WO2021176800A1 - Laser machining device and method for controlling laser machining device - Google Patents

Laser machining device and method for controlling laser machining device Download PDF

Info

Publication number
WO2021176800A1
WO2021176800A1 PCT/JP2020/047230 JP2020047230W WO2021176800A1 WO 2021176800 A1 WO2021176800 A1 WO 2021176800A1 JP 2020047230 W JP2020047230 W JP 2020047230W WO 2021176800 A1 WO2021176800 A1 WO 2021176800A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
pattern
laser
control unit
irradiation
Prior art date
Application number
PCT/JP2020/047230
Other languages
French (fr)
Japanese (ja)
Inventor
和美 土道
達典 阪本
克充 芦原
忠正 横井
直毅 吉武
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN202080096986.0A priority Critical patent/CN115135443A/en
Priority to DE112020006836.6T priority patent/DE112020006836T5/en
Publication of WO2021176800A1 publication Critical patent/WO2021176800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/1001Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers

Definitions

  • the present disclosure relates to a laser processing apparatus and a control method for the laser processing apparatus.
  • a laser processing device for processing an object (work) to be processed by using a laser beam.
  • a laser marker that uses laser light to mark the surface of a marking object (work) such as characters and figures (hereinafter, also referred to as "printing").
  • Patent Document 1 discloses a laser marker capable of printing a desired print pattern at a desired position by arbitrarily setting the user.
  • the processed object that has failed to be processed is discarded and reprocessed into another processed object.
  • the marker reading device may mistakenly read it.
  • the processing object to be discarded due to the processing failure includes parts having a high manufacturing cost, there is a desire to reduce the disposal of the processing object itself.
  • An object of the present disclosure is to provide a laser processing apparatus capable of reducing the number of objects to be processed that are discarded due to processing failure.
  • the laser processing apparatus includes an irradiation unit that irradiates the object to be processed with a laser beam, a processing pattern of the object to be processed, a reception unit that receives irradiation conditions of the laser light, and a processing pattern received by the reception unit. It also includes a control unit that controls irradiation of laser light based on irradiation conditions. After processing the object to be processed into a processing pattern under the irradiation conditions, the control unit reverses at least a part of the first processing area of the object to be processed between the laser light irradiation area and the laser light non-irradiation area of the processing pattern. The first process of processing the inverted pattern is performed.
  • the processing pattern formed on the processing object can be made unreadable by the reading device.
  • control unit makes the irradiation conditions for processing the inverted pattern the same as the irradiation conditions for processing the processed pattern.
  • the processing pattern formed on the processing object can be made unreadable by the reading device.
  • control unit executes the second process after the first process, and the second process processes the entire first processed area into a fill pattern composed of only the laser beam irradiation area.
  • the processing pattern formed on the object to be processed can be made unreadable by the reading device, and the processing marks can be made invisible.
  • control unit executes the third process after the first process, and the third process processes the first processing area into a processing pattern.
  • the processing pattern formed on the processing object can be made unreadable by the reading device, and can be reprocessed into the same processing object as the initial one.
  • a determination unit for determining the processing accuracy of the processing pattern is further provided, the control unit corrects the irradiation condition based on the result of the determination by the determination unit, and the third process is the irradiation condition after the correction. 1 Process the processing area into a processing pattern.
  • the processing pattern formed on the processing object can be made unreadable by the reading device, and can be reprocessed into the same processing object as the initial one. Further, since the processing is performed again under the corrected irradiation conditions, the processing accuracy is improved.
  • the processing target includes a first processing region and a second processing region different from the first processing region, and the control unit executes the third processing after the first processing and performs the third processing. Processes the second processing region into a processing pattern.
  • the processing pattern formed on the processing object can be made unreadable by the reading device, and can be reprocessed into the same processing object as the initial one.
  • the laser processing device is used to process the processing object into a processing pattern that can be read by the reading device.
  • the processing pattern formed on the processing object can be read by a reading device.
  • the control method of the laser processing apparatus is received by an irradiation unit that irradiates the object to be processed with a laser beam, a processing pattern of the object to be processed, a reception unit that receives irradiation conditions of the laser light, and a reception unit.
  • This is a method of controlling a laser processing apparatus including a control unit that controls irradiation of laser light based on a processing pattern and irradiation conditions.
  • the control unit inverts at least a part of the processing area of the processing object to be processed into the processing pattern under the irradiation conditions, the irradiation area of the laser light of the processing pattern and the non-irradiation area of the laser light.
  • the process of processing the inverted pattern is performed.
  • the processing pattern formed on the processing object can be made unreadable by the reading device.
  • the scene to which the present invention is applied is a scene in which the machined object 8 (see FIG. 1) that has failed to be machined is reworked when the machining fails. Specifically, it is a case where it is necessary to reprocess because the processing accuracy of the processing pattern formed on the processing object 8 does not satisfy a predetermined threshold value.
  • a marker reading device hereinafter, simply referred to as “reading device”. .. This eliminates the risk of the reader reading the failed machining pattern. After that, the laser marker 2 (see FIG.
  • the laser marker according to the present embodiment may have a function of performing processing other than marking such as drilling, peeling, and cutting, in addition to the function of marking characters and symbols.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a laser processing system 1.
  • the laser processing system 1 includes a laser marker 2 and an image processing device 3.
  • the laser marker 2 has a controller 21 and a marker head 26.
  • the controller 21 controls the operation of the marker head 26. Although the details will be described later, the controller 21 has a laser oscillator that oscillates the laser beam W.
  • the marker head 26 refers to the laser beam W with respect to the machining object 8 (the machining object 8 on the left side of FIG. 1) placed on the member 9 on which the machining object 8 is placed. Irradiate. Specifically, the marker head 26 scans the laser beam W on the machined surface of the object 8 to be machined. In the example of FIG. 1, when the processing (a series of processing such as scanning) for the processing object 8 is completed, the member 9 moves in the left direction (direction of the arrow in FIG. 1), and the next processing object 8 is processed. The laser beam W is applied to (the object to be processed 8 on the right side of FIG. 1).
  • the marker head 26 has a camera unit 261.
  • the camera unit 261 includes an image pickup device (specifically, a camera) and a communication device.
  • the image pickup apparatus of the camera unit 261 is configured to be able to take a picture of a predetermined area, and takes a picture of the object 8 to be processed.
  • the communication device of the camera unit 261 transmits the image data obtained by imaging to the image processing device 3 by the communication cable 12.
  • the marker head 26 is connected to the oscillator in the controller 21 by the optical fiber 28. Further, the marker head 26 is connected to the controller 21 by a control cable 29. Specifically, the marker head 26 is connected to the control board in the controller 21 by the control cable 29. Since the connection mode between the controller 21 and the marker head 26 is the same as the conventional configuration, it will not be described in detail here.
  • the image processing device 3 functions as a determination device for determining the processing accuracy of the processing pattern formed on the processing object 8.
  • the machining accuracy of the machining pattern indicates whether the machining pattern formed on the machining object 8 is formed to such an extent that information can be read by a reading device, and the machining accuracy of the machining pattern is a predetermined threshold value. If the above conditions are not satisfied, the information cannot be read even if the machining pattern is read by the reading device.
  • the image processing device 3 photographs the processing object 8 with the camera unit 261 and determines the processing accuracy of the processing pattern formed on the processing object 8 by using the image data of the photographed processing object 8.
  • the image processing device 3 scores the processing pattern for each predetermined item (for example, contrast of the processing pattern), and determines the processing accuracy of the processing pattern based on the total score.
  • the image processing device 3 is connected to the laser marker 2 (specifically, the controller 21) by a LAN (for example, an Ethernet (registered trademark) cable 11).
  • the image processing device 3 notifies the laser marker 2 of the determination result.
  • the laser marker 2 (specifically, the control unit 211 of the controller 21) corrects the irradiation conditions of the laser beam W based on the received determination result.
  • a camera unit 261 and an image processing device 3 are separately provided as a reading device for reading a processing pattern, but a reading device (for example, a code reader or the like) in which these are integrated is provided. ) May be provided on the marker head 26, or may be provided separately from the marker head 26. Further, in the laser processing system 1, the image processing device 3 is provided separately from the controller 21, but may be integrated with the controller 21. Further, in the laser processing system 1, the controller 21, the marker head 26, the camera unit 261 and the image processing device 3 may be integrated.
  • FIG. 2 is a configuration diagram showing the configuration of the laser processing system 1 in more detail.
  • the laser processing system 1 includes a controller 21, a marker head 26, and an image processing device 3 as described above.
  • the controller 21 includes a laser oscillator 240, a control board 210, a driver 220, and a driver power supply 230.
  • a display device 6 and an input device 7 can be connected to the controller 21. The display device 6 and the input device 7 are used in a situation where the user changes the setting contents in the controller 21.
  • the laser oscillator 240 includes an optical fiber 241, semiconductor lasers 242, 243, 249A to 249D, isolators 244 and 246, couplers 245 and 248, and a bandpass filter 247.
  • the semiconductor laser 242 is a seed light source that emits seed light.
  • the semiconductor laser 242 is driven by the driver 220 to emit a pulsed seed light.
  • the isolator 244 transmits light in only one direction and blocks light incident in the opposite direction to the light. Specifically, the isolator 244 passes the seed light emitted from the semiconductor laser 242 and blocks the return light from the optical fiber 241. As a result, damage to the semiconductor laser 242 can be prevented.
  • the semiconductor laser 243 is an excitation light source that emits excitation light for exciting rare earth elements added to the core of the optical fiber 241.
  • the coupler 245 combines the seed light from the semiconductor laser 242 and the excitation light from the semiconductor laser 243 and causes them to enter the optical fiber 241.
  • the excitation light incident on the optical fiber 241 from the semiconductor laser 243 via the coupler 245 is absorbed by the rare earth element contained in the core of the optical fiber 241.
  • rare earth elements are excited and a population inversion state is obtained.
  • seed light pulse light
  • seed light is amplified by this stimulated emission. That is, the seed light is amplified by injecting the seed light and the excitation light into the fiber amplifier configured by the optical fiber 241.
  • the isolator 246 passes the pulsed light output from the optical fiber 241 and blocks the light returning to the optical fiber 241.
  • the bandpass filter 247 is configured to pass light in a predetermined wavelength band.
  • the “predetermined wavelength band” is a wavelength band including the peak wavelength of the pulsed light output from the optical fiber 241.
  • the bandpass filter 247 When the naturally emitted light is emitted from the optical fiber 241, the naturally emitted light is removed by the bandpass filter 247.
  • the laser light that has passed through the bandpass filter 247 enters the optical fiber 28 provided for transmitting the laser light via the coupler 248.
  • the semiconductor lasers 249A to 249D emit excitation light in order to amplify the laser light that has passed through the bandpass filter 247 in the optical fiber 28. That is, the optical fiber 28 constitutes a fiber amplifier by combining the coupler 248 and the isolator 262 described later in the same manner as the fiber amplifier composed of the coupler 245, the optical fiber 241 and the isolator 246.
  • the coupler 248 combines the pulsed light that has passed through the bandpass filter 247 with the light from the semiconductor lasers 249A to 249D and causes them to enter the optical fiber 28.
  • the configuration of the laser oscillator 240 shown in FIG. 2 is an example, and is not limited to this.
  • the laser oscillator 240 may not include a bandpass filter 247 as long as it can obtain laser light in a predetermined wavelength band.
  • Control board 210 includes a control unit 211, a pulse generation unit 212, a storage unit 213, and a communication processing unit 214, 215, 216, 217.
  • the control unit 211 controls the overall operation of the controller 21 by controlling the pulse generation unit 212 and the driver 220. Specifically, the control unit 211 controls the overall operation of the controller 21 by executing the operating system and the application program stored in the storage unit 213.
  • the pulse generation unit 212 generates an electric signal having a predetermined repetition frequency and a predetermined pulse width.
  • the pulse generation unit 212 outputs an electric signal or stops the output of the electric signal under the control of the control unit 211.
  • the electric signal from the pulse generating unit 212 is supplied to the semiconductor laser 242.
  • the storage unit 213 stores various data in addition to the operating system and the application program.
  • the communication processing unit 214 is an interface for communicating with the marker head 26.
  • the control unit 211 transmits a control signal to the marker head 26 via the communication processing unit 214 and the control cable 29.
  • the communication processing unit 215 is an interface for communicating with the image processing device 3.
  • the control unit 211 transmits various commands to the image processing device 3 via the communication processing unit 215 and the Ethernet cable 11. Further, the control unit 211 receives a response to the above command sent from the image processing device 3 via the Ethernet cable 11 and the communication processing unit 215. For example, when the control unit 211 transmits a command instructing the notification of the determination result to the image processing device 3, the image processing device 3 determines the processing accuracy of the processing pattern and transmits the determination result to the control unit 211.
  • the communication processing unit 216 receives the input from the input device 7.
  • the input device 7 is various pointing devices (for example, a mouse, a touch pad, etc.), a keyboard, and the like.
  • the communication processing unit 216 notifies the control unit 211 of the received input.
  • the communication processing unit 217 transmits the image data generated by the control unit 211 to the display device 6.
  • the display device 6 displays an image (user interface) based on the image data.
  • An example of the user interface displayed on the display device 6 will be described later with reference to FIG.
  • the driver power supply 230 supplies power to the driver 220.
  • the driver 220 supplies the drive current to the semiconductor lasers 242, 243, 249A to 249D.
  • Each of the semiconductor lasers 242, 243, 249A to 249D oscillates when a driving current is supplied.
  • the drive current supplied to the semiconductor laser 242 is modulated by an electric signal from the pulse generating unit 212.
  • the semiconductor laser 242 oscillates in pulses and outputs pulsed light having a predetermined repeating frequency and a predetermined pulse width as seed light.
  • a continuous drive current is supplied to each of the semiconductor lasers 243, 249A to 249D by the driver 220.
  • each of the semiconductor lasers 243, 249A to 249D oscillates continuously, and the continuous light is output as the excitation light.
  • the marker head 26 includes a camera unit 261, an isolator 262, a collimator lens 263, a galvano mirror unit 264 (galvano mirror 264a in the X direction, galvano mirror 264b in the Y direction), and a condenser lens 265.
  • the isolator 262 passes the pulsed light output from the optical fiber 28 and blocks the light returning to the optical fiber 28.
  • the pulsed light that has passed through the isolator 262 is output to the atmosphere from the collimator lens 263 attached to the isolator 262 and is incident on the galvanometer mirror unit 264.
  • the condenser lens 265 collects the laser beam W incident on the galvano mirror unit 264.
  • the galvanometer mirror unit 264 scans the laser beam W in at least one direction of the first axis (specifically, the axis parallel to the arrow in FIG. 1) and the second axial direction orthogonal to the first axis. ..
  • the scanning of the laser beam W may be one-way scanning or reciprocating scanning.
  • the image processing device 3 includes a control unit 31, a storage unit 32, and communication processing units 33 and 34.
  • the control unit 31 controls the overall operation of the image processing device 3 by executing the operating system and the application program stored in the storage unit 32.
  • the storage unit 32 stores various data in addition to the operating system and the application program.
  • the communication processing unit 33 is an interface for communicating with the controller 21.
  • the control unit 31 receives a command sent from the controller 21 via the Ethernet cable 11 and the communication processing unit 33. Further, the control unit 31 transmits a response to the above command to the controller 21 via the communication processing unit 33 and the Ethernet cable 11.
  • the communication processing unit 34 is an interface for communicating with the camera unit 261 of the marker head 26.
  • the control unit 31 receives the image data sent from the camera unit 261 via the communication cable 12 and the communication processing unit 34.
  • FIG. 3 is a configuration diagram showing the hardware included in the control board 210.
  • the control board 210 includes a processor 110, a memory 120, a communication interface 130, and a pulse generation circuit 140.
  • the memory 120 includes, for example, a ROM (Read Only Memory) 121, a RAM (Random Access Memory) 122, and a flash memory 123.
  • the flash memory 123 stores the above-mentioned operating system, application program, and various types of data.
  • the memory 120 corresponds to the storage unit 213 shown in FIG.
  • the processor 110 controls the overall operation of the controller 21.
  • the control unit 211 shown in FIG. 2 is realized by the processor 110 executing an operating system and an application program stored in the memory 120. When executing the application program, various data stored in the memory 120 are referred to.
  • the communication interface 130 is for communicating with an external device (for example, an image processing device 3, a marker head 26, a display device 6, and an input device 7).
  • the communication interface 130 corresponds to the communication processing units 214,215,216,217 of FIG.
  • the pulse generation circuit 140 corresponds to the pulse generation unit 212 in FIG. That is, the pulse generation circuit 140 generates an electric signal having a predetermined repetition frequency and a predetermined pulse width based on a command from the processor 110.
  • FIG. 4 is a configuration diagram showing the hardware included in the image processing device 3.
  • the image processing apparatus 3 includes an arithmetic processing circuit 150, a memory 160, and a communication interface 170.
  • the arithmetic processing circuit 150 includes a main processor 151 and an image processing dedicated processor 152.
  • the memory 160 includes, for example, a ROM 161, a RAM 162, and a flash memory 163.
  • the flash memory 163 stores the above-mentioned operating system, application program, and various types of data.
  • the memory 160 corresponds to the storage unit 32 shown in FIG.
  • the memory 160 may be configured to include an HDD (Hard Disk Drive).
  • HDD Hard Disk Drive
  • the control unit 31 shown in FIG. 2 is realized by the arithmetic processing circuit 150 executing the operating system and the application program stored in the memory 160.
  • various data stored in the memory 160 for example, image data of the processing object 8 sent from the camera unit 261 are referred to.
  • the main processor 151 controls the overall operation of the image processing device 3.
  • the image processing dedicated processor 152 executes predetermined processing on the image data sent from the camera unit 261 of the marker head 26.
  • an ASIC Application Specific Integrated Circuit
  • the communication interface 170 is for communicating with an external device (for example, the controller 21, the camera unit 261 of the marker head 26).
  • the communication interface corresponds to the communication processing units 33 and 34 of FIG.
  • FIGS. 3 and 4 are examples, and are not limited thereto.
  • FIG. 5 is a diagram showing a user interface 700 displayed on the display device 6 by the controller 21.
  • the user interface 700 is realized by the control unit 211 (see FIG. 2) executing the application program stored in the storage unit 213 (see FIG. 2).
  • the input operation by the user in the input device 7 performed on the user interface 700 is accepted by the communication processing unit 216, and the accepted input is notified to the control unit 211.
  • the control unit 211 can switch the screen mode according to the user's operation.
  • FIG. 5 shows a screen of an edit mode used for creating and editing marking data.
  • the control unit 211 receives the user operation of clicking the button 703
  • the control unit 211 switches the screen from the edit mode screen to the operation mode screen used when actually performing marking (processing).
  • the control unit 211 switches the operation mode screen to the edit mode screen by accepting the user operation of clicking the button displayed on the operation mode screen.
  • control unit 211 When the control unit 211 receives the user operation of clicking the button 702, the control unit 211 displays the test marking screen on the display device 6. As a result, the user can confirm the created and edited marking data on the display device 6.
  • the control unit 211 accepts the input of the reference position of the object to be machined.
  • the reference position is a position (ideal position) that the user assumes that the object to be machined 8 will be located.
  • the reference position is specified by a coordinate system consisting of an X-axis and a Y-axis.
  • the control unit 211 accepts input of marking patterns (hereinafter referred to as "machining patterns") such as characters, figures, and symbols to be marked.
  • the processing pattern is a pattern that can be read by a reading device.
  • the processing pattern is drawn by the user using the drawing area 701. Since the above coordinate system is set in the drawing area 701, the control unit 211 specifies the processing pattern input by the user in the coordinate system. That is, the control unit 211 receives the processing pattern drawn (input) on the drawing area 701 by the user as position information.
  • control unit 211 accepts settings for laser beam irradiation conditions, scanning conditions, and various processes.
  • the setting column 720 is a column for setting the irradiation conditions of the laser beam.
  • the setting field 720 includes a field for inputting the output power of the laser light, the frequency of the laser light, the pulse shape of the laser light, and the processing speed.
  • the control unit 211 sets the input numerical value as the output power of the laser beam, the frequency of the laser beam, and the machining speed. do.
  • the control unit 211 sets the selected pattern as the pulse shape of the laser beam.
  • the objects to be processed mainly aluminum, iron, nickel, titanium, brass, etc.
  • the irradiation conditions of the laser beam particularly, “power” and / or “processing speed”).
  • Zinc, etc. can be processed into different colors. This is because the thermal energy applied per unit area of the object to be processed changes depending on the irradiation conditions of the laser beam. For example, by irradiating laser light under irradiation conditions that increase the thermal energy applied per unit area of the object to be processed, the object to be processed can be processed into the first color (for example, black), and the object to be processed can be processed.
  • the first color for example, black
  • the object to be processed can be processed into a second color (for example, white).
  • a method of increasing the thermal energy applied per unit area of the object to be processed for example, there are a method of increasing the power, a method of decreasing the processing speed, a method of increasing the power and decreasing the processing speed, and the like.
  • a method of reducing the thermal energy applied per unit area of the object to be processed for example, there are a method of reducing the power, a method of increasing the processing speed, a method of reducing the power and increasing the processing speed, and the like.
  • the setting field 730 is a field for setting scanning conditions.
  • the setting field 730 includes a field for inputting the scanning speed.
  • the control unit 211 sets the input numerical value as the scanning speed.
  • the setting column 741 is a column for setting the cancellation process.
  • the canceling process is a process of making a processing pattern formed on an object to be processed unreadable by a reading device.
  • the canceling process is a process of processing at least a part of the processing pattern into an inverted pattern in which the laser beam irradiation region and the laser light non-irradiation region of the processing pattern are inverted (hereinafter, also referred to as "first processing").
  • first processing The process of processing the entire area where the processing pattern is formed into a fill pattern composed of only the irradiation area of the laser beam (hereinafter, also referred to as “second processing”) is included.
  • the setting column 742 is a column for setting the reworking process.
  • the reprocessing process is a process for reprocessing an object to be processed (hereinafter, also referred to as a “third process”).
  • Setting column 743 is a column for setting lap processing.
  • the lap processing is to perform the same processing as the initial processing on top of the initial processing (hereinafter, also referred to as "fourth processing").
  • control unit 211 When the control unit 211 accepts a user operation for clicking the check boxes provided in the setting fields 741 to 743, the control unit 211 enables the processing corresponding to the clicked item.
  • the user interface 700 includes a button 750 for saving the input content (setting content) as a default value, and a button 760 for returning the input content (setting content) to the default value.
  • the control unit 211 can also write the contents set by using the user interface 700 to an external memory or transmit it to an external device, for example, in a file format. According to this, these setting contents can be transferred to a laser marker (not shown) other than the laser marker 2.
  • the canceling / reworking process is a general term for the canceling process and the reworking process.
  • the canceling / reprocessing process is performed when the initial processing fails and the processing is reprocessed. 6 to 9 will be described on the assumption that the machining accuracy does not satisfy a predetermined threshold value in the initial machining, and therefore the machining object is reworked to the same as the initial machining object.
  • FIG. 6 is a diagram showing a first example of the cancellation / reworking process.
  • the control unit 211 executes a first process as a canceling process on the machined object 8 that has failed to be machined, and then executes a rework process (third process).
  • the first processing area P of the processing object 8 is processed into the processing pattern X under the irradiation condition A.
  • the initial processing may be performed by the laser marker 2 or by another laser marker.
  • the irradiation condition A is an irradiation condition of the laser beam input by the user on the user interface 700 and received by the control unit 211.
  • the object to be processed 8 changes to various colors (for example, black, white, gray, etc.) depending on the irradiation conditions of the laser beam.
  • the irradiation condition A is an irradiation condition such that the irradiation region of the laser beam is processed into black.
  • the machining pattern X is a machining pattern input by the user on the user interface 700 and received by the control unit 211.
  • the control unit 211 When the control unit 211 receives an instruction to process the entire surface of the first processing area P into the inversion pattern Y1 (when "inversion" and “entire surface” are selected on the user interface 700 shown in FIG. 5), the control unit 211 receives. Under the irradiation condition A, all of the first processed region P is processed into an inverted pattern Y1 in which the irradiated region of the laser beam of the processed pattern X and the non-irradiated region of the laser beam are inverted (first process). As a result, although some traces of the initial processing (dotted line portion shown in "after the first processing” in the figure) remain, all of the first processing area P is processed in black (after the first processing in the figure). The processing pattern X formed in the first processing region P becomes unreadable by the reading device.
  • control unit 211 When the control unit 211 receives an instruction to process the second processing area Q into the processing pattern X (when "reprocessing" and “other position" are selected on the user interface 700 shown in FIG. 5), the control unit 211 receives the instruction to process the second processing area Q into the processing pattern X.
  • the second processing region Q is processed into the processing pattern X under the corrected irradiation condition B (third processing).
  • the second processing area Q is an area on the processing object 8 and is different from the first processing area P.
  • the object to be processed 8 is processed into the processing pattern X under the corrected irradiation condition B (see “after the third processing” in the figure).
  • the corrected irradiation condition B is set by the control unit 211.
  • the control unit 211 sets the irradiation conditions based on the determination result for the initial processing (determination result for the processing accuracy of the processing pattern X formed in the first processing area P by the initial processing) sent from the image processing device 3. It is calculated and set as the corrected irradiation condition B. Even if the processing accuracy does not satisfy a predetermined threshold value in the initial processing, the irradiation condition is corrected in the third processing, so that the processing accuracy is improved.
  • the user may set the corrected irradiation condition B on the user interface 700.
  • the machining pattern X formed by the initial machining is in an unreadable state by the reading device, so that the reading device can read the pattern X. There is no risk of misreading. Therefore, even if it is necessary to reprocess because the processing accuracy does not satisfy a predetermined threshold value, it is possible to reprocess the object 8 to be processed as the original. As a result, it is possible to reduce the number of objects to be processed 8 that are discarded due to processing failure.
  • control unit 211 may perform processing in the order of the first processing and the third processing, or may perform the processing in the order of the third processing and the first processing.
  • the cancellation / reprocessing process shown in FIG. 6 can be applied even when the object to be processed 8 is processed into an erroneous processing pattern.
  • the control unit 211 makes the erroneous processing pattern unreadable by the reader by the first processing, and in the third processing, the second processing region Q is set to the correct processing pattern under the correct irradiation conditions.
  • the correct irradiation conditions and the correct processing pattern are set by the user on the user interface 700.
  • FIG. 7 is a diagram showing a second example of the cancellation / reworking process.
  • the first example only the first process is performed as the cancellation process, but in the second example, the second process is performed in addition to the first process as the cancellation process.
  • the points different from the first example will be described.
  • control unit 211 When the control unit 211 (see FIG. 2) receives an instruction to fill under the same irradiation conditions as the initial one (when "filling" and “do not change the irradiation conditions" are selected on the user interface 700 shown in FIG. 5). Is processed into a fill pattern Z1 composed of only the irradiation region of the laser beam under the same irradiation conditions as the initial one, that is, the irradiation condition A, after the first treatment (second treatment). As a result, the trace of the initial processing (dotted line portion shown in “after the first processing” in the figure) that was visible after the first processing becomes invisible (see “after the second processing” in the figure). ), The aesthetic appearance of the object to be processed 8 is improved.
  • control unit 211 may perform processing in the order of the first processing, the second processing, and the third processing, or may perform the processing in the order of the third processing, the first processing, and the second processing.
  • the second process is a process of processing the first processing area P into a fill pattern Z1 composed of only the irradiation area of the laser beam under the same irradiation conditions as the initial process.
  • the pattern X can be made unreadable by the reader.
  • the color of the object to be processed 8 may not change easily even if the irradiation conditions of the laser beam (particularly, “power” and / or “processing speed”) are changed. In such a case, the processing pattern X may be made unreadable by the reader by executing the second process.
  • FIG. 8 is a diagram showing a third example of the cancellation / reworking process.
  • the irradiation conditions in the second treatment were the same as the initial irradiation conditions, but in the third example, the irradiation conditions in the second treatment are different from the initial irradiation conditions.
  • the processing region in the third treatment was a region different from the initial region, but in the third example, the processing region in the third treatment may be the same region as the initial region, and is different from the initial region. It may be in different areas.
  • the points different from the second example will be described.
  • the control unit 211 When the control unit 211 (see FIG. 2) receives an instruction to fill with irradiation conditions different from the initial one (when "filling" and "changing irradiation conditions" are selected on the user interface 700 shown in FIG. 5).
  • the first processing region P is processed into a fill pattern Z2 composed of only the irradiation region of the laser beam under irradiation conditions (irradiation condition C) different from the initial treatment (second treatment).
  • the irradiation condition C is an irradiation condition such that the irradiation region of the laser beam is processed into a color (for example, white) close to that of the object to be processed 8 before processing.
  • the entire first processing region P is processed white, and the trace of the initial processing (dotted line portion shown in "after the first processing” in the figure) that was visible after the first processing becomes invisible. (Refer to "after the second treatment” in the figure).
  • the aesthetic appearance of the object to be processed 8 is improved.
  • the processing region in the third processing can be set as the first processing region P.
  • control unit 211 When the control unit 211 receives an instruction to process the first processing area P into the processing pattern X (when "reprocessing" and "initial position" are selected on the user interface 700 shown in FIG. 5), the control unit 211 receives the instruction to process the first processing area P into the processing pattern X. The first processing region P is processed into the processing pattern X under the corrected irradiation condition B (third processing).
  • the control unit 211 receives an instruction to process the second processing area Q into the processing pattern X (when "reprocessing" and “other position” are selected on the user interface 700 shown in FIG. 5)
  • the control unit 211 receives the instruction to process the second processing area Q into the processing pattern X.
  • the second processing region Q is processed into the processing pattern X under the corrected irradiation condition B (third processing).
  • the processing object 8 is processed into the processing pattern X under the corrected irradiation condition B (“No. 1” in the figure). 3 After processing ”).
  • the corrected irradiation condition B may be set by the control unit 211 or may be set by the user as described in FIG.
  • the control unit 211 When the first processing area P is set as the processing area in the third processing, the control unit 211 performs the processing in the order of the first processing, the second processing, and the third processing.
  • the control unit 211 may perform the processing in the order of the first processing, the second processing, and the third processing. Then, the processing may be performed in the order of the third processing, the first processing, and the second processing.
  • FIG. 9 is a diagram showing another example of the first process.
  • the entire surface of the first processing region P was processed into an inverted pattern.
  • only a part R of the first processed region P may be processed into an inverted pattern.
  • the area R is required to include a pattern portion that is a key when reading with a reading device.
  • control unit 211 When the control unit 211 receives an instruction to process a part of the first processing area P into the inversion pattern Y2 (when "inversion" and "part” are selected on the user interface 700 shown in FIG. 5). Is processed under the irradiation condition A into an inversion pattern Y2 in which a part R of the first processing region P is inverted between the irradiation region of the laser light of the processing pattern X and the non-irradiation region of the laser light (first). process). As a result, a part of the region R of the first processing region P is processed black (see “after the first processing” in the figure). Since the area R includes a pattern portion that is a key for reading by the reading device, the processing pattern X formed in the first processing area P becomes unreadable by the reading device.
  • the method of processing only a part of the region R of the first processing region P into the inversion pattern Y2 can be applied to the above-mentioned first to third examples.
  • FIG. 10 is a diagram showing lap processing. Lap processing is to perform the same processing as the initial processing on top of the initial processing.
  • the control unit 211 When the control unit 211 (see FIG. 2) receives an instruction for lap processing (when "layer processing" is selected on the user interface 700 shown in FIG. 5), the irradiation conditions are the same as those of the initial processing, that is, Under the irradiation condition A, the first processing region P is processed into the processing pattern X. As a result, the first processing region P of the object to be processed 8 is processed again into the processing pattern X under the irradiation condition A (see “after layering” in the figure). As a result, the machining accuracy of the machining pattern X may be improved.
  • control unit 211 Even if the control unit 211 does not receive the lap processing instruction, if the processing accuracy of the processing pattern X formed by the initial processing does not satisfy a predetermined threshold value, the control unit 211 executes the lap processing. It may be. Further, the control unit 211 may correct the irradiation conditions based on the processing accuracy of the processing pattern X formed by the initial processing during the overlapping processing.
  • control unit 211 when the control unit 211 receives the instruction of the canceling / reworking process and the machining accuracy of the machining pattern X formed by the initial machining does not satisfy a predetermined threshold value, the control unit 211 cancels / cancels / reworking. Overlapping may be performed before the reworking. In such a case, when the machining accuracy of the machining pattern X satisfies a predetermined threshold value due to the overlapping machining, the control unit 211 cancels the set cancellation / reworking process setting. Even in the lap processing, if the processing accuracy of the processing pattern X does not satisfy a predetermined threshold value, the set cancellation / reprocessing process is executed.
  • the laser processing system 1 in the present embodiment has been described above.
  • the processing pattern formed on the processing object 8 by the initial processing cannot be read by the reading device. Process into a state.
  • the reading device since there is no possibility that the reading device reads the failed processing pattern, the processing pattern can be reprocessed on the same processing object 8 as the original. As a result, it is possible to reduce the number of objects to be processed 8 that are discarded due to processing failure.
  • the laser marker 2 in the present embodiment may be able to improve the processing accuracy by performing laminating processing when the processing accuracy does not satisfy a predetermined threshold value.
  • the machining accuracy satisfies a predetermined threshold value due to the lap machining
  • the canceling / reworking process becomes unnecessary, so that the work efficiency is improved.
  • the processing target 8 that is discarded due to the processing failure can be reduced by the canceling / reprocessing process.
  • the laser processing system 1 is provided with the image processing device 3, but the image processing device 3 may not be provided.
  • the processing accuracy is visually determined.
  • a reading device for example, a code reader
  • the reading device is read in a post-process of laser processing by the laser marker 2.
  • the device reads the machining pattern and determines the machining accuracy.
  • the laser marker 2 sends the product (processed object 8) to the laser processing process again, and described above. Perform cancellation / reprocessing (re-do laser processing).
  • the control unit (211) covers at least a part of the first processing region (P) of the processing target object (8).
  • a laser processing apparatus that performs a first process of processing an irradiation region of the laser beam (W) and a non-irradiation region of the laser light (W) of the processing pattern into an inverted pattern.
  • the control unit (211) executes a second process after the first process, The laser processing apparatus according to configuration 1 or 2, wherein the second processing processes the entire first processing region (P) into a fill pattern composed of only the irradiation region of the laser beam (W).
  • the control unit (211) executes a third process after the first process, The laser processing apparatus according to any one of Configurations 1 to 3, wherein the third processing processes the first processing region (P) into the processing pattern.
  • a determination unit (3) for determining the processing accuracy of the processing pattern is further provided.
  • the control unit (211) corrects the irradiation condition based on the result of the determination by the determination unit (3).
  • the processing target (8) includes the first processing region (P) and a second processing region (Q) different from the first processing region (P).
  • the control unit (211) executes a third process after the first process, The laser processing apparatus according to any one of Configurations 1 to 3, wherein the third processing processes the second processing region into the processing pattern.
  • a determination unit (3) for determining the processing accuracy of the processing pattern is further provided.
  • the control unit (211) corrects the irradiation condition based on the result of the determination by the determination unit (3).
  • a control method for a laser processing apparatus which performs a process of processing an irradiation region of the laser beam (W) and a non-irradiation region of the laser beam (W) into an inverted pattern.
  • 1 laser processing system 2 laser markers, 3 image processing devices, 6 display devices, 7 input devices, 8 processing objects, 9 members, 11 cables, 12 communication cables, 21 controllers, 26 marker heads, 28, 241 optical fibers, 29 Control cable, 31,211 control unit, 32,213 storage unit, 33,34,214,215,216,217 communication processing unit, 110 processor, 120,160 memory, 121,161 ROM, 122,162 RAM, 123, 163 Flash memory, 130, 170 communication interface, 140 pulse generation circuit, 150 arithmetic processing circuit, 151 main processor, 152 image processing dedicated processor, 210 control board, 212 pulse generator, 220 driver, 230 driver power supply, 240 laser oscillator , 242,243,249A, 249B, 249C, 249D semiconductor laser, 244,246,262 isolator, 245,248 coupler, 247 bandpass filter, 261 camera unit, 263 collimator lens, 264 galvano mirror part, 264a, 264b galvano Mirror, 2

