバイパス側仕切弁100dの開閉動作により、冷媒をバッテリクーラ105のみに流すモードと、冷媒を蒸発器107にのみ流す動作と、冷媒をバッテリクーラ105と蒸発器107の両方に流すモードとのうち、任意のモードに切り替えることができる。 Therefore, by opening and closing the battery cooler side sluice valve 100c and the bypass side sluice valve 100d, the mode in which the refrigerant flows only to the battery cooler 105, the operation of flowing the refrigerant only to the evaporator 107, and the operation of flowing the refrigerant only to the battery cooler 105 and the evaporator 107 You can switch to any mode among the modes that flow to both.
 (冷媒分流器1の構成)
 図2及び図3に示すように、冷媒分流器1は、第1分流器構成部材10と、第2分流器構成部材20とを備えている。第1分流器構成部材10及び第2分流器構成部材20は、例えばアルミニウム合金製のブロック材等で構成されている。第1分流器構成部材10は、基部11と、基部11から突出する突出筒部12とを備えている。突出筒部12の断面形状は円形である。基部11及び突出筒部12は一体成形されていてもよいし、基部11及び突出筒部12を別部材で形成した後、組み合わせて一体化してもよい。
(Structure of Refrigerant Shunt 1)
As shown in FIGS. 2 and 3, the refrigerant shunt 1 includes a first shunt component 10 and a second shunt component 20. The first shunt component 10 and the second shunt component 20 are made of, for example, a block material made of an aluminum alloy. The first shunt component 10 includes a base 11 and a protruding tubular portion 12 projecting from the base 11. The cross-sectional shape of the protruding cylinder portion 12 is circular. The base portion 11 and the protruding cylinder portion 12 may be integrally molded, or the base portion 11 and the protruding cylinder portion 12 may be formed of separate members and then combined and integrated.
 基部11には、バッテリクーラ側配管100bの下流端部が差し込まれた状態で接続される供給側配管接続孔11aが形成されている。供給側配管接続孔11aの断面形状は円形である。バッテリクーラ側配管100bの外周面は、供給側配管接続孔11aの内周面に対して全周にわたってろう付けされている。 The base portion 11 is formed with a supply-side pipe connection hole 11a to be connected with the downstream end of the battery cooler-side pipe 100b inserted. The cross-sectional shape of the supply-side pipe connection hole 11a is circular. The outer peripheral surface of the battery cooler side pipe 100b is brazed to the inner peripheral surface of the supply side pipe connection hole 11a over the entire circumference.
 基部11には、供給側配管接続孔11aの奥側(冷媒流れ方向下流側)に連通する供給路11bが設けられている。供給側配管接続孔11aは基部11の上面に開口している。供給路11bの断面形状は供給側配管接続孔11aの断面形状よりも小さい円形とされている。供給路11bはまっすぐに延びており、供給路11bの軸線と、供給側配管接続孔11aの軸線とは一致している。供給路11bと供給側配管接続孔11aとの境界部分には段部11cが形成されている。バッテリクーラ側配管100bの下流端部は供給側配管接続孔11aに差し込まれた状態で段部11cに当接することによって差し込み深さが設定されている。バッテリクーラ側配管100bは、供給側配管接続孔11aに差し込まれた状態で供給路11bと接続される。 The base 11 is provided with a supply path 11b that communicates with the back side (downstream side in the refrigerant flow direction) of the supply side pipe connection hole 11a. The supply-side pipe connection hole 11a is open on the upper surface of the base 11. The cross-sectional shape of the supply path 11b is a circle smaller than the cross-sectional shape of the supply-side pipe connection hole 11a. The supply path 11b extends straight, and the axis of the supply path 11b coincides with the axis of the supply-side pipe connection hole 11a. A step portion 11c is formed at a boundary portion between the supply path 11b and the supply side pipe connection hole 11a. The insertion depth is set by contacting the downstream end of the battery cooler side pipe 100b with the step portion 11c while being inserted into the supply side pipe connection hole 11a. The battery cooler side pipe 100b is connected to the supply path 11b in a state of being inserted into the supply side pipe connection hole 11a.
 供給路11bの下流端部は、テーパ面11dで構成されている。テーパ面11dは、冷媒流れ方向の下流側へ向かって縮径するように形成されている。テーパ面11dの軸線と、供給路11bの軸線とは一致している。 The downstream end of the supply path 11b is composed of a tapered surface 11d. The tapered surface 11d is formed so as to reduce its diameter toward the downstream side in the refrigerant flow direction. The axis of the tapered surface 11d and the axis of the supply path 11b coincide with each other.
