WO2016171329A1 - Electrospinning device comprising temperature adjustment device, method for manufacturing nanofiber filter using same, and nanofiber filter manufactured thereby - Google Patents

Electrospinning device comprising temperature adjustment device, method for manufacturing nanofiber filter using same, and nanofiber filter manufactured thereby Download PDF

Info

Publication number
WO2016171329A1
WO2016171329A1 PCT/KR2015/007143 KR2015007143W WO2016171329A1 WO 2016171329 A1 WO2016171329 A1 WO 2016171329A1 KR 2015007143 W KR2015007143 W KR 2015007143W WO 2016171329 A1 WO2016171329 A1 WO 2016171329A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
nanofiber
spinning solution
nanofiber filter
polymer
Prior art date
Application number
PCT/KR2015/007143
Other languages
French (fr)
Korean (ko)
Inventor
박종철
Original Assignee
박종철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150057481A external-priority patent/KR101778255B1/en
Priority claimed from KR1020150057480A external-priority patent/KR20160126468A/en
Priority claimed from KR1020150057479A external-priority patent/KR101739901B1/en
Application filed by 박종철 filed Critical 박종철
Publication of WO2016171329A1 publication Critical patent/WO2016171329A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/05Air intakes for gas-turbine plants or jet-propulsion plants having provisions for obviating the penetration of damaging objects or particles
    • F02C7/052Air intakes for gas-turbine plants or jet-propulsion plants having provisions for obviating the penetration of damaging objects or particles with dust-separation devices

