WO2021174785A1 - 一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法 - Google Patents

一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法 Download PDF

Info

Publication number
WO2021174785A1
WO2021174785A1 PCT/CN2020/112254 CN2020112254W WO2021174785A1 WO 2021174785 A1 WO2021174785 A1 WO 2021174785A1 CN 2020112254 W CN2020112254 W CN 2020112254W WO 2021174785 A1 WO2021174785 A1 WO 2021174785A1
Authority
WO
WIPO (PCT)
Prior art keywords
air preheater
ammonia
air
escape
hot
Prior art date
Application number
PCT/CN2020/112254
Other languages
English (en)
French (fr)
Inventor
石伟伟
申先念
丁波
Original Assignee
南京科远智慧科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京科远智慧科技集团股份有限公司 filed Critical 南京科远智慧科技集团股份有限公司
Publication of WO2021174785A1 publication Critical patent/WO2021174785A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/006Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus specially adapted for regenerative heat-exchange apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the invention relates to a method for monitoring the influence of the escape of denitrification ammonia on downstream rotary air preheaters, and belongs to the technical field of operation monitoring and optimization of power station boiler air preheaters and denitrification devices.
  • Rotary air preheater (referred to as "air preheater”) is a heat exchange equipment used in large power station boilers. It uses the heat of boiler flue gas to heat the air required for combustion to improve the efficiency of the boiler . After passing through the air preheater, the flue gas temperature is generally cooled from 300 to 400 °C to 100 to 150 °C, and the corresponding air temperature is generally heated from 0 to 50 °C to 250 to 400 °C, the flue gas and air are heat exchanged in countercurrent, and the flue gas is input The end is the hot end of the air preheater, and the air input end is the cold end of the air preheater.
  • the air preheater uses the rotor loaded with heat storage elements to continuously rotate to achieve continuous heat absorption on the air side and continuous heat release on the flue gas side; according to the needs of the boiler fuel system, the air side sub-bin can be further divided into primary air sub-bins and In the secondary air compartment, the pressure of the primary air is higher than that of the secondary air, and it is mainly used to carry fuel into the furnace for combustion.
  • the focus of the air preheater mainly includes ash blocking, high air leakage rate, low heat transfer efficiency, serious low-temperature corrosion, and high exhaust gas temperature.
  • the flue gas denitrification devices added in coal-fired power plants are mainly based on selective catalytic reduction (SCR) technology.
  • SCR selective catalytic reduction
  • part of the SO 2 in the flue gas will be oxidized to SO 3 by the denitration catalyst, which increases the volume concentration of SO 3 in the flue gas.
  • ammonium bisulfate NH 4 HSO 4
  • the air preheater is installed downstream of the flue gas denitrification device.
  • the by-product ammonium bisulfate (NH 4 HSO 4 ) is in a molten state within the temperature range of 146 to 207 °C, and will firmly adhere to the air preheater heat storage The surface of the element causes the heat storage element to corrode and accumulate dust, which will eventually cause dust clogging, causing great hidden dangers to the safe operation of the unit.
  • Some domestic power plants have been unable to solve or alleviate this problem and have caused unit load limit or even forced shutdown.
  • the present invention provides a method for monitoring the influence of the ammonia escape of denitrification on the downstream rotary air preheater.
  • a method for monitoring the influence of the escape of denitrification ammonia on the downstream rotary air preheater From the cold end of the air preheater, hot air above 250°C is blown into the heat storage element of the air preheater, and the air is preheated. The hot end of the device draws in the hot air from the position where the hot air is blown in and measures the ammonia concentration.
  • the hot air above 250°C is blown into the radial sector compartment area of the rotor in the air preheater, and the blown sector area is divided into areas at the relative position of the hot end of the air preheater
  • Equal N equal parts, N ⁇ 2 each equal part is drawn with an equal flow of sample gas at its geometric center, and the ammonia concentration is measured after mixing.
  • an extraction device is provided on one side of the air preheater, and a plurality of sampling ports are provided on the extraction device, and each sampling port is correspondingly located directly above a geometric center of the equal portion.
  • the extraction device includes an ammonia escape measurement interface, an outlet tee, a first valve, a second valve, a plug, and a pipeline.
  • One side of the pipeline is provided with a number of sampling ports, and the plug is arranged in the pipe.
  • the first valve and the second valve are connected to the two outlets of the pipeline through the outlet tee.
  • One outlet on the pipeline is connected to the flue gas side of the air preheater through the first valve, and the other The outlet is connected with the high-pressure hot primary air pipeline of the air preheater through the second valve.
  • an ammonia escape measurement interface is provided on the pipeline, and an ammonia escape measurement instrument probe is installed on the ammonia escape measurement interface to measure the ammonia concentration in the extracted hot air.
  • the flow rate of the hot air above 250° C. passing through the heat storage element is 18-40 m/s.
  • the hot air above 250°C is taken from the high-pressure hot primary air of the air preheater and flows to the low-pressure hot secondary air.
