WO2021176578A1 - 光通信システム及び光通信方法 - Google Patents

光通信システム及び光通信方法 Download PDF

Info

Publication number
WO2021176578A1
WO2021176578A1 PCT/JP2020/009025 JP2020009025W WO2021176578A1 WO 2021176578 A1 WO2021176578 A1 WO 2021176578A1 JP 2020009025 W JP2020009025 W JP 2020009025W WO 2021176578 A1 WO2021176578 A1 WO 2021176578A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
excitation light
wavelength
signal
unit
Prior art date
Application number
PCT/JP2020/009025
Other languages
English (en)
French (fr)
Inventor
稜 五十嵐
藤原 正満
一貴 原
拓也 金井
康隆 木村
敦子 河北
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022504829A priority Critical patent/JP7299552B2/ja
Priority to US17/908,527 priority patent/US11863211B2/en
Priority to PCT/JP2020/009025 priority patent/WO2021176578A1/ja
Publication of WO2021176578A1 publication Critical patent/WO2021176578A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • H04B10/25756Bus network topology
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/278Bus-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/028WDM bus architectures

Definitions

  • the present invention relates to an optical communication system and an optical communication method.
  • Optical access technology based on the PON (Passive Optical Network) method is standardized by the IEEE (The Institute of Electrical and Electronics Engineers) and ITU-T (International Telecommunication Union Telecommunication Standardization Sector).
  • Optical access technology based on the PON method is widely used in recent optical access networks.
  • FIG. 1 is a schematic diagram showing a configuration of an optical access network 5 (hereinafter, referred to as “PON system 5”) by the PON method.
  • PON system 5 an optical access network 5
  • one OLT (Optical Line Terminal) 10 and a plurality of ONUs (Optical Network Units) 20 are connected by an optical fiber 15, and both communicate with each other. It is said.
  • the OLT 10 is an optical line termination device installed on the station building side
  • the ONU 20 is an optical line termination device installed on the subscriber side.
  • the optical fiber 15 connected to the OLT 10 is branched into a plurality of communication paths by an optical splitter 30 (optical coupler).
  • the branched optical fiber 15 is connected to each of the plurality of ONU 20s.
  • FIG. 1 shows a case where three ONU 20s exist as an example, but the number of ONU 20s is arbitrary.
  • each ONU 20 receives an optical signal (downlink signal) transmitted from the OLT 10.
  • each ONU 20 selects and receives only the downlink signal of the time slot assigned to the own device in advance.
  • the OLT 10 receives the optical signal (uplink signal) transmitted from each ONU 20.
  • each ONU 20 transmits an uplink signal only to the time slot assigned to the own device in advance. In this way, a collision between an optical signal transmitted / received by the own ONU 20 and an optical signal transmitted / received by another ONU 20 is avoided.
  • one OLT 10 and one optical fiber 15 are shared by a plurality of ONU 20s (that is, a plurality of subscribers).
  • ONU 20s that is, a plurality of subscribers.
  • the double star type network topology is a network configuration that is particularly effective when it is required to efficiently accommodate densely existing users, such as FTTH (Fiber To The Home).
  • FTTH Fiber To The Home
  • IoT Internet of Things
  • mobile networks and the like with optical access networks.
  • bus-type network topology an optical access network to which a bus-type network topology is applied.
  • FIG. 2 is a schematic diagram showing the configuration of the bus-type optical access network 6.
  • the optical fiber 15 is composed of one trunk fiber 16 and a plurality of branch fibers 17.
  • the OLT 10 and the plurality of ONUs 20 are respectively connected by one trunk fiber 16 and a plurality of branch fibers 17.
  • the branch fiber 17 connects the ONU 20 and the drop point 31 installed on the trunk fiber 16.
  • the communication path of the downlink signal transmitted from the OLT 10 is branched into two communication paths of the trunk fiber 16 and the branch fiber 17 at the drop point 31.
  • an optical signal (downlink signal) having the same intensity is output to each of these two communication paths.
  • each main signal suffers a drop loss of 3 [dB] (50 [%]).
  • the number of drop points 31 passing through in the communication path is relatively small.
  • the number of drop points 31 passing through in the communication path is relatively large. Therefore, the more the optical signal is transmitted to the ONU 20 existing in a farther area, the more drop points 31 will be passed, and the cumulative drop loss will increase. Along with this, there is a problem that the maximum transmission distance of an optical signal may decrease.
  • the unequal-branched optical splitter is an optical splitter in which the transmittance at each output port is set asymmetrically.
  • FIG. 3 is a schematic diagram showing the configuration of a bus-type optical access network 7 using the unequal-branched optical splitter 32.
  • the bus-type optical access network 7 using the unequal-branched optical splitter shown in FIG. 3 has a branch fiber at the unequal-branched optical splitter 32 (drop point).
  • the transmittance to 17 is reduced, and the transmittance to the trunk fiber 16 is increased.
  • the OLT 10 and the ONU 20 existing in a distant area are used.
  • the cumulative drop loss is further reduced by passing through a plurality of drop points.
  • the bus-type optical access network 7 using the unequal-branched optical splitter 32 can increase the maximum transmission distance of the optical signal.
  • the optical amplification technique is a technique for extending a transmission distance by amplifying the signal strength of an optical signal lowered by long-distance communication to a signal strength that can be identified by a receiver.
  • the effect of increasing the transmission distance by the optical amplifier differs depending on the position where the optical amplifier is installed. This is because the magnitude of optical noise entering the receiver differs depending on the position where the optical amplifier is installed.
  • the optical noise emitted by the optical amplifier is attenuated by the transmission loss. Therefore, when the light noise reaches the receiver, the intensity of the optical noise is low and the reception characteristics are unlikely to deteriorate.
  • the optical noise emitted by the optical amplifier enters the receiver with high intensity without receiving transmission loss. Therefore, the reception characteristics are likely to be deteriorated. From the above, it is important to install an optical amplifier on the transmitter side in order to obtain a high effect in expanding the transmission distance of optical signals in an optical access network.
  • the uplink signal transmitted from the ONU 20 to the OLT 10 and the downlink signal transmitted from the OLT 10 to the ONU 20 are transmitted by the same optical fiber. Therefore, in order to increase the transmission distance, it is necessary to amplify the uplink signal and the downlink signal, respectively.
  • the optical access network a plurality of subscribers share one OLT 10 and one optical fiber 15.
  • the increase in equipment cost is suppressed, and it becomes possible to provide an economical high-speed optical access service. Therefore, in order to economically extend the transmission distance by the optical amplifier, it is important to consolidate the functions of the optical amplifier on the OLT10 side so that the functions of the amplifier are shared by a plurality of users.
  • FIG. 4 is a schematic view showing the configuration of the optical access network 8 in which the optical amplifier 40 is installed on the OLT10 side.
  • two WDM (Wavelength Division Multiplexing) optical couplers 33 are used to connect a communication path through which the wavelength band of the uplink signal passes and a communication path through which the wavelength band of the downlink signal passes. Is separated, and the separated communication paths are recombined.
  • the WDM optical coupler 33 can separate one input signal for each wavelength and branch it to a plurality of output ports.
  • a centralized amplification type optical amplifier 40 is installed in a communication path through which the wavelength band of the uplink signal passes and a communication path through which the wavelength band of the downlink signal passes, respectively.
  • the centralized amplification type optical amplifier 40 is an optical amplifier that centrally amplifies an optical signal at one point in a communication path. As shown in FIG. 4, both of the two optical amplifiers 40 are installed on the OLT 40 side.
  • the optical amplifier 40 exists on the transmitter side (OLT10 side). Therefore, in downlink communication, as described above, the ASE (Amplified Spontaneous Emission) noise is reduced when it reaches the receiver side (ONU20 side) due to the transmission loss. Therefore, in downlink communication, a high effect is expected in increasing the transmission distance.
  • the optical amplifier 40 is present on the receiver side (OLT10 side). Therefore, in the uplink communication, the optical noise entering the receiver side (OLT10 side) becomes relatively large. Therefore, in uplink communication, the effect of expanding the transmission distance is limited.
  • the distributed Raman amplification technique is a technique in which light with high power called excitation light is incident on a communication path and an optical signal is amplified by the effect of induced Raman scattering, which is one of the nonlinear optical effects.
  • the distributed Raman amplification technique is generally known as an optical amplification technique having good noise characteristics.
  • the wavelength of the excitation light needs to be appropriately set according to the wavelength of the optical signal to be amplified.
  • FIG. 5 is a schematic diagram showing the configuration of an optical access network 9a using a centralized optical amplifier and distributed Raman amplification technology.
  • FIG. 6 is a diagram showing a change in signal strength with respect to a transmission distance in the optical access network 9a.
  • the alternate long and short dash line indicates the signal strength when the distributed Raman amplification technique is not used.
