WO2021174886A1 - 钻刀检测装置及方法、钻孔设备 - Google Patents

钻刀检测装置及方法、钻孔设备 Download PDF

Info

Publication number
WO2021174886A1
WO2021174886A1 PCT/CN2020/125472 CN2020125472W WO2021174886A1 WO 2021174886 A1 WO2021174886 A1 WO 2021174886A1 CN 2020125472 W CN2020125472 W CN 2020125472W WO 2021174886 A1 WO2021174886 A1 WO 2021174886A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
light source
diameter
control unit
linear array
Prior art date
Application number
PCT/CN2020/125472
Other languages
English (en)
French (fr)
Inventor
武凡凯
袁绩
常远
Original Assignee
维嘉数控科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维嘉数控科技(苏州)有限公司 filed Critical 维嘉数控科技(苏州)有限公司
Publication of WO2021174886A1 publication Critical patent/WO2021174886A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters

Definitions

  • the embodiments of the present application relate to the field of PCB processing, for example, to a drill detection device and method, and drilling equipment.
  • the hole diameter is usually less than 0.1mm, which requires higher drilling accuracy.
  • the diameter, length and yaw of the drill directly affect the formation of the connecting hole, so the measurement of the above parameters of the drill is particularly important.
  • the drill measurement device has insufficient measurement accuracy for small-size drill parameters, and there is an urgent need to propose a drill detection device with higher detection accuracy.
  • the present application provides a drill detection device and method, and drilling equipment to improve drill detection accuracy.
  • an embodiment of the present application provides a drill detection device, including:
  • Light source main lens, linear array charge coupled device and main control unit;
  • the main lens and the linear array charge coupled device are sequentially arranged on the optical path of the parallel light emitted by the light source;
  • the main control unit is electrically connected to the linear array charge coupled device, and the main control unit is configured to receive and process the image signal output by the linear array charge coupled device;
  • the drill to be tested is arranged between the light source and the main lens.
  • an embodiment of the present application also provides a drilling device, including the drill detection device described in the first aspect.
  • an embodiment of the present application also provides a drill detection method, which is implemented by using the drill detection device described in the first aspect, and the drill detection method includes:
  • the linear array charge-coupled device When the linear array charge-coupled device detects that the drill begins to enter the viewing surface of the linear array charge-coupled device, it notifies the main control unit to record the first position of the drill;
  • the main control unit obtains the reference position of the drill and the standard length of the drill, and calculates the length of the drill according to the reference position, the standard length of the drill, and the first position;
  • the main control unit calculates the diameter of the drill according to the first image
  • the linear CCD takes a second image of the drill in a rotating state
  • the main control unit determines the yaw of the drill according to the second image and the diameter
  • the arrangement direction of the first position and the reference position is perpendicular to the light emitting direction of the light source.
  • FIG. 1 is a schematic structural diagram of a PCB drill detection device provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the structure of the PCB drilling tool detection device in Figure 1 when measuring the diameter of the PCB drilling tool;
  • FIG. 3 is a schematic structural diagram of a linear CCD provided by an embodiment of the present application.
  • Figure 4 is the output signal image of the linear CCD in Figure 3 when the PCB drill is not detected
  • Figure 5 is the output signal image of the linear array CCD in Figure 3 when detecting the PCB drill;
  • FIG. 6 is a schematic structural diagram of a PCB drilling device provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a PCB drill detection method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a PCB drill detection device provided by an embodiment of the present application when measuring the length of the PCB drill;
  • FIG. 9 is a partial enlarged view in the dashed box K in FIG. 8;
  • FIG. 10 is a flow chart of detecting a PCB drill provided by an embodiment of the present application.
  • the embodiment of the present application provides a drill detection device, such as a PCB (Printed Circuit Board, printed circuit board) drill detection device, and the PCB drill detection device includes:
  • the main lens and the linear array CCD ie, linear array charge coupled device
  • the main lens and the linear array CCD are sequentially arranged on the optical path of the parallel light emitted by the light source;
  • the main control unit is electrically connected to the linear array CCD and an external PCB drill control module for receiving and processing image signals output by the linear array CCD;
  • the PCB drill to be tested is arranged between the light source and the main lens.
  • the PCB drill detection device includes a light source, a main lens, a line array CCD, and a main control unit.
  • the main lens and the line array CCD are sequentially arranged on the optical path of the parallel light emitted by the light source.
  • the array CCD and the external PCB drill control module are electrically connected to receive and process the image signal output by the linear array CCD.
  • the PCB drill to be tested is arranged between the light source and the main lens, so that it can pass through the linear array.
  • the CCD can easily and accurately obtain the length, diameter and yaw of the PCB drill, thereby improving the detection accuracy of the PCB drill.
  • Fig. 1 is a schematic structural diagram of a PCB drill detection device provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the structure of the PCB drill detection device in Fig. 1 when the diameter of the PCB drill is measured.
  • the PCB drill detection device includes a light source 100, a main lens 200, a linear CCD 300 and a main control unit 400.
  • the main lens 200 and the linear array CCD300 are arranged in sequence on the optical path of the parallel light emitted by the light source 100, and the main control unit 400 is electrically connected to the linear array CCD300 and the external PCB drill control module for receiving and processing the output of the linear array CCD300
  • the image is along the light emitting direction X of the light source 100.
  • the PCB drill 500 to be inspected is arranged between the light source 100 and the main lens 200.
  • the PCB drill detection device can detect the length, diameter, and yaw of the PCB drill to be tested, and is suitable for small-size PCB drills that are difficult to accurately detect in related technologies.
  • the light source 100 in this embodiment can emit parallel light beams.
  • CCD converts light signals into electrical signals through photosensitive elements, and outputs video signals through storage, transmission and detection, and then presents images visible to the human eye.