  • the invention can be used to evaluate the ammonia escape control level of the denitrification device and the influence of ammonia escape on the ash clogging of the downstream rotary air preheater, and the method is simple and practical, and can replace the traditional and complicated ammonia escape measurement method.
  • Fig. 1 is a front view of an embodiment of monitoring the influence of the escape of denitrification ammonia on the downstream rotary air preheater.
  • Fig. 2 is a side view of an embodiment of monitoring the influence of the escape of denitrification ammonia on the downstream rotary air preheater.
  • Figure 3 is a schematic diagram of a special extraction device for monitoring ammonia escape from denitrification.
  • the present invention is a method for monitoring the influence of the escape of denitrification ammonia on the downstream rotary air preheater.
  • the technical scheme adopted by the present invention is as follows:
  • the dust concentration in the hot air is much lower than the dust concentration in the flue gas.
  • the impact on the ammonia meter is small.
  • the air composition is far less complex than the flue gas composition, and the gas interference factors are less, which is easy to accurately measure;
  • the ammonia concentration in the hot air is generally higher than the ammonia concentration in the flue gas at the outlet of the denitrification device. The relative accuracy of the measurement is higher.
  • the above-mentioned hot air above 250°C is blown into the radial sector compartment area of the rotor 3 in the air preheater, and an extraction device is provided at the relative position of the hot end of the air preheater to divide the blown sector area into N equal parts with equal area, N ⁇ 2, and each equal part corresponds to a sampling port in its geometric center.
  • the sample gas of equal flow is extracted through the extraction device, and the ammonia concentration is measured after mixing.
  • the representativeness of substitution can be increased as much as possible, thereby improving the accuracy of ammonia concentration measurement; and because the air preheater rotor continuously rotates, the flue gas at the outlet of the denitrification device completely flows through the heat storage element of the air preheater, so from the rotor diameter
  • the multi-point sampling analysis of the equal area method is adopted to the complete fan-shaped area, which can accurately and comprehensively reflect the ammonia escape level of the entire cross-section of the outlet flue of the denitrification device.
  • the above-mentioned hot air above 250° C. is blown into the heat storage element from the air side of the cold end of the air preheater.
  • the full flow velocity of the above-mentioned hot air above 250°C through the heat storage element is 18-40m/s. Too low or too high a flow velocity will cause the ammonia concentration in the hot air to decrease, which is not conducive to the evaluation of denitrification. Ammonia escape adversely affects the downstream rotary air preheater.
  • the above-mentioned hot air above 250°C is taken from the high-pressure hot primary air and flows to the low-pressure hot secondary air.
  • an extraction device 1 is provided on one side of the air preheater, and a number of sampling ports 11 are provided on the extraction device 1, and each sampling port 11 corresponds to a geometric center of the aliquot. Directly above.
  • the extraction device 1 includes an ammonia escape measurement interface 12, an outlet tee 13, a first valve 14, a second valve 15, a plug 16 and a pipeline.
  • One side of the pipeline is provided with a number of sampling ports 11, and the plug 16 is set in
  • the first valve 14 and the second valve 15 are connected to two outlets in the pipeline through the outlet tee 13, and one outlet on the pipeline is connected to the flue gas side of the air preheater through the first valve 14
  • the other outlet is connected to the high-pressure hot primary air pipeline of the air preheater through the second valve 15.
  • the outlet tee of the extraction device 1 is connected all the way to the flue gas side of the air preheater. Because the flue gas side is negative pressure, it can form a differential pressure with the sampling inlet, and the sample gas can flow through without external power.
  • the sampling device is discharged to the flue gas side; the outlet of the extraction device is connected to the high-pressure primary air pipeline of the air preheater and the other way.
  • the valve can be opened and the high-pressure hot primary air can be used to blow back Sweep, improve the cleanliness of the inside of the extraction device; when the extraction device is seriously blocked, you can also open the bottom plug of the extraction device to physically clean the dust.
  • the extraction device is equipped with two ammonia escape measurement interfaces, one for use and one for backup. When there is a problem with one measurement channel or instrument, it can be immediately switched to another measurement channel to continue working.
  • the hot air inlet channel is designed and installed at the cold end of the air preheater, and high-pressure hot primary air is connected to perform real-time purging of the heat storage elements at the cold end of the air preheater.
  • the outlet of the extraction device is connected with a valve and a plug through a three-way connection, one channel is connected to the flue gas side of the air preheater through the valve, the other is connected to the hot primary air pipe of the air preheater through a valve, and the extraction device is in the vertical direction. Install the plug.
  • the ammonia escape measurement interface of the extraction device adopts a one-use one-standby mode. When one measurement channel fails, it can be quickly switched to another channel for measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Air Supply (AREA)