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser machining device (2) comprises an irradiation unit (240), an acceptance unit (216) which accepts machining patterns and irradiation conditions of laser light (W), and a control unit (211) which controls irradiation of the laser light (W) on the basis of the machining patterns and irradiation conditions accepted by the acceptance unit (216). The control unit (211) carries out a first process which machines at least a portion of a first machining region (P) of an object to be machined (8) to a reversed pattern in which an irradiation region of the laser light (W) and a non-irradiation region of the laser light (W) in a machining pattern have been reversed.

Description

レーザ加工装置およびレーザ加工装置の制御方法Laser processing equipment and control method of laser processing equipment
 本開示は、レーザ加工装置およびレーザ加工装置の制御方法に関する。 The present disclosure relates to a laser processing apparatus and a control method for the laser processing apparatus.
 従来、レーザ光を用いて加工対象物(ワーク)を加工するレーザ加工装置が知られている。また、レーザ加工装置の一種として、レーザ光を用いてマーキング対象物(ワーク)の表面に、文字や図形等のマーキング(以下、「印字」とも称す)を行うレーザマーカが知られている。 Conventionally, a laser processing device for processing an object (work) to be processed by using a laser beam is known. Further, as a kind of laser processing apparatus, there is known a laser marker that uses laser light to mark the surface of a marking object (work) such as characters and figures (hereinafter, also referred to as "printing").
 例えば、特開2016-36839号公報(特許文献1)は、ユーザが任意に設定することにより所望の印字パターンを所望の位置に印字することができるレーザマーカを開示する。 For example, Japanese Patent Application Laid-Open No. 2016-36839 (Patent Document 1) discloses a laser marker capable of printing a desired print pattern at a desired position by arbitrarily setting the user.
特開2016-36839号公報Japanese Unexamined Patent Publication No. 2016-36839
 一般に、このようなレーザ加工装置の分野においては、加工に失敗した場合、加工に失敗した加工対象物を廃棄して、他の加工対象物に加工し直していた。特に、レーザマーカの場合、加工に失敗した加工パターン(例えば、2次元コードなど)が残っているとマーカ読取装置が誤って読み取る虞があった。また、加工の失敗が原因で廃棄される加工対象物には、製造コストの高い部品なども含まれるので、加工対象物自体の廃棄を減らしたいという要望がある。 Generally, in the field of such a laser processing apparatus, when processing fails, the processed object that has failed to be processed is discarded and reprocessed into another processed object. In particular, in the case of a laser marker, if a processing pattern (for example, a two-dimensional code) that has failed in processing remains, the marker reading device may mistakenly read it. Further, since the processing object to be discarded due to the processing failure includes parts having a high manufacturing cost, there is a desire to reduce the disposal of the processing object itself.
 本開示の目的は、加工の失敗により廃棄される加工対象物を減らすことができるレーザ加工装置を提供することである。 An object of the present disclosure is to provide a laser processing apparatus capable of reducing the number of objects to be processed that are discarded due to processing failure.
 この開示にかかるレーザ加工装置は、加工対象物にレーザ光を照射する照射部と、加工対象物の加工パターン、および、レーザ光の照射条件を受け付ける受付部と、受付部で受け付けた加工パターン、および、照射条件に基づいて、レーザ光の照射を制御する制御部と、を備える。制御部は、照射条件で加工対象物を加工パターンに加工した後、加工対象物の第1加工領域の少なくとも一部を、加工パターンのレーザ光の照射領域とレーザ光の非照射領域とを反転させた反転パターンに加工する第1処理を行う。 The laser processing apparatus according to this disclosure includes an irradiation unit that irradiates the object to be processed with a laser beam, a processing pattern of the object to be processed, a reception unit that receives irradiation conditions of the laser light, and a processing pattern received by the reception unit. It also includes a control unit that controls irradiation of laser light based on irradiation conditions. After processing the object to be processed into a processing pattern under the irradiation conditions, the control unit reverses at least a part of the first processing area of the object to be processed between the laser light irradiation area and the laser light non-irradiation area of the processing pattern. The first process of processing the inverted pattern is performed.
 上述の開示によれば、加工対象物に形成された加工パターンを読取装置で判読不可能な状態にすることができる。 According to the above disclosure, the processing pattern formed on the processing object can be made unreadable by the reading device.
 上述の開示において、制御部は、反転パターンに加工する照射条件と加工パターンに加工する照射条件とを同じにする。 In the above disclosure, the control unit makes the irradiation conditions for processing the inverted pattern the same as the irradiation conditions for processing the processed pattern.
 上述の開示によれば、加工対象物に形成された加工パターンを読取装置で判読不可能な状態にすることができる。 According to the above disclosure, the processing pattern formed on the processing object can be made unreadable by the reading device.
 上述の開示において、制御部は、第1処理の後に第2処理を実行し、第2処理は、第1加工領域の全てを、レーザ光の照射領域のみで構成される塗りつぶしパターンに加工する。 In the above disclosure, the control unit executes the second process after the first process, and the second process processes the entire first processed area into a fill pattern composed of only the laser beam irradiation area.
 上述の開示によれば、加工対象物に形成された加工パターンを読取装置で判読不可能な状態にすることができるとともに、加工の跡を視認不能な状態にすることができる。 According to the above disclosure, the processing pattern formed on the object to be processed can be made unreadable by the reading device, and the processing marks can be made invisible.
 上述の開示において、制御部は、第1処理の後に第3処理を実行し、第3処理は、第1加工領域を加工パターンに加工する。 In the above disclosure, the control unit executes the third process after the first process, and the third process processes the first processing area into a processing pattern.
 上述の開示によれば、加工対象物に形成された加工パターンを読取装置で判読不可能な状態にすることができるとともに、当初と同じ加工対象物に加工し直すことができる。 According to the above disclosure, the processing pattern formed on the processing object can be made unreadable by the reading device, and can be reprocessed into the same processing object as the initial one.
 上述の開示において、加工パターンの加工精度を判定する判定部をさらに備え、制御部は、判定部による判定の結果に基づいて照射条件を補正し、第3処理は、補正後の照射条件で第1加工領域を加工パターンに加工する。 In the above disclosure, a determination unit for determining the processing accuracy of the processing pattern is further provided, the control unit corrects the irradiation condition based on the result of the determination by the determination unit, and the third process is the irradiation condition after the correction. 1 Process the processing area into a processing pattern.
 上述の開示によれば、加工対象物に形成された加工パターンを読取装置で判読不可能な状態にすることができるとともに、当初と同じ加工対象物に加工し直すことができる。また、補正後の照射条件で加工し直すため、加工精度が改善される。 According to the above disclosure, the processing pattern formed on the processing object can be made unreadable by the reading device, and can be reprocessed into the same processing object as the initial one. Further, since the processing is performed again under the corrected irradiation conditions, the processing accuracy is improved.
 上述の開示において、加工対象物は、第1加工領域と、第1加工領域とは異なる第2加工領域とを含み、制御部は、第1処理の後に第3処理を実行し、第3処理は、第2加工領域を加工パターンに加工する。 In the above disclosure, the processing target includes a first processing region and a second processing region different from the first processing region, and the control unit executes the third processing after the first processing and performs the third processing. Processes the second processing region into a processing pattern.
 上述の開示によれば、加工対象物に形成された加工パターンを読取装置で判読不可能な状態にすることができるとともに、当初と同じ加工対象物に加工し直すことができる。 According to the above disclosure, the processing pattern formed on the processing object can be made unreadable by the reading device, and can be reprocessed into the same processing object as the initial one.
 上述の開示において、レーザ加工装置は、加工対象物を読取装置により判読可能な加工パターンに加工するために用いられる。 In the above disclosure, the laser processing device is used to process the processing object into a processing pattern that can be read by the reading device.
 上述の開示によれば、加工対象物に形成された加工パターンを読取装置で判読することができる。 According to the above disclosure, the processing pattern formed on the processing object can be read by a reading device.
 この開示にかかるレーザ加工装置の制御方法は、加工対象物にレーザ光を照射する照射部と、加工対象物の加工パターン、および、レーザ光の照射条件を受け付ける受付部と、受付部で受け付けた加工パターン、および、照射条件に基づいて、レーザ光の照射を制御する制御部と、を備えるレーザ加工装置を制御する方法である。制御部は、照射条件で加工パターンに加工された加工対象物に対して、加工対象物の加工領域の少なくとも一部を、加工パターンのレーザ光の照射領域とレーザ光の非照射領域とを反転させた反転パターンに加工する処理を行う。 The control method of the laser processing apparatus according to this disclosure is received by an irradiation unit that irradiates the object to be processed with a laser beam, a processing pattern of the object to be processed, a reception unit that receives irradiation conditions of the laser light, and a reception unit. This is a method of controlling a laser processing apparatus including a control unit that controls irradiation of laser light based on a processing pattern and irradiation conditions. The control unit inverts at least a part of the processing area of the processing object to be processed into the processing pattern under the irradiation conditions, the irradiation area of the laser light of the processing pattern and the non-irradiation area of the laser light. The process of processing the inverted pattern is performed.
 上述の開示によれば、加工対象物に形成された加工パターンを読取装置で判読不可能な状態にすることができる。 According to the above disclosure, the processing pattern formed on the processing object can be made unreadable by the reading device.
 本開示によれば、加工の失敗により廃棄される加工対象物を減らすことができるレーザ加工装置を提供することができる。 According to the present disclosure, it is possible to provide a laser processing apparatus capable of reducing the number of objects to be processed that are discarded due to processing failure.
レーザ加工システムの概略構成を示す構成図である。It is a block diagram which shows the schematic structure of the laser processing system. レーザ加工システムの構成をより詳細に示す構成図である。It is a block diagram which shows the structure of a laser processing system in more detail. 制御基板に含まれるハードウェアを示した構成図である。It is a block diagram which showed the hardware included in the control board. 画像処理装置に含まれるハードウェアを示した構成図である。It is a block diagram which showed the hardware included in an image processing apparatus. コントローラによって表示装置に表示されるユーザインターフェイスを示した図である。It is a figure which showed the user interface which is displayed on the display device by a controller. 打ち消し・再加工処理の第1例を示す図である。It is a figure which shows the 1st example of the cancellation / reworking process. 打ち消し・再加工処理の第2例を示す図である。It is a figure which shows the 2nd example of the cancellation / reworking process. 打ち消し・再加工処理の第3例を示す図である。It is a figure which shows the 3rd example of the cancellation / reworking process. 第1処理の他の例を示す図である。It is a figure which shows another example of the 1st process. 重ね加工を示す図である。It is a figure which shows the lap processing.
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰返さない。 An embodiment of the present invention will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 <A.適用例>
 まず、本発明が適用される場面の一例について説明する。本発明が適用される場面は、加工に失敗した場合に、加工に失敗した加工対象物8(図1参照)を加工し直す場面である。具体的には、加工対象物8上に形成された加工パターンの加工精度が所定の閾値を満たしていないために加工し直す必要がある場合である。このような場面において、まず、当初の加工によって加工対象物8上に形成された加工パターンをマーカ読取装置(以下、単に「読取装置」と称す)で判読不可能な状態に加工する必要がある。これにより、読取装置が失敗した加工パターンを読み取る虞がなくなる。その後、レーザマーカ2(図1参照)で、当初と同じ加工対象物8に加工パターンを加工し直すことができる。その結果、加工の失敗により廃棄される加工対象物8を減らすことができる。なお、本発明は、ユーザが別の加工パターンを選択した場合など、加工パターン自体が誤っていたために加工し直す必要がある場合においても適用される。
<A. Application example>
First, an example of a situation in which the present invention is applied will be described. The scene to which the present invention is applied is a scene in which the machined object 8 (see FIG. 1) that has failed to be machined is reworked when the machining fails. Specifically, it is a case where it is necessary to reprocess because the processing accuracy of the processing pattern formed on the processing object 8 does not satisfy a predetermined threshold value. In such a situation, first, it is necessary to process the processing pattern formed on the processing object 8 by the initial processing into an unreadable state by a marker reading device (hereinafter, simply referred to as “reading device”). .. This eliminates the risk of the reader reading the failed machining pattern. After that, the laser marker 2 (see FIG. 1) can be used to reprocess the processing pattern on the same processing object 8 as the original. As a result, it is possible to reduce the number of objects to be processed 8 that are discarded due to processing failure. The present invention is also applied when it is necessary to reprocess because the processing pattern itself is incorrect, such as when the user selects another processing pattern.
 以下、本実施の形態のより具体的な応用例について説明する。以下では、レーザ加工装置として、レーザマーカを例に挙げて説明する。なお、本実施の形態に係るレーザマーカは、文字や記号のマーキングを行なう機能の他に、穴開け、剥離、切断等のマーキング以外の加工を行う機能を有していてもよい。 Hereinafter, a more specific application example of this embodiment will be described. Hereinafter, a laser marker will be described as an example of the laser processing apparatus. The laser marker according to the present embodiment may have a function of performing processing other than marking such as drilling, peeling, and cutting, in addition to the function of marking characters and symbols.
 <B.マーキングシステムの概略構成>
 図1は、レーザ加工システム1の概略構成を示す構成図である。図1を参照して、レーザ加工システム1は、レーザマーカ2と、画像処理装置3とを備える。レーザマーカ2は、コントローラ21と、マーカヘッド26とを有する。
<B. Outline configuration of marking system>
FIG. 1 is a configuration diagram showing a schematic configuration of a laser processing system 1. With reference to FIG. 1, the laser processing system 1 includes a laser marker 2 and an image processing device 3. The laser marker 2 has a controller 21 and a marker head 26.
 コントローラ21は、マーカヘッド26の動作を制御する。詳細については後述するが、コントローラ21は、レーザ光Wを発振するレーザ発振器を有する。 The controller 21 controls the operation of the marker head 26. Although the details will be described later, the controller 21 has a laser oscillator that oscillates the laser beam W.
 マーカヘッド26は、コントローラ21の制御に基づき、加工対象物8を載置する部材9の上に置かれた加工対象物8(図1の左側の加工対象物8)に対して、レーザ光Wを照射する。詳しくは、マーカヘッド26は、レーザ光Wを加工対象物8の加工面上で走査させる。なお、図1の例では、加工対象物8に対する処理(走査等の一連の処理)が終了すると、部材9が左側方向(図1中の矢印の方向)に移動し、次の加工対象物8(図1の右側の加工対象物8)に対してレーザ光Wが照射される。 Under the control of the controller 21, the marker head 26 refers to the laser beam W with respect to the machining object 8 (the machining object 8 on the left side of FIG. 1) placed on the member 9 on which the machining object 8 is placed. Irradiate. Specifically, the marker head 26 scans the laser beam W on the machined surface of the object 8 to be machined. In the example of FIG. 1, when the processing (a series of processing such as scanning) for the processing object 8 is completed, the member 9 moves in the left direction (direction of the arrow in FIG. 1), and the next processing object 8 is processed. The laser beam W is applied to (the object to be processed 8 on the right side of FIG. 1).
 マーカヘッド26は、カメラユニット261を有する。カメラユニット261は、撮像装置(具体的には、カメラ)と通信装置とを有する。カメラユニット261の撮像装置は、予め定められた領域を撮像可能に構成されており、加工対象物8を撮像する。カメラユニット261の通信装置は、撮像により得られた画像データを通信ケーブル12によって画像処理装置3に送信する。 The marker head 26 has a camera unit 261. The camera unit 261 includes an image pickup device (specifically, a camera) and a communication device. The image pickup apparatus of the camera unit 261 is configured to be able to take a picture of a predetermined area, and takes a picture of the object 8 to be processed. The communication device of the camera unit 261 transmits the image data obtained by imaging to the image processing device 3 by the communication cable 12.
 マーカヘッド26は、光ファイバ28によって、コントローラ21内の発振器と接続されている。さらに、マーカヘッド26は、制御ケーブル29によって、コントローラ21と接続されている。詳しくは、マーカヘッド26は、制御ケーブル29によって、コントローラ21内の制御基板に接続されている。なお、コントローラ21とマーカヘッド26との接続態様は、従来の構成と同じであるため、ここでは詳しく説明しない。 The marker head 26 is connected to the oscillator in the controller 21 by the optical fiber 28. Further, the marker head 26 is connected to the controller 21 by a control cable 29. Specifically, the marker head 26 is connected to the control board in the controller 21 by the control cable 29. Since the connection mode between the controller 21 and the marker head 26 is the same as the conventional configuration, it will not be described in detail here.
