WO2021175130A1 - 一种快速功率模块及功率模组 - Google Patents

一种快速功率模块及功率模组 Download PDF

Info

Publication number
WO2021175130A1
WO2021175130A1 PCT/CN2021/077347 CN2021077347W WO2021175130A1 WO 2021175130 A1 WO2021175130 A1 WO 2021175130A1 CN 2021077347 W CN2021077347 W CN 2021077347W WO 2021175130 A1 WO2021175130 A1 WO 2021175130A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
power
power electrode
capacitor
conductive layer
Prior art date
Application number
PCT/CN2021/077347
Other languages
English (en)
French (fr)
Inventor
徐文辉
Original Assignee
深圳市奕通功率电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市奕通功率电子有限公司 filed Critical 深圳市奕通功率电子有限公司
Publication of WO2021175130A1 publication Critical patent/WO2021175130A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/492Bases or plates or solder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires

Definitions

  • the invention relates to the field of power electronics, in particular to a fast power module and a power module.
  • Power modules are power electronic power devices such as metal oxide semiconductors (power MOS transistors), insulated gate field effect transistors (IGBT), fast recovery diodes (FRD) packaged into a power switch module according to a certain combination of functions, which are mainly used for Power conversion in various occasions such as electric vehicles, wind power generation, and industrial frequency conversion.
  • power MOS transistors metal oxide semiconductors
  • IGBT insulated gate field effect transistors
  • FPD fast recovery diodes
  • the motor drive circuit of an electric vehicle usually includes three groups of power modules with upper and lower bridge arms, respectively.
  • Figure 1 is a schematic circuit diagram of an existing power module, which shows a circuit diagram of a group of power modules with upper and lower bridge arms. , which includes: the insulated gate field effect transistor Z1 as the upper bridge arm, and the fast recovery diode D1 in anti-parallel with it, the insulated gate field effect transistor Z2 as the lower bridge arm, and the fast recovery diode in anti-parallel connection with it D2, where the collector of the insulated gate field effect transistor Z1 is connected to the positive pole p+ of the power module, its emitter is connected to the collector of the edge gate field effect transistor Z2, and the emitter of the edge gate field effect transistor Z2 is connected to the negative pole of the power module p-, the emitter of the insulated gate field effect transistor Z1 and the collector of Z2 are commonly connected to the output terminal of the power module.
  • FIG. 2 is a schematic circuit diagram of another power MOS tube module, which includes: power MOS tube M1 as the upper bridge arm, as the lower bridge The power MOS tube M2 of the arm, the drain of the power MOS tube M1 is connected to the anode p+ of the power module, the source of the power MOS tube M1 is connected to the drain of the power MOS tube M2, and the source of the power MOS tube M2 is connected to the cathode of the power module p-, the source of the power MOS tube M1 and the drain of the power MOS tube M2 are connected to the output terminal of the power module.
  • the power MOS tube has a built-in reverse diode, so there is no need to connect a reverse diode in parallel.
  • the reverse-conducting IGBT has the same structure and function as the power MOS. Because of the built-in diodes, there is no need for anti-parallel diodes.
  • the module design and structure are similar to those of the power MOS, so I will not repeat them here.
  • parasitic inductance has always been a major problem that needs to be overcome in the application of power electronic devices, especially in high-frequency and high-power applications of power MOS transistors.
  • the parasitic inductance inside the module will cause overvoltage during the turn-off process, and the parasitic parameters will cause voltage spikes and waveform oscillations during the switching process of the power module, thereby increasing electromagnetic interference and switching losses, and even damaging the module.
  • the present invention proposes a fast power module, which includes a first power electrode, a second power electrode, and an output electrode for conducting current for the power module;
  • the first power electrode includes a first power electrode body , The first power electrode first connection part, the first power electrode second connection part, the second power electrode includes the second power electrode body, the second power electrode first connection part, the second power electrode second connection part, the first The power electrode body is connected to the corresponding conductive layer inside the power module through the first power electrode first connection part, and the second power electrode body is connected to the corresponding conductive layer inside the power module through the second power electrode first connection part.
  • the first power electrode The main body and the second power electrode main body are both sheet-shaped and laminated, and a first insulating layer is laminated between the first power electrode main body and the second power electrode main body;
  • the second connecting parts of the electrodes are all sheet-shaped and laminated.
  • the second connecting part of the first power electrode extends from the first power electrode body to the outside of the power module.
  • the second connecting part of the second power electrode extends from the second power electrode body to the power module.
  • the module extends outside, and the laminated space between the second connection part of the first power electrode and the second connection part of the second power electrode is set as a accommodating space for accommodating the external connection terminals, and the external connection terminals are respectively connected to the corresponding first
  • the second power electrode connection part is connected to the second power electrode second connection part.
  • first insulating layer completely covers the opposing laminated layer of the first power electrode body and the second power electrode body, and extends to the outside of the edge of the laminated layer.
  • the second connecting portion of the first power electrode and the second connecting portion of the second power electrode are diverged from the laminated end portions of the first power electrode body and the second power electrode body and then extend to the outside of the power module, so that the The second connecting portion of the power electrode and the second connecting portion of the second power electrode form a layered interval adapted to the thickness of the external connecting terminal.
  • first power electrode second connection portion is provided with a first power electrode connection hole
  • second power electrode second connection portion is provided with a second power electrode connection hole corresponding to the first power electrode connection hole
  • the power module further includes an insulating substrate, and a first bridge arm conductive layer, a second bridge arm conductive layer, an output electrode conductive layer, a first power electrode conductive layer, and a second power electrode conductive layer disposed on the insulating substrate.
  • the first bridge arm power chip arranged on the first bridge arm conductive layer, and the second bridge arm power chip arranged on the second bridge arm conductive layer;
  • the first bridge arm power chip is connected to the first power electrode conductive layer through the The first power electrode is electrically connected, and the first bridge arm power chip is electrically connected to the output electrode through the output electrode conductive layer;
  • the second bridge arm power chip is electrically connected to the second power electrode through the second power electrode conductive layer, and the second bridge arm power The chip is electrically connected to the output electrode through the output electrode conductive layer;
  • the first bridge arm conductive layer and the second bridge arm conductive layer are arranged on both sides of the insulating substrate, and the first power electrode conductive layer and the second power electrode conductive layer are arranged on the first Between the bridge arm conductive layer and the second bridge arm conductive layer, the first power electrode first connecting portion is welded to the first power electrode conductive layer, and the second power electrode first connecting portion is welded to the second power electrode conductive layer.
  • An embodiment of the present invention also provides a power module, including the power module provided by any of the above technical solutions and a capacitor group, a first capacitor extraction electrode, and a second capacitor extraction electrode.
  • the first capacitor extraction electrode includes a first capacitor extraction electrode.
  • the main body, the first capacitor extraction electrode connection part, the second capacitor extraction electrode includes a second capacitor extraction electrode body, a second capacitor extraction electrode connection part, one end of the first capacitor extraction electrode body is electrically connected to the corresponding electrode of the capacitor group, and the second capacitor
  • the lead-out electrode body is electrically connected to the corresponding electrode of the capacitor group.
  • the first and second capacitor lead-out electrode bodies are both sheet-shaped and stacked, and the first capacitor lead-out electrode connection part is sheet-shaped and is drawn from the first capacitor.
  • the electrode body extends outward, the second capacitor extraction electrode connection portion is sheet-shaped and extends outward from the second capacitor extraction electrode body, the first capacitor extraction electrode connection portion and the second capacitor extraction electrode connection portion are stacked and plugged in In the accommodating space, a second insulating layer is provided between the first capacitor extraction electrode connection portion and the second capacitor extraction electrode connection portion, and the first capacitor extraction electrode connection portion is connected to the first power electrode second connection portion, The second capacitor extraction electrode connection part is connected to the second power electrode second connection part.
  • the second insulating layer completely covers the stacking surface of the first capacitor extraction electrode connecting portion and the second capacitor extraction electrode connecting portion, and extends to the outside of the edge of the stacking surface.
  • a third insulating layer is provided between the first capacitor extraction electrode main body and the second capacitor extraction electrode main body.
  • the third insulating layer fully covers the opposing laminated layer of the first capacitor lead-out electrode body and the second capacitor lead-out electrode body, and extends to the outside of the edge of the laminated layer.