  • the downlink signal is amplified by the centralized optical amplifier 41 immediately after being transmitted from the OLT 10. After that, the amplified downlink signal passes through the communication path and enters the ONU 20 (receiver).
  • the uplink signal is attenuated by the transmission loss immediately after being transmitted from the ONU 20.
  • the attenuated uplink signal enters the region where the intensity of the excitation light is high in the communication path, it is gradually amplified by the effect of distributed Raman amplification.
  • the communication path becomes the amplification medium. In this way, the uplink signal propagates in the communication path and gradually obtains an amplification gain. At this time, since the optical noise generated by the distributed Raman amplification also suffers a transmission loss, the amount of optical noise at the time of reaching the receiver side (OLT10) is also reduced. As a result, good noise characteristics can be obtained.
  • FIG. 7 is a schematic diagram showing the configuration of a bus-type optical access network 9b in which the centralized optical amplifier 41 and the distributed Raman amplification technique are used.
  • FIG. 8 is a diagram showing a change in excitation light intensity with respect to a transmission distance in the bus-type optical access network 9b.
  • the bus-type optical access network 9b has a drop point 31.
  • the drop point 31 is an equi-branched optical splitter.
  • the intensity of the excitation light is significantly reduced as shown in FIG. 8, and there is a concern that the Raman gain may be reduced. Will be done.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a technique capable of extending a transmission distance in a bus-type optical access network.
  • One aspect of the present invention is an optical communication system in which a station-side device and a plurality of subscriber-side devices are configured in a bus-type network topology, and an optical amplification unit installed on the station side, an optical signal, and excitation.
  • the optical amplification unit includes a drop unit for branching light, an amplifier for amplifying a downlink signal, and an excitation light output unit for outputting the excitation light for amplifying an uplink signal to a communication path.
  • the drop unit is an optical communication system that changes the branching ratio according to the wavelength of the optical signal so as to reduce the transmission loss of the excitation light to the trunk fiber.
  • one aspect of the present invention is the above-mentioned optical communication system, in which the optical signal is a WDM signal having a plurality of wavelengths, the drop portion periodically corresponds to the wavelength of the WDM signal.
  • a WDM optical coupler having a variable transmittance is provided.
  • one aspect of the present invention is the above-mentioned optical communication system, further including a mirror unit installed on the subscriber side, and the optical amplification unit is a monitoring light output unit that outputs monitoring light to a communication path.
  • the wavelength of the excitation light is determined based on the intensity monitoring unit that detects the intensity of the monitoring light reflected by the mirror unit and the intensity detected by the intensity monitoring unit, and the excitation of the determined wavelength.
  • An analysis unit that controls the excitation light output unit so as to output light is further provided.
  • one aspect of the present invention is the optical communication system, in which the analysis unit determines the wavelength so that the intensity of the monitoring light detected by the intensity monitor unit is maximized.
  • one aspect of the present invention is the above-mentioned optical communication system, in which the excitation light output unit sweeps the wavelength of the excitation light output to the communication path, and the analysis unit is the excitation light.
  • the wavelength is determined so that the intensity of the monitoring light, which changes according to the sweep of the wavelength, is maximized.
  • one aspect of the present invention is the above-mentioned optical communication system, and when there are a plurality of wavelengths of the excitation light, the excitation light output portion has a wavelength having a high transmittance to the trunk fiber in the drop portion. Light is used as the excitation light.
  • one aspect of the present invention is an optical communication method using an optical communication system in which a station-side device and a plurality of subscriber-side devices are configured in a bus-type network topology, and is a branch that branches an optical signal and excitation light.
  • the downlink signal amplification step in which the downlink signal is amplified by an amplifier installed on the station side
  • the excitation light output step in which the excitation light for amplifying the uplink signal is output to the communication path
  • the branching step the trunk line
  • This is an optical communication method including a branch ratio changing step of changing the branch ratio according to the wavelength of the optical signal so as to reduce the transmission loss of the excitation light with respect to the fiber.
  • the transmission distance in a bus-type optical access network can be extended.
  • FIG. 6 is a schematic diagram showing a configuration of a bus-type optical access network 7 using an unequal-branched optical splitter 32.
  • the schematic which shows the structure of the bus type optical access network 1 in the 1st Embodiment of this invention.
  • FIG. 5 is a diagram showing a change in excitation light intensity with respect to a transmission distance when a drop point 31 having a relatively large transmission loss exists at a position close to the OLT 10.
  • FIG. 5 is a diagram showing a change in excitation light intensity with respect to a transmission distance when a drop point 31 having a relatively large transmission loss exists at a position close to ONU 20.
  • the schematic diagram which shows the structure of the bus type optical access network 3 which determines the wavelength of excitation light by sweeping a wavelength.
  • FIG. 9 is a schematic view showing the configuration of the bus-type optical access network 1 according to the first embodiment of the present invention.
  • the bus-type optical access network 1 includes an OLT 10 which is a station-side device and a plurality of ONU 20s which are subscriber-side devices.
  • the OLT 10 and the plurality of ONUs 20 are connected to each other by a communication path composed of an optical fiber 15 wired in a bus-type network topology.
  • an optical amplifier device that has an optical signal amplification function is provided between the OLT 10 and the communication path.
  • the communication path is separated by two WDM optical couplers 33 into a communication path through which the wavelength band of the uplink signal passes and a communication path through which the wavelength band of the downlink signal passes, and the separated communication paths are separated. Are recombined.
  • the optical signal (downlink signal) transmitted from the OLT 10 enters the optical amplifier.
  • the downlink signal propagates in the communication path through which the downlink signal passes among the communication paths separated by the WDM optical coupler 33.
  • a centralized optical amplifier 41 is installed in the communication path through which the downlink signal passes. The centralized optical amplifier 41 amplifies the downlink signal.
  • the amplified downlink signal propagates in the communication path and is received by each ONU 20.
  • the optical signal (uplink signal) transmitted from each ONU 20 enters the optical amplification device after passing through the communication path.
  • the uplink signal propagates in the communication path through which the uplink signal passes among the communication paths separated by the WDM optical coupler 33.
  • the uplink signal passes through the optical amplifier and is received by the OLT 10.
  • the optical amplifier includes an excitation light output unit 50.
  • the excitation light output unit 50 causes the excitation light for amplifying the uplink signal to enter the communication path.
  • the uplink signal is gradually amplified by the effect of distributed Raman amplification when it enters the region where the intensity of the excitation light is high in the communication path.
  • the bus-type optical access network 1 in the present embodiment reduces the drop loss received by the excitation light at the drop point 31 and maximizes the Raman gain.
  • a WDM optical coupler is used as the drop point 31.
  • the WDM optical coupler assumed here can branch one input signal to a plurality of output ports, and can change the branching ratio depending on the wavelength.
  • FIG. 10 is a schematic view showing the configuration of the drop point 31 (WDM optical coupler) of the bus-type optical access network 1 according to the first embodiment of the present invention.
  • the drop point 31 is a WDM optical coupler by melt stretching (see, for example, Non-Patent Document 2).
  • the drop point 31 (WDM optical coupler) is coupled by fusing a part of two optical fibers in close proximity to each other.
  • the drop point 31 propagates a part of the optical signal propagating in one optical fiber to the other fiber.
  • the optical signal input to the input port is distributed to the plurality of output ports. For example, when an optical signal is input to port 1 and port 2, it is output from port 3 and port 4. Further, for example, when an optical signal is input to port 3 and port 4, it is output from port 1 and port 2.
  • the downlink signal is input to port 1 and output from port 3 and port 4. Further, for example, the uplink signal is input to the port 3 and the port 4, and is output from the port 1 and the port 2.
  • the drop point is an equi-branched optical splitter, 50 [%] of the optical signal input from port 1 is output to port 3 and port 4, respectively.
  • the drop point 31 WDM optical coupler by melt stretching
  • the branching ratio of the optical signal to each output port is controlled by applying heat to the optical fiber to stretch the coupling portion.
  • FIG. 11 is a diagram showing an example of the transmission characteristic of the drop point 31 of the bus-type optical access network 1 according to the first embodiment of the present invention.
