WO2012111930A2 - Electrospinning apparatus, and apparatus for manufacturing nanofibers - Google Patents

Electrospinning apparatus, and apparatus for manufacturing nanofibers Download PDF

Info

Publication number
WO2012111930A2
WO2012111930A2 PCT/KR2012/000847 KR2012000847W WO2012111930A2 WO 2012111930 A2 WO2012111930 A2 WO 2012111930A2 KR 2012000847 W KR2012000847 W KR 2012000847W WO 2012111930 A2 WO2012111930 A2 WO 2012111930A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer solution
nozzle
long sheet
polymer
type
Prior art date
Application number
PCT/KR2012/000847
Other languages
French (fr)
Korean (ko)
Other versions
WO2012111930A3 (en
Inventor
이재환
Original Assignee
주식회사 톱텍
신슈 다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011030312A external-priority patent/JP5802022B2/en
Application filed by 주식회사 톱텍, 신슈 다이가쿠 filed Critical 주식회사 톱텍
Publication of WO2012111930A2 publication Critical patent/WO2012111930A2/en
Publication of WO2012111930A3 publication Critical patent/WO2012111930A3/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D13/00Complete machines for producing artificial threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/06Distributing spinning solution or melt to spinning nozzles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Definitions

  • the present invention relates to a field emission device and a nanofiber production device.
  • the nanofiber manufacturing apparatus which manufactures a nanofiber by performing electric field spinning with the field emission apparatus provided along the conveyance direction of a long sheet is known (for example, refer patent document 1).
  • FIG. 9 is a view illustrating a conventional nanofiber manufacturing apparatus 900.
  • the conventional nanofiber manufacturing apparatus 900 conveys by the conveying apparatus 910 which conveys the elongate sheet W along a predetermined conveyance direction, and the said conveying apparatus 910, as shown in FIG.
  • the electric field radiating device 920 which electric field-spins the long sheet W by discharging a polymer solution to the long sheet W is provided.
  • the field radiating device 920 is provided at a position opposite to the collector 930 and the collector 930, and a nozzle block in which two or more nozzles 940 for discharging the polymer solution are two-dimensionally arranged at a predetermined arrangement pitch. 950 and a power supply 960 for applying a high voltage between the collector 930 and the nozzle block 950.
  • the plurality of nozzles 940 are directly mounted to the nozzle block 950, and the polymer solution stored in the polymer solution tank 970 is stored in the nozzle block 950. After flowing in, it is supplied to each nozzle 940.
  • the plurality of nozzles 940 are directly mounted to the nozzle block 950, and the polymer solution is supplied to each nozzle 940 through the nozzle block 950. It is configured to be.
  • the entire nozzle block 950 may need to be separated from the field radiating device 920 depending on the situation, and the problem may be difficult to manage.
  • an object of the present invention is to provide an electrospinning apparatus and a nanofiber manufacturing apparatus that facilitate the management of the nozzle and enable various methods of supplying a polymer solution.
  • An electrospinning apparatus of the present invention includes a nozzle block having a collector, a plurality of nozzles disposed at a position opposite to the collector and discharging a polymer solution in two dimensions, and supplying the polymer solution to the nozzle.
  • a polymer solution supply device and a power supply device for applying a high voltage between the collector and the nozzle, and discharging the polymer solution to a long sheet that is conveyed in a predetermined conveying direction between the collector and the nozzle.
  • the polymer solution supply device includes a polymer solution tank for storing a plurality of types of polymer solutions having different components, and a plurality of polymers for distributing the plurality of types of polymer solutions for each type of polymer solution. And a nozzle flow pipe formed along the width direction of the long sheet. One end is occluded. Iv) a plurality of pipes, each of which is a polymer solution supply port, the other end being provided along the conveying direction of the long sheet, wherein the nozzles are provided in the pipes of the pipes in the longitudinal direction of the pipes. And a polymer solution distribution pipe for circulating the polymer solution of the type assigned to the tube so that a polymer solution of the type assigned to the tube is supplied to each polymer solution supply port of each tube. It is characterized by that.
  • the electrospinning apparatus of this invention is a structure which attached a nozzle to the some pipe body provided in the inside of a nozzle block. Therefore, when the nozzle is repaired or replaced, the nozzle can be repaired or replaced in a tubular unit, and the nozzle management can be facilitated. Also, for example, the supply of the polymer solution is controlled to control the supply amount of the polymer solution for each nozzle listed along the width direction of the long sheet, or to supply a different type of polymer solution for each nozzle listed along the width direction of the long sheet. You can set various methods.
  • the respective tube bodies are detachably attached to the nozzle block.
  • each tubular body can be easily taken out from a nozzle block, and when a nozzle is repaired or replaced, a nozzle can be repaired or replaced by a tubular unit easily.
  • a polymer solution supply amount control valve is provided in the polymer solution distribution pipe corresponding to each of the tubes in order to control the supply amount of the polymer solution for each of the tubes.
  • the supply amount of the polymer solution of the type assigned to each tube can be controlled for each tube, so that the distribution of different types of polymer solutions can be varied.
  • "to enable control of the supply amount of a polymer solution” means that the improvement of a polymer solution supply amount control valve can be controlled from zero to the maximum. This makes it possible to arbitrarily control the supply amount of the polymer solution from zero to the maximum value.
  • the polymer solution distribution pipe is preferably provided with a polymer solution supply amount control valve for collectively controlling the supply amount of the polymer solution for each type of the polymer solution.
  • control of supply amount can be collectively performed for every kind of polymer solution, distribution of the polymer solution of a different kind, etc. can be changed easily.
  • the polymer solution tank is preferably provided separately for each type of the polymer solution.
  • the polymer solution tank is divided in such a manner that a plurality of polymer solution storage chambers capable of storing the plurality of polymer solutions for each type of the polymer solution are formed.
  • Field radiating device
  • the nozzles mounted on the respective tubular bodies are formed by the nozzles mounted on the tubular bodies to which the same kind of polymer solution is assigned when the nozzle block is viewed along the conveying direction. It is preferable that the column of a conveyance direction is attached to each said tube body so that it may arrange on the straight line which has the inclination of a predetermined angle with respect to the said conveyance direction on the plane parallel to the surface of the said elongate sheet
  • the nozzles attached to the respective pipe bodies By arranging the nozzles attached to the respective pipe bodies in such an arrangement, the mounting positions of the nozzles in the longitudinal direction (width direction of the long sheet) of the pipe bodies are shifted from each other in the adjacent pipe bodies among the pipe bodies to which the same kind of polymer solution is assigned. Becomes Thereby, the nanofibers which consist of each kind of polymer solution with respect to the elongate sheet conveyed along a conveyance direction can be deposited uniformly, respectively without an imbalance.
  • the nozzle and each tube are made of a conductive member, one of the positive electrode and the negative electrode of the power supply device is connected to the collector, and the other of the positive and negative electrode of the power supply device. It is preferable that an electrode is connected to each said pipe
  • tube side is made into a ground potential
  • the components for example, a nozzle block, a housing
  • tube” includes a polymer solution tank, a polymer solution distribution pipe, a polymer solution supply amount control valve, and the like.
  • the electric field radiating device of the present invention it is preferable to further include a reciprocating drive unit for reciprocating the nozzle block at a predetermined cycle along the width direction of the long sheet.
  • a nozzle block By providing such a reciprocating drive part, a nozzle block can be reciprocated along the width direction of a long sheet.
  • the reciprocating cycle so as to be an appropriate cycle, it is possible to prevent the discharge positions of the nozzles from overlapping with the discharge positions of the other nozzles with respect to the long sheet that is conveyed in the conveying direction. Thereby, the deposition amount of the polymer fiber of the elongate sheet W can be made uniform.
  • the electric field radiating device of the present invention it is preferable to further include a gap adjusting driver for driving the nozzle block so that the gap between the nozzle block and the collector can be adjusted.
  • interval of a nozzle block and a collector can be adjusted.
  • the distance between the collector block and the nozzle block is adjusted to the optimum interval before starting the field emission, the field emission can be performed while the distance between the nozzle block and the collector is optimally set.
