WO2021177051A1 - Traction-force transmission device and track-type vehicle - Google Patents

Traction-force transmission device and track-type vehicle Download PDF

Info

Publication number
WO2021177051A1
WO2021177051A1 PCT/JP2021/006258 JP2021006258W WO2021177051A1 WO 2021177051 A1 WO2021177051 A1 WO 2021177051A1 JP 2021006258 W JP2021006258 W JP 2021006258W WO 2021177051 A1 WO2021177051 A1 WO 2021177051A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pin
peripheral surface
traction force
traction
Prior art date
Application number
PCT/JP2021/006258
Other languages
French (fr)
Japanese (ja)
Inventor
章央 川内
内田 浩二
浩幸 河野
宗 田村
Original Assignee
三菱重工エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジニアリング株式会社 filed Critical 三菱重工エンジニアリング株式会社
Publication of WO2021177051A1 publication Critical patent/WO2021177051A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/387Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F5/00Liquid springs in which the liquid works as a spring by compression, e.g. combined with throttling action; Combinations of devices including liquid springs

Definitions

  • the present disclosure relates to a traction force transmission device and a track-type vehicle equipped with this traction force transmission device.
  • the present application claims priority based on Japanese Patent Application No. 2020-036330 filed on March 4, 2020, the contents of which are incorporated herein by reference.
  • a railroad vehicle having a pair of rails (rails) installed at equal intervals as a guide path and having iron wheels, and a track-based transportation system that travels on a track with wheels equipped with rubber tires are known.
  • the track-based transportation system is generally called a “new transportation system", an "AGT (Automated Guideway Transit)", an “APM (Automated People Mover)", or the like.
  • the track-type vehicle mainly has a vehicle body that accommodates passengers and a bogie that is not directly connected to the vehicle body and is a traveling device with a degree of freedom.
  • the bogie and the car body are connected by a tow link.
  • the traction link is a traction force transmission device that transmits traction force such as driving force and braking force to the vehicle body.
  • the tow link is provided with anti-vibration rubber between the pin and the ring surrounding the pin to improve the riding comfort and reduce the noise level in the vehicle.
  • Patent Document 1 discloses a technique in which the anti-vibration rubber has a thick portion in the front-rear direction and a thin portion in the vertical direction. With such a configuration, the thick portion is deformed during acceleration / deceleration, the spring constant of the entire anti-vibration rubber is increased, and the traction force is easily transmitted. Further, at a constant velocity, the deformation of the thick portion is small, the spring constant of the anti-vibration rubber is small, and the transmission of vibration is suppressed.
  • the present disclosure has been made in view of the above-mentioned problems, and provides a traction force transmission device and a track-type vehicle capable of effectively transmitting traction force during acceleration / deceleration and suppressing vibration at constant speed.
  • the purpose is to do.
  • the traction force transmission device is between a pin, a traction link having a pin hole into which the pin can be fitted, and an outer peripheral surface of the pin and an inner peripheral surface of the pin hole.
  • a plurality of intermediate layers provided are provided, and the plurality of intermediate layers include a first layer having a first spring constant and a second layer having a second spring constant lower than the first spring constant. ..
  • the track-type vehicle includes a pin, a tow link having a pin hole into which the pin can be fitted, and an outer peripheral surface of the pin and an inner peripheral surface of the pin hole.
  • a plurality of intermediate layers provided are provided, and the plurality of intermediate layers include a first layer having a first spring constant and a second layer having a second spring constant lower than the first spring constant. It is provided with a traction force transmission device configured as described above.
  • the traction force transmission device and the track type vehicle of the present disclosure it is possible to effectively transmit the traction force at the time of acceleration / deceleration and suppress the vibration at the constant speed.
  • the track-type vehicle is a railroad vehicle that travels along the track, and is, for example, a train. As shown in FIG. 1, such a track-type vehicle 100 includes a vehicle body 102 and a bogie 104.
  • the vehicle body 102 has a hollow shape of a substantially rectangular parallelepiped long in the front-rear direction (traveling direction), and can accommodate passengers and cargo.
  • the bogie 104 is arranged below the vehicle body 102 and supports the vehicle body 102 so as to be able to travel.
  • Such a bogie 104 includes an electric motor 106, a speed reducer 108, an axle 110, wheels 112, and a suspension device 114.
  • the motor 106 uses electric power supplied from the outside to generate rotational power.
  • the electric motor 106 is supported by the vehicle body 102.
  • the speed reducer 108 is connected to the electric motor 106 via a drive shaft 105, reduces the rotational power of the electric motor 106, and distributes the speed reducer 108 to the axle 110.
  • the axle 110 extends from the speed reducer 108 on both sides in the vehicle width direction, and is rotatably supported by the bogie frame 116 of the suspension device 114 as described later.
  • the wheel 112 is connected to the end of the axle 110 and is, for example, a so-called tired wheel equipped with a rubber tire. In the first embodiment, wheels 112 and 112 are connected to both ends of the axle 110, respectively.
  • the suspension device 114 transmits the driving force and braking force of the wheels 112 to the vehicle body 102 while allowing the wheels 112 to move up and down with respect to the vehicle body 102.
  • a suspension device 114 includes a bogie frame 116, a suspension frame 118, and a traction force transmission device 1.
  • the bogie frame 116 rotatably supports the axle 110, as referred to in FIG.
  • the bogie frame 116 includes a first bogie frame 116A (116) and a second bogie frame 116B (116) arranged along the vehicle width direction, and the first bogie frame 116A is It is arranged on the side opposite to the second bogie frame 116B with the speed reducer 108 interposed therebetween.
  • the suspension frame 118 extends downward from the lower surface of the vehicle body 102.
  • the traction force transmission device 1 connects the bogie frame 116 and the suspension frame 118, as referred to in FIG.
  • a traction force transmission device 1 allows the bogie frame 116 to be displaced in the vertical direction with respect to the vehicle body 102, and acts on the front-rear direction in which the track-type vehicle 100 travels, such as the driving force and braking force of the wheels 112 (hereinafter,). , As a traction force) is transmitted from the bogie frame 116 to the suspension frame 118.
  • the traction force transmission device 1 includes, for example, a traction link 4 extending in the front-rear direction, the front end of the traction link 4 is coupled to the bogie frame 116 by pin coupling, and the rear end of the traction link 4 is coupled by pin coupling. Combined with the suspension frame 118.
  • the track-type vehicle 100 includes two traction force transmission devices 1 and 1 arranged along the vertical direction.
  • the carriage 104 may further include a guide member 124.
  • the guide member 124 changes, for example, the steering angle of the wheels 112 according to the arc shape of the curved portion of the track when the track type vehicle 100 travels on the track.
  • the guide member 124 includes a guide frame 126 and a guide wheel 128.
  • the guide frame 126 extends along the vehicle width direction and is supported by the speed reducer 108 so as to be rotatable around a virtual axis O1 passing through the speed reducer 108 in the vertical direction.
  • the guide wheel 128 is arranged at the end of the guide frame 126 and is capable of contacting the track. When such a guide wheel 128 receives a reaction force from the track, it presses the guide frame 126 and the guide frame 126 rotates.
  • the carriage 104 may further include an air spring 120 and an electric motor anti-vibration rubber 122.
  • the air spring 120 is a bag-shaped member made of an elastic body such as rubber that can store compressed air inside.
  • the air spring 120 is arranged between the vehicle body 102 and the bogie frame 116. Further, the vehicle body 102 and the bogie frame 116 may be connected by upper and lower dampers 123.
  • the electric motor anti-vibration rubber 122 is arranged between the vehicle body 102 and the electric motor 106, and suppresses the vibration of the electric motor 106 from being transmitted to the vehicle body 102.
  • Such motor anti-vibration rubber 122 is formed of, for example, synthetic rubber such as propylene rubber.
  • FIG. 3 is a diagram showing an example of a portion of the traction force transmission device 1 that is pin-coupled to the suspension frame 118 (rear end of the traction link 4), but the portion that is pin-coupled to the bogie frame 116. (Front end of the tow link 4) may have a similar structure.
  • the pin 2 has a cylindrical shape, and both ends of the pin 2 are fixed to the suspension frame 118.
  • the traction link 4 has a pin hole 3 into which the pin 2 can be fitted. Further, the traction link 4 has a rod-like shape, and circular pin holes 3 are formed at both ends of the traction link 4.
  • the plurality of intermediate layers 10 are provided between the outer peripheral surface 6 of the pin 2 and the inner peripheral surface 8 of the pin hole 3, and are the first layer 10A (10) having the first spring constant k1 and the first layer 10A (10). Includes a second layer 10B (10) having a second spring constant k2 lower than one spring constant k1.
  • the first layer 10A is a vibration-proof rubber formed of a synthetic rubber such as propylene rubber
  • the second layer 10B is a porous resin such as a urethane sponge. That is, the first layer 10A has a higher rigidity than the second layer 10B.
  • the first layer 10A is arranged closer to the pin 2 than the second layer 10B.
  • the first layer 10A may be attached to the outer peripheral surface 6 of the pin 2.
  • the second layer 10B may be in contact with the outer peripheral surface 12 of the first layer 10A.
  • the second layer 10B may be attached to the inner peripheral surface 8 of the pin hole 3.
  • the first layer 10A is arranged inside the second layer 10B, the first layer 10A having high rigidity corresponds to the inner layer, and the second layer 10B having low rigidity is outside. Corresponds to the layer.
  • first layer 10A and the second layer 10B may be arranged over the entire circumferential direction of the pin 2.
  • each of the first layer 10A and the second layer 10B is configured to have a ring shape.
  • the second layer 10B when the load and the displacement in the second layer 10B deviate from the linear range defined by the spring constant as the load (traction force) increases, the second layer 10B The layer 10B will not be substantially deformed any more, and thereafter (when the load F is exceeded), the first layer 10A having the first spring constant k1 having a relatively large spring constant will be mainly deformed. , The traction force can be appropriately transmitted to the vehicle body 102. Therefore, it is possible to effectively function the transmission of the traction force at the time of acceleration / deceleration and the suppression of the vibration at the time of constant speed. Further, by controlling the thickness and spring characteristics of the first layer 10A and the second layer 10B, the behavior of the intermediate layer 10 can be appropriately controlled in a state suitable for vibration suppression and a state suitable for transmission of traction force.
  • the first layer 10A is attached to the outer peripheral surface 6 of the pin 2
  • the sliding of the inner peripheral surface of the first layer 10A with respect to the outer peripheral surface 6 of the pin 2 is prevented. Wear on the inner peripheral surface of the first layer 10A can be suppressed.