 第1分流器構成部材10には、供給路11bの下流端部から直線状に延び、供給路11bにおけるテーパ面11d以外の部分よりも小径とされた絞り部12aが設けられている。具体的には、第1分流器構成部材10の突出筒部12の内部に絞り部12aが設けられている。絞り部12aの下流端は、突出筒部12の先端面においてその中心部に開口している。絞り部12aの断面形状は円形であり、突出筒部12の先端面に開口する絞り部12aの下流端も同様に円形である。絞り部12aの径は、その上流端から下流端まで等しく設定されている。絞り部12aの長さは、供給路11bのテーパ面11dを含んだ長さよりも長く設定されている。これにより、絞り部12aは、同一内径が所定長さにわたって連続する形状になる。 The first shunt component 10 is provided with a throttle portion 12a extending linearly from the downstream end portion of the supply passage 11b and having a diameter smaller than that of the portion other than the tapered surface 11d in the supply passage 11b. Specifically, a throttle portion 12a is provided inside the protruding cylinder portion 12 of the first shunt component 10. The downstream end of the throttle portion 12a is open to the central portion of the tip surface of the protruding cylinder portion 12. The cross-sectional shape of the drawing portion 12a is circular, and the downstream end of the drawing portion 12a that opens to the tip surface of the protruding cylinder portion 12 is also circular. The diameter of the throttle portion 12a is set equally from the upstream end to the downstream end thereof. The length of the throttle portion 12a is set to be longer than the length including the tapered surface 11d of the supply path 11b. As a result, the throttle portion 12a has a shape in which the same inner diameter is continuous over a predetermined length.
 絞り部12aの長さ寸法と、絞り部12aの径とを比較すると、長さ寸法の方が長くなっている。絞り部12aの長さは、例えば7mm以上に設定することができ、好ましくは10mm以上である。また、絞り部12aの内径は、例えば単位面積当たりの冷媒流量が1.0~4.0g/s・mmの範囲内となるように設定することができる。この範囲に設定することで、後述する冷媒攪拌室での液相冷媒と気相冷媒との混合が良好になるとともに、圧力損失を低減することができる。尚、絞り部12aの一部は基部11の内部に形成されていてもよい。 Comparing the length dimension of the drawing portion 12a with the diameter of the drawing portion 12a, the length dimension is longer. The length of the throttle portion 12a can be set to, for example, 7 mm or more, preferably 10 mm or more. Further, the inner diameter of the throttle portion 12a can be set so that, for example, the refrigerant flow rate per unit area is in the range of 1.0 to 4.0 g / s · mm 2. By setting this range, the mixture of the liquid-phase refrigerant and the gas-phase refrigerant in the refrigerant stirring chamber, which will be described later, can be improved and the pressure loss can be reduced. A part of the drawing portion 12a may be formed inside the base portion 11.
 突出筒部12の外周面には、環状溝12bが形成されている。環状溝12bには、ゴム等からなるシール材としてのOリング13が嵌め込まれている。 An annular groove 12b is formed on the outer peripheral surface of the protruding cylinder portion 12. An O-ring 13 as a sealing material made of rubber or the like is fitted in the annular groove 12b.
 第2分流器構成部材20は、突出筒部12が嵌合する嵌合孔21を有している。嵌合孔21は、第2分流器構成部材20の上面に開口しており、その断面形状は円形である。嵌合孔21の長さは、突出筒部12の突出長さと略等しく設定されている。従って、突出筒部12を嵌合孔21に差し込んで嵌合させると、第1分流器構成部材10の基部11の下面が、第2分流器構成部材20の上面に当接する。この状態で図示しないがボルト等によって第1分流器構成部材10と第2分流器構成部材20とを締結することができるようになっている。図4には、そのボルトが螺合するねじ孔20aを示している。突出筒部12を嵌合孔21に差し込むと、Oリング13によって両者の間がシールされる。 The second shunt component 20 has a fitting hole 21 into which the protruding cylinder portion 12 is fitted. The fitting hole 21 is opened on the upper surface of the second shunt component 20, and its cross-sectional shape is circular. The length of the fitting hole 21 is set to be substantially equal to the protruding length of the protruding cylinder portion 12. Therefore, when the protruding cylinder portion 12 is inserted into the fitting hole 21 and fitted, the lower surface of the base portion 11 of the first shunt constituent member 10 comes into contact with the upper surface of the second shunt constituent member 20. In this state, although not shown, the first shunt component 10 and the second shunt component 20 can be fastened with bolts or the like. FIG. 4 shows a screw hole 20a into which the bolt is screwed. When the protruding cylinder portion 12 is inserted into the fitting hole 21, the O-ring 13 seals between the two.
 第2分流器構成部材20には、嵌合孔21の奥側に、冷媒攪拌室22が設けられている。冷媒攪拌室22は、嵌合孔21の奥側に連通している。冷媒攪拌室22の断面形状は嵌合孔21の断面形状よりも小さな円形である。従って、嵌合孔21の径は、冷媒攪拌室22の径よりも大きく設定されており、嵌合孔21と冷媒攪拌室22との境界部分に段部20bが形成されることになる。段部20bはテーパ面で構成することができる。また、図4に示すように、冷媒攪拌室22の断面形状が嵌合孔21の断面形状よりも小さいので、冷媒攪拌室22及び嵌合孔21を形成するときに、例えば回転工具を用いて冷媒攪拌室22を先に形成し、嵌合孔21を後に形成することや、嵌合孔21を先に形成し、冷媒攪拌室22を後に形成することができる。 