  • the solid line waveform shows the ratio of transmission from port 1 to port 3 or from port 3 to port 1.
  • the broken line waveform indicates the ratio of transmission from port 1 to port 4 or from port 4 to port 1. It is assumed that port 2 is not used.
  • the trunk fiber direction is a direction from port 1 to port 3 and a direction from port 3 to port 1.
  • the branch fiber direction is a direction from port 1 to port 4 and a direction from port 4 to port 1.
  • the excitation light is configured so as not to be transmitted in the branch fiber direction but to be transmitted in the trunk fiber direction (100 [%]).
  • the light intensity of the excitation light at the time of reaching the distant area is kept high, so that the Raman gain can be maximized.
  • the present invention is not limited to this.
  • a PLC or a Machzenda type waveguide it is possible to realize a drop point in which the branching ratio is changed according to the wavelength.
  • the optical signal is a WDM signal having a plurality of wavelengths.
  • FIG. 12 is a diagram showing an example of changes in the wavelength arrangement of optical signals and the transmittance of a WDM optical coupler.
  • the optical signal is a WDM signal composed of a plurality of wavelengths
  • the wavelength differs depending on the signal. Therefore, the transmittance also changes depending on the signal, so that the transmission distance varies.
  • FIG. 13 is a diagram showing how the transmittance for each port changes at the same period as the wavelength interval of the WDM signal.
  • the transmittance of all signals can be kept constant.
  • the wavelength of the excitation light is set so that the transmittance is 100 [%] as described above.
  • the wavelength of the excitation light is set according to the wavelength of the optical signal to be amplified.
  • the excitation light when a standard single-mode fiber is used, light having a frequency higher than that of the optical signal by about 13 [THz] is used as the excitation light. This results in a wavelength difference of 100 [nm] in the 1550 [nm] band. Therefore, when the excitation light of 1500 [nm] is used, an amplification gain is generated in the vicinity of 1600 [nm].
  • FIG. 14 is a diagram showing how amplification gain is generated.
  • the amplification band indicates a region where the maximum amplification gain can be obtained.
  • the wavelength of the excitation light at which the WDM signal to be amplified is within the amplification band and the transmission of the trunk fiber is 100 [%]. There are a plurality of these, and the wavelength of the excitation light may be set to any of these.
  • FIG. 15 is a diagram showing a case where the wavelength of the excitation light is changed. In this way, even when the wavelength of the excitation light is changed, the wavelength band of the WDM signal can be covered by the amplification band.
  • FIG. 16 is a diagram showing a state in which amplification is performed using a plurality of excitation lights.
  • light having a wavelength having a high transmittance through the trunk fiber of the WDM optical coupler may be used as the excitation light.
  • the Raman gain can be maximized by setting the wavelength of each excitation light so that the transmittance of the WDM optical coupler through the trunk fiber is 100 [%].
  • FIG. 17 is a schematic view showing the configuration of the bus-type optical access network 2 according to the third embodiment of the present invention.
  • the bus-type optical access network 2 in the present embodiment is an optical access network in which the centralized optical amplifier 41 and the distributed Raman amplification technique are used.
  • the bus-type optical access network 2 has a drop point 31.
  • the drop point 31 is designed so that the transmittance with respect to the trunk fiber is 100 [%] in the wavelength band of the excitation light.
  • the drop point 31 is a WDM optical coupler.
  • the characteristics of the drop point device differ depending on the individual. Therefore, in order to maximize the Raman gain, it is necessary to optimize the wavelength of the excitation light according to the device of the drop point used (for example, WDM optical coupler).
  • FIG. 18 is a diagram showing a change in excitation light intensity with respect to a transmission distance when a drop point 31 having a relatively large drop loss exists at a position close to the OLT 10.
  • FIG. 19 is a diagram showing a change in excitation light intensity with respect to a transmission distance when a drop point 31 having a relatively large drop loss exists at a position close to ONU 20.
  • the total transmission loss that the excitation light receives in each communication path is the same in both cases.
  • the gain obtained is larger. This is because when the drop point 31 having a relatively large drop loss exists on the ONU20 side (subscriber side) (FIG. 19), a longer section can be communicated in a state where the intensity of the excitation light is high. Therefore, when determining the wavelength band of the excitation light, it is important to consider the position of each drop point 31 rather than simply determining the wavelength band where the drop loss at the drop point 31 is small.
  • FIG. 20 is a schematic diagram showing a configuration of a bus-type optical access network 3 in which the wavelength of excitation light is determined by sweeping the wavelength.
  • the bus-type optical access network 3 is an optical access network in which the centralized optical amplifier 41 and the distributed Raman amplification technology are used. As shown in FIG. 20, the bus-type optical access network 3 has a drop point 31. In this embodiment, the drop point 31 is a WDM optical coupler.
  • the optical amplification device included in the bus-type optical access network 3 includes a gain monitoring unit, an excitation light output unit 50, and an analysis unit 55.
  • the gain monitoring unit includes a monitoring light output unit 51, a circulator 52, an intensity monitor unit 54, and an analysis unit 55.
  • the bus-type optical access network 3 includes a mirror unit.
  • the mirror unit includes a mirror 53. The mirror 53 reflects the monitoring light described later.
  • the gain monitoring unit monitors the Raman gain.
  • the monitoring light output unit 51 causes light in a wavelength band in which Raman gain is obtained to enter the communication path as monitoring light. After propagating through the trunk fiber, the monitoring light is reflected by the mirror 53 of the mirror portion installed at the end of the trunk fiber. The reflected monitoring light propagates through the trunk fiber again, and then is received by the intensity monitor unit 54 of the optical amplifier. At this time, by sweeping the excitation light output from the excitation light output 50, the gain received by the monitoring light entering the intensity monitor unit 54 changes.
  • the method of sweeping the wavelength of the excitation light is effective.
  • the wavelength of the excitation light may be swept to detect the wavelength of the excitation light that maximizes the intensity of the monitoring light detected by the intensity monitor unit 54.
  • the analysis unit 55 detects the optimum wavelength of the excitation light based on the intensity of the monitoring light detected by the intensity monitoring unit 54, which changes by sweeping the wavelength of the excitation light.
  • the analysis unit 55 controls the wavelength of the excitation light output from the excitation light output unit 50 based on the detection result.
  • the intensity of the monitoring light entering the intensity monitor unit 54 is low. As a result, there is a concern that the measurement accuracy will decrease. In this case, it is necessary to sweep the wavelength of the monitoring light and set the intensity of the monitoring light entering the intensity monitor unit 54 sufficiently high before the wavelength of the excitation light described above is set.
  • the bus-type optical access network in each of the above-described embodiments is configured to include the OLT 10 which is a station side device and a plurality of ONU 20s which are subscriber side devices.
  • the OLT 10 and the plurality of ONU 20s are each connected by an optical fiber wired in a bus-type topology.
  • An optical amplifier optical amplifier that has an optical signal amplification function is connected between the OLT 10 and the communication path.
  • the optical amplifier device separates the uplink signal and the downlink signal into different communication paths by the WDM optical coupler 33, and couples them again.
  • a centralized optical amplifier 41 is installed in the downlink signal communication path.
  • the centralized optical amplifier 41 amplifies the downlink signal transmitted from the OLT 10.
  • the uplink signal transmitted from the ONU 20 propagates through the communication path, passes through the optical amplifier, and is received by the OLT 10. Further, excitation light for amplifying an uplink signal is incident on the communication path from the optical amplifier. When the uplink signal enters the region where the intensity of the excitation light is high in the communication path, the amplification width is gradually expanded by the effect of distributed Raman amplification. Further, a WDM optical coupler is used to reduce the drop loss received by the excitation light at the drop point 31 (drop portion) and maximize the Raman gain. The WDM optical coupler branches one input signal into a plurality of output ports, and changes the branching ratio according to the wavelength of the optical signal.
  • the bus-type optical access network according to each embodiment of the present invention can maintain high excitation light intensity even in a distant area (that is, an area farther from the OLT 10). , Raman gain can be maximized. Thereby, according to the present invention, the transmission distance in the bus type optical access network can be extended.
  • a part of the optical access network in each of the above-described embodiments may be realized by a computer.
  • the program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the term "computer system” as used herein includes hardware of an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a recording device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time.
  • it may include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or a client.
  • the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