  • the second layer 10B is attached to the inner peripheral surface 8 of the pin hole 3
  • the outer peripheral surface of the second layer 10B is prevented from sliding with respect to the inner peripheral surface 8 of the pin hole 3
  • the second layer 10B is prevented from sliding. Wear on the outer peripheral surface can be suppressed.
  • the first layer 10A and the second layer are between the outer peripheral surface 6 of the pin 2 and the inner peripheral surface 8 of the pin hole 3. Since a plurality of intermediate layers 10 including 10B are formed, it is possible to effectively function the transmission of traction force at the time of acceleration / deceleration and the suppression of vibration at the time of constant velocity.
  • the track type vehicle 100 since the track type vehicle 100 includes the traction force transmission device 1, the track can effectively transmit the traction force at the time of acceleration / deceleration and suppress the vibration at the constant speed.
  • the type vehicle 100 can be provided.
  • the plurality of intermediate layers 10 include the first layer 10A and the second layer 10B
  • the plurality of intermediate layers 10 may include, in addition to the first layer 10A and the second layer 10B, a third layer having a spring constant different from the first spring constant k1 and the second spring constant k2.
  • the plurality of intermediate layers 10 includes a first layer 10A and two second layers 10B, the first layer 10A being located between the two second layers 10B. ..
  • the first layer 10A having the first spring constant k1 is the inner layer
  • the second layer 10B having the second spring constant k2 lower than the first spring constant k1 is the outer layer.
  • the present disclosure is not limited to this embodiment.
  • the plurality of intermediate layers 10 comprises a first layer having a first spring constant and a second layer having a second spring constant lower than the first spring constant, the second layer 10B. Is arranged closer to the pin 2 than the first layer 10A.
  • the first layer 10A and the second layer 10B are arranged over the entire circumferential direction of the pin 2, but the present disclosure is not limited to this embodiment.
  • the first layer 10A and the second layer 10B may be arranged over a part of the circumferential direction of the pin 2.
  • the first layer 10A and the second layer 10B may be, for example, leaf springs.
  • a modified example of the traction force transmission device 1 according to the first embodiment of the present disclosure will be described with reference to FIG.
  • a surface parallel to the extending direction of the traction link 4 and including the central axis 14 of the pin 2 is defined as the first surface S1, which is orthogonal to the first surface S1 and includes the central axis 14.
  • the first layer 10A has an elliptical shape having a long axis extending along the extending direction of the traction link 4.
  • the second layer 10B has an elliptical shape having a long axis extending along a direction perpendicular to the extending direction of the traction link 4.
  • the traction force along the extending direction of the traction link 4 is a region in which the thickness ratio of the first layer 10A to the second layer 10B is relatively large among the plurality of intermediate layers 10. It acts on (the region intersecting the first surface S1). In this region, the influence of the first layer 10A, which has a relatively large spring constant as compared with the other regions, is large, so that the traction force can be effectively transmitted to the suspension frame 118.
  • the vibration that can occur regardless of the extending direction of the traction link 4 is a region in which the thickness ratio of the first layer 10A to the second layer 10B of the plurality of intermediate layers 10 is relatively small (with the second surface S2). In the intersecting region), it can be effectively suppressed by the second layer 10B having a relatively small spring constant.
  • the traction force transmission device 11 according to the second embodiment of the present disclosure will be described with reference to FIG.
  • the second embodiment is different from the first embodiment in that the plurality of intermediate layers 10 include the rubber layer 10C and the viscous fluid layer 10D, but the other configurations are the same as the configurations described in the first embodiment. be.
  • the same components as those of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the traction force transmission device 11 includes a pin 2, a traction link 4 having a pin hole 3 into which the pin 2 can be fitted, an outer peripheral surface 6 of the pin 4, and an inner peripheral surface 8 of the pin hole 3.
  • a plurality of intermediate layers 10 provided between the two are provided.
  • the plurality of intermediate layers 10 include a rubber layer 10C (10) and a viscous fluid layer 10D (10) located on the outer peripheral side of the rubber layer 10C.
  • the rubber layer 10C may be the same as the first layer 10A described in the first embodiment, and is, for example, a vibration-proof rubber formed of synthetic rubber such as propylene rubber.
  • the viscous fluid layer 10D contains a viscous fluid such as lubricating oil (grease). The viscous fluid layer 10D is sealed between the outer peripheral surface of the rubber layer 10C and the inner peripheral surface 8 of the pin hole 3.
  • the plurality of intermediate layers 10 may further include a protective film layer 10E (110) arranged between the rubber layer 10C and the viscous fluid layer 10D.
  • the protective film layer 10E is formed of a nitrile-based or silicone-based synthetic rubber having excellent oil resistance.
  • the protective film layer 10E is not limited to this embodiment, and is formed of a material (resin material, rubber material, or elastomer) in consideration of the chemical properties of the viscous fluid and the mechanical properties due to the structure of the viscous fluid.
  • the damping force (friction resistance) against the relative displacement of the pin 2 with respect to the traction link 4 is the viscous fluid layer 10D.
  • the vibration can be effectively suppressed.
  • the viscous fluid contained in the viscous fluid layer 10D is pushed away by the rubber layer 10C, the inner peripheral surface of the rubber layer 10C comes into contact with the outer peripheral surface 6 of the pin 2, and the rubber layer 10C The outer peripheral surface comes into contact with the inner peripheral surface 8 of the pin hole 3. Therefore, the traction force of the traction link 4 can be effectively transmitted to the pin 2 via the rubber layer 10C.
  • the plurality of intermediate layers 10 include the protective film layer 10E arranged between the rubber layer 10C and the viscous fluid layer 10D, the viscosity contained in the viscous fluid layer 10D. It is possible to prevent the rubber layer 10C from swelling due to the fluid.
  • the viscous fluid layer 10D is located on the outer peripheral side of the rubber layer 10C, but the present disclosure is not limited to this embodiment.
  • the plurality of intermediate layers 10 includes a rubber layer 10C and a viscous fluid layer 10D located on the inner peripheral side of the rubber layer 10C.
  • the traction force transmission device (1) includes a pin (2), a traction link (4) having a pin hole (3) into which the pin can be fitted, and an outer peripheral surface (6) of the pin.
  • a first layer (10A) comprising a plurality of intermediate layers (10) provided between the pin hole and the inner peripheral surface (8) of the pin hole, and the plurality of intermediate layers having a first spring constant (k1).
  • the second layer (10B) having a second spring constant (k2) lower than the first spring constant.
  • the linear relationship between the load and the displacement is defined by the spring constant for each of the first layer and the second layer.
  • the second layer having a relatively small spring constant is mainly deformed, and the vibration can be effectively suppressed by the second layer.
  • the load and displacement in the second layer deviate from the linear range defined by the spring constant as the traction force increases, the second layer is substantially not deformed any more, and thereafter.
  • the first layer having a relatively large spring constant is mainly deformed, and the traction force can be appropriately transmitted.
  • the behavior of the intermediate layer can be appropriately controlled in a state suitable for vibration suppression and a state suitable for transmission of traction force.
  • the inner layer which is one of the first layer or the second layer, is attached to the outer peripheral surface of the pin, and the first layer is attached.
  • the outer layer which is the other of the one layer or the second layer, abuts on the outer peripheral surface (12) of the inner layer, and the outer layer is attached to the inner peripheral surface of the pin hole.
  • the inner peripheral surface of the inner layer is prevented from sliding with respect to the outer peripheral surface of the pin, so that the wear of the inner peripheral surface of the inner layer can be suppressed. Further, since the sliding of the pin holes on the outer peripheral surface of the outer layer with respect to the inner peripheral surface is prevented, wear of the outer peripheral surface of the outer layer can be suppressed.
  • the first layer and the second layer are arranged over the entire circumferential direction of the pin.
  • the central axis (14) of the pin is parallel to the extending direction of the traction link.
  • the thickness ratio of the first layer to the second layer in the cross section along the first surface (S1) including the first surface is orthogonal to the first surface and is a cross section along the second surface (S2) including the central axis. It is larger than the thickness ratio of the first layer to the second layer in the inside.
  • the traction force along the extending direction of the traction link is a region (first) in which the thickness ratio of the first layer to the second layer is relatively large among the plurality of intermediate layers. It will act on the area that intersects the surface). In this region, the influence of the first layer, which has a relatively large spring constant as compared with other regions, is large, so that the traction force can be effectively transmitted.
  • the vibration that can occur regardless of the extending direction of the traction link occurs in the region where the thickness ratio of the first layer to the second layer is relatively small (the region intersecting the second surface) among the plurality of intermediate layers. , It can be effectively suppressed by the second layer having a relatively small spring constant.
  • the traction force transmission device (11) includes a pin (2), a traction link (4) having a pin hole (3) into which the pin can be fitted, and an outer peripheral surface (6) of the pin.
  • a plurality of intermediate layers (10) provided between the pin hole and the inner peripheral surface (8) of the pin hole are provided, and the plurality of intermediate layers are a rubber layer (10C) and an inner peripheral side of the rubber layer. Alternatively, it includes a viscous fluid layer (10D) located on the outer peripheral side.
  • the plurality of intermediate layers further include a protective film layer (10E) arranged between the rubber layer and the viscous fluid layer. include.
  • the track-type vehicle (100) includes the traction force transmission device according to any one of (1) to (6) above. According to such a configuration, it is possible to provide a track-type vehicle capable of effectively transmitting traction force at the time of acceleration / deceleration and suppressing vibration at a constant speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vibration Prevention Devices (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Springs (AREA)

Abstract

A traction-force transmission device according to the present invention includes a pin, a traction link having a pin hole into which the pin can be fitted, and a plurality of intermediate layers provided between the outer circumferential surface of the pin and the inner circumferential surface of the pin hole. The plurality of intermediate layers include a first layer having a first spring constant and a second layer having a second spring constant that is lower than the first spring constant.