Definitions

  • the present invention relates to an electrospinning apparatus including a temperature control device, a method of manufacturing a nanofiber filter using the same, and a nanofiber filter manufactured by the method, and more specifically, to a temperature higher than that of a conventional electrospinning temperature.
  • the present invention relates to a manufacturing apparatus and method for producing a nanofiber filter by electrospinning a spinning solution containing a polymer of high concentration at a temperature, and a nanofiber filter manufactured by the manufacturing method.
  • an electrospinning device comprising a temperature control device, characterized in that a diluent is not used, nanofibers using the same A method for producing a filter and a nanofiber filter produced by the method.
  • Electrospinning apparatus comprising a temperature control device for adjusting the basis weight of the nanofiber filter laminated on the substrate by controlling the radiation amount of the polymer spinning solution electrospun, a method of manufacturing a nanofiber filter using the same, and as a manufacturing method It relates to a manufactured nanofiber filter.
  • nanofiber refers to a microfiber having a diameter of only tens to hundreds of nanometers, and the products such as nonwoven fabric, membrane, and braid composed of nanofibers are used for household goods, agriculture, clothing, and industrial use. Widely used.
  • Nanofibers as described above are produced by electric fields.
  • the nanofibers are subjected to a high voltage electric field to the polymer material as a raw material to generate an electric repulsive force inside the polymer material as a raw material, whereby the molecules are agglomerated into nano-sized yarns to produce and produce the nanofibers.
  • Electrospinning apparatus for manufacturing and producing such thin nanofibers is provided with a spinning solution main tank filled with spinning solution, a metering pump for quantitative supply of spinning solution, and a plurality of nozzles for ejecting spinning solution. It is configured to include a nozzle block that is located at the bottom of the nozzle, a collector for accumulating the fibers to be emitted and a voltage generator for generating a voltage.
  • the electrospinning device having the structure as described above comprises a metering pump for quantitative supply of the spinning solution main tank filled with the spinning solution and the polymer spinning solution filled in the spinning solution main tank and the polymer spinning solution in the spinning solution main tank.
  • Discharge, but collectors are spaced apart from the nozzle and a high voltage to the collector in order to accumulate a nozzle block in which a plurality of nozzles in the form of pins are arranged and the polymer spinning solution to be injected is located on the top of the nozzle It consists of a unit containing the device.
  • the spinning solution in the spinning solution filled with the spinning solution is quantitatively supplied to a plurality of nozzles to which a high voltage is applied through a metering pump, and the spinning solution is supplied to the nozzle.
  • the nanofiber is spun and focused through a nozzle on a collector where high voltage is applied to form a nanofiber web, and a nanofiber web is formed on a long sheet conveyed to the units of the electrospinning apparatus, and the nanofibers are laminated.
  • the elongated sheet is passed through each unit, and the nanofibers are repeatedly stacked and then laminated, embossed, heat and pressed, and needle punched to produce a nonwoven fabric.
  • the electrospinning device is divided into a bottom-up electrospinning device, a top-down electrospinning device, and a horizontal electrospinning device according to the direction of the position on the collector. That is, the electrospinning device is made of a configuration in which the collector is located at the top of the nozzle, a bottom-up electrospinning apparatus capable of producing uniform and relatively thin nanofibers, and the collector is configured in the bottom of the nozzle, It is possible to produce a thick nanofiber, it is divided into a top-down electrospinning device that can increase the production of nanofibers per unit time and a horizontal electrospinning device consisting of a collector and a nozzle arranged in a horizontal direction.
  • Upward electrospinning device is composed of a configuration in which the spinning solution is injected through the nozzle of the upward nozzle block, the spinning solution is sprayed is laminated on the lower surface of the support to form nanofibers.
  • the long sheet of nanofiber web is laminated by spraying the spinning solution through a nozzle in one unit of the bottom-up electrospinning apparatus is transferred into another unit, and transferred into another unit.
  • the nanofiber web is manufactured by repeatedly performing the above-described process, such as spraying the spinning solution through a nozzle on a long sheet, and stacking nanofibers again.
  • the spinning solution injected through the nozzle of the nozzle block comprises a polymer polymer and a solvent.
  • the polymer included in the spinning solution is laminated on the polymer long sheet to form nanofibers when spinning the spinning solution through the nozzle of the nozzle unit of the electrospinning apparatus, but the polymer polymer discharged to the end of the nozzle during the spinning process is not fibrous. If you do not fall into the nozzle block.
  • the polymer polymer that is spun through the nozzle but is not fibrous and overflows is 70 to 90% by weight of the total polymer of the electrospun, and is fed back to the storage tank through the overflow system and from the storage tank.
  • the prior literature related to electrospinning was carried out after fixing the concentration of the polymer solution for electrospinning.
  • devices for fixing the concentration and technical processes are required.
  • a diluent is used in the case of electrospinning including an overflow system that reuses a polymer solution that is not fibrous and falls into the nozzle block. This is necessary, and the addition of a diluent causes a decrease in production speed, a risk of explosion, and problems in production cost.
  • the concentration is maintained using a predetermined level of solvent.
  • the electrospinning is usually performed with a low concentration of polymer solution, and the productivity is low due to the relative reduction of the solid content accumulated in the collector due to the use of the electrospinning solvent, which requires a lot of time to achieve the target yield.
  • a problem caused by the use of a low concentration of the polymer solution is a relatively high level of the remaining solvent other than the polymer polymer in the nanofibrous layer integrated in the collector, causing a problem of poor quality of the nanofibers.
  • the basis weight of the entire nanofiber filter used as the filter material must be constant and uniform. It was possible to produce and sell the product by satisfying the standard.
  • the filter used for the gas turbine of a thermal power plant depending on the direction of air inflow, the position of the air inlet, the direction of the air exhaust, and the position of the exhaust In some cases, the basis weight of the nanofiber filter constituting the filter material does not need to be constant.
  • the filter portion with active air filtration must adjust the basis weight of the nanofiber filter to increase the air filtration efficiency, while the air filtration is active.
  • the filter part that is not used does not have a lot of air flow rate, so it is possible to adjust the The situation is required to design more durable than the side.
  • the basis weight of the nanofiber filter is a situation that requires a nanofiber filter material having a different basis weight on the same nanofiber filter depending on the position of the air inlet and outlet.
  • An object of the present invention is to provide a device capable of manufacturing a nanofiber filter comprising a.
  • the present invention has been made to solve the above problems, in order to increase the wear resistance and productivity when manufacturing the nanofiber filter, the basis weight in the longitudinal direction (MD) or width direction (CD) of the planar direction of the nanofiber filter layer It is an object to provide these different nanofiber filters and methods for their preparation.
  • the main storage tank for storing the polymer solution
  • the nozzle block for discharging the polymer solution
  • the collector for integrating the nano-membrane, high voltage between the collector and the nozzle block
  • An apparatus for manufacturing a nanofiber filter including a power supply device and an overflow system, wherein the low melting point polymer unit for forming an adhesive layer for adhesion between the substrate, the nanofiber layer, and the nanofiber layer, and the viscosity of the polymer solution to be emitted are fixed. It includes a temperature control device that can be adjusted to, wherein the adhesive layer provides an apparatus for producing a nanofiber filter, characterized in that formed by electrospinning a low melting polymer solution.
  • the low melting point polymer solution is preferably one selected from the group consisting of low melting point polyester, low melting point polyurethane, low melting point polyvinylidene fluoride, and the temperature control device is a polymer solution recovered through an overflow system It is preferable to include a heating device and a cooling device capable of constantly adjusting the viscosity of.
  • the viscosity of the polymer solution is preferably controlled to be constant from 1,000 cps to 3,000 cps
  • the heating device is preferably selected from one or more of the heat transfer heater, hot water circulation device and hot air circulation device
  • the cooling device is chilling It is preferable to be a (chilling) device.
  • the temperature control device is preferably installed in any one or more of the storage tank, the nozzle block and the overflow system.
  • an article comprising: a substrate; At least one nanofiber layer laminated on the substrate by electrospinning;
  • the nanofiber layer is different in the basis weight of the nanofiber in the longitudinal direction (MD), the adhesive layer is a low melting point polymer
  • MD longitudinal direction
  • the adhesive layer is a low melting point polymer
  • an article comprising: a substrate; At least one nanofiber layer laminated on the substrate by electrospinning;
  • a nanofiber filter comprising an adhesive layer formed between the substrate and the nanofiber layer and the nanofiber layer, the nanofiber layer is different in basis weight of the nanofiber in the width direction (CD), the adhesive layer is a low melting point poly
  • a method for producing a nanofiber filter comprising electrospinning a low melting polymer solution selected from vinylidene fluoride, low melting polyurethane, and low melting polyester.
  • the basis weight of the nanofibers is characterized in that to operate a plurality of nozzle tube in the on-off system, the on-off system in the longitudinal direction (MD) or width direction (CD) of the nanofibers are integrated It characterized in that the gradient of basis weight is designed to increase, the on-off system is characterized in that the gradient of the basis weight is designed to increase or decrease in both directions in the longitudinal direction (MD) or width direction (CD) in which the nanofibers are integrated Provided is a method of manufacturing a fiber filter.
  • the on-off system is characterized in that the basis weight alternately designed in the longitudinal direction (MD) or width direction (CD) in which the nanofibers are integrated, the basis weight is in the range of 0.1 to 0.5g / m 2 It provides a method for producing a nanofiber filter, characterized in that different in the longitudinal direction (MD) or the width direction (CD).
  • the present invention provides a device for manufacturing a nanofiber filter including a temperature control device, by maintaining a constant concentration of the polymer solution to suppress the use of a diluent and to form an adhesive layer electrospun a low melting polymer solution between the substrate and the nanofiber layer There is an advantage in providing a more robust nanofiber filter.
  • nanofiber filter having a different basis weight in the longitudinal direction or the width direction, it is possible to improve the durability and productivity of nanofiber production.
  • FIG. 1 is a view schematically showing an electrospinning device according to the prior art
  • FIG. 2 is a view of a nanofiber filter manufacturing method having an overflow system and a temperature control device and a viscosity control system according to the present invention
  • FIG. 3 is a front sectional view showing a tubular body equipped with a coiled heating wire in an electrospinning apparatus having a temperature adjusting apparatus according to the present invention
  • FIG. 4 is a side cross-sectional view taken along line AA ′ of FIG. 3;
  • FIG. 5 is a front sectional view showing a tubular body equipped with a heating wire in a linear form in the electrospinning apparatus having a temperature adjusting device according to the present invention
  • FIG. 6 is a side cross-sectional view taken along line B-B 'of FIG. 5;
  • FIG. 7 is a front sectional view showing a tubular body equipped with a U-shaped pipe in an electrospinning apparatus having a temperature regulating apparatus according to the present invention
  • FIG. 8 is a side cross-sectional view taken along line CC ′ of FIG. 7;
  • 9 and 10 are graphs showing the viscosity value of the polyurethane and polyvinylidene fluoride for each temperature
  • FIG. 11 is a side view schematically showing an electrofiber spinneret of FIG. 1.
  • FIG. 13 and 13 are a plan view schematically showing a nozzle body arranged in the nozzle block of the electrospinning apparatus according to the present invention
  • FIG. 14 and 15 are side views schematically showing a nozzle tube arranged in the nozzle block of the electrospinning apparatus according to the present invention.
  • FIG. 16 is a perspective view schematically showing a nozzle tube arranged in a nozzle block of the electrospinning apparatus according to the present invention.
  • FIG. 17 to 20 is an operation process of the polymer spinning solution is electrospun on the same plane of the substrate through the nozzle of each nozzle tube of the nanofiber filter electrospinning apparatus according to the present invention (nozzle indicated by broken lines in Figs. 17 and 18)
  • nozzle indicated by broken lines in Figs. 17 and 18 A plan view schematically showing this closed nozzle, and a nozzle indicated by broken lines in FIGS. 19 and 20 indicates that it is located below the substrate),
  • 21 to 23 is a plan view of the basis weight nanofiber filter in the CD direction produced by the present invention.
  • 24 to 25 are plan views of nanofiber filters different in basis weight in the MD method produced by the present invention.
  • Nanofiber manufacturing method is configured to include an overflow system (200) for recycling the spinning solution spun from the electrospinning apparatus (1) nozzle block 110, but not nanofiberized.
  • the electrospinning apparatus 1 includes a case 102, a nozzle block 110, a collector 150, a power supply device 160, an auxiliary belt device 170, and a unit 100, 100 ′ therein. ),
  • the main storage tank 210, the second transfer pipe 216, the second transfer control device 218 and the regeneration tank 230 and the overflow system 200 consisting of these.
  • the case 102 is preferably made of a conductor, but the case 102 may be made of an insulator, or the case 102 may be applied by mixing a conductor and an insulator, and made of various other materials. It is also possible.
  • the nozzle 42 of the nozzle block 110 can be a bottom-up, a top-down, and a horizontal type, and in particular, in the electrospinning apparatus to which the overflow system 200 is applied, bottom-up electrospinning is preferable.
  • a plurality of nozzles 42 are installed in a bottom-up, top-down or horizontal manner, and receives the spinning solution from the main storage tank 210 or the regeneration tank 230.
  • the invention will be described based on bottom-up electrospinning, and the following bottom-up radiation is not intended to limit the scope of the present invention, but is merely presented as an example, and various modifications may be made without departing from the technical scope of the present invention. .
  • the tip of the nozzle 42 of the bottom-up electrospinning is preferably formed in a shape cut along the plane that crosses the cylinder at an angle to the axis of the cylinder, but the tip of the nozzle 42 of the portion of the nozzle block 110 is shaped like a fallopian tube. It is also possible to have a shape.
  • the collector 150 is disposed above the nozzle block 110, is made of a conductor, and is attached to the case 102 through the insulating member 152. At this time, when the case 102 is made of an insulator, or the upper portion of the case 102 is used as an insulator, and the lower portion is used as a conductor, the insulating member 152 may be deleted.
  • the power supply device 160 applies a high voltage between the collector 42 and the nozzles 42 arranged in a plurality of nozzle blocks 110 upwardly.
  • the positive electrode of the power supply device 160 is connected to the collector 150, and the negative electrode of the power supply device 160 is connected to the nozzle block 110 through the case 102.
  • the nanofibers produced through the nozzle 42 for discharging the nanofibers from the discharge port toward the collector 150 upward from the discharge port are deposited on the long sheet and move while maintaining a uniform thickness.
  • the electrospun nanofibers are fibers of an average diameter of 50 ⁇ 1000nm prepared by spinning the electrospun synthetic resin material
  • the synthetic resin material capable of electrospinning is not limited separately, for example, polypropylene (PP) , Polyethylene terephthalate (PET), polyvinylidene fluoride, nylon, polyvinylacetate, polymethyl methacrylate, polyacrylonitrile (PAN), polyurethane (PUR), polybutylene terephthalate (PBT), poly Vinyl butyral, polyvinyl chloride, polyethyleneimine, polyolefin, polylactic acid (PLA), polyvinyl acetate (PVAc), polyethylene naphthalate (PEN), polyamide (PA), polyvinyl alcohol (PVA), polyethyleneimide ( PEI), polycaprolactone (PCL), polylactic acid glycolic acid (PLGA), silk, cellulose, chitosan, etc.
  • PP polypropylene
  • PET Polyethylene terephthalate
  • PET
  • polypropylene (PP) material and heat-resistant polymer polyamide Aromatic polyesters such as polyimide, polyamideimide, poly (meth-phenylene isophthalamide), polysulfone, polyetherketone, polyetherimide, polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate and the like
  • Polyphosphazenes such as tetrafluoroethylene, polydiphenoxyphosphazene, polybis [2- (2-methoxyethoxy) phosphazene], polyurethane copolymers including polyurethane and polyetherurethane, cellulose Groups of polymers such as acetate, cellulose acetate butyrate and cellulose acetate propionate are widely used commercially.
  • the spinning solution supplied through the nozzle 42 in the unit 100, 100 ′ is a solution in which the polymer, which is the electrospinable synthetic resin material, is dissolved in a suitable solvent, and the kind of solvent may also dissolve the polymer.
  • a suitable solvent for example phenol, formic acid, sulfuric acid, m-cresol, thifluoroacetide & hydride / dichloromethane, water, N-methylmorpholine N-oxide, chloroform, tetrahydro Furan and aliphatic ketone groups methyl isobutyl ketone, methyl ethyl ketone, aliphatic hydroxyl group m-butyl alcohol, isobutyl alcohol, isopropyl alcohol, methyl alcohol, ethanol, aliphatic compounds hexane, tetrachloroethylene, acetone, propylene as glycol group In the glycol, diethylene glycol, ethylene glycol, halogen compound group,
  • the outer side of the collector 150 is provided with an auxiliary belt device, the auxiliary belt device 170 is to rotate the auxiliary belt 172 and the auxiliary belt 172 to rotate in synchronization with the feed rate of the long sheet.
  • the auxiliary belt roller 174 and the auxiliary belt driving device for driving the auxiliary belt 172 are provided.
  • the auxiliary belt roller 174 preferably rotates the auxiliary belt 172 by the auxiliary belt driving device, but also by using a roller with a low coefficient of friction to assist the transfer of the long sheet without a separate driving device. It is possible.
  • the main storage tank 210 stores the spinning solution that is a raw material of the nanofibers.
  • the main storage tank 210 is provided with a stirring device 211 to prevent separation or solidification of the spinning solution therein.
  • the second transfer pipe 216 is composed of a pipe and a valve 233 connected to the main storage tank 210 or the regeneration tank 230, and intermediate from the main storage tank 210 or the regeneration tank 230.
  • the spinning solution is transferred to the tank 220.
  • the second transfer control device 218 controls the transfer operation of the second transfer pipe 216 by controlling the valves 212, 213, 214 of the second transfer pipe 216.
  • the valves 212, 213, 214 control the transfer of the spinning solution from the main storage tank 210 to the intermediate tank 220, and control the transfer of the spinning solution from the regeneration tank 230 to the intermediate tank 220.
  • the amount of the spinning solution flowing into the intermediate tank 220 from the main storage tank 210 and the regeneration tank 230 is controlled.
  • the control method as described above is controlled according to the liquid level of the spinning solution measured by the second sensor 222 of the intermediate tank 220 to be described later.
  • the intermediate tank 220 stores the spinning solution supplied from the main storage tank 210 or the regeneration tank 230, supplies the spinning solution to the nozzle block 110, and measures the liquid level of the supplied spinning solution.
  • the second sensor 222 is provided.
  • the second sensor 222 may be a sensor capable of measuring the liquid level, and is preferably made of, for example, an optical sensor or an infrared sensor.
  • the lower portion of the intermediate tank 220 is provided with a supply pipe 24 and a supply control valve 242 for supplying the spinning solution to the nozzle block 110, the supply control valve 242 is the supply pipe 240 Control the supply operation.
  • the regeneration tank 230 has a stirring device 231 for storing the spinning solution recovered due to overflow and preventing separation or coagulation of the spinning solution, and a first sensor for measuring the liquid level of the recovered spinning solution ( 232).
  • the first sensor 232 may be a sensor capable of measuring the liquid level, and for example, it is preferable that the first sensor 232 is formed of an optical sensor or an infrared sensor.
  • the spinning solution overflowed from the nozzle block 110 is recovered through the spinning solution recovery path 250 provided below the nozzle block 110.
  • the spinning solution recovery path 250 recovers spinning solution to the regeneration tank 230 through the first transfer pipe 251.
  • the first transfer pipe 251 is provided with a pipe and a pump connected to the regeneration tank 230, and transfers the spinning solution from the spinning solution recovery path 250 to the regeneration tank 230 by the power of the pump. .
  • the regeneration tank 230 is preferably at least one, in the case of two or more may be provided with a plurality of the first sensor 232 and the valve 233.
  • a plurality of valves 233 positioned above the regeneration tank 230 are also provided, so that a first transfer control device (not shown) is provided in the regeneration tank 230.
  • Two or more valves located above are controlled according to the liquid level of the first sensor 232 to control which one of the plurality of regeneration tanks 230 of the regeneration tank 230 is transferred.
  • Polymer solution is used for electrospinning.
  • existing inventions include diluents and concentration adjusting devices to maintain a constant concentration of the polymer solution.
  • a diluent MEK (methyl ether ketone), THF (tetra hydrofuran), and alcohol are used.
  • the concentration of the polymer solution recovered through the overflow system 200 is the concentration of the polymer solution initially supplied from the main storage tank 210. It will have a higher concentration.
  • a diluent was added to maintain a certain level of the polymer solution.
  • MEK or THF which is used as a diluent, has a low boiling point (b.p) (about 60 ° C.) and is easier to disperse nanofibers than the case of using DMAc alone as a solvent during electrospinning.
  • the present invention is to increase the efficiency of electrospinning by using a high concentration of the polymer solution to be reused after the overflow instead of maintaining a constant concentration, but by constantly adjusting the viscosity of the polymer solution using the temperature control controller 60 It provides a means and excellent scattering properties at high temperature conditions to control high viscosity without the use of diluents to facilitate nanofiber formation of polymer solutions.
  • Viscosity refers to the ratio of the skew stress and skew rate of the solute and solvent in the flowing liquid. It is usually expressed in terms of viscoelasticity per cut area and the unit is dynscm-2gcm-1s-1 or poise (P). The viscosity decreases in inverse proportion to the temperature rise. The viscosity of the solution is higher than that of the solvent because the flow of the liquid is skewed depending on the solute and the flow rate of the liquid is reduced by that amount.
  • K and a at this time are integers which depend on a kind of a solute or a solvent, and temperature. Therefore, the viscosity value is affected by temperature and the degree of change depends on the type of fluid. Therefore, when talking about viscosity, you must specify the values of temperature and viscosity.
  • the fiber diameter and radioactivity of the nanofibers in which the type of polymer and solvent used, the concentration of the polymer solution, the temperature and humidity of the spinning room, etc. are manufactured. It is known to affect. That is, the physical properties of the polymer (polymer solution) radiated by electrospinning is important. In general, the viscosity of the polymer during electrospinning has been considered necessary to maintain a certain viscosity or less. This is due to the characteristic that the higher the viscosity, the spinning of the nano-thickness fiber is not achieved through the nozzle 42, and the higher the viscosity is not suitable for fiberization through electrospinning.
  • the present invention is characterized in that it comprises a temperature control controller 60 for adjusting the viscosity with the temperature control controller 60 to maintain the fiber viscosity suitable for electrospinning as described above.
  • the thermostat control device 60 may include both a heating device capable of maintaining a low viscosity of a high viscosity polymer solution reused through an overflow and a cooling device capable of maintaining a high viscosity of a relatively low viscosity polymer solution. It can be provided.
  • the temperature of the electrospinning region In the temperature of the electrospinning region, the temperature of the region where electrospinning occurs (hereinafter referred to as the 'spinning region') changes the surface tension of the spinning solution by changing the viscosity of the spinning solution, so that the diameter of the nanofibers spun Will affect.
  • the concentration of the polymer solution re-supplied through the overflow tends to increase.
  • the temperature is controlled using a temperature-viscosity graph according to the corresponding concentration. The viscosity can be kept constant (see FIG. 9).
  • the concentration measuring device for measuring the concentration may be a contact type and a non-contact type directly contacting the solution, and the contact type may be a capillary concentration measuring device or a disc (DISC) concentration measuring device.
  • Concentration measuring apparatus or concentration measuring apparatus using infrared light can be used.
  • the heating apparatus of the present invention may be made of a heat transfer heater, a hot water circulation device or a warm air circulation device, etc., in addition to the devices that can increase the temperature in an equivalent range with the above devices can be borrowed.
  • the electric heating heater may be used in the form of a hot wire, and the coil wires 62a and 62b may be mounted inside the tubular body 43 of the nozzle block 110, which may be transformed into a jacket ( 3 to 8).
  • Such a heating apparatus includes a nozzle block 110 in which the polymer solution is radiated, a tank (main storage tank, an intermediate tank or a regeneration tank) in which the polymer solution is stored, and an overflow system 200, in particular, transferred from the recovery part to the regeneration tank. It may be provided in any one or more of the transfer piping).
  • a cooling means including a chilling device may be used, and a means for maintaining a constant viscosity of the polymer solution is generally applicable.
  • the cooling device may be provided in any one or more of the nozzle block 110, the tank, and the overflow system 200 in the same manner as the heating device, and is used to maintain a constant viscosity of the polymer solution.
  • the temperature control controller 60 of the present invention includes a sensor for measuring the concentration and thus a temperature control controller (not shown) for controlling the temperature.
  • the sensor is installed in the main storage tank 210, the intermediate tank 220, the regeneration tank 230, the nozzle block 110 or the overflow system 200 and the like to measure the concentration of the spinning solution in real time to control the temperature control In the device 60, the heating and / or cooling device is operated so that the viscosity is kept constant.
  • the concentration of the polymer solution re-supplied through the overflow system 200 of the present invention is 20 to 40%, which is a higher concentration of solution than the concentration of 10 to 18% of the polymer solution used in conventional electrospinning.
  • the temperature of the polymer solution according to the concentration of the polymer solution is characterized in that it is adjusted to 45 to 120 °C, not room temperature.
  • the polymer solution of the present invention preferably has a viscosity of 1,000 to 5,000 cps, more preferably 1,000 to 3,000 cps. If the viscosity is 1,000 cps or less, the quality of the nanofibers laminated by electrospinning is poor, and if the viscosity is 3,000 cps or more, the discharge of the polymer solution from the nozzle 42 is not easy during electrospinning, and thus the production speed is slowed.
  • the present invention as the electrospinning proceeds, the viscosity of the polymer solution is constant, so that it is excellent in the easiness of spinning during electrospinning and the concentration of the polymer solution is increased, thereby increasing productivity by increasing the amount of solids excluding the solvent in the nanofibers concentrated on the collector. This has the effect of increasing.
  • the amount of the remaining solvent of the nanofibers using the electrospinning is less than when using the conventional electrospinning it can be produced a nanofiber of excellent quality.
  • the temperature control control device 60 of the present invention to measure the concentration of the intermediate tank 220 by the operator offline to adjust the viscosity of the polymer solution through the temperature control of the nozzle block 110 or the main storage tank 210.
  • the automatic control system online includes automatic control of the temperature of the solution according to the concentration measurement.
  • a method of manufacturing a nanofiber filter using electrospinning electrospinning which includes a temperature control controller 60 and maintains a constant viscosity, will be described.
  • the following manufacturing method is only one manufacturing method of the present invention, and the scope of the present invention is not limited thereto.
  • the manufacturing method of the nanofibers constituting the nanofiber filter includes a supply step of supplying the polymer solution to the nozzle block 110 from the main storage tank 210 in which the polymer solution is stored.
  • the polymer solution introduced into the main storage tank 210 may be variously used as described above.
  • the polymer solution supplied from the main storage tank 210 to the nozzle block 110 includes an electrospinning step of electrospinning the collector 150 through the nozzle 42 to stack the nanofiber layer.
  • the electrospinning step the distance between the nozzle block 110 and the collector 150 is adjusted to 20 to 50 cm on average, the applied voltage is adjusted to 10 to 40 kV, and the flow rate, temperature and humidity of the polymer solution It can be set in a normal range.
  • the electrospinning step only 30 to 10% of the polymer solution electrospun from the nozzle block 110 is nanofiberized, and the remaining 70 to 90% of the polymer solution is not nanofiberized.
  • the polymer solution that is not nanofiberized is subjected to a recovery step of collecting and collecting the regeneration tank 230 through the overflow system 200.
  • the polymer solution stored in the regeneration tank 230 may be directly supplied to the nozzle block 110.
  • the polymer solution may be introduced into the regeneration tank 230 from the main storage tank 210 to the regeneration tank 230. Through the storage step to be stored may be supplied back to the nozzle block (110).
  • the regeneration tank 230 undergoes a resupply step in which the polymer solution is resupplied to the nozzle block 110.
  • the temperature control controller 60 is provided in the nozzle block 110 to constantly adjust the viscosity of the polymer solution. Is installed.
  • the temperature control controller 60, as well as the nozzle block 110 may be installed in any one of the overflow system 200, the regeneration tank 230 or the main storage tank (210).
  • the electrospinning apparatus 100 is composed of a bottom-up electrospinning device, consisting of at least one unit (110, 110 ').
  • the electrospinning apparatus 100 is composed of a bottom-up electrospinning apparatus, it may be made of a top-down electrospinning apparatus.
  • the unit (110, 110 ') is a metering pump for supplying the quantitative supply of the polymer spinning solution filled in the spinning solution main tank 120 and the spinning solution main tank 120 filled with the polymer spinning solution (not shown) And a nozzle block for discharging the polymer spinning solution in the spinning solution main tank 120, wherein a plurality of nozzle pipes 112 having a plurality of nozzles 111a having a pin shape are arranged in a lateral direction of the collector ( In order to accumulate the 111 and the polymer spinning solution sprayed from the nozzle 111a, the collector 113 and the voltage generator 114 for generating a high voltage to the collector 113 are spaced apart at a predetermined interval from the nozzle 111a. It is configured to include).
  • the nanofiber filter electrospinning apparatus 1 is continuously supplied to the nozzle block 111 in which the polymer spinning solution filled in the spinning solution main tank 120 is applied with a high voltage through a metering pump,
  • the polymer spinning solution supplied to the nozzle block 111 is spun and focused on the collector transported in the electrospinning apparatus through the nozzle 111a on the collector 113 on which the high voltage is applied to form a nanofiber filter. .
  • the nozzle block 111 of the electrospinning apparatus 100 has a plurality of nozzle pipes 112 are arranged in the transverse direction, the spinning liquid main tank for supplying a polymer spinning solution to the nozzle pipe (112) ( 120 is provided with at least one connection.
  • the nozzle body (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) is formed in a rectangular parallelepiped, a plurality of nozzles (111a) are provided linearly on the upper surface of the nozzle block 111 And a plurality of nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i are arranged in the transverse direction of the collector in the spinneret main tank 120 The polymer spinning solution filled in the tank 120 is supplied.
  • each nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) is connected to the spinning solution main tank 120 as a solution supply pipe 121, the solution supply pipe 121 is A plurality of branching bodies are connected to connect the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i and the spinning solution main tank 120.
  • the supply amount adjusting means (not shown) to the solution supply pipe 121 that is addressed to each nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) in the spinning solution main tank 120 Is provided, the supply amount adjusting means is made of a supply valve (122).
  • the supply valve 122 is provided in each of the solution supply pipes 121 extending from the spinning solution main tank 120 to the nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i.
  • the supply of the polymer spinning solution supplied from the spinning solution main tank 120 to each nozzle tube 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i by the respective supply valves 122 is controlled. And controlled.
  • the nozzle is opened and closed by the supply valve 122 provided in the solution supply pipe 121 extending the main tank 120 and the nozzle pipe bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i.
  • nozzle pipes 112b, 112d, 112f, 112g, 112h, 112i at a specific position among the nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i arranged in the block 111.
  • Each nozzle pipe 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i in the spinning solution main tank 120 by opening and closing the supply valve 122, etc.
  • the supply of the polymer spinning solution to be controlled is controlled.
  • the supply valve 122 is controllably connected to the control unit (not shown), it is preferable that the opening and closing of the supply valve 122 is automatically controlled by the control unit, according to the site situation and the needs of the operator It is also possible that the opening and closing of the supply valve 122 is controlled manually.
  • the supply amount adjusting means is composed of a supply valve 122, but in the spinning solution main tank 120, each nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) Control and control of the supply amount of the polymer spinning solution to be supplied to the) If available, the supply amount adjusting means may be made of various other structures and means, but is not limited thereto.
  • the solution supply pipe 121 is to branch, while the spinning solution main tank 120 and each nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) to be addressed
  • Each of the supply valves 122 is provided in each of the plurality of nozzles 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i from the spinning solution main tank 120 to supply a plurality of polymer spinning solutions.
  • the nozzle at a specific position among the nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i, which is opened to the nozzle block 111 by opening a specific supply valve 122 among the supply valves 122.
  • nozzles 1 in the spinning solution main tank 120 by opening and closing the supply valve 122, for example, blocking the supply of the polymer spinning solution only to 112c and 112e.
  • the supply of the polymer spinning solution to 12a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) is regulated and controlled.
  • the polymer spinning solution supplied to each nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) through the solution supply pipe 121 in the spinning solution main tank 120 is the solution supply pipe It is supplied to each nozzle 111a provided in the nozzle pipe bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i through the nozzle supply pipe 125 extended to 121. As shown in FIG.
  • each nozzle 111a provided in the solution supply pipe 121 and the nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i is addressed to the nozzle supply pipe 125, and
  • the nozzle supply pipe 125 is branched to correspond to the number of nozzles 111a.
  • the nozzle supply pipe 125 is provided with a radiation dose adjusting means (not shown), the radiation dose adjusting means is composed of a nozzle valve (126).
  • the nozzle valve 126 is provided as the radiation amount adjusting means to individually control the supply of the polymer spinning solution supplied from the nozzle supply pipe 125 to each nozzle 111a by opening and closing the nozzle valve 126.
  • the nozzle valve 126 is controllably connected to a control unit (not shown), but the opening and closing of the nozzle valve 126 are preferably controlled automatically by the control unit. Opening and closing of the nozzle valve 126 may be controlled manually.
  • the radiation dose adjusting means is composed of a nozzle valve 126, the radiation dose adjusting means if it is easy to control and control the radiation dose of the polymer spinning solution that is emitted after being supplied to the nozzle 111a from the nozzle tube May be made of various other structures and means, but is not limited thereto.
  • the solution supply pipe 121 and the nozzles 111a are connected and installed, and the nozzle valve 126 is provided in the nozzle supply pipe 125 which is branched, respectively, and the spinning solution main tank 120 is provided.
  • the nozzle valve 126 is provided in the nozzle supply pipe 125 which is branched, respectively, and the spinning solution main tank 120 is provided.
  • a specific nozzle valve 126 to close the nozzle body 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i of each of the nozzles (111a) provided in the nozzle 111a at a specific position Selectively block the electrospinning of the spinning solution, such as the nozzle valve 126 in the spinning solution main tank 120 in the nozzle pipe (112a, 1)
  • the supply of the polymer spinning solution supplied to each nozzle 111a through 12b, 112c, 112d, 112e, 112f, 112g, 112h, 112i is individually controlled and controlled.
  • the supply valve 122 is provided in the solution supply pipe 121 so that each nozzle pipe 112a, 112b, 112c, 112d, 112e of the nozzle block 111 in the spinning solution main tank 120 is provided.
  • Nanofiber filters having different basis weights in the width direction of the collector are formed by stacking the polymer spinning solution electrospun from the nozzles 111a of 112g, 112h, and 112i, but the nozzles 111a are formed on the nozzle block 111.
  • each nozzle 111a is directly adjusted and controlled individually.
  • adjusting and controlling the amount of radiation of the polymer spinning solution to be electrospun can be made to form a laminate having different nanofiber filter having a basis weight in the widthwise direction of the collector, and shall not be limited thereto.
  • the nanofiber filter nanofiber filter (115a, 115b, 115c) having a (115c) of different basis weight, such as in the same longitudinal or lateral direction of the collector to form a lamination plane of may form various laminated.
  • the length of the collector is controlled by controlling the nozzle body of the nozzle block 111 and the nozzle 111a of the nozzle body 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i.
  • a nanofiber filter having three kinds of basis weights having different basis weights on the same plane in the transverse direction is laminated.
  • nanofiber filters having three kinds of different basis weights are formed on the same plane in the longitudinal or transverse direction of the collector, but the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) and each nozzle 111a of the nozzle body 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i to control the collector.
  • nanofiber filter having two different basis weights on the same plane in the longitudinal or transverse direction
  • the nozzle pipe bodies 112a, 112b, 112c, 112d, 112e, and 112f of the nozzle block 111 can be formed at the same time.
  • 112g, 112h, 112i) and the nozzles 111a of the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i to control the collector in the longitudinal or transverse coplanar direction.
  • the material of the polymer spinning solution to be filled in the spinning solution main tank 120 is not limited, for example, polypropylene (PP), polyethylene terephthalate (PET), polyvinylidene fluoride, nylon, poly Vinyl acetate, polymethyl methacrylate, polyacrylonitrile (PAN), polyurethane (PUR), polybutylene terephthalate (PBT), polyvinyl butyral, polyvinyl chloride, polyethyleneimine, polyolefin, polylactic acid (PLA) ), Polyvinyl acetate (PVAc), polyethylene naphthalate (PEN), polyamide (PA), polyvinyl alcohol (PVA), polyethyleneimide (PEI), polycaprolactone (PCL), polylactic acid glycolic acid (PLGA) , Silk, cellulose, chitosan, etc.
  • PP polypropylene
  • PET polyethylene terephthalate
  • PET polyvinylidene fluoride
  • nylon poly Vinyl acetate
  • the collector is introduced and supplied into the units 110 and 110 'of the electrospinning apparatus 100 through a supply roller (not shown) provided at the tip of the electrospinning apparatus 100 according to the present invention.
  • the polymer spinning solution is electrospun within (110, 110 ') to form a nanofiber filter.
  • the collector is conveyed by the conveying belt 116a is rotated between the conveying rollers (116b).
  • the high voltage of the voltage generator 114 is generated on the collector 113 through the nozzle 111a provided in each nozzle tube of the nozzle block 111, and the spinning solution main on the collector 113 where the high voltage is generated. Electrospinning the polymer spinning solution supplied from the tank 120.
  • the polymer spinning solution supplied from the spinning solution main tank 120 to the nozzle block 111 may be formed in each nozzle tube 112a, 112b, 112c, of the spinning solution main tank 120 and the nozzle block 111.
  • the spinning solution main tank 120 supplied to the nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) is a nozzle supply pipe to the solution supply pipe 121 After being supplied to the nozzle 111a through the 125, the electrospinning is performed through the nozzle 111a to form a nanofiber filter on the collector.
  • the supply amount of the polymer spinning solution to be supplied is controlled by the opening and closing of the supply valve 122 respectively provided in the solution supply pipe 121 branched from the spinning solution main tank 120, and the nozzle pipes 112a and 112b.
  • the amount of radiation of the polymer spinning solution electrospun through the nozzles 111a is the nozzle tube 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, It is controlled by the opening and closing of the nozzle valve 126 provided in the nozzle supply pipe 125 branched from the solution supply pipe 121 of 112i), respectively.
  • the radiation amount of the electrospinning polymer spinning solution is controlled through this, thereby allowing stacking of nanofiber filters having different basis weights on the same plane in the longitudinal or transverse direction of the collector.
  • nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i which are arranged in a plurality in the longitudinal direction or the transverse direction of the collector, in one longitudinal direction or the transverse direction of the collector.
  • the solution supply pipe 121 connected to the nozzle pipe bodies 112a and 112c provided at both sides of the supply valve 122 provided in the solution supply pipe 121 of the three nozzle pipes 112a, 112b and 112c located at one side.
  • Each nozzle valve of the nozzle supply pipe 125 is branched to the solution supply pipe 121 for supplying the polymer spinning solution to be supplied to one nozzle pipe 112b, and to supply the polymer spinning solution to the one nozzle pipe 112b ( 126) to open the polymer spinning solution supplied to the one nozzle body 121b all nozzles
  • the polymer spinning solution is electrospun on the collector to form a nanofiber filter 115a having a low basis weight of 50 to 150 nm.
  • the supply valve 122 of the solution supply pipe 121 connected to the nozzle pipe 112e provided at the center of the supply valve 122 provided in the solution supply pipe 121 of the pipe bodies 112d, 112e, and 112f is closed.
  • the polymer spinning solution supplied from the spinning solution main tank 120 was opened by opening the supply valve 122 of the solution supply pipe 121 connected to the two nozzle pipes 112d and 112f respectively provided at both sides thereof.
  • Each nozzle valve 126 of the nozzle supply pipe 125 which is supplied to the nozzle pipes 112d and 112f and is branched to the solution supply pipe 121 that supplies the polymer spinning solution to the two nozzle pipes 112d and 112f. Open the polymer spinning solution supplied to the two nozzle bodies (112d, 112f) to all the nozzles (111a) To form a laminated electrospinning to 150 nm membrane (115b) having a basis weight of 300nm to the polymer spinning solution onto a collector after.
  • nozzle tubes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i arranged in plural in the longitudinal direction or the transverse direction of the collector, located on the other side in the longitudinal or transverse direction of the collector. All of the supply valves 122 provided in the solution supply pipes 121 of the two nozzle pipes 112g, 112h, and 112i are opened to supply the polymer spinning solution supplied from the spinning solution main tank 120 to the three nozzle pipes 112g and 112h.
  • the nanofiber filter having a high basis weight of 300 to 500 nm by supplying the polymer spinning solution supplied to each nozzle tube 112g, 112h, 112i to all the nozzles 111a and then electrospinning the polymer spinning solution on the collector ( 115c) is laminated.
  • the nanofiber filters 115a, 115b, and 115c having different basis weights are formed on the same plane in the longitudinal or transverse direction of the collector, but the nozzles are branched to the solution supply pipe 121. It is also possible to stack the nanofiber filters 115a, 115b and 115c having different basis weights on the same plane in the longitudinal or transverse direction of the collector by controlling the nozzle valve 126 of the supply pipe 125.
  • one of the nozzle tubes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i arranged in a plurality in the longitudinal or transverse direction of the collector is located on one side in the longitudinal or transverse direction of the collector.
  • All of the nozzle valves 126 of the nozzle supply pipe 125 is branched to the solution supply pipe 121 of the nozzle pipe 112e provided in the center of the three nozzle pipe (112d, 112e, 112f) to supply all And the nozzle valve 126 of the nozzle supply pipe 125 branched to the solution supply pipe 121 of the two nozzle pipe bodies 112d and 112f respectively provided on both sides thereof to open the two nozzle pipe bodies ( After supplying the polymer spinning solution to each of the nozzles 111a provided at 112d and 112f, the polymer spinning on the collector To form the electrospun nanofibers to filter having a basis weight of 150 to 300nm (115b) the liquid deposition.
  • nozzle tubes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i which are arranged in plural in the longitudinal or transverse direction of the collector, located at one side of the collector in the longitudinal or transverse direction. All of the supply valves 122 provided in the solution supply pipes 121 of the two nozzle pipes 112g, 112h, and 112i are opened to supply the polymer spinning solution supplied from the spinning solution main tank 120 to the three nozzle pipes 112g and 112h.
  • the nanofiber filter having a high basis weight of 300 to 500 nm by supplying the polymer spinning solution supplied to the nozzle bodies 112g, 112h and 112i to all the nozzles 111a and then electrospinning the polymer spinning solution onto the collector. 115c) is laminated.
  • the nozzle valve 126 of the nozzle supply pipe 125 branched to the solution supply pipe 121 is controlled to be equal in the longitudinal or transverse direction of the collector.
  • the nanofiber filters 115a, 115b, and 115c having different basis weights may be stacked on a plane.
  • the collector in the longitudinal or transverse direction
  • the length of the collector is formed by stacking the nanofiber filters 115a, 115b, and 115c having different basis weights on the same plane or by controlling the nozzle valve 126 of the nozzle supply pipe 125 branched to the solution supply pipe 121.
  • Nanofiber filters 115a, 115b, and 115c having different basis weights are stacked on the same plane in the lateral or transverse directions, but a solution for supplying the polymer spinning solution from the spinning solution main tank 120 to the nozzle tube 112.
  • the nanofiber filters 115a, 115b, and 115c are laminated, and the nanofiber filters 115a, 115b, and 115c vary in basis weight in specific regions and specific portions on the same plane in the longitudinal or transverse direction of the collector. It is also possible to stack the nanofiber filters 115a, 115b, and 115c that vary in basis weight in a specific shape and a specific shape on the same plane in the longitudinal or transverse direction of the collector, but are not limited thereto.
  • each of the supply valve 122 of the solution supply pipe 121 or the nozzle valve 126 of the nozzle supply pipe 125 is individually controlled, or each of the supply valve 122 of the solution supply pipe 121 and By simultaneously controlling the nozzle valve 126 of the nozzle supply pipe 125 it is possible to manufacture a nanofiber filter having a variety of different basis weight.
  • the nozzle pipes 112a, 112b, 112c, 112d, 112e, and 112f arranged in the longitudinal or transverse direction of the collector by individually controlling the opening and closing of the nozzle valve 126 of the nozzle supply pipe 125.
  • the polymer spinning solution is supplied to only one of the nozzles 111a of the plurality of nozzles 111a provided in the 112g, 112h, and 112i, and the polymer spinning solution is blocked to the other specific nozzles 111a, thereby preventing the supply of the polymer spinning solution. It is also possible to laminate the nanofiber filters having different basis weights on the same plane in the transverse direction.
  • the polymer spinning solution is supplied among the nozzles 111a provided in the nozzle tubes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i arranged in the longitudinal direction or the transverse direction of the collector.
  • the number and shape of the specific nozzles (111a) and the specific nozzles (111a) for blocking the supply of the polymer spinning solution can be changed in various ways, it is made variable and controllable.
  • the nozzle body 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i arranged in the longitudinal or transverse direction of the collector is controlled by one group of three It is possible to connect the nanofiber filter having three kinds of basis weights differently on the same plane in the longitudinal or transverse direction of the collector, but the nozzle body (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i are controllably connected in groups of two, or the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i are grouped in four It is also possible to have a structure that is controllably connected so as to stack nanofiber filters having different basis weights on the same plane in the longitudinal or transverse direction of the collector, but is not limited thereto.
  • the number can be changed in various ways, but is not limited thereto.
  • the nozzle block is controlled by controlling the opening and closing of the supply valve 122 of the solution supply pipe 121 or by controlling the opening and closing of the nozzle valve 126 of the nozzle supply pipe 125.
  • the supply amount of the polymer spinning solution supplied to the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i and the radiation amount of the polymer spinning solution electrospun from the nozzle 111a are controlled and controlled.
  • the width of the nanofiber filters having different basis weights in the longitudinal direction or the transverse direction on the same plane of the collector or the radiation region and the radiating portion of the nanofiber filters having the different basis weights can be adjusted through the nozzle 111a.
  • the electrospinning apparatus 100 shows an example in which it is applied to a bottom-up electrospinning apparatus.
  • the electrospinning apparatus 100 according to the present invention may be applied to a top-down electrospinning apparatus. It is also possible to be applied to the electrospinning apparatus in the up and down composite.
  • Nano membranes having different basis weights can be stacked to facilitate manufacturing of various nanofiber filters.
  • the MD direction used in the present invention means Machine Direction, which means the longitudinal direction corresponding to the advancing direction in the case of continuous production of fibers such as film or nonwoven fabric, and the CD direction means the cross direction perpendicular to the MD direction.
  • MD may also be referred to as machine direction / longitudinal direction, and CD as width direction / lateral direction.
  • Basis Weight or Grammage is defined as mass per unit area, ie grams per square meter (often referred to as gsm rather than g / m 2) as preferred units.
  • the physical property value in an Example was measured by the following method.
  • a low melting point polyurethane solution having a softening temperature of 80-100 ° C. was dissolved in 15% by weight of a solvent of DMAc (N, N-dimethylaceticamide) to prepare a low melting point polymer solution. It was put in a tank.
  • polyvinylidene fluoride having a weight average molecular weight of 50,000 was dissolved in dimethylacetamide (N, N-Dimethylacetamide, DMAc) to prepare respective spinning solutions, which were added to the main tank connected to the spinning solution unit 110 '. It was.
  • the distance between the electrode and the collector was electrospun at 40 cm, an applied voltage of 25 kV, and 70 ° C. to form an adhesive layer having a basis weight of 0.1 g / m 2 on the cellulose substrate, and then in the spinning solution unit 110 ′.
  • the basis weight of the polyvinylidene fluoride nanofibers in one direction in the width direction (CD) is 0.2 g / m 2 and the remaining weight in one direction is 1 m in the other direction.
  • a nanofiber filter having a CD width of 0.5 m / m 2 having a width of 2 m was prepared.
  • a polyurethane solution is prepared by dissolving a polyurethane having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyurethane solution to each of the spinning solution main tanks and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to separate the nozzle block into three parts in one direction of the width direction (CD). Electrospun on 3 g / m 2 popular material. In the middle of the width direction (CD) on the electrospun collector, 1m of the polyurethane nanofiber has a basis weight of 0.5 / m 2 , and 50cm of the other edge has a basis weight of 0.2g / m 2 and a CD width of 2m. Was formed to prepare a polyurethane nanofiber filter. At this time, the bottom-up electrospinning was performed under the condition that the distance between the electrode and the collector was 40 cm and the temperature was 22 ° C.
  • DMF dimethylformamide
  • a polyurethane solution is prepared by dissolving a polyurethane having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyurethane solution to the spinning solution main tank and applying an applied voltage of 20 kV to the nozzle block including the on-off system designed to separate the nozzle block into nine parts in one direction of the width direction (CD), the basis weight 0.3 It was electrospun on a substrate of g / m 2 .
  • DMF dimethylformamide
  • Polyurethane nanofibers having a CD width of 2 m with a basis weight of 0.2 g / m 2 and a basis weight of 0.5 g / m 2 alternately in the width direction (CD) on the electrospun cellulose substrate It was formed to prepare a polyurethane nanofiber filter. At this time, the bottom-up electrospinning was performed under the condition that the distance between the electrode and the collector was 40 cm and the temperature was 22 ° C.
  • a low melting point polyurethane solution having a softening temperature of 80-100 ° C. was dissolved in 15% by weight of a solvent of DMAc (N, N-dimethylaceticamide) to prepare a low melting point polymer solution. It was put in a tank.
  • polyvinylidene fluoride having a weight average molecular weight of 50,000 was dissolved in dimethylacetamide (N, N-Dimethylacetamide, DMAc) to prepare respective spinning solutions, which were added to the main tank connected to the spinning solution unit 110 '. It was.
  • the distance between the electrode and the collector was electrospun at 40 cm, an applied voltage of 25 kV, and 70 ° C. to form an adhesive layer having a basis weight of 0.1 g / m 2 on the cellulose substrate, and then in the spinning solution unit 110 ′.
  • the distance between the electrode and the collector is 40 cm, the applied voltage is 20 kV, and 1 m in one direction of the longitudinal direction (MD) at 70 ° C. is 0.2 g / m 2 of basis weight of polyvinylidene fluoride nanofibers, and 1 m in the other direction.
  • a nanofiber filter having a MD width of 2 m having a width of 0.5 g / m 2 was prepared.
  • a polyurethane solution is prepared by dissolving a polyurethane having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyurethane solution to each of the spinning solution main tanks and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to separate the nozzle block into three parts in one direction of the longitudinal direction (MD). It was electrospun on a substrate of 3 g / m 2 .
  • DMF dimethylformamide
  • 1m of the middle part of the longitudinal direction (MD) is a polyurethane nanofiber having a basis weight of 0.5 / m 2
  • 50cm of the remaining edge is a polyurethane nanofiber having a basis weight of 0.2g / m 2 and a MD width of 2m.
  • MD longitudinal direction
  • a polyurethane solution is prepared by dissolving a polyurethane having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyurethane solution to the spinning solution main tank and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to separate the nozzle block into nine parts in one direction of the longitudinal direction (MD), the basis weight 0.3 It was electrospun on a substrate of g / m 2 .
  • DMF dimethylformamide
  • Polyurethane nanofibers having an MD width of 2 m having a basis weight of 0.2 g / m 2 and a basis weight of 0.5 g / m 2 alternately in the longitudinal direction (MD) on the electrospun cellulose substrate It was formed to prepare a polyurethane nanofiber filter. At this time, the bottom-up electrospinning was performed under the condition that the distance between the electrode and the collector was 40 cm and the temperature was 22 ° C.