Abstract

一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法,从空气预热器的冷端向空气预热器的蓄热元件内部吹入250℃以上的热空气,并在空气预热器的热端相对热空气吹入位置处抽取吹入的热空气并测量氨浓度。该方法用于评估脱硝装置氨逃逸控制水平以及氨逃逸对下游回转式空气预热器堵灰的影响,简单实用,可代替传统复杂的氨逃逸测量方法。

Description

一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法 技术领域:
本发明涉及一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法,属于电站锅炉空气预热器及脱硝装置运行监测优化技术领域。
背景技术:
回转式空气预热器(简称“空气预热器”)是一种用于大型电站锅炉的热交换设备,它利用锅炉烟气的热量来加热燃烧所需的空气,以此来提高锅炉的效率。经空气预热器后,烟气温度一般由300~400℃冷却至100~150℃,相应空气温度一般由0~50℃加热至250~400℃,烟气和空气逆流换热,烟气输入端为空气预热器热端,空气输入端为空气预热器冷端。空气预热器利用装载蓄热元件的转子连续旋转,实现空气侧的连续吸热和烟气侧的连续放热;根据锅炉燃料系统的需要,空气侧分仓可进一步划分为一次风分仓和二次风分仓,一次风压力相比二次风要高,主要用于携带燃料进炉膛燃烧。
空气预热器关注的焦点问题主要包括堵灰、漏风率偏高、传热效率低、低温腐蚀严重,排烟温度过高等,这些问题长期影响着空气预热器以及整个锅炉系统的安全与经济运行。上述问题由来已久,而且相互促进、相互影响。近年来,随着脱硝系统的普遍投运,空气预热器运行环境发生改变,上述堵灰问题变得尤为突出,治理困难、复杂。
目前燃煤电厂增设的烟气脱硝装置主要以选择性催化还原(SCR)技术为主。采用SCR脱硝工艺后,烟气中的部分SO 2将被脱硝催化剂氧化成SO 3,增加了烟气中SO 3的体积浓度,加之存在不可避免的氨逃逸现象,导致硫酸氢铵(NH 4HSO 4)等副产物的大量生成。空气预热器设置在烟气脱硝装置下游,上述副产物硫酸氢铵(NH 4HSO 4)在温度为146~207℃范围内,呈熔融状,会牢固地粘附在空气预热器蓄热元件表面,使蓄热元件发生腐蚀和积灰,最终易引发堵灰,给机组的安全运行造成极大隐患。国内已有部分电厂因无法解决或缓解此问题而导致机组限负荷,甚至被迫停机。
因此,对上述烟气脱硝装置的氨逃逸量进行在线监测尤为重要。当前,普遍采用在脱硝装置出口烟道上安装基于可调谐二极管激光吸收光谱(TDLAS)技术的氨逃逸测量仪表,但实际应用效果不佳,主要存在以下几个难点:1)脱硝装置出口烟道截面很大, 而往往传统氨逃逸表计只监测一点或有限几点,不能反应整个烟道截面的氨逃逸水平;2)烟气中氨逃逸率一般要求限制在3ppm以内,由于氨浓度过低导致难以准确测量;3)烟气中高浓度粉尘导致氨逃逸测量仪表不稳定;4)部分氨逃逸测量仪表为原位安装设计,激光发射端和接收端分别安装在烟道壁上,烟道壁受热变形导致激光发射端和接收端无法对准;5)烟气成份复杂,容易对正常测量造成干扰。
总之,当前脱硝装置氨逃逸率难以准确可靠测量是导致空气预热器堵灰的重要因素,亟需寻求一种先进的氨逃逸率监测方法或评估脱硝氨逃逸对下游空气预热器堵灰影响的方法。
发明内容:
为了更准确可靠地评估脱硝装置氨逃逸控制水平以及氨逃逸对下游回转式空气预热器堵灰的影响,本发明提供一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法。
本发明所采用的技术方案有:
一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法,从空气预热器的冷端向空气预热器的蓄热元件内部吹入250℃以上的热空气,并在空气预热器的热端相对热空气吹入位置处抽取吹入的热空气并测量氨浓度。
进一步地,所述250℃以上的热空气吹入空气预热器中转子的径向扇形隔仓区域,在空气预热器热端的所述相对位置处,将所吹扫的扇形区域划分为面积相等的N等份,N≥2,每一等份在其几何中心抽取等流量的样气,经混合后测量其中氨浓度。
进一步地,在空气预热器的一侧设有抽取装置,所述抽取装置上设有若干个取样口,每一个取样口对应位于一个所述等份几何中心的正上方。
进一步地,所述抽取装置包括氨逃逸测量接口、出口三通、第一阀门、第二阀门、堵头和管路,所述管路的一侧设有若干个取样口,堵头设置在管路的另一侧,第一阀门和第二阀门通过出口三通连接在管路中的两个出口上,管路上的一路出口通过第一阀门与空气预热器烟气侧相连通,另一路出口通过第二阀门与空气预热器高压热一次风管路相连接。
进一步地,所述管路上设有氨逃逸测量接口,氨逃逸测量接口上安装氨逃逸测量仪 表探头,测量抽取的热空气中的氨浓度。
进一步地,所述250℃以上热空气流经蓄热元件的全程流速为18~40m/s。
进一步地,所述250℃以上热空气取自空气预热器高压的热一次风,流向低压的热二次风。
本发明具有如下有益效果:
本发明可用于评估脱硝装置氨逃逸控制水平以及氨逃逸对下游回转式空气预热器堵灰的影响,且此方法简单实用,可代替传统复杂的氨逃逸测量方法。
附图说明:
图1为监测脱硝氨逃逸对下游回转式空气预热器影响实施例正视图。