  • CCD can be divided into area array CCD and linear array CCD.
  • the linear array CCD has the characteristics of simple structure and low cost. Under the premise of measurement accuracy, the measurement range can be made larger.
  • the linear CCD can transmit photoelectric conversion signals in real time, has fast self-scanning speed, high frequency response, can realize dynamic measurement, and can work under low illumination. Based on the above advantages, linear CCDs are often used in high-precision, high-speed detection technology. Therefore, the linear array CCD300 is used in this embodiment to measure the length, diameter and yaw of the PCB drill to improve the detection accuracy.
  • the linear CCD used in this embodiment may be TCD1304AP, which has high sensitivity and low dark current.
  • FIG. 3 is a schematic structural diagram of a linear CCD provided by an embodiment of the present application. In one embodiment, Figure 3 corresponds to TCD1304AP. As shown in FIG. 3, the linear CCD includes 3648 pixels 701, each pixel 701 has a size of 8 ⁇ 20 ⁇ m, and it has 22 pins 702.
  • FIG 4 is the output signal image of the linear CCD in Figure 3 when the PCB drill is not detected.
  • Fig. 5 is the output signal image of the linear array CCD in Fig. 3 when detecting the PCB drill.
  • TCD1304AP outputs different signals according to the light intensity. When the PCB drill occludes part of the light, the output signal intensity of the blocked part decreases, that is, the interval H in Figure 5 corresponds to the diameter of the PCB drill.
  • the PCB drill detection device includes a light source 100, a main lens 200, a linear CCD 300, and a main control unit 400.
  • the main lens 100 and the linear CCD 300 are arranged in sequence on the optical path of the parallel light emitted by the light source 100.
  • the control unit 400 is electrically connected to the linear array CCD300 and the external PCB drill control module for receiving and processing the image output by the linear array CCD300.
  • the PCB drill to be tested is arranged on the light source 100 and the main lens 200 In between, the length, diameter and yaw of the PCB drill can be easily and accurately obtained through the linear array CCD300, thereby improving the detection accuracy of the PCB drill.
  • the light source 100 may include a point light source 110 and a light source lens 120 located on the side of the point light source 110 close to the main lens 200.
  • the light source lens 120 is used to adjust the light emitted by the point light source 110 into a parallel light beam.
  • the structure of the point light source 110 is simple and the cost is low. Adopting the structure of the light source 100 shown in FIG. 2 is beneficial to reduce the cost of the PCB drill inspection device.
  • the light source 100 may also be a laser light source that emits a laser beam with a predetermined diameter.
  • the preset diameter laser beam is a laser beam with a preset diameter, and the designer can reasonably set the value of the preset diameter according to actual needs.
  • the laser light source can directly emit parallel light beams, and the light source 100 may only include this one component, which reduces the space occupied by the light source 100.
  • the PCB drill detection device may also include an optical path adjusting part 600, which is used to adjust the optical path of the parallel light emitted by the light source 100, and the arrangement direction Y of the main lens 200 and the linear CCD 300 is perpendicular to the light source
  • the main lens 200, the optical path adjusting unit 600, and the linear CCD 300 are sequentially arranged on the optical path of the parallel light emitted from the light source 100.
  • this arrangement can reduce the length of the PCB drill detection device in the light emitting direction X of the light source 100, so that the components in the PCB drill detection device can be arranged more concentratedly, which is convenient for the PCB drill detection device Installation in PCB drilling equipment.
  • the optical path adjusting part 600 includes a first reflecting mirror 610 and a second reflecting mirror 620.
  • the main lens 200, the first reflecting mirror 610, the second reflecting mirror 620, and the linear array CCD 300 are sequentially arranged in the light source 100.
  • the light path of the emitted parallel light is sequentially arranged in the light source 100.
  • optical path adjustment part 600 can realize the corresponding optical path adjustment function, its structure is simple, and the cost of the components used is low, which is beneficial to simplify the structure of the PCB drill detection device and reduce the cost of the PCB drill detection device. cost.
  • the optical path adjusting part 600 may also have other structures.
  • Fig. 6 is a schematic structural diagram of a PCB drilling device provided by an embodiment of the present application.
  • an embodiment of the present application also provides a drilling device, such as a PCB drilling device.
  • the PCB drilling device 10 includes the PCB drill detection device 11 described in any embodiment of the present application. Since the PCB drilling device 10 provided in this embodiment includes any of the PCB drilling tool detection devices 11 provided in the embodiments of this application, it has the same or corresponding beneficial effects as the PCB drilling tool detection devices 11 included therein. I won't repeat it here.
  • Fig. 7 is a schematic flowchart of a PCB drill detection method provided by an embodiment of the present application.
  • the present application also provides a drilling tool detection method, for example, a PCB drilling tool detection method.
  • the PCB drilling tool detection method is implemented by the PCB drilling tool detection device provided in any embodiment of the present application.
  • the PCB drill inspection method may include:
  • Step 1 When the linear array CCD detects that the PCB drill starts to enter its viewing surface, it notifies the main control unit to record the first position of the PCB drill.
  • Step 2 The main control unit obtains the reference position of the PCB drill and the standard length of the PCB drill, and calculates the length of the PCB drill according to the reference position, the standard length of the PCB drill and the first position, where the first position and the reference The arrangement direction of the positions is perpendicular to the light emitting direction of the light source.
  • Step 3 The linear CCD takes the first image of the PCB drill in a static state.
  • Step 4 The main control unit calculates the diameter of the PCB drill according to the first image.
  • Step 5 The linear CCD takes a second image of the PCB drill in the rotating state.
  • Step 6 The main control unit determines the yaw of the PCB drill according to the second image and the diameter.
  • the measurement sequence of the PCB drill detection method provided in this embodiment is: the length of the PCB drill, the diameter of the PCB drill, and the deflection of the PCB drill.