Abstract

The present invention relates to an electrospinning device comprising a temperature adjustment device, a method for manufacturing a nanofiber filter using the same, and a nanofiber filter manufactured thereby. The electrospinning device comprises: an overflow system for reusing a spinning solution that has not become nanofibers; and a temperature adjustment device for maintaining the viscosity of the spinning solution that is electrospun, instead of maintaining the concentration thereof, such that no diluent is used. In addition, the present invention relates to a method for manufacturing a nanofiber filter using electrospinning, wherein an upward electrospinning device, which comprises a plurality of nozzle tube bodies inside the upward electrospinning device, is used such that the basis weight of a nanofiber differs in the longitudinal direction (MD) or in the transverse direction (CD), the method being characterized in that a nozzle block is designed to comprise two, three, or nine parts in the longitudinal direction (MD) or in the transverse direction (CD), and the basis weight of a specific part of the same nanofiber can be adjusted differently such that the basis weight of the nanofiber differs in the longitudinal direction (MD) or in the transverse direction (CD).

Description

[규칙 제26조에 의한 보정 24.07.2015] 온도조절 장치를 포함하는 전기방사장치, 이를 이용한 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 나노섬유필터[Correction 24.07.2015 by Rule 26] 전기 Electrospinning apparatus including temperature control device, method of manufacturing nanofiber filter using the same, and nanofiber filter manufactured by the method
본 발명은 온도조절 장치를 포함하는 전기방사장치, 이를 이용한 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 나노섬유필터에 관한 것으로서, 보다 상세하게는 종래의 전기방사 온도인 상온보다 고온인 온도에서 고농도의 폴리머를 포함하는 방사용액을 전기방사하여 나노섬유필터를 제조하는 제조장치 및 제조방법, 그 제조방법으로 제조된 나노섬유필터에 관한 것이다.The present invention relates to an electrospinning apparatus including a temperature control device, a method of manufacturing a nanofiber filter using the same, and a nanofiber filter manufactured by the method, and more specifically, to a temperature higher than that of a conventional electrospinning temperature. The present invention relates to a manufacturing apparatus and method for producing a nanofiber filter by electrospinning a spinning solution containing a polymer of high concentration at a temperature, and a nanofiber filter manufactured by the manufacturing method.
또한, 나노섬유화 되지 못한 방사용액을 재사용하는 오버플로우 시스템을 구In addition, an overflow system for reusing non-nanofiber spinning solutions is available.
비하고 전기방사되는 방사용액의 농도를 유지하는 대신 방사용액의 점도를 유지하는 온도조절 장치를 포함함으로써, 희석제를 사용하지 않는 것을 특징으로 하는 온도조절 장치를 포함하는 전기방사장치, 이를 이용한 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 나노섬유필터에 관한 것이다.Compared to maintaining the concentration of the electrospinning spinning solution, by including a temperature control device for maintaining the viscosity of the spinning solution, an electrospinning device comprising a temperature control device, characterized in that a diluent is not used, nanofibers using the same A method for producing a filter and a nanofiber filter produced by the method.
이에 더해, 전기방사장치의 유닛 내에 구비되는 기재 상의 MD방향 또는 CD방향으로 핀 형태의 노즐이 다수개 구비되는 노즐 관체를 배열설치하고, 각 노즐관체 및 노즐을 제어하여 기재의 MD방향 또는 CD방향으로 전기방사되는 고분자 방사용액의 방사량을 조절함으로써 기재 상에 적층형성되는 나노섬유필터의 평량을 조절하는 온도조절 장치를 포함하는 전기방사장치, 이를 이용한 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 나노섬유 필터에 관한 것이다.In addition, the nozzle body provided with a plurality of pin-shaped nozzles is arranged in the MD direction or the CD direction on the substrate provided in the unit of the electrospinning apparatus, and each nozzle body and nozzles are controlled to control the MD or CD direction of the substrate. Electrospinning apparatus comprising a temperature control device for adjusting the basis weight of the nanofiber filter laminated on the substrate by controlling the radiation amount of the polymer spinning solution electrospun, a method of manufacturing a nanofiber filter using the same, and as a manufacturing method It relates to a manufactured nanofiber filter.
일반적으로, 나노섬유(Nano Fiber)란, 지름이 수십에서 수백 나노미터에 불과한 초극세사를 지칭하는 것으로서, 나노섬유로 구성된 부직포, 멤브레인 및 브레 이드 등의 제품은 생활용품, 농업용, 의류용 및 산업용 등으로 널리 사용된다.In general, nanofiber refers to a microfiber having a diameter of only tens to hundreds of nanometers, and the products such as nonwoven fabric, membrane, and braid composed of nanofibers are used for household goods, agriculture, clothing, and industrial use. Widely used.
뿐만 아니라, 인조 피혁, 인조 스웨이드, 생리대, 의복, 기저귀, 포장재, 잡화용 소재, 각종 필터 소재, 유전자 전달체의 의료용 소재 및 방탄 조끼 등 국방용 소재에 적용되는 등 다양한 분야에서 사용되고 있다.In addition, it is used in various fields such as applied to defense materials such as artificial leather, artificial suede, sanitary napkins, garments, diapers, packaging materials, miscellaneous materials, various filter materials, medical materials of the gene carrier and bulletproof vest.
상술한 바와 같은 나노섬유는 전기장에 의해 생산된다. 즉, 나노섬유는 원료인 고분자 물질에 고전압의 전기장을 걸어서 원료인 고분자 물질 내부에 전기적인반발력을 발생시키고, 이로 인해 분자들이 뭉쳐 나노 크기의 실 형태로 갈라짐으로써 나노섬유가 제조 및 생산된다.Nanofibers as described above are produced by electric fields. In other words, the nanofibers are subjected to a high voltage electric field to the polymer material as a raw material to generate an electric repulsive force inside the polymer material as a raw material, whereby the molecules are agglomerated into nano-sized yarns to produce and produce the nanofibers.
이때, 전기장이 강할수록 원료인 고분자 물질이 가늘게 찢어지기 때문에 10 내지 1000nm의 가늘기를 갖는 나노섬유를 얻을 수 있다.In this case, the stronger the electric field, the thinner the tearing of the polymer material as a raw material, and thus, the nanofibers having a fine diameter of 10 to 1000 nm can be obtained.
이러한 가늘기를 갖는 나노섬유를 제조 및 생산하기 위한 전기방사장치는 방사용액이 내부에 충진되는 방사용액 주탱크, 방사용액의 정량 공급을 위한 계량 펌프, 방사용액을 토출하기 위한 노즐이 다수개 배열설치되는 노즐블록, 노즐 하단에 위치하여 방사되는 섬유들을 집적하는 컬렉터 및 전압을 발생시키는 전압 발생장치 를 포함하여 구성된다.Electrospinning apparatus for manufacturing and producing such thin nanofibers is provided with a spinning solution main tank filled with spinning solution, a metering pump for quantitative supply of spinning solution, and a plurality of nozzles for ejecting spinning solution. It is configured to include a nozzle block that is located at the bottom of the nozzle, a collector for accumulating the fibers to be emitted and a voltage generator for generating a voltage.
상술한 바와 같은 구조로 이루어지는 전기방사장치는 방사용액이 충진되는 방사용액 주탱크와 상기 방사용액 주탱크 내에 충진된 고분자 방사용액의 정량 공급을 위한 계량 펌프와 상기 방사용액 주탱크 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐이 다수개 배열설치되는 노즐 블록과 상기 노즐의 상단에 위치하여 분사되는 고분자 방사용액을 집적하기 위하여 노즐에서 일정간격 이격되는 컬렉터 및 상기 컬렉터에 고전압을 발생시키는 전압 발생장치를 포함하는 유닛으로 구성된다.The electrospinning device having the structure as described above comprises a metering pump for quantitative supply of the spinning solution main tank filled with the spinning solution and the polymer spinning solution filled in the spinning solution main tank and the polymer spinning solution in the spinning solution main tank. Discharge, but collectors are spaced apart from the nozzle and a high voltage to the collector in order to accumulate a nozzle block in which a plurality of nozzles in the form of pins are arranged and the polymer spinning solution to be injected is located on the top of the nozzle It consists of a unit containing the device.
이러한 전기방사장치를 통한 나노섬유의 제조방법은 방사용액이 충진되는 방사용액 주탱크 내의 방사용액이 계량 펌프를 통해 높은 전압이 부여되는 다수의 노즐 내에 연속적으로 정량 공급되고, 노즐로 공급되는 방사용액은 높은 전압이 걸려있는 컬렉터상에 노즐을 통하여 방사, 집속되어 나노섬유 웹이 형성되되, 상기 전기방사장치의 유닛들로 이송되는 장척시트상에 나노섬유 웹을 형성하고, 상기 나노섬유가 적층형성되는 장척시트가 각 유닛을 통과하여 반복적으로 나노섬유가 적층된 후 라미네이팅, 엠보싱 또는 heat and pressing, 니들펀칭하여 부직포로 제조한다.In the method of manufacturing nanofibers using the electrospinning method, the spinning solution in the spinning solution filled with the spinning solution is quantitatively supplied to a plurality of nozzles to which a high voltage is applied through a metering pump, and the spinning solution is supplied to the nozzle. The nanofiber is spun and focused through a nozzle on a collector where high voltage is applied to form a nanofiber web, and a nanofiber web is formed on a long sheet conveyed to the units of the electrospinning apparatus, and the nanofibers are laminated. The elongated sheet is passed through each unit, and the nanofibers are repeatedly stacked and then laminated, embossed, heat and pressed, and needle punched to produce a nonwoven fabric.
여기서, 전기방사장치는 컬렉터 상의 위치하는 방향에 따라 상향식 전기방사장치, 하향식 전기방사장치 및 수평식 전기방사장치로 나뉜다. 즉, 전기방사장치는 컬렉터가 노즐의 상단에 위치하는 구성으로 이루어지고, 균일하고 상대적으로 가는 나노섬유를 제조할 수 있는 상향식 전기방사장치, 컬렉터가 노즐의 하단에 위치하는 구성으로 이루어지고, 상대적으로 굵은 나노섬유를 제조할 수 있으며, 단위시간당 나노섬유의 생산량을 증대시킬 수 있는 하향식 전기방사장치 및 컬렉터와 노즐이 수평방향으로 배열되는 구성으로 이루어지는 수평식 전기방사장치로 나뉜다.  Here, the electrospinning device is divided into a bottom-up electrospinning device, a top-down electrospinning device, and a horizontal electrospinning device according to the direction of the position on the collector. That is, the electrospinning device is made of a configuration in which the collector is located at the top of the nozzle, a bottom-up electrospinning apparatus capable of producing uniform and relatively thin nanofibers, and the collector is configured in the bottom of the nozzle, It is possible to produce a thick nanofiber, it is divided into a top-down electrospinning device that can increase the production of nanofibers per unit time and a horizontal electrospinning device consisting of a collector and a nozzle arranged in a horizontal direction.
상향식 전기방사장치는 상향 노즐 블록의 노즐을 통하여 방사용액이 분사되고, 분사되는 방사용액이 지지체의 하부면에 적층되면서 나노섬유를 형성하는 구성 으로 이루어진다.Upward electrospinning device is composed of a configuration in which the spinning solution is injected through the nozzle of the upward nozzle block, the spinning solution is sprayed is laminated on the lower surface of the support to form nanofibers.
상술한 바와 같은 구성에 의하여 상기 상향식 전기방사장치의 어느 한 유닛내부에서 노즐을 통하여 방사용액을 분사하여 나노섬유 웹이 적층형성되는 장척시트는 다른 한 유닛 내부로 이송되고, 다른 한 유닛 내부로 이송되는 장척시트에 노즐을 통하여 방사용액을 분사하여 또 다시 나노섬유를 적층형성하는 등 상기한 공 정을 반복적으로 수행하면서 나노섬유 웹을 제조한다.According to the configuration described above, the long sheet of nanofiber web is laminated by spraying the spinning solution through a nozzle in one unit of the bottom-up electrospinning apparatus is transferred into another unit, and transferred into another unit. The nanofiber web is manufactured by repeatedly performing the above-described process, such as spraying the spinning solution through a nozzle on a long sheet, and stacking nanofibers again.
여기서, 노즐 블록의 노즐을 통하여 분사되는 방사용액은 고분자 폴리머 및용매를 포함하여 이루어진다.Here, the spinning solution injected through the nozzle of the nozzle block comprises a polymer polymer and a solvent.
이때, 전기방사장치 노즐 블록의 노즐을 통하여 방사용액의 방사 시 방사용액에 포함되는 고분자는 폴리머 장척시트 상에 적층형성되어 나노섬유를 형성하나, 방사 과정에서 노즐 끝으로 토출된 고분자 폴리머가 섬유화되지 못하고 노즐블록으로 떨어지는 경우가 발생한다. 통상의 전기방사에 있어서 노즐을 통하여 방사되었으나 섬유화되지 못하고 오버플로우되는 고분자 폴리머는 전체 전기방사되는 폴리머 고분자 중 70 내지 90중량%이며, 오버플로우 시스템을 통해 다시 저장탱크로 공급되고, 저장탱크로 부터 다시 노즐블록으로 전기방사를 위해 공급되는 구성을 가지는 바 오버플로우된 방사용액을 회수하여 나노섬유의 원료로 재사용이 가능하기때문에, 원료를 절약하게 되고 원료 사용료를 줄일 수 있어 나노섬유 제조비용을절감할 수 있다.  At this time, the polymer included in the spinning solution is laminated on the polymer long sheet to form nanofibers when spinning the spinning solution through the nozzle of the nozzle unit of the electrospinning apparatus, but the polymer polymer discharged to the end of the nozzle during the spinning process is not fibrous. If you do not fall into the nozzle block. In conventional electrospinning, the polymer polymer that is spun through the nozzle but is not fibrous and overflows is 70 to 90% by weight of the total polymer of the electrospun, and is fed back to the storage tank through the overflow system and from the storage tank. It has a structure that is supplied for electrospinning back to the nozzle block, so that the overflowed spinning solution can be recovered and reused as a raw material of nanofibers, thus saving raw materials and reducing raw material usage costs, thereby reducing nanofiber manufacturing costs. can do.
한편, 기존의 전기방사와 관련된 선행문헌들에는 전기방사를 위한 폴리머 용액의 농도를 고정시킨후 전기방사를 실시하였다. 그러나 폴러머 용액의 농도를 고정시키기 위해서는 농도고정을 위한 장치들과 기술적 공정들이 필요하며, 특히 섬유화되지 못하고 노즐블록으로 떨어지는 폴리머 용액을 재사용하는 오버플로우 시스템을 포함하는 전기방사의 경우 희석제등의 사용이 필요하고, 희석제를 추가함으로 인해 발생하는 생산속도의 저하, 폭발의 위험성 및 생산단가의 문제등이 발생한다.On the other hand, the prior literature related to electrospinning was carried out after fixing the concentration of the polymer solution for electrospinning. However, in order to fix the concentration of the polymer solution, devices for fixing the concentration and technical processes are required. In particular, in the case of electrospinning including an overflow system that reuses a polymer solution that is not fibrous and falls into the nozzle block, a diluent is used. This is necessary, and the addition of a diluent causes a decrease in production speed, a risk of explosion, and problems in production cost.
또한, 용융방사가 아닌 전기방사의 특성상 기존 전기방사 기술을 사용하여 나노섬유를 제조하는 분야에서는 일정수준의 용매를 사용하여 농도를 유지하게 된다. 이 때 통상적으로 저농도의 폴리머 용액으로 전기방사를 수행하고, 전기방사시용매의 사용으로 인해 컬렉터에 집적되는 고형분의 상대적 감소로 생산성이 낮아 목표하는 생산량을 달성하는데 있어 많은 시간을 필요로 한다.In addition, due to the characteristics of electrospinning rather than melt spinning, in the field of manufacturing nanofibers using existing electrospinning technology, the concentration is maintained using a predetermined level of solvent. At this time, the electrospinning is usually performed with a low concentration of polymer solution, and the productivity is low due to the relative reduction of the solid content accumulated in the collector due to the use of the electrospinning solvent, which requires a lot of time to achieve the target yield.
이에 더해, 저농도의 폴리머 용액의 사용으로 인해 발생하는 문제로 컬렉터에 집적되는 나노섬유층에 폴리머 고분자가 아닌 잔존 용매가 비교적 높은 수준으로 남아있어, 나노섬유의 품질이 떨어지는 문제가 발생한다.In addition, a problem caused by the use of a low concentration of the polymer solution is a relatively high level of the remaining solvent other than the polymer polymer in the nanofibrous layer integrated in the collector, causing a problem of poor quality of the nanofibers.
상술한 바와 같은 전기방사장치를 통하여 고분자 방사용액을 전기방사하여제조된 나노섬유필터를 산업현장에서 사용되는 필터 소재로 적용할 경우, 필터 소재로 사용되는 전체 나노섬유필터의 평량이 일정 및 균일해야만 표준규격을 만족하여 제품의 생산 및 판매가 가능하였는데, 실제 화력발전소의 가스터빈등에 사용되는 필터의 경우, 공기가 유입되는 방향, 공기의 유입부분 위치, 공기의 배기부분방향 및 배기부분의 위치에 따라 필터 소재를 구성하는 나노섬유필터의 평량이 일정할 필요가 없는 경우도 있으며, 오히려 공기여과가 활발한 필터 부분은 공기여과효율을 높이기 위해 나노섬유필터의 평량을 작게 조절하여야 하는 반면, 공기여과가 활발하지 않은 필터 부분은 공기유량이 많지 않으므로 나노섬유필터의 평량을크게 조절하여 공기여과 측면보다 내구성을 높이는 설계의 요구가 필요한 실정이다.When applying the nanofiber filter produced by electrospinning the polymer spinning solution through the electrospinning as described above as the filter material used in the industrial field, the basis weight of the entire nanofiber filter used as the filter material must be constant and uniform. It was possible to produce and sell the product by satisfying the standard. In the case of the filter used for the gas turbine of a thermal power plant, depending on the direction of air inflow, the position of the air inlet, the direction of the air exhaust, and the position of the exhaust In some cases, the basis weight of the nanofiber filter constituting the filter material does not need to be constant. On the contrary, the filter portion with active air filtration must adjust the basis weight of the nanofiber filter to increase the air filtration efficiency, while the air filtration is active. The filter part that is not used does not have a lot of air flow rate, so it is possible to adjust the The situation is required to design more durable than the side.
이렇게, 나노섬유필터의 평량은 공기유입부와 배출구의 위치에 따라 동일 나노섬유필터 상에서도 상이한 평량을 갖는 나노섬유필터 소재가 요구되고 있는실정이다.Thus, the basis weight of the nanofiber filter is a situation that requires a nanofiber filter material having a different basis weight on the same nanofiber filter depending on the position of the air inlet and outlet.
이에 본 발명은 상기와 같은 문제를 해결하기 위해 이루어진 것으로서, 오버플로우 시스템이 포함된 전기방사장치에 있어서 전기방사되지 못하고 노즐블럭으로떨어지는 폴리머 용액을 회수하여 전기방사로 재사용함은 물론, 점도 조절 시스템 을 포함함하는 나노섬유 필터를 제조할 수 있는 장치를 제공함을 목적으로 한다.Accordingly, the present invention has been made to solve the above problems, in the electrospinning apparatus including the overflow system, the polymer solution that is not electrospun and falls to the nozzle block is recovered and reused as an electrospinning, as well as a viscosity control system. An object of the present invention is to provide a device capable of manufacturing a nanofiber filter comprising a.
또한 본 발명은 기재와 나노섬유층 및 나노섬유층간의 접착이 저융점 고분자용액을 전기방사하여 형성된 접착층을 통해 접착되는 것을 특징으로 한 나노섬유 필 터를 제조할 수 있는 장치를 제공함을 목적으로 한다.It is another object of the present invention to provide an apparatus for manufacturing a nanofiber filter, wherein the adhesion between the substrate and the nanofiber layer and the nanofiber layer is adhered through an adhesive layer formed by electrospinning a low melting polymer solution.
이에 더해, 본 발명은 상기와 같은 문제를 해결하기 위해 이루어진 것으로서, 나노섬유필터 제작 시, 내마모성과 생산성을 높이기 위해, 나노섬유필터층의 평면방향중 길이방향(MD) 또는 폭 방향(CD)으로 평량이 상이한 나노섬유 필터 및 이의 제조방법을 제공하는 것을 목적으로 한다.In addition, the present invention has been made to solve the above problems, in order to increase the wear resistance and productivity when manufacturing the nanofiber filter, the basis weight in the longitudinal direction (MD) or width direction (CD) of the planar direction of the nanofiber filter layer It is an object to provide these different nanofiber filters and methods for their preparation.
상기와 같은 목적을 달성하기 위해 본 발명의 적절한 실시 형태에 따르면, 폴리머 용액을 저장하는 주저장 탱크, 폴리머 용액이 토출되는 노즐블록, 나노 멤브레인을 집적하는 컬렉터, 상기 컬렉터와 노즐블록 사이에 고전압을 부여하는 전원장치 및 오버플로우 시스템을 포함하는 나노섬유필터의 제조장치에 있어서, 기재와 나노섬유층 및 나노섬유층간의 접착을 위한 접착층을 형성하기 위한저융점 고분자 유닛과, 방사되는 폴리머 용액의 점도를 일정하게 조절할 수 있는 온도조절 장치를포함하며, 상기 접착층은 저융점 고분자 용액을 전기방사하여 형성되는 것을 특징으로한 나노섬유 필터의 제조장치를 제공한다.According to a preferred embodiment of the present invention for achieving the above object, the main storage tank for storing the polymer solution, the nozzle block for discharging the polymer solution, the collector for integrating the nano-membrane, high voltage between the collector and the nozzle block An apparatus for manufacturing a nanofiber filter including a power supply device and an overflow system, wherein the low melting point polymer unit for forming an adhesive layer for adhesion between the substrate, the nanofiber layer, and the nanofiber layer, and the viscosity of the polymer solution to be emitted are fixed. It includes a temperature control device that can be adjusted to, wherein the adhesive layer provides an apparatus for producing a nanofiber filter, characterized in that formed by electrospinning a low melting polymer solution.
여기서, 상기 저융점 고분자 용액은 저융점 폴리에스테르, 저융점 폴리우레탄, 저융점 폴리비닐리덴 플루오라이드로 이루어진 군에서 선택된 1종인 것이 바람직 하고, 상기 온도조절 장치는 오버플로우 시스템을 통해 회수되는 폴리머 용액의 점도를 일정하게 조절할 수 있는 가열장치 및 냉각장치를 포함하는 것이 바람직 하다.Here, the low melting point polymer solution is preferably one selected from the group consisting of low melting point polyester, low melting point polyurethane, low melting point polyvinylidene fluoride, and the temperature control device is a polymer solution recovered through an overflow system It is preferable to include a heating device and a cooling device capable of constantly adjusting the viscosity of.
또한, 상기 폴리머 용액의 점도는 1,000 cps 내지 3,000 cps로 일정하게 조절되는 것이 바람직 하고, 상기 가열장치는 전열히터, 온수순환장치 및 온풍순환장치 중 하나이상 선택되는 것이 바람직 하며, 상기 냉각 장치는 칠링(Chilling) 장치인 것이 바람직 하다.In addition, the viscosity of the polymer solution is preferably controlled to be constant from 1,000 cps to 3,000 cps, the heating device is preferably selected from one or more of the heat transfer heater, hot water circulation device and hot air circulation device, the cooling device is chilling It is preferable to be a (chilling) device.
이에 더해, 상기 온도조절 장치는 저장탱크, 노즐블록 및 오버플로우 시스템 중 어느 하나 이상에 설치되는 것이 바람직 하다.In addition, the temperature control device is preferably installed in any one or more of the storage tank, the nozzle block and the overflow system.
본 발명의 다른 적절한 실시형태에 따르면, 기재와; 상기 기재상에 전기방사에 의하여 적층 형성되는 하나 이상의 나노섬유층과; 상기 기재와 나노섬유층 및 나노섬유층간 사이에 형성되는 접착층으로 구성되는 나노섬유필터의 제조방법에 있어서, 상기 나노섬유층은 길이 방향(MD)으로 나노섬유의 평량이 상이하고, 상기 접착층은 저융점 고분자 용액을 전기방사한 것을 특징으로 하는 나노섬유 필터의 제조방법을 제공한다. According to another suitable embodiment of the present invention, there is provided an article comprising: a substrate; At least one nanofiber layer laminated on the substrate by electrospinning; In the method of manufacturing a nanofiber filter composed of an adhesive layer formed between the substrate and the nanofiber layer and the nanofiber layer, the nanofiber layer is different in the basis weight of the nanofiber in the longitudinal direction (MD), the adhesive layer is a low melting point polymer It provides a method for producing a nanofiber filter characterized in that the solution is electrospun.
본 발명의 또 다른 적절한 실시형태에 따르면, 기재와; 상기 기재상에 전기방사에 의하여 적층 형성되는 하나 이상의 나노섬유층과; 상기 기재와 나노섬유층 및 나노섬유층간 사이에 형성되는 접착층으로 구성되는 나노섬유필터의 제조방법에 있어서, 상기 나노섬유층은 폭 방향(CD)으로 나노섬유의 평량이 상이하고, 상기 접착층은 저융점 폴리비닐리덴플루오라이드, 저융점 폴리우레탄, 저융점 폴리에스테르에서 선택되는저융점 고분자 용액을 전기방사한 것을 특징으로 하는 나노섬유 필터의 제조방법을 제공한다.According to another suitable embodiment of the present invention, there is provided an article comprising: a substrate; At least one nanofiber layer laminated on the substrate by electrospinning; In the method of manufacturing a nanofiber filter comprising an adhesive layer formed between the substrate and the nanofiber layer and the nanofiber layer, the nanofiber layer is different in basis weight of the nanofiber in the width direction (CD), the adhesive layer is a low melting point poly Provided is a method for producing a nanofiber filter comprising electrospinning a low melting polymer solution selected from vinylidene fluoride, low melting polyurethane, and low melting polyester.
이때, 상기 나노섬유의 평량은 복수의 노즐관체를 on-off 시스템으로 조작하는 것을 특징으로 하고, 상기 on-off 시스템은 나노섬유가 집적되는 길이 방향(MD) 또는 폭방향(CD) 중 일방향으로 평량의 구배가 증가하게 설계된 것을 특징으로 하며, 상기 on-off 시스템은 나노섬유가 집적되는 길이 방향(MD) 또는 폭방향(CD) 중 양방향으로 평량의 구배가 증가 또는 감소하게 설계된 것을 특징으로 나노 섬유필터의 제조방법을 제공한다.In this case, the basis weight of the nanofibers is characterized in that to operate a plurality of nozzle tube in the on-off system, the on-off system in the longitudinal direction (MD) or width direction (CD) of the nanofibers are integrated It characterized in that the gradient of basis weight is designed to increase, the on-off system is characterized in that the gradient of the basis weight is designed to increase or decrease in both directions in the longitudinal direction (MD) or width direction (CD) in which the nanofibers are integrated Provided is a method of manufacturing a fiber filter.
또한, 상기 on-off 시스템은 나노섬유가 집적되는 길이 방향(MD) 또는 폭방향(CD)으로 교호적으로 평량이 상이하게 설계된 것을 특징으로 하고, 상기 평량은 0.1 내지 0.5g/m2의 범위에서 길이 방향(MD) 또는 폭방향(CD)으로 상이한 것을 특징으로 하는 나노 섬유필터의 제조 방법을 제공한다.In addition, the on-off system is characterized in that the basis weight alternately designed in the longitudinal direction (MD) or width direction (CD) in which the nanofibers are integrated, the basis weight is in the range of 0.1 to 0.5g / m 2 It provides a method for producing a nanofiber filter, characterized in that different in the longitudinal direction (MD) or the width direction (CD).
이에 더해, 상기 제조방법에 의해 제조된 나노 섬유 필터를 제공한다.In addition, it provides a nanofiber filter produced by the above production method.
본 발명은 온도조절 장치를 포함한 나노섬유필터의 제조장치를 제공함으로써, 폴리머 용액의 농도를 일정하게 유지시켜 희석제의 사용을 억제하고 기재와 나노섬유층간 저융점 고분자 용액을 전기방사한 접착층을 형성시킴으로써 보다 견고한 나노섬유 필터를 제공할 수 있는 장점이 있다.The present invention provides a device for manufacturing a nanofiber filter including a temperature control device, by maintaining a constant concentration of the polymer solution to suppress the use of a diluent and to form an adhesive layer electrospun a low melting polymer solution between the substrate and the nanofiber layer There is an advantage in providing a more robust nanofiber filter.
또한, 길이방향 또는 폭 방향으로 평량이 상이한 나노섬유 필터를 제공함으로써, 내구성 향상 및 나노섬유 제조의 생산성을 높일 수 있다.In addition, by providing a nanofiber filter having a different basis weight in the longitudinal direction or the width direction, it is possible to improve the durability and productivity of nanofiber production.
도 1은 종래 기술에 따른 전기방사장치를 개략적으로 나타내는 도면,1 is a view schematically showing an electrospinning device according to the prior art,
도 2는 본 발명에 의한 오버플로우 시스템과 온도조절 장치 및 점도 조절 시스템을 구비한 나노섬유필터 제조방법에 관한 도면,2 is a view of a nanofiber filter manufacturing method having an overflow system and a temperature control device and a viscosity control system according to the present invention;
도 3은 본 발명에 따른 온도조절장치를 구비한 전기방사장치에 있어서, 코일형태의 열선을 장착한 관체를 도시한 정단면도,3 is a front sectional view showing a tubular body equipped with a coiled heating wire in an electrospinning apparatus having a temperature adjusting apparatus according to the present invention;
도 4는 상기 도 3의 A-A'선 측단면도,4 is a side cross-sectional view taken along line AA ′ of FIG. 3;
도 5는 본 발명에 따른 온도조절장치를 구비한 전기방사장치에 있어서, 선형형태의 열선을 장착한 관체를 도시한 정단면도,5 is a front sectional view showing a tubular body equipped with a heating wire in a linear form in the electrospinning apparatus having a temperature adjusting device according to the present invention;
도 6은 상기 도 5의 B-B'선 측단면도,6 is a side cross-sectional view taken along line B-B 'of FIG. 5;
도 7은 본 발명에 따른 온도조절장치를 구비한 전기방사장치에 있어서, U자형태의 파이프를 장착한 관체를 도시한 정단면도,7 is a front sectional view showing a tubular body equipped with a U-shaped pipe in an electrospinning apparatus having a temperature regulating apparatus according to the present invention;
도 8은 상기 도 7의 C-C'선 측단면도,8 is a side cross-sectional view taken along line CC ′ of FIG. 7;
도 9 및 도 10은 폴리우레탄과 폴리비닐리덴 플루오라이드의 온도별 점도값을 나타낸 그래프,9 and 10 are graphs showing the viscosity value of the polyurethane and polyvinylidene fluoride for each temperature;
도 11은 도 1은 나노섬유필터 전기방사장치를 개략적으로 나타내는 측면도,FIG. 11 is a side view schematically showing an electrofiber spinneret of FIG. 1.
도 13 및 도 13는 본 발명에 의한 전기방사장치의 노즐블록에 배열설치되는 노즐관체를 개략적으로 나타내는 평면도,13 and 13 are a plan view schematically showing a nozzle body arranged in the nozzle block of the electrospinning apparatus according to the present invention;
도 14 및 도 15는 본 발명에 의한 전기방사장치의 노즐블록에 배열되는 노즐관체를 개략적으로 나타내는 측면도,14 and 15 are side views schematically showing a nozzle tube arranged in the nozzle block of the electrospinning apparatus according to the present invention;
도 16는 본 발명에 의한 전기방사장치의 노즐블록에 배열설치되는 노즐관체를 개략적으로 나타내는 사시도,16 is a perspective view schematically showing a nozzle tube arranged in a nozzle block of the electrospinning apparatus according to the present invention;
도 17 내지 도 20는 본 발명에 의한 나노섬유필터 전기방사장치의 각 노즐관체의 노즐을 통하여 고분자 방사용액이 기재의 동일 평면 상에 전기방사되는 동작과정(도 17 및 도 18에서 파선으로 표시된 노즐이 폐쇄된 노즐을 나타내고, 도 19 및 도 20에서 파선으로 표시된 노즐은 기재 하부에 위치하는 것을 나타냄)을 개략적으로 나타내는 평면도,17 to 20 is an operation process of the polymer spinning solution is electrospun on the same plane of the substrate through the nozzle of each nozzle tube of the nanofiber filter electrospinning apparatus according to the present invention (nozzle indicated by broken lines in Figs. 17 and 18) A plan view schematically showing this closed nozzle, and a nozzle indicated by broken lines in FIGS. 19 and 20 indicates that it is located below the substrate),
도 21 내지 도 23는 본 발명에 의해 제조된 CD 방향으로 평량이 나노섬유 필터 의 평면도,21 to 23 is a plan view of the basis weight nanofiber filter in the CD direction produced by the present invention,
도 24 내지 도 25는 본발명에 의해 제조되는 MD방항으로 평량이 상이한 나노섬유 필터의 평면도.24 to 25 are plan views of nanofiber filters different in basis weight in the MD method produced by the present invention.
이하, 본 발명에 대해 도면을 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.
1. 오버플로우 시스템이 구비된 전기방사방법1. Electrospinning method with overflow system
본 발명에 의한 나노섬유 제조방법은 전기방사장치(1) 노즐블럭(110)에서 방사되었으나 나노섬유화되지 못한 방사용액을 재사용하는 오버플로우 시스템(200)을 포함하여 구성된다.Nanofiber manufacturing method according to the present invention is configured to include an overflow system (200) for recycling the spinning solution spun from the electrospinning apparatus (1) nozzle block 110, but not nanofiberized.
여기서, 상기 전기방사장치(1)는 케이스(102), 노즐블록(110), 컬렉터(150),전원장치(160)와 보조 벨트장치(170)와 이들을 내부에 수용하는 유닛(100, 100')과, 주저장탱크(210), 제2 이송배관(216), 제2 이송제어장치(218)와 재생탱크(230) 와 이들로 이루어진 오버플로우 시스템(200)으로 구성되어 있다.Here, the electrospinning apparatus 1 includes a case 102, a nozzle block 110, a collector 150, a power supply device 160, an auxiliary belt device 170, and a unit 100, 100 ′ therein. ), The main storage tank 210, the second transfer pipe 216, the second transfer control device 218 and the regeneration tank 230 and the overflow system 200 consisting of these.
이때 상기 케이스(102)는 도전체로 이루어지는 것이 바람직하나, 상기 케이스(102)가 절연체로 이루어지거나, 상기 케이스(102)가 도전체 및 절연체가 혼용되 어 적용되는 것도 가능하고, 기타 다양한 재질로 이루어지는 것도 가능하다.In this case, the case 102 is preferably made of a conductor, but the case 102 may be made of an insulator, or the case 102 may be applied by mixing a conductor and an insulator, and made of various other materials. It is also possible.
노즐블록(110)의 노즐(42)은 상향식과 하향식 그리고 수평식이 모두 가능하며, 특히 오버플로우 시스템(200)이 적용된 전기방사 장치에 있어서는 상향식 전기방사가 바람직하다. 노즐(42)은 상향식, 하향식 또는 수평식으로 다수개 배열설치되며, 주저장탱크(210) 또는 재생탱크(230)로부터 방사용액을 공급받는다. 이하 상향식 전기방사를 기본으로 발명을 설명하며, 하기 상향식 방사는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시한 것이며, 그 기술적인 요지를 이탈 하지 않는 범위 내에서 다양한 변경이 가능하다.The nozzle 42 of the nozzle block 110 can be a bottom-up, a top-down, and a horizontal type, and in particular, in the electrospinning apparatus to which the overflow system 200 is applied, bottom-up electrospinning is preferable. A plurality of nozzles 42 are installed in a bottom-up, top-down or horizontal manner, and receives the spinning solution from the main storage tank 210 or the regeneration tank 230. Hereinafter, the invention will be described based on bottom-up electrospinning, and the following bottom-up radiation is not intended to limit the scope of the present invention, but is merely presented as an example, and various modifications may be made without departing from the technical scope of the present invention. .
