WO2021176589A1 - Temperature controller and temperature control method - Google Patents

Temperature controller and temperature control method Download PDF

Info

Publication number
WO2021176589A1
WO2021176589A1 PCT/JP2020/009106 JP2020009106W WO2021176589A1 WO 2021176589 A1 WO2021176589 A1 WO 2021176589A1 JP 2020009106 W JP2020009106 W JP 2020009106W WO 2021176589 A1 WO2021176589 A1 WO 2021176589A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
value
target
measured
steady
Prior art date
Application number
PCT/JP2020/009106
Other languages
French (fr)
Japanese (ja)
Inventor
洸太 高橋
一真 石渡
賢一 赤羽
敦 大久保
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to JP2022504836A priority Critical patent/JP7147124B2/en
Priority to PCT/JP2020/009106 priority patent/WO2021176589A1/en
Publication of WO2021176589A1 publication Critical patent/WO2021176589A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature

Definitions

  • the present invention relates to a temperature controller and a temperature controller.
  • Patent Document 1 discloses a microwave oven temperature control method
  • Patent Document 2 discloses a dryer temperature control method.
  • Non-Patent Document 1 has a function of using a measured value adjusted (biased) by a preset temperature, that is, a "pseudo-measured value” while keeping the target value as it is. , "PV bias function" is disclosed. By performing control using the pseudo-measured values in this way, it is a function that makes it easier for the temperatures of all monitor points to fall within the target range.
  • the temperature set as the bias is controlled to a steady state once, and an appropriate value is set by the user's hand in consideration of the positional relationship between the part that has not reached the target range and the heat source. I had to set it. Therefore, whether or not appropriate control can be performed using this function largely depends on the user's experience and feeling, and automation is desired because the setting is complicated.
  • a temperature control device that controls the temperature of the temperature control target based on the target temperature and the measurement temperature of the temperature control target.
  • the measured temperature is acquired from a plurality of locations subject to temperature control, and the measured temperature is obtained from a plurality of locations.
  • the ratio of the difference value between the upper limit value and the lower limit value of the steady state temperature range allowed as the steady state of the temperature control target and the target temperature is calculated.
  • a temperature controller characterized in that the temperature of the temperature controlled object is controlled based on the pseudo-measured value and the target temperature.
  • PV' is the pseudo-measured value
  • A is the difference value between the upper limit value of the steady temperature range and the target temperature
  • B is the difference value between the lower limit value of the steady temperature range and the target temperature
  • a is the difference value.
  • the temperature controller according to the configuration 1, wherein the maximum value of the measurement temperature and b are the minimum values of the measurement temperature.
  • a temperature control method in which the temperature of the temperature control target is controlled based on the target temperature and the measurement temperature of the temperature control target by a temperature controller including a calculation unit and a control unit.
  • the measured temperature is acquired from sensors installed at a plurality of locations to be controlled by the temperature.
  • the calculation unit calculates the ratio of the difference value between the upper limit value and the lower limit value of the steady state temperature range allowed as the steady state of the temperature control target and the target temperature.
  • the difference value between the maximum value of the plurality of measured temperatures acquired at the same timing and the target temperature, the minimum value of the plurality of measured temperatures acquired at the same timing and the difference value between the target temperature, and the above. Based on the ratio, the pseudo-measured value at the timing is calculated by the calculation unit.
  • a temperature control method characterized in that the temperature of the temperature control target is controlled by the control unit based on the pseudo-measured value and the target temperature.
  • the temperature controller and the temperature control method of the present invention it is possible to automatically control the temperature of all the monitor points to be controlled so as to be within the target range.
  • FIG. 1 is a schematic configuration diagram showing a portion of a temperature controller according to an embodiment of the present invention according to the present invention.
  • the temperature controller 100 is a device that controls the load 210 based on the measured values (PV) and the preset target values (SV) of the plurality of sensors 231 to 23N that measure the temperature of the temperature controlled object 220, which will be described later. It includes a calculation unit 120 that calculates a pseudo-measured value and the like, and a control unit 110 that controls output to a load based on PV and a target value SV.
  • the control method in the control unit 110 is PID control
  • the temperature control target 220 is a constant temperature bath
  • the load 210 is a heater
  • the sensors 231 to 23N are temperature measurement sensors such as thermocouples.
  • the target value SV and the temperature range allowed in the steady state of the controlled object are set in advance by an input unit (not shown) or the like.
  • FIG. 2 is a conceptual diagram for explaining the relationship between the conventional control result and the control result of the present invention.
  • the graph shown in the upper part of FIG. 2 is a conceptual diagram showing the result of a normal PID control which is a conventional method.
  • the horizontal axis of the graph shows time
  • the vertical axis shows temperature
  • the result of the thick line shows the measured value (PV) at the point (measurement point) closest to the heat source
  • SV is the target value.
  • the thin line on the upper side of the PV is a line indicating the maximum value a among the plurality of sensor measurement values
  • the thin line on the lower side of the PV is a line indicating the minimum value b among the plurality of sensor measurement values.
  • the upper and lower broken lines indicate the upper limit value and the lower limit value of the steady temperature range, which is the temperature range allowed in the steady state. In this way, although the measurement point is in a steady state, it may be out of the steady temperature range at other points.
  • FIG. 2 shows the control result when this method is used, and is a conceptual diagram when the pseudo-measured value PV'described later is controlled to be the target value SV. You can see that there is.