 画像処理装置3は、加工対象物8上に形成された加工パターンの加工精度を判定するための判定装置として機能する。加工パターンの加工精度とは、加工対象物8上に形成された加工パターンが読取装置で情報を読み取ることができる程度に形成されているかを示すものであり、加工パターンの加工精度が所定の閾値を満たしていない場合には、読取装置で加工パターンを読み取ったとしても情報を読み取ることができない。画像処理装置3は、加工対象物8をカメラユニット261で撮影し、撮影された加工対象物8の画像データを用いて、加工対象物8上に形成された加工パターンの加工精度を判定する。画像処理装置3は、加工パターンをあらかじめ定められている項目(たとえば、加工パターンのコントラスト等)毎に点数化し、その総合点で、加工パターンの加工精度を判定する。画像処理装置3は、LAN(たとえば、Ethernet(登録商標)ケーブル11)によって、レーザマーカ2(具体的には、コントローラ21)と接続されている。画像処理装置3は、判定結果をレーザマーカ2に通知する。レーザマーカ2(具体的には、コントローラ21の制御部211)は、受け取った判定結果に基づき、レーザ光Wの照射条件を補正する。 The image processing device 3 functions as a determination device for determining the processing accuracy of the processing pattern formed on the processing object 8. The machining accuracy of the machining pattern indicates whether the machining pattern formed on the machining object 8 is formed to such an extent that information can be read by a reading device, and the machining accuracy of the machining pattern is a predetermined threshold value. If the above conditions are not satisfied, the information cannot be read even if the machining pattern is read by the reading device. The image processing device 3 photographs the processing object 8 with the camera unit 261 and determines the processing accuracy of the processing pattern formed on the processing object 8 by using the image data of the photographed processing object 8. The image processing device 3 scores the processing pattern for each predetermined item (for example, contrast of the processing pattern), and determines the processing accuracy of the processing pattern based on the total score. The image processing device 3 is connected to the laser marker 2 (specifically, the controller 21) by a LAN (for example, an Ethernet (registered trademark) cable 11). The image processing device 3 notifies the laser marker 2 of the determination result. The laser marker 2 (specifically, the control unit 211 of the controller 21) corrects the irradiation conditions of the laser beam W based on the received determination result.
 なお、レーザ加工システム1では、加工パターンを読み取るための読取装置として、カメラユニット261と画像処理装置3とが別々に設けられているが、これらが一体となった読取装置(たとえば、コードリーダ等)がマーカヘッド26に設けられてもよいし、マーカヘッド26とは別に設けられてもよい。また、レーザ加工システム1では、画像処理装置3は、コントローラ21と別に設けられているが、コントローラ21と一体であってもよい。また、レーザ加工システム1では、コントローラ21、マーカヘッド26、カメラユニット261、および画像処理装置3が一体であってもよい。 In the laser processing system 1, a camera unit 261 and an image processing device 3 are separately provided as a reading device for reading a processing pattern, but a reading device (for example, a code reader or the like) in which these are integrated is provided. ) May be provided on the marker head 26, or may be provided separately from the marker head 26. Further, in the laser processing system 1, the image processing device 3 is provided separately from the controller 21, but may be integrated with the controller 21. Further, in the laser processing system 1, the controller 21, the marker head 26, the camera unit 261 and the image processing device 3 may be integrated.
 <C.レーザ加工システム1の詳細構成>
 図2は、レーザ加工システム1の構成をより詳細に示す構成図である。図2を参照して、レーザ加工システム1は、上述したように、コントローラ21、マーカヘッド26、および画像処理装置3を備えている。
<C. Detailed configuration of laser processing system 1>
FIG. 2 is a configuration diagram showing the configuration of the laser processing system 1 in more detail. With reference to FIG. 2, the laser processing system 1 includes a controller 21, a marker head 26, and an image processing device 3 as described above.
 コントローラ21は、レーザ発振器240と、制御基板210と、ドライバ220と、ドライバ用電源230とを含む。コントローラ21には、表示装置6および入力装置7を接続することができる。表示装置6および入力装置7は、コントローラ21における設定内容をユーザが変更する局面等において用いられる。 The controller 21 includes a laser oscillator 240, a control board 210, a driver 220, and a driver power supply 230. A display device 6 and an input device 7 can be connected to the controller 21. The display device 6 and the input device 7 are used in a situation where the user changes the setting contents in the controller 21.
 (c1.コントローラ21)
 (1)レーザ発振器240
 レーザ発振器240について説明すると、以下のとおりである。レーザ発振器240は、光ファイバ241と、半導体レーザ242,243,249A~249Dと、アイソレータ244,246と、結合器245,248と、バンドパスフィルタ247とを備える。
(C1. Controller 21)
(1) Laser oscillator 240
The laser oscillator 240 will be described below. The laser oscillator 240 includes an optical fiber 241, semiconductor lasers 242, 243, 249A to 249D, isolators 244 and 246, couplers 245 and 248, and a bandpass filter 247.
 半導体レーザ242は、種光を発する種光源である。半導体レーザ242は、ドライバ220により駆動されて、パルス状の種光を発する。 The semiconductor laser 242 is a seed light source that emits seed light. The semiconductor laser 242 is driven by the driver 220 to emit a pulsed seed light.
 アイソレータ244は一方向の光のみを透過し、その光と逆方向に入射する光を遮断する。具体的には、アイソレータ244は、半導体レーザ242から発せられる種光を通過させるとともに、光ファイバ241からの戻り光を遮断する。これによって半導体レーザ242の損傷を防ぐことができる。 The isolator 244 transmits light in only one direction and blocks light incident in the opposite direction to the light. Specifically, the isolator 244 passes the seed light emitted from the semiconductor laser 242 and blocks the return light from the optical fiber 241. As a result, damage to the semiconductor laser 242 can be prevented.
 半導体レーザ243は、光ファイバ241のコアに添加された希土類元素を励起するための励起光を発する励起光源である。 The semiconductor laser 243 is an excitation light source that emits excitation light for exciting rare earth elements added to the core of the optical fiber 241.
 結合器245は、半導体レーザ242からの種光および半導体レーザ243からの励起光を結合させて、光ファイバ241に入射させる。 The coupler 245 combines the seed light from the semiconductor laser 242 and the excitation light from the semiconductor laser 243 and causes them to enter the optical fiber 241.
 半導体レーザ243から結合器245を介して光ファイバ241に入射した励起光は、光ファイバ241のコアに含まれる希土類元素に吸収される。これにより希土類元素が励起され、反転分布状態が得られる。この状態において、半導体レーザ242からの種光が光ファイバ241のコアに入射すると、誘導放出が生じる。この誘導放出によって種光(パルス光)が増幅される。すなわち光ファイバ241によって構成されたファイバ増幅器に種光および励起光が入射されることによって、種光が増幅される。 The excitation light incident on the optical fiber 241 from the semiconductor laser 243 via the coupler 245 is absorbed by the rare earth element contained in the core of the optical fiber 241. As a result, rare earth elements are excited and a population inversion state is obtained. In this state, when the seed light from the semiconductor laser 242 enters the core of the optical fiber 241, stimulated emission occurs. Seed light (pulse light) is amplified by this stimulated emission. That is, the seed light is amplified by injecting the seed light and the excitation light into the fiber amplifier configured by the optical fiber 241.
 アイソレータ246は、光ファイバ241から出力されたパルス光を通過させるとともに光ファイバ241に戻る光を遮断する。 The isolator 246 passes the pulsed light output from the optical fiber 241 and blocks the light returning to the optical fiber 241.
 バンドパスフィルタ247は、所定の波長帯の光を通過させるよう構成される。「所定の波長帯」とは、具体的には、光ファイバ241から出力されるパルス光のピーク波長を含む波長帯である。光ファイバ241から自然放出光が放出された場合、その自然放出光はバンドパスフィルタ247により除去される。 The bandpass filter 247 is configured to pass light in a predetermined wavelength band. Specifically, the “predetermined wavelength band” is a wavelength band including the peak wavelength of the pulsed light output from the optical fiber 241. When the naturally emitted light is emitted from the optical fiber 241, the naturally emitted light is removed by the bandpass filter 247.
 バンドパスフィルタ247を通過したレーザ光は、結合器248を介して、レーザ光を伝送するために設けられた光ファイバ28に入射する。半導体レーザ249A~249Dは、バンドパスフィルタ247を通過したレーザ光を光ファイバ28において増幅するために、励起光を発する。つまり、光ファイバ28は、結合器245と光ファイバ241とアイソレータ246とで構成されたファイバ増幅器と同じように、結合器248と後述のアイソレータ262とを組み合わせることでファイバ増幅器を構成する。 The laser light that has passed through the bandpass filter 247 enters the optical fiber 28 provided for transmitting the laser light via the coupler 248. The semiconductor lasers 249A to 249D emit excitation light in order to amplify the laser light that has passed through the bandpass filter 247 in the optical fiber 28. That is, the optical fiber 28 constitutes a fiber amplifier by combining the coupler 248 and the isolator 262 described later in the same manner as the fiber amplifier composed of the coupler 245, the optical fiber 241 and the isolator 246.
 結合器248は、バンドパスフィルタ247を通過したパルス光と、半導体レーザ249A~249Dからの光とを結合して光ファイバ28に入射させる。 The coupler 248 combines the pulsed light that has passed through the bandpass filter 247 with the light from the semiconductor lasers 249A to 249D and causes them to enter the optical fiber 28.
 なお、図2に示したレーザ発振器240の構成は、一例であって、これに限定されるものではない。たとえば、レーザ発振器240は、所定の波長帯のレーザ光を得られるのであればバンドパスフィルタ247を備えていなくてもよい。 The configuration of the laser oscillator 240 shown in FIG. 2 is an example, and is not limited to this. For example, the laser oscillator 240 may not include a bandpass filter 247 as long as it can obtain laser light in a predetermined wavelength band.
 (2)制御基板210
 制御基板210は、制御部211と、パルス発生部212と、記憶部213と、通信処理部214,215,216,217とを含む。
(2) Control board 210
The control board 210 includes a control unit 211, a pulse generation unit 212, a storage unit 213, and a communication processing unit 214, 215, 216, 217.
 制御部211は、パルス発生部212およびドライバ220を制御することによって、コントローラ21の全体の動作を制御する。詳しくは、制御部211は、記憶部213に記憶されているオペレーティングシステムとアプリケーションプログラムとを実行することにより、コントローラ21の全体の動作を制御する。 The control unit 211 controls the overall operation of the controller 21 by controlling the pulse generation unit 212 and the driver 220. Specifically, the control unit 211 controls the overall operation of the controller 21 by executing the operating system and the application program stored in the storage unit 213.
 パルス発生部212は、所定の繰り返し周波数、および、所定のパルス幅を有する電気信号を発生させる。パルス発生部212は、制御部211の制御により、電気信号を出力したり、電気信号の出力を停止したりする。パルス発生部212からの電気信号は半導体レーザ242に供給される。 The pulse generation unit 212 generates an electric signal having a predetermined repetition frequency and a predetermined pulse width. The pulse generation unit 212 outputs an electric signal or stops the output of the electric signal under the control of the control unit 211. The electric signal from the pulse generating unit 212 is supplied to the semiconductor laser 242.
 記憶部213は、オペレーティングシステムおよびアプリケーションプログラムの他に、各種のデータを記憶している。 The storage unit 213 stores various data in addition to the operating system and the application program.
 通信処理部214は、マーカヘッド26との通信を行うためのインターフェイスである。制御部211は、通信処理部214および制御ケーブル29を介して、制御信号をマーカヘッド26に送信する。 The communication processing unit 214 is an interface for communicating with the marker head 26. The control unit 211 transmits a control signal to the marker head 26 via the communication processing unit 214 and the control cable 29.
 通信処理部215は、画像処理装置3との通信を行うためのインターフェイスである。制御部211は、通信処理部215およびEthernetケーブル11を介して、各種のコマンドを画像処理装置3に送信する。また、制御部211は、Ethernetケーブル11および通信処理部215を介して、画像処理装置3から送られてくる上記コマンドに対するレスポンスを受信する。たとえば、制御部211が判定結果の通知を指示するコマンドを画像処理装置3に送信すると、画像処理装置3は加工パターンの加工精度を判定し、判定結果を制御部211に送信する。 The communication processing unit 215 is an interface for communicating with the image processing device 3. The control unit 211 transmits various commands to the image processing device 3 via the communication processing unit 215 and the Ethernet cable 11. Further, the control unit 211 receives a response to the above command sent from the image processing device 3 via the Ethernet cable 11 and the communication processing unit 215. For example, when the control unit 211 transmits a command instructing the notification of the determination result to the image processing device 3, the image processing device 3 determines the processing accuracy of the processing pattern and transmits the determination result to the control unit 211.
 通信処理部216は、入力装置7からの入力を受け付ける。入力装置7は、各種ポインティングデバイス(たとえば、マウス、タッチパッド等)やキーボード等である。通信処理部216は、受け付けた入力を制御部211に通知する。 The communication processing unit 216 receives the input from the input device 7. The input device 7 is various pointing devices (for example, a mouse, a touch pad, etc.), a keyboard, and the like. The communication processing unit 216 notifies the control unit 211 of the received input.
 通信処理部217は、制御部211によって生成された画像データを表示装置6に送信する。なお、この場合、表示装置6は、当該画像データに基づいた画像(ユーザインターフェイス)を表示する。表示装置6に表示されるユーザインターフェイスの例については、図5を参照して後述する。 The communication processing unit 217 transmits the image data generated by the control unit 211 to the display device 6. In this case, the display device 6 displays an image (user interface) based on the image data. An example of the user interface displayed on the display device 6 will be described later with reference to FIG.
 (3)ドライバ220およびドライバ用電源230
 ドライバ用電源230は、ドライバ220に電力を供給する。これによりドライバ220は半導体レーザ242,243,249A~249Dに駆動電流を供給する。半導体レーザ242,243,249A~249Dの各々は駆動電流が供給されることによってレーザ発振する。半導体レーザ242に供給される駆動電流は、パルス発生部212からの電気信号により変調される。これにより半導体レーザ242はパルス発振して、所定の繰り返し周波数および所定のパルス幅を有するパルス光を種光として出力する。一方、半導体レーザ243,249A~249Dの各々にはドライバ220により連続的な駆動電流が供給される。これにより半導体レーザ243,249A~249Dの各々は連続発振して、連続光を励起光として出力する。
(3) Driver 220 and driver power supply 230
The driver power supply 230 supplies power to the driver 220. As a result, the driver 220 supplies the drive current to the semiconductor lasers 242, 243, 249A to 249D. Each of the semiconductor lasers 242, 243, 249A to 249D oscillates when a driving current is supplied. The drive current supplied to the semiconductor laser 242 is modulated by an electric signal from the pulse generating unit 212. As a result, the semiconductor laser 242 oscillates in pulses and outputs pulsed light having a predetermined repeating frequency and a predetermined pulse width as seed light. On the other hand, a continuous drive current is supplied to each of the semiconductor lasers 243, 249A to 249D by the driver 220. As a result, each of the semiconductor lasers 243, 249A to 249D oscillates continuously, and the continuous light is output as the excitation light.
 (c2.マーカヘッド26)
 マーカヘッド26は、カメラユニット261と、アイソレータ262と、コリメータレンズ263と、ガルバノミラー部264(X方向のガルバノミラー264a,Y方向のガルバノミラー264b)と、集光レンズ265とを含む。アイソレータ262は、光ファイバ28から出力されるパルス光を通過させるとともに、光ファイバ28に戻る光を遮断する。アイソレータ262を通過したパルス光は、アイソレータ262に付随するコリメータレンズ263から大気中に出力されてガルバノミラー部264に入射する。集光レンズ265は、ガルバノミラー部264に入射したレーザ光Wを集光する。ガルバノミラー部264は、第1の軸(具体的には、図1の矢印と平行な軸)および第1の軸と直交する第2の軸方向の少なくとも一方の方向にレーザ光Wを走査する。レーザ光Wの走査は、片道走査でもよいし、往復走査でもよい。
(C2. Marker head 26)
The marker head 26 includes a camera unit 261, an isolator 262, a collimator lens 263, a galvano mirror unit 264 (galvano mirror 264a in the X direction, galvano mirror 264b in the Y direction), and a condenser lens 265. The isolator 262 passes the pulsed light output from the optical fiber 28 and blocks the light returning to the optical fiber 28. The pulsed light that has passed through the isolator 262 is output to the atmosphere from the collimator lens 263 attached to the isolator 262 and is incident on the galvanometer mirror unit 264. The condenser lens 265 collects the laser beam W incident on the galvano mirror unit 264. The galvanometer mirror unit 264 scans the laser beam W in at least one direction of the first axis (specifically, the axis parallel to the arrow in FIG. 1) and the second axial direction orthogonal to the first axis. .. The scanning of the laser beam W may be one-way scanning or reciprocating scanning.
 (c3.画像処理装置3)
 画像処理装置3は、制御部31と、記憶部32と、通信処理部33,34とを備えている。
(C3. Image processing device 3)
The image processing device 3 includes a control unit 31, a storage unit 32, and communication processing units 33 and 34.
 制御部31は、記憶部32に記憶されているオペレーティングシステムとアプリケーションプログラムとを実行することにより、画像処理装置3の全体の動作を制御する。 The control unit 31 controls the overall operation of the image processing device 3 by executing the operating system and the application program stored in the storage unit 32.
 記憶部32は、オペレーティングシステムおよびアプリケーションプログラムの他に、各種のデータを記憶している。 The storage unit 32 stores various data in addition to the operating system and the application program.