상향식 전기방사의 노즐(42)의 선단부는 원통을 해당원통의 축과 비스듬히교차하는 평면을 따라서 절단한 형상으로 이루어지는 것이 바람직하나, 노즐블 록(110) 일부분의 노즐(42) 선단부가 나팔관 모양의 형상을 가지는 것도 가능하다.The tip of the nozzle 42 of the bottom-up electrospinning is preferably formed in a shape cut along the plane that crosses the cylinder at an angle to the axis of the cylinder, but the tip of the nozzle 42 of the portion of the nozzle block 110 is shaped like a fallopian tube. It is also possible to have a shape.
컬렉터(150)는 노즐블록(110) 보다 위쪽에 배치되어 있으며, 도전체로 이루어지고, 절연부재(152)를 통하여 케이스(102)에 취부되어 있다. 이때 상기 케이스(102)가 절연체로 이루어지거나, 케이스(102)의 상부는 절연체로, 하부는 도전체로 혼용되어 적용되는 경우에는 절연부재(152)를 삭제하는 것도 가능하다.The collector 150 is disposed above the nozzle block 110, is made of a conductor, and is attached to the case 102 through the insulating member 152. At this time, when the case 102 is made of an insulator, or the upper portion of the case 102 is used as an insulator, and the lower portion is used as a conductor, the insulating member 152 may be deleted.
전원장치(160)는 노즐블록(110)에 상향식으로 다수개 배열설치된 노즐(42)과 컬렉터(150)와의 사이에 고전압을 인가한다. 전원장치(160)의 정극은 컬렉터(150) 에 접속되고, 전원장치(160)의 부극은 케이스(102)를 통하여 노즐블록(110)에 접속되어 있다.The power supply device 160 applies a high voltage between the collector 42 and the nozzles 42 arranged in a plurality of nozzle blocks 110 upwardly. The positive electrode of the power supply device 160 is connected to the collector 150, and the negative electrode of the power supply device 160 is connected to the nozzle block 110 through the case 102.
상기 노즐블록(110)의 방사용액을 토출구로부터 상향의 컬렉터(150)를 향하여 나노섬유를 토출하는 노즐(42)을 통해 제작된 나노섬유는 장척시트에 퇴적되어균일한 두께를 유지하면서 이동한다.The nanofibers produced through the nozzle 42 for discharging the nanofibers from the discharge port toward the collector 150 upward from the discharge port are deposited on the long sheet and move while maintaining a uniform thickness.
이때, 전기방사 나노섬유는 전기방사가 가능한 합성수지 재질을 방사하여 제조된 평균직경이 50~1000nm의 섬유로, 상기 전기방사가 가능한 합성수지 재질은 별도로 제한받지 아니하나, 예를 들면 폴리프로필렌(PP), 폴리에틸렌텔레프탈레이트(PET), 폴리비닐리덴플루라이드, 나일론, 폴리비닐아세테이트, 폴리메틸메타아크릴레이트, 폴리아크릴로니트릴(PAN), 폴리우레탄(PUR), 폴리부틸렌텔레프탈레이트(PBT), 폴리비닐부틸랄, 폴리비닐클로라이드, 폴리에틸렌이민, 폴리올레핀, 폴리유산(PLA), 폴리초산비닐(PVAc), 폴리에틸렌나프탈레이트(PEN), 폴리아미드(PA), 폴리비닐알콜(PVA), 폴리에틸렌이미드(PEI), 폴리카프로락톤(PCL), 폴리유산글리롤산(PLGA), 실크, 셀룰로오스, 키토산 등이 있으며, 그 중 폴리프로필렌(PP)재질의소재와 내열성 고분자 물질인 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에테르이미드, 폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리 비스[2-(2-메톡시에톡시)포스파젠]과 같은 폴리포스파젠류, 폴리우레탄 및 폴리에테르우레탄을 포함하는 폴리우레탄 공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트 등의 폴 리머로 이루어진 군이 상용적으로 널리 사용되고 있다.At this time, the electrospun nanofibers are fibers of an average diameter of 50 ~ 1000nm prepared by spinning the electrospun synthetic resin material, the synthetic resin material capable of electrospinning is not limited separately, for example, polypropylene (PP) , Polyethylene terephthalate (PET), polyvinylidene fluoride, nylon, polyvinylacetate, polymethyl methacrylate, polyacrylonitrile (PAN), polyurethane (PUR), polybutylene terephthalate (PBT), poly Vinyl butyral, polyvinyl chloride, polyethyleneimine, polyolefin, polylactic acid (PLA), polyvinyl acetate (PVAc), polyethylene naphthalate (PEN), polyamide (PA), polyvinyl alcohol (PVA), polyethyleneimide ( PEI), polycaprolactone (PCL), polylactic acid glycolic acid (PLGA), silk, cellulose, chitosan, etc. Among them, polypropylene (PP) material and heat-resistant polymer polyamide, Aromatic polyesters such as polyimide, polyamideimide, poly (meth-phenylene isophthalamide), polysulfone, polyetherketone, polyetherimide, polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate and the like Polyphosphazenes such as tetrafluoroethylene, polydiphenoxyphosphazene, polybis [2- (2-methoxyethoxy) phosphazene], polyurethane copolymers including polyurethane and polyetherurethane, cellulose Groups of polymers such as acetate, cellulose acetate butyrate and cellulose acetate propionate are widely used commercially.
또한, 상기 유닛(100, 100') 내에서 노즐(42)을 통하여 공급되는 방사용액은상기 전기방사가 가능한 합성수지 재질인 폴리머를 적당한 용매에 용해시킨 용액으로, 용매의 종류 또한 폴리머를 용해시킬 수 있는 것이라면 제한되지 않으며, 예를든다면 페놀, 포름산, 황산, m-크레솔, 티플루오르아세트앤하이드라이드/다이클로로메테인, 물, N-메틸모폴린 N-옥시드, 클로로폼, 테트라히드로푸란과 지방족 케톤군인 메틸이소부틸케톤, 메틸에틸케톤, 지방족 수산기 군인 m-부틸알콜, 이소부틸알콜, 이소프로필알콜, 메틸알콜, 에탄올, 지방족 화합물인 헥산, 테트라클로로에틸렌, 아세톤, 글리콜군으로서 프로필렌글리콜, 디에틸렌글리콜, 에틸렌글리콜, 할로겐 화합물군으로 트리크롤로에틸렌, 다이클로로메테인, 방향족 화합물 군인 톨루엔, 자일렌, 지방족 고리 화합물군으로서 사이클로헥사논, 시클로헥산과 에스테르군으로 n-부틸초산염, 초산에틸, 지방족에테르군으로 부틸셀로살브, 아세트산2-에톡시에탄올, 2-에톡시에탄올, 아미드로 디메틸포름아미드, 디메틸아세트아미드 등을 사용할 수 있으며, 복수 종류의 용매를 혼합하여 이용할 수 있다. 방사용액에는 도전성 향상제 등의 첨가제를 함유하여도 좋다.In addition, the spinning solution supplied through the nozzle 42 in the unit 100, 100 ′ is a solution in which the polymer, which is the electrospinable synthetic resin material, is dissolved in a suitable solvent, and the kind of solvent may also dissolve the polymer. If present, there is no limitation, for example phenol, formic acid, sulfuric acid, m-cresol, thifluoroacetide & hydride / dichloromethane, water, N-methylmorpholine N-oxide, chloroform, tetrahydro Furan and aliphatic ketone groups methyl isobutyl ketone, methyl ethyl ketone, aliphatic hydroxyl group m-butyl alcohol, isobutyl alcohol, isopropyl alcohol, methyl alcohol, ethanol, aliphatic compounds hexane, tetrachloroethylene, acetone, propylene as glycol group In the glycol, diethylene glycol, ethylene glycol, halogen compound group, trichloroethylene, dichloromethane, aromatic compound, toluene, xylene, aliphatic ring Cyclohexanone as the compound group, n-butyl acetate as the cyclohexane and ester group, ethyl acetate, butyl cellosalbu as the aliphatic ether group, 2-ethoxyethanol acetate, 2-ethoxyethanol, amide form dimethyl formamide, dimethyl Acetamide and the like can be used, and a plurality of solvents can be mixed and used. The spinning solution may contain additives such as conductivity improvers.
한편, 상기 컬렉터(150)의 외측에는 보조 벨트장치가 구비되며, 상기 보조벨트장치(170)는 장척시트의 이송속도에 동기하여 회전하는 보조벨트(172)와, 보조벨트(172)의 회전을 돕는 보조벨트용 롤러(174)와 보조벨트(172)의 구동을 위한 보조 벨트 구동장치로 구성된다.On the other hand, the outer side of the collector 150 is provided with an auxiliary belt device, the auxiliary belt device 170 is to rotate the auxiliary belt 172 and the auxiliary belt 172 to rotate in synchronization with the feed rate of the long sheet. The auxiliary belt roller 174 and the auxiliary belt driving device for driving the auxiliary belt 172 are provided.
이때, 보조벨트용 롤러(174)는 보조벨트 구동장치에 의하여 보조벨트(172)를 회전시키는 것이 바람직하나, 마찰계수가 낮은 롤러를 사용하여 별도의 구동장치가 없이 장척시트의 이송을 보조하는 것도 가능하다.At this time, the auxiliary belt roller 174 preferably rotates the auxiliary belt 172 by the auxiliary belt driving device, but also by using a roller with a low coefficient of friction to assist the transfer of the long sheet without a separate driving device. It is possible.
주저장 탱크(210)는 나노섬유의 원료가 되는 방사용액을 저장한다. 주저장탱크(210)내에는 방사용액의 분리나 응고를 방지하기 위한 교반장치(211)를 내부에 구비한다.The main storage tank 210 stores the spinning solution that is a raw material of the nanofibers. The main storage tank 210 is provided with a stirring device 211 to prevent separation or solidification of the spinning solution therein.
제2 이송배관(216)은 상기 주저장 탱크(210) 또는 재생탱크(230)에 접속된파이프와 밸브(233)로 구성되어 있고, 상기 주저장 탱크(210) 또는 재생탱크(230) 로부터 중간탱크(220)에 방사용액을 이송한다.The second transfer pipe 216 is composed of a pipe and a valve 233 connected to the main storage tank 210 or the regeneration tank 230, and intermediate from the main storage tank 210 or the regeneration tank 230. The spinning solution is transferred to the tank 220.
제2 이송제어장치(218)는 상기 제2 이송배관(216)의 밸브(212, 213, 214)를 제어함으로써, 제2 이송배관(216)의 이송동작을 제어한다. 밸브(212, 213, 214)는 주저장 탱크(210)로부터 중간탱크(220)로의 방사용액의 이송을 제어하며, 재생탱크(230)로부터 중간탱크(220)로의 방사용액의 이송을 제어하고, 주저장 탱크(210) 및 재생탱크(230)로부터 중간탱크(220)에 유입하는 방사용액의 양을 제어한다.The second transfer control device 218 controls the transfer operation of the second transfer pipe 216 by controlling the valves 212, 213, 214 of the second transfer pipe 216. The valves 212, 213, 214 control the transfer of the spinning solution from the main storage tank 210 to the intermediate tank 220, and control the transfer of the spinning solution from the regeneration tank 230 to the intermediate tank 220. The amount of the spinning solution flowing into the intermediate tank 220 from the main storage tank 210 and the regeneration tank 230 is controlled.
상기와 같은 제어방법은 후술하는 중간탱크(220)의 구비된 제2 센서(222)로계측된 방사용액의 액면높이에 따라서 제어된다.The control method as described above is controlled according to the liquid level of the spinning solution measured by the second sensor 222 of the intermediate tank 220 to be described later.
중간탱크(220)는 주저장 탱크(210) 또는 재생탱크(230)로부터 공급된 방사용액을 저장하고, 노즐블록(110)으로 상기 방사용액을 공급하며, 공급된 방사용액의 액면높이를 측정하는 제2 센서(222)를 구비하고 있다.The intermediate tank 220 stores the spinning solution supplied from the main storage tank 210 or the regeneration tank 230, supplies the spinning solution to the nozzle block 110, and measures the liquid level of the supplied spinning solution. The second sensor 222 is provided.
상기 제2 센서(222)는, 액면높이 측정이 가능한 센서면 가능하고, 예를 들면광센서 혹은 적외선 센서 등으로 이루어지는 것이 바람직하다.The second sensor 222 may be a sensor capable of measuring the liquid level, and is preferably made of, for example, an optical sensor or an infrared sensor.
상기 중간탱크(220)의 하부에는 노즐블록(110)으로 방사용액을 공급하는 공급배관(24)과 공급제어밸브(242)가 구비되어 있는데, 상기 공급제어밸브(242)는 상기 공급배관(240)의 공급동작을 제어한다.The lower portion of the intermediate tank 220 is provided with a supply pipe 24 and a supply control valve 242 for supplying the spinning solution to the nozzle block 110, the supply control valve 242 is the supply pipe 240 Control the supply operation.
재생탱크(230)는 오버플로우되어 회수된 방사용액을 저장하고 방사용액의 분리나 응고를 방지하기 위한 교반장치(231)를 내부에 갖고, 회수된 방사용액의 액면 높이를 측정하는 제1 센서(232)를 구비하고 있다.The regeneration tank 230 has a stirring device 231 for storing the spinning solution recovered due to overflow and preventing separation or coagulation of the spinning solution, and a first sensor for measuring the liquid level of the recovered spinning solution ( 232).
상기 제1 센서(232)는, 액면높이 측정이 가능한 센서면 가능하고, 예를 들면광센서 혹은 적외선 센서 등으로 이루어지는 것이 바람직하다.The first sensor 232 may be a sensor capable of measuring the liquid level, and for example, it is preferable that the first sensor 232 is formed of an optical sensor or an infrared sensor.
한편, 노즐블록(110)에서 오버플로우된 방사용액은 노즐블록(110) 하부에 구비된 방사용액 회수 경로(250)를 통하여 회수된다. 상기 방사용액 회수 경로(250) 는 제1 이송배관(251)을 통해 재생탱크(230)로 방사용액을 회수한다.On the other hand, the spinning solution overflowed from the nozzle block 110 is recovered through the spinning solution recovery path 250 provided below the nozzle block 110. The spinning solution recovery path 250 recovers spinning solution to the regeneration tank 230 through the first transfer pipe 251.
한편, 제1 이송배관(251)은 상기 재생탱크(230)에 접속되는 파이프와 펌프를 구비하고, 상기 펌프의 동력으로 방사용액을 방사용액 회수경로(250)로부터 재생탱크(230)로 이송한다.On the other hand, the first transfer pipe 251 is provided with a pipe and a pump connected to the regeneration tank 230, and transfers the spinning solution from the spinning solution recovery path 250 to the regeneration tank 230 by the power of the pump. .
이때, 재생탱크(230)는 적어도 하나 이상인 것이 바람직하며, 2개 이상인 경우에는 상기 제1 센서(232)와 밸브(233)가 복수개로 구비되는 것도 가능하다.At this time, the regeneration tank 230 is preferably at least one, in the case of two or more may be provided with a plurality of the first sensor 232 and the valve 233.
이어서, 재생탱크(230)가 2개 이상인 경우, 재생탱크(230) 상부에 위치한 밸브(233)도 복수로 구비됨에 따라 제1 이송제어장치(미도시)는 상기 재생탱크(230)에 구비된 상기 제1 센서(232)의 액면높이에 따라서 상부에 위치한 2개 이상의 밸브를 제어하여 방사용액을 복수의 재생탱크(230) 중 어느 하나의 재생탱크(230)로이송할지에 대하여 제어한다.Subsequently, when there are two or more regeneration tanks 230, a plurality of valves 233 positioned above the regeneration tank 230 are also provided, so that a first transfer control device (not shown) is provided in the regeneration tank 230. Two or more valves located above are controlled according to the liquid level of the first sensor 232 to control which one of the plurality of regeneration tanks 230 of the regeneration tank 230 is transferred.
2. 폴리머 용액(고분자)의 온도조절 시스템2. Temperature control system of polymer solution (polymer)
전기방사를 위해 폴리머 용액을 사용한다. 일반적으로 기존의 발명들은 폴리머 용액의 농도를 일정하게 유지하기 위해 희석제, 농도 조절 장치들을 구비한다. 이러한 희석제로는 MEK(methyl ether ketone), THF(tetra hydro furan), Alcohol등이 사용된다. 노즐블록(110)을 통해 전기방사되어 컬렉터(150)에 집적되는 폴리머 용액이외에 오버플로우 시스템(200)을 통해 회수되는 폴리머 용액의 농도는 주저장 탱크(210)로부터 최초에 공급되는 폴리머 용액의 농도보다 높은 농도를 가지게 되는데, 기존 전기방사시에는 이러한 폴리머 용액의 농도를 일정수준으로 유지하기 위하여 희석제를 첨가하였다. 또한 희석제로 사용되는 MEK 또는 THF 등은 끓는점(b.p)이 낮아(약 60℃) 전기방사시에 용매인 DMAc 단독으로 사용하는 경우보다 비산성이 좋아 나노섬유형성이 용이하다.Polymer solution is used for electrospinning. Generally, existing inventions include diluents and concentration adjusting devices to maintain a constant concentration of the polymer solution. As such a diluent, MEK (methyl ether ketone), THF (tetra hydrofuran), and alcohol are used. In addition to the polymer solution electrospun through the nozzle block 110 and integrated in the collector 150, the concentration of the polymer solution recovered through the overflow system 200 is the concentration of the polymer solution initially supplied from the main storage tank 210. It will have a higher concentration. In the conventional electrospinning, a diluent was added to maintain a certain level of the polymer solution. In addition, MEK or THF, which is used as a diluent, has a low boiling point (b.p) (about 60 ° C.) and is easier to disperse nanofibers than the case of using DMAc alone as a solvent during electrospinning.
그러나 본원발명은 농도를 일정하게 유지하는 대신, 재사용되는 고농도의 폴리머 용액을 오버플로우 후에 다시 사용하되 폴리머 용액의 점도를 온도조절 제어장치(60)를 이용하여 일정하게 조절함으로써 전기방사의 효율을 높이는 수단을 제공하며 희석제의 사용이 없이도 높은 점도를 조절하기 위한 높은 온도조건에서 비산성이 우수하여 폴리머 용액의 나노섬유형성을 용히하게 할수 있다.However, the present invention is to increase the efficiency of electrospinning by using a high concentration of the polymer solution to be reused after the overflow instead of maintaining a constant concentration, but by constantly adjusting the viscosity of the polymer solution using the temperature control controller 60 It provides a means and excellent scattering properties at high temperature conditions to control high viscosity without the use of diluents to facilitate nanofiber formation of polymer solutions.
점도란 흐르는 액체 내에서 용질과 용매의 비뚤어짐 응력과 비뚤어짐 속도의비율을 의미한다. 일반적으로 절단면적당 점탄율로 표시하며 단위는 dynscm-2gcm-1s-1또는 푸아즈(poise, P)이다. 점도는 온도 상승에 반비례하여 저하된다. 용해액의 점도가 용매의 점도보다 높은 것은 용질에 따라 액체의 흐름에 비뚤어짐이 생기며 그 양만큼 액체의 유속이 저하되기 때문이다.Viscosity refers to the ratio of the skew stress and skew rate of the solute and solvent in the flowing liquid. It is usually expressed in terms of viscoelasticity per cut area and the unit is dynscm-2gcm-1s-1 or poise (P). The viscosity decreases in inverse proportion to the temperature rise. The viscosity of the solution is higher than that of the solvent because the flow of the liquid is skewed depending on the solute and the flow rate of the liquid is reduced by that amount.
용액의 점도를 각종 용액농도로 측정하여 그것을 농도 0에 외삽한 값, 고유점도(η)와 물질의 분자량M의 관계는 (η)=KMa로 표시할 수 있다. 이때의 K, a는용질또는 용매의 종류, 온도에 의존하는 정수이다. 따라서, 점도값은 온도에 영향을 받으며 그 변화정도는 유체의 종류에 따라 다르다. 따라서, 점도를 이야기할 때 에는 온도 및 점도의 값을 명시해야 한다.The viscosity of the solution was measured at various concentrations of the solution, and extrapolated to the concentration 0, the relationship between the intrinsic viscosity (η) and the molecular weight M of the substance can be expressed as (η) = KMa. K and a at this time are integers which depend on a kind of a solute or a solvent, and temperature. Therefore, the viscosity value is affected by temperature and the degree of change depends on the type of fluid. Therefore, when talking about viscosity, you must specify the values of temperature and viscosity.
전기방사장치(1)로 나노섬유를 제조할 때에, 사용되는 고분자와 용매(Solvent)의 종류, 고분자 용액의 농도, 방사실(Spinningroom)의 온도 및 습도 등이 제조되는 나노섬유의 섬유직경과 방사성에 영향을 미치는 것으로 알려져 있다. 즉, 전기방사에서 방사되는 고분자(폴리머 용액)의 물성이 중요하다. 통상적으로 전기방사시에 고분자의 점도는 일정 점도이하를 유지하는 것이 필요한 것으로 여겨져 왔다. 이는 점도가 높을수록 노즐(42)을 통해 나노 굵기의 섬유의 방사가원활이 이루어지지 않는 특성에서 기인하며 점도가 높으면 전기방사를 통해 섬유화 하기에 부적당하다.When manufacturing the nanofibers by the electrospinning apparatus 1, the fiber diameter and radioactivity of the nanofibers in which the type of polymer and solvent used, the concentration of the polymer solution, the temperature and humidity of the spinning room, etc. are manufactured. It is known to affect. That is, the physical properties of the polymer (polymer solution) radiated by electrospinning is important. In general, the viscosity of the polymer during electrospinning has been considered necessary to maintain a certain viscosity or less. This is due to the characteristic that the higher the viscosity, the spinning of the nano-thickness fiber is not achieved through the nozzle 42, and the higher the viscosity is not suitable for fiberization through electrospinning.
본원발명은 상기에서 설명한 바와 같이 전기방사에 적합한 섬유점도를 유지하기 위하여 온도조절 제어장치(60)로 점도를 조절하기 위한 온도조절 제어장치(60)를 포함하는 것을 특징으로 한다.The present invention is characterized in that it comprises a temperature control controller 60 for adjusting the viscosity with the temperature control controller 60 to maintain the fiber viscosity suitable for electrospinning as described above.
상기 온도조절 제어장치(60)로는 오버플로우를 통해 재사용되는 높은 점도의폴리머 용액의 점도를 낮게 유지할 수 있는 가열장치와 상대적으로 낮은 점도의 폴리머 용액의 점도를 높게 유지할 수 있는 냉각장치 모두 또는 어느 하나를 구비할수 있다.The thermostat control device 60 may include both a heating device capable of maintaining a low viscosity of a high viscosity polymer solution reused through an overflow and a cooling device capable of maintaining a high viscosity of a relatively low viscosity polymer solution. It can be provided.
전기방사 영역에서의 온도에 있어서, 전기방사가 일어나는 영역(이하, '방사영역'이라 한다)의 온도는 방사용액의 점도를 변화시킴으로써 방사 용액의 표면장력을 변화시키므로, 결국 방사된 나노섬유의 직경에 영향을 미치게 된다.In the temperature of the electrospinning region, the temperature of the region where electrospinning occurs (hereinafter referred to as the 'spinning region') changes the surface tension of the spinning solution by changing the viscosity of the spinning solution, so that the diameter of the nanofibers spun Will affect.
즉, 방사영역의 온도가 상대적으로 높아서 용액의 점도가 낮으면 섬유직경이상대적으로 가는 나노섬유가 만들어지고, 온도가 상대적으로 낮아서 용액의 점도가 높으면 섬유직경이 상대적으로 굵은 나노섬유가 만들어진다.That is, when the viscosity of the solution is low because the temperature of the radiation region is relatively high, the fiber becomes thinner than the fiber diameter, and when the viscosity of the solution is high because the temperature is relatively low, the fiber diameter is relatively thick.
특히 폴리머 용액의 경우 오버플로우를 통해 재공급되는 폴리머 용액의 농도가 증가하는 경향을 보이는데 중간탱크(220)에서 폴리머 용액의 농도를 측정함으로써 해당농도에 따른 온도-점도 그래프를 이용하여 온도를 조절함으로써 점도를 일 정하게 유지할 수 있다(도 9 참고).In particular, in the case of the polymer solution, the concentration of the polymer solution re-supplied through the overflow tends to increase. By measuring the concentration of the polymer solution in the intermediate tank 220, the temperature is controlled using a temperature-viscosity graph according to the corresponding concentration. The viscosity can be kept constant (see FIG. 9).
농도를 측정하기 위한 농도측정장치는 용액에 직접 접촉하는 접촉식과 비접촉식이 있으며, 접촉식으로는 캐필리러식 농도측정장치, 디스크(DISC)식 농도측정장치 등이 사용될 수 있으며, 비접촉식으로는 자외선을 이용한 농도측정장치 또는 적외석을 이용한 농도측정장치 등을 사용할 수 있다.The concentration measuring device for measuring the concentration may be a contact type and a non-contact type directly contacting the solution, and the contact type may be a capillary concentration measuring device or a disc (DISC) concentration measuring device. Concentration measuring apparatus or concentration measuring apparatus using infrared light can be used.
본 발명의 가열장치는 전열히터, 온수순환장치 또는 온풍 순환 장치등으로이루어 질 수 있으며, 이외에 상기 장치들과 균등한 범위에서 온도를 높일수 있는장치들을 차용할 수 있다.The heating apparatus of the present invention may be made of a heat transfer heater, a hot water circulation device or a warm air circulation device, etc., in addition to the devices that can increase the temperature in an equivalent range with the above devices can be borrowed.
가열장치의 일예로 전열히터는 열선형태로 사용될 수 있으며, 노즐블록(110)의 관체(43)내부에 코일형태의 열선(62a, 62b)을 장착할 수 있으며, 이는 자킷형태 로도 변형가능하다(도 3 내지 도 8 참고).As an example of the heating device, the electric heating heater may be used in the form of a hot wire, and the coil wires 62a and 62b may be mounted inside the tubular body 43 of the nozzle block 110, which may be transformed into a jacket ( 3 to 8).
또한, 선형형태의 열선(62a, 62b) 및 U자 형태의 파이프(63)의 구성을 지닌것도 가능하다.In addition, it is also possible to have a configuration of the hot wires (62a, 62b) of the linear form and the pipe 63 of the U-shape.
상기와 같은 가열장치는 폴리머 용액이 방사되는 노즐블록(110), 폴리머 용액이 저장되는 탱크(주저장 탱크, 중간탱크 또는 재생탱크) 및 오버플로우 시스템(200 : 특히 회수부로부터 재생탱크로 이송되는 이송배관)중 어느 하나 이상에 구비될 수 있다.Such a heating apparatus includes a nozzle block 110 in which the polymer solution is radiated, a tank (main storage tank, an intermediate tank or a regeneration tank) in which the polymer solution is stored, and an overflow system 200, in particular, transferred from the recovery part to the regeneration tank. It may be provided in any one or more of the transfer piping).
본 발명의 냉각장치는 칠링장치를 포함한 냉각수단등이 사용될 수 있으며, 폴리머 용액의 일정점도를 유지하기 위한 수단은 통상적으로 적용이 가능하다. 냉각장치는 가열장치와 동일하게 노즐블록(110), 탱크 및 오버플로우 시스템(200) 중어느 하나 이상에 구비될 수 있으며, 폴리머 용액의 일정점도를 유지하기 위해 사용된다.As the cooling device of the present invention, a cooling means including a chilling device may be used, and a means for maintaining a constant viscosity of the polymer solution is generally applicable. The cooling device may be provided in any one or more of the nozzle block 110, the tank, and the overflow system 200 in the same manner as the heating device, and is used to maintain a constant viscosity of the polymer solution.
또한, 본 발명의 온도조절 제어장치(60)는 농도를 측정하는 센서와 이에 따라 온도를 제어하는 온도조절 제어부(미도시)를 포함한다.In addition, the temperature control controller 60 of the present invention includes a sensor for measuring the concentration and thus a temperature control controller (not shown) for controlling the temperature.
상기 센서는 주저장 탱크(210), 중간탱크(220), 재생탱크(230), 노즐블록(110) 또는 오버플로우 시스템(200) 등에 설치되어 방사용액의 농도를 실시간으로 측정하여 이를 온도조절 제어장치(60)에서 점도가 일정하게 유지되도록 가열장치 및/또는 냉각장치를 작동한다.The sensor is installed in the main storage tank 210, the intermediate tank 220, the regeneration tank 230, the nozzle block 110 or the overflow system 200 and the like to measure the concentration of the spinning solution in real time to control the temperature control In the device 60, the heating and / or cooling device is operated so that the viscosity is kept constant.
본 발명의 오버플로우 시스템(200)을 통해 재공급 되는 폴리머 용액의 농도는 20 내지 40%이며, 이는 통상적인 전기방사에서 사용되는 폴리머 용액의 농도인10 내지 18%에 비해 고농도의 용액이다.The concentration of the polymer solution re-supplied through the overflow system 200 of the present invention is 20 to 40%, which is a higher concentration of solution than the concentration of 10 to 18% of the polymer solution used in conventional electrospinning.
또한, 본 발명의 재공급 되는 폴리머 용액의 점도를 일정하게 하기 위해, 폴리머 용액의 농도에 따른 폴리머 용액의 온도는 상온이 아닌, 45 내지 120 ℃로 조 절되는 것을 특징으로 한다.In addition, in order to keep the viscosity of the polymer solution resupply of the present invention, the temperature of the polymer solution according to the concentration of the polymer solution is characterized in that it is adjusted to 45 to 120 ℃, not room temperature.
한편, 본 발명의 폴리머 용액은 점도는 1,000 내지 5,000 cps가 바람직하며,더욱 바람직하게는 1,000 내지 3,000 cps 의 점도가 좋다. 점도가 1,000 cps 이하일 경우 전기방사되어 적층되는 나노섬유의 품질이 불량하며, 점도가 3,000 cps 이상일 경우 전기방사시 노즐(42)로부터 폴리머 용액의 토출이 용이하게 되지 않아 생산속도가 느려진다.Meanwhile, the polymer solution of the present invention preferably has a viscosity of 1,000 to 5,000 cps, more preferably 1,000 to 3,000 cps. If the viscosity is 1,000 cps or less, the quality of the nanofibers laminated by electrospinning is poor, and if the viscosity is 3,000 cps or more, the discharge of the polymer solution from the nozzle 42 is not easy during electrospinning, and thus the production speed is slowed.
또한, 본원발명은 전기방사를 진행할수록 폴리머용액의 점도는 일정하여 전기방사시의 방사용이성이 우수함과 동시에 폴리머용액의 농도가 증가하여 콜렉터에집적되는 나노섬유 중 용매를 제외한 고형분 양의 증가로 생산성이 증대되는 효과가 있다.In addition, the present invention, as the electrospinning proceeds, the viscosity of the polymer solution is constant, so that it is excellent in the easiness of spinning during electrospinning and the concentration of the polymer solution is increased, thereby increasing productivity by increasing the amount of solids excluding the solvent in the nanofibers concentrated on the collector. This has the effect of increasing.
이에 더해, 전기방사를 이용한 나노섬유의 잔존 용매량이 기존의 전기방사를이용한 경우 보다 적어 우수한 품질의 나노섬유를 제조할 수 있다.In addition, the amount of the remaining solvent of the nanofibers using the electrospinning is less than when using the conventional electrospinning it can be produced a nanofiber of excellent quality.
또한, 본 발명의 온도조절 제어장치(60)는 오프라인 상으로 작업자가 중간탱크(220)의 농도를 측정하여 노즐블록(110)이나 주저장탱크(210)의 온도조절을 통해폴리머 용액의 점도를 제어할 수 있는 수동식이 가능함과 동시에, 온라인상으로 자동제어 시스템을 통해 농도측정에 따라 해당 용액의 온도를 조절할 수 있는 자동식인 것을 포함한다.In addition, the temperature control control device 60 of the present invention to measure the concentration of the intermediate tank 220 by the operator offline to adjust the viscosity of the polymer solution through the temperature control of the nozzle block 110 or the main storage tank 210. In addition to being able to control manually, the automatic control system online includes automatic control of the temperature of the solution according to the concentration measurement.
이하에서는 온도조절 제어장치(60)를 구비하여 점도를 일정하게 유지하는 것을 특징으로 하는 전기방사전기방사를 이용한 나노섬유 필터의 제조방법에 대해 설명한다. 그러나 하기 제조방법은 본 발명의 일 제조방법에 불과할 뿐, 본 발명의 범위가 이 에 한정되는 것은 아니다.Hereinafter, a method of manufacturing a nanofiber filter using electrospinning electrospinning, which includes a temperature control controller 60 and maintains a constant viscosity, will be described. However, the following manufacturing method is only one manufacturing method of the present invention, and the scope of the present invention is not limited thereto.
나노섬유필터를 구성하는 나노섬유의 제조방법은 폴리머 용액이 저장된 주저장 탱크(210)로부터 폴리머용액이 노즐블록(110)으로 공급되는 공급단계를 포함한다. 이때 주저장 탱크(210)에 유입되는 폴리머 용액의 종류는 상기에서 설명한 폴리머 용액이 다양하게 사용될 수 있다.The manufacturing method of the nanofibers constituting the nanofiber filter includes a supply step of supplying the polymer solution to the nozzle block 110 from the main storage tank 210 in which the polymer solution is stored. In this case, the polymer solution introduced into the main storage tank 210 may be variously used as described above.
주저장 탱크(210)로부터 노즐블록(110)으로 공급된 폴리머 용액은 노즐(42)을 통해 컬렉터(150)에 전기방사되어 나노섬유층을 적층하는 전기방사단계를 포함한다. 전기방사단계에서는 노즐블록(110)과 컬렉터(150) 간의 거리를 평균적으로 20 내지 50 cm로 조절하고, 인가전압을 10 내지 40kV로 조절하고, 폴리머 용액의유량, 온도 및 습도는 전기방사에 있어서 통상의 범위로 설정할 수 있다.The polymer solution supplied from the main storage tank 210 to the nozzle block 110 includes an electrospinning step of electrospinning the collector 150 through the nozzle 42 to stack the nanofiber layer. In the electrospinning step, the distance between the nozzle block 110 and the collector 150 is adjusted to 20 to 50 cm on average, the applied voltage is adjusted to 10 to 40 kV, and the flow rate, temperature and humidity of the polymer solution It can be set in a normal range.
전기방사단계에서 노즐블록(110)에서 전기방사되는 폴리머 용액의 30 내지10%만이 나노섬유화 되며 나머지 70 내지 90%의 폴러머 용액은 나노섬유화 되지 못한다. 이렇게 나노섬유화 되지 못한 폴리머 용액은 오버플로우 시스템(200)을 통해 재생탱크(230)로 수거 및 수집되는 회수단계를 거친다.In the electrospinning step, only 30 to 10% of the polymer solution electrospun from the nozzle block 110 is nanofiberized, and the remaining 70 to 90% of the polymer solution is not nanofiberized. The polymer solution that is not nanofiberized is subjected to a recovery step of collecting and collecting the regeneration tank 230 through the overflow system 200.
이후 재생탱크(230)에 저장된 폴리머 용액은 바로 노즐블록(110)으로 재공급 될 수 있으며, 이에 더해 주저장 탱크(210)로부터 재생탱크(230)로 폴리머 용액이 유입되어 재생탱크(230)에 저장되는 저장단계를 거쳐 노즐블록(110)으로 재공급될수 있다.Thereafter, the polymer solution stored in the regeneration tank 230 may be directly supplied to the nozzle block 110. In addition, the polymer solution may be introduced into the regeneration tank 230 from the main storage tank 210 to the regeneration tank 230. Through the storage step to be stored may be supplied back to the nozzle block (110).
이후 재생탱크(230)로부터 폴리머 용액이 노즐블록(110)으로 재공급되는 재공급단계를 거치게 되며 이때 폴리머 용액의 점도를 일정하게 조절하기 위해 노즐블록(110)에 온도조절 제어장치(60)가 설치된다. 또한, 온도조절 제어장치(60)는, 노즐블록(110) 뿐만 아니라 오버플로우 시스템(200)과, 재생탱크(230) 또는 주저장탱크(210) 어느 하나에 설치 될 수 있다.Thereafter, the regeneration tank 230 undergoes a resupply step in which the polymer solution is resupplied to the nozzle block 110. In this case, the temperature control controller 60 is provided in the nozzle block 110 to constantly adjust the viscosity of the polymer solution. Is installed. In addition, the temperature control controller 60, as well as the nozzle block 110 may be installed in any one of the overflow system 200, the regeneration tank 230 or the main storage tank (210).
3. 폴리머 용액(고분자)의 방사량 조절 방법.3. Method of controlling radiation dose of polymer solution (polymer).
도 11을 참조하여 설명하면, 도면에서 도시하고 있는 바와 같이, 본 발명에 의한 전기방사장치(100)는 상향식 전기방사장치로 이루어지되, 적어도 하나 이상의유닛(110, 110')으로 이루어진다. 본 발명의 일 실시예에서는 상기 전기방사장치(100)가 상향식 전기방사장치로 이루어져 있으나, 하향식 전기방사장치로 이루어지는 것도 가능하다.Referring to Figure 11, as shown in the figure, the electrospinning apparatus 100 according to the present invention is composed of a bottom-up electrospinning device, consisting of at least one unit (110, 110 '). In one embodiment of the present invention, the electrospinning apparatus 100 is composed of a bottom-up electrospinning apparatus, it may be made of a top-down electrospinning apparatus.
