WO2021172754A1 - Nanomembrane having uniform basis weight, and production method therefor - Google Patents

Nanomembrane having uniform basis weight, and production method therefor Download PDF

Info

Publication number
WO2021172754A1
WO2021172754A1 PCT/KR2021/000521 KR2021000521W WO2021172754A1 WO 2021172754 A1 WO2021172754 A1 WO 2021172754A1 KR 2021000521 W KR2021000521 W KR 2021000521W WO 2021172754 A1 WO2021172754 A1 WO 2021172754A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
spinning solution
spinning
electrospinning
polymer
Prior art date
Application number
PCT/KR2021/000521
Other languages
French (fr)
Korean (ko)
Inventor
이충원
Original Assignee
이충원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이충원 filed Critical 이충원
Publication of WO2021172754A1 publication Critical patent/WO2021172754A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid

Definitions

  • the present invention relates to a nanomembrane, and more particularly, to a nanomembrane having a uniform basis weight and improved uniformity by using a nozzle block in which a plurality of nozzle plates and nozzle tubes are arranged, and a method for manufacturing the same.
  • the method of forming the inorganic film thickened on the resin base material is mentioned.
  • defects such as cracks are likely to occur in the inorganic film, and sufficient gas barrier properties cannot be obtained. Therefore, in order to prevent the occurrence of cracks in the thickened inorganic film, a gas barrier film formed by using an organic film as an adhesive layer, specifically, a gas barrier film formed by alternately laminating units including an inorganic film and an organic film on a resin substrate A film is proposed.
  • An object of the present invention is to provide a nanomembrane having a uniform basis weight and improved uniformity by using a nozzle block in which a plurality of nozzle plates and nozzle tubes are arranged in order to solve the problems of the prior art, and a method for manufacturing the same do it with
  • a method of manufacturing a nano-membrane comprises: supplying a spinning solution obtained by dissolving a polymer in an organic solvent to a spinning solution main tank of an electrospinning apparatus; The spinning liquid supplied to the spinning liquid main tank is quantitatively supplied into a plurality of nozzles located in the nozzle block through a metering pump; And each spinning liquid supplied from each nozzle is spun through the nozzle on a collector spaced apart from the nozzle at a predetermined distance to form a nanofiber layer, wherein the nozzle block has a structure in which a plurality of nozzle plates and nozzle tubes are arranged. and a plurality of nozzles located on the nozzle plate and the nozzle tube are movable up, down, left and right.
  • the nozzle block may have a structure in which two nozzle plates and three nozzle tubes are alternately arranged.
  • the plurality of nozzles disposed on the nozzle plate and the nozzle tube may have the same or different diameters.
  • the electrospinning device collects the spinning solution that overflowed without being spun from the nozzle in the overflow spinning solution storage tank and transfers the moisture contained in the solvent in the spinning solution to the receiving tank while controlling the vacuum and temperature and stirring. It may include a moisture removal device.
  • the nozzle plate and the nozzle pipe each have a metering pump and a control valve, and the spinning liquid supplied to each of the nozzle plate and the nozzle pipe may be the same or different from each other.
  • the polymer is polylactic acid (PLA), polycarbonate (PC), polyvinylidene fluoride (PVDF), polypropylene (PP), polyethylene terephthalate (PET), polyethersulfone (PES), polyamide, polyvinyl acetate , polymethyl methacrylate, polyacrylonitrile (PAN), polyurethane (PUR), polybutylene terephthalate (PBT), polyvinylbutylral, polyvinyl chloride, polyethyleneimine, polyvinyl acetate (PVAc), polyethylene It may be one or two or more selected from the group consisting of naphthalate (PEN), polyvinyl alcohol (PVA), polyethyleneimide (PEI), polycaprolactone (PCL), and polylactic acid glyceryl acid (PLGA).
  • PPA polylactic acid
  • PC polycarbonate
  • PVDF polyvinylidene fluoride
  • PP polypropylene
  • PET polyethylene terephthalate
  • PES
  • the organic solvent is methylene chloride, phenol, formic acid, sulfuric acid, m-cresol, tifluoroacetandhydride/dichloromethane, water, N-methylmorpholine N-oxide, chloroform, tetrahydrofuran, methyl Isobutyl ketone, methyl ethyl ketone, m-butyl alcohol, isobutyl alcohol, isopropyl alcohol, methyl alcohol, ethanol, hexane, tetrachloroethylene, acetone, propylene glycol, diethylene glycol, ethylene glycol, trichloroethylene, di Chloromethane, toluene, xylene, cyclohexanone, cyclohexane, n-butyl acetate, ethyl acetate, butyl cellosalb, 2-ethoxyethanol acetate, 2-ethoxyethanol, dimethylformamide and dimethylacetamide It
  • the nanomembrane according to an embodiment of the present invention is manufactured by the above manufacturing method, and may have a thickness of 0.1 to 20 ⁇ m and a basis weight of 1 to 10 g/m 2 .
  • the method of manufacturing a nanomembrane according to an embodiment of the present invention can uniformly control the basis weight of the nanofiber layer by using a nozzle block in which a plurality of nozzle plates and nozzle tubes are arranged.
  • the nanofiber layer can be prepared by electrospinning, the electrospinning device according to the present invention can supply and recover each polymer solution uniformly, can be reused after automatic recalibration, and can continuously supply polymer
  • FIG. 1 is a view schematically showing an electrospinning apparatus according to an embodiment of the present invention.
  • Figure 2 is a view schematically showing the nozzle plate and the nozzle tube of the electrospinning apparatus according to an embodiment of the present invention.
  • Figure 3 is a view schematically showing a water removal device of the electrospinning apparatus according to an embodiment of the present invention.
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • the singular expression includes the plural expression unless the context clearly dictates otherwise.
  • “under” another part this includes not only cases where it is “directly under” another part, but also cases where another part is in between.
  • “on” may include the case of being disposed not only on the upper part but also on the lower part.
  • the nanomembrane according to an embodiment may include a nanofiber layer formed by electrospinning a spinning solution.
  • the nanofiber layer according to the present invention is characterized in that it is formed by electrospinning a spinning solution on the collector.
  • the nanofiber layer may have a structure in which the first nanofiber layer and the second nanofiber layer are laminated, and the fiber diameters of the first nanofiber layer and the second nanofiber layer may be the same or different from each other.
  • the polymers forming the first nanofiber layer and the second nanofiber layer may be the same as or different from each other.
  • the fiber diameters of the first nanofiber layer and the second nanofiber layer are different from each other.
  • the fiber diameter of the first nanofiber layer may be 80 to 120nm
  • the fiber diameter of the second nanofiber layer may be 250 to 500nm.
  • the thickness of the nanofiber layer is preferably 0.1 to 20 ⁇ m, and the basis weight is preferably 0.1 to 10 g/m 2 .
  • the thickness of the nanofiber layer is less than 0.1 ⁇ m, it is difficult to peel from the support, and when it exceeds 20 ⁇ m, there is a problem of poor processability and economical efficiency, and when the basis weight of the nanofiber layer is less than 0.1 g/m 2 , the filtration efficiency is reduced, 10 g If /m 2 is exceeded, a problem of poor processability and economic feasibility occurs.
  • the preparation of the nanofiber layer as described above can be achieved by using an electrospinning device.
  • electrospinning uses a high voltage applied to a polymer spinning solution to eject fine fibers. That is, it is a method of obtaining a nanofiber in the form of a nonwoven fabric by instantaneously spinning into a fiber form using a polymer in a low viscosity state by electrostatic force. Electrospinning has the characteristic of making fibers having a diameter of nanometers beyond micrometers. In the case of nanofibers, since they have a larger surface area than conventional fibers, there is an advantage in that filtration efficiency can be increased when using the nanofibers as a membrane.
  • Electrospinning is classified into bottom-up electrospinning and top-down electrospinning.
  • the bottom-up electrospinning uses a bottom-up electrospinning device.
  • the spinning nozzle is located at the bottom, and the collector is located at the top spaced apart from the nozzle.
  • the polymer spinning solution is electrospun from the spinning nozzle at the bottom to form nanofibers on the collector at the top.
  • the bottom-up electrospinning apparatus there is an advantage in that it is possible to produce high-quality nanofibers by effectively preventing the droplet phenomenon.
  • all of the polymer spinning solution is not nanofiberized, and there are problems such as the remaining spinning solution flowing down the nozzle wall.
  • the top-down electrospinning uses a top-down electrospinning device, and the top-down electrospinning device has a spinning nozzle located at an upper end, and a collector is located at a lower end spaced apart from the nozzle.
  • the polymer spinning solution is electrospun from the spinning nozzle at the top to form nanofibers on the collector at the bottom.
  • all of the polymer spinning solution to be spun into nanofibers has the advantage of high productivity.
  • the electrospinning apparatus of the present invention is a spinning liquid main tank filled with a spinning liquid therein, a metering pump for quantitative supply of a polymer spinning liquid filled in the spinning liquid main tank, and a polymer spinning liquid in the spinning liquid main tank, , a plurality of nozzles in the form of pins are arranged, and a nozzle plate including a recovery device for recovering the solution remaining after spinning and a nozzle block in which a plurality of nozzle tubes are arranged, and nanofibers spun by being located at the lower end or upper end of the nozzle It is configured to include a block accommodating therein a collector spaced apart from the nozzle and a voltage generating device for generating a voltage in the collector, and a case composed of a conductor or a non-conductor in the block in order to integrate them.
  • the electrospinning device uses two main tanks for spinning solution.
  • it is also possible to use one main tank for spinning solution divide the inner space into two compartments, and then fill each divided space with two different types of spinning solution, respectively.
  • the inside of the spinning liquid main tank may be divided into three or more spaces, and three or more spinning liquid main tanks may be provided to provide each polymer solution.
  • the electrospinning device is continuously quantitatively supplied to a plurality of nozzles to which a high voltage is applied through a precision metering pump in which the spinning liquid filled in the spinning liquid main tank in the block is supplied to the nozzles.
  • the spinning solution of the polymer to be used is spun and focused on a collector to which a high voltage is applied through a nozzle to prepare a nanofiber layer.
  • the spinning liquid supplied to each of the spinning liquid main tank is continuously quantitatively supplied into a plurality of nozzles located in the nozzle block through a precision metering pump.
  • Each of the spinning liquid supplied from the respective nozzles is accumulated on the support while being spun and focused on the collector to which a high voltage is applied through the nozzle.
  • the nozzle block has a structure in which a plurality of nozzle plates and nozzle tubes are arranged, and the nozzle plates and nozzle tubes are movable up, down, left and right, and can be operated individually.
  • the nozzle block may have a structure in which two nozzle plates and three nozzle tubes are alternately arranged as shown in FIG. 1 , but is not limited thereto.
  • the supply of the spinning solution to the nozzle plate and the nozzle tube can be controlled by the micro pressure formed by using a precision metering pump to control the supply and spinning of the solution.
  • the nozzles installed on the nozzle plate and the nozzle tube may have different diameters, the nozzle spacing may be adjusted, and the amount of radiation may be changed.
  • the nozzle block may have a shape in which the diameter and spacing of the nozzles are gradually increased in the moving direction of the long sheet with respect to the collector.
  • the plurality of nozzle tubes and the nozzle plate each have a metering pump and a control valve, and the spinning liquid supplied to each nozzle plate and the nozzle tube may be the same or different from each other.
  • the spinning liquid supplied to each nozzle plate and the nozzle tube may be the same or different from each other.
  • two or more different polymer spinning solutions may be spun within one nozzle plate (or nozzle tube), and different types of polymer spinning solutions may be spun for each nozzle plate (or nozzle pipe). .
  • a voltage of 1 kV or more, more preferably 70 kV or more, generated by a voltage generator is applied to the nozzle block and the collector.
  • a voltage of 1 kV or more, more preferably 70 kV or more, generated by a voltage generator is applied to the nozzle block and the collector.
  • the front end of the electrospinning device is provided with a supply roller (Unwinder) for supplying a long sheet on which a polymer spinning solution is spun from a block to form a laminated nanofiber, and a long sheet on which a nanofiber is laminated is provided at the rear end. It is provided with a winding roller (Rewinder) for.
  • a supply roller Unwinder
  • Rewinder winding roller
  • the long sheet on which the nanofibers are laminated is preferably a release paper film.
  • the long sheet is provided for preventing sagging and transporting the nanofibers.
  • the long sheet is wound on one side and the other side to a supply roller provided at the front end of the electrospinning device and a winding roller provided at the rear end.
  • auxiliary belts are respectively provided between the collector and the elongated sheet, and the elongated sheet on which the nanofibers are laminated by being accumulated in each collector through each auxiliary belt is transported in the horizontal direction. That is, the auxiliary belt rotates in synchronization with the feed speed of the long sheet, and has a roller for the auxiliary belt for driving the auxiliary belt.
  • the roller for the auxiliary belt is an automatic roller having extremely low frictional force of two or more. Since the auxiliary belt is provided between the collector and the long sheet, the long sheet is smoothly transferred without being pulled by the collector to which a high voltage is applied.
  • the form of the wire belt which is an auxiliary belt, is preferably a seamless structure for a membrane and a liquid filter, and a seamless structure for a general filter.
  • the spinning solution filled in the spinning solution main tank in the block of the electrospinning device is spun onto the long sheet located on the collector through the nozzle, and the spinning solution spun on the long sheet is accumulated.
  • the auxiliary belt is driven by the rotation of the auxiliary belt rollers provided on both sides of the collector, and the long sheet is transferred while being positioned in the block at the rear end of the electrospinning device to repeatedly perform the above process.
  • the nozzle block is composed of a plurality of nozzles arranged upward or downward from the discharge port for the spinning solution, a plate or tube body in which the nozzles are arranged in a line, a main tank for spinning solution, and a pipe for spinning solution.
  • the spinning solution main tank connected to the spinning solution main tank to receive and store the spinning solution supplies the spinning solution to the nozzle through the spinning solution distribution pipe by the precision pump with the discharge amount of the solution, so that spinning proceeds.
  • the plate body or pipe body comprising a plurality of nozzles in a row receives the same spinning solution from the spinning solution storage tank, but a plurality of spinning solution main tanks are provided and each plate or pipe body is supplied with different types of polymers. It is also possible that different types of spinning solutions are supplied and spun.
  • the nozzles can have different diameters, the nozzle spacing can be adjusted, and the amount of radiation can be changed, and the diameter of the nanofiber stacking can also be adjusted for each layer.
  • the solution that is not nanofiberized and overflowed is moved to the overflow solution storage tank.
  • the overflow solution storage tank is connected to the spinning solution main tank, so the overflow solution can be reused for spinning.
  • the solution overflowed without spinning contains moisture when in contact with air, and if the moisture content in the solution increases by a certain ratio (2.5% or more), it affects product quality, such as causing pinholes during spinning. Therefore, when the solution overflowed without spinning is stored, it is necessary to maintain the moisture content below a certain ratio.
  • the electrospinning device of the present invention may include a moisture removal device to maintain a moisture content suitable for electrospinning.
  • This water removal device collects the overflowed solution (recovery solution) that cannot be nanofibrillated in a water removal pressure tank and separates the solvent containing water in the solution through vacuum, temperature control, and stirring process in a separate receiving tank (solvent condensation tank) It is structured to receive At this time, the solvent containing water has a solvent ratio of about 60 to 75%, and can be reused through a reprocessing process through a solvent condensation tank.
  • the water removal device is connected to the general solution supply line control device, and the recovered solution maintains a moisture content suitable for electrospinning through the water removal pressure tank, and then goes through the calibration tank and then transferred to the solution service tank. , which can be reused for radiation.
  • Service tank ⁇ pressurized tank ⁇ solution supply pipe ⁇ nozzle plate or nozzle pipe ⁇ (recovery tank) ⁇ water removal pressure tank ⁇ calibration tank ⁇ service tank
  • the rear end of the electrospinning apparatus of the present invention may include a plurality of multi-stage heating rolls having a structure capable of temperature control and compression for the purpose of removing residual solvent remaining in the fabric and the collected nanofibers when passing through the electrospinning section. have.
  • the fabric and nanofibers After selectively passing through a plurality of multi-stage heating rolls, the fabric and nanofibers pass through a physical surface treatment (UV, laser, plasma irradiation, etc.) section again to modify the surface of the nanofiber and It is possible to improve the adhesion between the fibers.
  • a physical surface treatment UV, laser, plasma irradiation, etc.
  • a laminating device is installed at the rear end of the electrospinning device of the present invention.
  • the laminating device applies heat and pressure, and through this, nanofibers and nanofibers, nanofibers and nonwoven fabrics or other fabrics are adhered, and then wound on a winding roller to prepare a nanofiber layer.
  • the electrospinning device can increase the collection area to make the integration density of the nanofibers uniform, and effectively prevent the droplet phenomenon to improve the quality of the nanofiber, and the fiber formation effect by electric force is increased to increase the nanofiber Fibers can be mass-produced.
  • the material and the electrospinning conditions can be adjusted differently in electrospinning in a block provided with a nozzle composed of a plurality of pins, the width and thickness of the long sheet can be freely changed and adjusted.
  • the electrospinning apparatus of the present invention may include a constant temperature and humidity constant.
  • the thermo-hygrostat adjusts the temperature and humidity during the electrospinning process, operates to change the size of the fiber diameter at the same time, and removes and treats the solvent generated during the process and can be reused.
  • the electrospinning apparatus of the present invention may include a temperature control control device for adjusting the viscosity with a temperature control control device in order to maintain the fiber viscosity suitable for electrospinning.
  • both or any one of a heating device capable of maintaining a low viscosity of a high viscosity polymer spinning solution reused through overflow and a cooling device capable of maintaining a high viscosity of a relatively low viscosity polymer spinning solution can be provided.
  • the temperature in the electrospinning region changes the surface tension of the spinning solution by changing the viscosity of the spinning solution, so the diameter of the spun nanofiber will affect
  • nanofibers having a relatively thin fiber diameter are made, and when the viscosity of the solution is high because the temperature is relatively low, nanofibers having a relatively thick fiber diameter are made.
  • the concentration measuring device for measuring the concentration has a contact type and a non-contact type that directly contact the solution.
  • a contact type a capillary type concentration measuring device, a disk (DISC) type concentration measuring device, etc. can be used.
  • a density measuring device or a density measuring device using infrared rays may be used.
  • the heating device of the present invention may be composed of an electric heater, a hot water circulation device or a hot air circulation device, and in addition, devices capable of increasing the temperature in the same range as the above devices may be borrowed.
  • an electric heater may be used in the form of a hot wire, and a coil-type hot wire may be mounted inside the plate or tube body of the nozzle block, which is also deformable in the form of a jacket.
  • a configuration of a linear hot wire and a U-shaped pipe it is possible to have a configuration of a linear hot wire and a U-shaped pipe.
  • the heating device as described above may be provided in any one or more of a nozzle block for spinning a polymer spinning solution, a tank for storing a polymer spinning solution, and an overflow system.
  • cooling means including a chilling device may be used, and a means for maintaining a certain viscosity of the polymer spinning solution is generally applicable.
  • the cooling device may be provided in any one or more of the nozzle block, the tank, and the overflow system in the same way as the heating device, and is used to maintain a certain viscosity of the polymer spinning solution.
  • the viscosity of the polymer spinning solution of the present invention is preferably 1,000 to 5,000 cps, more preferably 1,000 to 3,000 cps.
  • the viscosity is 1,000 cps or less, the quality of the nanofibers electrospun and laminated is poor, and when the viscosity is 3,000 cps or more, the discharge of the polymer spinning solution from the nozzle during electrospinning is not easy, and the production speed is slowed down.
  • the viscosity of the polymer spinning solution is constant as the electrospinning progresses, so the spinning efficiency is excellent during electrospinning, and at the same time, the concentration of the polymer spinning solution increases, and the amount of solids excluding the solvent among the nanofibers accumulated in the collector increases. This has the effect of increasing productivity.
  • the amount of residual solvent in the nanofibers using electrospinning is less than in the case of using conventional electrospinning, so that nanofibers of excellent quality can be manufactured.
  • the temperature control control device of the present invention is a manual type that allows the operator to control the viscosity of the polymer spinning solution through the temperature control of the nozzle block or the spinning solution main tank by measuring the concentration of the intermediate tank offline, and at the same time, It includes an automatic type that can adjust the temperature of the solution according to the concentration measurement through an online automatic control system.
  • the temperature for performing electrospinning is 20 to 60°C.
  • the temperature for electrospinning is raised to 60° C., the amount of polymer solids in the polymer spinning solution can be increased, and thus productivity can be increased.
  • the electrospinning condition in the present invention is preferably a humidity of 40% or more.
  • polylactic acid PLA
  • PC polycarbonate
  • PVDF polyvinylidene fluoride
  • PP polypropylene
  • PET polyethylene terephthalate
  • PES polyether Sulfone
  • polyamide polyvinyl acetate, polymethyl methacrylate, polyacrylonitrile (PAN), polyurethane (PUR), polybutylene terephthalate (PBT), polyvinyl butyral, polyvinyl chloride
  • Examples include polyethyleneimine, polyvinyl acetate (PVAc), polyethylene naphthalate (PEN), polyvinyl alcohol (PVA), polyethyleneimide (PEI), polycaprolactone (PCL), and polylactic acid glycerol (PLGA).
  • PVAc polyethylene naphthalate
  • PEN polyvinyl alcohol
  • PVA polyethyleneimide
  • PCL polycaprolactone
  • PLGA polylactic acid glycerol
  • biodegradable polymer As the material of the polymer, it is preferable to use a biodegradable polymer as the material of the polymer.
  • the biodegradable polymer used in the present invention is PHB (poly-hydroxy butyrate), PHBV (3-hydroxy butyrate-co-3-hydroxy valerate), PGA [(poly)glycolic acid], PLA [(poly) lactic acid], PLGA (polylactic-co-glycolic acid), PCL [poly(e-caprolactone)], polydioxanone, polyorthoester, polyanhydride, ⁇ -PGA, gelatin ), silk, collagen, cellulose, alginic acid and hyaluronic acid may be selected from the group consisting of.
  • the polymer spinning solution is a solution in which the polymer, which is a synthetic resin material capable of electrospinning, is dissolved in a suitable solvent
  • the type of solvent is not limited as long as it can dissolve the polymer, for example, phenol, formic acid, sulfuric acid, m-cresol, tifluoroacetandhydride/dichloromethane, water, N-methylmorpholine N-oxide, chloroform, tetrahydrofuran and aliphatic ketone groups methylisobutylketone, methylethylketone, aliphatic hydroxyl group group m-butyl alcohol, isobutyl alcohol, isopropyl alcohol, methyl alcohol, ethanol, aliphatic compounds hexane, tetrachloroethylene, acetone, glycol group, propylene glycol, diethylene glycol, ethylene glycol, halogen compound group, trichloro Ethylene, dichloromethan
  • ком ⁇ онентs can be used as amides, and a plurality of types of solvents can be mixed and used. It is preferable to contain additives, such as an electroconductivity improving agent, in a spinning liquid.
  • a preferred solvent is dimethylacetamide.
  • the additive is preferably tetrabutylammonium perchlorate (TBAP).
  • the content of the polymer in the polymer spinning solution is preferably 10 to 35% by weight. If the content of the polymer is less than 10% by weight, the density of the nanofiber layer may not be uniform, and if it is 35% by weight, there is a problem in that the radioactivity is lowered.
  • a method of manufacturing a nano-membrane comprises: supplying a spinning solution obtained by dissolving a polymer in an organic solvent to a spinning solution main tank of an electrospinning apparatus; The spinning liquid supplied to the spinning liquid main tank is quantitatively supplied into a plurality of nozzles located in the nozzle block through a metering pump; and each spinning solution supplied from each nozzle is spun on a collector spaced apart from the nozzle at a predetermined distance through the nozzle to form a nanofiber layer.
  • the nozzle block has a structure in which a plurality of nozzle plates and nozzle tubes are arranged, and the plurality of nozzles located on the nozzle plate and the nozzle tube are movable up, down, left and right.
  • a polymer spinning solution in which a polymer is dissolved in an organic solvent is supplied to a spinning solution main tank connected to a unit of an electrospinning device, respectively, and the polymer spinning solution supplied to the spinning solution main tank is a nozzle to which a high voltage is applied through a metering pump It is continuously metered into multiple nozzles of the block.
  • the polymer spinning solution supplied from each nozzle is electrospun and focused on a collector to which a high voltage is applied through the nozzle to form a laminated nanofiber layer.
  • the electrospinning may be performed under a voltage of 40 to 60 kV, a fluid velocity of 0.1 to 5 ml/h, a spinning distance of 3 to 50 cm, room temperature conditions, and relative humidity of 30 to 50%.
  • the content of the polymer in the spinning solution may be 10 to 35% by weight.
  • the long sheet on which the nanofiber layer is laminated in each unit of the electrospinning device is transported by the rotation of the supply roller operated by the driving of the motor and the auxiliary transport device driven by the rotation of the supply roller, and the above process is repeated. While the polymer nanofiber layer is continuously electrospun and laminated on the long sheet.
  • the thickness of the nanofiber layer prepared as described above is preferably 0.1 to 20 ⁇ m, and the basis weight is preferably 1 to 10 g/m 2 .
  • the thickness of the nanofiber layer is less than 0.1 ⁇ m, it is difficult to peel from the support, and when it exceeds 20 ⁇ m, there is a problem of poor processability and economical efficiency, and when the basis weight of the nanofiber layer is less than 1 g/m 2 , the filtration efficiency is reduced, 10 g / If it exceeds m 2 , there is a problem of poor processability and economical efficiency.
  • two or more different polymer spinning solutions may be spun within one nozzle plate (or nozzle tube), and different types of polymer spinning solutions may be spun for each nozzle plate (or nozzle pipe).
  • the manufacturing method of the nano-filter comprises the steps of dissolving a polymer in an organic solvent to prepare first and second spinning solutions; forming a first nanofiber layer by electrospinning the first spinning solution using an electrospinning device; manufacturing a nanofilter by electrospinning the second spinning solution on the first nanofiber layer to form a second nanofiber layer; and removing the residual solvent of the nano-filter by passing the nano-filter through a multi-stage heating roll, and adhering the first nano-fiber layer and the second nano-fiber layer.
  • nanofiber layers having different fiber diameters can be formed by adjusting the distance between the nozzle and the collector.
  • the type of spinning solution and the applied voltage strength are the same, it is possible to form two nanofiber layers with different fiber diameters according to the principle that the shorter the spinning distance, the larger the fiber diameter, and the longer the spinning distance, the smaller the fiber diameter. do.
  • the concentration and viscosity of the spinning solution adjusting the moving speed of the long sheet, or using different nozzles, it is also possible to make a difference in fiber diameter.
  • a spinning solution obtained by dissolving 15 wt% of polylactic acid (PLA) in methylene chloride was prepared and put into a spinning solution main tank connected to an electrospinning device.
  • the nozzle block of the electrospinning apparatus used a structure in which two nozzle plates and three nozzle tubes are alternately arranged.
  • electrospinning was performed under the conditions of 15 cm distance between electrode and collector, applied voltage 40 kV, spinning solution flow rate of 0.1 mL/h, and room temperature and humidity of 40% to form the first PLA nanofiber layer with an average fiber diameter of 300 nm. formed.
  • electrospinning was performed under the conditions of 40 cm distance between the electrode and the collector, 40 kV of applied voltage, 0.1 mL/h of spinning solution flow rate, and 40% of room temperature and humidity, and the average diameter of the fibers on the first PLA nanofiber layer.
  • a nano-membrane was prepared by forming a second PLA nanofiber layer of 150 nm.
  • the prepared nano-membrane was passed through a multi-stage heating roll to remove the residual solvent of the nano-membrane, and at the same time, the first PLA nano-fiber layer and the second PLA nano-fiber layer were attached to each other to finally prepare a nano-membrane.
  • a first spinning solution in which polylactic acid (PLA) was dissolved in methylene chloride at 15% by weight and a second spinning solution in which polylactate-co-glycolate (PLGA) was dissolved in methylene chloride by 15% by weight were prepared.
  • the nozzle block of the electrospinning apparatus used a structure in which two nozzle plates and three nozzle tubes were alternately arranged, and the first spinning liquid was put into the spinning liquid tank connected to the nozzle plate, and the nozzle tube was connected The second spinning solution was put into the spinning solution tank.
  • a nanofiber layer was formed.
  • the distance between the electrode and the collector is 40 cm
  • the applied voltage is 40 kV
  • the spinning solution flow rate is 0.1 mL/h
  • the electrospinning is performed under the conditions of 40% room temperature and humidity.
  • a nanofiber layer was formed to prepare a nanomembrane.
  • the prepared nano-membrane was passed through a multi-stage heating roll to remove the residual solvent of the nano-membrane, and at the same time, the PLA nano-fiber layer and the PLGA nano-fiber layer were adhered to prepare a final nano-membrane.
  • a spinning solution obtained by dissolving 15 wt% of polylactic acid (PLA) in methylene chloride was prepared and put into a spinning solution main tank connected to electrospinning.
  • the nozzle block of the electrospinning apparatus used a structure in which a plurality of nozzle plates were arranged. Electrospinning was performed under conditions of 15 cm distance between the electrode and the collector, an applied voltage of 40 kV, a spinning solution flow rate of 0.1 mL/h, and room temperature and humidity of 40% to prepare a nanomembrane having an average fiber diameter of 300 nm.
  • a nanomembrane having an average fiber diameter of 150 nm was prepared in the same manner as in Comparative Example 1, except that the distance between the electrode and the collector was adjusted to 40 cm.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 basis weight standard deviation 0.12 0.27 0.74 0.89
  • the nanomembrane prepared according to the example of the present invention had a uniform basis weight compared to the comparative example, and thus the uniformity was improved.