The second shunt component 20 is provided with a refrigerant stirring chamber 22 behind the fitting hole 21. The refrigerant stirring chamber 22 communicates with the inner side of the fitting hole 21. The cross-sectional shape of the refrigerant stirring chamber 22 is a circle smaller than the cross-sectional shape of the fitting hole 21. Therefore, the diameter of the fitting hole 21 is set to be larger than the diameter of the refrigerant stirring chamber 22, and the step portion 20b is formed at the boundary portion between the fitting hole 21 and the refrigerant stirring chamber 22. The step portion 20b can be formed of a tapered surface. Further, as shown in FIG. 4, since the cross-sectional shape of the refrigerant stirring chamber 22 is smaller than the cross-sectional shape of the fitting hole 21, when forming the refrigerant stirring chamber 22 and the fitting hole 21, for example, a rotary tool is used. The refrigerant stirring chamber 22 can be formed first and the fitting hole 21 can be formed later, or the fitting hole 21 can be formed first and the refrigerant stirring chamber 22 can be formed later.
 第1分流器構成部材10を第2分流器構成部材20に固定することで、絞り部12aの下流端部と、冷媒攪拌室22とが連通する。冷媒攪拌室22は、絞り部12aから流入した冷媒を攪拌するための空間を形成している。冷媒攪拌室22の軸線方向の長さは、絞り部12aの長さと同程度に設定することができるが、絞り部12aの長さより長くてもよいし、短くてもよい。具体的には、図2に示すように、冷媒攪拌室22の軸線方向の長さBは、10mm以上、好ましくは15mm以上に設定することができる。 By fixing the first shunt component 10 to the second shunt component 20, the downstream end of the throttle portion 12a and the refrigerant stirring chamber 22 communicate with each other. The refrigerant stirring chamber 22 forms a space for stirring the refrigerant flowing in from the throttle portion 12a. The length of the refrigerant stirring chamber 22 in the axial direction can be set to be about the same as the length of the throttle portion 12a, but may be longer or shorter than the length of the throttle portion 12a. Specifically, as shown in FIG. 2, the axial length B of the refrigerant stirring chamber 22 can be set to 10 mm or more, preferably 15 mm or more.
 冷媒攪拌室22の径は、絞り部12aの径よりも十分に大きく設定されており、絞り部12aから流入した冷媒を攪拌させるのに必要十分な空間を冷媒攪拌室22内に確保できるようになっている。絞り部12aから流入した冷媒は、バッテリクーラ用膨張弁104を流通しているので、液相冷媒と気相冷媒とが混合した気液二層冷媒となっていることがある。この気液二層冷媒を冷媒攪拌室22で攪拌することで、液相冷媒と気相冷媒とを混合することができる。 The diameter of the refrigerant stirring chamber 22 is set sufficiently larger than the diameter of the throttle portion 12a so that a sufficient space necessary for stirring the refrigerant flowing in from the throttle portion 12a can be secured in the refrigerant stirring chamber 22. It has become. Since the refrigerant flowing in from the throttle portion 12a flows through the expansion valve 104 for the battery cooler, it may be a gas-liquid two-layer refrigerant in which a liquid-phase refrigerant and a gas-phase refrigerant are mixed. By stirring the gas-liquid two-layer refrigerant in the refrigerant stirring chamber 22, the liquid-phase refrigerant and the gas-phase refrigerant can be mixed.
 第2分流器構成部材20には、絞り部12aから流出した冷媒が衝突する冷媒衝突面24が設けられている。冷媒衝突面24は、絞り部12aの下流端部と所定の間隔をあけて対向するように配置されている。冷媒衝突面24は、円形状とされている。冷媒衝突面24は、絞り部12aの下流端部から当該絞り部12aの軸線の延長線上に配置されている。絞り部12aの下流端部は、当該絞り部12aの軸線の延長線が冷媒衝突面24の中心を通るように配置されている。冷媒衝突面24は、平坦面で構成されていてもよいし、湾曲面で構成されていてもよい。冷媒衝突面24が平坦面である場合、冷媒衝突面24と絞り部12aの軸線の延長線とが略直交している。 The second shunt component 20 is provided with a refrigerant collision surface 24 on which the refrigerant flowing out from the throttle portion 12a collides. The refrigerant collision surface 24 is arranged so as to face the downstream end portion of the throttle portion 12a at a predetermined distance. The refrigerant collision surface 24 has a circular shape. The refrigerant collision surface 24 is arranged on an extension of the axis of the throttle portion 12a from the downstream end portion of the throttle portion 12a. The downstream end of the throttle portion 12a is arranged so that an extension of the axis of the throttle portion 12a passes through the center of the refrigerant collision surface 24. The refrigerant collision surface 24 may be formed of a flat surface or a curved surface. When the refrigerant collision surface 24 is a flat surface, the refrigerant collision surface 24 and the extension line of the axis of the throttle portion 12a are substantially orthogonal to each other.