  • the distance between the collector and the nozzle block may be determined in consideration of the spinning conditions of the field emission device, the type of the polymer solution, the average diameter of the nanofibers, the thickness of the nanofiber nonwoven fabric, and the like.
  • the nanofiber manufacturing apparatus of the present invention is a nanofiber manufacturing apparatus including a conveying apparatus for conveying a long sheet in a predetermined conveying direction and an electric field spinning apparatus for electric field spinning of the long sheet conveyed in the predetermined conveying direction.
  • the field radiating device is characterized in that the field radiating device according to any one of [1] to [10].
  • the field emission device of the present invention since the field emission device of the present invention is provided, it becomes possible to stably produce nanofibers having desired performance.
  • the conveying apparatus conveys the feeding roller for supplying the long sheet and the long sheet at a predetermined conveying speed, and the long sheet in which the nanofibers are deposited in the field spinning device.
  • a long sheet can be conveyed by appropriate tension along a conveyance direction.
  • the first tension roller is capable of independently adjusting at least one position in each of the ends in the vertical direction and the horizontal direction of one end portion and the other end portion of the first tension roller.
  • a first tension roller position adjustment mechanism wherein the second tension roller is capable of independently adjusting at least one position in each of the vertical and horizontal directions of one end portion and the other end portion of the second tension roller for each end portion. It is desirable to have a second tension roller position adjustment mechanism.
  • the conveying apparatus includes: a winding amount measurement information output device for outputting winding amount measurement information indicating a winding amount of a long sheet on which the nanofibers of the winding roller are deposited; It is preferable to further provide a conveyance speed control apparatus which controls the said winding roller drive part based on the winding amount measurement information output from the measurement information output apparatus.
  • the conveying apparatus is provided at a predetermined position between the field radiating apparatus and the winding roller, and for cutting the long sheet on which the nanofibers are deposited along the width direction of the long sheet. It is preferable to further provide a cutting device.
  • the "long sheet which nanofibers were deposited” when the "long sheet which nanofibers were deposited” was wound by a predetermined amount by the winding roller, the "long sheet which nanofibers were deposited” can be cut at a predetermined position.
  • a winding roller which does not sense "a long sheet in which nanofibers are deposited” is newly attached, and a tip of a subsequent "long sheet in which nanofibers are deposited” is attached to the winding roller.
  • the "long sheet in which the nanofibers are deposited” can be easily taken out every predetermined winding amount.
  • nanofiber manufacturing apparatus of the present invention, medical products such as high-performance and highly sensitive textiles, beauty-related articles such as health care and skin care, industrial materials such as wiping cloth and filters, separators for secondary batteries, Nanomaterials that can be used for a wide range of applications such as capacitors of capacitors, carriers of various catalysts, electronic and mechanical materials such as various sensor materials, regenerative medical materials, biomedical materials, medical MEMS materials, and biosensor materials. Fibers can be produced.
  • the present invention provides an electrospinning apparatus and a nanofiber manufacturing apparatus that can easily manage nozzles and can also variously set a method for supplying a polymer solution.
  • FIG. 1 is a diagram for explaining the nanofiber production apparatus 1 according to the embodiment.
  • FIG. 2 is an enlarged view illustrating the field radiating apparatus 200 of FIG. 1 taken out.
  • FIG 3 is a diagram illustrating the nozzle block 250.
  • FIG. 4 is a diagram schematically showing the arrangement of the nozzles 240.
  • 5 is a view for explaining the configuration of the main control device 300.
  • FIG. 6 is a diagram for explaining a first modification of the polymer solution supply device 400.
  • FIG. 7 is a diagram for explaining a second modification of the polymer solution supply device 400.
  • FIG. 8 is a diagram for explaining a third modification of the polymer solution supply device 400.
  • FIG 9 is a front view of a conventional nanofiber manufacturing apparatus 900.
  • FIG. 1 is a diagram for explaining the nanofiber production apparatus 1 according to the embodiment.
  • FIG. 1A is a front view of the nanofiber production apparatus 1
  • FIG. 1B is a plan view of the nanofiber production apparatus 1.
  • the component required when demonstrating the nanofiber manufacturing apparatus 1 which concerns on embodiment is shown, and illustration of the housing
  • FIG. 1A some members are shown in cross-sectional view.
  • FIG. 2 is an enlarged view illustrating the field radiating apparatus 200 of FIG. 1 taken out.
  • FIG. 3 is a diagram illustrating the nozzle block 250.
  • FIG. 3A is a perspective view when the lid 251 of the nozzle block 250 is removed
  • FIG. 3B is a perspective view when the lid 251 of the nozzle block 250 is mounted.
  • 4 is a diagram schematically showing the arrangement of the nozzles 240.
  • 5 is a diagram illustrating the main control device 300.
  • the nanofiber manufacturing apparatus 1 which concerns on embodiment carries out the conveying apparatus 100 which conveys the elongate sheet W in the predetermined conveyance direction a, and the conveyance direction a.
  • the electric field radiating apparatus 200 which electric-field radiates the elongate sheet W to be conveyed, the main control apparatus which controls each operation part (described below) of the conveying apparatus 100, and each operation part of the electric field radiating apparatus 200 ( 300).
  • the nanofiber manufacturing apparatus 1 includes a VOC processing apparatus for burning and removing volatile components generated when the nanofibers are deposited on the long sheet W, in addition to the components described above, and the field radiating apparatus 200.
  • a VOC processing apparatus for burning and removing volatile components generated when the nanofibers are deposited on the long sheet W, in addition to the components described above, and the field radiating apparatus 200.
  • the inert gas supply apparatus etc. which supply an inert gas to the field emission chamber 212 of the field emission apparatus 200 are included, these illustration is abbreviate
  • the conveying apparatus 100 heats the supply roller 101 which supplies the long sheet W before electric field spinning, and the heating device 117 which heats the long sheet W which deposited the nanofiber. And the winding roller 102 which winds the "long sheet W which deposited the nanofiber” heated by the heating apparatus 117.
  • the heating temperature of the heating apparatus 117 changes with the kind of long sheet W and the nanofiber, for example, "long sheet W” can be heated to the temperature of 50 degreeC-300 degreeC.
  • a nanofiber nonwoven fabric in the state which heated "the long sheet W which deposited the nanofiber” was heated.
  • the conveying apparatus 100 has the auxiliary rollers 103, 104, 105, 106 provided between the supply roller 101 and the winding roller 102, and the supply roller 101 side and the winding of the electric field radiating device 200.
  • the conveying apparatus 100 measures the winding amount drive which outputs the winding roller drive part 111 which drives the winding roller 102, and the information for measuring the winding amount of the winding roller 102 (referred to winding amount measurement information).
  • the "long sheet W in which nanofibers were deposited" that is, nanofiber nonwoven fabric, installed between the information output device 112 and the heating device 117 and the winding roller 102 and heated by the heating device 117.
  • the winding amount measurement information output device 112 for example, a laser distance sensor or the like can be used.
  • the laser distance sensor As the winding amount measurement information output device 112, the diameter of the nanofiber nonwoven fabric wound on the winding roller 102 by the laser distance sensor is measured, and the measurement result is used as the winding amount measurement information as the main control device. It sends to the conveyance speed control part 310 of 300 (refer FIG. 5).
  • the cutting device 114 cuts the pressing plate 115 for pressing the nanofiber nonwoven fabric on the support 113 when cutting the nanofiber nonwoven fabric, and the cutter 116 for cutting the nanofiber nonwoven fabric in the width direction of the nanofiber nonwoven fabric. Equipped.
  • the first tension roller position adjustment mechanisms 109a and 109b are mechanisms for independently adjusting at least one position in each of the ends in the vertical direction and the horizontal direction of one end portion and the other end portion of the first tension roller 107. Equipped with.
  • the second tension roller position adjustment mechanisms 110a and 110b are mechanisms for independently adjusting at least one position in each of the ends in the vertical direction and the horizontal direction of one end portion and the other end portion of the second tension roller 108. Equipped with.
  • Each end of the first tension roller 107 is operated by the first tension roller position adjustment mechanisms 109a and 109b by operating an operation unit such as a handle provided for one end and the other end of the first tension roller 10. It is possible to move each end in at least one direction of the vertical direction and the horizontal direction independently of each end, and to make it possible to adjust the inclination of the 1st tension roller 107 to a predetermined range accordingly.