  • the length measurement of PCB drills For the length measurement of PCB drills, compare the distances between the standard length PCB drills and the PCB drills to be tested from the same preset position to the same designated position, and determine the PCB drills to be tested and the standard length. Based on the length difference of the PCB drill with a known length, the length of the PCB drill to be tested is calculated based on the length of the standard-length PCB drill with a known length.
  • the linear CCD is used to obtain the image of the PCB drill under test in a static state, and the diameter of the PCB drill under test is calculated based on the image and the related imaging formula of the main lens.
  • the linear CCD is used to obtain the image of the PCB drill tool to be tested in the rotating state, and the virtual diameter of the PCB drill tool to be tested in this state is calculated based on the image and the related imaging formula of the main lens, and Based on the virtual diameter and the determined real diameter of the PCB drill to be tested, the deflection of the PCB drill to be tested is calculated.
  • the main control unit when the PCB drill is detected by the linear array CCD that the PCB drill starts to enter its viewing surface, the main control unit is notified to record the first position of the PCB drill, and the main control unit obtains the reference position of the PCB drill and the PCB drill.
  • the standard length of the knife and calculate the length of the PCB drill according to the reference position, the standard length of the PCB drill and the first position, where the arrangement direction of the first position and the reference position is perpendicular to the direction of the light source, and the linear CCD is still shooting
  • the first image of the PCB drill in the state the main control unit calculates the diameter of the PCB drill according to the first image
  • the linear CCD shoots the second image of the PCB drill in the rotating state
  • the main control unit determines the diameter according to the second image and the diameter
  • the deflection of the PCB drill allows the length, diameter and deflection of the PCB drill to be easily and accurately obtained through the linear CCD, thereby improving the detection accuracy of the PCB drill.
  • FIG. 8 is a schematic structural diagram of a PCB drill detection device when measuring the length of a PCB drill provided by an embodiment of the present application.
  • FIG. 9 is a partial enlarged view in the dashed box K in FIG. 8.
  • the test starts, first adjust the PCB drill to the reference position J (the position of the PCB drill is marked by the dotted line in Figures 8 and 9), and then control the direction of the PCB drill along the light source 100
  • the vertical direction of X and Y move downwards until the detection signal of the linear CCD changes, that is, until the PCB drill moves to the first position Q (the position of the PCB drill marked by the solid line in Figure 8), the above operations are all based on the actual PCB drills.
  • the signal trigger point of the linear CCD is the position where the standard length PCB drill makes the detection signal of the linear CCD change.
  • the actual length of the PCB drill in Figures 8 and 9 is less than the standard length.
  • Figures 8 and 9 illustrate the position R of the PCB drill with the standard length at the signal trigger point of the linear CCD by means of shadow filling.
  • the distance A between the reference position J and the first position Q, the distance B between the reference position P and the signal trigger point R of the linear CCD, is the standard length C of the PCB drill
  • a more popular understanding is as follows: When a standard length PCB drill moves down from the reference position J by a distance B, it reaches the signal trigger point R of the linear array CCD, and the actual PCB drill moves down a longer distance than B.
  • the detection signal of the trigger linear CCD changes, and it can be seen that the actual length of the PCB drill is smaller than its standard length, which is smaller than the standard length by AB, and then the calculation formula for the above-mentioned PCB drill is obtained. It is worth noting that when the actual length of the PCB drill is greater than its standard length, the calculation formula for the actual length of the PCB drill is still valid. The principle is the same as when the actual length of the PCB drill is less than its standard length, so I will not repeat it here. .
  • the main control unit calculating the diameter of the PCB drill according to the first image may include: the main control unit determines the number m of pixels in the first image whose brightness is lower than the reference brightness, and substitutes the number m of pixels into the calculation of the diameter D of the PCB drill.
  • D ump/f to obtain the diameter of the PCB drill, where u is the object distance of the main lens, p is the pixel width of the linear CCD, and f is the focal length of the main lens.
  • the total width of pixels whose brightness is lower than the reference brightness in the first image taken by the linear CCD 300 is equivalent to the image of the diameter of the PCB drill relative to the main lens 200, based on the lens imaging formula:
  • the imaging formula of linear CCD Among them, u is the object distance of the main lens; a+b is the image distance of the main lens; ⁇ is the magnification of the main lens; m is the number of pixels; p is the image distance; f is the focal length of the main lens, and D is the PCB drill diameter of. It can be obtained by the above two formulas:
  • the previous formula can be simplified to So far, the formula for calculating the diameter of the PCB drill is obtained.
  • u, p, and f are all known parameters. Therefore, after extracting the number m of pixels whose brightness is lower than the reference brightness from the first image, the diameter of the PCB drill can be calculated according to the above-mentioned formula for calculating the diameter of the PCB drill. Actual diameter.
  • the main control unit determining the yaw of the PCB drill based on the second image and the diameter may include: obtaining the diameter D1 of the PCB drill in a static state, and the main control unit determines that the brightness in the second image is lower than the reference brightness
  • the drill detection device includes a light source, a main lens, a linear array CCD, and a main control unit.
  • the main lens and the linear array CCD are sequentially arranged on the optical path of the parallel light emitted by the light source.
  • the CCD and the external drill control module are electrically connected to receive and process the image signal output by the linear CCD.
  • the drill to be tested is set between the light source and the main lens, so that the linear CCD can be used conveniently and accurately. To obtain the length, diameter and yaw of the drill, thereby improving the detection accuracy of the drill.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种钻刀检测装置(11)及方法、钻孔设备(10)。钻刀检测装置(11)包括:光源(100)、主透镜(200)、线阵CCD(300)以及主控单元(400);其中,主透镜(200)和线阵CCD(300)依次排列于光源(100)出射的平行光的光路上;主控单元(400)与线阵CCD(300)电连接,主控单元(400)被配置为接收并处理线阵CCD(300)输出的图像信号;沿光源(100)的出光方向,待检测钻刀(500)设置于光源(100)和主透镜(200)之间。