 第2分流器構成部材20には、第1分流路25と、第2分流路26とが設けられている。第1分流路25及び第2分流路26の上流端は、それぞれ、冷媒攪拌室22における冷媒衝突面24から離れた部分に連通している。すなわち、第1分流路25及び第2分流路26の上流端は、冷媒攪拌室22の壁面における絞り部12aの下流端部と冷媒衝突面24との間に開口している。より具体的には、第1分流路25及び第2分流路26の上流端は、絞り部12aの下流端部と冷媒衝突面24との間の中央部よりも絞り部12aに近い側に開口している。これにより、冷媒衝突面24と、第1分流路25及び第2分流路26の上流端とを離すことができる。図2に示すように、冷媒衝突面24と、第1分流路25及び第2分流路26の上流端の中心部との離間距離Aは、9mm以上13.5mm以下に設定することができる。尚、第1分流路25及び第2分流路26の上流端は、絞り部12aの下流端部と冷媒衝突面24との間の中央部に開口していてもよいし、中央部よりも冷媒衝突面24に近い側に開口していてもよい。 The second shunt component 20 is provided with a first shunt 25 and a second shunt 26. The upstream ends of the first branch flow path 25 and the second branch flow path 26 communicate with each other in the refrigerant stirring chamber 22 away from the refrigerant collision surface 24. That is, the upstream ends of the first branch flow path 25 and the second branch flow path 26 are open between the downstream end portion of the throttle portion 12a on the wall surface of the refrigerant stirring chamber 22 and the refrigerant collision surface 24. More specifically, the upstream ends of the first branch flow path 25 and the second branch flow path 26 are opened closer to the throttle portion 12a than the central portion between the downstream end portion of the throttle portion 12a and the refrigerant collision surface 24. doing. As a result, the refrigerant collision surface 24 can be separated from the upstream ends of the first branch flow path 25 and the second branch flow path 26. As shown in FIG. 2, the separation distance A between the refrigerant collision surface 24 and the central portion of the upstream end of the first branch flow path 25 and the second branch flow path 26 can be set to 9 mm or more and 13.5 mm or less. The upstream ends of the first branch flow path 25 and the second branch flow path 26 may be opened in the central portion between the downstream end portion of the throttle portion 12a and the refrigerant collision surface 24, and the refrigerant may be opened more than the central portion. It may be opened on the side closer to the collision surface 24.
 第1分流路25及び第2分流路26の上流端は、冷媒攪拌室22の壁面において絞り部12aの軸線の延長線まわりに互いに間隔をあけて配置されている。つまり、第1分流路25の上流端と、第2分流路26の上流端とは、冷媒攪拌室22の壁面の周方向に互いに間隔あけて配置されており、周方向に所定距離だけ離間している。図7に示すように、第1分流路25及び第2分流路26は、その上流端同士が最も接近しており、下流端に近づくにつれて互いの離間距離が長くなっている。 The upstream ends of the first branch flow path 25 and the second branch flow path 26 are arranged on the wall surface of the refrigerant stirring chamber 22 at intervals around the extension line of the axis of the throttle portion 12a. That is, the upstream end of the first branch flow path 25 and the upstream end of the second branch flow path 26 are arranged at intervals in the circumferential direction of the wall surface of the refrigerant stirring chamber 22, and are separated by a predetermined distance in the circumferential direction. ing. As shown in FIG. 7, the upstream ends of the first branch flow path 25 and the second branch flow path 26 are closest to each other, and the distance between them becomes longer as they approach the downstream end.
 第2分流器構成部材20には、第1冷媒流出管100fの上流端部が差し込まれた状態で接続される第1流出側配管接続孔20cが形成されている。第1流出側配管接続孔20cの断面形状は円形である。第1流出側配管接続孔20cの軸線と、第1分流路25の軸線とは互いに交差する位置関係となっている。また、第1分流路25の下流端は、第1流出側配管接続孔20cの軸線から径方向に離れた部分と連通している。第1冷媒流出管100fの外周面は、第1流出側配管接続孔20cの内周面に対して全周にわたってろう付けされている。これにより、第1分流路25の下流端と、第1冷媒流出管100fの上流端部とが連通する。 The second shunt component 20 is formed with a first outflow side pipe connection hole 20c that is connected with the upstream end of the first refrigerant outflow pipe 100f inserted. The cross-sectional shape of the first outflow side pipe connection hole 20c is circular. The axis of the first outflow side pipe connection hole 20c and the axis of the first branch flow path 25 intersect each other. Further, the downstream end of the first branch flow path 25 communicates with a portion radially away from the axis of the first outflow side pipe connection hole 20c. The outer peripheral surface of the first refrigerant outflow pipe 100f is brazed to the inner peripheral surface of the first outflow side pipe connection hole 20c over the entire circumference. As a result, the downstream end of the first branch flow path 25 and the upstream end of the first refrigerant outflow pipe 100f communicate with each other.