Abstract

The present invention relates to a nanomembrane produced using electrospinning, and a production method therefor, and more specifically, to a nanomembrane and a production method therefor, the nanomembrane having improved evenness by having a uniform basis weight, by means of using a nozzle block having a plurality of nozzle plates and nozzle tubes arranged.

Description

평량이 균일한 나노 멤브레인 및 이의 제조방법Nanomembrane with uniform basis weight and manufacturing method thereof
본 출원은 2020.02.25.자 한국특허출원 제10-2020-0023089호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2020-0023089 dated February 25, 2020, and all contents disclosed in the documents of the Korean patent application are incorporated as a part of this specification.
본 발명은 나노 멤브레인에 관한 것으로, 구체적으로 복수의 노즐판 및 노즐관들이 배열된 노즐블록을 이용함으로써, 평량이 균일하여 균제도가 개선된 나노 멤브레인 및 이의 제조방법에 관한 것이다.The present invention relates to a nanomembrane, and more particularly, to a nanomembrane having a uniform basis weight and improved uniformity by using a nozzle block in which a plurality of nozzle plates and nozzle tubes are arranged, and a method for manufacturing the same.
종래, 식품, 포장 재료, 의약품 등의 분야에서, 수증기나 산소 등의 가스의 투과를 방지하기 위해서, 수지 기재의 표면에 금속이나 금속 산화물의 증착막 등의 무기막을 형성한 비교적 간이한 구조를 갖는 가스 배리어성 필름이 사용되어 왔다.Conventionally, in the fields of food, packaging materials, pharmaceuticals, etc., in order to prevent the permeation of gas such as water vapor or oxygen, a gas having a relatively simple structure in which an inorganic film such as a vapor deposition film of metal or metal oxide is formed on the surface of a resin substrate. Barrier films have been used.
최근 들어, 이러한 수증기나 산소 등의 투과를 방지하는 가스 배리어성 필름이, 액정 표시 소자(LCD), 태양전지(PV), 유기 일렉트로루미네센스(EL) 등의 전자 디바이스의 분야에도 이용되고 있다. 즉, 이러한 전자 디바이스에는, 가요성과 가볍고 깨지기 어렵다는 성질을 부여하는 것이 필요하며, 이에 상기 성질을 갖는 가스 배리어성 필름이 사용되고 있다.In recent years, such a gas barrier film that prevents the permeation of water vapor and oxygen is also used in the field of electronic devices such as liquid crystal display elements (LCD), solar cells (PV), and organic electroluminescence (EL). . That is, it is necessary to provide such an electronic device with a property of being flexible, light and hard to break, and for this, a gas barrier film having the property is used.
나노섬유(nanofibers)를 기반으로 하는 전자소자는 아직 개념적인 단계이지만, 넓은 표면적, 표면처리의 다양성, 복합재료의 구성의 용이성과 또한 접힘이 가능한 전자 재료를 만들기 위해서는 필름 형태로는 한계가 있는 유연성을 극복하기 위해서는 반드시 섬유상의 구조를 만들어서 유연성을 부여할 필요가 있다. 따라서 유연성이 우수한 나노섬유로 구성된 투명한 매트의 제조는 전자성능을 부여하기 용이하고 또한 다양한 장점으로 인하여 많은 전자소자 시장을 대체할 가능성이 높다. 가능한 섬유 기반의 전자소자로서 텍스타일 태양전지, 유연성 있는 트랜지스터, 유연성이 있는 디스플레이, 외부 자극형 약물전달, 바이오센서 및 가스센서, 광조절 기능성 텍스타일, 기능성 의류 및 방위산업용 기능성 제품 등을 예로 들 수 있다.Although electronic devices based on nanofibers are still at a conceptual stage, they have a large surface area, variety of surface treatments, ease of construction of composite materials, and flexibility with limitations in film form to create foldable electronic materials. In order to overcome this, it is necessary to provide flexibility by making a fibrous structure. Therefore, the production of a transparent mat composed of nanofibers with excellent flexibility is easy to impart electronic performance and has a high possibility of replacing many electronic device markets due to various advantages. Examples of possible fiber-based electronic devices include textile solar cells, flexible transistors, flexible displays, external stimulation-type drug delivery, biosensors and gas sensors, light control functional textiles, functional clothing and functional products for the defense industry. .
전자 디바이스에 적용 가능한 가스 배리어성 필름을 얻기 위한 방책으로서는, 수지 기재 위에 후막화한 무기막을 형성하는 방법을 들 수 있다. 그러나, 단순히 무기막을 후막화하기만 해서는 상기 무기막에 크랙 등의 결함이 발생하기 쉬워져서, 충분한 가스 배리어성을 얻을 수 없다. 따라서, 후막화한 무기막의 크랙 발생을 방지하기 위해서, 유기막을 접착층으로 하여 형성한 가스 배리어성 필름, 구체적으로는, 무기막과 유기막을 포함하는 유닛을 수지 기재 위에 교대로 적층하여 형성된 가스 배리어성 필름이 제안되어 있다.As a measure for obtaining the gas barrier film applicable to an electronic device, the method of forming the inorganic film thickened on the resin base material is mentioned. However, simply by thickening the inorganic film, defects such as cracks are likely to occur in the inorganic film, and sufficient gas barrier properties cannot be obtained. Therefore, in order to prevent the occurrence of cracks in the thickened inorganic film, a gas barrier film formed by using an organic film as an adhesive layer, specifically, a gas barrier film formed by alternately laminating units including an inorganic film and an organic film on a resin substrate A film is proposed.
태양전지, 터치스크린, 피부를 닮은 센서, 디스플레이, 스마트 윈도우와 같은 고성능 차세대 장치에서 기존의 소재들을 대체하는데 평면이 아닌 와이어 형태의 이상적인 새로운 종류의 섬유형태의 재료로 네트워크를 형성하고자 많은 노력들이 진행 중이지만, 투명한 나노섬유로 구성된 매트를 제조하기란 쉽지 않은 현실이다.Many efforts are being made to form a network with a new type of fiber-type material that is ideal for replacing existing materials in high-performance next-generation devices such as solar cells, touch screens, skin-like sensors, displays, and smart windows. However, the reality is that it is not easy to manufacture a mat composed of transparent nanofibers.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여, 복수의 노즐판 및 노즐관들이 배열된 노즐블록을 이용함으로써, 평량이 균일하여 균제도가 개선된 나노 멤브레인 및 이의 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a nanomembrane having a uniform basis weight and improved uniformity by using a nozzle block in which a plurality of nozzle plates and nozzle tubes are arranged in order to solve the problems of the prior art, and a method for manufacturing the same do it with
본 발명의 일 실시예에 따른 나노 멤브레인의 제조방법은 전기방사장치의 방사용액 주탱크에 유기 용제에 고분자를 용해시킨 방사용액을 공급하는 단계; 상기 방사용액 주탱크에 공급된 방사용액은 계량펌프를 통해 노즐블록에 위치한 다수의 노즐 내에 정량 공급되는 단계; 및 각 노즐로부터 공급되는 각각의 방사용액은 노즐을 통해 노즐과 일정간격 이격된 컬렉터 상에 방사되어 나노섬유층을 형성하는 단계를 포함하며, 상기 노즐블록은 복수의 노즐판 및 노즐관들이 배열된 구조이며, 상기 노즐판 및 노즐관에 위치한 다수의 노즐들은 상하좌우로 이동이 가능하다.A method of manufacturing a nano-membrane according to an embodiment of the present invention comprises: supplying a spinning solution obtained by dissolving a polymer in an organic solvent to a spinning solution main tank of an electrospinning apparatus; The spinning liquid supplied to the spinning liquid main tank is quantitatively supplied into a plurality of nozzles located in the nozzle block through a metering pump; And each spinning liquid supplied from each nozzle is spun through the nozzle on a collector spaced apart from the nozzle at a predetermined distance to form a nanofiber layer, wherein the nozzle block has a structure in which a plurality of nozzle plates and nozzle tubes are arranged. and a plurality of nozzles located on the nozzle plate and the nozzle tube are movable up, down, left and right.
이때, 상기 노즐블록은 2개의 노즐판들과 3개의 노즐관들이 교대로 배열된 구조일 수 있다.In this case, the nozzle block may have a structure in which two nozzle plates and three nozzle tubes are alternately arranged.
또, 상기 노즐판 및 노즐관에 배치되는 복수의 노즐들은 각각의 직경이 서로 동일하거나 상이할 수 있다.Also, the plurality of nozzles disposed on the nozzle plate and the nozzle tube may have the same or different diameters.
또한, 상기 전기방사장치는 상기 노즐에서 방사되지 못하고 오버플로우된 방사용액을 오버플로우 방사용액 저장탱크에 수집하여 진공과 온도 조절 및 교반을 하면서 방사용액 내의 용제에 포함된 수분을 리시브 탱크에 이송시키는 수분제거장치를 포함할 수 있다.In addition, the electrospinning device collects the spinning solution that overflowed without being spun from the nozzle in the overflow spinning solution storage tank and transfers the moisture contained in the solvent in the spinning solution to the receiving tank while controlling the vacuum and temperature and stirring. It may include a moisture removal device.
또한, 상기 노즐판 및 노즐관은 각각 계량펌프와 조절밸브를 구비하며, 상기 각 노즐판 및 노즐관에 공급되는 방사용액은 서로 동일하거나 상이할 수 있다.In addition, the nozzle plate and the nozzle pipe each have a metering pump and a control valve, and the spinning liquid supplied to each of the nozzle plate and the nozzle pipe may be the same or different from each other.
상기 고분자는 폴리유산(PLA), 폴리카보네이트(PC), 폴리비닐리덴플루오라이드(PVDF), 폴리프로필렌(PP), 폴리에틸렌텔레프탈레이트(PET), 폴리에테르설폰(PES), 폴리아미드, 폴리비닐아세테이트, 폴리메틸메타아크릴레이트, 폴리아크릴로니트릴(PAN), 폴리우레탄(PUR), 폴리부틸렌텔레프탈레이트(PBT), 폴리비닐부틸랄, 폴리비닐클로라이드, 폴리에틸렌이민, 폴리초산비닐(PVAc), 폴리에틸렌나프탈레이트(PEN), 폴리비닐알콜(PVA), 폴리에틸렌이미드(PEI), 폴리카프로락톤(PCL) 및 폴리유산글리롤산(PLGA)으로 이루어진 군에서 선택된 1종 또는 2종 이상일 수 있다.The polymer is polylactic acid (PLA), polycarbonate (PC), polyvinylidene fluoride (PVDF), polypropylene (PP), polyethylene terephthalate (PET), polyethersulfone (PES), polyamide, polyvinyl acetate , polymethyl methacrylate, polyacrylonitrile (PAN), polyurethane (PUR), polybutylene terephthalate (PBT), polyvinylbutylral, polyvinyl chloride, polyethyleneimine, polyvinyl acetate (PVAc), polyethylene It may be one or two or more selected from the group consisting of naphthalate (PEN), polyvinyl alcohol (PVA), polyethyleneimide (PEI), polycaprolactone (PCL), and polylactic acid glyceryl acid (PLGA).
상기 유기 용제는 메틸렌 클로라이드, 페놀, 포름산, 황산, m-크레솔, 티플루오르아세트앤하이드라이드/다이클로로메테인, 물, N-메틸모폴린 N-옥시드, 클로로폼, 테트라히드로푸란, 메틸이소부틸케톤, 메틸에틸케톤, m-부틸알콜, 이소부틸알콜, 이소프로필알콜, 메틸알콜, 에탄올, 헥산, 테트라클로로에틸렌, 아세톤, 프로필렌글리콜, 디에틸렌글리콜, 에틸렌글리콜, 트리크롤로에틸렌, 다이클로로메테인, 톨루엔, 자일렌, 사이클로헥사논, 시클로헥산, n-부틸초산염, 초산에틸, 부틸셀로살브, 아세트산2-에톡시에탄올, 2-에톡시에탄올, 디메틸포름아미드 및 디메틸아세트아미드으로 이루어진 군에서 선택된 1종 또는 2종 이상일 수 있다.The organic solvent is methylene chloride, phenol, formic acid, sulfuric acid, m-cresol, tifluoroacetandhydride/dichloromethane, water, N-methylmorpholine N-oxide, chloroform, tetrahydrofuran, methyl Isobutyl ketone, methyl ethyl ketone, m-butyl alcohol, isobutyl alcohol, isopropyl alcohol, methyl alcohol, ethanol, hexane, tetrachloroethylene, acetone, propylene glycol, diethylene glycol, ethylene glycol, trichloroethylene, di Chloromethane, toluene, xylene, cyclohexanone, cyclohexane, n-butyl acetate, ethyl acetate, butyl cellosalb, 2-ethoxyethanol acetate, 2-ethoxyethanol, dimethylformamide and dimethylacetamide It may be one or two or more selected from the group consisting of.
아울러, 본 발명의 일 실시예에 따른 나노 멤브레인은 상기 제조방법으로 제조되며, 두께가 0.1 내지 20㎛이고, 평량이 1 내지 10g/m 2일 수 있다.In addition, the nanomembrane according to an embodiment of the present invention is manufactured by the above manufacturing method, and may have a thickness of 0.1 to 20 μm and a basis weight of 1 to 10 g/m 2 .
본 발명의 실시예에 따른 나노 멤브레인의 제조방법은 복수의 노즐판 및 노즐관들이 배열된 노즐블록을 이용함으로써, 나노섬유층의 평량을 균일하게 조절할 수 있다.The method of manufacturing a nanomembrane according to an embodiment of the present invention can uniformly control the basis weight of the nanofiber layer by using a nozzle block in which a plurality of nozzle plates and nozzle tubes are arranged.
또한, 나노섬유층은 전기방사에 의해 제조될 수 있는데, 본 발명에 따른 전기방사장치는 각각의 고분자 용액을 균일하게 공급 및 회수할 수 있으며, 자동 재보정 후 재이용할 수 있으며, 연속적으로 고분자를 공급할 수 있는 이점이 있다.In addition, the nanofiber layer can be prepared by electrospinning, the electrospinning device according to the present invention can supply and recover each polymer solution uniformly, can be reused after automatic recalibration, and can continuously supply polymer There are advantages that can be
도 1은 본 발명의 일 실시예에 따른 전기방사장치를 개략적으로 나타낸 도면이다.1 is a view schematically showing an electrospinning apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 전기방사장치의 노즐판 및 노즐관을 개략적으로 나타낸 도면이다.Figure 2 is a view schematically showing the nozzle plate and the nozzle tube of the electrospinning apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 전기방사장치의 수분제거장치를 개략적으로 나타낸 도면이다.Figure 3 is a view schematically showing a water removal device of the electrospinning apparatus according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.In describing each figure, like reference numerals have been used for like elements. In the accompanying drawings, the dimensions of the structures are enlarged than the actual size for clarity of the present invention. Terms such as first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component. The singular expression includes the plural expression unless the context clearly dictates otherwise.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부뿐 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It is to be understood that it does not preclude the possibility of the presence or addition of numbers, steps, operations, components, parts, or combinations thereof. Also, when a part of a layer, film, region, plate, etc. is said to be "on" another part, this includes not only the case where it is "directly on" another part, but also the case where there is another part in between. Conversely, when a part of a layer, film, region, plate, etc. is said to be “under” another part, this includes not only cases where it is “directly under” another part, but also cases where another part is in between. In addition, in the present application, “on” may include the case of being disposed not only on the upper part but also on the lower part.