  • the first capacitor extraction electrode connection portion is provided with a first capacitor extraction electrode connection hole corresponding to the first power electrode connection hole
  • the second capacitor extraction electrode connection portion is provided with a first capacitor extraction electrode connection hole corresponding to the second power electrode connection hole
  • the second capacitor leads the electrode connection hole
  • the first power electrode is provided with an insulating pad above the second connection part
  • the second power electrode is provided with a nut below the second connection part
  • the bolt passes through the insulation pad, the first power electrode connection hole
  • the first capacitor extraction electrode connection hole, the second insulating layer, the second capacitor extraction electrode connection hole, and the second power electrode connection hole are connected with a nut, and the bolt is insulated from the first power electrode, the second connection part and the first capacitor extraction electrode connection part .
  • a plug-in power module provided by the present invention includes a first power electrode, a second power electrode, and an output electrode for conducting current for the power module;
  • the first power electrode includes a first power electrode body, a first power electrode first connection Part, a first power electrode and a second connection part
  • the second power electrode includes a second power electrode body, a second power electrode first connection part, and a second power electrode second connection part
  • the first power electrode body passes through the first power electrode
  • the first connection part is connected to the corresponding conductive layer inside the power module
  • the second power electrode body is connected to the corresponding conductive layer inside the power module through the second power electrode first connection part, and both the first power electrode body and the second power electrode body are It is sheet-shaped and laminated, and a first insulating layer is laminated between the first power electrode body and the second power electrode body
  • the first power electrode second connection part and the second power electrode second connection part are both sheets
  • the first power electrode and the second connecting portion extend from the first power electrode body to the outside of the power module
  • Fig. 1 is a schematic circuit diagram of a conventional power module
  • Fig. 2 is a schematic circuit diagram of another existing power module
  • FIG. 3 is a structural diagram of a single-module plug-in power module provided by the first embodiment of the present invention
  • FIG. 4 is a structural diagram of a multi-module integrated implementation of a plug-in power module provided by the second embodiment of the present invention.
  • FIG. 5 is a structural diagram of a single-module plug-in power module provided by the third embodiment of the present invention.
  • FIG. 6 is a structural diagram of a power module provided by the fourth embodiment of the present invention.
  • FIG. 7 is a structural diagram of the connection between the power module and the electrodes of the capacitor bank in a power module provided in the fifth embodiment of the present invention.
  • FIG. 8 is a three-dimensional structure diagram of a power module according to the sixth embodiment of the present invention.
  • FIG. 9 is a side view structural diagram of a power module provided by the seventh embodiment of the present invention.
  • FIG. 10 is a three-dimensional structural diagram of a power module according to Embodiment 8 of the present invention.
  • the first power electrode 10 includes a first power electrode body 11.
  • the first power electrode first connection portion 12, the first power electrode second connection portion 13, and the second power electrode 20 includes a second power electrode body 21, a second power electrode first connection portion 22, and a second power electrode Two connecting parts 23, the first power electrode body 11 is connected to the corresponding conductive layer inside the power module through the first power electrode first connecting part 12, and the second power electrode body 21 is connected to the power module through the second power electrode first connecting part 22
  • the internal corresponding conductive layers are connected. Specifically, in some practical applications, as shown in FIGS.
  • the first power electrode body 11 and the first power electrode first connecting portion 12 are integrally formed on the same metal sheet, and The first power electrode body 11 and the first power electrode first connection part 12 are not two mutually exclusive concepts.
  • the first power electrode body and the first power electrode first connection part can pass through the same structure
  • the second power electrode body 21 and the second power electrode first connecting portion 22 are integrally formed on the same metal sheet, and the second power electrode body 21 and the second power electrode first connecting portion 22 are not two mutually
  • the concept of repulsion in some practical applications, the second power electrode body 21 and the second power electrode first connecting portion 22 can be realized by different parts of the same structure. As shown in FIG. 3, the second power electrode body 21 and The first connecting portion 22 of the second power electrode is substantially located on the same metal sheet.
  • the end of the metal sheet connected to the conductive layer of the second power electrode realizes the function of the second connecting portion of the second power electrode.
  • the first power electrode connecting portion 22 is a part of the second power electrode main body 21; the first power electrode main body 11 and the second power electrode main body 21 are both sheet-shaped and laminated.
  • the first The first power electrode main body 11 and the second power electrode main body 21 can be made of sheet metal extending straight or bent. As shown in FIGS.
  • the first power electrode main body 11 and The second power electrode body 21 is made of bent and extended sheet metal; a first insulating layer 40 is laminated between the first power electrode body 11 and the second power electrode body 21; specifically, in some practical applications The first insulating layer 40 fully covers the opposing stack of the first power electrode body 11 and the second power electrode body 21, and extends to the outside of the edge of the stack to provide an appropriate creepage distance according to actual needs.
  • the first insulating layer 40 can also partially cover the above-mentioned laminated layer, but the first insulating layer 40 needs to have a sufficient thickness to increase the first power electrode body 11 and the second power electrode body
  • the stacking interval between 21 provides an appropriate creepage distance;
  • the first power electrode second connecting portion 13 and the second power electrode second connecting portion 23 are both sheet-shaped and stacked, and the first power electrode is connected to the second The portion 13 extends from the first power electrode main body 11 to the outside of the power module, and the second power electrode second connection portion 23 extends from the second power electrode main body 21 to the outside of the power module; as shown in FIG.
  • the first power electrode body 11 and the first power electrode second connecting portion 13 are integrally formed on the same metal sheet, and the second power electrode body 21 and the second power electrode second connecting portion 23 are integrally formed on the same metal sheet.
  • the laminated space between the second power electrode connecting portion 13 and the second power electrode second connecting portion 23 is set as an accommodating space for accommodating external connection terminals, and the external connection terminals are connected to the corresponding first power electrode first
  • the second connecting portion 13 is connected to the second power electrode second connecting portion 23.
  • the first power electrode second connecting portion 13 and the second power electrode second connecting portion 23 are diverged from the laminated ends of the first power electrode main body 11 and the second power electrode main body 21 to The power module extends outside to form a laminated space between the first power electrode second connecting portion 13 and the second power electrode second connecting portion 23 to adapt to the thickness of the external connection terminal.
  • the first power electrode second connecting portion 13 and the second power electrode second connecting portion 23 there are multiple options for diverging the first power electrode second connecting portion 13 and the second power electrode second connecting portion 23.
  • FIG. 3 Between the first power electrode main body 11 and the first power electrode second connection portion 13, there is provided a first power electrode second connection portion 13 for keeping the first power electrode second connection portion 13 away from the second power electrode second connection portion 23 in the stacking direction.
  • the bent portion 14 or it may only be provided between the second power electrode main body 21 and the second power electrode second connecting portion 23 to make the second power electrode second connecting portion 23 away from the first in the lamination direction
  • the first power electrode second connecting portion 13 is provided with a first power electrode connecting hole 131
  • the second power electrode second connecting portion 23 is provided with a position corresponding to that of the first power electrode.
  • the second power electrode connection hole 231 corresponding to the connection hole 131.
  • the first power electrode connection hole 131 and the second power electrode connection hole 231 may each be provided with one or more.
  • the first power electrode connection hole 131 Two and two of the second power electrode connection holes 231 may be provided.
  • the power module further includes an insulating substrate 100, and a first bridge arm conductive layer 200, a second bridge arm conductive layer 300, an output electrode conductive layer 400, and a first bridge arm conductive layer 200 disposed on the insulating substrate.
  • the power module is specifically a half composed of a power chip of the upper bridge arm and a corresponding conductive layer of the upper bridge arm, and a power chip of the lower bridge arm and a corresponding conductive layer of the lower bridge arm.
  • Bridge module Figure 4 shows the product form of three identical half-bridge modules integrated together.
  • the first bridge arm conductive layer 200 is specifically the lower bridge arm conductive layer
  • the second bridge arm conductive layer 300 is the upper bridge arm conductive layer