Description

钻刀检测装置及方法、钻孔设备
本公开要求在2020年03月06日提交中国专利局、申请号为202010150499.X的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请实施例涉及PCB加工领域,例如涉及一种钻刀检测装置及方法、钻孔设备。
背景技术
随着元器件集成度的不断提高,普通线路板对钻孔直径要求为0.1mm以上,对于高端线路板,其钻孔直径要求通常小于0.1mm,对钻孔精度的要求更高。而钻刀的直径、长度以及偏摆直接影响连接孔的形成,因此对钻刀上述参数的测量尤为重要。相关技术中钻刀测量装置对小尺寸钻刀参数的测量精度不够,急需提出一种检测精度更高的钻刀检测装置。
发明内容
本申请提供一种钻刀检测装置及方法、钻孔设备,以提高钻刀检测精度。
第一方面,本申请实施例提供了一种钻刀检测装置,包括:
光源、主透镜、线阵电荷耦合器件以及主控单元;
其中,所述主透镜和所述线阵电荷耦合器件依次排列于所述光源出射的平行光的光路上;
所述主控单元与所述线阵电荷耦合器件电连接,所述主控单元被配置为接收并处理所述线阵电荷耦合器件输出的图像信号;
沿所述光源的出光方向,待检测钻刀设置于所述光源和所述主透镜之间。
第二方面,本申请实施例还提供了一种钻孔设备,包括上述第一方面所述的钻刀检测装置。
第三方面,本申请实施例还提供了一种钻刀检测方法,采用上述第一方面所述的钻刀检测装置实施,该钻刀检测方法包括:
所述线阵电荷耦合器件检测到钻刀开始进入所述线阵电荷耦合器件的取景面时,通知所述主控单元记录所述钻刀的第一位置;
所述主控单元获取所述钻刀的基准位置以及所述钻刀的标准长度,并根据所述基准位置、所述钻刀的标准长度以及所述第一位置计算所述钻刀的长度;
所述线阵电荷耦合器件拍摄静止状态的所述钻刀的第一图像;
所述主控单元根据所述第一图像计算所述钻刀的直径;
所述线阵CCD拍摄转动状态的所述钻刀的第二图像;
所述主控单元根据所述第二图像以及所述直径,确定所述钻刀的偏摆;
其中,所述第一位置与所述基准位置的排列方向垂直于所述光源的出光方向。
附图说明
下面对描述实施例中所需要用到的附图做一简单介绍。显然,所介绍的附图只是本申请所要描述的一部分实施例的附图,而不是全部的附图,对于本领域普通技术人员,在不付出创造性劳动的前提下,还可以根据这些附图得到其他的附图。
图1是本申请实施例提供的一种PCB钻刀检测装置的结构示意图;
图2是图1中PCB钻刀检测装置测量PCB钻刀直径时的结构示意图;
图3是本申请实施例提供的一种线阵CCD的结构示意图;
图4是图3中线阵CCD在未检测PCB钻刀时的输出信号图像;
图5是图3中线阵CCD在对PCB钻刀进行检测时的输出信号图像;
图6是本申请实施例提供的一种PCB钻孔设备的结构示意图;
图7是本申请实施例提供的一种PCB钻刀检测方法的流程示意图;
图8是本申请实施例提供的一种PCB钻刀检测装置测量PCB钻刀长度时的结构示意图;
图9是图8中虚线框K中的局部放大图;
图10是本申请实施例提供的一种PCB钻刀的检测流程图。
具体实施方式
以下结合附图及较佳实施例,对依据本申请提出的一种PCB钻刀检测装置及方法、PCB钻孔设备的具体实施方式、结构、特征及其功效,详细说明如下。
本申请实施例提供了一种钻刀检测装置,例如一种PCB(Printed Circuit Board,印刷电路板)钻刀检测装置,该PCB钻刀检测装置包括:
光源、主透镜、线阵CCD(Charge Coupled Device,电荷耦合器件)以及主控单元;
其中,所述主透镜和所述线阵CCD(即,线阵电荷耦合器件)依次排列于所述光源出射的平行光的光路上;
所述主控单元与所述线阵CCD以及外部PCB钻刀控制模块电连接,用于接收并处理所述线阵CCD输出的图像信号;
沿所述光源的出光方向,待检测PCB钻刀设置于所述光源和所述主透镜之间。
本申请实施例提供的PCB钻刀检测装置包括光源、主透镜、线阵CCD以 及主控单元,其中,主透镜和线阵CCD依次排列于光源出射的平行光的光路上,主控单元与线阵CCD以及外部PCB钻刀控制模块电连接,用于接收并处理线阵CCD输出的图像信号,沿光源的出光方向,待检测PCB钻刀设置于光源和主透镜之间,使得能够通过线阵CCD便捷准确的获取PCB钻刀的长度、直径以及偏摆,进而提高了PCB钻刀的检测精度。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
本申请结合示意图进行详细描述,在详述本申请实施例时,为便于说明,表示装置器件结构的示意图并非按照一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本申请保护的范围。此外,在实际制作中应包含长度、宽度以及高度的三维空间尺寸。
图1是本申请实施例提供的一种PCB钻刀检测装置的结构示意图。图2是图1中PCB钻刀检测装置测量PCB钻刀直径时的结构示意图。如图1和图2所示,PCB钻刀检测装置包括光源100、主透镜200、线阵CCD300以及主控单元400。其中,主透镜200和线阵CCD300依次排列于光源100出射的平行光的光路上,主控单元400与线阵CCD300以及外部PCB钻刀控制模块电连接,用于接收并处理线阵CCD300输出的图像,沿光源100的出光方向X,如图2所示,待检测PCB钻刀500设置于光源100和主透镜200之间。
需要说明的是,本实施例提供的PCB钻刀检测装置能够对待测PCB钻刀的长度、直径以及偏摆进行检测,且适用于相关技术中难以准确检测的小尺寸PCB钻刀。
本实施例中的光源100能够发出平行光束。