  • the difference value between the upper limit value and the lower limit value of the steady temperature range which is a preset temperature range allowed in the steady state, and the SV is calculated.
  • the difference value between the upper limit value and the SV is A
  • the difference between the lower limit value and the SV is B.
  • the maximum and minimum values of the measured values acquired at the same timing do not have to be exactly the same, and is a concept having a margin such as a slight delay.
  • the maximum value is a and the minimum value is b.
  • PV' the ratio of A and B is used to calculate the pseudo-measured value PV', which is the apparent PV.
  • PV' is set so that the ratio of the difference between the maximum value a, the maximum value b, and PV'is the ratio of A and B.
  • ⁇ Alarm function> In a controlled object such as a constant temperature bath, it is important to set a steady temperature range depending on the object to be controlled, and if the steady temperature range is not set appropriately, a desired result may not be obtained.
  • the upper limit of the steady temperature range may be too low, and the measured value at a certain point may exceed the upper limit of the steady temperature range. In this case, this method cannot be used because further heating cannot be performed. In such a case, there is a high possibility that the steady temperature range is set incorrectly. Further, when the difference between the maximum value and the minimum value of the measured values is larger than the width of the steady temperature range, it may not fall within the steady temperature range when the steady state is reached.
  • the user is dealt with by outputting an alarm prompting the user to review the steady temperature range, adjust the position of the heat source, adjust the stirring device, and the like.
  • the case where the difference between the maximum value and the minimum value is larger than the width of the steady temperature range is used as the judgment criterion of the alarm.
  • the control is started, and the measured values are acquired from all the sensors (CH) 231 to 23N in S310.
  • the steady temperature range (upper limit value and lower limit value) and the target value SV are input to the temperature controller 100 by an input unit or the like (not shown). Further, when the steady temperature range and the SV are input, the calculation unit 120 calculates the ratio (B / A in the above equation 1) for calculating the pseudo measurement value.
  • the calculation unit 120 sets the difference value PVmax-PVmin between the maximum value PVmax of the measured value and the minimum value PVmin of the measured value. Then, it is determined whether or not this difference value is equal to or less than the width of the steady temperature range (upper limit value-lower limit value).
  • PVmax-PVmin is larger than the width of the steady temperature range, it is assumed that there is a problem in the setting of the steady temperature range, the position of the heat source, etc., and the process proceeds to S330 (S320: NO ⁇ S330).
  • the temperature controller 100 outputs an alarm indicating that adjustment is necessary because there is an abnormality in the setting to an external device (not shown) such as a display, and shifts to S340.
  • the process proceeds to S340 assuming that the setting of the steady temperature range is normal (S320: YES ⁇ S340).
  • the calculation unit 120 calculates the pseudo-measured value PV'based on the maximum value and the minimum value of the measured values acquired at the same timing and the ratio of the difference between the steady temperature range and the target value. Specifically, the pseudo-measured value PV'is calculated based on the above equation 1. Then, the calculation unit 120 outputs the pseudo-measured value PV'to the control unit 110 as PV, and shifts to S350.
  • the control unit 110 determines whether or not it is in a steady state based on the pseudo-measured value PV'and the target value SV. If it is not in a steady state, it continues to be controlled and shifts to S310, followed by a loop operation (S350: NO ⁇ S310). On the other hand, in the steady state, the start-up control is terminated (S350: Yes ⁇ end).
  • the process is terminated when the steady state is reached, but even if the steady state is reached, the calculation process continues. May be configured to carry out. In that case, the process is configured to carry out the process until the operation of the temperature controller 100 is substantially stopped, such as turning off the power.
  • control can be performed while maintaining the relationship between the upper limit value and the lower limit value of the steady temperature range and the target value, and therefore all the control targets. It is possible to automatically control the temperature of the monitored part so that it falls within the steady temperature range.
  • the condition settings to which this method cannot be applied are set. In addition, it is possible to encourage the user to adjust the steady temperature range and the control environment.
  • the operation of the temperature controller 100 when the load is a heater has been described, but when the load is a heat exchange element such as a Pertier element (in that case, the control target is not a constant temperature bath but a cooler).
  • this method can be used in the same manner.
  • the reference of the alarm output is set in the opposite direction to the case where the load is a heater. For example, an alarm is output when the minimum measured value is below the lower limit of the steady temperature range.
  • control unit 110 executes PID control has been described as an example, but any control may be performed using the current measured value, and control may be performed using arbitrary feedback control. It may be configured to do so.
  • the calculation unit 120 is configured to calculate the ratio (A and B in the above equation 1) for calculating the pseudo-measured value PV'at the timing when the steady temperature range and the SV are input. However, it may be configured to be calculated at an arbitrary timing until the pseudo-measured value PV'is calculated.
  • the temperature controller in the present embodiment outputs an alarm by determining whether the difference value PVmax-PVmin between the maximum value PVmax of the measured value and the minimum value PVmin of the measured value is within the width of the steady temperature range.
  • the difference value PVmax-PVmin between the maximum value PVmax of the measured value and the minimum value PVmin of the measured value is within the width of the steady temperature range.
  • it is not limited to this.
  • it is possible to urge the user to adjust the control environment so that the present method can be used according to various control conditions.
  • each configuration in each of the above embodiments may be configured in hardware by a dedicated circuit or the like, or may be realized by software on a general-purpose circuit such as a microcomputer. good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)
  • Feedback Control In General (AREA)