  • the 1st tension roller position adjustment mechanism 109a, 109b can also perform the same operation with respect to the 2nd tension roller 108.
  • the first tension roller position adjustment mechanisms 109a and 109b and the second tension roller position adjustment mechanisms 110a and 110b are provided in the first tension roller 107 and the second tension roller 108.
  • the tension of the long sheet W passing through the field radiating device 200 can be made an appropriate tension.
  • the "error" in the width direction of the long sheet W with respect to the conveyance direction a ie, the "error” when the long sheet W shift
  • the long sheet W can be conveyed in an optimal conveyance state for electric field spinning.
  • the conveyance speed control part 310 controls the winding roller drive part 111 so that the conveyance speed of the long sheet W may become predetermined speed (constant speed) based on winding amount measurement information. That is, the conveyance speed control part 310 is the winding roller drive part 111 so that the conveyance speed of the elongate sheet W may become a predetermined speed (constant speed) based on the winding amount measurement information sent from the winding amount measurement information output device 112. ).
  • the electric field radiating device 200 includes a conductive housing body 210, an auxiliary belt device 220 to assist the long sheet W from being conveyed, and a housing body ( A nozzle block 250 having a collector 230 mounted to the 210 through an insulating member 211, a plurality of nozzles 240 installed at a position opposite to the collector 230 and discharging the polymer solution; A power supply device 260 that applies a high voltage (eg, 10 kV to 80 kV) between the collector 230 and the nozzle 240, and an electric field that defines a predetermined space covering the collector 230 and the nozzle block 250.
  • a radiation chamber 212 is provided.
  • the field emission device 200 includes a polymer solution supply device 400 for supplying a polymer solution to the nozzle 240 (see FIG. 3).
  • the insulating member 211 may be, for example, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, amorphous polyarylate, polysulfone, poly Ethersulfone, polyphenylene sulfide, polyether ether ketone, polyimide, polyetherimide, fluororesin, liquid crystal polymer, polypropylene, high density polyethylene or polyethylene can be preferably used.
  • the auxiliary belt device 220 includes an auxiliary belt 221 rotating in synchronization with the conveying speed of the long sheet W, and a driving roller for rotating the auxiliary belt 221. 222 and the driven roller 223 which rotates as the auxiliary belt 221 rotates by the drive roller 222 are provided.
  • the left roller is used as the driving roller 222 and the right roller is the driven roller 223 in FIG. 1 and FIG. 2, if the opposite may be sufficient and rotation of two rollers can be synchronized, both drive. It is good also as a roller.
  • the auxiliary belt 221 is made of an insulating and porous endless belt.
  • the auxiliary belt 221 is preferably made of a polymer substrate having a thickness of 0.7mm ⁇ 10.0mm.
  • the polymer include polyamides such as polyethylene, polyacetylene, polyurethane, polypropylene, nylon, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, amorphous polyarylate, polysulfone, Polyether sulfone, polyphenylene sulfide, polyether ether ketone, polyimide, polyetherimide, fluororesin, liquid crystal polymer and the like can be preferably used.
  • the auxiliary belt device 220 is provided so that the auxiliary belt 221 surrounds the collector 230. And the long sheet W is folded and conveyed by the drive roller 222 side in the state which contacted the outer peripheral side of the auxiliary belt 221. As shown in FIG.
  • the auxiliary belt 221 is provided between the collector 230 and the long sheet W, the long sheet W is smoothly pulled by the collector 230 to which the high voltages of both sides are applied. Will be returned.
  • the auxiliary belt 221 is made of an insulating and porous endless belt, it does not significantly affect the electric field distribution formed between the collector 230 and the nozzle 240.
  • the width of the auxiliary belt 221 is wider than the width of the collector 230 is used.
  • the auxiliary belt 221 is reliably present between the long sheet W and the collector 230, and the long sheet W is pulled by the collector 230, or the conveyance of the long sheet W is smooth. It is possible to surely prevent this from being disturbed.
  • the nozzle block 250 includes a plurality of pipe bodies 271 to 277 having one end thereof as a closed end and the other end as a polymer solution supply port. .
  • each tube body is provided along the width direction of the elongate sheet W.
  • each of the tubes 271 to 277 is provided along the y-y 'direction in FIG. 3.
  • the tubular bodies are freely attached to the nozzle block 250.
  • nozzles 240 are attached to each tube in predetermined lengths along the longitudinal direction of the tube.
  • the nozzle 240 and the tubular bodies 271-277 are made of a conductive member such as copper, stainless steel, aluminum, and the like, and the nozzle 240 is electrically connected to the tubular bodies 271-277. It is attached to the tube bodies 271-277.
  • the polymer solution supply device 400 includes two polymer solution tanks 411 and 412 for storing polymer solutions of plural kinds (having two kinds of types A and B) having different components ( Hereinafter, the first polymer solution tank 411 and the second polymer solution tank 412), the polymer solution of type A and the polymer solution of type B are supplied to each tube 271-277 for each type of these polymer solutions. Seven polymer solution distribution pipes 421-427 made to flow are provided.
  • a polymer solution supply pump for supplying the polymer solution stored in the first polymer solution tank 411 and the second polymer solution tank 412 with a predetermined pressure applied to each of the tubular bodies 271 to 277. (Not shown) is also provided.
  • the first polymer solution tank 411 is a polymer solution tank for storing a type A polymer solution
  • the second polymer solution tank 412 is for a type B polymer solution. It is set as the storage tank of the polymer solution.
  • the polymer solution distribution pipes 421 to 424 of the polymer solution distribution pipes 421 to 427 are polymer solution distribution pipes for circulating a polymer solution of type A
  • the polymer solution distribution pipes 425 to 427 are polymers of type B. It is set as the polymer solution distribution pipe which distributes a solution.
  • the polymer solution distribution pipes 421 to 424 for circulating the polymer solution of type A are connected to the respective polymer solution supply ports of the tubes 271, 273, 275, and 277 of the tubes 271 to 277, respectively.
  • the polymer solution distribution pipes 425 to 427 for circulating the polymer solution are connected to respective polymer solution supply ports of the tubes 272, 274 and 276 in the tubes 271 to 277.
  • polymer solution supply pipes 421 to 427 are provided with polymer solution supply amount control valves 431 to 437 for enabling control of the supply amount of the polymer solution.
  • "to enable the control of the supply amount of the polymer solution” means that the improvement of the polymer solution supply amount control valves 431 to 437 can be controlled from zero to the maximum. This makes it possible to arbitrarily control the supply amount of the polymer solution from zero to the maximum value.
  • each nozzle is attached to each tube to which the same kind of polymer solution is assigned.
  • the column of the conveyance direction by is attached to each pipe
  • the nozzles 240 mounted on the respective tubes 271, 273, 275, and 277 to which a polymer solution of type A is assigned are used.
  • Each tubular body 271 so that the column of conveyance direction a may arrange in the straight line L1 which has the inclination of predetermined angle (theta) 1 with respect to conveyance direction a on the plane parallel to the surface of elongate sheet W. , 273, 275, 277, and the heat in the conveying direction a of the nozzle 240 mounted on each of the tubular bodies 272, 274, 276 to which the polymer solution of type B is assigned is elongated.
  • each tubular body 272, 274, 276 It is attached to each tubular body 272, 274, 276 so that it may arrange in a straight line L2 with the inclination of predetermined angle (theta) 2 with respect to the conveyance direction a on the plane parallel to the surface of the sheet
  • nozzles 240 mounted on the tubes 271, 273, 275, and 277 to which the polymer solution of type A is assigned are indicated by white circles, and each tube body to which the polymer solution of type B is assigned.
  • the nozzles 240 mounted on 272, 274, and 276 are shown by gray circles.