  • the first power electrode 10 is a negative electrode
  • the second power electrode 20 is a positive electrode
  • the first bridge arm power chip 700 is a lower bridge arm power chip
  • the second bridge arm power chip 800 is an upper bridge arm
  • the arm power chip, the first bridge arm power chip 700 and the second bridge arm power chip 800 may use IGBTs or power MOS transistors.
  • the first bridge arm power chip 700 is electrically connected to the first power electrode 10 through the first power electrode conductive layer 500, the first bridge arm power chip 700 is electrically connected to the output electrode 30 through the output electrode conductive layer 400; the second bridge arm power chip 800 is electrically connected to the second power electrode 20 through the second power electrode conductive layer 600, and the second bridge arm power chip 800 is electrically connected to the output electrode 30 through the output electrode conductive layer 400; the first bridge arm conductive layer 200 and the second bridge arm
  • the conductive layer 300 is disposed on both sides of the upper surface of the insulating substrate 100, the first power electrode conductive layer 500 and the second power electrode conductive layer 600 are disposed between the first bridge arm conductive layer 200 and the second bridge arm conductive layer 300, The first power electrode conductive layer 500 is disposed close to the first bridge arm power chip 700, the second power electrode conductive layer 600 is disposed close to the second bridge arm power chip 800, and the first power electrode first connecting portion 12 is welded to the first power electrode to conduct electricity.
  • an embodiment of the present invention also provides a power module, including the power module provided by any of the above technical solutions and the capacitor group 70, the first capacitor extraction electrode 50, and the second capacitor extraction electrode 60 ,
  • the first capacitor extraction electrode 50 includes a first capacitor extraction electrode body 51, a first capacitor extraction electrode connecting portion 52
  • the second capacitor extraction electrode 60 includes a second capacitor extraction electrode body 61, a second capacitor extraction electrode connecting portion 62,
  • One end of the capacitor extraction electrode body 51 is electrically connected to the corresponding electrode of the capacitor group
  • the second capacitor extraction electrode body 61 is electrically connected to the corresponding electrode of the capacitor group.
  • the first capacitor extraction electrode body 51 and the second capacitor extraction electrode body 61 are both sheets.
  • the first capacitor extraction electrode connecting portion 52 is in the shape of a sheet and extends outward from the first capacitor extraction electrode body 51, and the second capacitor extraction electrode connecting portion 62 is in the shape of a sheet and extends from the second capacitor electrode body 61 Extending outwards, specifically, in some practical applications, the first capacitor extraction electrode 50 is connected to the negative electrode of the capacitor group, and the second capacitor extraction electrode 60 is connected to the positive electrode of the capacitor group; the first capacitor extraction electrode body 51 and the first capacitor extraction electrode
  • the electrode connection portion 52 is integrally formed on the same metal sheet, the second capacitor extraction electrode body 61 and the second capacitance extraction electrode connection portion 62 are integrally formed on the same metal sheet, the first capacitor extraction electrode connection portion 52 and the second capacitor extraction electrode connection portion 62 is stacked in layers and inserted into the accommodating space.
  • a second insulating layer 80 is provided between the first capacitor extraction electrode connection portion 52 and the second capacitor extraction electrode connection portion 62.
  • the second insulating layer 80 fully covers the opposing stack of the first capacitor extraction electrode connection portion 52 and the second capacitor extraction electrode connection portion 62, and extends to the outside of the edge of the stack, so as to provide appropriate Creepage distance. This not only satisfies the requirement of insulation between the first capacitor extraction electrode connection portion 52 and the second capacitor extraction electrode connection portion 62, but also greatly reduces the gap between the first capacitor extraction electrode connection portion and the second capacitor extraction electrode connection portion.
  • the second insulating layer 80 can also partially cover the above-mentioned stacking layer, but the second insulating layer 80 needs to have a sufficient thickness to increase the connection of the first capacitor lead electrode
  • the stacking interval between the portion 52 and the second capacitor extraction electrode connection portion 62 provides an appropriate creepage distance; the first capacitor extraction electrode connection portion is connected to the first power electrode second connection portion 52, and the second capacitor extraction electrode
  • the connecting portion 62 is connected to the second connecting portion 23 of the second power electrode.
  • a third insulating layer 90 is provided between the first capacitor extraction electrode main body 51 and the second capacitor extraction electrode main body 61.
  • the third insulating layer fully covers the opposing laminated layer of the first capacitor extraction electrode body 51 and the second capacitor extraction electrode body 61, and extends to the outside of the edge of the laminated layer.
  • the second insulating layer 80 and the third insulating layer 90 are integrally formed on the same piece of insulating material .
  • the capacitor bank includes a plurality of capacitors, and the plurality of capacitors are arranged between the first capacitor bus 110 and the second capacitor bus 120,
  • the first capacitor extraction electrode 50 is connected to the first capacitor bus 110 through the first capacitor bus connection portion 111 provided on the side of the capacitor bank
  • the second capacitor extraction electrode 60 is connected to the first capacitor bus 110 through the second capacitor bus provided on the side of the capacitor bank.
  • the connecting portion 121 is connected to the first capacitor bus 120; as shown in FIG. 9, the capacitor group can also be directly arranged on the PCB board, and the first capacitor lead-out electrode main body 51 and the first lead-out electrode connecting portion 52 are arranged on one of the PCB boards.
  • the second capacitor extraction electrode body 61 and the second capacitor extraction electrode connecting portion 62 are arranged on the other surface of the PCB board.
  • the first capacitor extraction electrode connecting portion 52 is provided with a first capacitor corresponding to the first power electrode connecting hole 131 Leading electrode connection hole 521
  • the second capacitor leading electrode connecting portion 62 is provided with a second capacitor leading electrode connecting hole 621 corresponding to the second power electrode connecting hole 231
  • the first power electrode second connecting portion 13 is provided above the second connecting portion 13 for clamping
  • a nut 160 is provided under the second connecting portion 23 of the second power electrode.
  • the bolt 170 passes through the insulating pad 150, the first power electrode connection hole 131, the first capacitor extraction electrode connection hole 521, and the second power electrode connecting hole 131 in turn.
  • the insulating layer 80, the second capacitor extraction electrode connection hole 621, and the second power electrode connection hole 231 are connected to the nut 160, and the bolt 170 is insulated from the first power electrode second connection portion 13 and the first capacitor extraction electrode connection portion 52.
  • the second insulating layer 80 is provided with a second insulating layer connecting hole 801 corresponding to the bolt 170.
  • the bolt 170 passes through the second insulating layer through the second insulating layer connecting hole 801.
  • the aperture of the second insulating layer connection hole 801 is smaller than the first capacitor extraction electrode connection hole 521 and the second capacitor extraction electrode connection hole 621 to provide an appropriate creepage distance.
  • the first power electrode connection hole, the second power electrode connection hole, the first capacitor extraction electrode connection hole, the second capacitor extraction electrode connection hole, the second insulation layer connection hole, insulation pad, nut, bolt Both are two, and the corresponding positions and connection relationships are as described above.
  • the 8 to 10 includes a plurality of power modules provided by any of the above technical solutions, as well as a capacitor group 70 and a first capacitor extraction electrode 50 ,
  • the first capacitor extraction electrode 50 includes a first capacitor extraction electrode body 51, a first capacitor extraction electrode connecting portion 52
  • the second capacitor extraction electrode 60 includes a second capacitor extraction electrode body 61, a second capacitor Leading electrode connecting portion 62;
  • the first capacitive lead-out electrode body 51 and the second capacitive lead-out electrode body 61 are both strip-shaped metal sheets, and the number of integrally extending from the first capacitive leading electrode body 51 is compatible with multiple power modules
  • the plurality of first capacitor extraction electrode connection portions 52 integrally extend from the first capacitor extraction electrode main body 61 and a number of first capacitor extraction electrode connection portions 62 corresponding to the plurality of power modules, specifically, the first capacitor extraction electrode
  • the lead-out shape of the connecting portion 52 and the second capacitor lead-out electrode connecting portion 62 can be a regular overall extension as shown in FIG.
  • the lead shapes of the first capacitor lead electrode connecting portion 52 and the second capacitor lead electrode 62 can be irregularly extended as shown in FIG. 8, so that a plurality of first capacitor lead electrode connecting portions 52 are separated from each other, and the plurality of second capacitor extraction electrode connection portions 62 are separated from each other; the plurality of first capacitor extraction electrode connection portions 52 are respectively stacked with the plurality of second extraction electrode connection portions 62 and then plugged into multiple power modules side by side.
  • the accommodating space It is convenient to obtain a relatively ideal electrode stack area on the whole, which helps to reduce the parasitic inductance of the entire module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)