局側装置と複数の加入者側装置とがバス型のネットワークトポロジーで構成された光通信システムは、局側に設置された光増幅部と、光信号及び励起光を分岐させるドロップ部と、を備え、前記光増幅部は、下り信号を増幅する増幅器と、上り信号を増幅させるための前記励起光を通信路へ出力する励起光出力部と、を備え、前記ドロップ部は、幹線ファイバに対する前記励起光の伝送損失を低減させるように、前記光信号の波長に応じて分岐比率を変化させる。

Description

光通信システム及び光通信方法
 本発明は、光通信システム及び光通信方法に関する。
 PON(Passive Optical Network)方式による光アクセス技術が、IEEE(The Institute of Electrical and Electronics Engineers)及びITU-T(International Telecommunication Union Telecommunication Standardization Sector)によって標準化されている。PON方式による光アクセス技術は、昨今の光アクセスネットワークにおいて広く用いられている。
 図1は、PON方式による光アクセスネットワーク5(以下、「PONシステム5」という。)の構成を示す概略図である。図1に示されるように、PONシステム5では、1つのOLT(Optical Line Terminal)10と、複数のONU(Optical Network Unit)20とが光ファイバ15によって接続され、両者の間で互いに通信が行われる。OLT10は局舎側に設置される光回線終端装置であり、ONU20は加入者側に設置される光回線終端装置である。PON方式では、OLT10に接続された光ファイバ15は、光スプリッタ30(光カプラ)によって複数の通信経路に分岐される。分岐された光ファイバ15は、複数のONU20の一つひとつにそれぞれ接続される。
 なお、図1は、一例としてONU20が3つ存在する場合について示したものであるが、ONU20の個数は任意である。
 下り通信では、OLT10から送信された光信号(下り信号)を、各ONU20がそれぞれ受信する。PONシステム5における下り通信では、各々のONU20は、予め自装置に割り当てられた時間スロットの下り信号のみを選択して受信する。また、上り通信では、各ONU20から送信された光信号(上り信号)を、OLT10が受信する。PONシステム5における上り通信では、各々のONU20は、予め自装置に割り当てられた時間スロットにのみ上り信号を送信する。このようにして、自己のONU20において送受信される光信号と他のONU20において送受信信される光信号との衝突が回避される。
 このように、PONシステム5では、複数のONU20(すなわち、複数の加入者)によって、1つのOLT10及び1本の光ファイバ15が共有される。これにより、PONシステム5では、設備コストの増大が抑制され、経済的な高速光アクセスサービスの提供が可能になる。
 従来、PONシステムにおいては、主にダブルスター型のネットワークトポロジーの検討が進められてきた。ダブルスター型のネットワークトポロジーは、例えばFTTH(Fiber To The Home)のように、密集して存在するユーザを効率的に収容することが要求される場合において特に有効なネットワーク構成である。しかしながら、昨今、IoT(Internet of Things)及びモバイルネットワーク等を光アクセスネットワークで収容することが検討されている。この場合、状況に応じてネットワークトポロジーを柔軟に選択することが重要となる。例えば、このような光アクセスネットワークにおいて、バス型のネットワークトポロジーを適用することが考えられる。以下、バス型のネットワークトポロジーが適用された光アクセスネットワークを「バス型光アクセスネットワーク」という。
 図2は、バス型光アクセスネットワーク6の構成を示す概略図である。図2に示されるように、バス型光アクセスネットワーク6では、光ファイバ15は、1本の幹線ファイバ16と複数のブランチファイバ17とによって構成される。1本の幹線ファイバ16と複数のブランチファイバ17とによって、OLT10と複数のONU20とがそれぞれ接続される。図2に示されるように、ブランチファイバ17は、ONU20と、幹線ファイバ16上に設置されたドロップ点31とを接続する。
 OLT10から送信された下り信号の通信経路は、ドロップ点31において幹線ファイバ16とブランチファイバ17との2つの通信経路に分岐される。ここで、ドロップ点31が等分岐のパワースプリッタである場合には、これら2つの通信経路へそれぞれ同じ強度の光信号(下り信号)が出力される。この場合、主信号はそれぞれ3[dB](50[%])のドロップ損失を受ける。
 バス型光アクセスネットワーク6においては、OLT10から送信された下り信号が、近隣のエリアに存在するONU20に到達する場合には、通信経路において通過するドロップ点31の個数は相対的に少ない。一方、バス型光アクセスネットワーク6においては、OLT10から送信された下り信号が、遠方のエリアに存在するONU20に到達する場合には、通信経路において通過するドロップ点31の個数が相対的に多い。そのため、より遠方のエリアに存在するONU20へ光信号が伝送される場合であるほど、より多くのドロップ点31を通過することになるため、累積するドロップ損失がより増大する。これに伴い、光信号の最大伝送距離が減少する場合があるという課題がある。
 従来、このような課題を解決するため、ドロップ点31として、光信号の分岐比率が最適化された光スプリッタである不等分岐光スプリッタを用いる手法が提案されている(例えば、非特許文献1)。不等分岐光スプリッタとは、各出力ポートにおける透過率が非対称に設定された光スプリッタである。
 図3は、不等分岐光スプリッタ32を用いたバス型光アクセスネットワーク7の構成を示す概略図である。図2に示されるバス型光アクセスネットワーク6と比べて、図3に示される不等分岐光スプリッタを用いたバス型光アクセスネットワーク7では、不等分岐光スプリッタ32(ドロップ点)において、ブランチファイバ17への透過率が減少され、幹線ファイバ16への透過率が増大される。
 これにより、図2に示されるバス型光アクセスネットワーク6と比べて、図3に示される不等分岐光スプリッタを用いたバス型光アクセスネットワーク7では、OLT10と遠方のエリアに存在するのONU20とを結ぶ通信経路において、複数のドロップ点を通過することによって累積するドロップ損失がより低減される。これにより、不等分岐光スプリッタ32を用いたバス型光アクセスネットワーク7は、光信号の最大伝送距離を拡大させることができる。
 なお、不等分岐光スプリッタ32を用いたバス型光アクセスネットワーク7では、近隣のエリアに存在するONU20への通信経路にある不等分岐光スプリッタ32(ドロップ点)におけるドロップ損失を増大させ過ぎると、符号誤り率がエラーフリーではなくなる恐れがある。したがって、各不等分岐光スプリッタ32における光信号の分岐比率をそれぞれ最適化することが重要になる(非特許文献1参照)。例えば、前述の通りONU20が局舎側(OLT10側)に近い位置に存在するほど伝送距離が短く、通信経路において通過する不等分岐光スプリッタ32(ドロップ点)の個数が少ない。そのため、この場合には通信経路において累積するドロップ損失は小さく、当該ONU20に直接接続された不等分岐光スプリッタ32(ドロップ点)において、より大きなドロップ損失を許容することができる。
 なお、各不等分岐光スプリッタ32における光信号の分岐比率をそれぞれ最適化することが重要であることは、上り通信の場合においても同様である。
 ところで、光アクセスネットワークにおいて光信号の伝送距離を拡大する技術の一つとして、光増幅技術がある。光増幅技術は、長距離通信によって低下した光信号の信号強度を、受信器が識別できる信号強度にまで増幅させることによって伝送距離を拡大させる技術である。光増幅器による伝送距離の拡大効果は、当該光増幅器が設置される位置によって異なる。これは、光増幅器が設置される位置によって、受信器に入る光雑音の大きさが異なるためである。
 例えば、送信器側に光増幅器が設置される場合、光増幅器が放出する光雑音は伝送損失によって減衰する。そのため、受信器に到達する時点では光雑音の強度が小さく、受信特性の劣化が生じにくい。一方、受信器側に光増幅器が設置される場合、光増幅器が放出する光雑音は伝送損失を受けずに高い強度で受信器に入る。そのため、受信特性の劣化が生じやすい。以上のことから、光アクセスネットワークにおける光信号の伝送距離の拡大において高い効果を得るためには、送信器側に光増幅器を設置することが重要である。