 また、第2分流器構成部材20には、第2冷媒流出管100gの上流端部が差し込まれた状態で接続される第2流出側配管接続孔20dが形成されている。第2流出側配管接続孔20dの断面形状は円形である。第2流出側配管接続孔20dの軸線と、第2分流路26の軸線とは互いに交差する位置関係となっている。また、第2分流路26の下流端は、第2流出側配管接続孔20dの軸線から径方向に離れた部分と連通している。第2冷媒流出管100gの外周面は、第2流出側配管接続孔20dの内周面に対して全周にわたってろう付けされている。これにより、第2分流路26の下流端と、第2冷媒流出管100gの上流端部とが連通する。 Further, the second shunt component 20 is formed with a second outflow side pipe connection hole 20d to be connected with the upstream end of the second refrigerant outflow pipe 100 g inserted. The cross-sectional shape of the second outflow side pipe connection hole 20d is circular. The axis of the second outflow side pipe connection hole 20d and the axis of the second branch flow path 26 intersect each other. Further, the downstream end of the second branch flow path 26 communicates with a portion radially separated from the axis of the second outflow side pipe connection hole 20d. The outer peripheral surface of the second refrigerant outflow pipe 100 g is brazed to the inner peripheral surface of the second outflow side pipe connection hole 20d over the entire circumference. As a result, the downstream end of the second branch flow path 26 and the upstream end of the second refrigerant outflow pipe 100 g communicate with each other.
 (実施形態の作用効果)
 したがって、図3に示すように、気液二層冷媒がバッテリクーラ側配管100bから供給路11bに流入すると、気液二層冷媒を絞り部12aに流入させることができる。この絞り部12aが直線状に延びていて所定の長さを有しているので、冷媒は絞り部12aを流れることで流速が高められるだけでなく、絞り部12aから流出するときの流出方向がコントロールされる。特に、流速の高い状態の冷媒の流出方向をコントロールすることで、流出方向のコントロール性が良好になる。そして、絞り部12aから冷媒攪拌室22に流入した冷媒は、勢いよく冷媒衝突面24に衝突するので、液相冷媒と気相冷媒とが冷媒攪拌室22で良好に攪拌される。攪拌された後、冷媒攪拌室22の冷媒は、第1分流路25及び第2分流路26を介してそれぞれ第1冷媒流出管100f及び第2冷媒流出管100gに均一に分流する。
(Action and effect of the embodiment)
Therefore, as shown in FIG. 3, when the gas-liquid two-layer refrigerant flows into the supply path 11b from the battery cooler side pipe 100b, the gas-liquid two-layer refrigerant can flow into the throttle portion 12a. Since the throttle portion 12a extends linearly and has a predetermined length, not only the flow velocity of the refrigerant is increased by flowing through the throttle portion 12a, but also the outflow direction when the refrigerant flows out from the throttle portion 12a is Be controlled. In particular, by controlling the outflow direction of the refrigerant in a state where the flow velocity is high, the controllability of the outflow direction is improved. Then, the refrigerant flowing into the refrigerant stirring chamber 22 from the throttle portion 12a vigorously collides with the refrigerant collision surface 24, so that the liquid phase refrigerant and the gas phase refrigerant are satisfactorily agitated in the refrigerant stirring chamber 22. After being agitated, the refrigerant in the refrigerant stirring chamber 22 is uniformly divided into the first refrigerant outflow pipe 100f and the second refrigerant outflow pipe 100g via the first branch flow path 25 and the second branch flow path 26, respectively.
 また、冷媒分流器1の直上流に位置する配管が屈曲している場合には、冷媒分流器1に流入する冷媒の流速分布に偏りが発生するが、この実施形態では、絞り部12aが直線状であるため、絞り部12aの内部を流れる間に冷媒の流速分布の偏りを小さくすることができる。これにより、冷媒分流器1の直上流に位置する配管の形状に依らず、冷媒の分流を均一化することができる。 Further, when the pipe located immediately upstream of the refrigerant shunt 1 is bent, the flow velocity distribution of the refrigerant flowing into the refrigerant shunt 1 is biased, but in this embodiment, the throttle portion 12a is straight. Since it has a shape, it is possible to reduce the deviation of the flow velocity distribution of the refrigerant while flowing inside the throttle portion 12a. As a result, the refrigerant shunt can be made uniform regardless of the shape of the pipe located immediately upstream of the refrigerant shunt 1.
 (実施形態2)
 図8は、本発明の実施形態2に係るものである。実施形態2は、冷媒を4方向に分流する点と、バッテリクーラ側配管100b及び絞り部12aの軸線方向が互いに交差する位置関係になっている点とで実施形態1のものと異なっている。以下、実施形態1と同じ部分には同じ符号を付して説明を省略し、異なる部分について詳細に説明する。
(Embodiment 2)
FIG. 8 relates to the second embodiment of the present invention. The second embodiment is different from that of the first embodiment in that the refrigerant is divided in four directions and the axial directions of the battery cooler side pipe 100b and the throttle portion 12a intersect each other. Hereinafter, the same parts as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the different parts will be described in detail.