 通信処理部33は、コントローラ21との通信を行うためのインターフェイスである。制御部31は、Ethernetケーブル11および通信処理部33を介して、コントローラ21から送られてくるコマンドを受信する。また、制御部31は、通信処理部33およびEthernetケーブル11を介して、上記コマンドに対するレスポンスをコントローラ21に送信する。 The communication processing unit 33 is an interface for communicating with the controller 21. The control unit 31 receives a command sent from the controller 21 via the Ethernet cable 11 and the communication processing unit 33. Further, the control unit 31 transmits a response to the above command to the controller 21 via the communication processing unit 33 and the Ethernet cable 11.
 通信処理部34は、マーカヘッド26のカメラユニット261との通信を行なうためのインターフェイスである。制御部31は、通信ケーブル12および通信処理部34を介して、カメラユニット261から送られてくる画像データを受信する。 The communication processing unit 34 is an interface for communicating with the camera unit 261 of the marker head 26. The control unit 31 receives the image data sent from the camera unit 261 via the communication cable 12 and the communication processing unit 34.
 (c4.制御基板210および画像処理装置3のハードウェア構成)
 図3は、制御基板210に含まれるハードウェアを示した構成図である。図3を参照して、制御基板210は、プロセッサ110と、メモリ120と、通信インターフェイス130と、パルス発生回路140とを備える。
(C4. Hardware configuration of control board 210 and image processing device 3)
FIG. 3 is a configuration diagram showing the hardware included in the control board 210. With reference to FIG. 3, the control board 210 includes a processor 110, a memory 120, a communication interface 130, and a pulse generation circuit 140.
 メモリ120は、たとえば、ROM(Read Only Memory)121と、RAM(Random Access Memory)122と、フラッシュメモリ123とを含んで構成される。なお、フラッシュメモリ123には、上述したオペレーティングシステム、アプリケーションプログラム、各種のデータが記憶される。メモリ120は、図2に示した記憶部213に対応する。 The memory 120 includes, for example, a ROM (Read Only Memory) 121, a RAM (Random Access Memory) 122, and a flash memory 123. The flash memory 123 stores the above-mentioned operating system, application program, and various types of data. The memory 120 corresponds to the storage unit 213 shown in FIG.
 プロセッサ110は、コントローラ21の全体の動作を制御する。なお、図2に示した制御部211は、プロセッサ110がメモリ120に記憶されたオペレーティングシステムおよびアプリケーションプログラムを実行することにより実現される。なお、アプリケーションプログラムの実行の際には、メモリ120に記憶されている各種のデータが参照される。 The processor 110 controls the overall operation of the controller 21. The control unit 211 shown in FIG. 2 is realized by the processor 110 executing an operating system and an application program stored in the memory 120. When executing the application program, various data stored in the memory 120 are referred to.
 通信インターフェイス130は、外部装置(たとえば、画像処理装置3、マーカヘッド26、表示装置6、入力装置7)との通信を行なうためのものである。通信インターフェイス130は、図2の通信処理部214,215,216,217に対応する。 The communication interface 130 is for communicating with an external device (for example, an image processing device 3, a marker head 26, a display device 6, and an input device 7). The communication interface 130 corresponds to the communication processing units 214,215,216,217 of FIG.
 パルス発生回路140は、図2のパルス発生部212に対応する。すなわち、パルス発生回路140は、プロセッサ110からの指令に基づき、所定の繰り返し周波数、および、所定のパルス幅を有する電気信号を発生させる。 The pulse generation circuit 140 corresponds to the pulse generation unit 212 in FIG. That is, the pulse generation circuit 140 generates an electric signal having a predetermined repetition frequency and a predetermined pulse width based on a command from the processor 110.
 図4は、画像処理装置3に含まれるハードウェアを示した構成図である。図4を参照して、画像処理装置3は、演算処理回路150と、メモリ160と、通信インターフェイス170とを備える。演算処理回路150は、メインプロセッサ151と、画像処理専用プロセッサ152とを有する。 FIG. 4 is a configuration diagram showing the hardware included in the image processing device 3. With reference to FIG. 4, the image processing apparatus 3 includes an arithmetic processing circuit 150, a memory 160, and a communication interface 170. The arithmetic processing circuit 150 includes a main processor 151 and an image processing dedicated processor 152.
 メモリ160は、たとえば、ROM161と、RAM162と、フラッシュメモリ163とを含んで構成される。なお、フラッシュメモリ163には、上述したオペレーティングシステム、アプリケーションプログラム、各種のデータが記憶される。メモリ160は、図2に示した記憶部32に対応する。なお、メモリ160は、HDD(Hard Disk Drive)を備えて構成されていてもよい。 The memory 160 includes, for example, a ROM 161, a RAM 162, and a flash memory 163. The flash memory 163 stores the above-mentioned operating system, application program, and various types of data. The memory 160 corresponds to the storage unit 32 shown in FIG. The memory 160 may be configured to include an HDD (Hard Disk Drive).
 なお、図2に示した制御部31は、演算処理回路150がメモリ160に記憶されたオペレーティングシステムおよびアプリケーションプログラムを実行することにより実現される。なお、アプリケーションプログラムの実行の際には、メモリ160に記憶されている各種のデータ(たとえば、カメラユニット261から送られてきた加工対象物8の画像データ)が参照される。 The control unit 31 shown in FIG. 2 is realized by the arithmetic processing circuit 150 executing the operating system and the application program stored in the memory 160. When executing the application program, various data stored in the memory 160 (for example, image data of the processing object 8 sent from the camera unit 261) are referred to.
 メインプロセッサ151は、画像処理装置3の全体の動作を制御する。画像処理専用プロセッサ152は、マーカヘッド26のカメラユニット261から送られてきた画像データに対して、予め定められた処理を実行する。なお、画像処理専用プロセッサ152の代わりに、画像処理を行うためのASIC(Application Specific Integrated Circuit)を備えていてもよい。 The main processor 151 controls the overall operation of the image processing device 3. The image processing dedicated processor 152 executes predetermined processing on the image data sent from the camera unit 261 of the marker head 26. In addition, instead of the image processing dedicated processor 152, an ASIC (Application Specific Integrated Circuit) for performing image processing may be provided.
 通信インターフェイス170は、外部装置(たとえば、コントローラ21、マーカヘッド26のカメラユニット261)との通信を行なうためのものである。通信インターフェイスは、図2の通信処理部33,34に対応する。 The communication interface 170 is for communicating with an external device (for example, the controller 21, the camera unit 261 of the marker head 26). The communication interface corresponds to the communication processing units 33 and 34 of FIG.
 なお、図3および図4に示したハードウェア構成は、一例であって、これらに限定されるものではない。 Note that the hardware configurations shown in FIGS. 3 and 4 are examples, and are not limited thereto.
 <D.事前登録>
 図5は、コントローラ21によって表示装置6に表示されるユーザインターフェイス700を示した図である。ユーザインターフェイス700は、制御部211(図2参照)が記憶部213(図2参照)に記憶されているアプリケーションプログラムを実行することによって実現される。ユーザインターフェイス700上で行われたユーザによる入力装置7での入力操作は通信処理部216によって受け付けられ、受け付けられた入力が制御部211に通知される。
<D. Pre-registration>
FIG. 5 is a diagram showing a user interface 700 displayed on the display device 6 by the controller 21. The user interface 700 is realized by the control unit 211 (see FIG. 2) executing the application program stored in the storage unit 213 (see FIG. 2). The input operation by the user in the input device 7 performed on the user interface 700 is accepted by the communication processing unit 216, and the accepted input is notified to the control unit 211.
 制御部211は、ユーザの操作に合わせて画面モードを切り替えることができる。図5には、マーキングデータの作成および編集に用いられる編集モードの画面が示されている。制御部211は、ボタン703をクリックするユーザ操作を受け付けると、画面を、編集モードの画面から、実際にマーキング(加工)を行う際に用いられる運用モードの画面に切り替える。なお、制御部211は、運用モードの画面において表示されるボタンをクリックするユーザ操作を受け付けることにより、運用モードの画面を編集モードの画面へと切り替える。 The control unit 211 can switch the screen mode according to the user's operation. FIG. 5 shows a screen of an edit mode used for creating and editing marking data. When the control unit 211 receives the user operation of clicking the button 703, the control unit 211 switches the screen from the edit mode screen to the operation mode screen used when actually performing marking (processing). The control unit 211 switches the operation mode screen to the edit mode screen by accepting the user operation of clicking the button displayed on the operation mode screen.
 制御部211は、ボタン702をクリックするユーザ操作を受け付けると、テストマーキング画面を表示装置6に表示させる。これにより、ユーザは、作成および編集したマーキングデータを表示装置6上で確認することができる。 When the control unit 211 receives the user operation of clicking the button 702, the control unit 211 displays the test marking screen on the display device 6. As a result, the user can confirm the created and edited marking data on the display device 6.
 制御部211は、加工対象物の基準位置の入力を受け付ける。基準位置は、加工対象物8が位置するであろうとユーザが想定する位置(理想位置)である。基準位置は、X軸とY軸とからなる座標系によって特定される。 The control unit 211 accepts the input of the reference position of the object to be machined. The reference position is a position (ideal position) that the user assumes that the object to be machined 8 will be located. The reference position is specified by a coordinate system consisting of an X-axis and a Y-axis.
 制御部211は、マーキングする文字、図形、記号等、マーキングするパターン(以下、「加工パターン」と称す)の入力を受け付ける。加工パターンは、読取装置により判読可能なパターンである。加工パターンは、描画領域701を用いて、ユーザによって描画される。なお、描画領域701には、上記の座標系が設定されているので、制御部211はユーザが入力した加工パターンを座標系で特定する。すなわち、ユーザが描画領域701上で描画した(入力した)加工パターンを、制御部211は位置情報として受け付ける。 The control unit 211 accepts input of marking patterns (hereinafter referred to as "machining patterns") such as characters, figures, and symbols to be marked. The processing pattern is a pattern that can be read by a reading device. The processing pattern is drawn by the user using the drawing area 701. Since the above coordinate system is set in the drawing area 701, the control unit 211 specifies the processing pattern input by the user in the coordinate system. That is, the control unit 211 receives the processing pattern drawn (input) on the drawing area 701 by the user as position information.
 レーザ/走査タブ710が選択された状態において、制御部211は、レーザ光の照射条件、走査条件、および各種処理の設定を受け付ける。 With the laser / scanning tab 710 selected, the control unit 211 accepts settings for laser beam irradiation conditions, scanning conditions, and various processes.
 設定欄720は、レーザ光の照射条件を設定するための欄である。設定欄720は、レーザ光の出力パワー、レーザ光の周波数、レーザ光のパルス形状、および加工速度を入力するための欄を含む。制御部211は、「パワー」、「周波数」、および「加工速度」の各欄に数値が入力されると、入力された数値をレーザ光の出力パワー、レーザ光の周波数、および加工速度として設定する。また、制御部211は、「パルス形状」の欄でパターンが選択されると、選択されたパターンをレーザ光のパルス形状として設定する。 The setting column 720 is a column for setting the irradiation conditions of the laser beam. The setting field 720 includes a field for inputting the output power of the laser light, the frequency of the laser light, the pulse shape of the laser light, and the processing speed. When a numerical value is input to each of the "power", "frequency", and "machining speed" fields, the control unit 211 sets the input numerical value as the output power of the laser beam, the frequency of the laser beam, and the machining speed. do. Further, when a pattern is selected in the "pulse shape" field, the control unit 211 sets the selected pattern as the pulse shape of the laser beam.
 レーザマーカ2(図1参照)では、レーザ光の照射条件(特に、「パワー」および/または「加工速度」)を変えることで、加工対象物(主に、アルミ、鉄、ニッケル、チタン、真鍮、亜鉛等)を異なる色に加工することができる。これは、レーザ光の照射条件によって、加工対象物の単位面積あたりに加わる熱エネルギーが変化するからである。たとえば、加工対象物の単位面積あたりに加わる熱エネルギーが大きくなるような照射条件でレーザ光を照射すると、加工対象物を第1の色(たとえば、黒色)に加工することができ、加工対象物の単位面積あたりに加わる熱エネルギーが小さくなるような照射条件でレーザ光を照射すると、加工対象物を第2の色(たとえば、白色)に加工することができる。加工対象物の単位面積あたりに加わる熱エネルギーを大きくする方法としては、たとえば、パワーを大きくする方法、加工速度を下げる方法、または、パワーを大きくし、かつ、加工速度を下げる方法等がある。加工対象物の単位面積あたりに加わる熱エネルギーを小さくする方法としては、たとえば、パワーを小さくする方法、加工速度を上げる方法、または、パワーを小さくし、かつ、加工速度を上げる方法等がある。 In the laser marker 2 (see FIG. 1), the objects to be processed (mainly aluminum, iron, nickel, titanium, brass, etc.) are processed by changing the irradiation conditions of the laser beam (particularly, “power” and / or “processing speed”). Zinc, etc.) can be processed into different colors. This is because the thermal energy applied per unit area of the object to be processed changes depending on the irradiation conditions of the laser beam. For example, by irradiating laser light under irradiation conditions that increase the thermal energy applied per unit area of the object to be processed, the object to be processed can be processed into the first color (for example, black), and the object to be processed can be processed. By irradiating the laser beam under irradiation conditions such that the thermal energy applied per unit area of the above is small, the object to be processed can be processed into a second color (for example, white). As a method of increasing the thermal energy applied per unit area of the object to be processed, for example, there are a method of increasing the power, a method of decreasing the processing speed, a method of increasing the power and decreasing the processing speed, and the like. As a method of reducing the thermal energy applied per unit area of the object to be processed, for example, there are a method of reducing the power, a method of increasing the processing speed, a method of reducing the power and increasing the processing speed, and the like.
 設定欄730は、走査条件を設定するための欄である。設定欄730は、走査速度を入力するための欄を含む。制御部211は、「移動速度」の欄に数値が入力されると、入力された数値を走査速度として設定する。 The setting field 730 is a field for setting scanning conditions. The setting field 730 includes a field for inputting the scanning speed. When a numerical value is input in the "moving speed" field, the control unit 211 sets the input numerical value as the scanning speed.
 設定欄741は、打ち消し処理を設定するための欄である。打ち消し処理は、加工対象物上に形成された加工パターンを読取装置で判読不可能な状態にする処理である。打ち消し処理は、加工パターンの少なくとも一部を、加工パターンのレーザ光の照射領域とレーザ光の非照射領域とを反転させた反転パターンに加工する処理(以下、「第1処理」とも称す)と、加工パターンが形成されている領域の全てを、レーザ光の照射領域のみで構成される塗りつぶしパターンに加工する処理(以下、「第2処理」とも称す)とを含む。 The setting column 741 is a column for setting the cancellation process. The canceling process is a process of making a processing pattern formed on an object to be processed unreadable by a reading device. The canceling process is a process of processing at least a part of the processing pattern into an inverted pattern in which the laser beam irradiation region and the laser light non-irradiation region of the processing pattern are inverted (hereinafter, also referred to as "first processing"). , The process of processing the entire area where the processing pattern is formed into a fill pattern composed of only the irradiation area of the laser beam (hereinafter, also referred to as “second processing”) is included.
 設定欄742は、再加工処理を設定するための欄である。再加工処理は、加工対象物を再度加工する処理(以下、「第3処理」とも称す)である。 The setting column 742 is a column for setting the reworking process. The reprocessing process is a process for reprocessing an object to be processed (hereinafter, also referred to as a “third process”).
 設定欄743は、重ね加工を設定するための欄である。重ね加工は、当初の加工に重ねて当初と同じ加工をすること(以下、「第4処理」とも称す)である。 Setting column 743 is a column for setting lap processing. The lap processing is to perform the same processing as the initial processing on top of the initial processing (hereinafter, also referred to as "fourth processing").
 制御部211は、設定欄741~設定欄743に設けられたチェックボックスをクリックするユーザ操作を受け付けると、クリックされた項目に対応する処理を有効にする。 When the control unit 211 accepts a user operation for clicking the check boxes provided in the setting fields 741 to 743, the control unit 211 enables the processing corresponding to the clicked item.
 ユーザインターフェイス700は、入力した内容(設定内容)をデフォルト値として保存するためのボタン750と、入力した内容(設定内容)をデフォルト値に戻すためのボタン760とを含む。 The user interface 700 includes a button 750 for saving the input content (setting content) as a default value, and a button 760 for returning the input content (setting content) to the default value.
 制御部211は、ユーザインターフェイス700を用いて設定された内容を、たとえば、ファイル形式で、外部メモリに書き込み、または、外部の機器に送信することも可能である。これによれば、レーザマーカ2以外の他のレーザマーカ(図示せず)に、これらの設定内容を移行させることができる。 The control unit 211 can also write the contents set by using the user interface 700 to an external memory or transmit it to an external device, for example, in a file format. According to this, these setting contents can be transferred to a laser marker (not shown) other than the laser marker 2.
 <E.打ち消し・再加工処理>
 図6~図9を参照して、レーザマーカ2(図1参照)、特に制御部211(図2参照)による打ち消し・再加工処理について説明する。打ち消し・再加工処理は、打ち消し処理と再加工処理とを総称したものである。打ち消し・再加工処理は、当初の加工に失敗し、加工し直す場合に行われる。図6~図9では、当初の加工において加工精度が所定の閾値を満たさなかったために、当初と同じ加工対象物に加工し直すという想定で説明する。
<E. Cancellation / reworking>
With reference to FIGS. 6 to 9, the canceling / reworking process by the laser marker 2 (see FIG. 1), particularly the control unit 211 (see FIG. 2) will be described. The canceling / reworking process is a general term for the canceling process and the reworking process. The canceling / reprocessing process is performed when the initial processing fails and the processing is reprocessed. 6 to 9 will be described on the assumption that the machining accuracy does not satisfy a predetermined threshold value in the initial machining, and therefore the machining object is reworked to the same as the initial machining object.