여기서, 상기 유닛(110, 110')은 고분자 방사용액이 충진되는 방사용액 주탱크(120)와 상기 방사용액 주탱크(120) 내에 충진된 고분자 방사용액을 정량으로 공급하기 위한 계량 펌프(미도시)와 상기 방사용액 주탱크(120) 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐(111a)이 다수개로 구비되는 노즐관체(112)가 컬렉터의 횡방향으로 다수개 배열설치되는 노즐블록(111)과 상기 노즐(111a)에서 분사되는 고분자 방사용액을 집적하기 위하여 노즐(111a)에서 일정간격 이격격되게 설치되는 컬렉터(113) 및 상기 컬렉터(113)에 고전압을 발생시키는전압 발생장치(114)를 포함하여 구성된다.Here, the unit (110, 110 ') is a metering pump for supplying the quantitative supply of the polymer spinning solution filled in the spinning solution main tank 120 and the spinning solution main tank 120 filled with the polymer spinning solution (not shown) And a nozzle block for discharging the polymer spinning solution in the spinning solution main tank 120, wherein a plurality of nozzle pipes 112 having a plurality of nozzles 111a having a pin shape are arranged in a lateral direction of the collector ( In order to accumulate the 111 and the polymer spinning solution sprayed from the nozzle 111a, the collector 113 and the voltage generator 114 for generating a high voltage to the collector 113 are spaced apart at a predetermined interval from the nozzle 111a. It is configured to include).
상기한 바와 같은, 나노섬유필터 전기방사장치(1)는 방사용액 주탱크(120)내에 충진되는 고분자 방사용액이 계량 펌프를 통해 높은 전압이 부여되는 노즐블록(111)으로 연속적으로 정량 공급되고, 노즐블록(111)으로 공급되는 고분자 방사용액은 높은 전압이 걸려있는 컬렉터(113) 상에 노즐(111a)을통하여 전기방사장치 내에서 이송되는 컬렉터 상에 방사 및 집속되어 나노섬유필터가 적층형성된다.As described above, the nanofiber filter electrospinning apparatus 1 is continuously supplied to the nozzle block 111 in which the polymer spinning solution filled in the spinning solution main tank 120 is applied with a high voltage through a metering pump, The polymer spinning solution supplied to the nozzle block 111 is spun and focused on the collector transported in the electrospinning apparatus through the nozzle 111a on the collector 113 on which the high voltage is applied to form a nanofiber filter. .
이때, 상기 나노섬유필터 전기방사장치(1)에 구비되는 적어도 하나 이상의유닛(110, 110')은 일정간격 이격되어 순차적으로 구비되되, 각 유닛(110, 110')을 통하여 고분자 방사용액이 전기방사되어 나노섬유필터를 제조한다.At this time, at least one or more units (110, 110 ') provided in the nanofiber filter electrospinning apparatus (1) are sequentially spaced at a predetermined interval, the polymer spinning solution through the unit (110, 110') Spinning to produce a nanofiber filter.
한편, 상기 전기방사장치(100)의 노즐블록(111)은 그 횡방향으로 다수개의노즐관체(112)가 배열설치되고, 상기 노즐관체(112)에 고분자 방사용액을 공급하는방사용액 주탱크(120)가 적어도 하나 이상 연결구비된다.On the other hand, the nozzle block 111 of the electrospinning apparatus 100 has a plurality of nozzle pipes 112 are arranged in the transverse direction, the spinning liquid main tank for supplying a polymer spinning solution to the nozzle pipe (112) ( 120 is provided with at least one connection.
즉, 직육면체형상으로 형성되되, 그 상부면에 다수개의 노즐(111a)이 선형으로 구비되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)가노즐블록(111)에 컬렉터의 횡방향으로 다수개 배열설치되고, 상기 각 노즐관체(112a,112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)는 방사용액 주탱크(120)에 연결되어 상기 방사용액 주탱크(120) 내에 충진된 고분자 방사용액이 공 급된다.That is, the nozzle body (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) is formed in a rectangular parallelepiped, a plurality of nozzles (111a) are provided linearly on the upper surface of the nozzle block 111 And a plurality of nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i are arranged in the transverse direction of the collector in the spinneret main tank 120 The polymer spinning solution filled in the tank 120 is supplied.
여기서, 상기 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g,112h, 112i)는 방사용액 주탱크(120)에 용액공급관(121)으로 연결되되, 상기 용액공급관(121)은 다수개의 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)와 방사용액 주탱크(120)를 연결하기 위하여 다수개로 분기형성된다.Here, each nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) is connected to the spinning solution main tank 120 as a solution supply pipe 121, the solution supply pipe 121 is A plurality of branching bodies are connected to connect the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i and the spinning solution main tank 120.
이때, 상기 방사용액 주탱크(120)에서 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 연설되는 용액공급관(121)에는 공급량 조절수단(도번 미도시)이 구비되되, 상기 공급량 조절수단은 공급밸브(122)로 이루어진다.At this time, the supply amount adjusting means (not shown) to the solution supply pipe 121 that is addressed to each nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) in the spinning solution main tank 120 Is provided, the supply amount adjusting means is made of a supply valve (122).
이렇게 상기 방사용액 주탱크(120)에서 각 노즐관체(112a, 112b, 112c,112d, 112e, 112f, 112g, 112h, 112i)로 연설되는 용액공급관(121)에 공급밸브(122)가 각각 구비되고, 상기 각 공급밸브(122)에 의하여 방사용액 주탱크(120) 에서 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급 되는 고분자 방사용액의 공급이 조절 및 제어된다.In this way, the supply valve 122 is provided in each of the solution supply pipes 121 extending from the spinning solution main tank 120 to the nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i. The supply of the polymer spinning solution supplied from the spinning solution main tank 120 to each nozzle tube 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i by the respective supply valves 122 is controlled. And controlled.
즉, 상기 용액공급관(121)을 통하여 방사용액 주탱크(120)에서 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 고분자 방사용액의공급 시 상기 방사용액 주탱크(120)와 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)를 연설하는 용액공급관(121)에 구비되는 공급밸브(122)의개, 폐에 의해 노즐블록(111)에 배열설치되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 중 특정위치의 노즐관체(112b, 112d, 112f, 112g, 112h, 112i)에만 선택적으로 고분자 방사용액을 공급하는 등 상기 공급밸브(122)의 개, 폐에 의해 방사용액 주탱크(120)에서 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되는 고분자 방사용액의 공급이 조절 및 제어된다.That is, the spinning solution when the polymer spinning solution is supplied from the spinning solution main tank 120 to each nozzle tube 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i through the solution supply pipe 121. The nozzle is opened and closed by the supply valve 122 provided in the solution supply pipe 121 extending the main tank 120 and the nozzle pipe bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i. It is optional only for the nozzle pipes 112b, 112d, 112f, 112g, 112h, 112i at a specific position among the nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i arranged in the block 111. Each nozzle pipe 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i in the spinning solution main tank 120 by opening and closing the supply valve 122, etc. The supply of the polymer spinning solution to be controlled is controlled.
이를 위하여 상기 공급밸브(122)는 제어부(미도시)에 제어가능하게 연결되되, 상기 공급밸브(122)의 개, 폐가 제어부에 의해 자동으로 제어되는 것이 바람직하나, 현장상황 및 작업자의 요구에 따라 상기 공급밸브(122)의 개, 폐가 수동으로제어되도록 이루어지는 것도 가능하다.To this end, the supply valve 122 is controllably connected to the control unit (not shown), it is preferable that the opening and closing of the supply valve 122 is automatically controlled by the control unit, according to the site situation and the needs of the operator It is also possible that the opening and closing of the supply valve 122 is controlled manually.
본 발명의 일 실시예에서는 상기 공급량 조절수단이 공급밸브(122)로 이루어져 있으나, 방사용액 주탱크(120)에서 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되는 고분자 방사용액의 공급량의 조절 및 제어가용이하다면 상기 공급량 조절수단은 기타 다양한 구조 및 수단으로 이루어지는 것도 가능하며, 이에 한정하지 아니한다.In one embodiment of the present invention, the supply amount adjusting means is composed of a supply valve 122, but in the spinning solution main tank 120, each nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) Control and control of the supply amount of the polymer spinning solution to be supplied to the) If available, the supply amount adjusting means may be made of various other structures and means, but is not limited thereto.
상기한 바와 같은 구조에 의하여, 상기 방사용액 주탱크(120)와 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)를 연설하되, 분기형성되는 용액공급관(121)에 공급밸브(122)가 각각 구비되어 방사용액 주탱크(120)에서각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 고분자 방사용액의 공급 시 다수개의 공급밸브(122) 중 특정 공급밸브(122)를 개방하여 노즐블록(111)에 배열설치되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h,112i)중 특정위치의 노즐관체(112b, 112d, 112f, 112g, 112h, 112i)에만 고분자 방사용액을 공급하거나, 특정 공급밸브(122)를 폐쇄하여 노즐블록(111)에 배열설치되는 노즐관체 중 특정위치의 노즐관체(112a,112c, 112e)에만 고분자 방사용액의 공급을 차단하는 등 상기 공급밸브(122)의 개, 폐에 의해 방사용액 주탱크(120)에서 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 로 공급되는 고분자 방사용액의 공급이 조절 및 제어된다.By the structure as described above, the solution supply pipe 121 is to branch, while the spinning solution main tank 120 and each nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) to be addressed Each of the supply valves 122 is provided in each of the plurality of nozzles 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i from the spinning solution main tank 120 to supply a plurality of polymer spinning solutions. The nozzle at a specific position among the nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i, which is opened to the nozzle block 111 by opening a specific supply valve 122 among the supply valves 122. Supply the polymer spinning solution only to the pipe bodies 112b, 112d, 112f, 112g, 112h, 112i, or close the specific supply valve 122, and the nozzle pipe 112a at a specific position among the nozzle pipes arranged in the nozzle block 111. And nozzles 1 in the spinning solution main tank 120 by opening and closing the supply valve 122, for example, blocking the supply of the polymer spinning solution only to 112c and 112e. The supply of the polymer spinning solution to 12a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) is regulated and controlled.
한편, 상기 방사용액 주탱크(120)에서 용액공급관(121)을 통하여 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되는 고분자 방사용액은 상기 용액공급관(121)에 연설되는 노즐공급관(125)을 통하여 노즐관체(112a,112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)에 구비되는 각 노 즐(111a)로 공급된다.On the other hand, the polymer spinning solution supplied to each nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) through the solution supply pipe 121 in the spinning solution main tank 120 is the solution supply pipe It is supplied to each nozzle 111a provided in the nozzle pipe bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i through the nozzle supply pipe 125 extended to 121. As shown in FIG.
즉, 상기 용액공급관(121)과 노즐관체(112a, 112b, 112c, 112d, 112e, 112f,112g, 112h, 112i)에 구비되는 각 노즐(111a)은 노즐공급관(125)으로 연설되되, 상 기 노즐공급관(125)은 노즐(111a)의 갯수와 대응되게 분기형성된다.That is, each nozzle 111a provided in the solution supply pipe 121 and the nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i is addressed to the nozzle supply pipe 125, and The nozzle supply pipe 125 is branched to correspond to the number of nozzles 111a.
여기서도, 상기 노즐공급관(125)에는 방사량 조절수단(도번 미도시)이 구비 되되, 상기 방사량 조절수단은 노즐밸브(126)로 이루어진다.Here, the nozzle supply pipe 125 is provided with a radiation dose adjusting means (not shown), the radiation dose adjusting means is composed of a nozzle valve (126).
이렇게, 상기 방사량 조절수단으로 노즐밸브(126)가 구비됨으로써 상기 노즐밸브(126)의 개, 폐에 의하여 노즐공급관(125)에서 각 노즐(111a)로 공급되는 고분자 방사용액의 공급이 개별적으로 제어되고, 상기 노즐밸브(126)는 제어부(미도시) 에 제어가능하게 연결되되, 상기 노즐밸브(126)의 개, 폐가 제어부에 의해 자동으로 제어되는 것이 바람직하나, 현장상황 및 작업자의 요구에 따라 상기 노즐밸브(126)의 개, 폐가 수동으로 제어되도록 이루어지는 것도 가능하다.Thus, the nozzle valve 126 is provided as the radiation amount adjusting means to individually control the supply of the polymer spinning solution supplied from the nozzle supply pipe 125 to each nozzle 111a by opening and closing the nozzle valve 126. The nozzle valve 126 is controllably connected to a control unit (not shown), but the opening and closing of the nozzle valve 126 are preferably controlled automatically by the control unit. Opening and closing of the nozzle valve 126 may be controlled manually.
본 발명의 일 실시예에서는 상기 방사량 조절수단이 노즐밸브(126)로 이루어져 있으나, 노즐관체에서 노즐(111a)로 공급된 후 방사되는 고분자 방사용액의 방사량의 조절 및 제어가 용이하다면 상기 방사량조절수단은 기타 다양한 구조 및수단으로 이루어지는 것도 가능하며, 이에 한정하지 아니한다.In one embodiment of the present invention, the radiation dose adjusting means is composed of a nozzle valve 126, the radiation dose adjusting means if it is easy to control and control the radiation dose of the polymer spinning solution that is emitted after being supplied to the nozzle 111a from the nozzle tube May be made of various other structures and means, but is not limited thereto.
상기한 바와 같은 구조에 의하여, 상기 용액공급관(121)과 각 노즐(111a)이연결설치되되, 분기형성되는 노즐공급관(125)에 노즐밸브(126)가 각각 구비되어 방사용액 주탱크(120)에서 각 노즐관체(112a,112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)를 통하여 각 노즐(111a)로 고분자 방사용액의 공급 시 다수개의 노즐밸브(126) 중 특정 노즐밸브(126)를 개방하여 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)에 구비되는 각 노즐(111a) 중 특정위치의 노즐(111a)에서만 선택적으로 고분자 방사용액이 전기방사되거나, 특정 노즐밸브(126)를 폐쇄하여 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)에 구비되는 각 노즐(111a) 중 특정위치의 노즐(111a)에서 고분자 방사용액의 전기방사를 선택적으로 차단하는 등 상기 노즐밸브(126)에 의해 방사용액 주탱크(120)에서 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)를 통하여 각 노즐(111a)로 공급되는 고분자 방사용액의 공급이 개별적으로 조절 및 제어된다.By the above structure, the solution supply pipe 121 and the nozzles 111a are connected and installed, and the nozzle valve 126 is provided in the nozzle supply pipe 125 which is branched, respectively, and the spinning solution main tank 120 is provided. When the supply of the polymer spinning solution to each nozzle (111a) through each nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) in the nozzle nozzle 126 of the plurality of nozzle valve 126 ), The polymer spinning solution is electrospun selectively in the nozzle 111a at a specific position among the nozzles 111a provided in the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i. Or a specific nozzle valve 126 to close the nozzle body 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i of each of the nozzles (111a) provided in the nozzle 111a at a specific position Selectively block the electrospinning of the spinning solution, such as the nozzle valve 126 in the spinning solution main tank 120 in the nozzle pipe (112a, 1) The supply of the polymer spinning solution supplied to each nozzle 111a through 12b, 112c, 112d, 112e, 112f, 112g, 112h, 112i is individually controlled and controlled.
본 발명의 일 실시예에서는 상기 용액공급관(121)에 공급밸브(122)가 구비되어 상기 방사용액 주탱크(120)에서 노즐블록(111)의 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되는 고분자 방사용액의 공급량을 조절 및 제어함과 동시에 상기 노즐공급관(125)에 노즐밸브(126)가 구비되어 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)에서 공급되어 각 노즐(111a)을 통하여 전기방사되는 고분자 방사용액의 방사량을 조절 및 제어함으로써 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g,112h, 112i)의 각 노즐(111a)에서 전기방사되는 고분자 방사용액에 의해 컬렉터의 폭 방향에 평량이 상이한나노섬유필터를 적층형성하도록 이루어져 있으나, 상기 노즐블록(111)에 노즐(111a)을 배열설치한 후 각 노즐(111a)이 개별적으로 직접 조절 및 제어되어 상기 각 노즐(111a)을 통하여 전기방사되는 고분자 방사용액의 방사량을 조절 및 제어함으로써 컬렉터의 폭 방향에 평량이 상이한 나노섬유필터를 적층 형성하도록 이루어지는 것도 가능하며, 이에 한정하지 아니한다.In an embodiment of the present invention, the supply valve 122 is provided in the solution supply pipe 121 so that each nozzle pipe 112a, 112b, 112c, 112d, 112e of the nozzle block 111 in the spinning solution main tank 120 is provided. , 112f, 112g, 112h, and 112i, and control the supply amount of the polymer spinning solution supplied to the nozzle and the nozzle supply pipe 125 is provided with a nozzle pipe 112a, 112b, 112c, 112d , 112e, 112f, 112g, 112h, 112i and the nozzle pipe 112a, 112b, 112c, 112d, 112e, 112f, by adjusting and controlling the radiation amount of the polymer spinning solution electrospun through each nozzle (111a) Nanofiber filters having different basis weights in the width direction of the collector are formed by stacking the polymer spinning solution electrospun from the nozzles 111a of 112g, 112h, and 112i, but the nozzles 111a are formed on the nozzle block 111. After installing and installing each nozzle, each nozzle 111a is directly adjusted and controlled individually. By through the respective nozzles (111a) adjusting and controlling the amount of radiation of the polymer spinning solution to be electrospun can be made to form a laminate having different nanofiber filter having a basis weight in the widthwise direction of the collector, and shall not be limited thereto.
이렇게 상기 용액공급관(121)의 공급밸브(122) 및 노즐공급관(125)의 노즐밸브(126)를 통하여 방사용액 주탱크(120)에서 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되는 고분자 방사용액의 공급량 및 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)의 노즐(111a)을 통하여 전기방사되는 고분자 방사용액의 방사량을 조절 및 제어함으로써 컬렉터의 횡방향 일측에 구비되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 및 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 의 노즐(111a)을 제어하여 컬렉터의 횡방향 일측 평면상에 평량이 50 내지 150nm인나노섬유필터(115a)을 적층형성하고, 컬렉터의 횡방향 중심측 평면상에 평량이 150 내지 300nm인인 나노섬유필터(115b)을 적층형성하며, 컬렉터의 횡방향 타측 평면상에 평량이 300 내지 500nm인 나노섬유필터(115c)을 적층형성하는 등 컬렉터의 길이방향 또는 횡방향 동일 평면상에 상이한 평량을 갖는 나노섬유필터(115a, 115b, 115c)을 다양하게 적층형성할 수 있다. Thus, through the supply valve 122 of the solution supply pipe 121 and the nozzle valve 126 of the nozzle supply pipe 125 in the spinning solution main tank 120 nozzle nozzles 112a, 112b, 112c, 112d, 112e, 112f, Supply amount of the polymer spinning solution supplied to 112g, 112h, 112i and of the polymer spinning solution electrospun through the nozzle 111a of the nozzle body (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) By adjusting and controlling the amount of radiation, the nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i provided on one side of the collector in the horizontal direction and the nozzle pipes 112a, 112b, 112c, 112d, 112e, By controlling the nozzles 111a of 112f, 112g, 112h, and 112i, the nanofiber filter 115a having a basis weight of 50 to 150 nm is laminated on one side of the collector in the transverse direction, and on the side of the collector in the transverse center side. Laminating a nanofiber filter 115b having a basis weight of 150 to 300 nm, the basis weight of 300 to 500 nm on the other transverse plane of the collector The nanofiber filter nanofiber filter (115a, 115b, 115c) having a (115c) of different basis weight, such as in the same longitudinal or lateral direction of the collector to form a lamination plane of may form various laminated.
상기한 바와 같이, 상기 노즐블록(111)의 노즐관체 및 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)의 노즐(111a)을 제어함으로써 컬렉터의 길이방향 또는 횡방향 동일 평면상에 평량이 각기 상이한 3종류의 평량을 갖는 나노섬유필터가 적층형성된다.As described above, the length of the collector is controlled by controlling the nozzle body of the nozzle block 111 and the nozzle 111a of the nozzle body 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i. A nanofiber filter having three kinds of basis weights having different basis weights on the same plane in the transverse direction is laminated.
한편, 본 발명의 일 실시예에서는 상기 컬렉터의 길이방향 또는 횡방향 동일 평면상에 3종류의 각기 상이한 평량을 갖는 나노섬유필터가 적층형성되어 있으나, 상기 노즐블록(111)의 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 및상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)의 각 노즐(111a)을 제어하여 컬렉터의 길이방향 또는 횡방향 동일 평면상에 2종류의 각기 상이한 평량을 갖는 나노섬유필터를 동시에 적층형성하는 것도 가능하고, 상기 노즐블록(111)의노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 및 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)의 각 노즐(111a)을 제어하여 컬렉터의 길이방향 또는 횡방향 동일 평면상에 4종류 이상의 각기 상이한 평량을갖는 나노섬유필터를 동시에 적층형성하는 것도 가능하며, 이에 한정하지 아니한다.Meanwhile, in one embodiment of the present invention, nanofiber filters having three kinds of different basis weights are formed on the same plane in the longitudinal or transverse direction of the collector, but the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) and each nozzle 111a of the nozzle body 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i to control the collector. It is also possible to simultaneously form a nanofiber filter having two different basis weights on the same plane in the longitudinal or transverse direction, and the nozzle pipe bodies 112a, 112b, 112c, 112d, 112e, and 112f of the nozzle block 111 can be formed at the same time. , 112g, 112h, 112i) and the nozzles 111a of the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i to control the collector in the longitudinal or transverse coplanar direction. It is also possible to simultaneously laminate four or more types of nanofiber filters having different basis weights. It is not limited.
여기서, 상기 방사용액 주탱크(120)에 충진되는 고분자 방사용액의 재질은한정하지 아니하나, 예를 들면, 폴리프로필렌(PP), 폴리에틸렌텔레프탈레이트(PET), 폴리비닐리덴플루라이드, 나일론, 폴리비닐아세테이트, 폴리메틸메타아크릴레이트, 폴리아크릴로니트릴(PAN), 폴리우레탄(PUR), 폴리부틸렌텔레프탈레이트(PBT), 폴리비닐부틸랄, 폴리비닐클로라이드, 폴리에틸렌이민, 폴리올레핀, 폴리유산(PLA), 폴리초산비닐(PVAc), 폴리에틸렌나프탈레이트(PEN), 폴리아미드(PA),폴리비닐알콜(PVA), 폴리에틸렌이미드(PEI), 폴리카프로락톤(PCL), 폴리유산글리롤산(PLGA), 실크, 셀룰로오스, 키토산 등이 있으며, 그 중 폴리프로필렌(PP)재질의소재와 내열성 고분자 물질인 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에테르이미드,폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리 비스[2-(2-메톡시에톡시)포스파젠]과 같은 폴리포스파젠류, 폴리우레탄및 폴리에테르우레탄을 포함하는 폴리우레탄 공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트 등의 폴 리머로 이루어진 군이 상용적으로 사용되는 것이 바람직하다.Here, the material of the polymer spinning solution to be filled in the spinning solution main tank 120 is not limited, for example, polypropylene (PP), polyethylene terephthalate (PET), polyvinylidene fluoride, nylon, poly Vinyl acetate, polymethyl methacrylate, polyacrylonitrile (PAN), polyurethane (PUR), polybutylene terephthalate (PBT), polyvinyl butyral, polyvinyl chloride, polyethyleneimine, polyolefin, polylactic acid (PLA) ), Polyvinyl acetate (PVAc), polyethylene naphthalate (PEN), polyamide (PA), polyvinyl alcohol (PVA), polyethyleneimide (PEI), polycaprolactone (PCL), polylactic acid glycolic acid (PLGA) , Silk, cellulose, chitosan, etc. Among them, polypropylene (PP) material and polyamide, polyimide, polyamideimide, poly (meth-phenylene isophthalamide), polysulfone, Poly Aromatic polyesters such as ether ketones, polyetherimide, polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and the like, polytetrafluoroethylene, polydiphenoxyphosphazene, poly bis [2- (2-methoxy to Methoxy) phosphazene], a polyurethane copolymer including polyurethanes and polyetherurethanes, polymers such as cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, etc. It is preferred to be used.
이하, 본 발명에 의한 나노섬유필터 전기방사장치의 동작과정을 도 17 내지도 20을 참조하여 설명한다.Hereinafter, an operation process of the nanofiber filter electrospinning apparatus according to the present invention will be described with reference to FIGS. 17 to 20.
먼저, 본 발명에 의한 전기방사장치(100)의 선단에 구비되는 공급롤러(도번미도시)를 통하여 컬렉터가 전기방사장치(100)의 유닛(110, 110') 내로 유입 및 공급되고, 상기 유닛(110, 110') 내에서 고분자방사용액이 전기방사되어 나노섬유필터가 적층형성된다.First, the collector is introduced and supplied into the units 110 and 110 'of the electrospinning apparatus 100 through a supply roller (not shown) provided at the tip of the electrospinning apparatus 100 according to the present invention. The polymer spinning solution is electrospun within (110, 110 ') to form a nanofiber filter.
이때, 상기 컬렉터는 이송롤러(116b) 사이에서 회전되는 이송벨트(116a)에의해 컬렉터가 이송된다.At this time, the collector is conveyed by the conveying belt 116a is rotated between the conveying rollers (116b).
이렇게 전압발생장치(114)의 고전압이 노즐블록(111)의 각 노즐관체에 구비되는 노즐(111a)을 통해 컬렉터(113) 상에 발생되며, 고전압이 발생되는 컬렉터(113)상에 방사용액 주탱크(120)에서 공급되는 고분자 방사용액을 전기방사한다.Thus, the high voltage of the voltage generator 114 is generated on the collector 113 through the nozzle 111a provided in each nozzle tube of the nozzle block 111, and the spinning solution main on the collector 113 where the high voltage is generated. Electrospinning the polymer spinning solution supplied from the tank 120.
상기한 바와 같이, 상기 방사용액 주탱크(120)에서 노즐블록(111)으로 공급되는 고분자 방사용액은 방사용액 주탱크(120)와 노즐블록(111)의 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)에 연설되는 용액공급관(121)을 통하여 방사용액 주탱크(120)에서 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되고, 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급된 방사용액 주탱크(120)는 상기 용액공급관(121)에 연설되는 노즐공급관(125)을 통하여 노즐(111a)로 공급된 후 상기 노즐(111a)을 통하여 전기방사되어 컬렉터 상에 나노섬유필터가 적층형성된다.As described above, the polymer spinning solution supplied from the spinning solution main tank 120 to the nozzle block 111 may be formed in each nozzle tube 112a, 112b, 112c, of the spinning solution main tank 120 and the nozzle block 111. Each nozzle tube 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, in the spinning solution main tank 120 through the solution supply pipe 121 delivered to 112d, 112e, 112f, 112g, 112h, 112i, 112i, the spinning solution main tank 120 supplied to the nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) is a nozzle supply pipe to the solution supply pipe 121 After being supplied to the nozzle 111a through the 125, the electrospinning is performed through the nozzle 111a to form a nanofiber filter on the collector.
여기서, 상기 방사용액 주탱크(120)에서 용액공급관(121)을 통하여 컬렉터의길이방향 또는 횡방향으로 배열설치되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되는 고분자 방사용액의 공급량은 방사용액 주탱크(120)에서 분기형성되는 용액공급관(121)에 각각 구비되는 공급밸브(122)의 개, 폐에 의해 제어되고, 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)에서노즐(111a)을 통하여 전기방사되는 고분자 방사용액의 방사량은 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)의 용액공급관(121)에서 분기형성되는 노즐공급관(125)에 각각 구비되는 노즐밸브(126)의 개, 폐에 의해 제어된다.Here, the nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) arranged in the longitudinal direction or transverse direction of the collector through the solution supply pipe 121 in the spinning solution main tank 120 The supply amount of the polymer spinning solution to be supplied is controlled by the opening and closing of the supply valve 122 respectively provided in the solution supply pipe 121 branched from the spinning solution main tank 120, and the nozzle pipes 112a and 112b. , 112c, 112d, 112e, 112f, 112g, 112h, 112i, the amount of radiation of the polymer spinning solution electrospun through the nozzles 111a is the nozzle tube 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, It is controlled by the opening and closing of the nozzle valve 126 provided in the nozzle supply pipe 125 branched from the solution supply pipe 121 of 112i), respectively.
이렇게 상기 공급밸브(122) 및 노즐밸브(126)에 의하여 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되는 고분자 방사용액의공급량 및 노즐(111a)을 통하여 전기방사되는 고분자 방사용액의 방사량이 제어되고, 이로 인해 상기 컬렉터의 길이방향 또는 횡방향 동일 평면상에 평량이 상이한 나노섬유필터의 적층형성이 가능하다.Thus, the supply amount of the polymer spinning solution and the nozzle 111a supplied to the nozzle pipes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i by the supply valve 122 and the nozzle valve 126. The radiation amount of the electrospinning polymer spinning solution is controlled through this, thereby allowing stacking of nanofiber filters having different basis weights on the same plane in the longitudinal or transverse direction of the collector.
예를 들면, 또한, 상기 컬렉터의 길이방향 또는 횡방향에 다수개로 배열설치되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 중 컬렉터의 길이방향일측 또는 횡방향일측에 위치하는 3개의 노즐관체(112a, 112b, 112c)의 용액공급관(121)에 구비되는공급밸브(122) 중 양 측에 구비되는 노즐관체(112a, 112c)에 연결되는 용액공급관(121)의 공급밸브(122)를 폐쇄하고, 그 중심측에 구비되는 1개의 노즐관체(112b) 에 연결되는 용액공급관(121)의 공급밸브(122)를 개방하여 상기 방사용액 주탱크(120)에서 공급되는 고분자 방사용액을 1개의 노즐관체(112b)로 공급하며, 상기 1개의 노즐관체(112b)로 고분자 방사용액을 공급하는 용액공급관(121)에 분기형성되는 노즐공급관(125)의 각 노즐밸브(126)를 개방하여 상기 1개의 노즐관체(121b)로 공급되는 고분자 방사용액을 모든 노즐(111a)로 공급한 후 컬렉터 상에 고분자방사용액을 전기방사하여 50 내지 150nm의 낮은 평량을 갖는 나노섬유필터(115a)을 적층형성한다.For example, among the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i, which are arranged in a plurality in the longitudinal direction or the transverse direction of the collector, in one longitudinal direction or the transverse direction of the collector. The solution supply pipe 121 connected to the nozzle pipe bodies 112a and 112c provided at both sides of the supply valve 122 provided in the solution supply pipe 121 of the three nozzle pipes 112a, 112b and 112c located at one side. To close the supply valve 122 and open the supply valve 122 of the solution supply pipe 121 connected to the one nozzle pipe 112b provided at the center side thereof, and supply it from the spinning solution main tank 120. Each nozzle valve of the nozzle supply pipe 125 is branched to the solution supply pipe 121 for supplying the polymer spinning solution to be supplied to one nozzle pipe 112b, and to supply the polymer spinning solution to the one nozzle pipe 112b ( 126) to open the polymer spinning solution supplied to the one nozzle body 121b all nozzles After supplying to 111a, the polymer spinning solution is electrospun on the collector to form a nanofiber filter 115a having a low basis weight of 50 to 150 nm.
그리고, 상기 컬렉터의 길이방향 또는횡방향에 다수개로 배열설치되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 중 컬렉터의 횡방향 중심측에위치하는 3개의 노즐관체(112d, 112e, 112f)의 용액공급관(121)에 구비되는 공급밸브(122) 중 중심부에 구비되는 노즐관체(112e)에 연결되는 용액공급관(121)의 공급밸브(122)를 폐쇄하고, 그 양 측에 각각 구비되는 2개 노즐관체(112d, 112f)에 연결되는 용액공급관(121)의 공급밸브(122)를 개방하여 상기 방사용액 주탱크(120)에서 공급되는 고분자 방사용액을 2개의 노즐관체(112d, 112f)로 공급하며, 상기 2개의 노즐관체(112d, 112f)로 고분자 방사용액을 공급하는 용액공급관(121)에 분기형성되는 노즐공급관(125)의 각 노즐밸브(126)를 개방하여 상기 2개의 노즐관체(112d, 112f)로 공급되는 고분자 방사용액을 모든 노즐(111a)로 공급한 후 컬렉터 상에 고분자 방사용액을 전기방사하여 150 내지 300nm의 평량을 갖는 나노 멤브 레인(115b)을 적층형성한다.And three nozzles located in the transverse center side of the collector among the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i arranged in plural in the longitudinal or transverse direction of the collector. The supply valve 122 of the solution supply pipe 121 connected to the nozzle pipe 112e provided at the center of the supply valve 122 provided in the solution supply pipe 121 of the pipe bodies 112d, 112e, and 112f is closed. The polymer spinning solution supplied from the spinning solution main tank 120 was opened by opening the supply valve 122 of the solution supply pipe 121 connected to the two nozzle pipes 112d and 112f respectively provided at both sides thereof. Each nozzle valve 126 of the nozzle supply pipe 125 which is supplied to the nozzle pipes 112d and 112f and is branched to the solution supply pipe 121 that supplies the polymer spinning solution to the two nozzle pipes 112d and 112f. Open the polymer spinning solution supplied to the two nozzle bodies (112d, 112f) to all the nozzles (111a) To form a laminated electrospinning to 150 nm membrane (115b) having a basis weight of 300nm to the polymer spinning solution onto a collector after.