 また、光アクセスネットワークでは、ONU20からOLT10へ送信される上り信号と、OLT10からONU20へ送信される下り信号とが、同一の光ファイバによって伝送される。したがって、伝送距離の拡大を図るためには、上り信号と下り信号とをそれぞれ増幅する必要がある。
 前述の通り、光アクセスネットワークでは、複数の加入者が1つのOLT10及び1つの光ファイバ15を共有する。これにより、設備コストの増大が抑制され、経済的な高速光アクセスサービスの提供が可能になる。したがって、光増幅器による伝送距離の拡大を経済的に行うためには、光増幅器の機能をOLT10側に集約して、当該増幅器の機能を複数のユーザによって共有する構成にすることが重要になる。
 図4は、OLT10側に光増幅器40が設置された光アクセスネットワーク8の構成を示す概略図である。図4に示されるように、光アクセスネットワーク8では、2つのWDM(Wavelength Division Multiplexing)光カプラ33によって、上り信号の波長帯が通る通信経路と下り信号の波長帯が通る通信経路とに通信経路が分離され、分離された当該通信経路が再び結合される。WDM光カプラ33は、1つの入力信号を波長ごとに分離し、複数の出力ポートに分岐させることができる
 図4に示されるように、集中増幅型の光増幅器40が、上り信号の波長帯が通る通信経路と下り信号の波長帯が通る通信経路とにそれぞれ設置される。集中増幅型の光増幅器40とは、通信路の一点において光信号を集中的に増幅する光増幅器である。図4に示されるように、2つの光増幅器40は、いずれもOLT40側に設置される。
 図4に示されるように、光アクセスネットワーク8では、下り通信においては、送信器側(OLT10側)に光増幅器40が存在することになる。したがって、下り通信においては、前述の通りASE(Amplified Spontaneous Emission)雑音が伝送損失により受信器側(ONU20側)に到達した時点において減少する。そのため、下り通信においては、伝送距離の拡大において高い効果が見込まれる。一方、上り通信においては、受信器側(OLT10側)に光増幅器40が存在することになる。そのため、上り通信においては、受信器側(OLT10側)に入る光雑音が相対的に大きくなる。そのため、上り通信においては、伝送距離の拡大効果が制限される。
 このように、光アクセスネットワークの伝送距離を拡大させるためには、特に上り通信において雑音を減少させる光増幅技術がOLT10側に備えられる必要がある。昨今、このような光増幅技術として、分布ラマン増幅技術の検討が進められている。分布ラマン増幅技術とは、通信路へ励起光と呼ばれる高いパワーを持つ光を入射させ、非線形光学効果の一つである誘導ラマン散乱の効果によって光信号を増幅させる技術である。分布ラマン増幅技術は、雑音特性が良好な光増幅技術として一般的に知られている。分布ラマン増幅技術においては、励起光の波長は、増幅される光信号の波長に応じて適切に設定される必要がある。
 図5は、集中型光増幅器と分布ラマン増幅技術とが用いられた光アクセスネットワーク9aの構成を示す概略図である。また、図6は、光アクセスネットワーク9aにおける伝送距離に対する信号強度の変化を示す図である。なお、図6において、一点鎖線は、分布ラマン増幅技術が用いられない場合の信号強度を示したものである。
 下り信号は、OLT10から送信された直後に、集中型光増幅器41によって増幅される。その後、増幅された下り信号は、通信路を通過し、ONU20(受信器)に入る。一方、上り信号は、ONU20から送信された直後から伝送損失によって減衰していく。但し、減衰した上り信号は、通信路において励起光の強度が高い領域に入ると、分布ラマン増幅の効果によって徐々に増幅される。分布ラマン増幅では、前述の集中型光増幅器41による増幅とは異なり、通信路が増幅媒体となる。このように、上り信号は、通信路内を伝搬するとともに徐々に増幅利得を得る。このとき、分布ラマン増幅によって発生する光雑音も伝送損失を受けるため、受信器側(OLT10)に到達した時点での光雑音の量も低減される。これにより、良好な雑音特性が得られる。
 このように、OLT10側に光増幅機能が集約された経済的な構成を有する光アクセスネットワークであっても、上り通信において分布ラマン増幅技術が用いられることによって、光雑音の影響を低減させることができる。これにより、伝送距離を拡大することが可能になる。
P.Lafata, J.Vodrazka, "Perspective Application of Passive Optical Network with Optimized Bus Topology", Journal of Applied Research and Technology, Vol.10 No.3, June 2012 岩淵昌広,岩崎とも子,今村哲夫,"ファイバ型WDM光カプラ",沖テクニカルレビュー,第190号 Vol.69 No.2,2002年4月
 図7は、集中型光増幅器41と分布ラマン増幅技術とが用いられたバス型光アクセスネットワーク9bの構成を示す概略図である。また、図8は、バス型光アクセスネットワーク9bにおける伝送距離に対する励起光強度の変化を示す図である。図7に示されるように、バス型光アクセスネットワーク9bはドロップ点31を有する。バス型光アクセスネットワーク9bにおいて、ドロップ点31は等分岐光スプリッタである。この場合、通信経路においてより多くのドロップ点31を通過して光信号が到達する遠方のエリアにおいては、図8に示されるように励起光の強度が著しく低下するため、ラマン利得の減少が懸念される。このように、従来、バス型光アクセスネットワークにおいて、伝送距離の拡大が困難であるという課題がある。
 本発明は、上記の点を鑑みてなされたものであり、バス型光アクセスネットワークでの伝送距離を拡大することができる技術を提供することを目的とする。
 本発明の一態様は、局側装置と複数の加入者側装置とがバス型のネットワークトポロジーで構成された光通信システムであって、局側に設置された光増幅部と、光信号及び励起光を分岐させるドロップ部と、を備え、前記光増幅部は、下り信号を増幅する増幅器と、上り信号を増幅させるための前記励起光を通信路へ出力する励起光出力部と、を備え、前記ドロップ部は、幹線ファイバに対する前記励起光の伝送損失を低減させるように、前記光信号の波長に応じて分岐比率を変化させる光通信システムである。
 また、本発明の一態様は、上記の光通信システムであって、前記光信号が複数の波長からなるWDM信号である場合において、前記ドロップ部は、前記WDM信号の波長に応じて周期的に透過率が変化するWDM光カプラを備える。
 また、本発明の一態様は、上記の光通信システムであって、加入者側に設置されたミラー部をさらに備え、前記光増幅部は、監視光を通信路へ出力する監視光出力部と、前記ミラー部によって反射した前記監視光の強度を検出する強度モニタ部と、前記強度モニタ部によって検出された前記強度に基づいて前記励起光の波長を決定し、決定された前記波長の前記励起光を出力させるように前記励起光出力部を制御する解析部と、をさらに備える。
 また、本発明の一態様は、上記の光通信システムであって、前記解析部は、前記強度モニタ部によって検出された前記監視光の前記強度が最大になるように前記波長を決定する。
 また、本発明の一態様は、上記の光通信システムであって、前記励起光出力部は、前記通信路へ出力される前記励起光の波長をスイープさせ、前記解析部は、前記励起光の前記波長のスイープに応じて変化する前記監視光の前記強度が最大になるように前記波長を決定する。
 また、本発明の一態様は、上記の光通信システムであって、前記励起光の波長が複数存在する場合において、前記励起光出力部は、前記ドロップ部における幹線ファイバへの透過率が高い波長の光を励起光として用いる。
 また、本発明の一態様は、局側装置と複数の加入者側装置とがバス型のネットワークトポロジーで構成された光通信システムによる光通信方法であって、光信号及び励起光を分岐させる分岐ステップと、局側に設置された増幅器によって下り信号を増幅する下り信号増幅ステップと、上り信号を増幅させるための前記励起光を通信路へ出力する励起光出力ステップと、前記分岐ステップにおいて、幹線ファイバに対する前記励起光の伝送損失を低減させるように、前記光信号の波長に応じて分岐比率を変化させる分岐比率変化ステップと、を有する光通信方法である。