 図6は、打ち消し・再加工処理の第1例を示す図である。第1例では、制御部211(図2参照)は、加工に失敗した加工対象物8に対し、打ち消し処理として第1処理を実行した後、再加工処理(第3処理)を実行する。 FIG. 6 is a diagram showing a first example of the cancellation / reworking process. In the first example, the control unit 211 (see FIG. 2) executes a first process as a canceling process on the machined object 8 that has failed to be machined, and then executes a rework process (third process).
 図中の「当初の加工」に示すように、加工対象物8の第1加工領域Pが照射条件Aで加工パターンXに加工されている。当初の加工は、レーザマーカ2によるものであってもよいし、他のレーザマーカによるものであってもよい。照射条件Aは、ユーザがユーザインターフェイス700上で入力し、制御部211によって受け付けられたレーザ光の照射条件である。加工対象物8は、レーザ光の照射条件によって、様々な色(たとえば、黒、白、グレー等)に変化する。図6では、照射条件Aは、レーザ光の照射領域が黒く加工されるような照射条件とする。加工パターンXは、ユーザがユーザインターフェイス700上で入力し、制御部211によって受け付けられた加工パターンである。 As shown in "Initial processing" in the figure, the first processing area P of the processing object 8 is processed into the processing pattern X under the irradiation condition A. The initial processing may be performed by the laser marker 2 or by another laser marker. The irradiation condition A is an irradiation condition of the laser beam input by the user on the user interface 700 and received by the control unit 211. The object to be processed 8 changes to various colors (for example, black, white, gray, etc.) depending on the irradiation conditions of the laser beam. In FIG. 6, the irradiation condition A is an irradiation condition such that the irradiation region of the laser beam is processed into black. The machining pattern X is a machining pattern input by the user on the user interface 700 and received by the control unit 211.
 制御部211は、第1加工領域Pの全面を反転パターンY1に加工する指示を受け付けた場合(図5に示すユーザインターフェイス700上で「反転」および「全面」が選択された場合)には、照射条件Aで、第1加工領域Pの全てを、加工パターンXのレーザ光の照射領域とレーザ光の非照射領域とを反転させた反転パターンY1に加工する(第1処理)。これにより、当初の加工の跡(図中「第1処理後」に示す点線部)が多少残っているものの、第1加工領域Pの全てが黒く加工されるので(図中「第1処理後」を参照)、第1加工領域Pに形成されていた加工パターンXは読取装置で判読不可能な状態になる。 When the control unit 211 receives an instruction to process the entire surface of the first processing area P into the inversion pattern Y1 (when "inversion" and "entire surface" are selected on the user interface 700 shown in FIG. 5), the control unit 211 receives. Under the irradiation condition A, all of the first processed region P is processed into an inverted pattern Y1 in which the irradiated region of the laser beam of the processed pattern X and the non-irradiated region of the laser beam are inverted (first process). As a result, although some traces of the initial processing (dotted line portion shown in "after the first processing" in the figure) remain, all of the first processing area P is processed in black (after the first processing in the figure). The processing pattern X formed in the first processing region P becomes unreadable by the reading device.
 制御部211は、第2加工領域Qを加工パターンXに加工する指示を受け付けた場合(図5に示すユーザインターフェイス700上で「再加工」および「他の位置」が選択された場合)には、補正後の照射条件Bで第2加工領域Qを加工パターンXに加工する(第3処理)。第2加工領域Qは、加工対象物8上の領域であって、第1加工領域Pとは異なる領域である。これにより、加工対象物8が補正後の照射条件Bで加工パターンXに加工される(図中「第3処理後」を参照)。補正後の照射条件Bは、制御部211によって設定される。制御部211は、画像処理装置3から送られてくる当初の加工に対する判定結果(当初の加工によって第1加工領域Pに形成された加工パターンXの加工精度に対する判定結果)を基に照射条件を算出し、それを補正後の照射条件Bとして設定する。当初の加工において加工精度が所定の閾値を満たしていなかったとしても、第3処理において照射条件が補正されるので、加工精度が改善される。なお、ユーザが、ユーザインターフェイス700上で補正後の照射条件Bを設定してもよい。 When the control unit 211 receives an instruction to process the second processing area Q into the processing pattern X (when "reprocessing" and "other position" are selected on the user interface 700 shown in FIG. 5), the control unit 211 receives the instruction to process the second processing area Q into the processing pattern X. The second processing region Q is processed into the processing pattern X under the corrected irradiation condition B (third processing). The second processing area Q is an area on the processing object 8 and is different from the first processing area P. As a result, the object to be processed 8 is processed into the processing pattern X under the corrected irradiation condition B (see “after the third processing” in the figure). The corrected irradiation condition B is set by the control unit 211. The control unit 211 sets the irradiation conditions based on the determination result for the initial processing (determination result for the processing accuracy of the processing pattern X formed in the first processing area P by the initial processing) sent from the image processing device 3. It is calculated and set as the corrected irradiation condition B. Even if the processing accuracy does not satisfy a predetermined threshold value in the initial processing, the irradiation condition is corrected in the third processing, so that the processing accuracy is improved. The user may set the corrected irradiation condition B on the user interface 700.
 図6に示すように、加工に失敗した加工対象物8を再加工したとしても、当初の加工によって形成された加工パターンXは読取装置で判読不可能な状態になっているので、読取装置が読み取りを誤る虞はない。したがって、加工精度が所定の閾値を満たしていないために加工し直す必要がある場合であっても、当初と同じ加工対象物8に加工し直すことができる。これにより、加工の失敗により廃棄される加工対象物8を減らすことができる。 As shown in FIG. 6, even if the machining object 8 that has failed in machining is reworked, the machining pattern X formed by the initial machining is in an unreadable state by the reading device, so that the reading device can read the pattern X. There is no risk of misreading. Therefore, even if it is necessary to reprocess because the processing accuracy does not satisfy a predetermined threshold value, it is possible to reprocess the object 8 to be processed as the original. As a result, it is possible to reduce the number of objects to be processed 8 that are discarded due to processing failure.
 なお、制御部211は、第1処理、第3処理の順に処理を行ってもよいし、第3処理、第1処理の順に処理を行ってもよい。 Note that the control unit 211 may perform processing in the order of the first processing and the third processing, or may perform the processing in the order of the third processing and the first processing.
 また、図6に示す打ち消し・再加工処理は、加工対象物8が誤った加工パターンに加工されてしまった場合にも適用することができる。このような場合には、制御部211は、第1処理によって、誤った加工パターンを読取装置で判読不可能な状態にし、第3処理において、正しい照射条件で第2加工領域Qを正しい加工パターンに加工する。正しい照射条件と正しい加工パターンは、ユーザがユーザインターフェイス700上で設定する。これにより、加工パターンが誤っているために加工し直す必要がある場合であっても、当初と同じ加工対象物8に加工し直すことができる。これにより、加工の失敗により廃棄される加工対象物8を減らすことができる。 Further, the cancellation / reprocessing process shown in FIG. 6 can be applied even when the object to be processed 8 is processed into an erroneous processing pattern. In such a case, the control unit 211 makes the erroneous processing pattern unreadable by the reader by the first processing, and in the third processing, the second processing region Q is set to the correct processing pattern under the correct irradiation conditions. To process. The correct irradiation conditions and the correct processing pattern are set by the user on the user interface 700. As a result, even if it is necessary to reprocess because the processing pattern is incorrect, it is possible to reprocess the object 8 to be processed as the original. As a result, it is possible to reduce the number of objects to be processed 8 that are discarded due to processing failure.
 図7は、打ち消し・再加工処理の第2例を示す図である。第1例では、打ち消し処理として第1処理のみが行われたが、第2例では、打ち消し処理として第1処理に加えて第2処理が行われる。以下、第1例と異なる点について説明する。 FIG. 7 is a diagram showing a second example of the cancellation / reworking process. In the first example, only the first process is performed as the cancellation process, but in the second example, the second process is performed in addition to the first process as the cancellation process. Hereinafter, the points different from the first example will be described.
 制御部211(図2参照)は、当初と同じ照射条件で塗りつぶす指示を受け付けた場合(図5に示すユーザインターフェイス700上で「塗りつぶし」および「照射条件を変更しない」が選択された場合)には、第1処理後に、当初と同じ照射条件、すなわち、照射条件Aで、第1加工領域Pの全てをレーザ光の照射領域のみで構成される塗りつぶしパターンZ1に加工する(第2処理)。これにより、第1処理後には視認可能であった当初の加工の跡(図中「第1処理後」に示す点線部)が視認不可能となるので(図中「第2処理後」を参照)、加工対象物8の美観が向上する。 When the control unit 211 (see FIG. 2) receives an instruction to fill under the same irradiation conditions as the initial one (when "filling" and "do not change the irradiation conditions" are selected on the user interface 700 shown in FIG. 5). Is processed into a fill pattern Z1 composed of only the irradiation region of the laser beam under the same irradiation conditions as the initial one, that is, the irradiation condition A, after the first treatment (second treatment). As a result, the trace of the initial processing (dotted line portion shown in "after the first processing" in the figure) that was visible after the first processing becomes invisible (see "after the second processing" in the figure). ), The aesthetic appearance of the object to be processed 8 is improved.
 なお、制御部211は、第1処理、第2処理、第3処理の順に処理を行ってもよいし、第3処理、第1処理、第2処理の順に処理を行ってもよい。 Note that the control unit 211 may perform processing in the order of the first processing, the second processing, and the third processing, or may perform the processing in the order of the third processing, the first processing, and the second processing.
 また、打ち消し処理として、第2処理のみが行われてもよい。上述の通り、第2処理は、当初と同じ照射条件で、第1加工領域Pをレーザ光の照射領域のみで構成される塗りつぶしパターンZ1に加工する処理であるから、第2処理のみでも、加工パターンXを読取装置で判読不可能な状態にすることができる。加工対象物8の材質によっては、レーザ光の照射条件(特に、「パワー」および/または「加工速度」)を変えたとしても、加工対象物8の色が変化しにくい場合がある。そのような場合には、第2処理を実行することで、加工パターンXを読取装置で判読不可能な状態にすればよい。 Further, as the cancellation process, only the second process may be performed. As described above, the second process is a process of processing the first processing area P into a fill pattern Z1 composed of only the irradiation area of the laser beam under the same irradiation conditions as the initial process. The pattern X can be made unreadable by the reader. Depending on the material of the object to be processed 8, the color of the object to be processed 8 may not change easily even if the irradiation conditions of the laser beam (particularly, “power” and / or “processing speed”) are changed. In such a case, the processing pattern X may be made unreadable by the reader by executing the second process.
 図8は、打ち消し・再加工処理の第3例を示す図である。第2例では、第2処理における照射条件は当初と同じ照射条件であったが、第3例では、第2処理における照射条件は当初とは異なる照射条件である。また、第2例では、第3処理における加工領域は当初とは異なる領域であったが、第3例では、第3処理における加工領域は当初と同じ領域であってもよいし、当初とは異なる領域であってもよい。以下、第2例と異なる点について説明する。 FIG. 8 is a diagram showing a third example of the cancellation / reworking process. In the second example, the irradiation conditions in the second treatment were the same as the initial irradiation conditions, but in the third example, the irradiation conditions in the second treatment are different from the initial irradiation conditions. Further, in the second example, the processing region in the third treatment was a region different from the initial region, but in the third example, the processing region in the third treatment may be the same region as the initial region, and is different from the initial region. It may be in different areas. Hereinafter, the points different from the second example will be described.
 制御部211(図2参照)は、当初とは異なる照射条件で塗りつぶす指示を受け付けた場合(図5に示すユーザインターフェイス700上で「塗りつぶし」および「照射条件を変更する」が選択された場合)には、第1処理後に、当初とは異なる照射条件(照射条件C)で、第1加工領域Pをレーザ光の照射領域のみで構成される塗りつぶしパターンZ2に加工する(第2処理)。ここでは、照射条件Cは、レーザ光の照射領域が加工前の加工対象物8に近い色(たとえば、白)に加工されるような照射条件であったとする。これにより、第1加工領域Pの全てが白く加工され、第1処理後には視認可能であった当初の加工の跡(図中「第1処理後」に示す点線部)が視認不可能となる(図中「第2処理後」を参照)。その結果、加工対象物8の美観が向上する。また、第1加工領域Pが加工前の加工対象物8に近い色に加工されるので、第3処理における加工領域を第1加工領域Pとすることが可能となる。 When the control unit 211 (see FIG. 2) receives an instruction to fill with irradiation conditions different from the initial one (when "filling" and "changing irradiation conditions" are selected on the user interface 700 shown in FIG. 5). After the first treatment, the first processing region P is processed into a fill pattern Z2 composed of only the irradiation region of the laser beam under irradiation conditions (irradiation condition C) different from the initial treatment (second treatment). Here, it is assumed that the irradiation condition C is an irradiation condition such that the irradiation region of the laser beam is processed into a color (for example, white) close to that of the object to be processed 8 before processing. As a result, the entire first processing region P is processed white, and the trace of the initial processing (dotted line portion shown in "after the first processing" in the figure) that was visible after the first processing becomes invisible. (Refer to "after the second treatment" in the figure). As a result, the aesthetic appearance of the object to be processed 8 is improved. Further, since the first processing region P is processed to have a color close to that of the object to be processed 8 before processing, the processing region in the third processing can be set as the first processing region P.
 制御部211は、第1加工領域Pを加工パターンXに加工する指示を受け付けた場合(図5に示すユーザインターフェイス700上で「再加工」および「当初の位置」が選択された場合)には、補正後の照射条件Bで第1加工領域Pを加工パターンXに加工する(第3処理)。制御部211は、第2加工領域Qを加工パターンXに加工する指示を受け付けた場合(図5に示すユーザインターフェイス700上で「再加工」および「他の位置」が選択された場合)には、補正後の照射条件Bで第2加工領域Qを加工パターンXに加工する(第3処理)。 When the control unit 211 receives an instruction to process the first processing area P into the processing pattern X (when "reprocessing" and "initial position" are selected on the user interface 700 shown in FIG. 5), the control unit 211 receives the instruction to process the first processing area P into the processing pattern X. The first processing region P is processed into the processing pattern X under the corrected irradiation condition B (third processing). When the control unit 211 receives an instruction to process the second processing area Q into the processing pattern X (when "reprocessing" and "other position" are selected on the user interface 700 shown in FIG. 5), the control unit 211 receives the instruction to process the second processing area Q into the processing pattern X. The second processing region Q is processed into the processing pattern X under the corrected irradiation condition B (third processing).
 第3処理における加工領域が第1加工領域Pと第2加工領域Qとのいずれであっても、加工対象物8が補正後の照射条件Bで加工パターンXに加工される(図中「第3処理後」を参照)。補正後の照射条件Bは、図6で述べたように、制御部211によって設定されてもよいし、ユーザによって設定されてもよい。 Regardless of whether the processing area in the third processing is the first processing area P or the second processing area Q, the processing object 8 is processed into the processing pattern X under the corrected irradiation condition B (“No. 1” in the figure). 3 After processing ”). The corrected irradiation condition B may be set by the control unit 211 or may be set by the user as described in FIG.
 第3処理における加工領域として第1加工領域Pが設定されている場合には、制御部211は、第1処理、第2処理、第3処理の順で処理を行う。これに対し、第3処理における加工領域として第2加工領域Qが設定されている場合には、制御部211は、第1処理、第2処理、第3処理の順で処理を行ってもよいし、第3処理、第1処理、第2処理の順で処理を行ってもよい。 When the first processing area P is set as the processing area in the third processing, the control unit 211 performs the processing in the order of the first processing, the second processing, and the third processing. On the other hand, when the second processing area Q is set as the processing area in the third processing, the control unit 211 may perform the processing in the order of the first processing, the second processing, and the third processing. Then, the processing may be performed in the order of the third processing, the first processing, and the second processing.
 図9は、第1処理の他の例を示す図である。図6~図8に示した第1処理においては、第1加工領域Pの全面が反転パターンに加工された。しかしながら、図9に示すように、第1加工領域Pの一部の領域Rのみが反転パターンに加工されるのでもよい。但し、領域Rは、読取装置で判読する際のキーとなるパターン部分を含むことが必要とされる。 FIG. 9 is a diagram showing another example of the first process. In the first processing shown in FIGS. 6 to 8, the entire surface of the first processing region P was processed into an inverted pattern. However, as shown in FIG. 9, only a part R of the first processed region P may be processed into an inverted pattern. However, the area R is required to include a pattern portion that is a key when reading with a reading device.