Abstract

This temperature controller 100 calculates a ratio between a control target value of a temperature control target 220 and an upper limit value/lower limit value of a steady temperature range allowed by sensors 231 to 23N in a steady state of the temperature control target 220. A pseudo-measurement value is calculated from said ratio and a maximum value/minimum value of a measured value. Since the temperature controller 100 performs a control by using this pseudo-measurement value as a current measured value, measurement values of the sensors 231 to 23N in the steady state can be automatically controlled to fall within the steady temperature range.

Description

温度調節計及び温度調節方法Temperature controller and temperature control method
 この発明は、温度調節計及び温度調節方法に関するものである。 The present invention relates to a temperature controller and a temperature controller.
 恒温槽のように、1つの負荷を制御することで槽全体の温度を制御する制御対象が存在する。このような制御対象の場合、ヒータ等の負荷が存在する箇所の温度が目標温度付近で安定し定常状態となったとしても、負荷から離れた位置における温度が目標範囲から外れてしまっている場合がある。特に環境試験等の用途においては全ての箇所が目標温度範囲に入っていることが重要となるため、複数点の温度センサを入力として、全体の温度が目標範囲に収まるように制御を行う必要がある。
 複数の温度センサを入力として制御する先行技術文献として、特許文献1には電子レンジの温度制御方法、特許文献2には乾燥機の温度制御方法が開示されている。
Like a constant temperature bath, there is a controlled object that controls the temperature of the entire tank by controlling one load. In the case of such a control target, even if the temperature of a place where a load such as a heater exists is stable near the target temperature and becomes a steady state, the temperature at a position away from the load is out of the target range. There is. Especially in applications such as environmental tests, it is important that all parts are within the target temperature range, so it is necessary to control so that the overall temperature falls within the target range by inputting multiple temperature sensors. be.
As prior art documents for controlling a plurality of temperature sensors as inputs, Patent Document 1 discloses a microwave oven temperature control method, and Patent Document 2 discloses a dryer temperature control method.
 従来、このような場合には、手作業にて対象箇所の温度を確認しながら、さらに加熱や冷却を続けることで、全てのモニタ箇所の温度が目標範囲に収まるように調整していた。
 このような調整をある程度自動化するために、非特許文献1には、目標値はそのままに、事前に設定した温度だけ加減(バイアス)した測定値、即ち「疑似測定値」を利用する機能である、「PVバイアス機能」が開示されている。このように疑似測定値を使用して制御を実施することで、全てのモニタ箇所の温度が目標範囲に収まりやすくする機能である。
Conventionally, in such a case, the temperature of all the monitor parts has been adjusted so as to be within the target range by continuing heating and cooling while manually checking the temperature of the target part.
In order to automate such adjustment to some extent, Non-Patent Document 1 has a function of using a measured value adjusted (biased) by a preset temperature, that is, a "pseudo-measured value" while keeping the target value as it is. , "PV bias function" is disclosed. By performing control using the pseudo-measured values in this way, it is a function that makes it easier for the temperatures of all monitor points to fall within the target range.
特開平11-173559号公報Japanese Unexamined Patent Publication No. 11-173559 特開2003-222470号公報Japanese Unexamined Patent Publication No. 2003-222470
 しかしこのPVバイアス機能において、バイアスとして設定する温度については1度定常状態まで制御を実施し、目標範囲に到達していない箇所と熱源の位置関係等を考慮してユーザの手により適切な値を設定する必要があった。そのため、この機能を使用して適切に制御ができるかどうかについては、ユーザの経験や感覚に大きく依存しており、また、設定が煩雑であるため自動化が望まれていた。 However, in this PV bias function, the temperature set as the bias is controlled to a steady state once, and an appropriate value is set by the user's hand in consideration of the positional relationship between the part that has not reached the target range and the heat source. I had to set it. Therefore, whether or not appropriate control can be performed using this function largely depends on the user's experience and feeling, and automation is desired because the setting is complicated.
 本発明は上記の点に鑑み、制御対象の全てのモニタ箇所の温度が目標範囲に収まるように自動的に制御を行うことのできる、温度調節計及び温度調節方法を提供することを目的とする。 In view of the above points, it is an object of the present invention to provide a temperature controller and a temperature control method capable of automatically controlling the temperature of all monitor points to be controlled so as to be within a target range. ..
  (構成1)
 目標温度及び温度制御対象の測定温度に基づき前記温度制御対象の温度を制御する温度調節装置であって、
 前記測定温度が、前記温度制御対象の複数の箇所から取得され、
 前記温度制御対象の定常状態として許容される定常温度範囲の上限値及び下限値と、前記目標温度とのそれぞれの差分値の比率を算出し、
 同一のタイミングで取得された複数の測定温度の最大値と前記目標温度との差分値と、前記同一のタイミングで取得された複数の測定温度の最小値と前記目標温度との差分値と、前記比率と、に基づき、当該タイミングにおける疑似測定値を算出し、
 前記疑似測定値及び前記目標温度に基づき前記温度制御対象の温度を制御することを特徴とする温度調節計。
(Structure 1)
A temperature control device that controls the temperature of the temperature control target based on the target temperature and the measurement temperature of the temperature control target.
The measured temperature is acquired from a plurality of locations subject to temperature control, and the measured temperature is obtained from a plurality of locations.
The ratio of the difference value between the upper limit value and the lower limit value of the steady state temperature range allowed as the steady state of the temperature control target and the target temperature is calculated.
The difference value between the maximum value of the plurality of measured temperatures acquired at the same timing and the target temperature, the minimum value of the plurality of measured temperatures acquired at the same timing and the difference value between the target temperature, and the above. Based on the ratio and the pseudo measurement value at the relevant timing,
A temperature controller characterized in that the temperature of the temperature controlled object is controlled based on the pseudo-measured value and the target temperature.
  (構成2)
 前記疑似測定値が、以下の式により算出され、
PV’=B×(a-b)/A+b
 上記式において、PV’は前記疑似測定値、Aは前記定常温度範囲の上限値と前記目標温度との差分値、Bは前記定常温度範囲の下限値と前記目標温度との差分値、aは前記測定温度の最大値、bは前記測定温度の最小値である、構成1に記載の温度調節計。
(Structure 2)
The pseudo-measured value is calculated by the following formula.
PV'= B × (ab) / A + b
In the above formula, PV'is the pseudo-measured value, A is the difference value between the upper limit value of the steady temperature range and the target temperature, B is the difference value between the lower limit value of the steady temperature range and the target temperature, and a is the difference value. The temperature controller according to the configuration 1, wherein the maximum value of the measurement temperature and b are the minimum values of the measurement temperature.
  (構成3)
 前記測定温度の最大値と、前記測定温度の最小値との差分が、前記判定上限値と前記判定下限値との差分よりも大きい場合に警報を出力する、構成1又は2に記載の温度調節計。
(Structure 3)