CCD通过光敏元件将光信号转换为电信号,经存储、传输和检测输出视频信号,进而呈现出人眼可见的图像。CCD可以分为面阵CCD和线阵CCD,其中,线阵CCD具有结构简单且成本低的特点,其可同时存储一行电视信号,由于单排感光元件的数量可以做的很多,因此,在同等测量精度的前提下,其测量范围可以做的较大。此外,线阵CCD能够实时传输光电变换信号且自扫描速度快、频率响应高,能够实现动态测量,并能够在低照度下工作。基于上述优势,线阵CCD常被应用于高精度、高速度的检测技术领域。因此,本实施例采用了线阵CCD300测量PCB钻刀的长度、直径和偏摆,以提高检测精度。
示例性的,本实施例采用的线阵CCD可以为TCD1304AP,该线阵CCD的灵敏度高且暗电流低。图3是本申请实施例提供的一种线阵CCD的结构示意图。在一实施例中,图3对应TCD1304AP。如图3所示,该线阵CCD包括3648个像素701,每个像素701的尺寸为8×20μm,其具有22个引脚702。
下面以直径测量为例对TCD1304AP的功能进行说明。图4是图3中线阵CCD在未检测PCB钻刀时的输出信号图像。图5是图3中线阵CCD在对PCB钻刀进行检测时的输出信号图像。如图4和图5所示,TCD1304AP根据光线强度输出不同的信号,PCB钻刀遮挡部分光线时,被遮挡部分的输出信号强度减小,即图5中区间H对应PCB钻刀的直径。
本实施例提供的PCB钻刀检测装置包括光源100、主透镜200、线阵CCD300以及主控单元400,其中,主透镜100和线阵CCD300依次排列于光源100出射的平行光的光路上,主控单元400与线阵CCD300以及外部PCB钻刀控制模块电连接,用于接收并处理线阵CCD300输出的图像,沿光源100的出光方向X,待检测PCB钻刀设置于光源100和主透镜200之间,使得能够通过线阵CCD300 便捷准确的获取PCB钻刀的长度、直径以及偏摆,进而提高了PCB钻刀的检测精度。
示例性的,继续参见图2,光源100可以包括点光源110以及位于点光源110靠近主透镜200一侧的光源透镜120,光源透镜120用于将点光源110出射的光线调节为平行光束。
需要说明的是,点光源110的结构简单且成本低,采用图2所示光源100结构有利于降低PCB钻刀检测装置的成本。
在本实施例的其他实施方式中,光源100还可以为出射预设直径激光束的激光光源。
其中,预设直径激光束为具有预设直径的激光束,设计人员可以根据实际需要对上述预设直径的数值进行合理设置。
需要说明的是,激光光源可以直接出射平行光束,光源100可以仅包括此一个部件,减小了光源100的占用空间。
继续参见图2,PCB钻刀检测装置还可以包括光路调节部600,光路调节部600用于对光源100出射的平行光的光路进行调节,主透镜200和线阵CCD300的排列方向Y垂直于光源的出光方向X,主透镜200、光路调节部600以及线阵CCD300依次排列于光源100出射的平行光的光路上。
需要说明的是,这样的设置方式能够减小PCB钻刀检测装置在光源100的出光方向X上的长度,使得PCB钻刀检测装置中的部件更为集中的设置,便于PCB钻刀检测装置在PCB钻孔设备中的安装。
示例性的,继续参见图2,光路调节部600包括第一反射镜610和第二反射镜620,主透镜200、第一反射镜610、第二反射镜620以及线阵CCD300依次排列于光源100出射的平行光的光路上。
需要说明的是,上述光路调节部600在能够实现对应的光路调节功能的基础上,其结构简单,采用的部件成本低,有利于简化PCB钻刀检测装置的结构,降低PCB钻刀检测装置的成本。
在本实施例的其他实施方式中,光路调节部600还可以为其他结构。
图6是本申请实施例提供的一种PCB钻孔设备的结构示意图。如图6所示,本申请实施例还提供一种钻孔设备,例如一种PCB钻孔设备,该PCB钻孔设备10包括本申请任意实施例所述的PCB钻刀检测装置11。由于本实施例提供的PCB钻孔设备10包括如本申请实施例提供的任意所述的PCB钻刀检测装置11,其具有其所包括的PCB钻刀检测装置11相同或相应的有益效果,此处不再赘述。
图7是本申请实施例提供的一种PCB钻刀检测方法的流程示意图。本申请还提供一种钻刀检测方法,例如一种PCB钻刀检测方法,该PCB钻刀检测方法采用本申请任意实施例提供的PCB钻刀检测装置实施。如图7所示,PCB钻刀检测方法可以包括:
步骤1、线阵CCD检测到PCB钻刀开始进入其取景面时,通知主控单元记录PCB钻刀的第一位置。
步骤2、主控单元获取PCB钻刀的基准位置以及PCB钻刀的标准长度,并根据基准位置、PCB钻刀的标准长度以及第一位置计算PCB钻刀的长度,其中,第一位置与基准位置的排列方向垂直于光源的出光方向。
步骤3、线阵CCD拍摄静止状态的PCB钻刀的第一图像。
步骤4、主控单元根据第一图像计算PCB钻刀的直径。
步骤5、线阵CCD拍摄转动状态的PCB钻刀的第二图像。
步骤6、主控单元根据第二图像以及直径,确定PCB钻刀的偏摆。
需要说明的是,本实施例提供的PCB钻刀检测方法的测量顺序为:PCB钻刀的长度、PCB钻刀的直径、PCB钻刀的偏摆。
以下简单说明各参数的测量原理:
对于PCB钻刀的长度测量,比较标准长度的PCB钻刀和待测PCB钻刀从同一预设位置移动至同一指定位置的过程中两者分别移动的距离,确定待测PCB钻刀与标准长度的PCB钻刀的长度差,进而基于长度已知的标准长度的PCB钻刀的长度计算获得待测PCB钻刀的长度。
对于PCB钻刀的直径测量,采用线阵CCD获取静止状态下待测PCB钻刀的图像,基于该图像以及主透镜的相关成像公式计算获得待测PCB钻刀的直径。
对于PCB钻刀的偏摆测量,采用线阵CCD获取转动状态下待测PCB钻刀的图像,基于该图像以及主透镜的相关成像公式计算获得此状态下待测PCB钻刀的虚拟直径,并基于该虚拟直径以及已确定的待测PCB钻刀的真实直径计算获得待测PCB钻刀的偏摆。