Description

牽引力伝達装置、及び軌道式車両Traction transmission device and track type vehicle
 本開示は、牽引力伝達装置、及びこの牽引力伝達装置を備える軌道式車両に関する。本願は、2020年3月4日に出願された特願2020-036330号に基づき優先権を主張し、その内容をここに援用する。 The present disclosure relates to a traction force transmission device and a track-type vehicle equipped with this traction force transmission device. The present application claims priority based on Japanese Patent Application No. 2020-036330 filed on March 4, 2020, the contents of which are incorporated herein by reference.
 軌道式車両としては、等間隔に設置された一対のレール(軌条)を案内路とし、鉄製の車輪を有する鉄道用車両や、ゴムタイヤを装着した車輪によって軌道を走行する軌道系交通システムが知られている。軌道系交通システムは、一般に、「新交通システム」や「AGT(Automated Guideway Transit)」、「APM(Automated People Mover)」等と呼ばれている。 As a track-type vehicle, a railroad vehicle having a pair of rails (rails) installed at equal intervals as a guide path and having iron wheels, and a track-based transportation system that travels on a track with wheels equipped with rubber tires are known. ing. The track-based transportation system is generally called a "new transportation system", an "AGT (Automated Guideway Transit)", an "APM (Automated People Mover)", or the like.
 軌道式車両は、主に乗客を収容する車体と、車体に直結されていない、自由度のある走行装置である台車とを有している。台車と車体とは牽引リンクで連結されている。牽引リンクは、車体に駆動力やブレーキ力などの牽引力を伝達する牽引力伝達装置である。また、牽引リンクには、ピンとピンの周囲を囲むリングとの間に防振ゴムが設けられており、乗り心地の向上や車内騒音レベルの低下が図られるようになっている。 The track-type vehicle mainly has a vehicle body that accommodates passengers and a bogie that is not directly connected to the vehicle body and is a traveling device with a degree of freedom. The bogie and the car body are connected by a tow link. The traction link is a traction force transmission device that transmits traction force such as driving force and braking force to the vehicle body. In addition, the tow link is provided with anti-vibration rubber between the pin and the ring surrounding the pin to improve the riding comfort and reduce the noise level in the vehicle.
 特許文献1には、防振ゴムが前後方向に肉厚部を有し、且つ上下方向に肉薄部を有する技術が開示されている。このような構成とすることで、加減速時には肉厚部を変形させ、防振ゴム全体のばね定数を大きくし、牽引力を伝達しやすくしている。また、等速時には、肉厚部の変形が小さく、防振ゴムのばね定数が小さくなり、振動の伝達を抑制している。 Patent Document 1 discloses a technique in which the anti-vibration rubber has a thick portion in the front-rear direction and a thin portion in the vertical direction. With such a configuration, the thick portion is deformed during acceleration / deceleration, the spring constant of the entire anti-vibration rubber is increased, and the traction force is easily transmitted. Further, at a constant velocity, the deformation of the thick portion is small, the spring constant of the anti-vibration rubber is small, and the transmission of vibration is suppressed.
特開2016―120837号公報Japanese Unexamined Patent Publication No. 2016-12038
 しかしながら、加減速の大きさに応じて防振ゴムの肉厚部の変形を利用して防振ゴムのばね定数を調整することは容易ではない。つまり、特許文献1に記載の技術では、加減速時における牽引力の伝達に適したばね定数の大きな状態と、等速時における振動の抑制に適したばね定数が小さな状態とが意図通りに切り替わらない可能性がある。よって、特許文献1に記載の技術では、加減速時における牽引力の伝達や等速時における振動の抑制を効果的に機能させることが難しい場合が起こり得る。 However, it is not easy to adjust the spring constant of the anti-vibration rubber by utilizing the deformation of the thick part of the anti-vibration rubber according to the magnitude of acceleration / deceleration. That is, in the technique described in Patent Document 1, there is a possibility that the state where the spring constant suitable for transmitting the traction force at the time of acceleration / deceleration is large and the state where the spring constant suitable for suppressing the vibration at the constant velocity is small are not switched as intended. There is. Therefore, in the technique described in Patent Document 1, it may be difficult to effectively function the transmission of the traction force at the time of acceleration / deceleration and the suppression of the vibration at the time of constant velocity.
 本開示は、上述の課題に鑑みてなされたものであって、加減速時における牽引力の伝達や等速時における振動の抑制を効果的に機能させることができる牽引力伝達装置及び軌道式車両を提供することを目的とする。 The present disclosure has been made in view of the above-mentioned problems, and provides a traction force transmission device and a track-type vehicle capable of effectively transmitting traction force during acceleration / deceleration and suppressing vibration at constant speed. The purpose is to do.
 上記目的を達成するため、本開示に係る牽引力伝達装置は、ピンと、前記ピンが嵌合可能なピン孔を有する牽引リンクと、前記ピンの外周面と前記ピン孔の内周面との間に設けられる複数の中間層と、を備え、前記複数の中間層は、第1ばね定数を有する第1層と、前記第1ばね定数よりも低い第2ばね定数を有する第2層と、を含む。 In order to achieve the above object, the traction force transmission device according to the present disclosure is between a pin, a traction link having a pin hole into which the pin can be fitted, and an outer peripheral surface of the pin and an inner peripheral surface of the pin hole. A plurality of intermediate layers provided are provided, and the plurality of intermediate layers include a first layer having a first spring constant and a second layer having a second spring constant lower than the first spring constant. ..
 上記目的を達成するため、本開示に係る軌道式車両は、ピンと、前記ピンが嵌合可能なピン孔を有する牽引リンクと、前記ピンの外周面と前記ピン孔の内周面との間に設けられる複数の中間層と、を備え、前記複数の中間層は、第1ばね定数を有する第1層と、前記第1ばね定数よりも低い第2ばね定数を有する第2層と、を含むように構成される牽引力伝達装置を備える。 In order to achieve the above object, the track-type vehicle according to the present disclosure includes a pin, a tow link having a pin hole into which the pin can be fitted, and an outer peripheral surface of the pin and an inner peripheral surface of the pin hole. A plurality of intermediate layers provided are provided, and the plurality of intermediate layers include a first layer having a first spring constant and a second layer having a second spring constant lower than the first spring constant. It is provided with a traction force transmission device configured as described above.
 本開示の牽引力伝達装置及び軌道式車両によれば、加減速時における牽引力の伝達や等速時における振動の抑制を効果的に機能させることができる。 According to the traction force transmission device and the track type vehicle of the present disclosure, it is possible to effectively transmit the traction force at the time of acceleration / deceleration and suppress the vibration at the constant speed.
本開示の第1実施形態に係る軌道式車両の構成を示す正面図である。It is a front view which shows the structure of the track type vehicle which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る軌道式車両の構成を示す側面図である。It is a side view which shows the structure of the track type vehicle which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る牽引力伝達装置の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the traction force transmission device which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る第1層及び第2層における荷重と変位との関係を示す図である。It is a figure which shows the relationship between the load and displacement in the 1st layer and the 2nd layer which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る牽引力伝達装置の変形例の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the modification of the traction force transmission device which concerns on 1st Embodiment of this disclosure. 本開示の第2実施形態に係る牽引力伝達装置の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the traction force transmission device which concerns on 2nd Embodiment of this disclosure.
 以下、本開示の実施の形態による牽引力伝達装置及び軌道式車両について、図面に基づいて説明する。かかる実施の形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。 Hereinafter, the traction force transmission device and the track-type vehicle according to the embodiment of the present disclosure will be described with reference to the drawings. Such an embodiment shows one aspect of the present disclosure, does not limit the disclosure, and can be arbitrarily modified within the scope of the technical idea of the present disclosure.
 <第1実施形態>
 (軌道式車両の構成)
 図1及び図2を参照して、本開示の第1実施形態に係る軌道式車両について説明する。軌道式車両は、軌道に沿って走行する鉄道車両であって、例えば電車である。図1に示すように、このような軌道式車両100は、車体102と、台車104と、を備える。
<First Embodiment>
(Structure of track-type vehicle)
The track-type vehicle according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. The track-type vehicle is a railroad vehicle that travels along the track, and is, for example, a train. As shown in FIG. 1, such a track-type vehicle 100 includes a vehicle body 102 and a bogie 104.
 車体102は、前後方向(走行方向)に長い略直方体の中空形状を有するものであって、乗客や貨物を収容することができる。台車104は、車体102の下方に配置されており、車体102を走行可能に支持するものである。このような台車104は、電動機106と、減速機108と、車軸110と、車輪112と、懸架装置114と、を備えている。 The vehicle body 102 has a hollow shape of a substantially rectangular parallelepiped long in the front-rear direction (traveling direction), and can accommodate passengers and cargo. The bogie 104 is arranged below the vehicle body 102 and supports the vehicle body 102 so as to be able to travel. Such a bogie 104 includes an electric motor 106, a speed reducer 108, an axle 110, wheels 112, and a suspension device 114.
 電動機106は、外部から供給される電力を用いて回転動力を発生させるものである。第1実施形態では、車体102によって電動機106が支持されている。減速機108は、ドライブシャフト105を介して電動機106と接続されており、電動機106の回転動力を減じて、車軸110に分配する。車軸110は、減速機108から車幅方向両側に延びているものであって、後述するように懸架装置114の台車枠116によって回転可能に支持されている。車輪112は、車軸110の端部に接続されるものであって、例えば、ゴムタイヤが装着された、いわゆるタイヤ付ホイールである。第1実施形態では、車軸110の両端部のそれぞれに車輪112、112が接続されている。 The motor 106 uses electric power supplied from the outside to generate rotational power. In the first embodiment, the electric motor 106 is supported by the vehicle body 102. The speed reducer 108 is connected to the electric motor 106 via a drive shaft 105, reduces the rotational power of the electric motor 106, and distributes the speed reducer 108 to the axle 110. The axle 110 extends from the speed reducer 108 on both sides in the vehicle width direction, and is rotatably supported by the bogie frame 116 of the suspension device 114 as described later. The wheel 112 is connected to the end of the axle 110 and is, for example, a so-called tired wheel equipped with a rubber tire. In the first embodiment, wheels 112 and 112 are connected to both ends of the axle 110, respectively.
 懸架装置114は、車体102に対する車輪112の上下動を許容しつつ、車輪112の駆動力及び制動力を車体102に伝達するものである。このような懸架装置114は、台車枠116と、懸架枠118と、牽引力伝達装置1と、を備えている。 The suspension device 114 transmits the driving force and braking force of the wheels 112 to the vehicle body 102 while allowing the wheels 112 to move up and down with respect to the vehicle body 102. Such a suspension device 114 includes a bogie frame 116, a suspension frame 118, and a traction force transmission device 1.
 台車枠116は、図1に参照されるように、車軸110を回転可能に支持するものである。第1実施形態では、台車枠116は、車幅方向に沿って配置される第1の台車枠116A(116)と第2の台車枠116B(116)とを含み、第1の台車枠116Aは減速機108を挟んで第2の台車枠116Bとは反対側に配置されている。懸架枠118は、図2に参照されるように、車体102の下面から下方に延びるものである。 The bogie frame 116 rotatably supports the axle 110, as referred to in FIG. In the first embodiment, the bogie frame 116 includes a first bogie frame 116A (116) and a second bogie frame 116B (116) arranged along the vehicle width direction, and the first bogie frame 116A is It is arranged on the side opposite to the second bogie frame 116B with the speed reducer 108 interposed therebetween. As referred to in FIG. 2, the suspension frame 118 extends downward from the lower surface of the vehicle body 102.