 本発明により、バス型光アクセスネットワークでの伝送距離を拡大することができる。
PON方式による光アクセスネットワーク5の構成を示す概略図。 バス型光アクセスネットワーク6の構成を示す概略図。 不等分岐光スプリッタ32を用いたバス型光アクセスネットワーク7の構成を示す概略図。 OLT10側に光増幅器が設置された光アクセスネットワーク8の構成を示す概略図。 集中型光増幅器と分布ラマン増幅技術とが用いられた光アクセスネットワーク9aの構成を示す概略図。 光アクセスネットワーク9aにおける伝送距離に対する信号強度の変化を示す図。 集中型光増幅器と分布ラマン増幅技術とが用いられたバス型光アクセスネットワーク9bの構成を示す概略図。 バス型光アクセスネットワーク9bにおける伝送距離に対する励起光強度の変化を示す図。 本発明の第1の実施形態におけるバス型光アクセスネットワーク1の構成を示す概略図。 本発明の第1の実施形態におけるバス型光アクセスネットワーク1のドロップ点31の構成を示す概略図。 本発明の第1の実施形態におけるバス型光アクセスネットワーク1のドロップ点31の透過特性の一例を示す図。 光信号の波長配置とWDM光カプラの透過率の変化の一例を示す図。 各ポートに対する透過率がWDM信号の波長間隔と同一の周期で変化する様子を示す図。 増幅利得が生じる様子を示す図。 励起光の波長を変化させた場合を示す図。 複数の励起光を用いて増幅を行う様子を示す図。 本発明の第3の実施形態におけるバス型光アクセスネットワーク2の構成を示す概略図。 比較的伝送損失の大きなドロップ点31がOLT10に近い位置に存在する場合の、伝送距離に対する励起光強度の変化を示す図。 比較的伝送損失の大きなドロップ点31がONU20に近い位置に存在する場合の、伝送距離に対する励起光強度の変化を示す図。 波長をスイープすることによって励起光の波長を決定するバス型光アクセスネットワーク3の構成を示す概略図。
<第1の実施形態>
 以下、本発明の第1の実施形態について、図面を参照しながら説明する。
 図9は、本発明の第1の実施形態におけるバス型光アクセスネットワーク1の構成を示す概略図である。図9に示されるように、バス型光アクセスネットワーク1は、局側装置であるOLT10と、加入者側装置である複数のONU20とを備える。OLT10と複数のONU20とは、バス型のネットワークトポロジーで配線された光ファイバ15によって構成された通信路により互いに接続される。
 図9に示されるように、OLT10と通信路との間には、光信号の増幅機能を担う光増幅装置が備えられる。バス型光アクセスネットワーク1では、通信経路が、2つのWDM光カプラ33によって、上り信号の波長帯が通る通信経路と下り信号の波長帯が通る通信経路とに分離され、分離された当該通信経路が再び結合される。
 図9に示されるように、下り通信においては、OLT10から送信された光信号(下り信号)が光増幅装置に入る。光増幅装置において下り信号は、WDM光カプラ33により分離された通信経路のうち下り信号が通る通信経路を伝搬する。下り信号が通る通信経路には、集中型光増幅器41が設置されている。集中型光増幅器41は、下り信号を増幅する。増幅された下り信号は、通信路を伝搬し、各ONU20によってそれぞれ受信される。
 一方、図9に示されるように、上り通信においては、各ONU20から送信された光信号(上り信号)は、通信路を通過した後、光増幅装置に入る。光増幅装置において上り信号は、WDM光カプラ33により分離された通信経路のうち上り信号が通る通信経路を伝搬する。上り信号は、光増幅装置を通過し、OLT10によって受信される。
 図9に示されるように、光増幅装置は、励起光出力部50を備える。励起光出力部50は、上り信号を増幅させるための励起光を通信路へ入射させる。これにより、上り信号は、通信路において励起光の強度が高い領域に入ると、分布ラマン増幅の効果によって徐々に増幅される。
 本実施形態におけるバス型光アクセスネットワーク1は、ドロップ点31において、励起光が受けるドロップ損失を低減させ、ラマン利得を最大化させる。本実施形態では、ドロップ点31として、WDM光カプラが用いられる。ただし、ここで想定するWDM光カプラは、1つの入力信号を複数の出力ポートに分岐させることができるとともに、分岐比率を波長によって変化させることができるものとする。
 図10は、本発明の第1の実施形態におけるバス型光アクセスネットワーク1のドロップ点31(WDM光カプラ)の構成を示す概略図である。本実施形態では一例として、ドロップ点31は、溶融延伸によるWDM光カプラ(例えば非特許文献2を参照)であるものとする。
 ドロップ点31(WDM光カプラ)は、2本の光ファイバの一部を近接させた状態で融着することによって結合する。ドロップ点31は、一方の光ファイバを伝搬する光信号の一部を、もう一方のファイバに伝搬させる。これにより、入力ポートに入力された光信号を、複数の出力ポートに分配する。例えば、ポート1及びポート2に光信号が入力される場合には、ポート3及びポート4から出力される。また、例えば、ポート3及びポート4に光信号が入力される場合には、ポート1及びポート2から出力される。例えば、下り信号は、ポート1に入力され、ポート3及びポート4から出力される。また、例えば、上り信号は、ポート3及びポート4に入力され、ポート1及びポート2から出力される。
 もしドロップ点が等分岐光スプリッタであるならば、ポート1から入力された光信号の50[%]が、ポート3及びポート4へそれぞれ出力される。これに対し、本実施形態におけるドロップ点31(溶融延伸によるWDM光カプラ)では、光ファイバに熱が加えられて結合部分が引き延ばされることによって、各出力ポートへ光信号の分岐比率が制御される。
 図11は、本発明の第1の実施形態におけるバス型光アクセスネットワーク1のドロップ点31の透過特性の一例を示す図である。図11において、実線の波形は、ポート1からポート3、又はポート3からポート1に透過する割合を示したものである。また、図11において、破線の波形は、ポート1からポート4、又はポート4からポート1に透過する割合を示したものである。なお、ポート2は用いられないものとする。
 本実施形態では、一例として、ドロップ点31における光信号の分岐比率は、(幹線ファイバ方向):(ブランチファイバ方向)=80:20であるものとする。なお、幹線ファイバ方向とは、ポート1からポート3への方向、及びポート3からポート1への方向である。また、ブランチファイバ方向とは、ポート1からポート4への方向、及びポート4からポート1への方向である。
 一方、励起光は、ドロップ点31において、ブランチファイバ方向には透過せず、全て(100[%])幹線ファイバ方向に透過するように構成される。これにより、遠方のエリアに到達した時点における励起光の光強度が高く保たれるため、ラマン利得を最大化することができる。
 なお、本実施形態においては、一例として、ドロップ点31として溶融延伸によるWDM光カプラを用いる構成について説明したが、これに限られるものではない。例えば、PLCが用いられたり、マッハツェンダ型の導波路が用いられた場合であっても、波長に応じて分岐比率を変化させるドロップ点を実現することが可能である。
<第2の実施形態>
 以下、本発明の第2の実施形態について、図面を参照しながら説明する。本実施形態では、光信号は、複数の波長からなるWDM信号である。
 図12は、光信号の波長配置とWDM光カプラの透過率の変化の一例を示す図である。光信号が複数の波長からなるWDM信号である場合には、信号によって波長が異なる。そのため、信号によって透過率も変化することになるため、伝送距離にばらつきが生じる。これを解決する方法として、各ポートに対する透過率がWDM信号の波長間隔と同一の周期で周期的に変化するWDM光カプラを活用することが考えられる。
 図13は、各ポートに対する透過率が、WDM信号の波長間隔と同一の周期で変化する様子を示す図である。この場合、すべての信号の透過率を一定に保つことができる。励起光の波長は、前述の通り透過率が100[%]となるように設定される。
 一般的に、励起光の波長は、増幅される光信号の波長に合わせて設定される。例えば、標準的なシングルモードファイバが用いられる場合、光信号から約13[THz]程度高い周波数の光が励起光として用いられる。これは、1550[nm]帯において、100[nm]の波長差となる。したがって、1500[nm]の励起光が用いられる場合、1600[nm]付近に増幅利得が生じる。