本实施例提供的技术方案,通过线阵CCD检测到PCB钻刀开始进入其取景面时,通知主控单元记录PCB钻刀的第一位置,主控单元获取PCB钻刀的基准位置以及PCB钻刀的标准长度,并根据基准位置、PCB钻刀的标准长度以及第一位置计算PCB钻刀的长度,其中,第一位置与基准位置的排列方向垂直于光源的出光方向,线阵CCD拍摄静止状态的PCB钻刀的第一图像,主控单元根据第一图像计算PCB钻刀的直径,线阵CCD拍摄转动状态的PCB钻刀的第二图像,主控单元根据第二图像以及直径,确定PCB钻刀的偏摆,使得能够通过线阵CCD便捷准确的获取PCB钻刀的长度、直径以及偏摆,进而提高了PCB钻刀的检测精度。
在一实施例中,根据基准位置、PCB钻刀的标准长度以及第一位置计算PCB钻刀的长度可以包括:计算基准位置与第一位置之间的距离A,获取基准位置与线阵CCD的信号触发点之间的距离B,第一位置、基准位置以及线阵CCD的信号触发点的排列方向与光源的出光方向垂直,获取PCB钻刀的标准长度C,PCB钻刀的实际长度D=B-A+C。
示例性的,图8是本申请实施例提供的一种PCB钻刀检测装置测量PCB钻刀长度时的结构示意图。图9是图8中虚线框K中的局部放大图。如图8和图9所示,测试开始后,首先调节PCB钻刀至基准位置J(图8和图9中以虚线标识的PCB钻刀位置),然后控制PCB钻刀沿光源100的出光方向X的垂直方向Y向下运动,直至线阵CCD的检测信号发生变化,即直至PCB钻刀移动至第一位置Q(图8中以实线标识的PCB钻刀位置),以上操作均针对实际PCB钻刀。值得说明的是,线阵CCD的信号触发点为标准长度的PCB钻刀使得线阵CCD的检测信号发生变化时所处位置。示例性的,图8和图9中的PCB钻刀的实际长度小于标准长度,图8和图9以阴影填充方式示意出标准长度的PCB钻刀位于线阵CCD的信号触发点时的位置R。需要说明的是,以上所述各位置均以PCB钻刀中距离其刀尖n长度的点的位置。示例性的,n=0时,即以刀尖位置为测量位置是最常用的测量方式。继续参见图8和图9,基准位置J与第一位置Q之间的距离A,基准位置P与线阵CCD的信号触发点R之间的距离B,则PCB钻刀的标准长度C时,PCB钻刀的实际长度D=B-A+C。较为通俗的理解如下:标准长度的PCB钻刀从基准位置J向下移动距离B时即达到线阵CCD的信号触发点R,而实际PCB钻刀向下移动了比B更长的距离A才触发线阵CCD的检测信号发生变化,可见PCB钻刀的实际长度是小于其标准长度的,比标准长度小了A-B,进而得到上述PCB钻刀的计算公式。值得注意的是,PCB 钻刀的实际长度大于其标准长度时上述PCB钻刀实际长度的计算公式仍然成立,原理与PCB钻刀的实际长度小于其标准长度时的情况相同,此处不再赘述。
可选的,主控单元根据第一图像计算PCB钻刀的直径可以包括:主控单元确定第一图像中亮度低于基准亮度的像素数量m,将像素数量m代入PCB钻刀直径D的计算公式:D=ump/f,以获得PCB钻刀的直径,其中,u为主透镜的物距,p为线阵CCD的像素宽度,f为主透镜的焦距。
需要说明的是,参见图2,线阵CCD 300拍摄的第一图像中亮度低于基准亮度的像素总宽度相当于PCB钻刀直径相对主透镜200的像,基于透镜成像公式:
Figure PCTCN2020125472-appb-000001
以及线阵CCD的成像公式
Figure PCTCN2020125472-appb-000002
其中,u为主透镜的物距;a+b为主透镜的像距;α为主透镜的放大倍率;m为像素数量;p为像间距;f为主透镜的焦距,D为PCB钻刀的直径。由上述两个公式可得:
Figure PCTCN2020125472-appb-000003
当u>>f,前一公式可简化为
Figure PCTCN2020125472-appb-000004
至此获得PCB钻刀的直径的计算公式。其中,u、p和f均为已知参数,因此在从第一图像中提取出亮度低于基准亮度的像素数量m后,即可根据上述PCB钻刀的直径计算公式计算获得PCB钻刀的实际直径。
在本实施例中,主控单元根据第二图像以及直径,确定PCB钻刀的偏摆可以包括:获取静止状态下PCB钻刀的直径D1,主控单元确定第二图像中亮度低于基准亮度的像素数量n,将像素数量n代入PCB钻刀直径D的计算公式:D=unp/f,以获得转动状态下PCB钻刀的直径D2,其中,u为主透镜的物距,p为线阵CCD的像素宽度,f为主透镜的焦距,将直径D1和直径D2代入PCB钻刀偏摆T的计算公式:T=(D2-D1)/2,以获得PCB钻刀偏摆。
需要说明的是,静止状态下PCB钻刀的直径D1即为上一步骤中已计算获 得的PCB钻刀的实际直径。可以理解的是,PCB钻刀的主体结构实际为柱体,但出现偏移后,高速转动过程中其外轮廓构成锥体,同一位置处该锥体的直径大于PCB钻刀的实际直径。可设置PCB钻刀转动,然后采用获取静止状态下PCB钻刀直径的方法获取此时PCB钻刀对应的锥体同一位置处的直径,即D2。进而通过PCB钻刀偏摆T的计算公式:T=(D2-D1)/2,获得PCB钻刀偏摆T。
值得注意的是,由于工艺以及操作等误差的存在,设置各参数的检测公差,在检测出的PCB钻刀的长度、直径以及偏摆在对应的公差范围内时,认为检测结果正确,否则重新开始测量,对应的PCB钻刀的测量方法的过程如图10所示。
本申请实施例提供的钻刀检测装置包括光源、主透镜、线阵CCD以及主控单元,其中,主透镜和线阵CCD依次排列于光源出射的平行光的光路上,主控单元与线阵CCD以及外部钻刀控制模块电连接,用于接收并处理线阵CCD输出的图像信号,沿光源的出光方向,待检测钻刀设置于光源和主透镜之间,使得能够通过线阵CCD便捷准确的获取钻刀的长度、直径以及偏摆,进而提高了钻刀的检测精度。