이하, 본 발명의 실시예를 보다 상세히 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in more detail.
일 실시예에 따른 나노 멤브레인은 방사용액을 전기방사하여 형성된 나노섬유층을 포함할 수 있다.The nanomembrane according to an embodiment may include a nanofiber layer formed by electrospinning a spinning solution.
본 발명에 따른 나노섬유층은 상기 컬렉터 상에 방사용액을 전기방사하여 형성되는 것을 특징으로 한다.The nanofiber layer according to the present invention is characterized in that it is formed by electrospinning a spinning solution on the collector.
이때, 나노섬유층은 제1 나노섬유층 및 제2 나노섬유층이 적층형성된 구조일 수 있으며, 상기 제1 나노섬유층과 제2 나노섬유층의 섬유 직경은 서로 동일하거나 상이할 수 있다. 또한, 제1 나노섬유층과 제2 나노섬유층을 형성하는 고분자는 서로 동일하거나, 상이할 수 있다.In this case, the nanofiber layer may have a structure in which the first nanofiber layer and the second nanofiber layer are laminated, and the fiber diameters of the first nanofiber layer and the second nanofiber layer may be the same or different from each other. In addition, the polymers forming the first nanofiber layer and the second nanofiber layer may be the same as or different from each other.
한편, 제1 나노섬유층과 제2 나노섬유층을 형성하는 고분자가 서로 동일할 경우, 제1 나노섬유층과 제2 나노섬유층의 섬유 직경은 서로 상이한 것이 바람직하다. 여기서, 제1 나노섬유층의 섬유 직경은 80 내지 120nm 일 수 있으며, 제2 나노섬유층의 섬유 직경은 250 내지 500nm일 수 있다.On the other hand, when the polymers forming the first nanofiber layer and the second nanofiber layer are identical to each other, it is preferable that the fiber diameters of the first nanofiber layer and the second nanofiber layer are different from each other. Here, the fiber diameter of the first nanofiber layer may be 80 to 120nm, the fiber diameter of the second nanofiber layer may be 250 to 500nm.
이때, 나노섬유층의 두께는 0.1 내지 20㎛이 바람직하고, 평량은 0.1 내지 10g/m 2인 것이 바람직하다. 나노섬유층의 두께가 0.1㎛ 미만인 경우, 지지체로부터 박리하기 어려우며, 20㎛을 초과하는 경우 가공성 및 경제성이 떨어지는 문제가 있으며, 나노섬유층의 평량이 0.1g/m 2 미만인 경우 여과 효율이 저하되며, 10g/m 2 초과인 경우 가공성 및 경제성이 떨어지는 문제가 발생하게 된다.In this case, the thickness of the nanofiber layer is preferably 0.1 to 20 μm, and the basis weight is preferably 0.1 to 10 g/m 2 . When the thickness of the nanofiber layer is less than 0.1 μm, it is difficult to peel from the support, and when it exceeds 20 μm, there is a problem of poor processability and economical efficiency, and when the basis weight of the nanofiber layer is less than 0.1 g/m 2 , the filtration efficiency is reduced, 10 g If /m 2 is exceeded, a problem of poor processability and economic feasibility occurs.
본 발명에서는 상기와 같은 나노섬유층의 제조를 전기방사장치를 이용함으로써 달성할 수 있다.In the present invention, the preparation of the nanofiber layer as described above can be achieved by using an electrospinning device.
일반적으로, 전기 방사는 고분자 방사 용액에 고전압을 인가하여 미세 섬유가 분출되어 나오는 것을 이용한다. 즉, 정전력(electrostatic force)에 의해 낮은 점도 상태의 고분자를 이용하여 순간적으로 섬유 형태로 방사하여 부직포 형태의 나노섬유를 얻는 방법이다. 전기 방사는 마이크로 미터 단위를 넘어서 나노미터 단위의 직경을 가지는 섬유를 만들 수 있는 특징을 가진다. 나노섬유의 경우 기존 섬유에 비하여 큰 표면적을 가지므로 이를 멤브레인으로 이용하는 경우 여과 효율을 높일 수 있는 장점이 있다.In general, electrospinning uses a high voltage applied to a polymer spinning solution to eject fine fibers. That is, it is a method of obtaining a nanofiber in the form of a nonwoven fabric by instantaneously spinning into a fiber form using a polymer in a low viscosity state by electrostatic force. Electrospinning has the characteristic of making fibers having a diameter of nanometers beyond micrometers. In the case of nanofibers, since they have a larger surface area than conventional fibers, there is an advantage in that filtration efficiency can be increased when using the nanofibers as a membrane.
전기방사는 상향식 전기방사와 하향식 전기방사 등으로 분류된다. Electrospinning is classified into bottom-up electrospinning and top-down electrospinning.
먼저 상향식 전기방사는 상향식 전기방사장치를 이용하는데, 상향식 전기방사장치는 방사 노즐이 하단에 위치하고, 노즐과 이격된 상단에는 컬렉터가 위치한다. 하단의 방사 노즐로부터 고분자 방사 용액이 전기 방사되어 상단의 컬렉터에 나노섬유가 형성된다. 상향식 전기방사장치를 이용하는 경우, 드롭렛 현상을 효과적으로 방지하여 고품질의 나노섬유를 생산할 수 있다는 장점이 있다. 그러나, 고분자 방사 용액이 전부 나노섬유화 되지 않으며, 남은 방사용액이 노즐벽을 따라 흘러내리는 등의 문제가 존재한다.First, the bottom-up electrospinning uses a bottom-up electrospinning device. In the bottom-up electrospinning device, the spinning nozzle is located at the bottom, and the collector is located at the top spaced apart from the nozzle. The polymer spinning solution is electrospun from the spinning nozzle at the bottom to form nanofibers on the collector at the top. In the case of using the bottom-up electrospinning apparatus, there is an advantage in that it is possible to produce high-quality nanofibers by effectively preventing the droplet phenomenon. However, all of the polymer spinning solution is not nanofiberized, and there are problems such as the remaining spinning solution flowing down the nozzle wall.
한편, 하향식 전기방사는 하향식 전기방사장치를 이용하며, 하향식 전기방사장치는 방사 노즐이 상단에 위치하고, 노즐과 이격된 하단에는 컬렉터가 위치한다. 상단의 방사 노즐로부터 고분자 방사 용액이 전기방사되어 하단의 컬렉터에 나노섬유가 형성된다. 하향식 전기방사장치를 이용하는 경우 방사되는 고분자 방사 용액이 모두 나노섬유화 되어 생산성이 높은 이점이 있다.On the other hand, the top-down electrospinning uses a top-down electrospinning device, and the top-down electrospinning device has a spinning nozzle located at an upper end, and a collector is located at a lower end spaced apart from the nozzle. The polymer spinning solution is electrospun from the spinning nozzle at the top to form nanofibers on the collector at the bottom. In the case of using the top-down electrospinning device, all of the polymer spinning solution to be spun into nanofibers has the advantage of high productivity.
이하, 본 발명에 이용되는 전기방사장치를 설명한다.Hereinafter, the electrospinning apparatus used in the present invention will be described.
본 발명의 전기방사장치는 방사용액이 내부에 충진되는 방사용액 주탱크와 상기 방사용액 주탱크 내에 충진된 고분자 방사용액의 정량 공급을 위한 계량 펌프와 상기 방사용액 주탱크 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐이 다수 개 배열되며, 방사 후 남은 용액을 회수하는 회수장치를 포함하는 노즐판 및 노즐관들이 복수 개 배열된 노즐블록과 상기 노즐의 하단 또는 상단에 위치하여 방사되는 나노섬유를 집적하기 위하여 노즐에서 일정간격 이격되는 컬렉터 및 상기 컬렉터에 전압을 발생시키는 전압 발생장치를 그 내부에 수용하는 블록 및 블록 내의 전도체 또는 부전도체로 이루어져 있는 케이스를 포함하여 구성된다. 일반적으로 전기방사장치는 방사용액 주탱크를 2개를 사용하고 있다. 그러나, 방사용액 주탱크가 1개로 사용하고, 그 내부 공간을 2개의 구획으로 구획한 후, 각 구획된 공간에 서로 다른 2종의 방사용액을 각각 충진하여 사용하는 것도 가능하다. 또한, 사용되는 고분자가 3종 이상일 경우에는 방사용액 주탱크 내부가 3개 이상의 공간으로 구획되는 것도 가능하며, 방사용액 주탱크를 3개 이상으로 구비하여 각각의 고분자 용액을 구비하는 것도 가능하다.The electrospinning apparatus of the present invention is a spinning liquid main tank filled with a spinning liquid therein, a metering pump for quantitative supply of a polymer spinning liquid filled in the spinning liquid main tank, and a polymer spinning liquid in the spinning liquid main tank, , a plurality of nozzles in the form of pins are arranged, and a nozzle plate including a recovery device for recovering the solution remaining after spinning and a nozzle block in which a plurality of nozzle tubes are arranged, and nanofibers spun by being located at the lower end or upper end of the nozzle It is configured to include a block accommodating therein a collector spaced apart from the nozzle and a voltage generating device for generating a voltage in the collector, and a case composed of a conductor or a non-conductor in the block in order to integrate them. In general, the electrospinning device uses two main tanks for spinning solution. However, it is also possible to use one main tank for spinning solution, divide the inner space into two compartments, and then fill each divided space with two different types of spinning solution, respectively. In addition, when three or more polymers are used, the inside of the spinning liquid main tank may be divided into three or more spaces, and three or more spinning liquid main tanks may be provided to provide each polymer solution.
상기한 바와 같은 구조에 의하여, 상기 전기방사장치는 상기 블록내의 방사용액 주탱크에 충진되는 방사용액이 정밀 계량 펌프를 통하여 높은 전압이 부여되는 다수의 노즐 내에 연속적으로 정량 공급되고, 상기 노즐로 공급되는 고분자의 방사용액은 노즐을 통해 높은 전압이 걸려 있는 컬렉터 상에 방사 및 집속되어 나노섬유층을 제조한다.According to the structure as described above, the electrospinning device is continuously quantitatively supplied to a plurality of nozzles to which a high voltage is applied through a precision metering pump in which the spinning liquid filled in the spinning liquid main tank in the block is supplied to the nozzles. The spinning solution of the polymer to be used is spun and focused on a collector to which a high voltage is applied through a nozzle to prepare a nanofiber layer.
상기 각 방사용액 주탱크에 공급된 방사용액은 정밀 계량 펌프를 통해 노즐블록에 위치한 다수의 노즐 내에 연속적으로 정량공급된다. 상기 각 노즐로부터 공급되는 각각의 방사용액은 노즐을 통해 높은 전압이 걸려있는 컬렉터 상에 방사 및 집속되면서 지지체 상에 집적된다. The spinning liquid supplied to each of the spinning liquid main tank is continuously quantitatively supplied into a plurality of nozzles located in the nozzle block through a precision metering pump. Each of the spinning liquid supplied from the respective nozzles is accumulated on the support while being spun and focused on the collector to which a high voltage is applied through the nozzle.
이때, 노즐블록은 복수의 노즐판 및 노즐관들이 배열된 구조이며, 상기 노즐판 및 노즐관들은 상하좌우로 이동이 가능하며 개별운전이 가능하다. 구체적으로, 노즐블록은 도 1에 도시된 바와 같이 2개의 노즐판들과 3개의 노즐관들이 교대로 배열된 구조일 수 있으나, 이에 제한되는 것은 아니다.At this time, the nozzle block has a structure in which a plurality of nozzle plates and nozzle tubes are arranged, and the nozzle plates and nozzle tubes are movable up, down, left and right, and can be operated individually. Specifically, the nozzle block may have a structure in which two nozzle plates and three nozzle tubes are alternately arranged as shown in FIG. 1 , but is not limited thereto.
또한, 노즐판과 노즐관에 방사용액 공급은 정밀 계량펌프를 사용하여 형성된 미세압으로 용액의 공급 및 방사를 조절할 수 있다. 아울러, 노즐판과 노즐관에 설치하는 노즐은 각각의 직경을 달리할 수 있으며 노즐간격도 조절되며, 방사량에 변화를 줄 수 있다. 구체적으로, 노즐블록은 컬렉터를 기준으로 장척시트의 진행방향으로 노즐의 직경 및 간격이 점차적으로 증가하는 형태일 수 있다. In addition, the supply of the spinning solution to the nozzle plate and the nozzle tube can be controlled by the micro pressure formed by using a precision metering pump to control the supply and spinning of the solution. In addition, the nozzles installed on the nozzle plate and the nozzle tube may have different diameters, the nozzle spacing may be adjusted, and the amount of radiation may be changed. Specifically, the nozzle block may have a shape in which the diameter and spacing of the nozzles are gradually increased in the moving direction of the long sheet with respect to the collector.
도 2에 도시된 바와 같이, 다수 개의 노즐관 및 노즐판은 각각 계량펌프와 조절밸브를 구비하며, 각 노즐판 및 노즐관에 공급되는 방사용액은 서로 동일하거나 상이할 수 있다. 구체적으로, 한 노즐판(또는 노즐관) 내에서는 2가지 이상의 다른 고분자 방사용액이 방사되는 것도 가능하며, 각 노즐판(또는 노즐관)마다 상이한 종류의 고분자 방사용액을 각각 방사하는 경우도 가능하다.As shown in FIG. 2 , the plurality of nozzle tubes and the nozzle plate each have a metering pump and a control valve, and the spinning liquid supplied to each nozzle plate and the nozzle tube may be the same or different from each other. Specifically, two or more different polymer spinning solutions may be spun within one nozzle plate (or nozzle tube), and different types of polymer spinning solutions may be spun for each nozzle plate (or nozzle pipe). .
또한, 전기력에 의한 섬유형성을 촉진하기 위하여 상기 노즐블록과 컬렉터에는 전압발생장치에서 발생된 1kV 이상, 더욱 좋기로는 70kV 이상의 전압을 걸어준다. 또한, 보조벨트 또는 와이어벨트로는 앤드레스(Endless) 벨트를 사용하는 것이 생산성 측면에서 더욱 유리하다. 상기 컬렉터는 나노섬유층의 밀도를 균일하게 하기 위하여 좌우로 일정거리를 왕복운동하는 것이 바람직하다.In addition, in order to promote fiber formation by electric force, a voltage of 1 kV or more, more preferably 70 kV or more, generated by a voltage generator is applied to the nozzle block and the collector. In addition, it is more advantageous in terms of productivity to use an endless belt as the auxiliary belt or wire belt. It is preferable that the collector reciprocates a predetermined distance from side to side in order to make the density of the nanofiber layer uniform.
그리고, 상기 전기방사장치의 전단에는 블록에서 고분자 방사용액이 방사되어 나노섬유가 적층형성되는 장척시트를 공급하는 공급롤러(Unwinder)가 구비되고, 후단에는 나노섬유가 적층형성되는 장척시트를 권취하기 위한 권취롤러(Rewinder)가 구비된다.And, the front end of the electrospinning device is provided with a supply roller (Unwinder) for supplying a long sheet on which a polymer spinning solution is spun from a block to form a laminated nanofiber, and a long sheet on which a nanofiber is laminated is provided at the rear end. It is provided with a winding roller (Rewinder) for.
이때, 나노섬유가 적층형성되는 장척시트는 이형지 필름인 것이 바람직하다.In this case, the long sheet on which the nanofibers are laminated is preferably a release paper film.