 図14は、増幅利得が生じる様子を示す図である。図14において、増幅帯域とは、最大の増幅利得が得られる領域を示す。増幅帯域が、分布ラマン増幅によって増幅するWDM信号の帯域よりも十分に大きい場合、増幅するWDM信号が増幅帯域内にあり、かつ、幹線ファイバの透過率が100[%]となる励起光の波長は複数存在し、励起光の波長はこれらのうち、どこに設定されてもよい。
 図15は、励起光の波長を変化させた場合を示す図である。このように、励起光の波長を変化させた場合であっても、WDM信号の波長帯を増幅帯域でカバーすることができる。
 また、ラマン利得の改善に向けて、複数の励起光を用いて増幅を行うことが考えられる。
 図16は、複数の励起光を用いて増幅を行う様子を示す図である。この場合、WDM光カプラの幹線ファイバへの透過率が高い波長の光を励起光として用いればよい。例えば、WDM光カプラの幹線ファイバへの透過率が100[%]となるように、それぞれの励起光の波長を設定することによって、ラマン利得を最大化することができる。
<第3の実施形態>
 以下、本発明の第3の実施形態について、図面を参照しながら説明する。
 図17は、本発明の第3の実施形態におけるバス型光アクセスネットワーク2の構成を示す概略図である。本実施形態におけるバス型光アクセスネットワーク2は、集中型光増幅器41と分布ラマン増幅技術とが用いられた光アクセスネットワークである。
 図17に示されるように、バス型光アクセスネットワーク2は、ドロップ点31を有する。本実施形態において、ドロップ点31は、励起光の波長帯で幹線ファイバに対する透過率が100[%]となるように設計される。本実施形態において、ドロップ点31は、WDM光カプラである。
 しかしながら、厳密にはドロップ点の装置(例えば、WDM光カプラ)の特性は個体によって異なる。そのため、ラマン利得の最大化に向けては、用いられるドロップ点の装置(例えば、WDM光カプラ)に合わせて励起光の波長をそれぞれ最適化する必要がある。
 ラマン利得の最大化に向けては、励起光の強度が高い区間を長く保つことが重要である。以下、各ドロップ点31(WDM光カプラ)の幹線ファイバに対する透過率がわずかに100%よりも低い場合の、伝送距離に対する励起光強度の変化を示す。
 図18は、ドロップ損失が比較的大きなドロップ点31がOLT10に近い位置に存在する場合の、伝送距離に対する励起光強度の変化を示す図である。また、図19は、ドロップ損失が比較的大きなドロップ点31がONU20に近い位置に存在する場合の、伝送距離に対する励起光強度の変化を示す図である。
 図18及び図19に示されるように、両者において、励起光がそれぞれの通信路で受ける伝送損失の合計は同じである。しかしながら、ドロップ損失が比較的大きなドロップ点31がONU20側(加入者側)に存在する場合(図19)のほうが、得られる利得はより大きくなる。これは、ドロップ損失が比較的大きなドロップ点31がONU20側(加入者側)に存在する場合(図19)のほうが、励起光の強度が高い状態でより長い区間を通信できるためである。したがって、励起光の波長帯の決定においては、単にドロップ点31におけるドロップ損失が少ない波長帯に決定するのではなく、各ドロップ点31の位置を考慮して決定することが重要になる。
 ラマン利得を最大化するための励起光の波長を決定する方法として、例えば、ラマン利得を監視しながら、励起光の波長をスイープする方法が考えられる。
 図20は、波長をスイープすることによって励起光の波長を決定するバス型光アクセスネットワーク3の構成を示す概略図である。
 図20に示されるように、バス型光アクセスネットワーク3は、集中型光増幅器41と分布ラマン増幅技術とが用いられた光アクセスネットワークである。図20に示されるように、バス型光アクセスネットワーク3は、ドロップ点31を有する。本実施形態において、ドロップ点31は、WDM光カプラである。
 バス型光アクセスネットワーク3が備える光増幅装置は、利得監視部と、励起光出力部50と、解析部55とを備える。また、利得監視部は、監視光出力部51と、サーキュレータ52と、強度モニタ部54と、解析部55とを備える。また、図20に示されるように、バス型光アクセスネットワーク3は、ミラー部を備える。ミラー部は、ミラー53を備える。ミラー53は、後述される監視光を反射する。
 利得監視部は、ラマン利得を監視する。
 監視光出力部51は、ラマン利得が得られる波長帯の光を、監視光として通信路に入射させる。監視光は、幹線ファイバを伝搬した後、幹線ファイバの末端に設置されたミラー部のミラー53によって反射する。反射した監視光は、再び幹線ファイバを伝搬した後、光増幅装置の強度モニタ部54によって受信される。この際、励起光出力50から出力される励起光がスイープされることによって、強度モニタ部54に入る監視光が受ける利得が変化する。
 利得が最大となる励起光の波長を把握するためには、例えば前述の通り、励起光の波長をスイープする方法が有効である。利得を最大化するためには、励起光の波長をスイープして、強度モニタ部54によって検出される監視光の強度が最大となるような励起光の波長を検出すればよい。
 解析部55は、励起光の波長をスイープすることによって変化する、強度モニタ部54によって検出される監視光の強度に基づいて、最適な励起光の波長を検出する。解析部55は、検出結果に基づいて、励起光出力部50から出力される励起光の波長を制御する。
 なお、ドロップ点31において、幹線ファイバへの監視光の透過率が低い場合には、強度モニタ部54に入る監視光の強度が低くなる。これにより、測定精度が低下することが懸念される。この場合、前述の励起光の波長の設定が行われる前に、監視光の波長をスイープし、強度モニタ部54に入る監視光の強度を十分高く設定しておく必要がある。
 以上説明したように、前述の各実施形態におけるバス型光アクセスネットワーク(光通信システム)は、局側装置であるOLT10と加入者側装置である複数のONU20とを含んで構成される。OLT10と複数のONU20とは、バス型トポロジーで配線された光ファイバによってそれぞれ接続される。OLT10と通信路との間には、光信号の増幅機能を担う光増幅装置(光増幅部)が接続される。光増幅装置は,WDM光カプラ33により、上り信号と下り信号とをそれぞれ別の通信経路に分離して、再び結合する。下り信号の通信経路には、集中型光増幅器41が設置される。集中型光増幅器41は、OLT10から送信された下り信号を増幅する。一方、ONU20から送信された上り信号は、通信路を伝搬した後、光増幅装置を通過し、OLT10によって受信される。また、通信路には、光増幅装置から上り信号を増幅させるための励起光が入射される。上り信号は、通信路において励起光の強度が高い領域に入ると、分布ラマン増幅の効果によって徐々に増幅幅される。さらに、ドロップ点31(ドロップ部)において励起光が受けるドロップ損失を低減させ、ラマン利得を最大化するためにWDM光カプラが用いられる。当該WDM光カプラは、1つの入力信号を複数の出力ポートに分岐させ、その分岐比率を光信号の波長に応じて変化させる。
 このような構成を備えることにより、本発明の各実施形態におけるバス型光アクセスネットワークは、遠方のエリア(すなわち、OLT10からより遠く離れたエリア)においても励起光の強度を高く保つことができるため、ラマン利得を最大化することができる。これにより、本発明によれば、バス型光アクセスネットワークでの伝送距離を拡大することができる。
 上述した各実施形態における光アクセスネットワークの一部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記録装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものを含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
10・・・OLT,15・・・光ファイバ、16・・・幹線ファイバ、17・・・ブランチファイバ、20・・・ONU、30・・・光スプリッタ、31・・・ドロップ点、32・・・不等分岐光スプリッタ、33・・・WDM光カプラ、40・・・光増幅器、41・・・集中型光増幅器、50・・・励起光出力部、51・・・監視光出力部、52・・・サーキュレータ、53・・・ミラー、54・・・強度モニタ部、55・・・解析部