Abstract

一种快速功率模块,包括用以为功率模块传导电流的第一功率电极、第二功率电极、输出电极;第一功率电极包括第一功率电极主体、第一功率电极第一连接部、第一功率电极第二连接部,第二功率电极包括第二功率电极主体、第二功率电极第一连接部、第二功率电极第二连接部,第一功率电极主体和第二功率电极主体均为片状且叠层设置,第一功率电极主体和第二功率电极主体之间叠层设有第一绝缘层;第一功率电极第二连接部和第二功率电极第二连接部均为片状且叠层设置,第一功率电极第二连接部与第二功率电极第二连接部之间的叠层间隔被设置为用以容纳外部连接端子的容置空间。可有效简化功率模块结构,降低整个功率模组系统的寄生电感。

Description

一种快速功率模块及功率模组 技术领域
本发明涉及电力电子领域,具体涉及一种快速功率模块及功率模组。
背景技术
功率模块是功率电子电力器件如金属氧化物半导体(功率MOS管)、绝缘栅型场效应晶体管(IGBT),快恢复二极管(FRD)按一定的功能组合封装成的电力开关模块,其主要用于电动汽车,风力发电,工业变频等各种场合下的功率转换。
电动汽车的电机驱动电路通常包括三组分别具有上下桥臂的功率模块,图1为现有的一种功率模块的电路示意图,其示出的是一组具有上下桥臂的功率模块的电路示意图,其包括:作为上桥臂的绝缘栅型场效应晶体管Z1,以及与其反向并联的快恢复二极管D1,作为下桥臂的绝缘栅型场效应晶体管Z2,以及与其反向并联的快恢复二极管D2,其中绝缘栅型场效应晶体管Z1的集电极连接功率模块的正极p+,其发射极连接缘栅型场效应晶体管Z2的集电极,缘栅型场效应晶体管Z2的发射极连接功率模块的负极p-,绝缘栅型场效应晶体管Z1的发射极和Z2的集电极共同连接功率模块的输出端子。在实际应用中,通常使用三组该功率模块来为电机提供三相交流电;在此仅以一组功率模块的电路示意图来说明其工作原理:当绝缘栅型场效应晶体管Z1接通时,电流依次经功率模块的正极p+、绝缘栅型场效应晶体管Z1的集电极、发射极、功率模块输出端子OUTPUT输出至电机;当绝缘栅型场效应晶体管Z1关断时,由于电机为感性负载,为保证电流流向不变,续流电流需经其它组的功率模块经该功率模块的负极p-、二极管D2、功率模块输出端子OUTPUT输出至电机。
在某些实际应用下,功率模块中的电子器件也可以采用功率MOS管,图2是另一种功率MOS管模块的电路示意图,其包括:作为上桥臂的功率MOS管M1、作为下桥臂的功率MOS管M2、其中功率MOS管M1的漏极连接功率模块的正极p+,功率MOS管M1的源极连接功率MOS管M2的漏极,功率MOS管M2的源极连接功率模块的负极p-,功率MOS管M1的源极和功率MOS管M2的漏极共同连接接功率模块的输出端子,其工作原理与采用绝缘栅型场效应晶体管的模块类似,其两者之间的区别主要在于功率MOS管内置反向二极管,因此不需要并联反向二极管。另外,逆导型IGBT与功率MOS有相同的结构和功能,由于内置二极管,不需反向并联二极管,模块设计及结构与功率MOS相似,在此不再赘述。
在实际应用中,寄生电感一直以来都是功率电子器件应用中需要克服的主要难题,尤其是在功率MOS管的高频和大功率的应用场合。模块内部的寄生电感会造成关断过程中的过电压,寄生参数会造成功率模块开关过程中的电压尖峰和波形震荡,从而增加了电磁干扰和开关损耗,甚至损坏模块。
技术问题
本发明为解决现有技术中存在的问题,提出一种快速功率模块,包括用以为功率模块传导电流的第一功率电极、第二功率电极、输出电极;第一功率电极包括第一功率电极主体、第一功率电极第一连接部、第一功率电极第二连接部,第二功率电极包括第二功率电极主体、第二功率电极第一连接部、第二功率电极第二连接部,第一功率电极主体通过第一功率电极第一连接部与功率模块内部相应的导电层连接,第二功率电极主体通过第二功率电极第一连接部与功率模块内部相应的导电层连接,第一功率电极主体和第二功率电极主体均为片状且叠层设置,第一功率电极主体和第二功率电极主体之间叠层设有第一绝缘层;第一功率电极第二连接部和第二功率电极第二连接部均为片状且叠层设置,第一功率电极第二连接部自第一功率电极主体向功率模块外部延伸,第二功率电极第二连接部自第二功率电极主体向功率模块外部延伸,第一功率电极第二连接部与第二功率电极第二连接部之间的叠层间隔被设置为用以容纳外部连接端子的容置空间,外部连接端子分别与相应的第一功率电极第二连接部和第二功率电极第二连接部连接。
技术解决方案
进一步地,所述第一绝缘层全面覆盖第一功率电极主体和第二功率电极主体相对的叠层面,并延伸至该叠层面的边缘外部。
进一步地,第一功率电极第二连接部和第二功率电极第二连接部于第一功率电极主体和第二功率电极主体的叠层端部岔开后向功率模块外部延伸,以在第一功率电极第二连接部和第二功率电极第二连接部之间形成适应外部连接端子厚度的叠层间隔。
进一步地,第一功率电极第二连接部设有第一功率电极连接孔,第二功率电极第二连接部设有位置与第一功率电极连接孔相对应的第二功率电极连接孔。
进一步地,所述功率模块还包括绝缘基板、以及设置于绝缘基板上的第一桥臂导电层、第二桥臂导电层、输出电极导电层、第一功率电极导电层、第二功率电极导电层、设置于第一桥臂导电层上的第一桥臂功率芯片、设置于第二桥臂导电层上的第二桥臂功率芯片;第一桥臂功率芯片通过第一功率电极导电层与第一功率电极电连接,第一桥臂功率芯片通过输出电极导电层与输出电极电连接;第二桥臂功率芯片通过第二功率电极导电层与第二功率电极电连接,第二桥臂功率芯片通过输出电极导电层与输出电极电连接;第一桥臂导电层和第二桥臂导电层设置于绝缘基板的两侧,第一功率电极导电层和第二功率电极导电层设置于第一桥臂导电层和第二桥臂导电层之间,第一功率电极第一连接部焊接于第一功率电极导电层上,第二功率电极第一连接部焊接于第二功率电极导电层上。
本发明实施例还提供一种功率模组,包括上述任一技术方案所提供的功率模块以及电容组、第一电容引出电极、第二电容引出电极,第一电容引出电极包括第一电容引出电极主体、第一电容引出电极连接部,第二电容引出电极包括第二电容引出电极主体、第二电容引出电极连接部,第一电容引出电极主体一端与电容组相应的电极电连接,第二电容引出电极主体与电容组相应的电极电连接,第一电容引出电极主体和第二电容引出电极主体均为片状且叠层设置,第一电容引出电极连接部为片状且自第一电容引出电极主体向外延伸,第二电容引出电极连接部为片状且自第二电容引出电极主体向外延伸,第一电容引出电极连接部与第二电容引出电极连接部叠层设置,并且插接于所述容置空间内,第一电容引出电极连接部与第二电容引出电极连接部之间设有第二绝缘层,第一电容引出电极连接部与第一功率电极第二连接部连接,第二电容引出电极连接部与第二功率电极第二连接部连接。