상기 장척시트는 나노섬유의 처짐 방지 및 이송을 위하여 구비된다. 상기 장척시트는 전기방사장치의 선단에 구비되는 공급롤러 및 후단에 구비되는 권취롤러에 그 일측과 타측이 권취된다.The long sheet is provided for preventing sagging and transporting the nanofibers. The long sheet is wound on one side and the other side to a supply roller provided at the front end of the electrospinning device and a winding roller provided at the rear end.
또한, 상기 컬렉터와 장척시트 사이에 보조벨트가 각각 구비되고, 각 보조벨트를 통하여 각 컬렉터에 집적되어 나노섬유가 적층형성되는 장척시트가 수평방향으로 이송된다. 즉, 상기 보조벨트는 장척시트의 이송속도에 동기하여 회전하고, 보조벨트를 구동하기 위한 보조벨트용 롤러를 갖는다. 상기 보조벨트용 롤러는 2개 이상의 마찰력이 극히 적은 자동 롤러이다. 상기 컬렉터와 장척시트의 사이에 보조벨트가 구비되기 때문에, 장척시트는 고전압이 인가되어 있는 컬렉터에 끌어 당겨지는 일이 없이 부드럽게 이송되도록 이루어진다.In addition, auxiliary belts are respectively provided between the collector and the elongated sheet, and the elongated sheet on which the nanofibers are laminated by being accumulated in each collector through each auxiliary belt is transported in the horizontal direction. That is, the auxiliary belt rotates in synchronization with the feed speed of the long sheet, and has a roller for the auxiliary belt for driving the auxiliary belt. The roller for the auxiliary belt is an automatic roller having extremely low frictional force of two or more. Since the auxiliary belt is provided between the collector and the long sheet, the long sheet is smoothly transferred without being pulled by the collector to which a high voltage is applied.
또한, 장척시트가 전기방사구간을 통과 시 전자장에 의한 저항을 받아 수축 및 팽창 등의 영향을 받게 되며, 이로 인하여 나노섬유의 품질과 원단이송 및 권취(winding)에 좋지 않은 영향을 주는데, 이때 보조벨트인 와이어벨트를 원단진행방향으로 별개 또는 주 와인딩 장치와 같이 구동해줌으로써 전술한 바와 같은 좋지 않은 영향을 해결할 수 있다. 이때, 보조벨트인 와이어벨트의 형태는 멤브레인 및 리퀴드 필터용은 이음매 없는 구조인 것이 바람직하며, 일반적인 필터용은 이음매 있는 구조인 것도 바람직하다.In addition, when the long sheet passes through the electrospinning section, it is affected by contraction and expansion due to resistance by the electromagnetic field, which adversely affects the quality of the nanofiber and the transfer and winding of the fabric. By driving the wire belt, which is a belt, separately or together with the main winding device in the direction of the fabric travel, it is possible to solve the adverse effect as described above. At this time, the form of the wire belt, which is an auxiliary belt, is preferably a seamless structure for a membrane and a liquid filter, and a seamless structure for a general filter.
상기한 바와 같은 구조에 의하여, 상기 전기방사장치의 블록 내의 방사용액 주탱크 내에 충진된 방사용액이 노즐을 통하여 컬렉터 상에 위치한 장척시트상에 방사되고, 상기 장척시트 상에 방사된 방사용액이 집적되면서 나노섬유를 적층형성한다. 그리고 상기 컬렉터의 양측에 구비되는 보조벨트용 롤러의 회전에 의해 보조벨트가 구동되어 장척시트가 이송되면서 전기방사장치 후단에 있는 블록 내에 위치되어 상기한 공정을 반복적으로 수행한다.According to the structure as described above, the spinning solution filled in the spinning solution main tank in the block of the electrospinning device is spun onto the long sheet located on the collector through the nozzle, and the spinning solution spun on the long sheet is accumulated. As a result, nanofibers are laminated. And the auxiliary belt is driven by the rotation of the auxiliary belt rollers provided on both sides of the collector, and the long sheet is transferred while being positioned in the block at the rear end of the electrospinning device to repeatedly perform the above process.
한편, 노즐블록은 방사용액을 토출구로부터 상향 또는 하향 배치되는 복수의 노즐, 노즐이 일렬로 구성되는 판체 또는 관체, 방사용액 주탱크 및 방사용액 유통 파이프로 구성된다. On the other hand, the nozzle block is composed of a plurality of nozzles arranged upward or downward from the discharge port for the spinning solution, a plate or tube body in which the nozzles are arranged in a line, a main tank for spinning solution, and a pipe for spinning solution.
먼저, 방사용액 주탱크와 연결되어 방사용액을 공급받아 저장하는 방사용액 주탱크는 용액의 토출량을 상기 정밀 펌프에 의해 방사용액 유통 파이프를 통하여 노즐에 방사용액을 공급하여 방사가 진행된다. 여기서, 복수의 노즐이 일렬로 구성되는 판체 또는 관체는 상기 방사용액 저장탱크로부터 동일한 방사용액을 공급받지만, 방사용액 주탱크가 복수로 구비되고 각각에 서로 다른 종류의 고분자를 공급받아 판체 또는 관체마다 서로 종류가 다른 방사용액이 공급되어 방사되는 것도 가능하다. 또한, 노즐은 각각의 직경을 달리할 수 있으며, 노즐간격도 조절되며 방사량에 변화를 줄 수 있고, 나노섬유의 적층도 레이어별로 직경을 조절할 수 있다.First, the spinning solution main tank connected to the spinning solution main tank to receive and store the spinning solution supplies the spinning solution to the nozzle through the spinning solution distribution pipe by the precision pump with the discharge amount of the solution, so that spinning proceeds. Here, the plate body or pipe body comprising a plurality of nozzles in a row receives the same spinning solution from the spinning solution storage tank, but a plurality of spinning solution main tanks are provided and each plate or pipe body is supplied with different types of polymers. It is also possible that different types of spinning solutions are supplied and spun. In addition, the nozzles can have different diameters, the nozzle spacing can be adjusted, and the amount of radiation can be changed, and the diameter of the nanofiber stacking can also be adjusted for each layer.
상기 복수의 노즐의 토출구로부터 방사될 때, 나노섬유화 되지 못하고 오버플로우된 용액은 오버플로우 용액 저장탱크에 이동된다. 상기 오버플로우 용액 저장탱크는 방사용액 주탱크에 연결되어 있어 오버플로우 용액은 방사에 재이용될 수 있다.When spinning from the outlets of the plurality of nozzles, the solution that is not nanofiberized and overflowed is moved to the overflow solution storage tank. The overflow solution storage tank is connected to the spinning solution main tank, so the overflow solution can be reused for spinning.
이때, 방사되지 못하고 오버플로우된 용액은 공기와 접촉 시 수분이 함유되는데 용액 상에 수분율이 일정비율(2.5% 이상) 증가하면 방사 시 핀홀 등을 야기하는 등 제품 품질에 영향을 준다. 이에, 방사되지 못하고 오버플로우된 용액이 저장될 시, 일정비율 이하의 수분 함유량을 유지하여야 한다.At this time, the solution overflowed without spinning contains moisture when in contact with air, and if the moisture content in the solution increases by a certain ratio (2.5% or more), it affects product quality, such as causing pinholes during spinning. Therefore, when the solution overflowed without spinning is stored, it is necessary to maintain the moisture content below a certain ratio.
본 발명의 전기방사장치는 도 3에 도시한 바와 같이, 전기방사에 적합한 수분 함유량을 유지하여 위하여 수분제거장치를 포함할 수 있다. 이러한 수분제거장치는 나노섬유화 되지 못하고 오버플로우된 용액(회수용액)을 수분제거 압력탱크에 수집하여 진공과 온도 조절 및 교반 과정을 통하여 용액 내의 수분이 함유된 용제를 별도 리시브 탱크(용제 응축 탱크)에 받아내는 구조로 되어 있다. 이때, 수분이 포함된 용제는 용제의 비율이 60~75% 정도이며, 용제 응축 탱크를 통하여 재처리 공정을 거쳐 재이용될 수 있다.As shown in FIG. 3, the electrospinning device of the present invention may include a moisture removal device to maintain a moisture content suitable for electrospinning. This water removal device collects the overflowed solution (recovery solution) that cannot be nanofibrillated in a water removal pressure tank and separates the solvent containing water in the solution through vacuum, temperature control, and stirring process in a separate receiving tank (solvent condensation tank) It is structured to receive At this time, the solvent containing water has a solvent ratio of about 60 to 75%, and can be reused through a reprocessing process through a solvent condensation tank.
또한, 수분제거장치는 종합 용액 공급라인 조절장치에 연계되어 있으며, 회수용액은 수분제거 압력탱크를 통하여 전기방사에 적합한 수분 함유량을 유지하게 되며, 이후 보정탱크를 거친 후 용액 서비스 탱크로 이송하게 되며, 이는 방사에 재이용될 수 있다.In addition, the water removal device is connected to the general solution supply line control device, and the recovered solution maintains a moisture content suitable for electrospinning through the water removal pressure tank, and then goes through the calibration tank and then transferred to the solution service tank. , which can be reused for radiation.
이때, 회수용액의 순환 흐름 순서는 다음과 같다.At this time, the circulating flow sequence of the recovery solution is as follows.
서비스탱크 → 가압탱크 → 용액공급관 → 노즐판 또는 노즐관 → (회수탱크) → 수분제거 압력 탱크 → 보정탱크 → 서비스탱크Service tank → pressurized tank → solution supply pipe → nozzle plate or nozzle pipe → (recovery tank) → water removal pressure tank → calibration tank → service tank
한편, 본 발명의 전기방사장치의 후단부에는 전기방사구간을 통과하면 원단과 포집된 나노섬유에 남아있는 잔류용제를 제거할 목적으로 온도조절과 압착이 가능한 구조의 복수 다단 히팅롤을 포함할 수 있다. 원단과 나노섬유는 복수의 다단 히팅롤을 선택적으로 통과한 후, 다시 물리적인 표면처리(자외선, 레이저, 플라즈마 조사 등) 구간을 통과하게 되며, 이를 통해 나노섬유의 표면을 개질하고 나노섬유와 나노섬유 간의 접착력을 향상시킬 수 있다.On the other hand, the rear end of the electrospinning apparatus of the present invention may include a plurality of multi-stage heating rolls having a structure capable of temperature control and compression for the purpose of removing residual solvent remaining in the fabric and the collected nanofibers when passing through the electrospinning section. have. After selectively passing through a plurality of multi-stage heating rolls, the fabric and nanofibers pass through a physical surface treatment (UV, laser, plasma irradiation, etc.) section again to modify the surface of the nanofiber and It is possible to improve the adhesion between the fibers.
또한, 본 발명의 전기방사장치의 후단부에서는 라미네이팅 장치가 설치되어 있다. 상기 라미네이팅 장치는 열과 압력을 부여하며, 이를 통하여 나노섬유와 나노섬유, 나노섬유와 부직포 또는 다른 원단간 접착되고, 이후 권취롤러에 권취되어 나노섬유층이 제조된다.In addition, a laminating device is installed at the rear end of the electrospinning device of the present invention. The laminating device applies heat and pressure, and through this, nanofibers and nanofibers, nanofibers and nonwoven fabrics or other fabrics are adhered, and then wound on a winding roller to prepare a nanofiber layer.
상기 전기방사장치는 포집면적을 넓혀 나노섬유의 집적 밀도를 균일하게 할 수 있으며, 드롭렛(Droplet) 현상을 효과적으로 방지하여 나노섬유의 품질을 향상시킬 수 있고, 전기력에 의한 섬유형성 효과가 높아져 나노섬유를 대량 생산할 수 있다. 아울러 다수개의 핀으로 구성되는 노즐이 구비된 블록에서 전기방사함에 있어서 소재 및 전기방사 조건을 다르게 조절할 수 있으므로 장척시트의 폭 및 두께를 자유롭게 변경 및 조절할 수 있다.The electrospinning device can increase the collection area to make the integration density of the nanofibers uniform, and effectively prevent the droplet phenomenon to improve the quality of the nanofiber, and the fiber formation effect by electric force is increased to increase the nanofiber Fibers can be mass-produced. In addition, since the material and the electrospinning conditions can be adjusted differently in electrospinning in a block provided with a nozzle composed of a plurality of pins, the width and thickness of the long sheet can be freely changed and adjusted.
한편, 전기방사가 일어나는 영역의 정밀한 온습도 제어와 청정도는 매우 중요한 요소이다. 이에, 이 조건을 만족시키기 위하여 본 발명의 전기방사장치는 항온항습장치를 포함할 수 있다. 상기 항온항습장치는 전기방사 공정 중에 온도와 습도를 조정하며, 동시에 섬유 직경의 크기에 변화를 줄 수 있도록 운전하며, 공정 중에 발생하는 용제를 제거 및 처리 후 재사용할 수 있다.On the other hand, precise temperature and humidity control and cleanliness of the area where electrospinning occurs are very important factors. Therefore, in order to satisfy this condition, the electrospinning apparatus of the present invention may include a constant temperature and humidity constant. The thermo-hygrostat adjusts the temperature and humidity during the electrospinning process, operates to change the size of the fiber diameter at the same time, and removes and treats the solvent generated during the process and can be reused.
이때, 항온항습 장치의 처리 순서는 다음과 같다.At this time, the processing sequence of the constant temperature and humidity device is as follows.
프리필터 → 1차 미디움필터/가열 및 냉각/1차 제습 → 2차 미디움필터/가열 및 냉각/2차 제습 → 재활용 회수 공기 → 최종 건식제습 → 3차 미디움필터/가열 및 냉각 → 가습 조정 → 최종 필터 → 방사영역 공급Pre-filter → 1st medium filter / Heating and cooling / 1st dehumidification → 2nd medium filter / Heating and cooling / 2nd dehumidification → Recycled recovered air → Final dry dehumidification → 3rd Medium filter / Heating and cooling → Humidification adjustment → Final Filter → Radiation area supply
또한, 본 발명의 전기방사장치는 전기방사에 적합한 섬유점도를 유지하기 위하여 온도조절 제어장치로 점도를 조절하기 위한 온도조절 제어장치를 포함할 수 있다.In addition, the electrospinning apparatus of the present invention may include a temperature control control device for adjusting the viscosity with a temperature control control device in order to maintain the fiber viscosity suitable for electrospinning.
상기 온도조절 제어장치로는 오버플로우를 통해 재사용되는 높은 점도의 고분자 방사용액의 점도를 낮게 유지할 수 있는 가열장치와 상대적으로 낮은 점도의 고분자 방사용액의 점도를 높게 유지할 수 있는 냉각장치 모두 또는 어느 하나를 구비할 수 있다.As the temperature control control device, both or any one of a heating device capable of maintaining a low viscosity of a high viscosity polymer spinning solution reused through overflow and a cooling device capable of maintaining a high viscosity of a relatively low viscosity polymer spinning solution can be provided.
전기방사 영역에서의 온도에 있어서, 전기방사가 일어나는 영역(이하, '방사영역'이라 한다)의 온도는 방사용액의 점도를 변화시킴으로써 방사 용액의 표면장력을 변화시키므로, 결국 방사된 나노섬유의 직경에 영향을 미치게 된다.As for the temperature in the electrospinning region, the temperature of the region where electrospinning occurs (hereinafter referred to as 'spinning region') changes the surface tension of the spinning solution by changing the viscosity of the spinning solution, so the diameter of the spun nanofiber will affect