또한, 상기 컬렉터의 길이방향 또는 횡방향에 다수개로 배열설치되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 중 컬렉터의 길이방향 또는 횡방향 타측에 위치하는3개의 노즐관체(112g, 112h, 112i)의 용액공급관(121)에 구비되는 공급밸브(122)를모두 개방하여 방사용액 주탱크(120)에서 공급되는 고분자 방사용액을 3개의 노즐관체(112g, 112h, 112i)로 모두 공급하고, 상기 3개의 노즐관체(112g, 112h, 112i)로 고분자 방사용액을 공급하는 용액공급관(121)에서 분기형성되는 노즐공급관(125)의 각 노즐밸브(126)를 개방하여 상기 각 노즐관체(112g, 112h, 112i)로 공급되는 고분자 방사용액을 모든 노즐(111a)로 공급한 후 컬렉터 상에 고분자 방사용액을 전기방사하여 300 내지 500nm의 높은 평량을 갖는 나노섬유필터(115c)을 적층형성한다.Further, among the nozzle tubes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i arranged in plural in the longitudinal direction or the transverse direction of the collector, located on the other side in the longitudinal or transverse direction of the collector. All of the supply valves 122 provided in the solution supply pipes 121 of the two nozzle pipes 112g, 112h, and 112i are opened to supply the polymer spinning solution supplied from the spinning solution main tank 120 to the three nozzle pipes 112g and 112h. , 112i) and each nozzle valve 126 of the nozzle supply pipe 125 branched from the solution supply pipe 121 for supplying the polymer spinning solution to the three nozzle pipes 112g, 112h and 112i. The nanofiber filter having a high basis weight of 300 to 500 nm by supplying the polymer spinning solution supplied to each nozzle tube 112g, 112h, 112i to all the nozzles 111a and then electrospinning the polymer spinning solution on the collector ( 115c) is laminated.
본 발명의 일 실시예에서는 방사용액 주탱크(120)에서 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 고분자 방사용액을 공급하는 용액공급관(121)의 각 공급밸브(122)를 제어하여 컬렉터의 길이방향 또는 횡방향 동일 평면상에 상이한 평량을 갖는 나노섬유필터(115a, 115b, 115c)을 적층형성하고 있으나, 상기 용액 공급관(121)에 분기형성되는 노즐공급관(125)의 노즐밸브(126)를 제어하여 컬렉터의 길이방향 또는 횡방향 동일 평면상에 상이한 평량을 갖는 나노섬유필터(115a,115b, 115c)을적층형성하는 것도 가능하다.In one embodiment of the present invention, each of the solution supply pipe 121 for supplying the polymer spinning solution from the spinning solution main tank 120 to the nozzle pipe (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) By controlling the supply valve 122, the nanofiber filters 115a, 115b, and 115c having different basis weights are formed on the same plane in the longitudinal or transverse direction of the collector, but the nozzles are branched to the solution supply pipe 121. It is also possible to stack the nanofiber filters 115a, 115b and 115c having different basis weights on the same plane in the longitudinal or transverse direction of the collector by controlling the nozzle valve 126 of the supply pipe 125.
예를 들면, 상기 컬렉터의 길이방향 또는 횡방향에 다수개로 배열설치되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 중 컬렉터의 길이방향 또는 횡방향 일측에 위치하는 3개의 노즐관체(112a, 112b, 112c)의 용액공급관(121)에 구비되는 공급밸브(122)를 모두 개방하여 방사용액 주탱크(120)에서 공급되는 고분자 방사용액을 3개의 노즐관체(112a, 112b, 112c)로 공급하되, 상기 3개의 노즐관체(112a, 112b, 112c) 중 양 측에 구비되는 노즐관체(112a, 112c)의 용액공급관(121)에 분기형성되는 노즐공급관(125)의 노즐밸브(126)를 모두 폐쇄하고, 그 중심측에 구비되는 1개의 노즐관체(112b)의 용액공급관(121)에 분기형성되는 노즐공급관(125)의 노즐밸브(126)를 개방하여 상기 1개의 노즐관체(112b)에 구비되는 각 노즐(111a)로 고분자 방사용액을 공급한 컬렉터 상에 고분자 방사용액을 전기방사하여 50 내지 150nm의 낮은 평량을 갖는 나노섬유필터(115a)을 적층형성한다.For example, one of the nozzle tubes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i arranged in a plurality in the longitudinal or transverse direction of the collector is located on one side in the longitudinal or transverse direction of the collector. Opening the supply valve 122 provided in the solution supply pipe 121 of the three nozzle pipe (112a, 112b, 112c) to the three nozzle pipe 112a to supply the polymer spinning solution supplied from the spinning solution main tank 120 , 112b and 112c of the nozzle supply pipe 125 which is branched to the solution supply pipe 121 of the nozzle pipe bodies 112a and 112c provided on both sides of the three nozzle pipes 112a, 112b and 112c. All the nozzle valves 126 are closed, and the nozzle valve 126 of the nozzle supply pipe 125 which is branched to the solution supply pipe 121 of the one nozzle pipe 112b provided at the center side thereof is opened to open the one. For spinning the polymer on the collector which supplied the polymer spinning solution to each nozzle 111a provided in the nozzle pipe 112b The liquid is electrospun to form a nanofiber filter 115a having a low basis weight of 50 to 150 nm.
그리고, 상기 컬렉터의 길이방향 또는횡방향에 다수개로 배열설치되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 중 컬렉터의 횡방향 중심측에위치하는 3개의 노즐관체(112d, 112e, 112f)의 용액공급관(121)에 구비되는 공급밸브(122)를 모두 개방하여 방사용액 주탱크(120)에서 공급되는 고분자 방사용액을 3개의 노즐관체(112d, 112e, 112f)로 모두 공급하되, 상기 3개의 노즐관체(112d, 112e, 112f) 중 중심부에 구비되는 노즐관체(112e)의 용액공급관(121)에 분기형성 되는 노즐공급관(125)의 모든 노즐밸브(126)를 폐쇄하고, 그 양 측에 각각 구비되는 2개의 노즐관체(112d, 112f)의 용액공급관(121)에 분기형성되는 노즐공급관(125)의 노즐밸브(126)를 개방하여 상기 2개의 노즐관체(112d, 112f)에 구비되는각 노즐(111a)로 고분자 방사용액을 공급한 후 컬렉터 상에 고분자 방사용액을 전기방사하여 150 내지 300nm의 평량을 갖는 나노섬유필터(115b)을 적층형성한다.And three nozzles located in the transverse center side of the collector among the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i arranged in plural in the longitudinal or transverse direction of the collector. Open the supply valve 122 provided in the solution supply pipe 121 of the pipe bodies 112d, 112e, and 112f to supply the polymer spinning solution supplied from the spinning solution main tank 120 to the three nozzle pipes 112d, 112e, and 112f. All of the nozzle valves 126 of the nozzle supply pipe 125 is branched to the solution supply pipe 121 of the nozzle pipe 112e provided in the center of the three nozzle pipe (112d, 112e, 112f) to supply all And the nozzle valve 126 of the nozzle supply pipe 125 branched to the solution supply pipe 121 of the two nozzle pipe bodies 112d and 112f respectively provided on both sides thereof to open the two nozzle pipe bodies ( After supplying the polymer spinning solution to each of the nozzles 111a provided at 112d and 112f, the polymer spinning on the collector To form the electrospun nanofibers to filter having a basis weight of 150 to 300nm (115b) the liquid deposition.
또한, 상기 컬렉터의 길이방향 또는 횡방향에 다수개로 배열설치되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 중 컬렉터의 길이방향 또는 횡방향 일측에 위치하는3개의 노즐관체(112g, 112h, 112i)의 용액공급관(121)에 구비되는 공급밸브(122)를모두 개방하여 방사용액 주탱크(120)에서 공급되는 고분자 방사용액을 3개의 노즐관체(112g, 112h, 112i)로 모두 공급하고, 상기 3개의 노즐관체(112g, 112h, 112i)로 고분자 방사용액을 공급하는 용액공급관(121)에서 분기형성되는 노즐공급관(125)의 각 노즐밸브(126)를 개방하여 상기 각 노즐관체(112g, 112h, 112i)로 공급되는 고분자 방사용액을 모든 노즐(111a)로 공급한 후 컬렉터 상에 고분자 방사 용액을 전기방사하여 300 내지 500nm의 높은 평량을 갖는 나노섬유필터(115c)을 적층형성한다.Further, among the nozzle tubes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i, which are arranged in plural in the longitudinal or transverse direction of the collector, located at one side of the collector in the longitudinal or transverse direction. All of the supply valves 122 provided in the solution supply pipes 121 of the two nozzle pipes 112g, 112h, and 112i are opened to supply the polymer spinning solution supplied from the spinning solution main tank 120 to the three nozzle pipes 112g and 112h. , 112i) and each nozzle valve 126 of the nozzle supply pipe 125 branched from the solution supply pipe 121 for supplying the polymer spinning solution to the three nozzle pipes 112g, 112h and 112i. The nanofiber filter having a high basis weight of 300 to 500 nm by supplying the polymer spinning solution supplied to the nozzle bodies 112g, 112h and 112i to all the nozzles 111a and then electrospinning the polymer spinning solution onto the collector. 115c) is laminated.
상기한 바와 같이, 상기 방사용액 주탱크(120)에서 노즐관체(112)로 고분자방사용액을 공급하는 용액공급관(121)의 각 공급밸브(122)를 제어하여 컬렉터의 길이방향 또는 횡방향 동일 평면상에 상이한 평량을 갖는 나노섬유필터를 적층형성할 수 있을 뿐만아니라, 상기 용액공급관(121)에 분기형성되는 노즐공급관(125)의 노즐밸브(126)를제어하여 컬렉터의 길이방향 또는 횡방향 동일 평면상에 상이한 평량을 갖는 나노섬유필터(115a, 115b, 115c)을 적층형성할 수 있다.As described above, by controlling the respective supply valves 122 of the solution supply pipe 121 for supplying the polymer spinning solution from the spinning solution main tank 120 to the nozzle pipe 112, the same lengthwise or transverse direction of the collector In addition to stacking the nanofiber filters having different basis weights on the phase, the nozzle valve 126 of the nozzle supply pipe 125 branched to the solution supply pipe 121 is controlled to be equal in the longitudinal or transverse direction of the collector. The nanofiber filters 115a, 115b, and 115c having different basis weights may be stacked on a plane.
본 발명의 일 실시예에서는 상기 방사용액 주탱크(120)에서 노즐관체(112)로 고분자 방사용액을 공급하는 용액공급관(121)의 각 공급밸브(122)를 제어하여 컬렉터의 길이방향 또는 횡방향 동일 평면상에 상이한 평량을 갖는 나노섬유필터(115a, 115b,115c) 을 적층형성하거나, 상기 용액공급관(121)에 분기형성되는 노즐공급관(125)의 노즐밸브(126)를 제어하여 컬렉터의 길이방향 또는 횡방향 동일 평면상에 상이한 평량을 갖는 나노섬유필터(115a, 115b, 115c)을 적층하도록 이루어져 있으나, 상기 방사용액 주탱크(120)에서 노즐관체(112)로 고분자 방사용액을 공급하는 용액공급관(121)의 각공급밸브(122)를 제어함과 동시에 상기 용액공급관(121)에 분기형성되는 노즐공급관(125)의 노즐밸브(126)를 제어하여 컬렉터의 길이방향 또는 횡방향 동일 평면상에 상이한 평량을 갖는 나노섬유필터(115a, 115b, 115c)을 적층형성하도록 이루어지는 것도 바람직하고, 상기 컬렉터의 길이방향 또는 횡방향 동일 평면상의 특정영역 및 특정부분에 평량을 달리하는 나노섬유필터(115a, 115b, 115c)을 적층형성하거나, 컬렉터의 길이방향 또는 횡방향 동일 평면상에 특정형상 및 특정형태로 평량을 달리하는 나노섬유필터(115a, 115b, 115c)을 적층형성하는 것도 가능하나, 이에 한정하지 아니한다.In one embodiment of the present invention by controlling the respective supply valves 122 of the solution supply pipe 121 for supplying the polymer spinning solution from the spinning solution main tank 120 to the nozzle pipe 112, the collector in the longitudinal or transverse direction The length of the collector is formed by stacking the nanofiber filters 115a, 115b, and 115c having different basis weights on the same plane or by controlling the nozzle valve 126 of the nozzle supply pipe 125 branched to the solution supply pipe 121. Nanofiber filters 115a, 115b, and 115c having different basis weights are stacked on the same plane in the lateral or transverse directions, but a solution for supplying the polymer spinning solution from the spinning solution main tank 120 to the nozzle tube 112. While controlling the respective supply valves 122 of the supply pipe 121 and the nozzle valve 126 of the nozzle supply pipe 125 branched to the solution supply pipe 121 to control the collector in the longitudinal or transverse coplanar direction Having different basis weight It is also preferable that the nanofiber filters 115a, 115b, and 115c are laminated, and the nanofiber filters 115a, 115b, and 115c vary in basis weight in specific regions and specific portions on the same plane in the longitudinal or transverse direction of the collector. It is also possible to stack the nanofiber filters 115a, 115b, and 115c that vary in basis weight in a specific shape and a specific shape on the same plane in the longitudinal or transverse direction of the collector, but are not limited thereto.
상기한 바와 같이, 상기 용액공급관(121)의 각 공급밸브(122) 또는 노즐공급관(125)의 노즐밸브(126)를 개별적으로 제어하거나, 상기 용액공급관(121)의 각 공급밸브(122)과 노즐공급관(125)의 노즐밸브(126)를 동시에 제어하여 다양하고 상이한 평량을 갖는 나노섬유필터의 제조가 가능하다.As described above, each of the supply valve 122 of the solution supply pipe 121 or the nozzle valve 126 of the nozzle supply pipe 125 is individually controlled, or each of the supply valve 122 of the solution supply pipe 121 and By simultaneously controlling the nozzle valve 126 of the nozzle supply pipe 125 it is possible to manufacture a nanofiber filter having a variety of different basis weight.
또한, 상기 노즐공급관(125)의 노즐밸브(126)의 개, 폐를 개별적으로 제어하여 상기 컬렉터의 길이방향 또는 횡방향으로 배열설치되는 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)에 구비되는 다수개의 노즐(111a) 중 특정 노즐(111a)에만 고분자 방사용액을 공급하고, 다른 특정 노즐(111a)에는 고분자 방사용액의 공급을 차단함으로써 컬렉터의 길이방향 또는 횡방향 동일 평면상에 상이한 평량을 갖는 나노섬유필터를 적층형성하는 것도 가능하다.In addition, the nozzle pipes 112a, 112b, 112c, 112d, 112e, and 112f arranged in the longitudinal or transverse direction of the collector by individually controlling the opening and closing of the nozzle valve 126 of the nozzle supply pipe 125. , The polymer spinning solution is supplied to only one of the nozzles 111a of the plurality of nozzles 111a provided in the 112g, 112h, and 112i, and the polymer spinning solution is blocked to the other specific nozzles 111a, thereby preventing the supply of the polymer spinning solution. It is also possible to laminate the nanofiber filters having different basis weights on the same plane in the transverse direction.
이때, 상기 컬렉터의 길이방향 또는 횡방향으로 배열설치되는 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)에 구비되는 각 노즐(111a) 중 고분자방사용액을 공급하는 특정 노즐(111a)들과 고분자 방사용액의 공급을 차단하는 특정 노즐(111a)들의 갯수 및 형태는 다양하게 변경가능하며, 가변적으로 조절 및 제어가능하게 이루어진다.At this time, the polymer spinning solution is supplied among the nozzles 111a provided in the nozzle tubes 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i arranged in the longitudinal direction or the transverse direction of the collector. The number and shape of the specific nozzles (111a) and the specific nozzles (111a) for blocking the supply of the polymer spinning solution can be changed in various ways, it is made variable and controllable.
한편, 본 발명의 일 실시예에서는 상기 컬렉터의 길이방향 또는 횡방향으로 배열설치되는 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)가 3개씩 하나의군으로 제어가능하게 연결되어 상기 컬렉터의 길이방향 또는 횡방향 동일 평면상에 각기 상이한 3종류의 평량을 갖는 나노섬유필터를 적층형성하는 구조로 이루어져 있으나, 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)가 2개씩 하나의군으로 제어가능하게 연결되거나, 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)가 4개씩 하나의 군으로 제어가능하게 연결되어 컬렉터의 길이방향 또는 횡방향 동일 평면상에 각기 상이한 평량을 갖는 나노섬유필터를 적층형성하는 구조로 이루어지는 것도 가능하며, 이에 한정하지 아니한다.On the other hand, in one embodiment of the present invention, the nozzle body 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i arranged in the longitudinal or transverse direction of the collector is controlled by one group of three It is possible to connect the nanofiber filter having three kinds of basis weights differently on the same plane in the longitudinal or transverse direction of the collector, but the nozzle body (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i are controllably connected in groups of two, or the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i are grouped in four It is also possible to have a structure that is controllably connected so as to stack nanofiber filters having different basis weights on the same plane in the longitudinal or transverse direction of the collector, but is not limited thereto.
또한, 본 발명의 일 실시예에서는 상기 노즐블록(111)에 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h,112i)가 9개로 배열설치되어 있으나, 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)의 갯수 및 상기노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)에 구비되는 노즐(111a)의 갯수는 다양하게 변경실시가능하며, 이에 한정하지 아니한다.In addition, in one embodiment of the present invention, the nozzle block (112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) arranged in the nozzle block 111, but the nozzle pipe 112a , 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i and the number of nozzles 111a provided in the nozzle pipe bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i. The number can be changed in various ways, but is not limited thereto.
한편, 본 발명의 일 실시예에서는 상기 용액공급관(121)의 공급밸브(122)의 개, 폐를 제어하거나, 상기 노즐공급관(125)의 노즐밸브(126)의 개, 폐를 제어하여노즐블록(111)의 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)및 각 노즐(111a)의 동작을 제어함으로써 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되는 고분자 방사용액의 공급량 및 노즐(111a)을 통하여 전기방사되는 고분자 방사용액의 방사량을 조절하여 각기 상이한 평량의 나노섬유필터를 동시에 적층형성하고 있으나, 상기 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i) 및 노즐(111a)의 개, 폐를 제어 함으로써 각기 상이한 평량을 갖는 나노섬유필터의 폭도 가변적으로 조절하는 것이 바람직하나, 이에 한정하지 아니한다.Meanwhile, in one embodiment of the present invention, the nozzle block is controlled by controlling the opening and closing of the supply valve 122 of the solution supply pipe 121 or by controlling the opening and closing of the nozzle valve 126 of the nozzle supply pipe 125. Each nozzle body 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i of (111) and the operation of each nozzle 111a by controlling the nozzle body 112a, 112b, 112c, 112d, 112e. , 112f, 112g, 112h, 112i) by controlling the supply amount of the polymer spinning solution and the spinning amount of the electrospinning polymer spinning solution through the nozzle (111a) to form a stack of nanofiber filters of different basis weights at the same time, By controlling the opening and closing of the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i and the nozzle 111a, it is preferable to variably adjust the width of the nanofiber filter having different basis weights. It is not limited to this.
이렇게 상기 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되는 고분자 방사용액의 공급량 및 노즐(111a)에서 전기방사되는 고분자 방사용액의 방사량을 조절 및 제어함으로써 상기 노즐(111a)을 통하여 컬렉터의 동일 평면상의 길이방향 또는 횡방향으로 상이한 평량을 갖는 나노섬유필터의 폭이나, 상이한 평량을 갖는 나노섬유필터의 방사영역 및 방사부분을 가변적으로 조절할 수 있다.In this way, the supply amount of the polymer spinning solution supplied to the nozzle bodies 112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, and 112i and the radiation amount of the polymer spinning solution electrospun from the nozzle 111a are controlled and controlled. As a result, the width of the nanofiber filters having different basis weights in the longitudinal direction or the transverse direction on the same plane of the collector or the radiation region and the radiating portion of the nanofiber filters having the different basis weights can be adjusted through the nozzle 111a.
본 발명의 일 실시예에서는 상기 전기방사장치(100)가 상향식 전기방사장치에 적용되는 일 예를 나타내고 있으나, 본 발명에 의한 전기방사장치(100)가 하향식 전기방사장치에 적용되는 것도 가능하고, 상, 하향 복합시 전기방사장치에 적용 되는 것도 가능하다.In an embodiment of the present invention, the electrospinning apparatus 100 shows an example in which it is applied to a bottom-up electrospinning apparatus. However, the electrospinning apparatus 100 according to the present invention may be applied to a top-down electrospinning apparatus. It is also possible to be applied to the electrospinning apparatus in the up and down composite.
상기한 바와 같은 구조에 의하여, 본 발명에 의한 전기방사장치(100)를 통하여 컬렉터상에 전기방사되는 고분자 방사용액의 방사량을 조절 및 제어하여 컬렉터의 동일 평면상의 횡방향의 특정영역 및 특정부분에 상이한 평량을 갖는 나노 멤브 레인을 적층형성할 수 있어 다양한 나노섬유필터를 제조하기 용이하다.By the structure as described above, by controlling and controlling the radiation amount of the polymer spinning solution electrospun on the collector through the electrospinning apparatus 100 according to the present invention to the specific region and the specific portion in the transverse direction on the same plane of the collector Nano membranes having different basis weights can be stacked to facilitate manufacturing of various nanofiber filters.
본 발명에 사용되는 MD방향이란 Machine Direction을 의미하며, 필름이나 부직포 등의 섬유를 연속제조하는 경우에 진행방향에 해당하는 길이 방향을 의미하며 CD방향은 Cross Direction로서 MD방향의 직각 방향을 의미한다. MD는 기계방향/종방향, CD는 폭방향/횡방향으로 지칭하기도 한다.The MD direction used in the present invention means Machine Direction, which means the longitudinal direction corresponding to the advancing direction in the case of continuous production of fibers such as film or nonwoven fabric, and the CD direction means the cross direction perpendicular to the MD direction. . MD may also be referred to as machine direction / longitudinal direction, and CD as width direction / lateral direction.
평량(Basis Weight or Grammage)은 단위 면적당 질량, 즉 바람직한 단위로서제곱미터당 그램(종종 g/㎡보다는 gsm으로 불림)으로 정의된다.Basis Weight or Grammage is defined as mass per unit area, ie grams per square meter (often referred to as gsm rather than g / m 2) as preferred units.
이하에서는 본 발명의 실시예를 통하여 보다 구체적으로 설명한다. 그러나 실시예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니 다.Hereinafter will be described in more detail through embodiments of the present invention. However, the embodiments are only examples of the present invention, and the scope of the present invention is not limited thereto.
실시예에서의 물성 값은 이하의 방법에 의해 측정했다.The physical property value in an Example was measured by the following method.
평량[g/m2]Basis weight [g / m 2 ]
나노섬유 층으로부터 200mm(MD)×50mm(CD)의 시험편을 6점 채취했다. 한편, 채취 장소는 on-off 조절시스템에 의해 평량이 상이한 부분 각각에서 임의의 3군데로 했다. 이어서, 채취한 각 시험편을 윗접시 전자저울을 사용하여, 각각 질량(g)을 측정했다. 각 시험편의 질량의 평균값을 구했다. 구한 평균값으로부터 1m2 당 질량(g)으로 환산하고, 소수점 제1자리를 반올림하여 부분별 나노섬유층 샘플의 평량으로 했다.Six test pieces of 200 mm (MD) x 50 mm (CD) were taken from the nanofiber layer. In addition, the collection place was made into arbitrary three places in each part in which a basis weight differs by an on-off control system. Subsequently, the mass (g) of each sample collected was measured using the upper plate electronic balance. The average value of the mass of each test piece was calculated | required. It converted into mass (g) per 1m <2> from the calculated | required average value, rounded off the 1st decimal point, and it was set as the basis weight of the nanofiber layer sample of a part.
[실시예 1]Example 1
연화온도가 80-100℃인 저중합도 폴리우레탄을 DMAc(N,N-dimethylaceticamide) 용매에 15중량%가 되도록 용해하여 저융점 고분자 용액을 제조하고 전기방사장치의 저융점 고분자 유닛(110)의 주탱크에 투입하였다. 또한 중량평균분자량이 50,000인 폴리비닐리덴 플루오라이드를 디메틸아세트아미드(N,N-Dimethylacetamide, DMAc)에 용해시켜 각각의 방사용액을 제조하고, 이를 방사용액유닛(110‘)와 연결된 주탱크에 투입하였다.A low melting point polyurethane solution having a softening temperature of 80-100 ° C. was dissolved in 15% by weight of a solvent of DMAc (N, N-dimethylaceticamide) to prepare a low melting point polymer solution. It was put in a tank. In addition, polyvinylidene fluoride having a weight average molecular weight of 50,000 was dissolved in dimethylacetamide (N, N-Dimethylacetamide, DMAc) to prepare respective spinning solutions, which were added to the main tank connected to the spinning solution unit 110 '. It was.
저융점 고분자 유닛(110)에서 전극과 컬렉터 간의 거리를 40cm, 인가전압25kV, 70℃에서 전기방사하여 평량 0.1g/m2인 접착층을 셀룰로오스 기재위에 형성하였고, 이어서 방사용액 유닛(110‘)에서 전극과 컬렉터 간의 거리를 40cm, 인가전압 20kV, 70℃에서 폭 방향(CD) 중 일방향으로 1m는 폴리비닐리덴 플루오라이드 나노섬유의 평량이 0.2g/m2이고 나머지 일방향으로 1m는 나노섬유의 평량이 0.5g/m2인 CD 폭이 2m인 나노섬유필터를 제조하였다.In the low melting point polymer unit 110, the distance between the electrode and the collector was electrospun at 40 cm, an applied voltage of 25 kV, and 70 ° C. to form an adhesive layer having a basis weight of 0.1 g / m 2 on the cellulose substrate, and then in the spinning solution unit 110 ′. When the distance between the electrode and the collector is 40 cm, applied voltage 20 kV, and 70 ° C., the basis weight of the polyvinylidene fluoride nanofibers in one direction in the width direction (CD) is 0.2 g / m 2 and the remaining weight in one direction is 1 m in the other direction. A nanofiber filter having a CD width of 0.5 m / m 2 having a width of 2 m was prepared.
[실시예 2]Example 2
중량평균 분자량이 157,000인 폴리우레탄을 디메틸포름아마이드(DMF)에 용해시켜 폴리우레탄 용액을 제조한다. 상기 폴리우레탄 용액을 방사용액 주탱크 각각에 투입하고 폭 방향(CD) 중 한 방향으로 노즐블럭이 3부분으로 분리되어 있게 설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 3g/m2인기재 상에 전기방사하였다. 전기방사된 컬렉터 상에 폭 방향(CD) 중 중간부분 1m는 평량이 0.5/m2의 폴리우레탄 나노섬유가, 나머지 가장자리 50cm은 평량이 0.2g/m2으로 CD 폭이 2m인 폴리우레탄 나노섬유가 형성되어 폴리우레탄 나노 섬유필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 온도 22℃의 조건으로 상향식전기방사를 실시하였다.A polyurethane solution is prepared by dissolving a polyurethane having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyurethane solution to each of the spinning solution main tanks and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to separate the nozzle block into three parts in one direction of the width direction (CD). Electrospun on 3 g / m 2 popular material. In the middle of the width direction (CD) on the electrospun collector, 1m of the polyurethane nanofiber has a basis weight of 0.5 / m 2 , and 50cm of the other edge has a basis weight of 0.2g / m 2 and a CD width of 2m. Was formed to prepare a polyurethane nanofiber filter. At this time, the bottom-up electrospinning was performed under the condition that the distance between the electrode and the collector was 40 cm and the temperature was 22 ° C.
[실시예 3]Example 3
중량평균 분자량이 157,000인 폴리우레탄을 디메틸포름아마이드(DMF)에 용해시켜 폴리우레탄 용액을 제조한다. 상기 폴리우레탄 용액을 방사용액 주탱크에 투입하고 폭 방향(CD) 중 한 방향으로 노즐블럭이 9부분으로 분리되어 있게 설계된on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 0.3g/m2인 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 폭 방향(CD)으로 교호적으로 폴리우레탄 나노섬유의 평량이 0.2g/m2이고 나머지 부분의 평량이 0.5g/m2인 CD 폭이 2m인 폴리우레탄 나노섬유가 형성되어 폴리우레탄 나노 섬유필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 온도 22℃의 조건으로 상향식 전기방사를 실시하였다.A polyurethane solution is prepared by dissolving a polyurethane having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyurethane solution to the spinning solution main tank and applying an applied voltage of 20 kV to the nozzle block including the on-off system designed to separate the nozzle block into nine parts in one direction of the width direction (CD), the basis weight 0.3 It was electrospun on a substrate of g / m 2 . Polyurethane nanofibers having a CD width of 2 m with a basis weight of 0.2 g / m 2 and a basis weight of 0.5 g / m 2 alternately in the width direction (CD) on the electrospun cellulose substrate It was formed to prepare a polyurethane nanofiber filter. At this time, the bottom-up electrospinning was performed under the condition that the distance between the electrode and the collector was 40 cm and the temperature was 22 ° C.
[실시예 4]Example 4
연화온도가 80-100℃인 저중합도 폴리우레탄을 DMAc(N,N-dimethylaceticamide) 용매에 15중량%가 되도록 용해하여 저융점 고분자 용액을 제조하고 전기방사장치의 저융점 고분자 유닛(110)의 주탱크에 투입하였다. 또한 중량평균분자량이 50,000인 폴리비닐리덴 플루오라이드를 디메틸아세트아미드(N,N-Dimethylacetamide, DMAc)에 용해시켜 각각의 방사용액을 제조하고, 이를 방사용액유닛(110‘)와 연결된 주탱크에 투입하였다.A low melting point polyurethane solution having a softening temperature of 80-100 ° C. was dissolved in 15% by weight of a solvent of DMAc (N, N-dimethylaceticamide) to prepare a low melting point polymer solution. It was put in a tank. In addition, polyvinylidene fluoride having a weight average molecular weight of 50,000 was dissolved in dimethylacetamide (N, N-Dimethylacetamide, DMAc) to prepare respective spinning solutions, which were added to the main tank connected to the spinning solution unit 110 '. It was.
저융점 고분자 유닛(110)에서 전극과 컬렉터 간의 거리를 40cm, 인가전압25kV, 70℃에서 전기방사하여 평량 0.1g/m2인 접착층을 셀룰로오스 기재위에 형성하였고, 이어서 방사용액 유닛(110‘)에서 전극과 컬렉터 간의 거리를 40cm, 인가전압 20kV, 70℃에서 길이 방향(MD) 중 일방향으로 1m는 폴리비닐리덴 플루오라이드 나노섬유의 평량이 0.2g/m2이고 나머지 일방향으로 1m는 나노섬유의 평량이 0.5g/m2 인 MD 폭이 2m인 나노섬유필터를 제조하였다.In the low melting point polymer unit 110, the distance between the electrode and the collector was electrospun at 40 cm, an applied voltage of 25 kV, and 70 ° C. to form an adhesive layer having a basis weight of 0.1 g / m 2 on the cellulose substrate, and then in the spinning solution unit 110 ′. The distance between the electrode and the collector is 40 cm, the applied voltage is 20 kV, and 1 m in one direction of the longitudinal direction (MD) at 70 ° C. is 0.2 g / m 2 of basis weight of polyvinylidene fluoride nanofibers, and 1 m in the other direction. A nanofiber filter having a MD width of 2 m having a width of 0.5 g / m 2 was prepared.
[실시예 5]Example 5
중량평균 분자량이 157,000인 폴리우레탄을 디메틸포름아마이드(DMF)에 용해시켜 폴리우레탄 용액을 제조한다. 상기 폴리우레탄 용액을 방사용액 주탱크 각각에 투입하고 길이 방향(MD) 중 한 방향으로 노즐블럭이 3부분으로 분리되어 있게설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 3g/m2 인 기재 상에 전기방사하였다. 전기방사된 컬렉터 상에 길이 방향(MD) 중 중간부분 1m는 평량이 0.5/m2의 폴리우레탄 나노섬유가, 나머지 가장자리 50cm은 평량이 0.2g/m2으로 MD 폭이 2m인 폴리우레탄 나노섬유가 형성되어 폴리우레탄 나노 섬유필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 온도 22℃의 조건으로상향식 전기방사를 실시하였다.A polyurethane solution is prepared by dissolving a polyurethane having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyurethane solution to each of the spinning solution main tanks and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to separate the nozzle block into three parts in one direction of the longitudinal direction (MD). It was electrospun on a substrate of 3 g / m 2 . On the electrospun collector, 1m of the middle part of the longitudinal direction (MD) is a polyurethane nanofiber having a basis weight of 0.5 / m 2 , and 50cm of the remaining edge is a polyurethane nanofiber having a basis weight of 0.2g / m 2 and a MD width of 2m. Was formed to prepare a polyurethane nanofiber filter. At this time, the bottom-up electrospinning was performed on the conditions of 40 cm and 22 degreeC of distances between an electrode and a collector.
[실시예 6]Example 6
중량평균 분자량이 157,000인 폴리우레탄을 디메틸포름아마이드(DMF)에 용해시켜 폴리우레탄 용액을 제조한다. 상기 폴리우레탄 용액을 방사용액 주탱크에 투입하고 길이 방향(MD) 중 한 방향으로 노즐블럭이 9부분으로 분리되어 있게 설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 0.3g/m2인 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 길이 방향(MD)으로 교호적으로 폴리우레탄 나노섬유의 평량이 0.2g/m2이고 나머지 부분의 평량이 0.5g/m2인 MD 폭이 2m인 폴리우레탄 나노섬유가 형성되어 폴리우레탄 나노 섬유필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 온도 22℃의 조건으로 상향식 전기방사를 실시하였다.A polyurethane solution is prepared by dissolving a polyurethane having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyurethane solution to the spinning solution main tank and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to separate the nozzle block into nine parts in one direction of the longitudinal direction (MD), the basis weight 0.3 It was electrospun on a substrate of g / m 2 . Polyurethane nanofibers having an MD width of 2 m having a basis weight of 0.2 g / m 2 and a basis weight of 0.5 g / m 2 alternately in the longitudinal direction (MD) on the electrospun cellulose substrate It was formed to prepare a polyurethane nanofiber filter. At this time, the bottom-up electrospinning was performed under the condition that the distance between the electrode and the collector was 40 cm and the temperature was 22 ° C.