  • each nozzle 240 By attaching each nozzle 240 to each tube 271 to 277 so that each nozzle 240 is arranged in such a manner, the length of the tube body (long sheet W) to which the same kind of polymer solution is assigned. Since the mounting position of the nozzle 240 of the width direction becomes a mutually shifted position in the adjacent pipe
  • the nozzle block 250 is provided in the field emission chamber 212 of the field emission device 200 so as to discharge the polymer solution upward from the discharge port of each nozzle 240. Then, a predetermined polymer solution is discharged from the discharge port of each nozzle 240 while overflowing the polymer solution from the discharge port of each nozzle 240 to electrospin the long sheet W to deposit nanofibers on the long sheet W. Let's do it.
  • the nozzle block 250 has a container shape capable of storing the overflowed polymer solution, and a polymer solution outlet 253 for discharging the polymer solution on the bottom of the nozzle block 250 (see FIG. 3). Is installed.
  • the polymer solution discharge port 253 is connected with a polymer solution discharge pipe 254. If the polymer solution discharged from the polymer solution outlet is recovered for each type of polymer solution, it is also possible to reuse each kind of polymer solution.
  • the nozzle block 250 is used in a state where the upper opening surface is covered by the lid 251. Further, a nozzle through hole 252 for protruding the nozzles 240 upward is provided in the lid 251 corresponding to each nozzle 240.
  • the nozzle block 250 is capable of reciprocating in the width direction of the long seat W by the reciprocating drive unit 255 (see FIG. 5), and furthermore, by the gap adjusting driver 256 (see FIG. 5).
  • interval of the collector 230 is adjustable.
  • These reciprocating drive unit 255 and the gap adjustment drive unit 256 are controlled by the main control unit 300.
  • interval of the collector 230 can use a well-known mechanism, the specific structure of each mechanism, etc. Omit illustration and description.
  • the power supply device 260 imparts a predetermined voltage between the collector 230 and each nozzle 240
  • the embodiment is for imparting a predetermined voltage between the collector 230 and each nozzle 240.
  • one electrode (referred to as an anode) of the power supply device 260 is connected to the collector 230, and the other electrode (required to be a cathode) is not a nozzle 240, but a tube 271. 277).
  • the nozzle 240 side that is, the tube bodies 271 to 277 side are set to the ground potential.
  • the cathode of the power supply device 260 is a nozzle block.
  • the negative electrode of the power supply device 260 may be connected to the housing body 210 when the nozzle block 250 and the housing body 210 are electrically connected to each other.
  • the nozzle 240 side that is, the tube bodies 271 to 277 side, the nozzle block 250 side, or the housing body 210 side is set to have a ground potential.
  • the nozzle 240 and the pipe bodies 271 to 277 are formed by bringing the nozzle 240 side, that is, the pipe bodies 271 to 277 side, the nozzle block 250 side, or the housing body 210 side to the ground potential. ), The nozzle block 250 and the housing body 210, all of the polymer solution and the polymer solution supply device 400 before being discharged from the nozzle 240 become ground potentials.
  • the field radiating device 200 configured as described above is preferably installed in a room adjusted to an atmosphere having a temperature of 20 ° C to 40 ° C and a humidity of 20% to 60%.
  • the main control device 300 has a function of controlling the electric field radiating device 200 and the conveying device 100. Specifically, as shown in FIG. 5, the transfer speed control unit 310 for controlling the transfer speed based on the winding amount measurement information and the reciprocating drive unit 255 for reciprocating the nozzle block 250 are controlled.
  • interval adjustment of the nozzle block 250 are provided.
  • the main control device 300 has a function of controlling the power supply device 260 and the auxiliary belt device 220 in the electric field radiating device 200, and the heating device 117 in the conveying device 100. ) To control.
  • the whole nanofiber manufacturing apparatus 1 when the whole nanofiber manufacturing apparatus 1 is considered, it has a function which controls a VOC processing apparatus (not shown), an inert gas control apparatus (not shown), etc.
  • first tension roller position adjusting mechanisms 109a and 109b, the second tension roller position adjusting mechanisms 110a and 110b and the cutting device 114 are provided with a drive unit such as a motor, the first tension roller 107 and the first It is also possible to control the position control of the two tension roller 108 and the cutting control of the cutting device 114 by the main control device 300.
  • cutting control of the cutting device 114 is performed, when the winding amount of the nanofiber nonwoven fabric reaches a predetermined amount, the field spinning operation by the field spinning device 200 is stopped, and the nano by the winding roller 102 is further stopped.
  • a signal for operating the press plate 115 and the cutter 116 is output in a state where the conveyance operation of the long sheet W such as winding of the fiber nonwoven fabric is stopped.
  • the nanofiber nonwoven fabric is cut by the cutter 116 while pressing the nanofiber nonwoven fabric by the pressing plate 115.
  • the long sheet W is set in the conveying apparatus 100, and after that, it is conveyed by the winding roller 102, supplying the long sheet W from a supply roller, and it conveys at a predetermined conveyance speed.
  • nanofibers are sequentially deposited by discharging the polymer solution from the nozzles 240 mounted to the respective tubular bodies 271 to 277 to the long sheet W.
  • interval between the collector 230 and the nozzle block 250 can be adjusted by the space
  • the distance between the collector 230 and the nozzle block 250 may be determined in consideration of the spinning conditions of the field emission device 200, the type of the polymer solution, the average diameter of the nanofibers, and the thickness of the nonwoven fabric to be manufactured. Thereby, electric field emission can be performed in the state in which the space
  • a type A polymer solution is stored in the first polymer solution tank 411, and a type B polymer solution is stored in the second polymer solution tank 412. have.
  • the polymer solution of type A distributes the polymer solution distribution pipes 421 to 424 and is supplied to the tubular bodies 271, 273, 275, and 277, and the polymer solution of type B passes through the polymer solution distribution pipes 425 to 427. It is distributed and supplied to the tubes 272, 274, 276.
  • the polymer solution of type A and the polymer solution of type B are discharged alternately from each nozzle 240 of each tubular body 271-277 with respect to the long sheet W conveyed along a conveyance direction a. do.
  • the long sheet W can deposit nanofibers in a state in which a polymer solution of type A and a polymer solution of type B are mixed.
  • the long sheet W is reciprocated by the reciprocating drive unit 255 while reciprocating the nozzle block 250 in the width direction of the long sheet W.
  • the operation of discharging the polymer solution is performed.
  • the reciprocating cycle of the reciprocating drive unit 255 is set based on the arrangement pitch of the nozzle 240 and the conveyance speed of the long sheet W. As shown in FIG. That is, with respect to the long sheet W conveyed in the conveyance direction a, the reciprocating cycle is set so that the discharge position of each nozzle 240 may not overlap with the discharge position of another nozzle as much as possible. Thereby, the deposition amount of the polymer fiber of the elongate sheet W can be made uniform.
  • the nanofiber nonwoven fabric can be produced by heating the "long sheet W in which the nanofibers are deposited" with the heating device 117.
  • the long sheet W can deposit nanofibers in a state in which different kinds of polymer solutions are mixed, and are produced by heating them.
  • the nanofiber nonwoven fabric becomes a nanofiber nonwoven fabric of a different quality from the nanofiber nonwoven fabric produced by one kind of polymer solution, and can be used for a wider range of applications.
  • the nanofiber nonwoven fabric thus produced is wound by a winding roller 102.
  • the winding amount measurement information output device 112 measures the winding amount of the nanofiber nonwoven fabric wound on the winding roller 102, and uses the measurement result as the winding amount measurement information to convey the speed control unit of the main control device 300 ( Output to 310).
  • the conveyance speed control part 310 controls the winding roller drive part 111 so that the conveyance speed of the elongate sheet
  • the nanofiber nonwoven fabric can be cut by the cutting device 114.
  • the cutting device 114 When cutting a nanofiber nonwoven fabric by the cutting device 114, it cuts by the cutter 116, holding the nanofiber nonwoven fabric by the press board 115.
  • the field spinning operation by the field spinning device 200 is stopped, and the conveying operation of the long sheet W such as winding the nanofiber nonwoven fabric by the winding roller 102 is stopped. do.
  • a predetermined amount of nanofiber nonwoven fabric is wound around the winding roller 102.
  • the winding roller 102 which the nanofiber nonwoven fabric is not wound up is set, the front end of the subsequent nanofiber nonwoven fabric is wound up to the winding roller 102, and the nanofiber nonwoven fabric which is manufactured sequentially is wound up.