The temperature control according to configuration 1 or 2, which outputs an alarm when the difference between the maximum value of the measurement temperature and the minimum value of the measurement temperature is larger than the difference between the determination upper limit value and the determination lower limit value. Total.
  (構成4)
 前記測定温度の最大値が、前記定常温度範囲の上限値を超えている場合に警報を出力する、構成1から3のいずれかに記載の温度調節計。
(Structure 4)
The temperature controller according to any one of configurations 1 to 3, which outputs an alarm when the maximum value of the measured temperature exceeds the upper limit value of the steady temperature range.
  (構成5)
 演算部及び制御部を備える温度調節計によって、目標温度及び温度制御対象の測定温度に基づき前記温度制御対象の温度を制御する温度調節方法であって、
 前記測定温度が、前記温度制御対象の複数の箇所に設置されたセンサから取得され、
 前記温度制御対象の定常状態として許容される定常温度範囲の上限値及び下限値と、前記目標温度とのそれぞれの差分値の比率が前記演算部により算出され、
 同一のタイミングで取得された複数の測定温度の最大値と前記目標温度との差分値と、前記同一のタイミングで取得された複数の測定温度の最小値と前記目標温度との差分値と、前記比率と、に基づき、当該タイミングにおける疑似測定値が前記演算部により算出され、
 前記疑似測定値及び前記目標温度に基づき前記温度制御対象の温度が前記制御部により制御されることを特徴とする温度調節方法。
(Structure 5)
A temperature control method in which the temperature of the temperature control target is controlled based on the target temperature and the measurement temperature of the temperature control target by a temperature controller including a calculation unit and a control unit.
The measured temperature is acquired from sensors installed at a plurality of locations to be controlled by the temperature.
The calculation unit calculates the ratio of the difference value between the upper limit value and the lower limit value of the steady state temperature range allowed as the steady state of the temperature control target and the target temperature.
The difference value between the maximum value of the plurality of measured temperatures acquired at the same timing and the target temperature, the minimum value of the plurality of measured temperatures acquired at the same timing and the difference value between the target temperature, and the above. Based on the ratio, the pseudo-measured value at the timing is calculated by the calculation unit.
A temperature control method characterized in that the temperature of the temperature control target is controlled by the control unit based on the pseudo-measured value and the target temperature.
 本発明の温度調節計及び温度調節方法によれば、制御対象の全てのモニタ箇所の温度が目標範囲に収まるように自動的に制御を行うことができる。 According to the temperature controller and the temperature control method of the present invention, it is possible to automatically control the temperature of all the monitor points to be controlled so as to be within the target range.
本発明に係る実施形態の温度調節計を示す概略構成図である。It is a schematic block diagram which shows the temperature controller of the embodiment which concerns on this invention. 従来手法と本発明に係る手法との関係を説明した概念図である。It is a conceptual diagram explaining the relationship between the conventional method and the method which concerns on this invention. 本発明に係る実施形態1の温度調節計の動作を説明したフローチャートである。It is a flowchart explaining the operation of the temperature controller of Embodiment 1 which concerns on this invention.
 以下、この発明を実施するための形態について、添付の図面にしたがって説明する。なお、以下の実施形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するものではない。 Hereinafter, a mode for carrying out the present invention will be described with reference to the accompanying drawings. The following embodiment is an embodiment of the present invention, and does not limit the present invention to the scope thereof.
<実施形態>
 図1はこの発明の実施形態による温度調節計の本発明に関する部分を示す概略構成図である。
 温度調節計100は、温度制御対象220を測温する複数のセンサ231~23Nにおける測定値(PV)及び事前に設定された目標値(SV)に基づき負荷210を制御する装置であり、後述する疑似測定値の算出等を行う演算部120と、PV及び目標値SVに基づき負荷への出力を制御する制御部110を備える。
 なお、本実施形態においては制御部110における制御手法についてはPID制御、温度制御対象220は恒温槽、負荷210はヒータ、センサ231~23Nについては熱電対等の測温センサであるものとする。
 また、本実施形態においては図1に記載のように、熱源は1つであり、複数のセンサが温度制御対象の種々の箇所に設置され、該当箇所の温度をモニタするように構成されている。
 また、本実施形態においては目標値SV及び制御対象の定常状態時に許容される温度範囲は入力部(不図示)等により事前に設定されるものとする。
<Embodiment>
FIG. 1 is a schematic configuration diagram showing a portion of a temperature controller according to an embodiment of the present invention according to the present invention.
The temperature controller 100 is a device that controls the load 210 based on the measured values (PV) and the preset target values (SV) of the plurality of sensors 231 to 23N that measure the temperature of the temperature controlled object 220, which will be described later. It includes a calculation unit 120 that calculates a pseudo-measured value and the like, and a control unit 110 that controls output to a load based on PV and a target value SV.
In the present embodiment, the control method in the control unit 110 is PID control, the temperature control target 220 is a constant temperature bath, the load 210 is a heater, and the sensors 231 to 23N are temperature measurement sensors such as thermocouples.
Further, in the present embodiment, as shown in FIG. 1, there is only one heat source, and a plurality of sensors are installed at various places to be temperature controlled to monitor the temperature of the corresponding places. ..
Further, in the present embodiment, the target value SV and the temperature range allowed in the steady state of the controlled object are set in advance by an input unit (not shown) or the like.
<従来手法>
 図2は、従来の制御結果と、本発明の制御結果との関係を説明するための概念図である。
 図2上段に示すグラフは、従来手法である通常のPID制御結果を示す概念図である。グラフの横軸は時間、縦軸は温度を示し、太線の結果は最も熱源に近い箇所(測定点)の測定値(PV)を示しており、SVは目標値である。
 また、PVの上側の細線は複数のセンサ測定値のうち最大値aを示す線であり、PVの下側の細線は複数のセンサ測定値のうち最小値bを示す線である。また、上下の破線は、定常状態時に許容される温度範囲である定常温度範囲の上限値と下限値を示している。
 このように、測定点は定常状態となったにも関わらず、その他の箇所においては定常温度範囲から外れてしまっている場合がある。
<Conventional method>
FIG. 2 is a conceptual diagram for explaining the relationship between the conventional control result and the control result of the present invention.
The graph shown in the upper part of FIG. 2 is a conceptual diagram showing the result of a normal PID control which is a conventional method. The horizontal axis of the graph shows time, the vertical axis shows temperature, the result of the thick line shows the measured value (PV) at the point (measurement point) closest to the heat source, and SV is the target value.
The thin line on the upper side of the PV is a line indicating the maximum value a among the plurality of sensor measurement values, and the thin line on the lower side of the PV is a line indicating the minimum value b among the plurality of sensor measurement values. The upper and lower broken lines indicate the upper limit value and the lower limit value of the steady temperature range, which is the temperature range allowed in the steady state.
In this way, although the measurement point is in a steady state, it may be out of the steady temperature range at other points.