Claims (15)

  1. 폴리머 용액을 저장하는 주저장 탱크, 폴리머 용액이 토출되는 노즐블록, 나Main storage tank for storing the polymer solution, nozzle block from which the polymer solution is discharged, b.
    노 멤브레인을 집적하는 컬렉터, 상기 컬렉터와 노즐블록 사이에 고전압을 부여하는 전원장치 및 오버플로우 시스템을 포함하는 나노섬유필터의 제조장치에 있어서,In the apparatus for manufacturing a nanofiber filter comprising a collector for integrating the furnace membrane, a power supply for applying a high voltage between the collector and the nozzle block and an overflow system,
    기재와 나노섬유층 및 나노섬유층간의 접착을 위한 접착층을 형성하기 위한저융점 고분자 유닛과,A low melting polymer unit for forming an adhesive layer for adhesion between the substrate and the nanofiber layer and the nanofiber layer,
    방사되는 폴리머 용액의 점도를 일정하게 조절할 수 있는 온도조절 장치를포함하며,It includes a thermostat that can constantly adjust the viscosity of the polymer solution to be spun,
    상기 접착층은 저융점 고분자 용액을 전기방사하여 형성되는 것을 특징으로하는 나노섬유 필터의 제조장치.The adhesive layer is a nanofiber filter manufacturing apparatus, characterized in that formed by electrospinning a low melting polymer solution.
  2. 제 1항에 있어서,The method of claim 1,
    상기 저융점 고분자 용액은 저융점 폴리에스테르, 저융점 폴리우레탄, 저융점 폴리비닐리덴 플루오라이드로 이루어진 군에서 선택된 1종인 것을 특징으로 하는 나노섬유 필터의 제조장치.The low melting point polymer solution is a low melting point polyester, low melting point polyurethane, low melting point polyvinylidene fluoride is one selected from the group consisting of nanofiber filter manufacturing apparatus.
  3. 제 1항에 있어서,The method of claim 1,
    상기 온도조절 장치는 오버플로우 시스템을 통해 회수되는 폴리머 용액의 점도를 일정하게 조절할 수 있는 가열장치 및 냉각장치를 포함하는 것을 특징으로 하는 나노섬유 필터의 제조장치.The temperature control device is a device for manufacturing a nanofiber filter, characterized in that it comprises a heating device and a cooling device that can constantly adjust the viscosity of the polymer solution recovered through the overflow system.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 폴리머 용액의 점도는 1,000 cps 내지 3,000 cps로 일정하게 조절되는 것을 특징으로 하는 나노섬유 필터의 제조장치.The viscosity of the polymer solution is a device for producing a nanofiber filter, characterized in that it is constantly adjusted to 1,000 cps to 3,000 cps.
  5. 제 3항에 있어서,The method of claim 3, wherein
    상기 가열장치는 전열히터, 온수순환장치 및 온풍순환장치 중 하나이상 선택되는 것을 특징으로 하는 나노섬유 필터의 제조장치.The heating device is a manufacturing apparatus of the nanofiber filter, characterized in that at least one of the electric heater, hot water circulation device and hot air circulation device is selected.
  6. 제 3항에 있어서,The method of claim 3, wherein
    상기 냉각 장치는 칠링(Chilling) 장치인 것을 특징으로 하는 나노섬유 필터의 제조장치.The cooling device is a device for producing a nanofiber filter, characterized in that the chilling (Chilling) device.
  7. 제 1항 또는 제 3항에 있어서,The method according to claim 1 or 3,
    상기 온도조절 장치는 저장탱크, 노즐블록 및 오버플로우 시스템 중 어느 하나 이상에 설치되는 것을 특징으로 하는 나노섬유 필터의 제조장치.The temperature control device is a manufacturing apparatus of the nanofiber filter, characterized in that installed in any one or more of the storage tank, nozzle block and overflow system.
  8. 기재와;A base material;
    상기 기재상에 전기방사에 의하여 적층 형성되는 하나 이상의 나노섬유층과; 상기 기재와 나노섬유층 및 나노섬유층간 사이에 형성되는 접착층으로 구성되는 나노섬유필터의 제조방법에 있어서,At least one nanofiber layer laminated on the substrate by electrospinning; In the method of manufacturing a nanofiber filter composed of an adhesive layer formed between the substrate and the nanofiber layer and nanofiber layer,
    상기 나노섬유층은 길이 방향(MD)으로 나노섬유의 평량이 상이하고,The nanofiber layer is different in the basis weight of the nanofibers in the longitudinal direction (MD),
    상기 접착층은 저융점 고분자 용액을 전기방사한 것을 특징으로 하는 나노섬유 필터의 제조방법.The adhesive layer is a method of manufacturing a nanofiber filter, characterized in that the electrospun low-melting polymer solution.
  9. 기재와;A base material;
    상기 기재상에 전기방사에 의하여 적층 형성되는 하나 이상의 나노섬유층과; 상기 기재와 나노섬유층 및 나노섬유층간 사이에 형성되는 접착층으로 구성되는 나노섬유필터의 제조방법에 있어서,At least one nanofiber layer laminated on the substrate by electrospinning; In the method of manufacturing a nanofiber filter composed of an adhesive layer formed between the substrate and the nanofiber layer and nanofiber layer,
    상기 나노섬유층은 폭 방향(CD)으로 나노섬유의 평량이 상이하고,The nanofiber layer has a basis weight of nanofibers different in the width direction (CD),
    상기 접착층은 저융점 폴리비닐리덴플루오라이드, 저융점 폴리우레탄, 저융점 폴리에스테르에서 선택되는저융점 고분자 용액을 전기방사한 것을 특징으로 하는 나노섬유 필터의 제조방법.Wherein the adhesive layer is a low-melting polyvinylidene fluoride, a low melting point polyurethane, a method of manufacturing a nanofiber filter, characterized in that the low-melting point polymer solution selected from low-polyester polyester.
  10. 제 8항 또는 제 9항에 있어서,The method according to claim 8 or 9,
    상기 나노섬유의 평량은 복수의 노즐관체를 on-off 시스템으로 조작하는 것을 특징으로 하는 나노섬유 필터의 제조방법.The basis weight of the nanofibers is a method of manufacturing a nanofiber filter, characterized in that for operating a plurality of nozzle tube on-off system.
  11. 제 10항에 있어서,The method of claim 10,
    상기 on-off 시스템은 나노섬유가 집적되는 길이 방향(MD) 또는 폭방향(CD) 중 일방향으로 평량의 구배가 증가하게 설계된 것을 특징으로 하는 나노섬유필터의 제조방법.The on-off system is a manufacturing method of the nanofiber filter, characterized in that the gradient of the basis weight is designed to increase in one direction of the longitudinal direction (MD) or the width direction (CD) in which the nanofibers are integrated.
  12. 제 10항에 있어서,The method of claim 10,
    상기 on-off 시스템은 나노섬유가 집적되는 길이 방향(MD) 또는 폭방향(CD) 중 양방향으로 평량의 구배가 증가 또는 감소하게 설계된 것을 특징으로 하는 나노 섬유필터의 제조방법.The on-off system is a manufacturing method of the nanofiber filter, characterized in that the gradient of the basis weight is designed to increase or decrease in both directions in the longitudinal direction (MD) or the width direction (CD) in which the nanofibers are integrated.
  13. 제 10항에 있어서,The method of claim 10,
    상기 on-off 시스템은 나노섬유가 집적되는 길이 방향(MD) 또는 폭방향(CD)으로 교호적으로 평량이 상이하게 설계된 것을 특징으로 하는 나노섬유 필터의 제조방법.The on-off system is a method for producing a nanofiber filter, characterized in that the basis weight alternately designed in the longitudinal direction (MD) or width direction (CD) in which the nanofibers are integrated.
  14. 제 10항에 있어서,The method of claim 10,
    상기 평량은 0.1 내지 0.5g/m2의 범위에서 길이 방향(MD) 또는 폭방향(CD)으로 상이한 것을 특징으로 하는 나노 섬유필터의 제조 방법.The basis weight of the nanofiber filter manufacturing method, characterized in that different in the longitudinal direction (MD) or the width direction (CD) in the range of 0.1 to 0.5g / m 2 .
  15. 제 8항 내지 제 14항 중 어느 한 항에 따른 제조방법에 의해 제조된 나노 섬유 필터.The nanofiber filter manufactured by the manufacturing method according to any one of claims 8 to 14.
PCT/KR2015/007143 2015-04-23 2015-07-09 Electrospinning device comprising temperature adjustment device, method for manufacturing nanofiber filter using same, and nanofiber filter manufactured thereby WO2016171329A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020150057481A KR101778255B1 (en) 2015-04-23 2015-04-23 Nano fiber filter and method of manufacturing the same
KR10-2015-0057479 2015-04-23
KR10-2015-0057480 2015-04-23
KR1020150057480A KR20160126468A (en) 2015-04-23 2015-04-23 Nano fiber filter and method of manufacturing the same
KR10-2015-0057481 2015-04-23
KR1020150057479A KR101739901B1 (en) 2015-04-23 2015-04-23 A device for nano fiber filter attached with low melting point polymer solution adhension layer containing temperature control system