  • the nanofiber nonwoven fabric wound by a predetermined winding amount can be continuously produced.
  • the cutting operation by the cutting device 114 can be automatically cut by the main control device 300. That is, in the main controller 300, when the winding amount of the nanofiber nonwoven fabric reaches a predetermined amount, the field spinning operation by the field radiating device 200 is stopped, and the winding of the nanofiber nonwoven fabric by the winding roller 102 is elongated. A signal for operating the pressing plate 115 and the cutter 116 in a state where the conveyance operation of the sheet W is stopped is output. When cutting the nanofiber nonwoven fabric by the cutter 116, the nanofiber nonwoven fabric is cut by the cutter 116 while pressing the nanofiber nonwoven fabric with the pressing plate 115. Thereby, cutting operation
  • the long sheet W can be optimally tensioned and the long sheet W in the width direction can be optimally positioned.
  • the spinning conditions of the nanofiber manufacturing method according to the embodiment are exemplarily shown.
  • the long sheet W a nonwoven fabric, a woven fabric, a knitted fabric, etc. made of various materials can be used.
  • the thickness of the elongate sheet W the thing of 5 micrometers-500 micrometers can be used, for example.
  • polylactic acid polypropylene
  • PVAc polyvinyl acetate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyamide
  • PU polyurethane
  • PVA polyvinyl alcohol
  • PAN polyacrylonitrile
  • PAN polyetherimide
  • PCL polycaprolactone
  • PLGA polylactic acid glycolic acid
  • PVDF polyvinylidene fluoride
  • silk cellulose, chitosan, and the like.
  • Examples of the solvent used for the polymer solution include dichloromethane, dimethylformamide, dimethyl sulfoxide, methyl ethyl ketone, chloroform, acetone, water, formic acid, acetic acid, cyclohexane, THF, decahydronaphthalene (Decalin), and dimethylformamide. (DMAc) and the like can be used. You may mix and use multiple types of solvent.
  • the polymer solution may contain additives such as conductivity enhancers.
  • the conveyance speed of the elongate sheet W can be set to 5 mm / min-10 m / min, for example.
  • the voltage applied to the nozzle, the collector 230, and the nozzle block 250 may be set to 10 kV to 80 kV.
  • the temperature of the field emission chamber 212 of the field emission apparatus 200 can be set to 20 degreeC-40 degreeC, for example.
  • the humidity of the field emission chamber 212 can be set to 20% to 60%, for example.
  • the polymer solution overflowed from the nozzle 240 is discharged from the polymer solution outlet 253 through the polymer solution discharge pipe 254, but the discharged polymer solution is recovered to recover the nanofibers.
  • recovery apparatus which is not shown in figure.
  • the recovered type A polymer solution is transferred to the regeneration tank for type A of the polymer solution recovery device, and the recovered type B polymer solution is transferred to the regeneration tank for type B of the polymer solution recovery device, and then recovered.
  • the composition of each polymer solution of one type A and type B is measured, and the process which adds a solvent and other necessary components to each of the polymer solutions of type A and type B according to the said measurement result is performed, respectively.
  • the polymer solution of type A and type B recovered by such a treatment is recovered from the original type A and type B polymer solution, that is, the type A polymer solution and the second polymer stored in the first polymer solution tank 411. It is possible to regenerate with a polymer solution having a composition that is the same as or very close to that of the type B polymer solution stored in the solution tank 412.
  • the nozzle block 250 divides the inside corresponding to each tube 271-277, forms a polymer solution recovery chamber corresponding to each tube 271-277, and each tube 271-277.
  • the polymer solution outlet 253 is provided in each of the polymer solution recovery chambers.
  • each of the polymer solution discharge ports is connected with a polymer solution discharge pipe 254, and the polymer solution of type A and type B discharged through the polymer solution discharge pipe is supplied to a corresponding type of regeneration tank, respectively. .
  • the overflowed polymer solution can be recovered for each type and can be reproduced for each type.
  • each nozzle 240 is not attached directly to the nozzle block 250, but is attached to each tubular body 271-277 by predetermined number. For this reason, when repairing or replacing the nozzle 240, only the tubular body which should be repaired or replaced with the nozzle may be removed from the nozzle block 250. As a result, the nozzle can be repaired or replaced in a tubular unit, and management becomes easy.
  • the supply amount of the polymer solution can be controlled for each tube arranged in the width direction of the long sheet W, or a different kind of polymer solution can be supplied for each tube 271-277.
  • the polymer solution supply amount control valves 431-437 provided corresponding to each tube 271-277 can be easily implemented. Moreover, as needed, it is also possible not to supply a polymer solution with respect to any specific pipe
  • the tubulars 271, 273, 275, and 277 are supplied with a polymer solution of type A
  • the tubulars 272, 274, and 276 are supplied with a polymer solution of type B to the tubular bodies. It is possible to supply a kind of polymer solution.
  • the long sheet W can deposit a composite nanofiber in a state in which a polymer solution of type A and a polymer solution of type B are mixed, and the nanofiber nonwoven fabric produced by heating it is a polymer solution of one kind. It becomes the nanofiber nonwoven fabric of a quality different from the nanofiber nonwoven fabric manufactured by this, and can be used for a wider use.
  • the supply method of a polymer solution can be set variously.
  • nozzles 240 are attached to each of the tubes 271 to 277 by a predetermined number, when the nozzles 240 are repaired or replaced, only the tubes to which the nozzles should be repaired or replaced are nozzle blocks. What is necessary is just to isolate
  • each nozzle 240 mounted in each tubular body 271-277 is the straight line L1, L2 which has inclination of predetermined angle (theta) 1 and (theta) with respect to the conveyance direction a as shown in FIG. It is attached to each pipe body 271-277 so that it may be arranged. For this reason, since the nozzles 240 are shifted from each other in the longitudinal direction of each of the tubular bodies 271-277, the polymer solution can be discharged to the long sheet W without imbalance, and the nanoparticles of high quality having a uniform thickness are provided. Fibers can be produced.
  • the nozzle 240 side ie, the tube body 271-277 side, the nozzle block 250 side, or the housing body 210 side is made into ground potential
  • a nozzle The block 250, the housing body 210, the polymer solution before being discharged from each nozzle 240, and the polymer solution supply device 400 all become ground potentials. For this reason, the safety of the operator who operates the electric field emission apparatus 200 and the nanofiber manufacturing apparatus 1 can be ensured, and it is not necessary to make each of these components into a high withstand voltage specification.
  • the nozzle block 250 can be reciprocated by a predetermined period along the width direction of the long sheet W, the nanofiber of the long sheet W is The deposition amount can be made uniform. Moreover, since the space
  • the 1st tension roller 107 and the 1st agent are made. It is not only possible to set the tension of the long sheet W between the two tension rollers 108 to an appropriate tension, but also to easily correct the "error" in the width direction of the long sheet W with respect to the conveying direction a. It can carry out easily, and the long sheet W can always be conveyed in a suitable state. Thereby, a high quality nanofiber nonwoven fabric having a uniform thickness can be produced.
  • the field emission apparatus since the winding amount of the nanofiber nonwoven fabric wound by the winding roller 102 is measured and a conveyance speed is controlled based on the measured winding amount, the field emission apparatus The conveying speed of the elongate sheet W passing through 200 can be maintained at a constant speed, whereby a high quality nanofiber nonwoven fabric having a uniform thickness can be produced.
  • the cutting device 114 is provided between the heating apparatus 117 and the winding roller 102, when a predetermined amount of nanofiber nonwoven fabric is wound by a winding roller, The nanofiber nonwoven fabric can be cut.
  • the winding roller which the nanofiber nonwoven fabric is not wound is attached, and the front-end
  • FIG. 6 is a diagram for explaining a first modification of the polymer solution supply device 400.
  • 6 (a) shows a case where the tubes 271 to 277 are divided into two groups
  • FIG. 6 (b) shows a case where the tubes 271 to 277 are divided into three groups.
  • FIG. 7 is a diagram for explaining a second modification of the polymer solution supply device 400.
  • FIG. 8 is a diagram for explaining a third modification of the polymer solution supply device 400.