 牽引力伝達装置1は、図2に参照されるように、台車枠116と懸架枠118とを接続するものである。このような牽引力伝達装置1は、車体102に対する台車枠116の上下方向への変位を許容しつつ、車輪112による駆動力や制動力など軌道式車両100が走行する前後方向に作用する力(以下、牽引力とする)を、台車枠116から懸架枠118に伝達する。牽引力伝達装置1は、例えば、前後方向に沿って延びる牽引リンク4を含み、この牽引リンク4の前端がピン結合によって台車枠116と結合されるとともに、この牽引リンク4の後端がピン結合によって懸架枠118と結合される。尚、図2に参照されるように、第1実施形態に係る軌道式車両100は、上下方向に沿って配置される2つの牽引力伝達装置1,1を備えている。 The traction force transmission device 1 connects the bogie frame 116 and the suspension frame 118, as referred to in FIG. Such a traction force transmission device 1 allows the bogie frame 116 to be displaced in the vertical direction with respect to the vehicle body 102, and acts on the front-rear direction in which the track-type vehicle 100 travels, such as the driving force and braking force of the wheels 112 (hereinafter,). , As a traction force) is transmitted from the bogie frame 116 to the suspension frame 118. The traction force transmission device 1 includes, for example, a traction link 4 extending in the front-rear direction, the front end of the traction link 4 is coupled to the bogie frame 116 by pin coupling, and the rear end of the traction link 4 is coupled by pin coupling. Combined with the suspension frame 118. As referred to in FIG. 2, the track-type vehicle 100 according to the first embodiment includes two traction force transmission devices 1 and 1 arranged along the vertical direction.
 また、図1に示すように、台車104は案内部材124をさらに備えてもよい。案内部材124は、軌道式車両100が軌道を走行する際に、例えば、車輪112の舵角を軌道の曲線部の円弧形状に応じて変化させるものである。第1実施形態では、案内部材124は、案内枠126と案内輪128とを含む。案内枠126は、車幅方向に沿って延びるものであって、減速機108を上下方向に沿って通過する仮想の軸線O1を中心として回動自在であるように、減速機108に支持されている。案内輪128は、案内枠126の端部に配置され、軌道に当接可能なものである。このような案内輪128は、軌道から反力を受けると、案内枠126を押圧して、案内枠126が回動することになる。 Further, as shown in FIG. 1, the carriage 104 may further include a guide member 124. The guide member 124 changes, for example, the steering angle of the wheels 112 according to the arc shape of the curved portion of the track when the track type vehicle 100 travels on the track. In the first embodiment, the guide member 124 includes a guide frame 126 and a guide wheel 128. The guide frame 126 extends along the vehicle width direction and is supported by the speed reducer 108 so as to be rotatable around a virtual axis O1 passing through the speed reducer 108 in the vertical direction. There is. The guide wheel 128 is arranged at the end of the guide frame 126 and is capable of contacting the track. When such a guide wheel 128 receives a reaction force from the track, it presses the guide frame 126 and the guide frame 126 rotates.
 また、図2に示すように、台車104は、空気ばね120、及び電動機防振ゴム122をさらに備えてもよい。空気ばね120は、内部に圧縮空気を溜めることができるゴム等の弾性体からなる袋状の部材である。空気ばね120は、車体102と台車枠116との間に配置されている。また、車体102と台車枠116とは、上下ダンパ123によって接続されていてもよい。電動機防振ゴム122は、車体102と電動機106との間に配置されており、電動機106の振動が車体102に伝達することを抑制する。このような電動機防振ゴム122は、例えば、プロピレンゴム等の合成ゴムによって形成される。 Further, as shown in FIG. 2, the carriage 104 may further include an air spring 120 and an electric motor anti-vibration rubber 122. The air spring 120 is a bag-shaped member made of an elastic body such as rubber that can store compressed air inside. The air spring 120 is arranged between the vehicle body 102 and the bogie frame 116. Further, the vehicle body 102 and the bogie frame 116 may be connected by upper and lower dampers 123. The electric motor anti-vibration rubber 122 is arranged between the vehicle body 102 and the electric motor 106, and suppresses the vibration of the electric motor 106 from being transmitted to the vehicle body 102. Such motor anti-vibration rubber 122 is formed of, for example, synthetic rubber such as propylene rubber.
 (牽引力伝達装置の構成)
 図3を参照して、牽引力伝達装置1の構成について具体的に説明する。図3に示すように、牽引力伝達装置1は、ピン2と、牽引リンク4と、複数の中間層10と、を備える。尚、図3は、牽引力伝達装置1のうち、懸架枠118とピン結合される部分(牽引リンク4の後端)を例にして示した図であるが、台車枠116とピン結合される部分(牽引リンク4の前端)も同様の構造を有してもよい。
(Structure of traction force transmission device)
The configuration of the traction force transmission device 1 will be specifically described with reference to FIG. As shown in FIG. 3, the traction force transmission device 1 includes a pin 2, a traction link 4, and a plurality of intermediate layers 10. Note that FIG. 3 is a diagram showing an example of a portion of the traction force transmission device 1 that is pin-coupled to the suspension frame 118 (rear end of the traction link 4), but the portion that is pin-coupled to the bogie frame 116. (Front end of the tow link 4) may have a similar structure.
 ピン2は、円柱形状を有するものであって、ピン2の両端のそれぞれは懸架枠118に固定されている。牽引リンク4は、ピン2が嵌合可能なピン孔3を有している。また、牽引リンク4は、棒状形状を有するものであって、この牽引リンク4の両端部のそれぞれに円形形状のピン孔3が形成されている。 The pin 2 has a cylindrical shape, and both ends of the pin 2 are fixed to the suspension frame 118. The traction link 4 has a pin hole 3 into which the pin 2 can be fitted. Further, the traction link 4 has a rod-like shape, and circular pin holes 3 are formed at both ends of the traction link 4.
 複数の中間層10は、ピン2の外周面6とピン孔3の内周面8との間に設けられるものであって、第1ばね定数k1を有する第1層10A(10)と、第1ばね定数k1よりも低い第2ばね定数k2を有する第2層10B(10)と、を含む。第1層10Aは、例えば、プロピレンゴム等の合成ゴムによって形成される防振ゴムであり、第2層10Bは、例えば、ウレタンスポンジのような多孔質樹脂である。つまり、第1層10Aは、第2層10Bと比較して剛性が大きい。 The plurality of intermediate layers 10 are provided between the outer peripheral surface 6 of the pin 2 and the inner peripheral surface 8 of the pin hole 3, and are the first layer 10A (10) having the first spring constant k1 and the first layer 10A (10). Includes a second layer 10B (10) having a second spring constant k2 lower than one spring constant k1. The first layer 10A is a vibration-proof rubber formed of a synthetic rubber such as propylene rubber, and the second layer 10B is a porous resin such as a urethane sponge. That is, the first layer 10A has a higher rigidity than the second layer 10B.
 図3に示すように、第1層10Aは、第2層10Bよりもピン2に近い側に配置されている。第1層10Aは、ピン2の外周面6に取り付けられてもよい。この際、第2層10Bは、第1層10Aの外周面12に当接していてもよい。また、第2層10Bは、ピン孔3の内周面8に取り付けられていてもよい。このように、第1実施形態では、第2層10Bの内側に第1層10Aが配置されており、剛性の大きい第1層10Aが内側層に相当し、剛性の小さい第2層10Bが外側層に相当している。 As shown in FIG. 3, the first layer 10A is arranged closer to the pin 2 than the second layer 10B. The first layer 10A may be attached to the outer peripheral surface 6 of the pin 2. At this time, the second layer 10B may be in contact with the outer peripheral surface 12 of the first layer 10A. Further, the second layer 10B may be attached to the inner peripheral surface 8 of the pin hole 3. As described above, in the first embodiment, the first layer 10A is arranged inside the second layer 10B, the first layer 10A having high rigidity corresponds to the inner layer, and the second layer 10B having low rigidity is outside. Corresponds to the layer.
 また、図3に示すように、第1層10A及び第2層10Bは、ピン2の周方向全体に亘って配置されてもよい。第1実施形態では、第1層10A及び第2層10Bのそれぞれはリング状形状を有するように構成されている。 Further, as shown in FIG. 3, the first layer 10A and the second layer 10B may be arranged over the entire circumferential direction of the pin 2. In the first embodiment, each of the first layer 10A and the second layer 10B is configured to have a ring shape.
 (作用・効果)
 本開示の第1実施形態に係る牽引力伝達装置1の作用・効果について説明する。第1実施形態によれば、牽引リンク4を牽引する牽引力が比較的小さい場合、図4の第1領域R1に示すように、第1層10Aおよび第2層10Bのそれぞれについて、荷重(牽引力)と変位とがばね定数によって規定される線形の関係が成立する。このため、軌道式車両100の等速時(加減速の程度が小さい場合を含む。)において、ばね定数が相対的に小さい第2ばね定数k2を有する第2層10Bが主として変形することとなり、第2層10Bによって牽引力伝達装置1から車体102に伝達される振動(例えば、電動機106の振動)を効果的に抑制できる。
(Action / effect)
The operation and effect of the traction force transmission device 1 according to the first embodiment of the present disclosure will be described. According to the first embodiment, when the traction force for traction of the traction link 4 is relatively small, the load (traction force) is applied to each of the first layer 10A and the second layer 10B as shown in the first region R1 of FIG. A linear relationship is established between and displacement, which is defined by the spring constant. Therefore, at the constant speed of the track-type vehicle 100 (including the case where the degree of acceleration / deceleration is small), the second layer 10B having the second spring constant k2 having a relatively small spring constant is mainly deformed. The vibration transmitted from the traction force transmission device 1 to the vehicle body 102 (for example, the vibration of the electric motor 106) can be effectively suppressed by the second layer 10B.
 これに対し、図4の第2領域R2に示すように、荷重(牽引力)の増加に伴い、第2層10Bにおける荷重と変位とがばね定数によって規定される線形の範囲を逸脱すると、第2層10Bが実質的にそれ以上変形しないことになり、それ以降は(荷重Fを超えると)、ばね定数が相対的に大きい第1ばね定数k1を有する第1層10Aが主として変形することになり、牽引力を車体102に適切に伝達することができるようになる。よって、加減速時における牽引力の伝達や等速時における振動の抑制を効果的に機能させることができる。また、第1層10A及び第2層10Bの厚さやばね特性を管理することで、振動抑制に適した状態と牽引力の伝達に適した状態とで、中間層10の振る舞いを適切に制御できる。 On the other hand, as shown in the second region R2 of FIG. 4, when the load and the displacement in the second layer 10B deviate from the linear range defined by the spring constant as the load (traction force) increases, the second layer 10B The layer 10B will not be substantially deformed any more, and thereafter (when the load F is exceeded), the first layer 10A having the first spring constant k1 having a relatively large spring constant will be mainly deformed. , The traction force can be appropriately transmitted to the vehicle body 102. Therefore, it is possible to effectively function the transmission of the traction force at the time of acceleration / deceleration and the suppression of the vibration at the time of constant speed. Further, by controlling the thickness and spring characteristics of the first layer 10A and the second layer 10B, the behavior of the intermediate layer 10 can be appropriately controlled in a state suitable for vibration suppression and a state suitable for transmission of traction force.
 また、第1実施形態によれば、第1層10Aはピン2の外周面6に取り付けられているので、第1層10Aの内周面のピン2の外周面6に対する摺動が阻止され、第1層10Aの内周面の摩耗を抑制できる。また、第2層10Bはピン孔3の内周面8に取り付けられているので、第2層10Bの外周面のピン孔3の内周面8に対する摺動が阻止され、第2層10Bの外周面の摩耗を抑制できる。 Further, according to the first embodiment, since the first layer 10A is attached to the outer peripheral surface 6 of the pin 2, the sliding of the inner peripheral surface of the first layer 10A with respect to the outer peripheral surface 6 of the pin 2 is prevented. Wear on the inner peripheral surface of the first layer 10A can be suppressed. Further, since the second layer 10B is attached to the inner peripheral surface 8 of the pin hole 3, the outer peripheral surface of the second layer 10B is prevented from sliding with respect to the inner peripheral surface 8 of the pin hole 3, and the second layer 10B is prevented from sliding. Wear on the outer peripheral surface can be suppressed.