 図2下段は本手法を使用した場合の制御結果であり、後述する疑似測定値PV’が目標値SVとなるように制御した場合の概念図であり、全ての箇所において定常温度範囲に収まっていることがわかる。 The lower part of FIG. 2 shows the control result when this method is used, and is a conceptual diagram when the pseudo-measured value PV'described later is controlled to be the target value SV. You can see that there is.
<本発明の手法>
 以下、図2を参照しつつ、本手法の詳細について説明する。
 まず、事前に設定された、定常状態おいて許容される温度範囲である定常温度範囲の上限値及び下限値と、SVとの差分値をそれぞれ算出する。図2では上限値とSVとの差分値をA、下限値とSVとの差分をBとしている。
<Method of the present invention>
Hereinafter, the details of this method will be described with reference to FIG.
First, the difference value between the upper limit value and the lower limit value of the steady temperature range, which is a preset temperature range allowed in the steady state, and the SV is calculated. In FIG. 2, the difference value between the upper limit value and the SV is A, and the difference between the lower limit value and the SV is B.
 次に、同一のタイミングで取得した測定値のうち、最大値と最小値を記録する。なお、同一のタイミング、とは厳密に同一でなくともよく、多少の遅延等のマージンを持たせた概念であるものとする。図2では最大値をa、最小値をbとしている。 Next, record the maximum and minimum values of the measured values acquired at the same timing. It should be noted that the same timing does not have to be exactly the same, and is a concept having a margin such as a slight delay. In FIG. 2, the maximum value is a and the minimum value is b.
 次に、AとBとの比率を用いて、見かけ上のPVである疑似測定値PV’を算出する。最大値aと最大値bとPV’とのそれぞれの差分の比率が、AとBとの比率となるようにPV’を設定する。
 具体的には、以下の式1のようにPV’を設定する。
(式1)
PV’=B×(a-b)/A+b
Next, the ratio of A and B is used to calculate the pseudo-measured value PV', which is the apparent PV. PV'is set so that the ratio of the difference between the maximum value a, the maximum value b, and PV'is the ratio of A and B.
Specifically, PV'is set as in Equation 1 below.
(Equation 1)
PV'= B × (ab) / A + b
 このように疑似測定値PV’を算出し、PV’を現在の測定値として制御部に入力して制御することで、定常温度範囲の上限値下限値と、目標値との比率の関係を維持したまま制御することができるため、全ての箇所が定常範囲に入るように制御をすることが可能となる。 By calculating the pseudo-measured value PV'in this way and inputting PV'as the current measured value to the control unit for control, the relationship between the upper and lower limits of the steady-state temperature range and the target value is maintained. Since it can be controlled as it is, it is possible to control so that all the parts are within the steady range.
<警報機能>
 なお、恒温槽のような制御対象においては制御する対象によって定常温度範囲を設定することが重要であり、適切に定常温度範囲が設定されていない場合、所望の結果を得られない場合がある。例えば、定常温度範囲の上限値が低すぎてしまい、ある箇所の測定値が定常温度範囲の上限値を超えてしまう場合が考えられる。この場合、それ以上の加熱をすることができないため、本手法を使用するこができない。このような場合は、定常温度範囲の設定が誤っている可能性が高い。
 また、測定値の最大値と最小値の差が、定常温度範囲の幅よりも大きい場合は、定常状態となった場合に定常温度範囲には収まらない可能性がある。
 そのため、このような場合にはユーザに定常温度範囲の見直しや、熱源の位置、撹拌装置の調整等を促す警報を出力することで対応する。
 本実実施形態においては最大値と最小値の差が、定常温度範囲の幅よりも大きい場合を警報の判定基準とする。
<Alarm function>
In a controlled object such as a constant temperature bath, it is important to set a steady temperature range depending on the object to be controlled, and if the steady temperature range is not set appropriately, a desired result may not be obtained. For example, the upper limit of the steady temperature range may be too low, and the measured value at a certain point may exceed the upper limit of the steady temperature range. In this case, this method cannot be used because further heating cannot be performed. In such a case, there is a high possibility that the steady temperature range is set incorrectly.
Further, when the difference between the maximum value and the minimum value of the measured values is larger than the width of the steady temperature range, it may not fall within the steady temperature range when the steady state is reached.
Therefore, in such a case, the user is dealt with by outputting an alarm prompting the user to review the steady temperature range, adjust the position of the heat source, adjust the stirring device, and the like.
In the present embodiment, the case where the difference between the maximum value and the minimum value is larger than the width of the steady temperature range is used as the judgment criterion of the alarm.
<動作>
 次に、図3のフローチャートを参照しつつ、実施形態1の温度調節計100の本発明に関する処理動作について説明する。
 なお、図3の処理におけるスタート~エンドの期間については、温度調節計を用いて、恒温槽の制御開始から定常状態までの、所謂、立ちあがり期間を想定して、以下説明する。
<Operation>
Next, the processing operation according to the present invention of the temperature controller 100 of the first embodiment will be described with reference to the flowchart of FIG.
The start-end period in the process of FIG. 3 will be described below using a temperature controller, assuming a so-called rising period from the start of control of the constant temperature bath to the steady state.
 まず、制御が開始され、S310にて全てのセンサ(CH)231~23Nから測定値を取得する。定常温度範囲(上限値及び下限値)と目標値SVについては入力部等(不図示)により温度調節計100に入力される。また、定常温度範囲及びSVが入力されると、演算部120が疑似測定値を算出するための比率(上記式1におけるB/A)を算出する。 First, the control is started, and the measured values are acquired from all the sensors (CH) 231 to 23N in S310. The steady temperature range (upper limit value and lower limit value) and the target value SV are input to the temperature controller 100 by an input unit or the like (not shown). Further, when the steady temperature range and the SV are input, the calculation unit 120 calculates the ratio (B / A in the above equation 1) for calculating the pseudo measurement value.
 次にS320にて、演算部120が測定値の最大値PVmaxと、測定値の最小値PVminの差分値PVmax-PVminを設定する。そして、この差分値が定常温度範囲の幅(上限値-下限値)以下であるかどうかを判定する。PVmax-PVminが定常温度範囲の幅より大きかった場合、定常温度範囲の設定や、熱源の位置等に問題があるものとして、S330へと移行する(S320:NO→S330)。S330において、温度調節計100はディスプレイ等の外部装置(不図示)へと設定に異常があるため、調整が必要である旨の警報を出力し、S340へと移行する。 Next, in S320, the calculation unit 120 sets the difference value PVmax-PVmin between the maximum value PVmax of the measured value and the minimum value PVmin of the measured value. Then, it is determined whether or not this difference value is equal to or less than the width of the steady temperature range (upper limit value-lower limit value). When PVmax-PVmin is larger than the width of the steady temperature range, it is assumed that there is a problem in the setting of the steady temperature range, the position of the heat source, etc., and the process proceeds to S330 (S320: NO → S330). In S330, the temperature controller 100 outputs an alarm indicating that adjustment is necessary because there is an abnormality in the setting to an external device (not shown) such as a display, and shifts to S340.
 一方、PVmax-PVminが定常温度範囲の幅以下であった場合、定常温度範囲の設定等が正常であるものとして、S340へと進む(S320:YES→S340)。
 S340では演算部120が、同一のタイミングで取得した測定値の最大値、最小値、および定常温度範囲と目標値との差分の比率に基づき疑似測定値PV’を算出する。具体的には上記の式1に基づき疑似測定値PV’を算出する。
 そして、演算部120は疑似測定値PV’を制御部110にPVとして出力し、S350に移行する。