즉, 방사영역의 온도가 상대적으로 높아서 용액의 점도가 낮으면 섬유직경이 상대적으로 가는 나노섬유가 만들어지고, 온도가 상대적으로 낮아서 용액의 점도가 높으면 섬유직경이 상대적으로 굵은 나노섬유가 만들어진다.That is, when the temperature of the spinning region is relatively high and the viscosity of the solution is low, nanofibers having a relatively thin fiber diameter are made, and when the viscosity of the solution is high because the temperature is relatively low, nanofibers having a relatively thick fiber diameter are made.
농도를 측정하기 위한 농도측정장치는 용액에 직접 접촉하는 접촉식과 비접촉식이 있으며, 접촉식으로는 캐필리러식 농도측정장치, 디스크(DISC)식 농도측정장치 등이 사용될 수 있으며, 비접촉식으로는 자외선을 이용한 농도측정장치 또는 적외선을 이용한 농도측정장치 등을 사용할 수 있다.The concentration measuring device for measuring the concentration has a contact type and a non-contact type that directly contact the solution. For the contact type, a capillary type concentration measuring device, a disk (DISC) type concentration measuring device, etc. can be used. A density measuring device or a density measuring device using infrared rays may be used.
본 발명의 가열장치는 전열히터, 온수순환장치 또는 온풍 순환 장치 등으로 이루어 질 수 있으며, 이외에 상기 장치들과 균등한 범위에서 온도를 높일 수 있는 장치들을 차용할 수 있다. The heating device of the present invention may be composed of an electric heater, a hot water circulation device or a hot air circulation device, and in addition, devices capable of increasing the temperature in the same range as the above devices may be borrowed.
가열장치의 일예로 전열히터는 열선형태로 사용될 수 있으며, 노즐블록의 판체 또는 관체 내부에 코일형태의 열선을 장착할 수 있으며, 이는 자킷형태로도 변형가능하다. 또한, 선형형태의 열선 및 U자 형태의 파이프의 구성을 지닌 것도 가능하다.As an example of the heating device, an electric heater may be used in the form of a hot wire, and a coil-type hot wire may be mounted inside the plate or tube body of the nozzle block, which is also deformable in the form of a jacket. In addition, it is possible to have a configuration of a linear hot wire and a U-shaped pipe.
상기와 같은 가열장치는 고분자 방사용액이 방사되는 노즐블록, 고분자 방사용액이 저장되는 탱크 및 오버플로우 시스템중 어느 하나 이상에 구비될 수 있다.The heating device as described above may be provided in any one or more of a nozzle block for spinning a polymer spinning solution, a tank for storing a polymer spinning solution, and an overflow system.
본 발명의 냉각장치는 칠링장치를 포함한 냉각수단 등이 사용될 수 있으며, 고분자 방사용액의 일정점도를 유지하기 위한 수단은 통상적으로 적용이 가능하다. 냉각장치는 가열장치와 동일하게 노즐블록, 탱크 및 오버플로우 시스템 중 어느 하나 이상에 구비될 수 있으며, 고분자 방사용액의 일정점도를 유지하기 위해 사용된다.As the cooling device of the present invention, cooling means including a chilling device may be used, and a means for maintaining a certain viscosity of the polymer spinning solution is generally applicable. The cooling device may be provided in any one or more of the nozzle block, the tank, and the overflow system in the same way as the heating device, and is used to maintain a certain viscosity of the polymer spinning solution.
한편, 본 발명의 고분자 방사용액은 점도는 1,000 내지 5,000 cps가 바람직하며, 더욱 바람직하게는 1,000 내지 3,000 cps의 점도가 좋다. 점도가 1,000 cps 이하일 경우 전기방사되어 적층되는 나노섬유의 품질이 불량하며, 점도가 3,000 cps 이상일 경우 전기방사시 노즐로부터 고분자 방사용액의 토출이 용이하게 되지 않아 생산속도가 느려진다. On the other hand, the viscosity of the polymer spinning solution of the present invention is preferably 1,000 to 5,000 cps, more preferably 1,000 to 3,000 cps. When the viscosity is 1,000 cps or less, the quality of the nanofibers electrospun and laminated is poor, and when the viscosity is 3,000 cps or more, the discharge of the polymer spinning solution from the nozzle during electrospinning is not easy, and the production speed is slowed down.
또한, 본 발명은 전기방사를 진행할수록 고분자 방사용액의 점도는 일정하여 전기방사시의 방사용이성이 우수함과 동시에 고분자 방사용액의 농도가 증가하여 컬렉터에 집적되는 나노섬유 중 용제를 제외한 고형분 양의 증가로 생산성이 증대되는 효과가 있다.In the present invention, the viscosity of the polymer spinning solution is constant as the electrospinning progresses, so the spinning efficiency is excellent during electrospinning, and at the same time, the concentration of the polymer spinning solution increases, and the amount of solids excluding the solvent among the nanofibers accumulated in the collector increases. This has the effect of increasing productivity.
이에 더해, 전기방사를 이용한 나노섬유의 잔존 용제량이 기존의 전기방사를 이용한 경우 보다 적어 우수한 품질의 나노섬유를 제조할 수 있다.In addition, the amount of residual solvent in the nanofibers using electrospinning is less than in the case of using conventional electrospinning, so that nanofibers of excellent quality can be manufactured.
또한, 본 발명의 온도조절 제어장치는 오프라인 상으로 작업자가 중간탱크의 농도를 측정하여 노즐블록이나 방사용액 주탱크의 온도조절을 통해 고분자 방사용액의 점도를 제어할 수 있는 수동식이 가능함과 동시에, 온라인상으로 자동제어 시스템을 통해 농도측정에 따라 해당 용액의 온도를 조절할 수 있는 자동식인 것을 포함한다.In addition, the temperature control control device of the present invention is a manual type that allows the operator to control the viscosity of the polymer spinning solution through the temperature control of the nozzle block or the spinning solution main tank by measuring the concentration of the intermediate tank offline, and at the same time, It includes an automatic type that can adjust the temperature of the solution according to the concentration measurement through an online automatic control system.
상기와 같은 전기방사 장치는 온도조절 제어장치를 구비하고 있으므로, 전기방사의 수행 온도는 20 내지 60℃인 것이 가능하다. 전기방사의 수행 온도를 60℃까지 올리는 경우 고분자 방사용액 내의 고분자 고형분량을 증가시킬 수 있으며, 이에 따라 생산성이 커질 수 있다. 그러나 60℃를 초과하는 경우에는 방사용액의 점도가 너무 높아져서 오히려 방사성이 떨어지는 문제가 발생한다. 또한, 본 발명에서의 전기방사 조건은 습도가 40% 이상인 것이 바람직하다.Since the electrospinning device as described above is provided with a temperature control device, it is possible that the temperature for performing electrospinning is 20 to 60°C. When the temperature for electrospinning is raised to 60° C., the amount of polymer solids in the polymer spinning solution can be increased, and thus productivity can be increased. However, when it exceeds 60 ℃, the viscosity of the spinning solution is too high, and the radioactivity is rather deteriorated. In addition, the electrospinning condition in the present invention is preferably a humidity of 40% or more.
한편, 본 발명에서 사용가능한 고분자 방사용액의 재질로는 폴리유산(PLA), 폴리카보네이트(PC), 폴리비닐리덴플루오라이드(PVDF), 폴리프로필렌(PP), 폴리에틸렌텔레프탈레이트(PET), 폴리에테르설폰(PES), 폴리아미드, 폴리비닐아세테이트, 폴리메틸메타아크릴레이트, 폴리아크릴로니트릴(PAN), 폴리우레탄(PUR), 폴리부틸렌텔레프탈레이트(PBT), 폴리비닐부틸랄, 폴리비닐클로라이드, 폴리에틸렌이민, 폴리초산비닐(PVAc), 폴리에틸렌나프탈레이트(PEN), 폴리비닐알콜(PVA), 폴리에틸렌이미드(PEI), 폴리카프로락톤(PCL), 폴리유산글리롤산(PLGA) 등을 예로 들 수 있으나, 이에 제한되는 것은 아니다.On the other hand, as the material of the polymer spinning solution usable in the present invention, polylactic acid (PLA), polycarbonate (PC), polyvinylidene fluoride (PVDF), polypropylene (PP), polyethylene terephthalate (PET), polyether Sulfone (PES), polyamide, polyvinyl acetate, polymethyl methacrylate, polyacrylonitrile (PAN), polyurethane (PUR), polybutylene terephthalate (PBT), polyvinyl butyral, polyvinyl chloride, Examples include polyethyleneimine, polyvinyl acetate (PVAc), polyethylene naphthalate (PEN), polyvinyl alcohol (PVA), polyethyleneimide (PEI), polycaprolactone (PCL), and polylactic acid glycerol (PLGA). However, the present invention is not limited thereto.
본 발명에서는 상기 고분자의 재질로 생분해성 고분자를 사용하는 것이 바람직하다.In the present invention, it is preferable to use a biodegradable polymer as the material of the polymer.
본 발명에서 사용되는 생분해성 고분자는 PHB(poly-hydroxy butyrate), PHBV(3-hydroxy butyrate-co-3-hydroxy valerate), PGA[(poly)glycolic acid], PLA[(poly)lactic acid], PLGA(polylactic-co-glycolic acid), PCL[poly(e-caprolactone)], 폴리다이옥사논(polydioxanone), 폴리오르소에스테르(polyorthoester), 폴리아하이드라이드(polyanhydride), γ-PGA, 젤라틴(gelatin), 실크(silk), 콜라겐(collagen), 셀룰로오스(cellulose), 알긴산(alginic acid) 및 히알루론산(hyaluronic acid)으로 구성된 군에서 선택될 수 있다.The biodegradable polymer used in the present invention is PHB (poly-hydroxy butyrate), PHBV (3-hydroxy butyrate-co-3-hydroxy valerate), PGA [(poly)glycolic acid], PLA [(poly) lactic acid], PLGA (polylactic-co-glycolic acid), PCL [poly(e-caprolactone)], polydioxanone, polyorthoester, polyanhydride, γ-PGA, gelatin ), silk, collagen, cellulose, alginic acid and hyaluronic acid may be selected from the group consisting of.
한편, 상기 고분자 방사용액은 상기 전기방사가 가능한 합성수지 재질인 고분자를 적당한 용제에 용해시킨 용액으로서, 용제의 종류 또한 폴리머를 용해시킬 수 있는 것이라면 제한되지 않으며, 예를 든다면 페놀, 포름산, 황산, m-크레솔, 티플루오르아세트앤하이드라이드/다이클로로메테인, 물, N-메틸모폴린 N-옥시드, 클로로폼, 테트라히드로푸란과 지방족 케톤군인 메틸이소부틸케톤, 메틸에틸케톤, 지방족 수산기 군인 m-부틸알콜, 이소부틸알콜, 이소프로필알콜, 메틸알콜, 에탄올, 지방족 화합물인 헥산, 테트라클로로에틸렌, 아세톤, 글리콜군으로서 프로필렌글리콜, 디에틸렌글리콜, 에틸렌글리콜, 할로겐 화합물군으로 트리크롤로에틸렌, 다이클로로메테인, 방향족 화합물 군인 톨루엔, 자일렌, 지방족 고리 화합물군으로서 사이클로헥사논, 시클로헥산과 에스테르군으로 n-부틸초산염, 초산에틸, 지방족에테르군으로 부틸셀로살브, 아세트산2-에톡시에탄올, 2-에톡시에탄올, 아미드로 디메틸포름아미드, 디메틸아세트아미드 등을 사용할 수 있으며, 복수 종류의 용제를 혼합하여 이용할 수 있다. 방사용액에는 도전성 향상제 등의 첨가제를 함유하는 것이 바람직하다. 바람직한 용제로는 디메틸아세트아미드인 것이 좋다. 첨가제로는 테트라부틸암모늄퍼클로레이트(Tetrabutylammonium perchlorate, TBAP)인 것이 바람직하다.On the other hand, the polymer spinning solution is a solution in which the polymer, which is a synthetic resin material capable of electrospinning, is dissolved in a suitable solvent, and the type of solvent is not limited as long as it can dissolve the polymer, for example, phenol, formic acid, sulfuric acid, m-cresol, tifluoroacetandhydride/dichloromethane, water, N-methylmorpholine N-oxide, chloroform, tetrahydrofuran and aliphatic ketone groups methylisobutylketone, methylethylketone, aliphatic hydroxyl group group m-butyl alcohol, isobutyl alcohol, isopropyl alcohol, methyl alcohol, ethanol, aliphatic compounds hexane, tetrachloroethylene, acetone, glycol group, propylene glycol, diethylene glycol, ethylene glycol, halogen compound group, trichloro Ethylene, dichloromethane, aromatic compound group toluene, xylene, alicyclic compound group cyclohexanone, cyclohexane and ester group n-butyl acetate, ethyl acetate, aliphatic ether group butyl cellosalve, acetic acid 2- Ethoxyethanol, 2-ethoxyethanol, dimethylformamide, dimethylacetamide, etc. can be used as amides, and a plurality of types of solvents can be mixed and used. It is preferable to contain additives, such as an electroconductivity improving agent, in a spinning liquid. A preferred solvent is dimethylacetamide. The additive is preferably tetrabutylammonium perchlorate (TBAP).
상기 고분자 방사용액에서 고분자의 함량은 10 내지 35중량%인 것이 바람직하다. 고분자의 함량이 10중량% 미만인 경우에는 나노섬유층의 밀도가 균일하지 않을 수 있으며, 35중량%인 경우 방사성이 떨어지는 문제가 발생한다.The content of the polymer in the polymer spinning solution is preferably 10 to 35% by weight. If the content of the polymer is less than 10% by weight, the density of the nanofiber layer may not be uniform, and if it is 35% by weight, there is a problem in that the radioactivity is lowered.
이하, 상기 전기방사장치를 이용한 나노 멤브레인의 제조방법을 설명한다.Hereinafter, a method for manufacturing a nanomembrane using the electrospinning device will be described.
일 실시예에 따른 나노 멤브레인의 제조방법은 전기방사장치의 방사용액 주탱크에 유기 용제에 고분자를 용해시킨 방사용액을 공급하는 단계; 상기 방사용액 주탱크에 공급된 방사용액은 계량펌프를 통해 노즐블록에 위치한 다수의 노즐 내에 정량 공급되는 단계; 및 각 노즐로부터 공급되는 각각의 방사용액은 노즐을 통해 노즐과 일정간격 이격된 컬렉터 상에 방사되어 나노섬유층을 형성하는 단계를 포함할 수 있다. 이때, 상기 노즐블록은 복수의 노즐판 및 노즐관들이 배열된 구조이며, 상기 노즐판 및 노즐관에 위치한 다수의 노즐들은 상하좌우로 이동이 가능하다.A method of manufacturing a nano-membrane according to an embodiment comprises: supplying a spinning solution obtained by dissolving a polymer in an organic solvent to a spinning solution main tank of an electrospinning apparatus; The spinning liquid supplied to the spinning liquid main tank is quantitatively supplied into a plurality of nozzles located in the nozzle block through a metering pump; and each spinning solution supplied from each nozzle is spun on a collector spaced apart from the nozzle at a predetermined distance through the nozzle to form a nanofiber layer. In this case, the nozzle block has a structure in which a plurality of nozzle plates and nozzle tubes are arranged, and the plurality of nozzles located on the nozzle plate and the nozzle tube are movable up, down, left and right.
먼저, 고분자를 유기 용제에 녹인 고분자 방사용액을 각각 전기방사장치의 유닛과 연결된 방사용액 주탱크에 공급하고, 상기 방사용액 주탱크에 공급된 고분자 방사용액은 계량 펌프를 통하여 높은 전압이 부여되는 노즐블록의 다수의 노즐 내에 연속적으로 정량공급된다. 상기 각 노즐로부터 공급되는 고분자 방사용액은 노즐을 통해 높은 전압이 걸려있는 컬렉터 상에 전기방사 및 집속되면서 나노섬유층을 적층형성한다. First, a polymer spinning solution in which a polymer is dissolved in an organic solvent is supplied to a spinning solution main tank connected to a unit of an electrospinning device, respectively, and the polymer spinning solution supplied to the spinning solution main tank is a nozzle to which a high voltage is applied through a metering pump It is continuously metered into multiple nozzles of the block. The polymer spinning solution supplied from each nozzle is electrospun and focused on a collector to which a high voltage is applied through the nozzle to form a laminated nanofiber layer.