 また、第1実施形態によれば、牽引力が作用する方向が変化しても、ピン2の外周面6とピン孔3の内周面8との間には、第1層10A及び第2層10Bを含む複数の中間層10が形成されているので、加減速時における牽引力の伝達や等速時における振動の抑制を効果的に機能させることができる。 Further, according to the first embodiment, even if the direction in which the traction force acts changes, the first layer 10A and the second layer are between the outer peripheral surface 6 of the pin 2 and the inner peripheral surface 8 of the pin hole 3. Since a plurality of intermediate layers 10 including 10B are formed, it is possible to effectively function the transmission of traction force at the time of acceleration / deceleration and the suppression of vibration at the time of constant velocity.
 また、第1実施形態によれば、軌道式車両100は牽引力伝達装置1を備えているので、加減速時における牽引力の伝達や等速時における振動の抑制を効果的に機能させることができる軌道式車両100を提供することができる。 Further, according to the first embodiment, since the track type vehicle 100 includes the traction force transmission device 1, the track can effectively transmit the traction force at the time of acceleration / deceleration and suppress the vibration at the constant speed. The type vehicle 100 can be provided.
 尚、第1実施形態では、複数の中間層10が、第1層10Aと第2層10Bとを含む場合を例にして説明したが、本開示はこの実施形態に限定されない。例えば、複数の中間層10は、第1層10A及び第2層10Bに加え、第1ばね定数k1及び第2ばね定数k2とは異なるばね定数を有する第3層を含んでもよい。また、幾つかの実施形態では、複数の中間層10は、第1層10Aと2つの第2層10Bと、を含み、第1層10Aは2つの第2層10Bの間に配置されている。 In the first embodiment, the case where the plurality of intermediate layers 10 include the first layer 10A and the second layer 10B has been described as an example, but the present disclosure is not limited to this embodiment. For example, the plurality of intermediate layers 10 may include, in addition to the first layer 10A and the second layer 10B, a third layer having a spring constant different from the first spring constant k1 and the second spring constant k2. Also, in some embodiments, the plurality of intermediate layers 10 includes a first layer 10A and two second layers 10B, the first layer 10A being located between the two second layers 10B. ..
 また、第1実施形態では、第1ばね定数k1を有する第1層10Aが内側層であり、第1ばね定数k1よりも低い第2ばね定数k2を有する第2層10Bが外側層であったが、本開示はこの実施形態に限定されない。幾つかの実施形態では、複数の中間層10は、第1ばね定数を有する第1層と、第1ばね定数よりも低い第2ばね定数を有する第2層と、を含み、第2層10Bは、第1層10Aよりもピン2に近い側に配置されている。 Further, in the first embodiment, the first layer 10A having the first spring constant k1 is the inner layer, and the second layer 10B having the second spring constant k2 lower than the first spring constant k1 is the outer layer. However, the present disclosure is not limited to this embodiment. In some embodiments, the plurality of intermediate layers 10 comprises a first layer having a first spring constant and a second layer having a second spring constant lower than the first spring constant, the second layer 10B. Is arranged closer to the pin 2 than the first layer 10A.
 また、第1実施形態では、第1層10A及び第2層10Bは、ピン2の周方向全体に亘って配置されていたが、本開示は、この実施形態に限定されない。第1層10A及び第2層10Bは、ピン2の周方向の一部に亘って配置されてもよい。この場合、第1層10A及び第2層10Bは、例えば板バネであってもよい。 Further, in the first embodiment, the first layer 10A and the second layer 10B are arranged over the entire circumferential direction of the pin 2, but the present disclosure is not limited to this embodiment. The first layer 10A and the second layer 10B may be arranged over a part of the circumferential direction of the pin 2. In this case, the first layer 10A and the second layer 10B may be, for example, leaf springs.
 (第1実施形態の変形例)
 図5を参照して、本開示の第1実施形態に係る牽引力伝達装置1の変形例について説明する。図5に示すように、牽引リンク4の延在方向に平行、且つ、ピン2の中心軸14を含む面を第1面S1と定義し、第1面S1に直交し中心軸14を含む面を第2面S2と定義する。第1面S1に沿った断面内における第2層10Bに対する第1層10Aの第1の厚さ比(=a1/b1)は、第2面S2に沿った断面内における第2層10Bに対する第1層10Aの第2の厚さ比(=a2/b2)よりも大きい。
(Modified example of the first embodiment)
A modified example of the traction force transmission device 1 according to the first embodiment of the present disclosure will be described with reference to FIG. As shown in FIG. 5, a surface parallel to the extending direction of the traction link 4 and including the central axis 14 of the pin 2 is defined as the first surface S1, which is orthogonal to the first surface S1 and includes the central axis 14. Is defined as the second surface S2. The first thickness ratio (= a1 / b1) of the first layer 10A to the second layer 10B in the cross section along the first surface S1 is the first to the second layer 10B in the cross section along the second surface S2. It is larger than the second thickness ratio (= a2 / b2) of one layer 10A.
 図示した実施形態では、第1の厚さ比(=a1/b1)は、ピン2よりも後方に位置する第1層10A及び第2層10Bの厚さを用いて算出されている。また、第2の厚さ比(=a2/b2)は、延在方向とは垂直な垂直方向において、ピン2よりも垂直方向一方に位置する第1層10A及び第2層10Bの厚さを用いて算出されている。また、第1層10Aは牽引リンク4の延在方向に沿って延びる長軸を有する楕円形状を有している。第2層10Bは牽引リンク4の延在方向と垂直な方向に沿って延びる長軸を有する楕円形状を有している。 In the illustrated embodiment, the first thickness ratio (= a1 / b1) is calculated using the thicknesses of the first layer 10A and the second layer 10B located behind the pin 2. The second thickness ratio (= a2 / b2) is the thickness of the first layer 10A and the second layer 10B located on one side in the vertical direction with respect to the pin 2 in the vertical direction perpendicular to the extending direction. Calculated using. Further, the first layer 10A has an elliptical shape having a long axis extending along the extending direction of the traction link 4. The second layer 10B has an elliptical shape having a long axis extending along a direction perpendicular to the extending direction of the traction link 4.
 第1実施形態の変形例によれば、牽引リンク4の延在方向に沿った牽引力は、複数の中間層10のうち第2層10Bに対する第1層10Aの厚さ比が相対的に大きい領域(第1面S1と交差する領域)に作用することになる。この領域では、他の領域に比べてばね定数が相対的に大きい第1層10Aの影響力が大きいため、牽引力を効果的に懸架枠118に伝達することができる。他方、牽引リンク4の延在方向とは無関係に生じ得る振動は、複数の中間層10のうち第2層10Bに対する第1層10Aの厚さ比が相対的に小さい領域(第2面S2と交差する領域)において、ばね定数が相対的に小さい第2層10Bによって効果的に抑制可能である。 According to the modification of the first embodiment, the traction force along the extending direction of the traction link 4 is a region in which the thickness ratio of the first layer 10A to the second layer 10B is relatively large among the plurality of intermediate layers 10. It acts on (the region intersecting the first surface S1). In this region, the influence of the first layer 10A, which has a relatively large spring constant as compared with the other regions, is large, so that the traction force can be effectively transmitted to the suspension frame 118. On the other hand, the vibration that can occur regardless of the extending direction of the traction link 4 is a region in which the thickness ratio of the first layer 10A to the second layer 10B of the plurality of intermediate layers 10 is relatively small (with the second surface S2). In the intersecting region), it can be effectively suppressed by the second layer 10B having a relatively small spring constant.
 <第2実施形態>
 図6を参照して、本開示の第2実施形態に係る牽引力伝達装置11について説明する。第2実施形態は、複数の中間層10がゴム層10Cと粘性流体層10Dとを含む点で第1実施形態とは異なるが、それ以外の構成は第1実施形態で説明した構成と同じである。第2実施形態において、第1実施形態の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<Second Embodiment>
The traction force transmission device 11 according to the second embodiment of the present disclosure will be described with reference to FIG. The second embodiment is different from the first embodiment in that the plurality of intermediate layers 10 include the rubber layer 10C and the viscous fluid layer 10D, but the other configurations are the same as the configurations described in the first embodiment. be. In the second embodiment, the same components as those of the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
 図6に示すように、牽引力伝達装置11は、ピン2と、ピン2が嵌合可能なピン孔3を有する牽引リンク4と、ピン4の外周面6とピン孔3の内周面8との間に設けられる複数の中間層10と、を備える。そして、複数の中間層10は、ゴム層10C(10)と、ゴム層10Cの外周側に位置する粘性流体層10D(10)と、を含む。 As shown in FIG. 6, the traction force transmission device 11 includes a pin 2, a traction link 4 having a pin hole 3 into which the pin 2 can be fitted, an outer peripheral surface 6 of the pin 4, and an inner peripheral surface 8 of the pin hole 3. A plurality of intermediate layers 10 provided between the two are provided. The plurality of intermediate layers 10 include a rubber layer 10C (10) and a viscous fluid layer 10D (10) located on the outer peripheral side of the rubber layer 10C.
 ゴム層10Cは、第1実施形態で説明した第1層10Aと同じものであってもよく、例えば、プロピレンゴム等の合成ゴムによって形成される防振ゴムである。粘性流体層10Dは、潤滑油(グリース)のような粘性流体を含んでいる。この粘性流体層10Dは、ゴム層10Cの外周面とピン孔3の内周面8との間に封入されている。 The rubber layer 10C may be the same as the first layer 10A described in the first embodiment, and is, for example, a vibration-proof rubber formed of synthetic rubber such as propylene rubber. The viscous fluid layer 10D contains a viscous fluid such as lubricating oil (grease). The viscous fluid layer 10D is sealed between the outer peripheral surface of the rubber layer 10C and the inner peripheral surface 8 of the pin hole 3.
 また、図6に示すように、複数の中間層10は、ゴム層10Cと粘性流体層10Dとの間に配置される保護膜層10E(110)をさらに含んでもよい。この保護膜層10Eは、耐油性に優れるニトリル系、シリコーン系の合成ゴムによって形成される。尚、保護膜層10Eは、この実施形態に限定されず、粘性流体の化学的特性や粘性流体の構造による機械的特性を考慮した材料(樹脂材料、ゴム材料、又はエストラマ)によって形成される。 Further, as shown in FIG. 6, the plurality of intermediate layers 10 may further include a protective film layer 10E (110) arranged between the rubber layer 10C and the viscous fluid layer 10D. The protective film layer 10E is formed of a nitrile-based or silicone-based synthetic rubber having excellent oil resistance. The protective film layer 10E is not limited to this embodiment, and is formed of a material (resin material, rubber material, or elastomer) in consideration of the chemical properties of the viscous fluid and the mechanical properties due to the structure of the viscous fluid.
 第2実施形態によれば、等速時(加減速の程度が小さい場合を含む。)において、牽引リンク4に対するピン2の相対的な変位に抗する減衰力(摩擦抵抗)が粘性流体層10Dにより発生し、振動を効果的に抑制できる。また、牽引力が大きい加減速時において、ゴム層10Cによって粘性流体層10Dに含まれる粘性流体が押しのけられ、ゴム層10Cの内周面がピン2の外周面6に当接するとともに、ゴム層10Cの外周面がピン孔3の内周面8に当接する。このため、ゴム層10Cを介して、牽引リンク4の牽引力をピン2に効果的に伝達することができる。 According to the second embodiment, at a constant velocity (including the case where the degree of acceleration / deceleration is small), the damping force (friction resistance) against the relative displacement of the pin 2 with respect to the traction link 4 is the viscous fluid layer 10D. The vibration can be effectively suppressed. Further, during acceleration / deceleration with a large traction force, the viscous fluid contained in the viscous fluid layer 10D is pushed away by the rubber layer 10C, the inner peripheral surface of the rubber layer 10C comes into contact with the outer peripheral surface 6 of the pin 2, and the rubber layer 10C The outer peripheral surface comes into contact with the inner peripheral surface 8 of the pin hole 3. Therefore, the traction force of the traction link 4 can be effectively transmitted to the pin 2 via the rubber layer 10C.