进一步地,所述第二绝缘层全面覆盖第一电容引出电极连接部与第二电容引出电极连接部相对的叠层面,并延伸至该叠层面的边缘外部。
进一步地,所述第一电容引出电极主体和第二电容引出电极主体之间设有第三绝缘层。
进一步地,所述第三绝缘层全面覆盖第一电容引出电极主体和第二电容引出电极主体相对的叠层面,并延伸至该叠层面的边缘外部。
进一步地,所述第一电容引出电极连接部设有与第一功率电极连接孔相对应的第一电容引出电极连接孔,第二电容引出电极连接部设有与第二功率电极连接孔相对应的第二电容引出电极连接孔,第一功率电极第二连接部上方设有绝缘垫,第二功率电极第二连接部下方设有螺母,螺栓依次穿过绝缘垫、第一功率电极连接孔、第一电容引出电极连接孔、第二绝缘层、第二电容引出电极连接孔、第二功率电极连接孔与螺母连接,螺栓与第一功率电极第二连接部和第一电容引出电极连接部绝缘。
有益效果
本发明提供的一种插接功率模块,包括用以为功率模块传导电流的第一功率电极、第二功率电极、输出电极;第一功率电极包括第一功率电极主体、第一功率电极第一连接部、第一功率电极第二连接部,第二功率电极包括第二功率电极主体、第二功率电极第一连接部、第二功率电极第二连接部,第一功率电极主体通过第一功率电极第一连接部与功率模块内部相应的导电层连接,第二功率电极主体通过第二功率电极第一连接部与功率模块内部相应的导电层连接,第一功率电极主体和第二功率电极主体均为片状且叠层设置,第一功率电极主体和第二功率电极主体之间叠层设有第一绝缘层;第一功率电极第二连接部和第二功率电极第二连接部均为片状且叠层设置,第一功率电极第二连接部自第一功率电极主体向功率模块外部延伸,第二功率电极第二连接部自第二功率电极主体向功率模块外部延伸,第一功率电极第二连接部与第二功率电极第二连接部之间的叠层间隔被设置为用以容纳外部连接端子的容置空间,外部连接端子分别与相应的第一功率电极第二连接部和第二功率电极第二连接部连接。可有效降低整个功率模组的寄生电感。另外本发明还提供了采用上述功率模块的一种功率模组。
附图说明
图1是现有的一种功率模块的电路示意图;
图2是现有的另一种功率模块的电路示意图;
图3是本发明施例一提供的一种插接功率模块单模块实的结构图;
图4是本发明施例二提供的一种插接功率模块多模块集成实的结构图;
图5是本发明施例三提供的一种插接功率模块单模块实的结构图;
图6是本发明实施例四提供的一种功率模组的结构图;
图7是本发明实施例五提供的一种功率模组中功率模块与电容组电极连接结构图;
图8是本发明实施例六提供的一种功率模组立体结构图;
图9是本发明实施例七提供的一种功率模组的侧视结构图;
图10是本发明实施例八提供的一种功率模组的立体结构图。
本发明的最佳实施方式
下面结合附图对本发明实施例进行详细说明,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图3和图4所示的一种快速功率模块,包括用以为功率模块传导电流的第一功率电极10、第二功率电极20、输出电极30;第一功率电极10包括第一功率电极主体11、第一功率电极第一连接部12、第一功率电极第二连接部13,第二功率电极20包括第二功率电极主体21、第二功率电极第一连接部22、第二功率电极第二连接部23,第一功率电极主体11通过第一功率电极第一连接部12与功率模块内部相应的导电层连接,第二功率电极主体21通过第二功率电极第一连接部22与功率模块内部相应的导电层连接,具体地,在某些实际应用中,如图3和图4所示,第一功率电极主体11和第一功率电极第一连接部12一体成型于同一金属片上,且第一功率电极主体11和第一功率电极第一连接部12并非两个互相排斥的概念,在某些实际应用中,第一功率电极主体和第一功率电极第一连接部可通过同一结构的不同部位来实现;第二功率电极主体21和第二功率电极第一连接部22一体成型于同一金属片上,且第二功率电极主体21和第二功率电极第一连接部22,并非两个互相排斥的概念,在某些实际应用中,第二功率电极主体21和第二功率电极第一连接部22可通过同一结构的不同部位来实现,如图3所示,第二功率电极主体21与第二功率电极第一连接部22实质位于同一金属片,该金属片的与第二功率电极导电层连接的端部,实现了第二功率电极第二连接部的功能,在此处,第二功率电极第一连接部22为第二功率电极主体21的一部分;第一功率电极主体11和第二功率电极主体21均为片状且叠层设置,具体地,在某些实际应用中,第一功率电极主体11和第二功率电极主体21,可以采用平直延伸的片状金属,也可以采用弯折延伸的片状金属,如图3和图4所示,第一功率电极主体11和第二功率电极主体21均采用弯折延伸的片状金属;第一功率电极主体11和第二功率电极主体21之间叠层设有第一绝缘层40;具体地,在某些实际应用中,第一绝缘层40全面覆盖第一功率电极主体11和第二功率电极主体21相对的叠层面,并延伸至该叠层面的边缘外部,以根据实际需要,提供适当的爬电距离。这样既能满足第一功率电极主体11和第二功率电极主体21之间绝缘的要求,又可以极大地缩小第一功率电极主体11和第二功率电极主体之间21的叠层间隔,以进一步降低寄生电感;另外,根据实际需要,第一绝缘层40也可局部覆盖上述叠层面,但第一绝缘层40需要具备足够的厚度,以增大第一功率电极主体11和第二功率电极主体21之间的叠层间隔,提供适当的爬电距离;第一功率电极第二连接部13和第二功率电极第二连接部23均为片状且叠层设置,第一功率电极第二连接部13自第一功率电极主体11向功率模块外部延伸,第二功率电极第二连接部23自第二功率电极主体21向功率模块外部延伸;如图3所示,具体地,在某些实际应用中,第一功率电极主体11和第一功率电极第二连接部13一体成型于同一金属片上,第二功率电极主体21和第二功率电极第二连接部23一体成型于同一金属片上,第一功率电极第二连接部13与第二功率电极第二连接部23之间的叠层间隔被设置为用以容纳外部连接端子的容置空间,外部连接端子分别与相应的第一功率电极第二连接部13和第二功率电极第二连接部23连接。
作为上述技术方案的进一步改进,第一功率电极第二连接部13和第二功率电极第二连接部23于第一功率电极主体11和第二功率电极主体21的叠层端部岔开后向功率模块外部延伸,以在第一功率电极第二连接部13和第二功率电极第二连接部23之间形成适应外部连接端子厚度的叠层间隔。具体地,在某些实际应用中,第一功率电极第二连接部13和第二功率电极第二连接部23的岔开方式有多种选择,在如图3所示的实施例中,在第一功率电极主体11和第一功率电极第二连接部之间13,设有用以使第一功率电极第二连接部13在叠层方向上远离第二功率电极第二连接部23的第一弯折部14;或者也可以只在第二功率电极主体21和第二功率电极第二连接部23之间,设有用以使第二功率电极第二连接部23在叠层方向上远离第一功率电极第二连接部13的第二弯折部24;再或者,如图9所示,可以同时设置上述的第一弯折部和第二弯折部。