이때, 전기방사는 전압 40 내지 60kV, 유체속도 0.1 내지 5ml/h, 방사거리 3~50cm, 상온 조건 및 30 내지 50%의 상대습도 조건 하에서 수행될 수 있다. 또한, 방사용액에 있어서 고분자의 함량은 10 내지 35중량%일 수 있다.In this case, the electrospinning may be performed under a voltage of 40 to 60 kV, a fluid velocity of 0.1 to 5 ml/h, a spinning distance of 3 to 50 cm, room temperature conditions, and relative humidity of 30 to 50%. In addition, the content of the polymer in the spinning solution may be 10 to 35% by weight.
상기 전기방사장치의 각 유닛 내에서 나노섬유층이 적층되는 장척시트는 모터의 구동에 의해 동작하는 공급롤러 및 상기 공급롤러의 회전에 의해 구동하는 보조이송장치의 회전에 의해 이송되고 상기한 공정을 반복하면서 상기 장척시트 상에 고분자 나노섬유층이 연속적으로 전기방사 및 적층형성된다.The long sheet on which the nanofiber layer is laminated in each unit of the electrospinning device is transported by the rotation of the supply roller operated by the driving of the motor and the auxiliary transport device driven by the rotation of the supply roller, and the above process is repeated. While the polymer nanofiber layer is continuously electrospun and laminated on the long sheet.
상기와 같이 제조된 나노섬유층의 두께는 0.1 내지 20㎛이 바람직하고, 평량은 1 내지 10g/m 2인 것이 바람직하다. 나노섬유층의 두께가 0.1㎛ 미만인 경우에는 지지체로부터 박리하기 어려우며, 20㎛을 초과하는 경우 가공성 및 경제성이 떨어지는 문제가 있으며, 나노섬유층의 평량이 1g/m 2 미만인 경우 여과 효율이 저하되며, 10g/m 2 초과인 경우 가공성 및 경제성이 떨어지는 문제가 발생한다.The thickness of the nanofiber layer prepared as described above is preferably 0.1 to 20 μm, and the basis weight is preferably 1 to 10 g/m 2 . When the thickness of the nanofiber layer is less than 0.1 μm, it is difficult to peel from the support, and when it exceeds 20 μm, there is a problem of poor processability and economical efficiency, and when the basis weight of the nanofiber layer is less than 1 g/m 2 , the filtration efficiency is reduced, 10 g / If it exceeds m 2 , there is a problem of poor processability and economical efficiency.
한편, 한 노즐판(또는 노즐관) 내에서는 2가지 이상의 다른 고분자 방사용액이 방사되는 것도 가능하며, 각 노즐판(또는 노즐관)마다 상이한 종류의 고분자 방사용액을 각각 방사하는 경우도 가능하다.On the other hand, two or more different polymer spinning solutions may be spun within one nozzle plate (or nozzle tube), and different types of polymer spinning solutions may be spun for each nozzle plate (or nozzle pipe).
이 경우, 일 실시예에 따른 나노 필터의 제조방법은 유기 용매에 고분자를 용해시켜 제1 및 제2 방사용액을 제조하는 단계; 전기방사장치를 이용하여 상기 제1 방사용액을 전기방사하여 제1 나노섬유층을 형성하는 단계; 상기 제1 나노섬유층 상에 상기 제2 방사용액을 전기방사하여 제2 나노섬유층을 형성하여 나노 필터를 제조하는 단계; 및 상기 나노 필터를 다단 히팅롤을 통과시켜 상기 나노 필터의 잔류용매를 제거하며, 상기 제1 나노섬유층과 제2 나노섬유층을 접착시키는 단계를 포함할 수 있다.In this case, the manufacturing method of the nano-filter according to an embodiment comprises the steps of dissolving a polymer in an organic solvent to prepare first and second spinning solutions; forming a first nanofiber layer by electrospinning the first spinning solution using an electrospinning device; manufacturing a nanofilter by electrospinning the second spinning solution on the first nanofiber layer to form a second nanofiber layer; and removing the residual solvent of the nano-filter by passing the nano-filter through a multi-stage heating roll, and adhering the first nano-fiber layer and the second nano-fiber layer.
또한, 본 발명에서는 전기방사장치의 각 유닛 마다 방사 조건을 달리하여 컬렉터 상에 섬유직경이 서로 다른 두 층 또는 두층 이상의 나노섬유층을 연속적으로 적층형성하는 것도 가능하다.In addition, in the present invention, it is also possible to continuously laminate two or more nanofiber layers having different fiber diameters on the collector by varying the spinning conditions for each unit of the electrospinning device.
구체적으로, 노즐과 컬렉터 사이 간격을 조절하여 섬유직경이 다른 나노섬유층을 형성할 수 있다. 방사용액의 종류 및 공급되는 전압 세기가 동일할 때 방사거리가 가까울수록 섬유직경은 커지고, 방사거리가 멀수록 섬유직경은 작아지는 원리에 따라 섬유직경이 서로 다른 두 개의 나노섬유층이 형성되는 것도 가능하다. 그리고, 방사용액의 농도 및 점도를 조절하거나, 장척시트의 이동속도를 조절하거나, 또는 서로 다른 노즐을 사용함으로써, 섬유직경의 차이를 두는 것도 가능하다.Specifically, nanofiber layers having different fiber diameters can be formed by adjusting the distance between the nozzle and the collector. When the type of spinning solution and the applied voltage strength are the same, it is possible to form two nanofiber layers with different fiber diameters according to the principle that the shorter the spinning distance, the larger the fiber diameter, and the longer the spinning distance, the smaller the fiber diameter. do. And, by adjusting the concentration and viscosity of the spinning solution, adjusting the moving speed of the long sheet, or using different nozzles, it is also possible to make a difference in fiber diameter.
*이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.* Hereinafter, the present invention will be described in detail through examples. However, the following examples are merely illustrative of the present invention, and the present invention is not limited by the following examples.
[실시예 1][Example 1]
폴리락트산(PLA)를 메틸렌 클로라이드에 15중량% 용해시킨 방사용액을 제조하여 전기방사장치와 연결된 방사용액 주탱크에 투입하였다. 이때, 전기방사장치의 노즐블록은 2개의 노즐판들과 3개의 노즐관들이 교대로 배열된 구조인 것을 사용하였다.A spinning solution obtained by dissolving 15 wt% of polylactic acid (PLA) in methylene chloride was prepared and put into a spinning solution main tank connected to an electrospinning device. At this time, the nozzle block of the electrospinning apparatus used a structure in which two nozzle plates and three nozzle tubes are alternately arranged.
전단부 블록에서는 전극과 컬렉터 간의 거리는 15cm, 인가전압 40kV, 방사용액 유량 0.1mL/h, 상온 및 습도는 40%인 조건으로 전기방사를 실시하여 섬유의 평균직경이 300nm인 제1 PLA 나노섬유층을 형성하였다. 이후, 후단부 블록에서는 전극과 컬렉터 간의 거리는 40cm, 인가전압 40kV, 방사용액 유량 0.1mL/h, 상온 및 습도는 40%인 조건으로 전기방사를 실시하여 제1 PLA 나노섬유층 상에 섬유의 평균직경이 150nm인 제2 PLA 나노섬유층을 형성하여 나노 멤브레인을 제조하였다.In the front end block, electrospinning was performed under the conditions of 15 cm distance between electrode and collector, applied voltage 40 kV, spinning solution flow rate of 0.1 mL/h, and room temperature and humidity of 40% to form the first PLA nanofiber layer with an average fiber diameter of 300 nm. formed. Then, in the rear end block, electrospinning was performed under the conditions of 40 cm distance between the electrode and the collector, 40 kV of applied voltage, 0.1 mL/h of spinning solution flow rate, and 40% of room temperature and humidity, and the average diameter of the fibers on the first PLA nanofiber layer. A nano-membrane was prepared by forming a second PLA nanofiber layer of 150 nm.
이후, 제조된 나노 멤브레인을 다단 히팅롤을 통과시켜 나노 멤브레인의 잔류용제를 제거함과 동시에, 제1 PLA 나노섬유층과 제2 PLA 나노섬유층을 접착시켜 최종적으로 나노 멤브레인을 제조하였다.Thereafter, the prepared nano-membrane was passed through a multi-stage heating roll to remove the residual solvent of the nano-membrane, and at the same time, the first PLA nano-fiber layer and the second PLA nano-fiber layer were attached to each other to finally prepare a nano-membrane.
[실시예 2][Example 2]
폴리락트산(PLA)를 메틸렌 클로라이드에 15중량% 용해시킨 제1 방사용액과 폴리락테이트-co-글라이콜레이트(PLGA)를 메틸렌 클로라이드에 15중량% 용해시킨 제2 방사용액을 제조하였다. 이때, 전기방사장치의 노즐블록은 2개의 노즐판들과 3개의 노즐관들이 교대로 배열된 구조인 것을 사용하였으며, 노즐판과 연결된 방사용액 탱크에는 제1 방사용액을 투입하였고, 노즐관과 연결된 방사용액 탱크에는 제2 방사용액을 투입하였다. A first spinning solution in which polylactic acid (PLA) was dissolved in methylene chloride at 15% by weight and a second spinning solution in which polylactate-co-glycolate (PLGA) was dissolved in methylene chloride by 15% by weight were prepared. At this time, the nozzle block of the electrospinning apparatus used a structure in which two nozzle plates and three nozzle tubes were alternately arranged, and the first spinning liquid was put into the spinning liquid tank connected to the nozzle plate, and the nozzle tube was connected The second spinning solution was put into the spinning solution tank.
이후, 제1 방사용액을 이용하여 전극과 컬렉터 간의 거리는 15cm, 인가전압 40kV, 방사용액 유량 0.1mL/h, 상온 및 습도는 40%인 조건으로 전기방사를 실시하여 섬유의 평균직경이 300nm인 PLA 나노섬유층을 형성하였다. 또한, 제2 방사용액을 이용하여 전극과 컬렉터 간의 거리는 40cm, 인가전압 40kV, 방사용액 유량 0.1mL/h, 상온 및 습도는 40%인 조건으로 전기방사를 실시하여 섬유의 평균직경이 150nm인 PLGA 나노섬유층을 형성하여 나노 멤브레인을 제조하였다.After that, using the first spinning solution, electrospinning was performed under the conditions of 15 cm distance between the electrode and the collector, applied voltage 40 kV, spinning solution flow rate of 0.1 mL/h, and room temperature and humidity of 40%, PLA having an average diameter of fibers of 300 nm A nanofiber layer was formed. In addition, using the second spinning solution, the distance between the electrode and the collector is 40 cm, the applied voltage is 40 kV, the spinning solution flow rate is 0.1 mL/h, and the electrospinning is performed under the conditions of 40% room temperature and humidity. A nanofiber layer was formed to prepare a nanomembrane.
이후, 제조된 나노 멤브레인을 다단 히팅롤을 통과시켜 나노 멤브레인의 잔류용제를 제거함과 동시에, PLA 나노섬유층과 PLGA 나노섬유층을 접착시켜 최종적으로 나노 멤브레인을 제조하였다.Thereafter, the prepared nano-membrane was passed through a multi-stage heating roll to remove the residual solvent of the nano-membrane, and at the same time, the PLA nano-fiber layer and the PLGA nano-fiber layer were adhered to prepare a final nano-membrane.
[비교예 1][Comparative Example 1]
폴리락트산(PLA)를 메틸렌 클로라이드에 15중량% 용해시킨 방사용액을 제조하여 전기방사와 연결된 방사용액 주탱크에 투입하였다. 이때, 전기방사장치의 노즐블록은 복수의 노즐판들이 배열된 구조인 것을 사용하였다. 전극과 컬렉터 간의 거리는 15cm, 인가전압 40kV, 방사용액 유량 0.1mL/h, 상온 및 습도는 40%인 조건으로 전기방사를 실시하여 섬유의 평균직경이 300nm인 나노 멤브레인을 제조하였다.A spinning solution obtained by dissolving 15 wt% of polylactic acid (PLA) in methylene chloride was prepared and put into a spinning solution main tank connected to electrospinning. At this time, the nozzle block of the electrospinning apparatus used a structure in which a plurality of nozzle plates were arranged. Electrospinning was performed under conditions of 15 cm distance between the electrode and the collector, an applied voltage of 40 kV, a spinning solution flow rate of 0.1 mL/h, and room temperature and humidity of 40% to prepare a nanomembrane having an average fiber diameter of 300 nm.
[비교예 2][Comparative Example 2]
전극과 컬렉터 간의 거리를 40cm로 조절한 것을 제외하고는, 비교예 1과 동일한 과정을 통하여 섬유의 평균직경이 150nm인 나노 멤브레인을 제조하였다.A nanomembrane having an average fiber diameter of 150 nm was prepared in the same manner as in Comparative Example 1, except that the distance between the electrode and the collector was adjusted to 40 cm.
[실험예][Experimental example]
실시예 및 비교예에서 각각 제조된 나노 멤브레인의 물성을 하기와 같은 방법으로 측정하였으며, 그 결과는 하기 표 1에 나타내었다.The physical properties of the nanomembrane prepared in Examples and Comparative Examples were measured as follows, and the results are shown in Table 1 below.
1) 평량 표준편차1) Standard deviation of basis weight
실시예 및 비교예에서 각각 제조된 나노 멤브레인으로부터 200mm(MD)Х50mm(CD)의 시험편을 6점 채취했다. 이어서, 채취한 각 시험편을 윗접시 전자저울을 사용하여 각각 질량(g)을 측정하였으며, 각 시험편의 질량의 평균값을 구했다. 구한 평균값으로부터 1sm 당 질량(g)으로 환산하고, 소수점 제1자리를 반올림하여 부분별 나노 멤브레인 샘플의 평량[gsm]으로 하였다. 이후, 6점 시험편의 평량 표준편차를 계산하였으며, 그 결과를 표 1에 나타내었다.Six test pieces of 200 mm (MD) Х 50 mm (CD) were taken from the nanomembrane prepared in Examples and Comparative Examples, respectively. Next, the mass (g) of each of the sampled specimens was measured using an electronic balance on the upper plate, and the average value of the mass of each specimen was obtained. From the obtained average value, it was converted to mass per 1 sm (g), and the first decimal place was rounded off to give the basis weight [gsm] of the nanomembrane sample for each part. Thereafter, the standard deviation of the basis weight of the six-point test piece was calculated, and the results are shown in Table 1.
실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2
평량 표준편차basis weight standard deviation 0.120.12 0.270.27 0.740.74 0.890.89
표 1에서 알 수 있는 바와 같이, 본 발명의 실시예를 통해 제조된 나노 멤브레인은 비교예 대비 평량이 균일하여 균제도가 향상된 것을 알 수 있었다.As can be seen from Table 1, it was found that the nanomembrane prepared according to the example of the present invention had a uniform basis weight compared to the comparative example, and thus the uniformity was improved.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiment of the present invention, those skilled in the art or those having ordinary knowledge in the technical field will not depart from the spirit and technical scope of the present invention described in the claims to be described later. It will be understood that various modifications and variations of the present invention can be made without departing from the scope of the present invention.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.Accordingly, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification, but should be defined by the claims.