  • each nozzle 240 attached to each tubular body 271-277 has abbreviate
  • the tube bodies 271 to 277 have a predetermined number of tubes arranged along the conveying direction a as a group. It is set as the structure which supplies a different kind of polymer solution for each group.
  • the tube 271-274 is the 1st group G1 among the tube bodies 271-277
  • the tube 275-277 is 2nd among the tube bodies 271-277.
  • the group G2 the polymer solution of type A is supplied to the tubes 271 to 274 of the first group G1
  • the polymer solution of the type B is supplied to the tubes 275 to 277 of the second group G2. I am in a constitution.
  • the number of groups and the number of tubes in each group are arbitrary. For example, if the number of pipe bodies is seven (pipe bodies 271 to 277) as in the embodiment, as shown in Fig. 6B, the entire body is divided into three groups G1, G2, and G3.
  • the first group G1 is divided into two (pipe bodies 271 and 272)
  • the second group G2 is divided into three tubes (pipes 273 to 275)
  • the third group G3 is divided into two.
  • a type A polymer solution is supplied to the first group of tubulars 271 and 272 as a dog (tube bodies 276 and 277)
  • a type B polymer solution is supplied to the tubular bodies 273 to 275 of the second group. It is also possible to supply a polymer solution of type A to the tubular bodies 276 and 277 of the third group.
  • nanofibers composed of a polymer solution of type A are deposited on the surface of the elongated sheet W, and a polymer solution of type B is deposited thereon.
  • a polymer solution of type C is used.
  • W nanofibers composed of polymer solution of type A are deposited, nanofibers composed of polymer solution of type B are deposited thereon, and nanofibers composed of polymer solution of type C are deposited thereon.
  • the second modification of the polymer solution supply device 400 is a polymer solution distribution pipe for circulating a polymer solution of type A connected to each polymer solution supply port of each tube 271 to 277.
  • the polymer solution distribution pipe 420A is a polymer solution distribution pipe 421 to 424 for distributing the 421 to 424 and the type B polymer solutions to each of the polymer solution distribution pipes 420A and 420B. It connects to the 1st polymer solution tank 411, and the said polymer solution flow pipe 420B is connected to the 2nd polymer solution tank 412.
  • the polymer solution supply amount control valves 431 to 437 correspond to the respective tubular bodies 271 to 277 as in FIG. 3.
  • it may be provided in the polymer solution distribution pipes 421 to 427, but if it is possible to control the supply amount collectively for each type of polymer solution, as shown in FIG.
  • the polymer solution distribution pipe 420A Is provided with a polymer solution supply amount control valve 430A for controlling the supply amount of a type A polymer solution, and the polymer solution distribution pipe 420B has a polymer solution supply amount control valve for controlling the supply amount of a type B polymer solution ( It is also possible to install 430B). By setting it as such a structure, supply amount can be collectively controlled for every kind of polymer solution.
  • the structure of the polymer solution distribution pipe shown in the 2nd modification is also applicable to the polymer solution supply apparatus 400 shown in the 1st modification shown in FIG.
  • the third modified example of the polymer solution supply device 400 is configured to provide a plurality of polymer solution storage chambers by dividing the inside of one tank (referred to as the polymer solution tank 413).
  • the polymer solution tank 413 two types of polymer solutions (type A polymer solution and type B polymer solution) are used.
  • Polymer solution storage chambers 413A and 413B (hereinafter referred to as first polymer solution storage chamber 413A and second polymer solution storage chamber 413B) are provided.
  • the first polymer solution storage chamber 413A is a polymer solution storage chamber for storing a polymer solution of type A
  • the second polymer solution storage chamber 413 B is a polymer solution storage chamber for storing a polymer solution of type B. do.
  • the piping method of the polymer solution distribution pipes 421 to 427 from the first polymer solution storage chamber 413A and the second polymer solution storage chamber 413B to the respective pipe bodies 271 to 277 is the same as described in the above embodiment (Fig. 3), the polymer solution of type A and the polymer solution of type B may be alternately supplied to each tube 271 to 277, and the first modification (see FIG. 6) or the second modification (see FIG. 7) may be used.
  • the supply method shown may be sufficient.
  • the type of polymer solution has been described in the case of two types (polymer solution of type A and polymer solution of type B), but the type of polymer solution is not limited to two types, good.
  • each tubular body 271-277 does not need to be installed so that it may orthogonally cross with respect to a conveyance direction a on the plane parallel to the elongate sheet
  • the nanofiber production apparatus of the present invention has been described using the field emission device 200 having the nozzle block 250 in which the nozzle 240 is in an upward direction. It is not limited.
  • the present invention can also be applied to a nanofiber production apparatus having an electric field spinning device having a nozzle block in which the nozzle is in a downward direction or a field spinning device having a nozzle block in which the nozzle is in a horizontal direction.
  • the case where the positive electrode of the power supply device 260 is connected to the collector 230 and the negative electrode of the power supply device 260 is connected to the tubular bodies 271 to 277 has been described by way of example. Is not limited to this.
  • the negative electrode of the power supply device 260 may be connected to the collector 230, and the positive electrode of the power supply device 260 may be connected to the tubular bodies 271 to 277.
  • the above-mentioned embodiment does not mention the countermeasure when the abnormality occurs when performing the field radiation, the abnormality occurred in the field radiation apparatus 200 while continuously operating the field radiating apparatus 200 for a long time. In this case, it is also possible to have a function that makes it possible to detect the abnormality immediately.
  • the power supply device 260 has a function of measuring the amount of current and transmitting the measured value to the main control device 300, and the main control device 300 has an abnormal amount of current of the power supply device 260. In the case of a value, it is possible to have a function of controlling the power supply 260.
  • the main control device 300 can control the power supply device 260 to stop the current supply.
  • the main control device 300 controls the power supply device 260 to give a warning signal of abnormality. It is possible.
  • the main controller 300 controls the power supply unit 260 to stop the current supply, the main controller 300 emits inert gas to the field radiating apparatus 200 with respect to the inert gas supply device (not shown).
  • the signal to be supplied to the electric field radiation chamber 212 may be transmitted. This makes it possible to prevent an accident such as a fire in advance and to realize a nanofiber manufacturing apparatus with higher safety.
  • the shape and the like of the nozzle 240 are not mentioned in the above embodiment, it is also possible to use, for example, a nozzle having a shape in which the tip of the nozzle is cut along a plane intersecting obliquely with the central axis of the nozzle 240. It is possible. By setting the nozzle tip in such a shape, the polymer solution which overflows from the nozzle tip flows quickly without remaining in the nozzle tip. For this reason, the amount of solvent volatilized from the polymer solution in the process of electric field spinning can be made very small, and the amount of polymer solidified in the vicinity of the discharge port of the nozzle 240 can be made very small.
  • the conveyance speed of the elongate sheet W was made constant by controlling the conveyance speed by the winding amount of the nanofiber nonwoven fabric wound by the winding roller 102, conveyance by the winding amount
  • the ventilation of the deposited nanofibers or the thickness of the deposited nanofibers can be measured, and the conveyance speed can be appropriately controlled based on the measurement results.
  • the conveyance speed is controlled such that the air permeability of the deposited nanofibers or the thickness of the deposited nanofibers is as close as possible to a predetermined value. This makes it possible to produce nanofiber nonwoven fabrics having a uniform air permeability or thickness.
  • the air permeability of the nanofiber in this case means the air permeability at the time of measuring the air permeability in the state which the nanofiber layer deposited on the elongate sheet W and the elongate sheet W were laminated
  • the thickness of a nanofiber means the thickness at the time of measuring the thickness in the state which the nanofiber layer deposited on the elongate sheet W and the elongate sheet W were laminated
  • each nozzle block is arranged with a predetermined number of pipes provided with a predetermined number of nozzles.
  • each nozzle block when reciprocating for each nozzle block, each nozzle block may be reciprocated by the same period, and each nozzle block may be reciprocated by another period.