作为上述技术方案的进一步改进,如图4所示,第一功率电极第二连接部13设有第一功率电极连接孔131,第二功率电极第二连接部23设有位置与第一功率电极连接孔131相对应的第二功率电极连接孔231。具体地,在某些实际应用中,所述第一功率电极连接孔131和第二功率电极连接孔231可以各设置一个或者多个,如图5所示,所述第一功率电极连接孔131和第二功率电极连接孔231可以各设置两个。
作为上述技术方案的进一步细化,所述功率模块还包括绝缘基板100、以及设置于绝缘基板上的第一桥臂导电层200、第二桥臂导电层300、输出电极导电层400、第一功率电极导电层500、第二功率电极导电层600、设置于第一桥臂导电层上的第一桥臂功率芯片700、设置于第二桥臂导电层上的第二桥臂功率芯片800;具体地,在某些实际应用中,所述的功率模块具体为主要由上桥臂功率芯片和上桥臂相应的导电层以及下桥臂功率芯片和下桥臂相应的导电层所构成的半桥模块,图4为三个相同的半桥模块整合在一起的产品形态,如图4和图5所示,第一桥臂导电层200具体为下桥臂导电层,第二桥臂导电层300为上桥臂导电层,第一功率电极10为负电极,第二功率电极20为正电极,第一桥臂功率芯片700为下桥臂功率芯片,第二桥臂功率芯片800为上桥臂功率芯片,第一桥臂功率芯片700和第二桥臂功率芯片800可以采用IGBT,也可以采用功率MOS管。第一桥臂功率芯片700通过第一功率电极导电层500与第一功率电极10电连接,第一桥臂功率芯片700通过输出电极导电层400与输出电极30电连接;第二桥臂功率芯片800通过第二功率电极导电层600与第二功率电极20电连接,第二桥臂功率芯片800通过输出电极导电层400与输出电极30电连接;第一桥臂导电层200和第二桥臂导电层300设置于绝缘基板100的上表面的两侧,第一功率电极导电层500和第二功率电极导电层600设置于第一桥臂导电层200和第二桥臂导电层300之间,第一功率电极导电层500靠近第一桥臂功率芯片700设置,第二功率电极导电层600靠近第二桥臂功率芯片800设置,第一功率电极第一连接部12焊接于第一功率电极导电层500上,第二功率电极第一连接部22焊接与第二功率电极导电层600上。
如图6至图10所示,本发明实施例还提供一种功率模组,包括上述任一技术方案所提供的功率模块以及电容组70、第一电容引出电极50、第二电容引出电极60,第一电容引出电极50包括第一电容引出电极主体51、第一电容引出电极连接部52,第二电容引出电极60包括第二电容引出电极主体61、第二电容引出电极连接部62,第一电容引出电极主体51一端与电容组相应的电极电连接,第二电容引出电极主体61与电容组相应的电极电连接,第一电容引出电极主体51和第二电容引出电极主体61均为片状且叠层设置,第一电容引出电极连接部52为片状且自第一电容引出电极主体51向外延伸,第二电容引出电极连接部62为片状且自第二电容引出电极主体61向外延伸,具体地,在某些实际应用中,第一电容引出电极50连接电容组的负极、第二电容引出电极60连接电容组的正极;第一电容引出电极主体51和第一电容引出电极连接部52一体成型于同一金属片上,第二电容引出电极主体61和第二电容引出电极连接部62一体成型于同一金属片上,第一电容引出电极连接部52与第二电容引出电极连接部62叠层设置,并且插接于所述容置空间内,第一电容引出电极连接部52与第二电容引出电极连接部62之间设有第二绝缘层80,具体地,在某些实际应用中,第二绝缘层80全面覆盖第一电容引出电极连接部52和第二电容引出电极连接部62相对的叠层面,并延伸至该叠层面的边缘外部,以根据实际需要,提供适当的爬电距离。这样既能满足第一电容引出电极连接部52和第二电容引出电极连接部62之间绝缘的要求,又可以极大地缩小第一电容引出电极连接部和第二电容引出电极连接部之间的叠层间隔,以进一步降低寄生电感;另外,根据实际需要,第二绝缘层80也可局部覆盖上述叠层面,但第二绝缘层80需要具备足够的厚度,以增大第一电容引出电极连接部52和第二电容引出电极连接部62之间的叠层间隔,提供适当的爬电距离;第一电容引出电极连接部与52第一功率电极第二连接部连接13,第二电容引出电极连接部62与第二功率电极第二连接部连接23。
作为上述技术方案的进一步改进,所述第一电容引出电极主体51和第二电容引出电极主体之间61设有第三绝缘层90。具体地,在某些实际应用中,第三绝缘层全面覆盖第一电容引出电极主体51和第二电容引出电极主体61相对的叠层面,并延伸至该叠层面的边缘外部。以根据实际需要,提供适当的爬电距离。具体地,在某些实际应用中,第二绝缘层80和第三绝缘层90一体成型于同一片绝缘材料上 。
具体地,在某些实际应用中,如图6所示的功率模组,电容组包括多个电容,所述多个电容设置于第一电容母排110与第二电容母排120之间,所述第一电容引出电极50通过设于电容组侧面的第一电容母排连接部111与第一电容母排连接110,第二电容引出电极60通过设置于电容组侧面的第二电容母排连接部121与第一电容母排120连接;如图9所示,电容组还可以直接设置于PCB板上,第一电容引出电极主体51和第一引出电极连接部52设置于PCB板的一个表面,第二电容引出电极主体61和第二电容引出电极连接部62设置于PCB板的另一个表面。
作为上述技术方案的进一步改进,在某些实际应用中,如图6至图10所示,所述第一电容引出电极连接部设52有与第一功率电极连接孔131相对应的第一电容引出电极连接孔521,第二电容引出电极连接部62设有与第二功率电极连接孔231相对应的第二电容引出电极连接孔621,第一功率电极第二连接部13上方设有用以卡止螺栓的绝缘垫150,第二功率电极第二连接部23下方设有螺母160,螺栓170依次穿过绝缘垫150、第一功率电极连接孔131、第一电容引出电极连接孔521、第二绝缘层80、第二电容引出电极连接孔621、第二功率电极连接孔231与螺母160连接,螺栓170与第一功率电极第二连接部13和第一电容引出电极连接部52绝缘。具体地,在某些实际应用中,第二绝缘层80,设有与螺栓170相对应的第二绝缘层连接孔801,螺栓170通过第二绝缘层连接孔801穿过第二绝缘层,第二绝缘层连接孔801的孔径小于第一电容引出电极连接孔521和第二电容引出电极连接孔621,以提供适当的爬电距离,具体地,在某些实际应用中,如图5和图10所示,所述的第一功率电极连接孔、第二功率电极连接孔、第一电容引出电极连接孔、第二电容引出电极连接孔、第二绝缘层连接孔、绝缘垫、螺母、螺栓均为两个,且相应的位置和连接关系如上所述。