图2为监测脱硝氨逃逸对下游回转式空气预热器影响实施例侧视图。
图3为监测脱硝氨逃逸专用抽取装置结构示意图。
图中:1、抽取装置;2、空气预热器冷端吹入的热空气;3、转子;4、蓄热元件;5、空气预热器热端一次风/二次风侧扇形板;6、空气预热器冷端一次风/二次风侧扇形板;
11、取样口;12、氨逃逸测量接口;13、出口三通;14、第一阀门;15、第二阀门;16、堵头。
具体实施方式:
下面结合附图对本发明作进一步的说明。
如图1至图4所示,本发明一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法,本发明采用的技术方案如下:
从空气预热器的冷端向空气预热器的蓄热元件4内部吹入250℃以上的热空气,并在空气预热器的热端相对热空气吹入位置处抽取吹入的热空气并测量氨浓度。
经研究发现,脱硝装置所逃逸的氨气,随烟气流经蓄热元件4时,烟气温度从300~400℃降低至100~150℃,氨气将大量吸附在蓄热元件表面,当从空气预热器冷端向蓄热元件内部吹入250℃以上热空气时,这股热空气因温度水平较高,将带出部分氨气,氨浓度越高,说明脱硝装置氨逃逸率越大,同时也说明空气预热器受到脱硝氨逃逸的威 胁越大。相比于直接测量烟气中逃逸的氨浓度,测量上述热空气的中氨浓度要容易得多,主要得益于:a)上述热空气中粉尘浓度远低于烟气中粉尘浓度,粉尘浓度对氨测量表计的影响较小,b)空气成份远没有烟气成份复杂,气体干扰因素少,容易准确测量;c)上述热空气中氨浓度一般高于脱硝装置出口烟气中氨浓度,测量相对准确度更高。
作为优选,上述250℃以上热空气吹入空气预热器中转子3的径向扇形隔仓区域,在空气预热器热端相对位置,设有抽取装置,把所吹扫的扇形区域划分为面积相等的N等份,N≥2,每一等份在其几何中心对应一个取样口,通过抽取装置抽取等流量的样气,经混合后测量其中氨浓度。
采用上述取样方法,能尽量提高取代代表性,从而提高氨浓度测量准确性;且因空气预热器转子连续旋转,脱硝装置出口烟气完全流经空气预热器蓄热元件,故从转子径向完整扇形区域采用等面积法多点取样分析,能准确全面反映脱硝装置出口烟道整个截面的氨逃逸水平。
为了易于实现,优选,上述250℃以上热空气从空气预热器冷端空气侧吹入蓄热元件内部。
为了提高测量准确性,优选,上述250℃以上热空气流经蓄热元件的全程流速为18~40m/s,流速过低或过高都将导致热空气中氨浓度降低,从而不利于评估脱硝氨逃逸对下游回转式空气预热器的不利影响。
为了降低投资及运行费用,优选,上述250℃以上热空气取自高压的热一次风,流向低压的热二次风。
为了提高取样的代表性和准确性,在空气预热器的一侧设有抽取装置1,抽取装置1上设有若干个取样口11,每一个取样口11对应位于一个所述等份几何中心的正上方。
抽取装置1包括氨逃逸测量接口12、出口三通13、第一阀门14、第二阀门15、堵头16和管路,管路的一侧设有若干个取样口11,堵头16设置在管路的另一侧,第一阀门14和第二阀门15通过出口三通13连接在管路中的两个出口上,管路上的一路出口通过第一阀门14与空气预热器烟气侧相连通,另一路出口通过第二阀门15与空气预热器高压热一次风管路相连接。
为了提高抽取装置的防堵性能,抽取装置1的出口三通一路连接空气预热器烟气侧,由于烟气侧为负压,能与取样入口形成差压,样气可以无须外界动力自流经过取样装置至烟气侧排出;抽取装置的出口三通另一路连接空气预器高压一次风管路,当抽取装置 有堵塞积灰现象时,可以开启该路阀门利用高压的热一次风进行反吹扫,提高抽取装置内部的清洁度;当抽取装置堵塞严重时,还可以打开抽取装置底部堵头,物理清灰。
为了保证测量系统可靠性,抽取装置上设有两个氨逃逸测量接口,一用一备,当一路测量通道或仪表出现问题时,可以立即切换至另一路测量通道继续工作。
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
300MW机组监测脱硝氨逃逸对下游回转式空气预热器影响的方法具体实施步骤:
1)根据空气预热器内部结构,在空气预热器冷端设计并安装热空气进入通道,接入高压的热一次风,对空预器冷端蓄热元件进行实时吹扫。
2)在空预器热端蓄热元件上方,对应热空气进入通道中间,沿着空预器转子径向方向设计并安装抽取装置,根据单个转子仓格面积等分为4个区域,在每个区域的几何中心所在圆环位置上设置抽取装置的取样口。
3)抽取装置的出口通过三通连接阀门和堵头,一路通道经过阀门连接至空气预热器烟气侧,另一路通过阀门连接至空气预热器热一次风管道,抽取装置竖直方向出口安装堵头。
4)脱硝氨逃逸检测系统运行时,打开抽取装置与空气预热器烟气侧管路阀门,在无需外界动力源情况下,从空气预热器热端抽取的样气,在差压作用下,通过抽取装置后排入空气预热器烟气侧。在抽取装置的氨逃逸接口安装测量仪表探头,可以实时测量抽取的热空气通过空气预热器蓄热元件后所携带出的氨量,以此实现通过监测氨逃逸量评估对空气预热器的影响。
5)当抽取装置发生堵塞时,打开抽取装置与热一次风管道的连接阀门,对抽取装置进行热风反吹清扫,如堵塞严重时,打开抽取装置竖直方向堵头,进行物理清扫。
6)抽取装置的氨逃逸测量接口采用一用一备模式,当一路测量通道发生故障时,可以迅速切换至另一路通道测量。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (7)