Claims (7)

  1.  局側装置と複数の加入者側装置とがバス型のネットワークトポロジーで構成された光通信システムであって、
     局側に設置された光増幅部と、
     光信号及び励起光を分岐させるドロップ部と、
     を備え、
     前記光増幅部は、
     下り信号を増幅する増幅器と、
     上り信号を増幅させるための前記励起光を通信路へ出力する励起光出力部と、
     を備え、
     前記ドロップ部は、幹線ファイバに対する前記励起光の伝送損失を低減させるように、前記光信号の波長に応じて分岐比率を変化させる
     光通信システム。
  2.  前記光信号が複数の波長からなるWDM信号である場合において、
     前記ドロップ部は、
     前記WDM信号の波長に応じて周期的に透過率が変化するWDM光カプラ
     を備える
     請求項1に記載の光通信システム。
  3.  加入者側に設置されたミラー部
     をさらに備え、
     前記光増幅部は、
     監視光を通信路へ出力する監視光出力部と、
     前記ミラー部によって反射した前記監視光の強度を検出する強度モニタ部と、
     前記強度モニタ部によって検出された前記強度に基づいて前記励起光の波長を決定し、決定された前記波長の前記励起光を出力させるように前記励起光出力部を制御する解析部と、
     をさらに備える
     請求項1に記載の光通信システム。
  4.  前記解析部は、前記強度モニタ部によって検出された前記監視光の前記強度が最大になるように前記波長を決定する
     請求項3に記載の光通信システム。
  5.  前記励起光出力部は、前記通信路へ出力される前記励起光の波長をスイープさせ、
     前記解析部は、前記励起光の前記波長のスイープに応じて変化する前記監視光の前記強度が最大になるように前記波長を決定する
     請求項4に記載の光通信システム。
  6.  前記励起光の波長が複数存在する場合において、
     前記励起光出力部は、前記ドロップ部における幹線ファイバへの透過率が高い波長の光を励起光として用いる
     請求項1又は請求項2に記載の光通信システム。
  7.  局側装置と複数の加入者側装置とがバス型のネットワークトポロジーで構成された光通信システムによる光通信方法であって、
     光信号及び励起光を分岐させる分岐ステップと、
     局側に設置された増幅器によって下り信号を増幅する下り信号増幅ステップと、
     上り信号を増幅させるための前記励起光を通信路へ出力する励起光出力ステップと、
     前記分岐ステップにおいて、幹線ファイバに対する前記励起光の伝送損失を低減させるように、前記光信号の波長に応じて分岐比率を変化させる分岐比率変化ステップと、
     を有する光通信方法。
PCT/JP2020/009025 2020-03-04 2020-03-04 光通信システム及び光通信方法 WO2021176578A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022504829A JP7299552B2 (ja) 2020-03-04 2020-03-04 光通信システム及び光通信方法
US17/908,527 US11863211B2 (en) 2020-03-04 2020-03-04 Optical communication system and optical communication method
PCT/JP2020/009025 WO2021176578A1 (ja) 2020-03-04 2020-03-04 光通信システム及び光通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009025 WO2021176578A1 (ja) 2020-03-04 2020-03-04 光通信システム及び光通信方法

Publications (1)

Publication Number Publication Date
WO2021176578A1 true WO2021176578A1 (ja) 2021-09-10

Family

ID=77613231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009025 WO2021176578A1 (ja) 2020-03-04 2020-03-04 光通信システム及び光通信方法

Country Status (3)

Country Link
US (1) US11863211B2 (ja)
JP (1) JP7299552B2 (ja)
WO (1) WO2021176578A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851402A (ja) * 1994-08-08 1996-02-20 Tokyo Electric Power Co Inc:The 光ネットワーク
JP2002176392A (ja) * 2000-12-08 2002-06-21 Toshiba Corp パッシブ光ネットワーク
JP2014530523A (ja) * 2011-09-08 2014-11-17 オーエフエスファイテル,エルエルシー 共存するgponおよびxgpon光通信システムを配置するための構成
US20170272197A1 (en) * 2016-03-17 2017-09-21 Telekom Malaysia Berhad Extender For Optical Access Communication Network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100516663B1 (ko) * 2003-01-02 2005-09-22 삼성전자주식회사 방송형-서비스와 데이터-서비스를 동시에 제공하는 수동형광 가입자 망 시스템
US20060275037A1 (en) * 2005-06-02 2006-12-07 Evans Alan F Methods and apparatus for multiple signal amplification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851402A (ja) * 1994-08-08 1996-02-20 Tokyo Electric Power Co Inc:The 光ネットワーク
JP2002176392A (ja) * 2000-12-08 2002-06-21 Toshiba Corp パッシブ光ネットワーク
JP2014530523A (ja) * 2011-09-08 2014-11-17 オーエフエスファイテル,エルエルシー 共存するgponおよびxgpon光通信システムを配置するための構成
US20170272197A1 (en) * 2016-03-17 2017-09-21 Telekom Malaysia Berhad Extender For Optical Access Communication Network

Also Published As

Publication number Publication date
US20230163852A1 (en) 2023-05-25
JPWO2021176578A1 (ja) 2021-09-10
US11863211B2 (en) 2024-01-02
JP7299552B2 (ja) 2023-06-28

Similar Documents

Publication Publication Date Title
Fujiwara et al. Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks
KR101391265B1 (ko) 양방향 광학 증폭기
US7974504B2 (en) Reflection suppression in a photonic integrated circuit
JP5805126B2 (ja) 両方向光通信ネットワークで分布ラマン増幅および遠隔ポンピングを使用する方法および装置
JP7070244B2 (ja) 光通信システム及び光通信方法
EP2929640B1 (en) Power control in bidirectional wdm optical link
US6188509B1 (en) Simple bidirectional add/drop amplifier module based on a single multiplexer
US20120087666A1 (en) Bidirectional wavelength division multiplexed-passive optical network
JP3608521B2 (ja) 光増幅中継システム
US8032028B2 (en) Optical add/drop device
RU2563801C2 (ru) Способ и устройство для приема оптического входного сигнала и передачи оптического выходного сигнала
CN110855365B (zh) 一种无中继光纤传输系统及一种无中继光纤传输方法
WO2021176578A1 (ja) 光通信システム及び光通信方法
US6934078B2 (en) Dispersion-compensated erbium-doped fiber amplifier
US20040208503A1 (en) Systems and methods for detecting faults in optical communication systems
WO2021001868A1 (ja) 光受信装置、光伝送システム、光伝送方法及びコンピュータプログラム
KR100784115B1 (ko) 원격 펌핑 광증폭기를 이용하는 수동형 광가입자망 시스템
Suzuki et al. 128× 8 split and 80 km long-reach dual-rate 10G-EPON transmission using ALC hybrid burst-mode optical fiber amplifier and SOA pre-amplifier
KR101145500B1 (ko) 광 선로 감시 기능을 구비한 중계 장치 및 이를 포함하는 수동 광 통신망 시스템
Nanni et al. Efficient Solution to Bimodal Propagation Effects in Low-Cost 850nm Radio over G. 652-Fibre Systems
US20100054660A1 (en) Remote larger effective area optical fiber
EP2492731B1 (en) Optical receiving device and communication system
US11621778B2 (en) Optical communication system and optical communication method
JP2002009707A (ja) 光伝送システムおよび光伝送方法
Schmuck et al. Embedded OTDR measurement range extension for future metro-access networks employing in-line SOAs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923509

Country of ref document: EP

Kind code of ref document: A1