具体地,在某些实际应用中,如图8至图10所示的一种功率模组,包括上述任一技术方案所提供的多个功率模块,以及电容组70、第一电容引出电极50、第二电容引出电极60;第一电容引出电极50包括第一电容引出电极主体51、第一电容引出电极连接部52,第二电容引出电极60包括第二电容引出电极主体61、第二电容引出电极连接部62;其中,第一电容引出电极主体51和第二电容引出电极主体61均为条形金属片,自第一电容引出电极主体51一体延伸出数量与多个功率模块相适应的多个第一电容引出电极连接部52,自第一电容引出电极主体61一体延伸出数量与多个功率模块相适应的多个第一电容引出电极连接部62,具体地,第一电容引出电极连接部52和第二电容引出电极连接部62的引出形状可以为如图10所示的规则的整体延伸,使多个第一电容引出电极连接部52连为一体,多个第二电容引出电极62连为一体;根据实际需求,第一电容引出电极连接部52和第二电容引出电极62的引出形状可以为如图8所示的不规则的延伸,使得多个第一电容引出电极连接部52彼此分开,多个第二电容引出电极连接部62彼此分开;多个第一电容引出电极连接部52分别与多个第二引出电极连接部62叠层后并排插接于多个功率模块对应的容置空间内。便于在整体上获得较为理想的电极叠层面积,有助于降低整个模组的寄生电感。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种快速功率模块,其特征在于:包括用以为功率模块传导电流的第一功率电极、第二功率电极、输出电极;第一功率电极包括第一功率电极主体、第一功率电极第一连接部、第一功率电极第二连接部,第二功率电极包括第二功率电极主体、第二功率电极第一连接部、第二功率电极第二连接部,第一功率电极主体通过第一功率电极第一连接部与功率模块内部相应的导电层连接,第二功率电极主体通过第二功率电极第一连接部与功率模块内部相应的导电层连接,第一功率电极主体和第二功率电极主体均为片状且叠层设置,第一功率电极主体和第二功率电极主体之间叠层设有第一绝缘层;第一功率电极第二连接部和第二功率电极第二连接部均为片状且叠层设置,第一功率电极第二连接部自第一功率电极主体向功率模块外部延伸,第二功率电极第二连接部自第二功率电极主体向功率模块外部延伸,第一功率电极第二连接部与第二功率电极第二连接部之间的叠层间隔被设置为用以容纳外部连接端子的容置空间,外部连接端子分别与相应的第一功率电极第二连接部和第二功率电极第二连接部连接。
  2. 根据权利要求1所述的功率模块,其特征在于:所述第一绝缘层全面覆盖第一功率电极主体和第二功率电极主体相对的叠层面,并延伸至该叠层面的边缘外部。
  3. 根据权利要求1所述的功率模块,其特征在于:第一功率电极第二连接部和第二功率电极第二连接部于第一功率电极主体和第二功率电极主体的叠层端部岔开后向功率模块外部延伸,以在第一功率电极第二连接部和第二功率电极第二连接部之间形成适应外部连接端子厚度的叠层间隔。
  4. 根据权利要求1所述的功率模块,其特征在于:第一功率电极第二连接部设有第一功率电极连接孔,第二功率电极第二连接部设有位置与第一功率电极连接孔相对应的第二功率电极连接孔。
  5. 根据权利要求1所述的功率模块,其特征在于:还包括绝缘基板、以及设置于绝缘基板上的第一桥臂导电层、第二桥臂导电层、输出电极导电层、第一功率电极导电层、第二功率电极导电层、设置于第一桥臂导电层上的第一桥臂功率芯片、设置于第二桥臂导电层上的第二桥臂功率芯片;第一桥臂功率芯片通过第一功率电极导电层与第一功率电极电连接,第一桥臂功率芯片通过输出电极导电层与输出电极电连接;第二桥臂功率芯片通过第二功率电极导电层与第二功率电极电连接,第二桥臂功率芯片通过输出电极导电层与输出电极电连接;第一桥臂导电层和第二桥臂导电层设置于绝缘基板上表面的两侧,第一功率电极导电层和第二功率电极导电层设置于第一桥臂导电层和第二桥臂导电层之间,第一功率电极第一连接部焊接于第一功率电极导电层上,第二功率电极第一连接部焊接于第二功率电极导电层上。
  6. 一种功率模组,其特征在于:包括权利要求1至5任一项所述的功率模块以及电容组、第一电容引出电极、第二电容引出电极,第一电容引出电极包括第一电容引出电极主体、第一电容引出电极连接部,第二电容引出电极包括第二电容引出电极主体、第二电容引出电极连接部,第一电容引出电极主体一端与电容组相应的电极电连接,第二电容引出电极主体与电容组相应的电极电连接,第一电容引出电极主体和第二电容引出电极主体均为片状且叠层设置,第一电容引出电极连接部为片状且自第一电容引出电极主体向外延伸,第二电容引出电极连接部为片状且自第二电容引出电极主体向外延伸,第一电容引出电极连接部与第二电容引出电极连接部叠层设置,并且插接于所述容置空间内,第一电容引出电极连接部与第二电容引出电极连接部之间设有第二绝缘层,第一电容引出电极连接部与第一功率电极第二连接部连接,第二电容引出电极连接部与第二功率电极第二连接部连接。
  7. 根据权利要求6所述的功率模组,其特征在于:所述第二绝缘层全面覆盖第一电容引出电极连接部与第二电容引出电极连接部相对的叠层面,并延伸至该叠层面的边缘外部。
  8. 根据权利要求6所述的功率模组,其特征在于:所述第一电容引出电极主体和第二电容引出电极主体之间设有第三绝缘层。
  9. 根据权利要求8所述的功率模组,其特征在于:所述第三绝缘层全面覆盖第一电容引出电极主体和第二电容引出电极主体相对的叠层面,并延伸至该叠层面的边缘外部。
  10. 根据权利要求6所述的功率模组,其特征在于:所述第一电容引出电极连接部设有与第一功率电极连接孔相对应的第一电容引出电极连接孔,第二电容引出电极连接部设有与第二功率电极连接孔相对应的第二电容引出电极连接孔,第一功率电极第二连接部上方设有绝缘垫,第二功率电极第二连接部下方设有螺母,螺栓依次穿过绝缘垫、第一功率电极连接孔、第一电容引出电极连接孔、第二绝缘层、第二电容引出电极连接孔、第二功率电极连接孔与螺母连接,螺栓与第一功率电极第二连接部和第一电容引出电极连接部绝缘。
PCT/CN2021/077347 2020-03-01 2021-02-23 一种快速功率模块及功率模组 WO2021175130A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010133278.1A CN111211114A (zh) 2020-03-01 2020-03-01 一种快速功率模块及功率模组
CN202010133278.1 2020-03-01