 また、第2実施形態によれば、複数の中間層10は、ゴム層10Cと粘性流体層10Dとの間に配置される保護膜層10Eを含んでいるので、粘性流体層10Dに含まれる粘性流体によってゴム層10Cが膨潤することを防止することができる。 Further, according to the second embodiment, since the plurality of intermediate layers 10 include the protective film layer 10E arranged between the rubber layer 10C and the viscous fluid layer 10D, the viscosity contained in the viscous fluid layer 10D. It is possible to prevent the rubber layer 10C from swelling due to the fluid.
 尚、第2実施形態では、粘性流体層10Dはゴム層10Cの外周側に位置していたが、本開示はこの実施形態に限定されない。幾つかの実施形態では、複数の中間層10は、ゴム層10Cと、ゴム層10Cの内周側に位置する粘性流体層10Dと、を含む。 In the second embodiment, the viscous fluid layer 10D is located on the outer peripheral side of the rubber layer 10C, but the present disclosure is not limited to this embodiment. In some embodiments, the plurality of intermediate layers 10 includes a rubber layer 10C and a viscous fluid layer 10D located on the inner peripheral side of the rubber layer 10C.
 上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.
 (1)本開示に係る牽引力伝達装置(1)は、ピン(2)と、前記ピンが嵌合可能なピン孔(3)を有する牽引リンク(4)と、前記ピンの外周面(6)と前記ピン孔の内周面(8)との間に設けられる複数の中間層(10)と、を備え、前記複数の中間層は、第1ばね定数(k1)を有する第1層(10A)と、前記第1ばね定数よりも低い第2ばね定数(k2)を有する第2層(10B)と、を含む。 (1) The traction force transmission device (1) according to the present disclosure includes a pin (2), a traction link (4) having a pin hole (3) into which the pin can be fitted, and an outer peripheral surface (6) of the pin. A first layer (10A) comprising a plurality of intermediate layers (10) provided between the pin hole and the inner peripheral surface (8) of the pin hole, and the plurality of intermediate layers having a first spring constant (k1). ) And the second layer (10B) having a second spring constant (k2) lower than the first spring constant.
 上記(1)に記載の構成によれば、牽引リンクを牽引する牽引力が比較的小さい場合、第1層および第2層のそれぞれについて、荷重と変位とがばね定数によって規定される線形の関係が成立する。このため、等速時(加減速の程度が小さい場合を含む。)において、ばね定数が相対的に小さい第2層が主として変形することとなり、第2層によって振動を効果的に抑制できる。これに対し、牽引力の増加に伴い、第2層における荷重と変位とがばね定数によって規定される線形の範囲を逸脱すると、第2層が実質的にそれ以上変形しないことになり、それ以降は、ばね定数が相対的に大きい第1層が主として変形することになり、牽引力を適切に伝達することができるようになる。よって、加減速時における牽引力の伝達や等速時における振動の抑制を効果的に機能させることができる。また、第1層及び第2層の厚さやばね特性を管理することで、振動抑制に適した状態と牽引力の伝達に適した状態とで、中間層の振る舞いを適切に制御できる。 According to the configuration described in (1) above, when the traction force for pulling the traction link is relatively small, the linear relationship between the load and the displacement is defined by the spring constant for each of the first layer and the second layer. To establish. Therefore, at a constant velocity (including the case where the degree of acceleration / deceleration is small), the second layer having a relatively small spring constant is mainly deformed, and the vibration can be effectively suppressed by the second layer. On the other hand, when the load and displacement in the second layer deviate from the linear range defined by the spring constant as the traction force increases, the second layer is substantially not deformed any more, and thereafter. , The first layer having a relatively large spring constant is mainly deformed, and the traction force can be appropriately transmitted. Therefore, it is possible to effectively function the transmission of the traction force at the time of acceleration / deceleration and the suppression of the vibration at the time of constant speed. Further, by controlling the thickness and spring characteristics of the first layer and the second layer, the behavior of the intermediate layer can be appropriately controlled in a state suitable for vibration suppression and a state suitable for transmission of traction force.
 (2)幾つかの実施形態では、上記(1)に記載の構成において、前記第1層又は前記第2層のうちの一方である内側層は、前記ピンの外周面に取り付けられ、前記第1層又は前記第2層のうちの他方である外側層は、前記内側層の外周面(12)に当接し、前記外側層は、前記ピン孔の前記内周面に取り付けられる。 (2) In some embodiments, in the configuration described in (1) above, the inner layer, which is one of the first layer or the second layer, is attached to the outer peripheral surface of the pin, and the first layer is attached. The outer layer, which is the other of the one layer or the second layer, abuts on the outer peripheral surface (12) of the inner layer, and the outer layer is attached to the inner peripheral surface of the pin hole.
 上記(2)に記載の構成によれば、内側層の内周面のピンの外周面に対する摺動が阻止されるので、内側層の内周面の摩耗を抑制できる。また、外側層の外周面のピン孔の内周面に対する摺動が阻止されるので、外側層の外周面の摩耗を抑制できる。 According to the configuration described in (2) above, the inner peripheral surface of the inner layer is prevented from sliding with respect to the outer peripheral surface of the pin, so that the wear of the inner peripheral surface of the inner layer can be suppressed. Further, since the sliding of the pin holes on the outer peripheral surface of the outer layer with respect to the inner peripheral surface is prevented, wear of the outer peripheral surface of the outer layer can be suppressed.
 (3)幾つかの実施形態では、上記(1)又は(2)に記載の構成において、前記第1層及び前記第2層は、前記ピンの周方向全体に亘って配置されている。 (3) In some embodiments, in the configuration described in (1) or (2) above, the first layer and the second layer are arranged over the entire circumferential direction of the pin.
 上記(3)に記載の構成によれば、牽引力が作用する方向が変化しても、ピンの外周面とピン孔の内周面との間には、第1層及び第2層を含む複数の中間層が形成されているので、加減速時における牽引力の伝達や等速時における振動の抑制を効果的に機能させることができる。 According to the configuration described in (3) above, even if the direction in which the traction force acts changes, there are a plurality of layers including the first layer and the second layer between the outer peripheral surface of the pin and the inner peripheral surface of the pin hole. Since the intermediate layer of the above is formed, it is possible to effectively function the transmission of the traction force at the time of acceleration / deceleration and the suppression of the vibration at the time of constant velocity.
 (4)幾つかの実施形態では、上記(1)から(3)の何れか1つに記載の構成において、前記牽引リンクの延在方向に平行、且つ、前記ピンの中心軸(14)を含む第1面(S1)に沿った断面内における前記第2層に対する前記第1層の厚さ比は、前記第1面に直交し前記中心軸を含む第2面(S2)に沿った断面内における前記第2層に対する前記第1層の厚さ比よりも大きい。 (4) In some embodiments, in the configuration according to any one of (1) to (3) above, the central axis (14) of the pin is parallel to the extending direction of the traction link. The thickness ratio of the first layer to the second layer in the cross section along the first surface (S1) including the first surface is orthogonal to the first surface and is a cross section along the second surface (S2) including the central axis. It is larger than the thickness ratio of the first layer to the second layer in the inside.
 上記(4)に記載の構成によれば、牽引リンクの延在方向に沿った牽引力は、複数の中間層のうち第2層に対する第1層の厚さ比が相対的に大きい領域(第1面と交差する領域)に作用することになる。この領域では、他の領域に比べてばね定数が相対的に大きい第1層の影響力が大きいため、牽引力を効果的に伝達することができる。他方、牽引リンクの延在方向とは無関係に生じ得る振動は、複数の中間層のうち第2層に対する第1層の厚さ比が相対的に小さい領域(第2面と交差する領域)において、ばね定数が相対的に小さい第2層によって効果的に抑制可能である。 According to the configuration described in (4) above, the traction force along the extending direction of the traction link is a region (first) in which the thickness ratio of the first layer to the second layer is relatively large among the plurality of intermediate layers. It will act on the area that intersects the surface). In this region, the influence of the first layer, which has a relatively large spring constant as compared with other regions, is large, so that the traction force can be effectively transmitted. On the other hand, the vibration that can occur regardless of the extending direction of the traction link occurs in the region where the thickness ratio of the first layer to the second layer is relatively small (the region intersecting the second surface) among the plurality of intermediate layers. , It can be effectively suppressed by the second layer having a relatively small spring constant.
 (5)本開示に係る牽引力伝達装置(11)は、ピン(2)と、前記ピンが嵌合可能なピン孔(3)を有する牽引リンク(4)と、前記ピンの外周面(6)と前記ピン孔の内周面(8)との間に設けられる複数の中間層(10)と、を備え、前記複数の中間層は、ゴム層(10C)と、前記ゴム層の内周側又は外周側に位置する粘性流体層(10D)と、を含む。 (5) The traction force transmission device (11) according to the present disclosure includes a pin (2), a traction link (4) having a pin hole (3) into which the pin can be fitted, and an outer peripheral surface (6) of the pin. A plurality of intermediate layers (10) provided between the pin hole and the inner peripheral surface (8) of the pin hole are provided, and the plurality of intermediate layers are a rubber layer (10C) and an inner peripheral side of the rubber layer. Alternatively, it includes a viscous fluid layer (10D) located on the outer peripheral side.
 上記(5)に記載の構成によれば、等速時(加減速の程度が小さい場合を含む。)において、牽引リンクに対するピンの相対的な変位に抗する減衰力が粘性流体層により発生し、振動を効果的に抑制できる。また、牽引力が大きい加減速時において、ゴム層によって粘性流体が押しのけられ、ゴム層の内周面がピンの外周面に当接し、ゴム層の外周面がピン孔の内周面に当接する。このため、ゴム層を介して、牽引リンクの牽引力をピンに効果的に伝達することができる。 According to the configuration described in (5) above, at a constant velocity (including the case where the degree of acceleration / deceleration is small), a damping force against the relative displacement of the pin with respect to the traction link is generated by the viscous fluid layer. , Vibration can be effectively suppressed. Further, during acceleration / deceleration with a large traction force, the viscous fluid is pushed away by the rubber layer, the inner peripheral surface of the rubber layer abuts on the outer peripheral surface of the pin, and the outer peripheral surface of the rubber layer abuts on the inner peripheral surface of the pin hole. Therefore, the traction force of the traction link can be effectively transmitted to the pin via the rubber layer.
 (6)幾つかの実施形態では、上記(5)に記載の構成において、前記複数の中間層は、前記ゴム層と前記粘性流体層との間に配置される保護膜層(10E)をさらに含む。 (6) In some embodiments, in the configuration described in (5) above, the plurality of intermediate layers further include a protective film layer (10E) arranged between the rubber layer and the viscous fluid layer. include.
 上記(6)に記載の構成によれば、粘性流体層に含まれる粘性流体によってゴム層が膨潤することを防止することができる。 According to the configuration described in (6) above, it is possible to prevent the rubber layer from swelling due to the viscous fluid contained in the viscous fluid layer.
 (7)幾つかの実施形態では、軌道式車両(100)は、上記(1)から(6)の何れか1つに記載の牽引力伝達装置を備える。このような構成によれば、加減速時における牽引力の伝達や等速時における振動の抑制を効果的に機能させることができる軌道式車両を提供することができる。 (7) In some embodiments, the track-type vehicle (100) includes the traction force transmission device according to any one of (1) to (6) above. According to such a configuration, it is possible to provide a track-type vehicle capable of effectively transmitting traction force at the time of acceleration / deceleration and suppressing vibration at a constant speed.
1   牽引力伝達装置(第1実施形態)
11  牽引力伝達装置(第2実施形態)
2   ピン
3   ピン孔
4   牽引リンク
6   ピンの外周面
8   ピン孔の内周面
10  中間層
10A 第1層
10B 第2層
10C ゴム層
10D 粘性流体層
10E 保護膜層
12  第1層(内側層)の外周面
14  ピンの中心軸
 