On the other hand, when PVmax-PVmin is equal to or less than the width of the steady temperature range, the process proceeds to S340 assuming that the setting of the steady temperature range is normal (S320: YES → S340).
In S340, the calculation unit 120 calculates the pseudo-measured value PV'based on the maximum value and the minimum value of the measured values acquired at the same timing and the ratio of the difference between the steady temperature range and the target value. Specifically, the pseudo-measured value PV'is calculated based on the above equation 1.
Then, the calculation unit 120 outputs the pseudo-measured value PV'to the control unit 110 as PV, and shifts to S350.
 S350において、制御部110が疑似測定値PV’及び目標値SVに基づき定常状態にあるかどうかの判断を行う。定常状態でない場合は、引き続き制御を行いS310へと移行し、以下ループ動作となる(S350:NO→S310)。
 一方、定常状態である場合、立ち上げ制御については終了とする(S350:Yes→エンド)。
 本実施形態及び図3においては立ち上げ制御の処理の説明のため、便宜上、定常状態となった場合に処理を終了することとしているが、定常状態になった場合であっても、引き続き計算処理を実施するように構成されていてもよい。その場合、電源を切る等、温度調節計100の動作が実質的に停止するまで処理を実施するように構成される。
In S350, the control unit 110 determines whether or not it is in a steady state based on the pseudo-measured value PV'and the target value SV. If it is not in a steady state, it continues to be controlled and shifts to S310, followed by a loop operation (S350: NO → S310).
On the other hand, in the steady state, the start-up control is terminated (S350: Yes → end).
In the present embodiment and FIG. 3, for the sake of explanation of the start-up control process, for convenience, the process is terminated when the steady state is reached, but even if the steady state is reached, the calculation process continues. May be configured to carry out. In that case, the process is configured to carry out the process until the operation of the temperature controller 100 is substantially stopped, such as turning off the power.
<効果>
 以上のように、本実施形態1の温度調節計100によれば、定常温度範囲の上限値下限値と、目標値との比率の関係を維持したまま制御することができるため、制御対象の全てのモニタ箇所の温度が定常温度範囲に収まるように、自動的に制御を行うことができる。
 また、測定値の最大値最小値の幅が、事前に設定された定常温度範囲よりも大きい場合に警報が出力されるように構成されているため、本手法が適用できない条件設定であった場合に、ユーザに対して定常温度範囲や制御環境の調整を促すことができる。
<Effect>
As described above, according to the temperature controller 100 of the first embodiment, control can be performed while maintaining the relationship between the upper limit value and the lower limit value of the steady temperature range and the target value, and therefore all the control targets. It is possible to automatically control the temperature of the monitored part so that it falls within the steady temperature range.
In addition, since the alarm is output when the range of the maximum and minimum values of the measured values is larger than the preset steady-state temperature range, the condition settings to which this method cannot be applied are set. In addition, it is possible to encourage the user to adjust the steady temperature range and the control environment.
<その他の構成>
 本実施形態においては負荷がヒータである場合についての温度調節計100の動作を説明したが、負荷がペルチエ素子等の熱交換素子(その場合、制御対象は恒温槽ではなく冷却庫)である場合でも同様に本手法を使用することができる。その場合、警報出力の条件判断の一部の態様については、警報出力の基準が負荷がヒータである場合と逆に設定される。例えば、測定最小値が、定常温度範囲の下限値を下回っていた場合に警報が出力される。
<Other configurations>
In the present embodiment, the operation of the temperature controller 100 when the load is a heater has been described, but when the load is a heat exchange element such as a Pertier element (in that case, the control target is not a constant temperature bath but a cooler). However, this method can be used in the same manner. In that case, for some aspects of determining the condition of the alarm output, the reference of the alarm output is set in the opposite direction to the case where the load is a heater. For example, an alarm is output when the minimum measured value is below the lower limit of the steady temperature range.
 また、本実施形態にでは制御部110がPID制御を実施する場合を例にとって説明したが、現在の測定値を使用して制御を行うものであればよく、任意のフィードバック制御を使用して制御するように構成されていてもよい。 Further, in the present embodiment, the case where the control unit 110 executes PID control has been described as an example, but any control may be performed using the current measured value, and control may be performed using arbitrary feedback control. It may be configured to do so.
 また、本実施形態では演算部120が、定常温度範囲及びSVが入力されたタイミングで、疑似測定値PV’を算出するための比率(上記式1におけるA及びB)を算出するように構成されていたが、疑似測定値PV’の算出までの任意のタイミングで算出するように構成されていてもよい。 Further, in the present embodiment, the calculation unit 120 is configured to calculate the ratio (A and B in the above equation 1) for calculating the pseudo-measured value PV'at the timing when the steady temperature range and the SV are input. However, it may be configured to be calculated at an arbitrary timing until the pseudo-measured value PV'is calculated.
 また、本実施形態における温度調節計は、測定値の最大値PVmaxと、測定値の最小値PVminの差分値PVmax-PVminが定常温度範囲の幅以下であるかどうかの判定により警報を出力するように構成されていたが、これに限られるものではない。例えば、PVmaxのみ、又はPVminのみが定常温度範囲の上限値を超えている場合や定常状態になったにも関わらず、PVmax及びPVminの両者が定常温度範囲の下限値を下回っている場合等に警報を出力するように構成されていてもよい。このように構成されていることにより、種々の制御の条件に合わせて、本手法が使用可能となるように制御環境を調整するよう、ユーザに促すことができる。 Further, the temperature controller in the present embodiment outputs an alarm by determining whether the difference value PVmax-PVmin between the maximum value PVmax of the measured value and the minimum value PVmin of the measured value is within the width of the steady temperature range. However, it is not limited to this. For example, when only PVmax or only PVmin exceeds the upper limit of the steady temperature range, or when both PVmax and PVmin are below the lower limit of the steady temperature range even though the steady state is reached. It may be configured to output an alarm. With such a configuration, it is possible to urge the user to adjust the control environment so that the present method can be used according to various control conditions.
 なお、上記各実施形態における各構成は、それぞれ専用回路等でハード的に構成されるものであってもよいし、マイコン等の汎用的な回路上でソフトウェア的に実現されるものであってもよい。 It should be noted that each configuration in each of the above embodiments may be configured in hardware by a dedicated circuit or the like, or may be realized by software on a general-purpose circuit such as a microcomputer. good.
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成及び動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解しうる様々な変更を行うことができる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above-described embodiments. Various changes that can be understood by those skilled in the art can be made to the structure and operation of the present invention without departing from the spirit of the present invention.
100…温度調節計
110…切換処理部
120…出力部
210…負荷
220…温度制御対
231~23N…センサ
100 ... Temperature controller 110 ... Switching processing unit 120 ... Output unit 210 ... Load 220 ... Temperature control pair 231 to 23N ... Sensor