 制御部211は、第1加工領域Pの一部を反転パターンY2に加工する指示を受け付けた場合(図5に示すユーザインターフェイス700上で「反転」および「一部」が選択された場合)には、照射条件Aで、第1加工領域Pの一部の領域Rを、加工パターンXのレーザ光の照射領域とレーザ光の非照射領域とを反転させた反転パターンY2に加工する(第1処理)。これにより、第1加工領域Pの一部の領域Rが黒く加工される(図中「第1処理後」を参照)。領域Rは、読取装置で判読する際のキーとなるパターン部分を含むことから、第1加工領域Pに形成されていた加工パターンXは読取装置で判読不可能な状態になる。 When the control unit 211 receives an instruction to process a part of the first processing area P into the inversion pattern Y2 (when "inversion" and "part" are selected on the user interface 700 shown in FIG. 5). Is processed under the irradiation condition A into an inversion pattern Y2 in which a part R of the first processing region P is inverted between the irradiation region of the laser light of the processing pattern X and the non-irradiation region of the laser light (first). process). As a result, a part of the region R of the first processing region P is processed black (see "after the first processing" in the figure). Since the area R includes a pattern portion that is a key for reading by the reading device, the processing pattern X formed in the first processing area P becomes unreadable by the reading device.
 なお、第1加工領域Pの一部の領域Rのみを反転パターンY2に加工する手法は、上述の第1例~第3例に適用することができる。 The method of processing only a part of the region R of the first processing region P into the inversion pattern Y2 can be applied to the above-mentioned first to third examples.
 <F.重ね加工>
 図10は、重ね加工を示す図である。重ね加工とは、当初の加工に重ねて当初と同じ加工をすることである。
<F. Lap processing >
FIG. 10 is a diagram showing lap processing. Lap processing is to perform the same processing as the initial processing on top of the initial processing.
 制御部211(図2参照)は、重ね加工の指示を受け付けた場合(図5に示すユーザインターフェイス700上で「重ね加工」が選択された場合)には、当初の加工と同じ照射条件、すなわち、照射条件Aで、第1加工領域Pを加工パターンXに加工する。これにより、加工対象物8の第1加工領域Pが、再度、照射条件Aで加工パターンXに加工される(図中の「重ね加工後」参照)。その結果、加工パターンXの加工精度が改善される場合がある。 When the control unit 211 (see FIG. 2) receives an instruction for lap processing (when "layer processing" is selected on the user interface 700 shown in FIG. 5), the irradiation conditions are the same as those of the initial processing, that is, Under the irradiation condition A, the first processing region P is processed into the processing pattern X. As a result, the first processing region P of the object to be processed 8 is processed again into the processing pattern X under the irradiation condition A (see “after layering” in the figure). As a result, the machining accuracy of the machining pattern X may be improved.
 制御部211は、重ね加工の指示を受け付けていない場合であっても、当初の加工によって形成された加工パターンXの加工精度が所定の閾値を満たしていない場合には、重ね加工を実行するようにしてもよい。また、制御部211は、重ね加工に際し、当初の加工によって形成された加工パターンXの加工精度を基に照射条件を補正してもよい。 Even if the control unit 211 does not receive the lap processing instruction, if the processing accuracy of the processing pattern X formed by the initial processing does not satisfy a predetermined threshold value, the control unit 211 executes the lap processing. It may be. Further, the control unit 211 may correct the irradiation conditions based on the processing accuracy of the processing pattern X formed by the initial processing during the overlapping processing.
 また、制御部211は、打ち消し・再加工処理の指示を受け付けた場合であって、当初の加工によって形成された加工パターンXの加工精度が所定の閾値を満たしていなかった場合には、打ち消し・再加工処理の前に重ね加工を実行するようにしてもよい。このような場合において、制御部211は、重ね加工により、加工パターンXの加工精度が所定の閾値を満たすようになった場合には、設定されている打ち消し・再加工処理の設定を解除し、重ね加工によっても、加工パターンXの加工精度が所定の閾値を満たさなかった場合には、設定されている打ち消し・再加工処理を実行する。 Further, when the control unit 211 receives the instruction of the canceling / reworking process and the machining accuracy of the machining pattern X formed by the initial machining does not satisfy a predetermined threshold value, the control unit 211 cancels / cancels / reworking. Overlapping may be performed before the reworking. In such a case, when the machining accuracy of the machining pattern X satisfies a predetermined threshold value due to the overlapping machining, the control unit 211 cancels the set cancellation / reworking process setting. Even in the lap processing, if the processing accuracy of the processing pattern X does not satisfy a predetermined threshold value, the set cancellation / reprocessing process is executed.
 <G.総括>
 以上、本実施の形態におけるレーザ加工システム1について説明した。本実施の形態におけるレーザ加工システム1は、加工に失敗した加工対象物8を加工し直す場合において、当初の加工によって加工対象物8上に形成されている加工パターンを読取装置で判読不可能な状態に加工する。これにより、読取装置が失敗した加工パターンを読み取る虞がないので、当初と同じ加工対象物8に加工パターンを加工し直すことができる。その結果、加工の失敗により廃棄される加工対象物8を減らすことができる。
<G. Summary >
The laser processing system 1 in the present embodiment has been described above. In the laser processing system 1 of the present embodiment, when the processing object 8 that has failed to be processed is reprocessed, the processing pattern formed on the processing object 8 by the initial processing cannot be read by the reading device. Process into a state. As a result, since there is no possibility that the reading device reads the failed processing pattern, the processing pattern can be reprocessed on the same processing object 8 as the original. As a result, it is possible to reduce the number of objects to be processed 8 that are discarded due to processing failure.
 また、本実施の形態におけるレーザマーカ2は、加工精度が所定の閾値を満たさない場合に、重ね加工を行うことにより、加工精度を改善させることができる場合がある。重ね加工により、加工精度が所定の閾値を満たした場合には、打ち消し・再加工処理が不要となるので、作業効率が向上する。また、重ね加工によっても、加工精度が所定の閾値を満たさなかった場合には、打ち消し・再加工処理によって、加工の失敗により廃棄される加工対象物8を減らすことができる。 Further, the laser marker 2 in the present embodiment may be able to improve the processing accuracy by performing laminating processing when the processing accuracy does not satisfy a predetermined threshold value. When the machining accuracy satisfies a predetermined threshold value due to the lap machining, the canceling / reworking process becomes unnecessary, so that the work efficiency is improved. Further, even in the lap processing, if the processing accuracy does not satisfy a predetermined threshold value, the processing target 8 that is discarded due to the processing failure can be reduced by the canceling / reprocessing process.
 なお、本実施の形態においては、レーザ加工システム1は画像処理装置3を備えていたが、画像処理装置3を備えていなくてもよい。レーザ加工システム1が画像処理装置3を備えていない場合には、加工精度は目視によって判定される。また、カメラユニット261と画像処理装置3とが一体となった読取装置(たとえば、コードリーダ等)がレーザマーカ2とは別に設けられている場合には、レーザマーカ2によるレーザ加工の後工程において、読取装置が加工パターンを読み取って加工精度を判定する。読取装置で読み取った結果が読み取り不可能であったり、品質評価値が低いと判定されたりした場合には、レーザマーカ2は、製品(加工対象物8)を再びレーザ加工の工程に回し、上述の打ち消し・再加工処理を行う(レーザ加工をやり直す)。 In the present embodiment, the laser processing system 1 is provided with the image processing device 3, but the image processing device 3 may not be provided. When the laser processing system 1 does not include the image processing device 3, the processing accuracy is visually determined. Further, when a reading device (for example, a code reader) in which the camera unit 261 and the image processing device 3 are integrated is provided separately from the laser marker 2, the reading device is read in a post-process of laser processing by the laser marker 2. The device reads the machining pattern and determines the machining accuracy. When the result read by the reading device is unreadable or the quality evaluation value is determined to be low, the laser marker 2 sends the product (processed object 8) to the laser processing process again, and described above. Perform cancellation / reprocessing (re-do laser processing).
 <H.付記>
 上述した本実施の形態は、以下のような技術思想を含む。
<H. Addendum>
The above-described embodiment includes the following technical ideas.
 [構成1]
 加工対象物(8)にレーザ光(W)を照射する照射部(240)と、
 前記加工対象物(8)の加工パターン、および、前記レーザ光(W)の照射条件を受け付ける受付部(216)と、
 前記受付部(216)で受け付けた前記加工パターン、および、前記照射条件に基づいて、前記レーザ光(W)の照射を制御する制御部(211)と、を備え、
 前記制御部(211)は、前記照射条件で前記加工対象物(8)を前記加工パターンに加工した後、前記加工対象物(8)の第1加工領域(P)の少なくとも一部を、前記加工パターンの前記レーザ光(W)の照射領域と前記レーザ光(W)の非照射領域とを反転させた反転パターンに加工する第1処理を行う、レーザ加工装置。
[Structure 1]
An irradiation unit (240) that irradiates the object to be processed (8) with a laser beam (W),
The processing pattern of the object to be processed (8) and the reception unit (216) that receives the irradiation conditions of the laser beam (W), and
A control unit (211) that controls irradiation of the laser beam (W) based on the processing pattern received by the reception unit (216) and the irradiation conditions is provided.
After the processing target object (8) is processed into the processing pattern under the irradiation conditions, the control unit (211) covers at least a part of the first processing region (P) of the processing target object (8). A laser processing apparatus that performs a first process of processing an irradiation region of the laser beam (W) and a non-irradiation region of the laser light (W) of the processing pattern into an inverted pattern.
 [構成2]
 前記制御部(211)は、前記反転パターンに加工する前記照射条件と前記加工パターンに加工する前記照射条件とを同じにする、構成1に記載のレーザ加工装置。
[Structure 2]
The laser processing apparatus according to configuration 1, wherein the control unit (211) has the same irradiation conditions for processing the inversion pattern and the irradiation conditions for processing the processing pattern.
 [構成3]
 前記制御部(211)は、前記第1処理の後に第2処理を実行し、
 前記第2処理は、前記第1加工領域(P)の全てを、前記レーザ光(W)の照射領域のみで構成される塗りつぶしパターンに加工する、構成1または構成2に記載のレーザ加工装置。
[Structure 3]
The control unit (211) executes a second process after the first process,
The laser processing apparatus according to configuration 1 or 2, wherein the second processing processes the entire first processing region (P) into a fill pattern composed of only the irradiation region of the laser beam (W).
 [構成4]
 前記制御部(211)は、前記第1処理の後に第3処理を実行し、
 前記第3処理は、前記第1加工領域(P)を前記加工パターンに加工する、構成1~構成3のいずれか1項に記載のレーザ加工装置。
[Structure 4]
The control unit (211) executes a third process after the first process,
The laser processing apparatus according to any one of Configurations 1 to 3, wherein the third processing processes the first processing region (P) into the processing pattern.
 [構成5]
 前記加工パターンの加工精度を判定する判定部(3)をさらに備え、
 前記制御部(211)は、前記判定部(3)による判定の結果に基づいて前記照射条件を補正し、
 前記第3処理は、補正後の前記照射条件で前記第1加工領域(P)を前記加工パターンに加工する、構成4に記載のレーザ加工装置。
[Structure 5]
A determination unit (3) for determining the processing accuracy of the processing pattern is further provided.
The control unit (211) corrects the irradiation condition based on the result of the determination by the determination unit (3).
The laser processing apparatus according to configuration 4, wherein the third processing processes the first processing region (P) into the processing pattern under the corrected irradiation conditions.
 [構成6]
 前記加工対象物(8)は、前記第1加工領域(P)と、前記第1加工領域(P)とは異なる第2加工領域(Q)とを含み、
 前記制御部(211)は、前記第1処理の後に第3処理を実行し、
 前記第3処理は、前記第2加工領域を前記加工パターンに加工する、構成1~構成3のいずれか1項に記載のレーザ加工装置。
[Structure 6]
The processing target (8) includes the first processing region (P) and a second processing region (Q) different from the first processing region (P).
The control unit (211) executes a third process after the first process,
The laser processing apparatus according to any one of Configurations 1 to 3, wherein the third processing processes the second processing region into the processing pattern.
 [構成7]
 前記加工パターンの加工精度を判定する判定部(3)をさらに備え、
 前記制御部(211)は、前記判定部(3)による判定の結果に基づいて前記照射条件を補正し、
 前記第3処理は、補正後の前記照射条件で前記第2加工領域(Q)を前記加工パターンに加工する、構成6に記載のレーザ加工装置。
[Structure 7]
A determination unit (3) for determining the processing accuracy of the processing pattern is further provided.
The control unit (211) corrects the irradiation condition based on the result of the determination by the determination unit (3).
The laser processing apparatus according to configuration 6, wherein the third processing processes the second processing region (Q) into the processing pattern under the corrected irradiation conditions.
 [構成8]
 前記制御部(211)は、
  前記加工パターンの加工精度が所定の閾値を満たさない場合に、前記第1処理を実行する前に、前記第1加工領域を前記加工パターンに再度加工する第4処理を実行し、
  前記第4処理による前記加工パターンの加工精度が所定の閾値を満たさない場合に、前記第1処理を実行する、構成1~構成7のいずれか1項に記載のレーザ加工装置。
[Structure 8]
The control unit (211)
When the machining accuracy of the machining pattern does not satisfy a predetermined threshold value, the fourth process of re-machining the first machining region into the machining pattern is executed before the first process is executed.
The laser processing apparatus according to any one of Configurations 1 to 7, which executes the first processing when the processing accuracy of the processing pattern by the fourth processing does not satisfy a predetermined threshold value.
 [構成9]
 前記レーザ加工装置(2)は、前記加工対象物(8)を読取装置により判読可能な前記加工パターンに加工するために用いられる、構成1~構成8のいずれか1項に記載のレーザ加工装置。
[Structure 9]
The laser processing apparatus according to any one of configurations 1 to 8, wherein the laser processing apparatus (2) is used for processing the processing object (8) into the processing pattern that can be read by a reading device. ..
 [構成10]
 加工対象物(8)にレーザ光(W)を照射する照射部(240)と、前記加工対象物(8)の加工パターン、および、前記レーザ光(W)の照射条件を受け付ける受付部(216)と、前記受付部(216)で受け付けた前記加工パターン、および、前記照射条件に基づいて、前記レーザ光(W)の照射を制御する制御部(211)と、を備えるレーザ加工装置を制御する方法であって、
 前記制御部(211)は、前記照射条件で前記加工パターンに加工された前記加工対象物(8)に対して、前記加工対象物(8)の加工領域の少なくとも一部を、前記加工パターンの前記レーザ光(W)の照射領域と前記レーザ光(W)の非照射領域とを反転させた反転パターンに加工する処理を行う、レーザ加工装置の制御方法。
[Structure 10]
An irradiation unit (240) that irradiates the object to be processed (8) with a laser beam (W), a processing pattern of the object to be processed (8), and a reception unit (216) that receives irradiation conditions of the laser beam (W). ), The processing pattern received by the reception unit (216), and the control unit (211) for controlling the irradiation of the laser beam (W) based on the irradiation conditions. How to do
The control unit (211) sets at least a part of the processing region of the processing target object (8) to the processing target object (8) processed into the processing pattern under the irradiation conditions. A control method for a laser processing apparatus, which performs a process of processing an irradiation region of the laser beam (W) and a non-irradiation region of the laser beam (W) into an inverted pattern.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 レーザ加工システム、2 レーザマーカ、3 画像処理装置、6 表示装置、7 入力装置、8 加工対象物、9 部材、11 ケーブル、12 通信ケーブル、21 コントローラ、26 マーカヘッド、28,241 光ファイバ、29 制御ケーブル、31,211 制御部、32,213 記憶部、33,34,214,215,216,217 通信処理部、110 プロセッサ、120,160 メモリ、121,161 ROM、122,162 RAM、123,163 フラッシュメモリ、130,170 通信インターフェイス、140 パルス発生回路、150 演算処理回路、151 メインプロセッサ、152 画像処理専用プロセッサ、210 制御基板、212 パルス発生部、220 ドライバ、230 ドライバ用電源、240 レーザ発振器、242,243,249A,249B,249C,249D 半導体レーザ、244,246,262 アイソレータ、245,248 結合器、247 バンドパスフィルタ、261 カメラユニット、263 コリメータレンズ、264 ガルバノミラー部、264a,264b ガルバノミラー、265 集光レンズ、700 ユーザインターフェイス、701 描画領域、702,703,750,760 ボタン、710 レーザ/走査タブ、720,730,741,742,743 設定欄、A,B,C 照射条件、P 第1加工領域、Q 第2加工領域、R 領域、W レーザ光、X 加工パターン、Y1,Y2 反転パターン、Z1,Z2 塗りつぶしパターン。 1 laser processing system, 2 laser markers, 3 image processing devices, 6 display devices, 7 input devices, 8 processing objects, 9 members, 11 cables, 12 communication cables, 21 controllers, 26 marker heads, 28, 241 optical fibers, 29 Control cable, 31,211 control unit, 32,213 storage unit, 33,34,214,215,216,217 communication processing unit, 110 processor, 120,160 memory, 121,161 ROM, 122,162 RAM, 123, 163 Flash memory, 130, 170 communication interface, 140 pulse generation circuit, 150 arithmetic processing circuit, 151 main processor, 152 image processing dedicated processor, 210 control board, 212 pulse generator, 220 driver, 230 driver power supply, 240 laser oscillator , 242,243,249A, 249B, 249C, 249D semiconductor laser, 244,246,262 isolator, 245,248 coupler, 247 bandpass filter, 261 camera unit, 263 collimator lens, 264 galvano mirror part, 264a, 264b galvano Mirror, 265 condenser lens, 700 user interface, 701 drawing area, 702,703,750,760 buttons, 710 laser / scanning tab, 720,730,741,742,743 setting fields, A, B, C irradiation conditions, P 1st processing area, Q 2nd processing area, R area, W laser beam, X processing pattern, Y1, Y2 inversion pattern, Z1, Z2 fill pattern.