 実施形態2では、供給路11bが絞り部12aの軸線の延長線と交差する方向に延びている。すなわち、図8に示すように、供給路11bは、水平方向に延びるように形成される一方、絞り部12aは上下方向に延びるように形成されている。これにより、供給路11bの延びる方向と、絞り部12aの軸線とが略直交する位置関係になる。 In the second embodiment, the supply path 11b extends in a direction intersecting the extension line of the axis of the throttle portion 12a. That is, as shown in FIG. 8, the supply path 11b is formed so as to extend in the horizontal direction, while the throttle portion 12a is formed so as to extend in the vertical direction. As a result, the extending direction of the supply path 11b and the axis of the throttle portion 12a are in a positional relationship that is substantially orthogonal to each other.
 また、図9に示すように、第2分流器構成部材20には、第1分流路25及び第2分流路26の他に、第3分流路27と第4分流路28とが設けられている。第2分流器構成部材20には、第3冷媒流出管(図示せず)の上流端部が差し込まれた状態で接続される第3流出側配管接続孔20eが形成されている。第3分流路27の下流端は、第3流出側配管接続孔20eと連通している。また、第2分流器構成部材20には、第4冷媒流出管(図示せず)の上流端部が差し込まれた状態で接続される第4流出側配管接続孔20fが形成されている。第4分流路28の下流端は、第4流出側配管接続孔20fと連通している。 Further, as shown in FIG. 9, the second shunt component 20 is provided with a third shunt 27 and a fourth shunt 28 in addition to the first shunt 25 and the second shunt 26. There is. The second shunt component 20 is formed with a third outflow side pipe connection hole 20e that is connected with the upstream end of the third refrigerant outflow pipe (not shown) inserted. The downstream end of the third branch flow path 27 communicates with the third outflow side pipe connection hole 20e. Further, the second shunt component 20 is formed with a fourth outflow side pipe connection hole 20f which is connected with the upstream end of the fourth refrigerant outflow pipe (not shown) inserted. The downstream end of the fourth branch flow path 28 communicates with the fourth outflow side pipe connection hole 20f.
 この実施形態2によれば、実施形態1と同様な作用効果を奏することができるとともに、冷媒を4方向に分流することができる。また、供給路11bの延びる方向が、配管の取り回し等の影響によって絞り部12aの軸線の延長線と交差する方向となった場合に、絞り部12aが直線状に延びているので、供給路11bの延びる方向がどのような方向であっても、絞り部12aによって流出方向をコントロールして冷媒衝突面24に狙い通りに衝突させることができる。 According to the second embodiment, the same action and effect as that of the first embodiment can be obtained, and the refrigerant can be divided in four directions. Further, when the extension direction of the supply path 11b is a direction that intersects the extension line of the axis of the throttle portion 12a due to the influence of the routing of the pipe or the like, the throttle portion 12a extends linearly, so that the supply path 11b Regardless of the extending direction, the outflow direction can be controlled by the throttle portion 12a to collide with the refrigerant collision surface 24 as intended.
 上述の実施形態はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。上記冷媒分流器1は、バッテリ冷却装置100だけでなく、空調装置の熱交換器を構成するチューブに冷媒を分流させる場合にも適用することができる。また、第1分流路25、第2分流路26、第3分流路27及び第4分流路28の延びる方向は任意の方向にすることができる。また、分流路の数は、3つであってもよいし、5つ以上であってもよい。 The above embodiment is merely an example in every respect and should not be construed in a limited way. Furthermore, all modifications and modifications that fall within the equivalent scope of the claims are within the scope of the present invention. The refrigerant shunt 1 can be applied not only to the battery cooling device 100 but also to a case where the refrigerant is diverted to a tube constituting a heat exchanger of an air conditioner. Further, the extending direction of the first branch flow path 25, the second branch flow path 26, the third branch flow path 27, and the fourth branch flow path 28 can be any direction. Further, the number of branch channels may be three or five or more.
 以上説明したように、本発明に係る冷媒分流器は、例えばバッテリ冷却装置や空調装置に利用することができる。 As described above, the refrigerant shunt according to the present invention can be used, for example, in a battery cooling device or an air conditioner.
1       冷媒分流器
10      第1分流器構成部材
11b     供給路
12      突出筒部
12a     絞り部
20      第2分流器構成部材
21      嵌合孔
22      冷媒攪拌室
24      冷媒衝突面
25      第1分流路
26      第2分流路
100b    バッテリクーラ側配管(冷媒供給管)
100f    第1冷媒流出管
100g    第2冷媒流出管
1 Refrigerant shunt 10 1st shunt component 11b Supply path 12 Overhanging cylinder 12a Squeezing 20 2nd shunt component 21 Fitting hole 22 Refrigerant stirring chamber 24 Refrigerant collision surface 25 1st shunt 26 2nd shunt 100b Battery cooler side piping (refrigerant supply pipe)
100f 1st refrigerant outflow pipe 100g 2nd refrigerant outflow pipe