Claims (5)

  1.  目標温度及び温度制御対象の測定温度に基づき前記温度制御対象の温度を制御する温度調節装置であって、
     前記測定温度が、前記温度制御対象の複数の箇所から取得され、
     前記温度制御対象の定常状態として許容される定常温度範囲の上限値及び下限値と、前記目標温度とのそれぞれの差分値の比率を算出し、
     同一のタイミングで取得された複数の測定温度の最大値と前記目標温度との差分値と、前記同一のタイミングで取得された複数の測定温度の最小値と前記目標温度との差分値と、前記比率と、に基づき、当該タイミングにおける疑似測定値を算出し、
     前記疑似測定値及び前記目標温度に基づき前記温度制御対象の温度を制御することを特徴とする温度調節計。
    A temperature control device that controls the temperature of the temperature control target based on the target temperature and the measurement temperature of the temperature control target.
    The measured temperature is acquired from a plurality of locations subject to temperature control, and the measured temperature is obtained from a plurality of locations.
    The ratio of the difference value between the upper limit value and the lower limit value of the steady state temperature range allowed as the steady state of the temperature control target and the target temperature is calculated.
    The difference value between the maximum value of the plurality of measured temperatures acquired at the same timing and the target temperature, the minimum value of the plurality of measured temperatures acquired at the same timing and the difference value between the target temperature, and the above. Based on the ratio and the pseudo measurement value at the relevant timing,
    A temperature controller characterized in that the temperature of the temperature controlled object is controlled based on the pseudo-measured value and the target temperature.
  2.  前記疑似測定値が、以下の式により算出され、
     PV’=B×(a-b)/A+b
     上記式において、PV’は前記疑似測定値、Aは前記定常温度範囲の上限値と前記目標温度との差分値、Bは前記定常温度範囲の下限値と前記目標温度との差分値、aは前記測定温度の最大値、bは前記測定温度の最小値である、請求項1に記載の温度調節計。
    The pseudo-measured value is calculated by the following formula.
    PV'= B × (ab) / A + b
    In the above formula, PV'is the pseudo-measured value, A is the difference value between the upper limit value of the steady temperature range and the target temperature, B is the difference value between the lower limit value of the steady temperature range and the target temperature, and a is the difference value. The temperature controller according to claim 1, wherein the maximum value of the measurement temperature and b are the minimum values of the measurement temperature.
  3.  前記測定温度の最大値と、前記測定温度の最小値との差分が、前記定常温度範囲の上限値と前記定常温度範囲の下限値との差分よりも大きい場合に警報を出力する、請求項1又は2に記載の温度調節計。 Claim 1 that outputs an alarm when the difference between the maximum value of the measured temperature and the minimum value of the measured temperature is larger than the difference between the upper limit value of the steady temperature range and the lower limit value of the steady temperature range. Or the temperature controller according to 2.
  4.  前記測定温度の最大値が、前記定常温度範囲の上限値を超えている場合に警報を出力する、請求項1から3のいずれかに記載の温度調節計。 The temperature controller according to any one of claims 1 to 3, which outputs an alarm when the maximum value of the measured temperature exceeds the upper limit value of the steady temperature range.
  5.  演算部及び制御部を備える温度調節計によって、目標温度及び温度制御対象の測定温度に基づき前記温度制御対象の温度を制御する温度調節方法であって、
     前記測定温度が、前記温度制御対象の複数の箇所に設置されたセンサから取得され、
     前記温度制御対象の定常状態として許容される定常温度範囲の上限値及び下限値と、前記目標温度とのそれぞれの差分値の比率が前記演算部により算出され、
     同一のタイミングで取得された複数の測定温度の最大値と前記目標温度との差分値と、前記同一のタイミングで取得された複数の測定温度の最小値と前記目標温度との差分値と、前記比率と、に基づき、当該タイミングにおける疑似測定値が前記演算部により算出され、
     前記疑似測定値及び前記目標温度に基づき前記温度制御対象の温度が前記制御部により制御されることを特徴とする温度調節方法。
    It is a temperature control method that controls the temperature of the temperature control target based on the target temperature and the measurement temperature of the temperature control target by a temperature controller including a calculation unit and a control unit.
    The measured temperature is acquired from sensors installed at a plurality of locations to be controlled by the temperature.
    The calculation unit calculates the ratio of the difference value between the upper limit value and the lower limit value of the steady state temperature range allowed as the steady state of the temperature control target and the target temperature.
    The difference value between the maximum value of the plurality of measured temperatures acquired at the same timing and the target temperature, the minimum value of the plurality of measured temperatures acquired at the same timing and the difference value between the target temperature, and the above. Based on the ratio, the pseudo-measured value at the timing is calculated by the calculation unit.
    A temperature control method characterized in that the temperature of the temperature control target is controlled by the control unit based on the pseudo-measured value and the target temperature.
PCT/JP2020/009106 2020-03-04 2020-03-04 Temperature controller and temperature control method WO2021176589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022504836A JP7147124B2 (en) 2020-03-04 2020-03-04 Temperature controller and temperature control method
PCT/JP2020/009106 WO2021176589A1 (en) 2020-03-04 2020-03-04 Temperature controller and temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009106 WO2021176589A1 (en) 2020-03-04 2020-03-04 Temperature controller and temperature control method