  • each nozzle block when adjusting the space
  • the structure of the polymer solution supply apparatus 400 is the structure shown in the said embodiment (refer FIG. 3), the structure shown in 1st modification (refer FIG. 6), and the structure shown in a 2nd modification (refer FIG. 7). It is not limited to this, Various modifications are possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

The present invention relates to an electrospinning apparatus and to an apparatus for manufacturing nanofibers. The electrospinning apparatus comprises: a nozzle block (250) in which a plurality of nozzles (240) are two-dimensionally arranged; and a device (400) for supplying polymer solutions. The electrospinning apparatus discharges the polymer solutions onto an elongate sheet so as to deposit the nanofibers. The device (400) for supplying the polymer solutions includes: polymer-solution tanks (411, 412) for storing a plurality of types of polymer solutions that comprise different components therein; and polymer-solution flow pipes (421 to 427) for enabling the plurality of types of polymer solutions to flow therethrough. The nozzle block (250) has tubular bodies (271 to 277), one end of each of which is closed and the other end of each of which serves as a port for supplying the polymer solutions. Each tubular body has a predetermined number of nozzles (240) arranged in the lengthwise direction of each tubular body. Polymer-solution flow pipes (431 to 437) for enabling the polymer solutions to flow therethrough are connected to the respective ports for supplying the polymer solutions of the tubular bodies. Thus, nozzles can be easily managed, and various methods for supplying polymer solutions can be set.

Description

전계 방사 장치 및 나노 섬유 제조 장치Field Emission Apparatus and Nano Fiber Manufacturing Apparatus
본 발명은 전계 방사 장치 및 나노 섬유 제조 장치에 관한 것이다.The present invention relates to a field emission device and a nanofiber production device.
종래, 장척(長尺) 시트의 반송 방향을 따라서 설치된 전계 방사 장치에 의해 전계 방사를 실시함으로써 나노 섬유를 제조하는 나노 섬유 제조 장치가 알려져 있다(예를 들면, 특허문헌 1 참조).DESCRIPTION OF RELATED ART Conventionally, the nanofiber manufacturing apparatus which manufactures a nanofiber by performing electric field spinning with the field emission apparatus provided along the conveyance direction of a long sheet is known (for example, refer patent document 1).
도 9는 종래의 나노 섬유 제조 장치(900)를 설명하기 위해 도시한 도면이다. 종래의 나노 섬유 제조 장치(900)는 도 9에 도시한 바와 같이, 장척 시트(W)를 소정의 반송 방향을 따라서 반송하는 반송 장치(910)와, 상기 반송 장치(910)에 의해 반송되어 가는 장척 시트(W)에 폴리머 용액을 토출하는 것에 의해 장척 시트(W)를 전계 방사하는 전계 방사 장치(920)를 구비하고 있다.9 is a view illustrating a conventional nanofiber manufacturing apparatus 900. The conventional nanofiber manufacturing apparatus 900 conveys by the conveying apparatus 910 which conveys the elongate sheet W along a predetermined conveyance direction, and the said conveying apparatus 910, as shown in FIG. The electric field radiating device 920 which electric field-spins the long sheet W by discharging a polymer solution to the long sheet W is provided.
전계 방사 장치(920)는 컬렉터(930)와, 컬렉터(930)에 대향하는 위치에 설치되고, 폴리머 용액을 토출하는 복수의 노즐(940)이 소정의 배열 피치로 2 차원적으로 배치된 노즐 블록(950)과, 컬렉터(930)와 노즐 블록(950) 사이에 고전압을 인가하는 전원 장치(960)를 구비한다.The field radiating device 920 is provided at a position opposite to the collector 930 and the collector 930, and a nozzle block in which two or more nozzles 940 for discharging the polymer solution are two-dimensionally arranged at a predetermined arrangement pitch. 950 and a power supply 960 for applying a high voltage between the collector 930 and the nozzle block 950.
종래의 나노 섬유 제조 장치(900)에서 복수의 노즐(940)은 노즐 블록(950)에 직접적으로 장착되어 있고, 폴리머 용액 탱크(970)에 저류(貯留)되어 있는 폴리머 용액이 노즐 블록(950)에 유입된 후에 각 노즐(940)에 공급되도록 되어 있다.In the conventional nanofiber manufacturing apparatus 900, the plurality of nozzles 940 are directly mounted to the nozzle block 950, and the polymer solution stored in the polymer solution tank 970 is stored in the nozzle block 950. After flowing in, it is supplied to each nozzle 940.
종래의 나노 섬유 제조 장치(900)에서는 상기한 바와 같이 복수의 노즐(940)은 노즐 블록(950)에 직접적으로 장착되어 있고, 폴리머 용액은 노즐 블록(950)을 통해 각 노즐(940)에 공급되도록 구성되어 있다.In the conventional nanofiber manufacturing apparatus 900, as described above, the plurality of nozzles 940 are directly mounted to the nozzle block 950, and the polymer solution is supplied to each nozzle 940 through the nozzle block 950. It is configured to be.
이 때문에, 노즐(940)의 보수나 교환 등을 실시하는 경우, 상황에 따라서는 노즐 블록(950) 전체를 전계 방사 장치(920)로부터 분리할 필요가 생기는 경우도 있고, 관리가 용이하지 않은 과제가 있으며, 또한 폴리머 용액의 공급 방법을 다양하게 설정할 수 없는 과제도 있다.For this reason, when the nozzle 940 is repaired or replaced, the entire nozzle block 950 may need to be separated from the field radiating device 920 depending on the situation, and the problem may be difficult to manage. In addition, there is also a problem that can not be variously set the supply method of the polymer solution.
따라서, 본 발명은 노즐의 관리를 용이하게 하고, 또한 폴리머 용액의 공급 방법을 다양하게 설정 가능하게 하는 전계 방사 장치 및 나노 섬유 제조 장치를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide an electrospinning apparatus and a nanofiber manufacturing apparatus that facilitate the management of the nozzle and enable various methods of supplying a polymer solution.
[1] 본 발명의 전계 방사 장치는 컬렉터와, 상기 컬렉터에 대향하는 위치에 설치되어 폴리머 용액을 토출하는 복수의 노즐이 2 차원적으로 배치된 노즐 블록과, 상기 폴리머 용액을 상기 노즐에 공급하는 폴리머 용액 공급 장치와, 상기 컬렉터와 상기 노즐의 사이에 고전압을 부여하는 전원 장치를 구비하고, 상기 컬렉터와 상기 노즐의 사이를 소정의 반송 방향으로 반송되어 가는 장척 시트에 상기 폴리머 용액을 토출하는 것에 의해 나노 섬유를 퇴적시키는 전계 방사 장치로서, 상기 폴리머 용액 공급 장치는 성분이 다른 복수 종류의 폴리머 용액을 저류하는 폴리머 용액 탱크와, 상기 복수 종류의 폴리머 용액을 폴리머 용액의 종류마다 유통시키는 복수의 폴리머 용액 유통 파이프를 구비하고, 상기 노즐 블록은 상기 장척 시트의 폭방향을 따라서 설치되고, 한쪽의 단부가 폐색단(閉
Figure f96c
端)으로 되어 있고 다른쪽 단부가 폴리머 용액 공급구로 되어 있는 관체(管體)를 상기 장척 시트의 반송 방향을 따라서 복수개 구비하고, 상기 복수의 관체의 각 관체에는 상기 노즐이 상기 각 관체의 길이 방향을 따라서 소정 수씩 장착되어 있고, 또한 상기 각 관체의 각 폴리머 용액 공급구에는 상기 관체에 할당된 종류의 폴리머 용액이 공급되도록, 상기 관체에 할당된 종류의 폴리머 용액을 유통시키는 폴리머 용액 유통 파이프가 접속되어 있는 것을 특징으로 한다.
[1] An electrospinning apparatus of the present invention includes a nozzle block having a collector, a plurality of nozzles disposed at a position opposite to the collector and discharging a polymer solution in two dimensions, and supplying the polymer solution to the nozzle. A polymer solution supply device and a power supply device for applying a high voltage between the collector and the nozzle, and discharging the polymer solution to a long sheet that is conveyed in a predetermined conveying direction between the collector and the nozzle. An electrospinning apparatus for depositing nanofibers, wherein the polymer solution supply device includes a polymer solution tank for storing a plurality of types of polymer solutions having different components, and a plurality of polymers for distributing the plurality of types of polymer solutions for each type of polymer solution. And a nozzle flow pipe formed along the width direction of the long sheet. One end is occluded.