Claims (8)

  1.  加工対象物にレーザ光を照射する照射部と、
     前記加工対象物の加工パターン、および、前記レーザ光の照射条件を受け付ける受付部と、
     前記受付部で受け付けた前記加工パターン、および、前記照射条件に基づいて、前記レーザ光の照射を制御する制御部と、を備え、
     前記制御部は、前記照射条件で前記加工対象物を前記加工パターンに加工した後、前記加工対象物の第1加工領域の少なくとも一部を、前記加工パターンの前記レーザ光の照射領域と前記レーザ光の非照射領域とを反転させた反転パターンに加工する第1処理を行う、レーザ加工装置。
    An irradiation part that irradiates the object to be processed with laser light,
    The processing pattern of the object to be processed, the reception unit that receives the irradiation conditions of the laser beam, and the reception unit.
    A control unit that controls irradiation of the laser beam based on the processing pattern received by the reception unit and the irradiation conditions is provided.
    After processing the processing object into the processing pattern under the irradiation conditions, the control unit may apply at least a part of the first processing region of the processing object to the laser beam irradiation region of the processing pattern and the laser. A laser processing apparatus that performs the first processing of processing into an inverted pattern in which the non-irradiated region of light is inverted.
  2.  前記制御部は、前記反転パターンに加工する前記照射条件と前記加工パターンに加工する前記照射条件とを同じにする、請求項1に記載のレーザ加工装置。 The laser processing apparatus according to claim 1, wherein the control unit makes the irradiation conditions for processing the inversion pattern the same as the irradiation conditions for processing the processing pattern.
  3.  前記制御部は、前記第1処理の後に第2処理を実行し、
     前記第2処理は、前記第1加工領域の全てを、前記レーザ光の照射領域のみで構成される塗りつぶしパターンに加工する、請求項1または請求項2に記載のレーザ加工装置。
    The control unit executes a second process after the first process,
    The laser processing apparatus according to claim 1 or 2, wherein the second processing processes the entire first processing region into a fill pattern composed of only the irradiation region of the laser beam.
  4.  前記制御部は、前記第1処理の後に第3処理を実行し、
     前記第3処理は、前記第1加工領域を前記加工パターンに加工する、請求項1~請求項3のいずれか1項に記載のレーザ加工装置。
    The control unit executes a third process after the first process,
    The laser processing apparatus according to any one of claims 1 to 3, wherein the third processing processes the first processing region into the processing pattern.
  5.  前記加工パターンの加工精度を判定する判定部をさらに備え、
     前記制御部は、前記判定部による判定の結果に基づいて前記照射条件を補正し、
     前記第3処理は、補正後の前記照射条件で前記第1加工領域を前記加工パターンに加工する、請求項4に記載のレーザ加工装置。
    Further provided with a determination unit for determining the processing accuracy of the processing pattern,
    The control unit corrects the irradiation condition based on the result of the determination by the determination unit.
    The laser processing apparatus according to claim 4, wherein the third processing processes the first processing region into the processing pattern under the corrected irradiation conditions.
  6.  前記加工対象物は、前記第1加工領域と、前記第1加工領域とは異なる第2加工領域とを含み、
     前記制御部は、前記第1処理の後に第3処理を実行し、
     前記第3処理は、前記第2加工領域を前記加工パターンに加工する、請求項1~請求項3のいずれか1項に記載のレーザ加工装置。
    The processed object includes the first processed region and a second processed region different from the first processed region.
    The control unit executes a third process after the first process,
    The laser processing apparatus according to any one of claims 1 to 3, wherein the third processing processes the second processing region into the processing pattern.
  7.  前記レーザ加工装置は、前記加工対象物を読取装置により判読可能な前記加工パターンに加工するために用いられる、請求項1~請求項6のいずれか1項に記載のレーザ加工装置。 The laser processing device according to any one of claims 1 to 6, wherein the laser processing device is used for processing the processing object into the processing pattern that can be read by a reading device.
  8.  加工対象物にレーザ光を照射する照射部と、前記加工対象物の加工パターン、および、前記レーザ光の照射条件を受け付ける受付部と、前記受付部で受け付けた前記加工パターン、および、前記照射条件に基づいて、前記レーザ光の照射を制御する制御部と、を備えるレーザ加工装置を制御する方法であって、
     前記制御部は、前記照射条件で前記加工パターンに加工された前記加工対象物に対して、前記加工対象物の加工領域の少なくとも一部を、前記加工パターンの前記レーザ光の照射領域と前記レーザ光の非照射領域とを反転させた反転パターンに加工する処理を行う、レーザ加工装置の制御方法。
    An irradiation unit that irradiates the object to be processed with laser light, a processing pattern of the object to be processed, a reception unit that receives irradiation conditions of the laser light, the processing pattern received by the reception unit, and the irradiation conditions. A method of controlling a laser processing apparatus including a control unit for controlling irradiation of the laser beam based on the above.
    The control unit applies at least a part of the processing region of the processing target to the processing target processed into the processing pattern under the irradiation conditions, the irradiation region of the laser beam of the processing pattern and the laser. A control method for a laser processing device that performs processing to process an inverted pattern in which the non-irradiated region of light is inverted.
PCT/JP2020/047230 2020-03-02 2020-12-17 Laser machining device and method for controlling laser machining device WO2021176800A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080096986.0A CN115135443A (en) 2020-03-02 2020-12-17 Laser processing apparatus and method for controlling laser processing apparatus
DE112020006836.6T DE112020006836T5 (en) 2020-03-02 2020-12-17 Laser processing device and control method for a laser processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-035236 2020-03-02
JP2020035236A JP7380333B2 (en) 2020-03-02 2020-03-02 Laser processing equipment and processing method