Publications (1)

Publication Number Publication Date
WO2021176589A1 true WO2021176589A1 (en) 2021-09-10

Family

ID=77613194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009106 WO2021176589A1 (en) 2020-03-04 2020-03-04 Temperature controller and temperature control method

Country Status (2)

Country Link
JP (1) JP7147124B2 (en)
WO (1) WO2021176589A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037177A (en) * 2010-08-10 2012-02-23 Yamatake Corp Air conditioning controlling device and method
JP2016073129A (en) * 2014-09-30 2016-05-09 株式会社東芝 Cooling gas temperature control device
WO2016084183A1 (en) * 2014-11-27 2016-06-02 理化工業株式会社 Temperature control device and temperature control method
WO2017085781A1 (en) * 2015-11-17 2017-05-26 理化工業株式会社 Temperature control device and temperature control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6734551B2 (en) * 2016-11-14 2020-08-05 理化工業株式会社 State control device, state control method, and master controller used in state control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037177A (en) * 2010-08-10 2012-02-23 Yamatake Corp Air conditioning controlling device and method
JP2016073129A (en) * 2014-09-30 2016-05-09 株式会社東芝 Cooling gas temperature control device
WO2016084183A1 (en) * 2014-11-27 2016-06-02 理化工業株式会社 Temperature control device and temperature control method
WO2017085781A1 (en) * 2015-11-17 2017-05-26 理化工業株式会社 Temperature control device and temperature control method

Also Published As

Publication number Publication date
JP7147124B2 (en) 2022-10-05
JPWO2021176589A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
RU2557113C2 (en) Method of furnace temperature control for furnace with direct heating and control device
JP4639821B2 (en) Target value processing device, temperature controller and control process execution system
JP6197914B2 (en) Controller, control method and control program
JP5075701B2 (en) Control device and power estimation method
JP6409876B2 (en) Control device
JP2020526870A (en) Systems and methods for controlling power to heaters
JP2014089495A (en) Feedback control method, feedback control device and feedback control program
WO2021176589A1 (en) Temperature controller and temperature control method
JP2017191019A (en) Temperature measurement device and temperature measurement method
JP6897104B2 (en) Thermocouple temperature measuring device
JP2018112954A (en) Controller, method for control, and control program
JP2004086858A (en) Controller, thermoregulator and thermal treatment equipment
US11921526B2 (en) Method and system for controlling an electric heater using control on energy
JP6555429B2 (en) Temperature measuring device, temperature indicator and temperature controller
JP6624303B2 (en) Temperature measuring device, temperature controller and short circuit judgment program
JP4634197B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
CN109765948B (en) Non-overshoot temperature control algorithm for CT detector
JP6881355B2 (en) Temperature measuring device, temperature adjusting device, temperature measuring method, and temperature measuring program
JP2001318702A (en) Control system
JP2019082913A (en) Temperature control device and method
JP2599815B2 (en) Reformer temperature controller for fuel cell power generation system
JP2006155169A (en) Temperature control method, temperature controller and heat treatment system
JP7028620B2 (en) Control device and monitoring method
KR100218357B1 (en) A temperature controlling device
JP6800025B2 (en) Control device and display method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504836

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922941

Country of ref document: EP

Kind code of ref document: A1