100 軌道式車両
102 車体
104 台車
105 ドライブシャフト
106 電動機
108 減速機
110 車軸
112 車輪
114 懸架装置
116 台車枠
118 懸架枠
120 空気ばね
122 電動機防振ゴム
123 上下ダンパ
124 案内部材
126 案内枠
128 案内輪
 
F   荷重
O1  軸線
S1  第1面
S2  第2面
k1  第1ばね定数
k2  第2ばね定数
1 Traction transmission device (first embodiment)
11 Traction transmission device (second embodiment)
2 Pin 3 Pin hole 4 Tow link 6 Pin outer peripheral surface 8 Pin hole inner peripheral surface 10 Intermediate layer 10A 1st layer 10B 2nd layer 10C Rubber layer 10D Viscous fluid layer 10E Protective film layer 12 1st layer (inner layer) Central axis of 14 pins on the outer peripheral surface of
100 Track type vehicle 102 Body 104 Bogie 105 Drive shaft 106 Motor 108 Reducer 110 Axle 112 Wheel 114 Suspension device 116 Bogie frame 118 Suspension frame 120 Air spring 122 Motor anti-vibration rubber 123 Vertical damper 124 Guide member 126 Guide frame 128 Guide wheel
F Load O1 Axis line S1 First surface S2 Second surface k1 First spring constant k2 Second spring constant