Claims (7)

  1. 전기방사장치의 방사용액 주탱크에 유기 용제에 고분자를 용해시킨 방사용액을 공급하는 단계;supplying a spinning solution obtained by dissolving a polymer in an organic solvent to the spinning solution main tank of the electrospinning device;
    상기 방사용액 주탱크에 공급된 방사용액은 계량펌프를 통해 노즐블록에 위치한 다수의 노즐 내에 정량 공급되는 단계; 및The spinning liquid supplied to the spinning liquid main tank is quantitatively supplied into a plurality of nozzles located in the nozzle block through a metering pump; and
    각 노즐로부터 공급되는 각각의 방사용액은 노즐을 통해 노즐과 일정간격 이격된 컬렉터 상에 방사되어 나노섬유층을 형성하는 단계를 포함하며,Each spinning solution supplied from each nozzle is spun on a collector spaced apart from the nozzle at a predetermined distance through the nozzle to form a nanofiber layer,
    상기 노즐블록은 복수의 노즐판 및 노즐관들이 배열된 구조이며, 상기 노즐판 및 노즐관은 각각 상하좌우로 이동이 가능한 나노 멤브레인의 제조방법.The nozzle block has a structure in which a plurality of nozzle plates and nozzle tubes are arranged, and the nozzle plate and the nozzle tube are movable vertically, horizontally and horizontally, respectively.
  2. 제1항에 있어서,According to claim 1,
    상기 노즐블록은 2개의 노즐판들과 3개의 노즐관들이 교대로 배열된 구조인 나노 멤브레인의 제조방법.The nozzle block is a method of manufacturing a nano-membrane having a structure in which two nozzle plates and three nozzle tubes are alternately arranged.
  3. 제1항에 있어서,According to claim 1,
    상기 노즐판 및 노즐관에 배치되는 복수의 노즐들은 각각의 직경이 서로 동일하거나 상이한 나노 멤브레인의 제조방법.The plurality of nozzles disposed on the nozzle plate and the nozzle tube are the same or different in diameter from each other.
  4. 제1항에 있어서,According to claim 1,
    상기 전기방사장치는 노즐에서 방사되지 못하고 오버플로우된 방사용액을 오버플로우 방사용액 저장탱크에 수집하여 진공과 온도 조절 및 교반을 통하여 방사용액 내의 수분이 함유된 용제를 리시브 탱크에 이송시키는 수분제거장치를 포함하는 나노 멤브레인의 제조방법.The electrospinning device is a water removal device that collects the spinning solution that overflowed without being spun from the nozzle in the overflow spinning solution storage tank, and transfers the solvent containing moisture in the spinning solution to the receiving tank through vacuum, temperature control, and agitation. A method of manufacturing a nanomembrane comprising a.
  5. 제1항에 있어서,According to claim 1,
    상기 노즐판 및 노즐관은 각각 계량펌프와 조절밸브를 구비하며,The nozzle plate and the nozzle pipe each include a metering pump and a control valve,
    상기 각 노즐판 및 노즐관에 공급되는 방사용액은 서로 동일하거나 상이한 나노 멤브레인의 제조방법.A method of manufacturing a nano-membrane in which the spinning solution supplied to each nozzle plate and the nozzle tube is the same or different from each other.
  6. 제1항에 있어서,According to claim 1,
    상기 고분자는 폴리유산(PLA), 폴리카보네이트(PC), 폴리비닐리덴플루오라이드(PVDF), 폴리프로필렌(PP), 폴리에틸렌텔레프탈레이트(PET), 폴리에테르설폰(PES), 폴리아미드, 폴리비닐아세테이트, 폴리메틸메타아크릴레이트, 폴리아크릴로니트릴(PAN), 폴리우레탄(PUR), 폴리부틸렌텔레프탈레이트(PBT), 폴리비닐부틸랄, 폴리비닐클로라이드, 폴리에틸렌이민, 폴리초산비닐(PVAc), 폴리에틸렌나프탈레이트(PEN), 폴리비닐알콜(PVA), 폴리에틸렌이미드(PEI), 폴리카프로락톤(PCL) 및 폴리유산글리롤산(PLGA)으로 이루어진 군에서 선택된 1종 또는 2종 이상인 나노 멤브레인의 제조방법.The polymer is polylactic acid (PLA), polycarbonate (PC), polyvinylidene fluoride (PVDF), polypropylene (PP), polyethylene terephthalate (PET), polyethersulfone (PES), polyamide, polyvinyl acetate , polymethyl methacrylate, polyacrylonitrile (PAN), polyurethane (PUR), polybutylene terephthalate (PBT), polyvinylbutylral, polyvinyl chloride, polyethyleneimine, polyvinyl acetate (PVAc), polyethylene Naphthalate (PEN), polyvinyl alcohol (PVA), polyethylene imide (PEI), polycaprolactone (PCL) and polylactic acid glycerol acid (PLGA) method of manufacturing one or more kinds of nano-membrane selected from the group consisting of .
  7. 제1항 내지 제6항 중 어느 한 항에 기재된 제조방법으로 제조되며, 두께가 0.1 내지 20㎛이고, 평량이 1 내지 10g/m 2인 나노 멤브레인.A nanomembrane prepared by the manufacturing method according to any one of claims 1 to 6, having a thickness of 0.1 to 20 μm, and a basis weight of 1 to 10 g/m 2 .
PCT/KR2021/000521 2020-02-25 2021-01-14 Nanomembrane having uniform basis weight, and production method therefor WO2021172754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200023089A KR102278152B1 (en) 2020-02-25 2020-02-25 Nano membrane and method for manufacturing the same
KR10-2020-0023089 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021172754A1 true WO2021172754A1 (en) 2021-09-02