Publications (1)

Publication Number Publication Date
WO2016171329A1 true WO2016171329A1 (en) 2016-10-27

Family

ID=57144000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007143 WO2016171329A1 (en) 2015-04-23 2015-07-09 Electrospinning device comprising temperature adjustment device, method for manufacturing nanofiber filter using same, and nanofiber filter manufactured thereby

Country Status (1)

Country Link
WO (1) WO2016171329A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110302592A (en) * 2019-07-04 2019-10-08 博裕纤维科技(苏州)有限公司 The nanofiber of resistance to blowback Compound filtering material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047872A (en) * 2005-11-03 2007-05-08 김학용 Method of manufacturing multi-layer textile comprising nanofiber layer
KR20110026185A (en) * 2009-09-07 2011-03-15 한국생산기술연구원 Apparatus and method for manufacturing nanofiber web using electro-spinning
KR101040059B1 (en) * 2010-12-06 2011-06-09 신슈 다이가쿠 An apparatus for manufacturing nano-fiber and the method for manufacturing nano-fiber
KR20110077915A (en) * 2009-12-30 2011-07-07 주식회사 효성 Method for controlling electrospinning conditions of a electrospinning device
KR101162033B1 (en) * 2011-03-20 2012-07-03 신슈 다이가쿠 A method for manufacturing nano-fiber fabric made of polyolefine, a manufacturing apparatus for the same and a separator thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047872A (en) * 2005-11-03 2007-05-08 김학용 Method of manufacturing multi-layer textile comprising nanofiber layer
KR20110026185A (en) * 2009-09-07 2011-03-15 한국생산기술연구원 Apparatus and method for manufacturing nanofiber web using electro-spinning
KR20110077915A (en) * 2009-12-30 2011-07-07 주식회사 효성 Method for controlling electrospinning conditions of a electrospinning device
KR101040059B1 (en) * 2010-12-06 2011-06-09 신슈 다이가쿠 An apparatus for manufacturing nano-fiber and the method for manufacturing nano-fiber
KR101162033B1 (en) * 2011-03-20 2012-07-03 신슈 다이가쿠 A method for manufacturing nano-fiber fabric made of polyolefine, a manufacturing apparatus for the same and a separator thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110302592A (en) * 2019-07-04 2019-10-08 博裕纤维科技(苏州)有限公司 The nanofiber of resistance to blowback Compound filtering material and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2014171624A1 (en) Electrospinning apparatus
WO2012128472A2 (en) Apparatus for manufacturing separator
WO2015016450A1 (en) Multi-layered nanofiber filter medium using electro-blowing, melt-blowing or electrospinning, and method for manufacturing same
WO2014171625A1 (en) Electrospinning apparatus
WO2012077868A1 (en) Method and device for manufacturing nanofiber
CN107619818B (en) Method and apparatus for producing culture medium
WO2014196689A1 (en) Method for manufacturing asymmetric polyvinlylidenefluoride hollow fiber membrane and hollow fiber membrane manufactured therefrom
WO2015076460A1 (en) Electrospinning device for manufacturing nanofiber
WO2012111930A2 (en) Electrospinning apparatus, and apparatus for manufacturing nanofibers
WO2019017750A1 (en) Filter medium, manufacturing method therefor, and filter unit comprising same
WO2012077867A1 (en) Nanofiber manufacturing device
WO2016024721A1 (en) Electrospinning apparatus comprising temperature adjustment device, preparation method, for nanofibers or nanomembrane, using same, and nanofibers or nanomembrane prepared by means of same
KR20110074085A (en) High temperature electrospinning device
WO2016171329A1 (en) Electrospinning device comprising temperature adjustment device, method for manufacturing nanofiber filter using same, and nanofiber filter manufactured thereby
KR101563599B1 (en) Electro-blown and electro-spinning devices of manufacture for nano fiber
JP4886633B2 (en) Electrospun nonwoven fabric manufacturing method and manufacturing apparatus thereof
WO2014137095A1 (en) Filter medium having nanofibers on both sides of base and having improved heat resistance, and manufacturing method therefor
WO2012077864A1 (en) Field emission device and nanofiber manufacturing device
WO2012128473A2 (en) Apparatus for manufacturing separator
KR101617848B1 (en) Electrospinning device containing temperature control system for manufacturing nano fiber
WO2021172754A1 (en) Nanomembrane having uniform basis weight, and production method therefor
WO2021172753A1 (en) Nanofilter having improved filter efficiency and lifespan, and method for manufacturing same
WO2021206317A1 (en) Sub-micron fibrous membrane and method for producing same
KR20150039762A (en) Method of producing fine amorphous polymer fibres, fine amorphous polymer fibres, and spinneret for producing such fibres
WO2016171328A1 (en) Filter including nanofiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889995

Country of ref document: EP

Kind code of ref document: A1