Claims (10)

  1. 一种钻刀检测装置,包括:
    光源、主透镜、线阵电荷耦合器件以及主控单元;
    其中,所述主透镜和所述线阵电荷耦合器件依次排列于所述光源出射的平行光的光路上;
    所述主控单元与所述线阵电荷耦合器件电连接,所述主控单元被配置为接收并处理所述线阵电荷耦合器件输出的图像信号;
    沿所述光源的出光方向,待检测钻刀设置于所述光源和所述主透镜之间。
  2. 根据权利要求1所述的钻刀检测装置,其中,所述光源包括点光源以及位于所述点光源靠近所述主透镜一侧的光源透镜,所述光源透镜被配置为将所述点光源出射的光线调节为平行光束。
  3. 根据权利要求1所述的钻刀检测装置,其中,所述光源为出射预设直径激光束的激光光源。
  4. 根据权利要求1所述的钻刀检测装置,还包括光路调节部,所述光路调节部被配置为对所述光源出射的平行光的光路进行调节;
    所述主透镜和所述线阵电荷耦合器件的排列方向垂直于所述光源的出光方向;所述主透镜、所述光路调节部以及所述线阵电荷耦合器件依次排列于所述光源出射的平行光的光路上。
  5. 根据权利要求4所述的钻刀检测装置,其中,所述光路调节部包括第一反射镜和第二反射镜,所述主透镜、所述第一反射镜、所述第二反射镜以及所述线阵电荷耦合器件依次排列于所述光源出射的平行光的光路上。
  6. 一种钻孔设备,包括上述权利要求1-5任一项所述的钻刀检测装置。
  7. 一种钻刀检测方法,采用权利要求1-5任一项所述的钻刀检测装置实施,所述钻刀检测方法包括:
    所述线阵电荷耦合器件检测到钻刀开始进入所述线阵电荷耦合器件的取景面时,通知所述主控单元记录所述钻刀的第一位置;
    所述主控单元获取所述钻刀的基准位置以及所述钻刀的标准长度,并根据所述基准位置、所述钻刀的标准长度以及所述第一位置计算所述钻刀的长度;
    所述线阵电荷耦合器件拍摄静止状态的所述钻刀的第一图像;
    所述主控单元根据所述第一图像计算所述钻刀的直径;
    所述线阵电荷耦合器件拍摄转动状态的所述钻刀的第二图像;
    所述主控单元根据所述第二图像以及所述直径,确定所述钻刀的偏摆;
    其中,所述第一位置与所述基准位置的排列方向垂直于所述光源的出光方向。
  8. 根据权利要求7所述的钻刀检测方法,其中,根据所述基准位置、所述钻刀的标准长度以及所述第一位置计算所述钻刀的长度,包括:
    计算所述基准位置与所述第一位置之间的距离A;
    获取所述基准位置与所述线阵电荷耦合器件的信号触发点之间的距离B;所述第一位置、所述基准位置以及所述线阵电荷耦合器件的信号触发点的排列方向与所述光源的出光方向垂直;
    获取所述钻刀的标准长度C;
    计算所述钻刀的实际长度D,所述钻刀的实际长度D=B-A+C。
  9. 根据权利要求7所述的钻刀检测方法,其中,所述主控单元根据所述第一图像计算所述钻刀的直径,包括:
    所述主控单元确定所述第一图像中亮度低于基准亮度的像素数量m;
    将所述像素数量m代入钻刀直径D的计算公式:D=ump/f,以获得所述钻刀的直径,其中,u为所述主透镜的物距,p为所述线阵电荷耦合器件的像素宽 度,f为所述主透镜的焦距。
  10. 根据权利要求7所述的钻刀检测方法,其中,所述主控单元根据所述第二图像以及所述直径,确定所述钻刀的偏摆,包括:
    获取静止状态下所述钻刀的直径D1;
    所述主控单元确定所述第二图像中亮度低于基准亮度的像素数量n,将所述像素数量n代入钻刀直径D的计算公式:D=unp/f,以获得转动状态下所述钻刀的直径D2,其中,u为所述主透镜的物距,p为所述线阵电荷耦合器件的像素宽度,f为所述主透镜的焦距;
    将所述直径D1和所述直径D2代入钻刀偏摆T的计算公式:T=(D2-D1)/2,以获得钻刀偏摆。
PCT/CN2020/125472 2020-03-06 2020-10-30 钻刀检测装置及方法、钻孔设备 WO2021174886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010150499.XA CN111578843A (zh) 2020-03-06 2020-03-06 一种pcb钻刀检测装置及方法、pcb钻孔设备
CN202010150499.X 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021174886A1 true WO2021174886A1 (zh) 2021-09-10