  1. 一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法,其特征在于:从空气预热器的冷端向空气预热器的蓄热元件内部吹入250℃以上的热空气,并在空气预热器的热端相对热空气吹入位置处抽取吹入的热空气并测量氨浓度。
  2. 如权利要求1所述的监测脱硝氨逃逸对下游回转式空气预热器影响的方法,其特征在于:所述250℃以上的热空气吹入空气预热器中转子的径向扇形隔仓区域,在空气预热器热端的所述相对位置处,将所吹扫的扇形区域划分为面积相等的N等份,N≥2,每一等份在其几何中心抽取等流量的样气,经混合后测量其中氨浓度。
  3. 如权利要求1所述的监测脱硝氨逃逸对下游回转式空气预热器影响的方法,其特征在于:在空气预热器的一侧设有抽取装置,所述抽取装置上设有若干个取样口,每一个取样口对应位于一个所述等份几何中心的正上方。
  4. 如权利要求3所述的监测脱硝氨逃逸对下游回转式空气预热器影响的方法,其特征在于:所述抽取装置包括氨逃逸测量接口、出口三通、第一阀门、第二阀门、堵头和管路,所述管路的一侧设有若干个取样口,堵头设置在管路的另一侧,第一阀门和第二阀门通过出口三通连接在管路中的两个出口上,管路上的一路出口通过第一阀门与空气预热器烟气侧相连通,另一路出口通过第二阀门与空气预热器高压热一次风管路相连接。
  5. 如权利要求4所述的监测脱硝氨逃逸对下游回转式空气预热器影响的方法,其特征在于:所述管路上设有氨逃逸测量接口,氨逃逸测量接口上安装氨逃逸测量仪表探头,测量抽取的热空气中的氨浓度。
  6. 如权利要求1所述的监测脱硝氨逃逸对下游回转式空气预热器影响的方法,其特征在于:所述250℃以上热空气流经蓄热元件的全程流速为18~40m/s。
  7. 如权利要求1所述的监测脱硝氨逃逸对下游回转式空气预热器影响的方法,其特征在于:所述250℃以上热空气取自空气预热器高压的热一次风,流向低压的热二次风。
PCT/CN2020/112254 2020-03-03 2020-08-28 一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法 WO2021174785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010137956.1 2020-03-03
CN202010137956.1A CN111189062B (zh) 2020-03-03 2020-03-03 一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法