Claims (10)

  1.  冷媒供給管から流入した冷媒を第1及び第2冷媒流出管に分流する冷媒分流器において、
     前記冷媒供給管が接続される供給路と、
     前記供給路の下流端部から直線状に延び、前記供給路よりも小径とされた絞り部と、
     前記絞り部の下流端部に連通し、前記絞り部から流入した冷媒を攪拌する冷媒攪拌室と、
     前記絞り部の下流端部と所定の間隔をあけて対向するように配置され、前記絞り部から流出した冷媒が衝突する冷媒衝突面と、
     上流端が前記冷媒攪拌室における前記冷媒衝突面から離れた部分に連通する一方、下流端が前記第1冷媒流出管に連通する第1分流路と、
     上流端が前記冷媒攪拌室における前記冷媒衝突面から離れた部分であってかつ前記第1分流路の上流端から離れた部分に連通する一方、下流端が前記第2冷媒流出管に連通する第2分流路とを備えていることを特徴とする冷媒分流器。
    In the refrigerant shunt that divides the refrigerant flowing in from the refrigerant supply pipe into the first and second refrigerant outflow pipes.
    The supply path to which the refrigerant supply pipe is connected and
    A throttle portion extending linearly from the downstream end of the supply path and having a diameter smaller than that of the supply path.
    A refrigerant stirring chamber that communicates with the downstream end of the throttle portion and stirs the refrigerant that has flowed in from the throttle portion.
    A refrigerant collision surface that is arranged so as to face the downstream end of the throttle portion at a predetermined distance and that the refrigerant flowing out of the throttle portion collides with.
    A first branch flow path in which the upstream end communicates with a portion of the refrigerant stirring chamber away from the refrigerant collision surface, while the downstream end communicates with the first refrigerant outflow pipe.
    The upstream end communicates with the portion of the refrigerant stirring chamber away from the refrigerant collision surface and away from the upstream end of the first shunt flow path, while the downstream end communicates with the second refrigerant outflow pipe. A refrigerant shunt characterized by having a two-way flow path.
  2.  請求項1に記載の冷媒分流器において、
     前記冷媒衝突面は、前記絞り部の下流端部から当該絞り部の軸線の延長線上に配置され、
     前記第1分流路及び前記第2分流路の上流端は、前記冷媒攪拌室の壁面において前記絞り部の下流端部と前記冷媒衝突面との間に開口していることを特徴とする冷媒分流器。
    In the refrigerant shunt according to claim 1,
    The refrigerant collision surface is arranged on an extension of the axis of the throttle portion from the downstream end portion of the throttle portion.
    The refrigerant divergence flow is characterized in that the upstream ends of the first shunt and the second shunt are open between the downstream end of the throttle portion and the refrigerant collision surface on the wall surface of the refrigerant stirring chamber. vessel.
  3.  請求項2に記載の冷媒分流器において、
     前記第1分流路及び前記第2分流路の上流端は、前記絞り部の下流端部と前記冷媒衝突面との間の中央部よりも前記絞り部に近い側に開口していることを特徴とする冷媒分流器。
    In the refrigerant shunt according to claim 2.
    The first shunt and the upstream end of the second shunt are characterized by opening closer to the throttle than the central portion between the downstream end of the throttle and the refrigerant collision surface. Refrigerant shunt.
  4.  請求項2に記載の冷媒分流器において、
     前記第1分流路及び前記第2分流路の上流端は、前記冷媒攪拌室の壁面において前記延長線まわりに互いに間隔をあけて配置されていることを特徴とする冷媒分流器。
    In the refrigerant shunt according to claim 2.
    A refrigerant shunt characterized in that the first shunt and the upstream end of the second shunt are arranged on the wall surface of the refrigerant agitation chamber at intervals around the extension line.
  5.  請求項1に記載の冷媒分流器において、
     前記供給路及び前記絞り部が設けられた第1分流器構成部材と、
     前記冷媒攪拌室、前記冷媒衝突面、前記第1分流路及び前記第2分流路が設けられた第2分流器構成部材とを備え、
     前記第1分流器構成部材は、内部に前記絞り部が設けられ、先端面に前記絞り部の下流端が開口する突出筒部を有し、
     前記第2分流器構成部材は、前記突出筒部が嵌合する嵌合孔を有し、前記冷媒攪拌室は、前記嵌合孔の奥側に連通するように設けられていることを特徴とする冷媒分流器。
    In the refrigerant shunt according to claim 1,
    A first shunt component provided with the supply path and the throttle portion, and
    The refrigerant agitation chamber, the refrigerant collision surface, the first shunt flow path, and the second shunt component provided with the second shunt flow path are provided.
    The first shunt component member is provided with the throttle portion inside, and has a protruding cylinder portion on the tip surface at which the downstream end of the throttle portion opens.
    The second shunt component has a fitting hole into which the protruding cylinder portion fits, and the refrigerant stirring chamber is provided so as to communicate with the inner side of the fitting hole. Refrigerant shunt.
  6.  請求項5に記載の冷媒分流器において、
     前記嵌合孔の径は、前記冷媒攪拌室の径よりも大きく設定されていることを特徴とする冷媒分流器。
    In the refrigerant shunt according to claim 5.
    A refrigerant shunt characterized in that the diameter of the fitting hole is set to be larger than the diameter of the refrigerant stirring chamber.
  7.  請求項1に記載の冷媒分流器において、
     前記供給路は、前記絞り部の軸線の延長線と交差する方向に延びていることを特徴とする冷媒分流器。
    In the refrigerant shunt according to claim 1,
    A refrigerant shunt characterized in that the supply path extends in a direction intersecting an extension line of the axis of the throttle portion.
  8.  請求項1に記載の冷媒分流器において、
     前記供給路は、前記絞り部の軸線の延長線と略同軸上に延びていることを特徴とする冷媒分流器。
    In the refrigerant shunt according to claim 1,
    A refrigerant shunt characterized in that the supply path extends substantially coaxially with an extension of the axis of the throttle portion.
  9.  請求項1に記載の冷媒分流器において、
     前記冷媒衝突面は、円形状とされ、
     前記絞り部の下流端部は、当該絞り部の軸線の延長線が前記冷媒衝突面の中心を通るように配置されていることを特徴とする冷媒分流器。
    In the refrigerant shunt according to claim 1,
    The refrigerant collision surface has a circular shape.
    A refrigerant shunt characterized in that the downstream end portion of the throttle portion is arranged so that an extension line of the axis of the throttle portion passes through the center of the refrigerant collision surface.
  10.  請求項9に記載の冷媒分流器において、
     前記冷媒衝突面と前記絞り部の軸線の延長線とが略直交していることを特徴とする冷媒分流器。
    In the refrigerant shunt according to claim 9.
    A refrigerant shunt characterized in that the refrigerant collision surface and the extension line of the axis of the throttle portion are substantially orthogonal to each other.
PCT/JP2021/007539 2020-03-03 2021-02-26 Refrigerant distributor WO2021177191A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180017778.1A CN115210514B (en) 2020-03-03 2021-02-26 Refrigerant flow divider
EP21763817.0A EP4102156A4 (en) 2020-03-03 2021-02-26 Refrigerant distributor
US17/898,597 US20220412620A1 (en) 2020-03-03 2022-08-30 Refrigerant distributor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-036208 2020-03-03
JP2020036208A JP7444641B2 (en) 2020-03-03 2020-03-03 refrigerant flow divider