Publications (1)

Publication Number Publication Date
WO2021176800A1 true WO2021176800A1 (en) 2021-09-10

Family

ID=77613396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047230 WO2021176800A1 (en) 2020-03-02 2020-12-17 Laser machining device and method for controlling laser machining device

Country Status (4)

Country Link
JP (1) JP7380333B2 (en)
CN (1) CN115135443A (en)
DE (1) DE112020006836T5 (en)
WO (1) WO2021176800A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339580A (en) * 1991-05-16 1992-11-26 Hitachi Ltd Marking device
JP2005310048A (en) * 2004-04-26 2005-11-04 Gijutsu Transfer Service:Kk Two-dimensional code forming method by laser marking, and laser marking device
JP2011212728A (en) * 2010-03-31 2011-10-27 Panasonic Electric Works Sunx Co Ltd Laser marking apparatus and laser marking method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6345028B2 (en) 2014-08-08 2018-06-20 株式会社キーエンス LASER PRINTING DEVICE, PRINT PROCESSING CONTROL METHOD AND SETTING PROGRAM

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339580A (en) * 1991-05-16 1992-11-26 Hitachi Ltd Marking device
JP2005310048A (en) * 2004-04-26 2005-11-04 Gijutsu Transfer Service:Kk Two-dimensional code forming method by laser marking, and laser marking device
JP2011212728A (en) * 2010-03-31 2011-10-27 Panasonic Electric Works Sunx Co Ltd Laser marking apparatus and laser marking method

Also Published As

Publication number Publication date
DE112020006836T5 (en) 2022-12-22
JP7380333B2 (en) 2023-11-15
CN115135443A (en) 2022-09-30
JP2021137823A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
CN107186347B (en) Laser processing system and processing control method
JP6305270B2 (en) Laser processing apparatus and working distance measurement method
US11364567B2 (en) Laser machining apparatus that irradiates guide beam to project guide pattern indicating setup position for workpiece
KR20080011070A (en) Method of and system for setting laser processing conditions, laser processing system, computer program for setting laser processing conditions, computer readable medium and recording device on which laser processing conditions are recorded
JP5432036B2 (en) Laser marking device and laser marking method
US10919110B2 (en) Data generating device setting machining condition suitable for foil placed on workpiece to be machined by irradiating laser beam thereon
WO2021176800A1 (en) Laser machining device and method for controlling laser machining device
WO2021256012A1 (en) Laser processing device
JP7468171B2 (en) Laser processing device and processing method
WO2021166407A1 (en) Laser processing device and method for controlling laser processing device
JP6345028B2 (en) LASER PRINTING DEVICE, PRINT PROCESSING CONTROL METHOD AND SETTING PROGRAM
JP3494960B2 (en) Scanning laser processing apparatus and laser processing method capable of processing simulation
JP2009107002A (en) Laser beam machining apparatus, and projection image projecting method
JP5931840B2 (en) Laser marking device
WO2022004207A1 (en) Laser processing system
JP5558285B2 (en) Laser marking device, processing information setting device for laser marker, and computer program
JP7294190B2 (en) Laser processing system, controller, and control program
JP2022013650A (en) Laser processing system
JP6981442B2 (en) Laser marker
JP2001066530A (en) Laser marking device and its working method
JP2022139478A (en) Laser printing data generator and laser marker system
JPH05146883A (en) Machining method and device for laser beam marking
JP2019013971A (en) Laser processing device, control data generation device, and method for control of laser processing device
JP2018012120A (en) Laser marking device and laser marking method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923225

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20923225

Country of ref document: EP

Kind code of ref document: A1