Publications (1)

Publication Number Publication Date
WO2021174785A1 true WO2021174785A1 (zh) 2021-09-10

Family

ID=70705301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112254 WO2021174785A1 (zh) 2020-03-03 2020-08-28 一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法

Country Status (2)

Country Link
CN (1) CN111189062B (zh)
WO (1) WO2021174785A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324234A (zh) * 2021-11-23 2022-04-12 合肥固泰自动化有限公司 一种原位抽取式激光氨逃逸分析系统
CN114739002A (zh) * 2022-03-16 2022-07-12 华能伊敏煤电有限责任公司 一种脱硝喷氨空气预热装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111189062B (zh) * 2020-03-03 2021-06-18 南京科远智慧科技集团股份有限公司 一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3025142A (en) * 1959-10-30 1962-03-13 Dale D Williams Method and means of detecting ammonia and amine vapor
EP1063472A1 (en) * 1999-06-23 2000-12-27 Fagersta Energetics AB A method and an installation for cooling flue gases in the combustion of hydrogenous or moisture-containing fuels
EP2278316A1 (en) * 2009-07-17 2011-01-26 NGK Insulators, Ltd. Ammonia concentration detection sensor
CN208091786U (zh) * 2018-03-20 2018-11-13 陕西凯特自动化工程有限公司 一种应用于氨逃逸检测的烟气抽取系统
CN109724104A (zh) * 2018-12-06 2019-05-07 南京博沃科技发展有限公司 一种空气预热器防堵灰风量调控方法及运行监测装置
CN110068024A (zh) * 2019-04-15 2019-07-30 国家电投集团电站运营技术(北京)有限公司 一种防止空气预热器堵塞的清洗系统
CN111189062A (zh) * 2020-03-03 2020-05-22 南京科远智慧科技集团股份有限公司 一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6120580A (en) * 1998-04-15 2000-09-19 Hera, Llc Method for testing systems designed for NOx reduction in the combustion of carbonaceous fuels
US6264905B1 (en) * 1999-10-12 2001-07-24 Hera, Llc Method and apparatus for reducing “ammonia slip” in SCR and/or SNCR NOX removal applications
CN103207250B (zh) * 2013-03-15 2015-03-04 浙江省电力公司电力科学研究院 一种烟气脱硝系统氨逃逸的测试方法
CN208124351U (zh) * 2018-02-23 2018-11-20 湖南华电常德发电有限公司 回转式空气预热器防堵清堵系统
CN207964391U (zh) * 2018-03-20 2018-10-12 陕西凯特自动化工程有限公司 一种烟气取样装置
CN208652614U (zh) * 2018-07-27 2019-03-26 南京博沃科技发展有限公司 一种利用抽漏风防堵的空气预热器
CN109520790A (zh) * 2018-11-14 2019-03-26 南京博沃科技发展有限公司 一种脱硝装置出口烟气网格法混合采样装置的安装结构
CN110500601A (zh) * 2019-08-22 2019-11-26 华能国际电力股份有限公司 处理scr脱硝氨逃逸过大、空气预热器堵塞的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3025142A (en) * 1959-10-30 1962-03-13 Dale D Williams Method and means of detecting ammonia and amine vapor
EP1063472A1 (en) * 1999-06-23 2000-12-27 Fagersta Energetics AB A method and an installation for cooling flue gases in the combustion of hydrogenous or moisture-containing fuels
EP2278316A1 (en) * 2009-07-17 2011-01-26 NGK Insulators, Ltd. Ammonia concentration detection sensor
CN208091786U (zh) * 2018-03-20 2018-11-13 陕西凯特自动化工程有限公司 一种应用于氨逃逸检测的烟气抽取系统
CN109724104A (zh) * 2018-12-06 2019-05-07 南京博沃科技发展有限公司 一种空气预热器防堵灰风量调控方法及运行监测装置
CN110068024A (zh) * 2019-04-15 2019-07-30 国家电投集团电站运营技术(北京)有限公司 一种防止空气预热器堵塞的清洗系统
CN111189062A (zh) * 2020-03-03 2020-05-22 南京科远智慧科技集团股份有限公司 一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324234A (zh) * 2021-11-23 2022-04-12 合肥固泰自动化有限公司 一种原位抽取式激光氨逃逸分析系统
CN114324234B (zh) * 2021-11-23 2024-01-26 合肥固泰自动化有限公司 一种原位抽取式激光氨逃逸分析系统
CN114739002A (zh) * 2022-03-16 2022-07-12 华能伊敏煤电有限责任公司 一种脱硝喷氨空气预热装置
CN114739002B (zh) * 2022-03-16 2023-12-15 华能伊敏煤电有限责任公司 一种脱硝喷氨空气预热装置