Publications (1)

Publication Number Publication Date
WO2021175130A1 true WO2021175130A1 (zh) 2021-09-10

Family

ID=70786764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077347 WO2021175130A1 (zh) 2020-03-01 2021-02-23 一种快速功率模块及功率模组

Country Status (2)

Country Link
CN (1) CN111211114A (zh)
WO (1) WO2021175130A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211114A (zh) * 2020-03-01 2020-05-29 深圳市奕通功率电子有限公司 一种快速功率模块及功率模组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184940A (ja) * 2000-12-18 2002-06-28 Mitsubishi Electric Corp 電力用半導体装置
CN101399262A (zh) * 2007-09-27 2009-04-01 英飞凌科技股份公司 功率半导体装置
CN107634052A (zh) * 2017-08-30 2018-01-26 扬州国扬电子有限公司 一种平行安装电极组合及功率模块
CN109887899A (zh) * 2019-03-01 2019-06-14 深圳市慧成功率电子有限公司 多路供电布局布线的功率模块及功率模组
CN110176865A (zh) * 2018-10-14 2019-08-27 深圳市奕通功率电子有限公司 一种具有分边连接电极的功率模组
CN111211114A (zh) * 2020-03-01 2020-05-29 深圳市奕通功率电子有限公司 一种快速功率模块及功率模组
CN211320092U (zh) * 2020-03-01 2020-08-21 深圳市奕通功率电子有限公司 一种快速功率模块及功率模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184940A (ja) * 2000-12-18 2002-06-28 Mitsubishi Electric Corp 電力用半導体装置
CN101399262A (zh) * 2007-09-27 2009-04-01 英飞凌科技股份公司 功率半导体装置
CN107634052A (zh) * 2017-08-30 2018-01-26 扬州国扬电子有限公司 一种平行安装电极组合及功率模块
CN110176865A (zh) * 2018-10-14 2019-08-27 深圳市奕通功率电子有限公司 一种具有分边连接电极的功率模组
CN109887899A (zh) * 2019-03-01 2019-06-14 深圳市慧成功率电子有限公司 多路供电布局布线的功率模块及功率模组
CN111211114A (zh) * 2020-03-01 2020-05-29 深圳市奕通功率电子有限公司 一种快速功率模块及功率模组
CN211320092U (zh) * 2020-03-01 2020-08-21 深圳市奕通功率电子有限公司 一种快速功率模块及功率模组

Also Published As

Publication number Publication date
CN111211114A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
JP5407198B2 (ja) 電力変換装置のパワーモジュール
JP4277169B2 (ja) 電力用半導体モジュール
US20100328833A1 (en) Power module with additional transient current path and power module system
US20190067160A1 (en) Power module with multi-layer substrate
EP2766930A1 (en) Switching element unit
US20150326221A1 (en) Switching element unit
CN111030477B (zh) 一种环形布局的模块化并联半桥集成组件
CN109768039A (zh) 一种双面散热功率模块
WO2021175130A1 (zh) 一种快速功率模块及功率模组
JP5322554B2 (ja) 半導体電力変換装置
JP6425357B2 (ja) 四端子スナバコンデンサ及びコンデンサモジュール
CN211320092U (zh) 一种快速功率模块及功率模组
JP2015002564A (ja) 電力変換装置
CN109585436B (zh) 一种穿插分支布局的功率模块
CN210379045U (zh) 一种功率模组
CN113314345A (zh) 一种新型电极电容及功率模组
US10304770B2 (en) Semiconductor device with stacked terminals
CN203104302U (zh) 一种用于二极管钳位型三电平变流器的叠层母排
CN111642061B (zh) 一种Vienna整流用双面结构碳化硅功率模块及其制备方法
CN109585437A (zh) 一种多层功率模块
CN110176865A (zh) 一种具有分边连接电极的功率模组
CN210379040U (zh) 一种功率模块
WO2020078082A1 (zh) 一种分边连接功率电极组合及功率模块
CN217655773U (zh) 一种新型电极电容及功率模组
CN109768036A (zh) 一种具有回流导电层的功率模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764065

Country of ref document: EP

Kind code of ref document: A1