Claims (7)

  1.  ピンと、
     前記ピンが嵌合可能なピン孔を有する牽引リンクと、
     前記ピンの外周面と前記ピン孔の内周面との間に設けられる複数の中間層と、を備え、
     前記複数の中間層は、
      第1ばね定数を有する第1層と、
      前記第1ばね定数よりも低い第2ばね定数を有する第2層と、を含む牽引力伝達装置。
    idea,
    A traction link having a pin hole into which the pin can be fitted,
    A plurality of intermediate layers provided between the outer peripheral surface of the pin and the inner peripheral surface of the pin hole are provided.
    The plurality of intermediate layers
    The first layer having the first spring constant and
    A traction force transmitting device including a second layer having a second spring constant lower than the first spring constant.
  2.  前記第1層又は前記第2層のうちの一方である内側層は、前記ピンの外周面に取り付けられ、
     前記第1層又は前記第2層のうちの他方である外側層は、前記内側層の外周面に当接し、
     前記外側層は、前記ピン孔の前記内周面に取り付けられる、請求項1に記載の牽引力伝達装置。
    The inner layer, which is one of the first layer or the second layer, is attached to the outer peripheral surface of the pin.
    The outer layer, which is the other of the first layer or the second layer, abuts on the outer peripheral surface of the inner layer.
    The traction force transmission device according to claim 1, wherein the outer layer is attached to the inner peripheral surface of the pin hole.
  3.  前記第1層及び前記第2層は、前記ピンの周方向全体に亘って配置されている請求項1又は2に記載の牽引力伝達装置。 The traction force transmission device according to claim 1 or 2, wherein the first layer and the second layer are arranged over the entire circumferential direction of the pin.
  4.  前記牽引リンクの延在方向に平行、且つ、前記ピンの中心軸を含む第1面に沿った断面内における前記第2層に対する前記第1層の厚さ比は、前記第1面に直交し前記中心軸を含む第2面に沿った断面内における前記第2層に対する前記第1層の厚さ比よりも大きい、請求項1から3の何れか一項に記載の牽引力伝達装置。 The thickness ratio of the first layer to the second layer in the cross section parallel to the extending direction of the traction link and along the first surface including the central axis of the pin is orthogonal to the first surface. The traction force transmitting device according to any one of claims 1 to 3, which is larger than the thickness ratio of the first layer to the second layer in the cross section along the second surface including the central axis.
  5.  ピンと、
     前記ピンが嵌合可能なピン孔を有する牽引リンクと、
     前記ピンの外周面と前記ピン孔の内周面との間に設けられる複数の中間層と、を備え、
     前記複数の中間層は、
      ゴム層と、
      前記ゴム層の内周側又は外周側に位置する粘性流体層と、を含む牽引力伝達装置。
    idea,
    A traction link having a pin hole into which the pin can be fitted,
    A plurality of intermediate layers provided between the outer peripheral surface of the pin and the inner peripheral surface of the pin hole are provided.
    The plurality of intermediate layers
    With a rubber layer,
    A traction force transmission device including a viscous fluid layer located on the inner peripheral side or the outer peripheral side of the rubber layer.
  6.  前記複数の中間層は、
     前記ゴム層と前記粘性流体層との間に配置される保護膜層をさらに含む請求項5に記載の牽引力伝達装置。
    The plurality of intermediate layers
    The traction force transmission device according to claim 5, further comprising a protective film layer arranged between the rubber layer and the viscous fluid layer.
  7.  請求項1から請求項6の何れか一項に記載の牽引力伝達装置を備える、軌道式車両。 A track-type vehicle including the traction force transmission device according to any one of claims 1 to 6.
PCT/JP2021/006258 2020-03-04 2021-02-19 Traction-force transmission device and track-type vehicle WO2021177051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020036330A JP2021138234A (en) 2020-03-04 2020-03-04 Traction force transmission device, and track type vehicle
JP2020-036330 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021177051A1 true WO2021177051A1 (en) 2021-09-10

Family

ID=77612687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006258 WO2021177051A1 (en) 2020-03-04 2021-02-19 Traction-force transmission device and track-type vehicle

Country Status (2)

Country Link
JP (1) JP2021138234A (en)
WO (1) WO2021177051A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122156A1 (en) * 2022-12-05 2024-06-13 ナブテスコ株式会社 Speed reducer and construction machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237825A (en) * 2006-03-07 2007-09-20 Sei Hybrid Kk Link for railroad vehicle and manufacturing method therefor
JP2007326524A (en) * 2006-06-09 2007-12-20 Toyo Tire & Rubber Co Ltd Hauling device for railway vehicle and shock-absorbing rubber therefor
JP2014194255A (en) * 2013-03-29 2014-10-09 Railway Technical Research Institute Elastic body bush and axle box supporting device
JP2019207005A (en) * 2018-05-29 2019-12-05 積水ポリマテック株式会社 Viscous fluid-sealed damper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237825A (en) * 2006-03-07 2007-09-20 Sei Hybrid Kk Link for railroad vehicle and manufacturing method therefor
JP2007326524A (en) * 2006-06-09 2007-12-20 Toyo Tire & Rubber Co Ltd Hauling device for railway vehicle and shock-absorbing rubber therefor
JP2014194255A (en) * 2013-03-29 2014-10-09 Railway Technical Research Institute Elastic body bush and axle box supporting device
JP2019207005A (en) * 2018-05-29 2019-12-05 積水ポリマテック株式会社 Viscous fluid-sealed damper

Also Published As

Publication number Publication date
JP2021138234A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US10065663B2 (en) Steering bogie and vehicle
JP6703965B2 (en) Electric truck drive
KR101297938B1 (en) Bogie for track-guided vehicle
US11007857B2 (en) Vehicle driving apparatus
JP4994461B2 (en) Active steering bogie for railway vehicles using lever action
WO2010095284A1 (en) Low floor vehicle
CZ197898A3 (en) Suspension system of castor undercarriage axlebox
WO2021177051A1 (en) Traction-force transmission device and track-type vehicle
US3807313A (en) Linear motor-driven railway truck
KR100921549B1 (en) The self steering bogie for railway vehicle
JP4838693B2 (en) Track system
KR100659708B1 (en) The bogie traveling stability device for using mr fluid and the method thereof
JP6309596B1 (en) Rail car axle box support device
JP2018016126A (en) Power transmission device for electric truck
JP6059613B2 (en) Railcar bogie
JPS61241258A (en) Snaking preventive device for railway rolling stock
JP6093585B2 (en) Tracked vehicle
JP4356576B2 (en) Railway vehicle wheel shaft support method, railcar bogie, and railcar
KR101329001B1 (en) Independence rotating wheels suspension apparatus for low-floor vehicle
JPS604460A (en) Truck for railway rolling stock
JPH0417814B2 (en)
JP3510424B2 (en) Guide rail car traveling device
JP7212789B2 (en) Bogie for railway vehicle
CN112141153B (en) Bogie and railway vehicle with same
CN111196288B (en) Bogie and rail vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764598

Country of ref document: EP

Kind code of ref document: A1