Family

ID=77125995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000521 WO2021172754A1 (en) 2020-02-25 2021-01-14 Nanomembrane having uniform basis weight, and production method therefor

Country Status (2)

Country Link
KR (1) KR102278152B1 (en)
WO (1) WO2021172754A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102641195B1 (en) * 2021-11-26 2024-02-27 (주)나노랩스 Electrospinning Device Capable of Recovering Different Types of Spinning Liquids

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077313A (en) * 2004-01-27 2005-08-02 김학용 A bottom-up electrospinning devices, and nanofibers prepared by using the same
KR100595485B1 (en) * 2004-05-03 2006-07-03 김학용 Conjugate electrospinning devices, conjugate nonwoven and filament comprising nanofibers prepared by using the same
KR20150058920A (en) * 2013-11-21 2015-05-29 (주)에프티이앤이 Electrospinning devices of manufacture for nano fiber
KR101635024B1 (en) * 2014-08-13 2016-06-30 박종철 Nano fiber and nano fiber manufacture method of low solvent remaing amount
KR20180037785A (en) * 2016-10-05 2018-04-13 (주)에프티이앤이 An airpermeable and waterproof textile for clothes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050077313A (en) * 2004-01-27 2005-08-02 김학용 A bottom-up electrospinning devices, and nanofibers prepared by using the same
KR100595485B1 (en) * 2004-05-03 2006-07-03 김학용 Conjugate electrospinning devices, conjugate nonwoven and filament comprising nanofibers prepared by using the same
KR20150058920A (en) * 2013-11-21 2015-05-29 (주)에프티이앤이 Electrospinning devices of manufacture for nano fiber
KR101635024B1 (en) * 2014-08-13 2016-06-30 박종철 Nano fiber and nano fiber manufacture method of low solvent remaing amount
KR20180037785A (en) * 2016-10-05 2018-04-13 (주)에프티이앤이 An airpermeable and waterproof textile for clothes

Also Published As

Publication number Publication date
KR102278152B1 (en) 2021-07-19

Similar Documents

Publication Publication Date Title
WO2018012932A1 (en) The 3d polymer nanofiber membrane composed of 1d individual polymer nanofibers which are quasi-aligned and cross-laminated like grid structure with functions of controlling pore distribution and size, and manufacturing method thereof
WO2014171625A1 (en) Electrospinning apparatus
CN103370457A (en) Nanofiber manufacturing device
US20160250575A1 (en) Filter Comprising Nanofiber Between Substrates And Method For Manufacturing The Same
WO2021172754A1 (en) Nanomembrane having uniform basis weight, and production method therefor
WO2012077873A1 (en) Method and device for manufacturing nanofibers
WO2012111930A2 (en) Electrospinning apparatus, and apparatus for manufacturing nanofibers
WO2021172753A1 (en) Nanofilter having improved filter efficiency and lifespan, and method for manufacturing same
KR101563599B1 (en) Electro-blown and electro-spinning devices of manufacture for nano fiber
KR101834404B1 (en) Both sides substrate nanofiber web for excellent adhesion property, a separator using it and its manufacturing method
WO2012077864A1 (en) Field emission device and nanofiber manufacturing device
KR20160020310A (en) Electrospinning device containing temperature control system for manufacturing nano fiber
KR101635024B1 (en) Nano fiber and nano fiber manufacture method of low solvent remaing amount
WO2012077865A1 (en) Field emission device and nanofiber manufacturing device
KR20180037682A (en) Multi-layered nanofiber web with adhesion and its method
WO2016171329A1 (en) Electrospinning device comprising temperature adjustment device, method for manufacturing nanofiber filter using same, and nanofiber filter manufactured thereby
WO2012077866A1 (en) Nano-fiber manufacturing device
KR20150023960A (en) Nanofiber filter using Electro-Spinning and Meltblown and its manufacturing method
WO2012077869A1 (en) Method and device for manufacturing nanofiber
KR101382575B1 (en) Assistant carrying apparatus for electrospinning device
KR101617847B1 (en) Nanofiber manufacture method containing temperature control system
KR101479751B1 (en) Electrospinning devices of manufacture for nano fiber
KR101834405B1 (en) Both sides substrate nanofiber web for excellent adhesion property, a separator using it and its manufacturing method
KR101382572B1 (en) Electrospinning with speed control device
KR101617850B1 (en) Nano fiber method containing temperature control system without diluent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760917

Country of ref document: EP

Kind code of ref document: A1