Also Published As

Publication number Publication date
CN111189062A (zh) 2020-05-22
CN111189062B (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2021174785A1 (zh) 一种监测脱硝氨逃逸对下游回转式空气预热器影响的方法
CN206531693U (zh) 一种矩阵式烟气取样装置
CN106644612B (zh) 锅炉水冷壁近壁区烟气分组在线监测系统
CN108333004B (zh) 一种应用于氨逃逸检测的烟气抽取系统及烟气抽取方法
CN108303293A (zh) 一种燃煤锅炉烟气中三氧化硫的采样和检测系统及方法
CN110030573A (zh) 一种防止回转式空气预热器积灰沾污的系统
CN110068024A (zh) 一种防止空气预热器堵塞的清洗系统
CN207964391U (zh) 一种烟气取样装置
KR102402427B1 (ko) 발전 플랜트용 질소산화물 및 황산화물 측정장치
CN207866584U (zh) 一种燃煤锅炉烟气中三氧化硫的采样系统
CN206177648U (zh) 监测SCR入口NOx浓度的树形多点混合取样测量系统
CN208091786U (zh) 一种应用于氨逃逸检测的烟气抽取系统
CN209166926U (zh) 环保脱硝出口cems网格取样及自动吹扫装置
CN109224854B (zh) 烟气脱硝网格法轮换取样氨与氮氧化物联合监测装置
CN109724104B (zh) 一种空气预热器防堵灰风量调控方法及运行监测装置
CN110243557A (zh) 管道检测系统、锅炉组件以及管道检测方法
CN112834705B (zh) 一种煤粉锅炉炉膛及其气体在线监测预警系统
CN206891803U (zh) 烟气三氧化硫采样枪
CN112697212B (zh) 基于全/静压取样管互换和软测量技术的二次风测量装置
CN213986362U (zh) 一种锅炉炉膛烟气监测系统
CN211042859U (zh) 一种脱硝反应器后倒梯形烟道内烟气网格取样监测装置
CN113251434A (zh) 一种亚临界锅炉多目标协同优化空预器防堵系统
CN219065412U (zh) 一种抽气型反吹式氧化锆测氧装置
CN112379035A (zh) 一种在线评估scr脱硝装置催化剂性能的系统及方法
CN213181246U (zh) 一种烟气轮巡监测管道装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922646

Country of ref document: EP

Kind code of ref document: A1