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/898,597 Continuation US20220412620A1 (en) 2020-03-03 2022-08-30 Refrigerant distributor

Publications (1)

Publication Number Publication Date
WO2021177191A1 true WO2021177191A1 (en) 2021-09-10

Family

ID=77613382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007539 WO2021177191A1 (en) 2020-03-03 2021-02-26 Refrigerant distributor

Country Status (5)

Country Link
US (1) US20220412620A1 (en)
EP (1) EP4102156A4 (en)
JP (1) JP7444641B2 (en)
CN (1) CN115210514B (en)
WO (1) WO2021177191A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760074U (en) * 1980-09-20 1982-04-09
JPH08296778A (en) * 1995-04-25 1996-11-12 Nippondenso Co Ltd Piping connector
JPH11257801A (en) 1998-03-16 1999-09-24 Daikin Ind Ltd Refrigerant distributor
JP2014081149A (en) * 2012-10-17 2014-05-08 Hitachi Appliances Inc Refrigerant distributor and refrigeration cycle device including the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2182664A (en) * 1936-12-17 1939-12-05 Gen Electric Refrigerant distributor for cooling units
JPH07294061A (en) * 1994-04-28 1995-11-10 Sharp Corp Refrigerant distributor
JPH09159320A (en) * 1995-12-05 1997-06-20 Matsushita Electric Ind Co Ltd Refrigerant distributor
JP4560939B2 (en) * 2000-10-20 2010-10-13 ダイキン工業株式会社 Refrigerant shunt and air conditioner using the same
CN101466986A (en) * 2006-06-29 2009-06-24 大金工业株式会社 Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
DE102007028565A1 (en) * 2007-06-19 2008-12-24 Danfoss A/S refrigeration Equipment
JP2009002557A (en) * 2007-06-20 2009-01-08 Daikin Ind Ltd Refrigerant flow divider and refrigerating device
KR101424263B1 (en) * 2007-09-21 2014-07-31 엘지전자 주식회사 air-conditioner
KR101547353B1 (en) * 2008-11-10 2015-08-25 엘지전자 주식회사 Distributor and refrigerant circulation system comprising the same
JP6667070B2 (en) * 2016-07-19 2020-03-18 パナソニックIpマネジメント株式会社 Refrigerant flow divider and refrigeration system using the same
CN106705513A (en) * 2017-01-12 2017-05-24 青岛海尔空调器有限总公司 Air conditioner and distributor thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760074U (en) * 1980-09-20 1982-04-09
JPH08296778A (en) * 1995-04-25 1996-11-12 Nippondenso Co Ltd Piping connector
JPH11257801A (en) 1998-03-16 1999-09-24 Daikin Ind Ltd Refrigerant distributor
JP2014081149A (en) * 2012-10-17 2014-05-08 Hitachi Appliances Inc Refrigerant distributor and refrigeration cycle device including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4102156A4

Also Published As

Publication number Publication date
CN115210514A (en) 2022-10-18
EP4102156A4 (en) 2023-07-26
JP7444641B2 (en) 2024-03-06
CN115210514B (en) 2024-05-03
JP2021139529A (en) 2021-09-16
US20220412620A1 (en) 2022-12-29
EP4102156A1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
CN101592168B (en) Ejector and manufacturing method thereof
EP2806244B1 (en) Heat exchanger distribution assembly and method
CN103134244A (en) Heat exchanger for LPI vehicle
RU2474771C2 (en) Valve unit with inbuilt collector
JP2013148229A (en) Gas-liquid separator and air conditioning device for vehicle
WO2021177191A1 (en) Refrigerant distributor
JP2023553760A (en) Separator for freezing and air conditioner
CN206131527U (en) Heat exchanger and air conditioner
WO2021187061A1 (en) Refrigerant flow divider
JP4560939B2 (en) Refrigerant shunt and air conditioner using the same
US20200003311A1 (en) Device for regulating a flow-through and distributing a fluid in a fluid circuit
CN110234951B (en) Device for distributing a refrigerant fluid in a collection tank of a heat exchanger
CN105946502B (en) Silencing pipe assembly for air conditioner and electric automobile with same
WO2019192282A1 (en) A vehicle thermal management system
JPH11257801A (en) Refrigerant distributor
JP5193630B2 (en) Heat exchanger
EP2420627B1 (en) Water storage tank
US10179500B2 (en) Ejector-type refrigeration cycle
CN110168304B (en) Device for distributing refrigerant in a collecting tank of a heat exchanger for an air conditioning system of a vehicle
CN206281256U (en) Part flow arrangement and air-conditioning
CN106440526A (en) Heat exchanger and air conditioner
US20230364966A1 (en) Heat exchanger and air conditioner for vehicle
CN114729593B (en) Thermal management assembly for a vehicle
US6363742B1 (en) Accumulator for an air conditioning system
US20170225543A1 (en) Ejector-type refrigeration cycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21763817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021763817

Country of ref document: EP

Effective date: 20220905

NENP Non-entry into the national phase

Ref country code: DE