Family

ID=72122484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125472 WO2021174886A1 (zh) 2020-03-06 2020-10-30 钻刀检测装置及方法、钻孔设备

Country Status (2)

Country Link
CN (1) CN111578843A (zh)
WO (1) WO2021174886A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111578843A (zh) * 2020-03-06 2020-08-25 维嘉数控科技(苏州)有限公司 一种pcb钻刀检测装置及方法、pcb钻孔设备
CN114126221A (zh) * 2020-08-26 2022-03-01 深南电路股份有限公司 一种印刷电路板以及多层板结构的快速加工方法结和系统
WO2022041525A1 (zh) * 2020-08-27 2022-03-03 苏州维嘉科技股份有限公司 印制电路板钻孔加工控制装置、方法及钻孔设备
CN114877821B (zh) * 2022-05-31 2023-09-22 苏州浪潮智能科技有限公司 一种pcb板的背钻深度检测系统及方法
CN115854887B (zh) * 2023-02-20 2023-05-16 四川思创博睿工业设计有限公司 一种距离测量机构及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250696A (ja) * 2005-03-10 2006-09-21 Yamatake Corp 棒状体の測定方法
JP4108968B2 (ja) * 2001-11-30 2008-06-25 ユニオンツール株式会社 転削工具の測定方法および装置
CN201289370Y (zh) * 2008-08-27 2009-08-12 深圳深蓝精机有限公司 一种微钻检测机
CN102538696A (zh) * 2010-12-17 2012-07-04 尖点科技股份有限公司 加工刀具的检测方法
CN103189712A (zh) * 2010-10-27 2013-07-03 株式会社牧野铣床制作所 刀具尺寸的测定方法、测定装置以及机床
CN204115663U (zh) * 2014-05-29 2015-01-21 深圳市华中行科技有限公司 用于测量微型钻头尺寸的测量仪器
CN111578843A (zh) * 2020-03-06 2020-08-25 维嘉数控科技(苏州)有限公司 一种pcb钻刀检测装置及方法、pcb钻孔设备
CN211576091U (zh) * 2020-03-06 2020-09-25 维嘉数控科技(苏州)有限公司 一种pcb钻刀检测装置及pcb钻孔设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4108968B2 (ja) * 2001-11-30 2008-06-25 ユニオンツール株式会社 転削工具の測定方法および装置
JP2006250696A (ja) * 2005-03-10 2006-09-21 Yamatake Corp 棒状体の測定方法
CN201289370Y (zh) * 2008-08-27 2009-08-12 深圳深蓝精机有限公司 一种微钻检测机
CN103189712A (zh) * 2010-10-27 2013-07-03 株式会社牧野铣床制作所 刀具尺寸的测定方法、测定装置以及机床
CN102538696A (zh) * 2010-12-17 2012-07-04 尖点科技股份有限公司 加工刀具的检测方法
CN204115663U (zh) * 2014-05-29 2015-01-21 深圳市华中行科技有限公司 用于测量微型钻头尺寸的测量仪器
CN111578843A (zh) * 2020-03-06 2020-08-25 维嘉数控科技(苏州)有限公司 一种pcb钻刀检测装置及方法、pcb钻孔设备
CN211576091U (zh) * 2020-03-06 2020-09-25 维嘉数控科技(苏州)有限公司 一种pcb钻刀检测装置及pcb钻孔设备

Also Published As

Publication number Publication date
CN111578843A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021174886A1 (zh) 钻刀检测装置及方法、钻孔设备
CN101124453B (zh) 用于二维和三维图像检测的系统
KR100753885B1 (ko) 촬상 장치
CN103201617B (zh) 基板检查方法
CN100585615C (zh) 检测系统
US7641099B2 (en) Solder joint determination method, solder inspection method, and solder inspection device
KR101273094B1 (ko) 광삼각법을 이용한 3차원 형상 측정기를 사용하여 pcb 범프 높이 측정 방법
US7336816B2 (en) Method and apparatus for measuring shape of bumps
TW201405092A (zh) 三維影像量測裝置
JP4776197B2 (ja) 配線基板の検査装置
JP2002116013A (ja) 非接触型外形測定装置
JP2010164334A (ja) 内面形状測定装置および内面形状測定方法
KR20130141345A (ko) 땜납 높이 검출 방법 및 땜납 높이 검출 장치
CN2938734Y (zh) 一种用于基准测量和锡膏印刷检查的图像采集装置
TW200819770A (en) Adjustable illumination apparatus and AOI system using the same
CN102980534B (zh) 一种隐蔽转轴与端面垂直度的非接触测量方法及系统
CN211576091U (zh) 一种pcb钻刀检测装置及pcb钻孔设备
KR100855849B1 (ko) 변위측정장치 및 그것을 이용한 형상검사장치
CN206803969U (zh) 一种点激光共面度测试装置
KR20190129693A (ko) 3d 구조의 광 적용을 위한 고감도 저전력 카메라 시스템
CN108168469A (zh) 一种光轴平行性检测系统及方法
JP2012026816A (ja) 寸法測定方法および装置
CN108917624A (zh) 用于发动机内表面绝热层厚度检测的挠度计算方法、装置及绝热层厚度检测方法、系统
JP2002131017A (ja) 距離測定装置、及び距離測定方法
CN112432595B (zh) 一种高频瞬态三维测量系统校准装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922521

Country of ref document: EP

Kind code of ref document: A1