Figure f96c
Iv) a plurality of pipes, each of which is a polymer solution supply port, the other end being provided along the conveying direction of the long sheet, wherein the nozzles are provided in the pipes of the pipes in the longitudinal direction of the pipes. And a polymer solution distribution pipe for circulating the polymer solution of the type assigned to the tube so that a polymer solution of the type assigned to the tube is supplied to each polymer solution supply port of each tube. It is characterized by that.
본 발명의 전계 방사 장치에 의하면, 노즐 블록의 내부에 설치된 복수의 관체에 노즐을 장착한 구성으로 되어 있다. 따라서, 노즐의 보수나 교환 등을 실시하는 경우, 관체 단위로 노즐의 보수나 교환 등을 실시할 수 있으므로 노즐의 관리를 용이하게 할 수 있다. 또한 예를 들면, 장척 시트의 폭방향을 따라서 나열되어 있는 노즐마다 폴리머 용액의 공급량을 제어하거나, 장척 시트의 폭방향을 따라서 나열되어 있는 노즐마다 다른 종류의 폴리머 용액을 공급하도록, 폴리머 용액의 공급 방법을 다양하게 설정할 수 있다.According to the electrospinning apparatus of this invention, it is a structure which attached a nozzle to the some pipe body provided in the inside of a nozzle block. Therefore, when the nozzle is repaired or replaced, the nozzle can be repaired or replaced in a tubular unit, and the nozzle management can be facilitated. Also, for example, the supply of the polymer solution is controlled to control the supply amount of the polymer solution for each nozzle listed along the width direction of the long sheet, or to supply a different type of polymer solution for each nozzle listed along the width direction of the long sheet. You can set various methods.
[2] 본 발명의 전계 방사 장치에서 상기 각 관체는 상기 노즐 블록에 대해 착탈 자유롭게 장착되어 있는 것이 바람직하다.[2] In the electric field radiating device of the present invention, it is preferable that the respective tube bodies are detachably attached to the nozzle block.
이것에 의해, 각 관체를 노즐 블록으로부터 용이하게 꺼낼 수 있고, 노즐의 보수나 교환 등을 실시하는 경우, 관체 단위로 노즐의 보수나 교환 등을 용이하게 실시할 수 있다.Thereby, each tubular body can be easily taken out from a nozzle block, and when a nozzle is repaired or replaced, a nozzle can be repaired or replaced by a tubular unit easily.
[3] 본 발명의 전계 방사 장치에서 상기 폴리머 용액 유통 파이프에는 상기 각 관체마다 폴리머 용액의 공급량의 제어를 가능하게 하는 폴리머 용액 공급량 제어 밸브가 상기 각 관체에 대응하여 설치되어 있는 것이 바람직하다.[3] In the electrospinning device of the present invention, it is preferable that a polymer solution supply amount control valve is provided in the polymer solution distribution pipe corresponding to each of the tubes in order to control the supply amount of the polymer solution for each of the tubes.
이와 같은 구성을 갖는 것에 의해, 각 관체마다 폴리머 용액의 공급량의 제어를 가능하게 할 수 있다. 또한, 예를 들면, 각 관체마다 폴리머 용액의 종류가 할당되어 있는 경우, 각 관체에 할당되어 있는 종류의 폴리머 용액의 공급량을 각 관체마다 제어할 수 있으므로, 종류가 다른 폴리머 용액의 배분 등을 다양하게 설정할 수 있다. 또한, 본 발명에서, 「폴리머 용액의 공급량의 제어를 가능하게 한다」라고 하는 것은, 폴리머 용액 공급량 제어 밸브의 개량(開量)을 제로에서 최대까지 제어 가능하게 하는 것을 의미하고 있다. 이것에 의해, 폴리머 용액의 공급량을 제로에서 최대값까지의 사이에서 임의로 제어 가능하게 한다.By having such a structure, it is possible to control the supply amount of the polymer solution for each tube. For example, if the type of polymer solution is assigned to each tube, the supply amount of the polymer solution of the type assigned to each tube can be controlled for each tube, so that the distribution of different types of polymer solutions can be varied. Can be set to In addition, in this invention, "to enable control of the supply amount of a polymer solution" means that the improvement of a polymer solution supply amount control valve can be controlled from zero to the maximum. This makes it possible to arbitrarily control the supply amount of the polymer solution from zero to the maximum value.
[4] 본 발명의 전계 방사 장치에서 상기 폴리머 용액 유통 파이프에는 상기 폴리머 용액의 종류마다 상기 폴리머 용액의 공급량을 일괄 제어 가능하게 하는 폴리머 용액 공급량 제어 밸브가 설치되어 있는 것이 바람직하다.[4] In the electrospinning apparatus of the present invention, the polymer solution distribution pipe is preferably provided with a polymer solution supply amount control valve for collectively controlling the supply amount of the polymer solution for each type of the polymer solution.
이와 같은 구성을 갖는 것에 의해, 폴리머 용액의 종류마다 공급량의 제어를 일괄하여 실시할 수 있으므로, 종류가 다른 폴리머 용액의 배분 등을 간편히 변경할 수 있다.By having such a structure, since control of supply amount can be collectively performed for every kind of polymer solution, distribution of the polymer solution of a different kind, etc. can be changed easily.
[5] 본 발명의 전계 방사 장치에서 상기 폴리머 용액 탱크는 상기 폴리머 용액의 종류마다 개별로 설치되어 있는 것이 바람직하다.[5] In the field emission device of the present invention, the polymer solution tank is preferably provided separately for each type of the polymer solution.
이와 같은 구성으로 함으로써, 복수 종류의 폴리머 용액을 각 종류의 폴리머 용액마다 저류할 수 있다.By setting it as such a structure, a some kind of polymer solution can be stored for every kind of polymer solution.
[6] 본 발명의 전계 방사 장치에서 상기 폴리머 용액 탱크는 상기 복수 종류의 폴리머 용액을 상기 폴리머 용액의 종류마다 저류 가능하게 하는 복수의 폴리머 용액 저류실이 형성되도록 내부가 분할되어 있는 것을 특징으로 하는 전계 방사 장치.[6] In the field emission device of the present invention, the polymer solution tank is divided in such a manner that a plurality of polymer solution storage chambers capable of storing the plurality of polymer solutions for each type of the polymer solution are formed. Field radiating device.
이와 같은 구성으로 하는 것에 의해서도 복수 종류의 폴리머 용액을 각 종류의 폴리머 용액마다 저류할 수 있다.By setting it as such a structure, several types of polymer solution can be stored for every kind of polymer solution.
[7] 본 발명의 전계 방사 장치에서 상기 각 관체에 장착되어 있는 노즐은, 상기 노즐 블록을 상기 반송 방향을 따라서 보았을 때는 동일한 종류의 폴리머 용액이 할당되어 있는 각 관체에 장착되어 있는 각 노즐에 의한 반송 방향의 열이, 상기 장척 시트의 면과 평행한 평면상에서 상기 반송 방향에 대해 소정 각도의 기울기를 가진 직선상에 나열하도록 상기 각 관체에 장착되어 있는 것이 바람직하다.[7] In the field radiating apparatus of the present invention, the nozzles mounted on the respective tubular bodies are formed by the nozzles mounted on the tubular bodies to which the same kind of polymer solution is assigned when the nozzle block is viewed along the conveying direction. It is preferable that the column of a conveyance direction is attached to each said tube body so that it may arrange on the straight line which has the inclination of a predetermined angle with respect to the said conveyance direction on the plane parallel to the surface of the said elongate sheet | seat.
각 관체에 장착되는 노즐을 이와 같은 배열로 함으로써, 각 관체의 길이 방향(장척 시트의 폭 방향)의 노즐의 장착 위치가 동일한 종류의 폴리머 용액이 할당되어 있는 관체 중 인접하는 관체에 있어서 서로 어긋난 위치가 된다. 이것에 의해 반송 방향을 따라서 반송되어 가는 장척 시트에 대해 각 종류의 폴리머 용액으로 이루어진 나노 섬유를 각각 불균형없이 균일하게 퇴적시킬 수 있다.By arranging the nozzles attached to the respective pipe bodies in such an arrangement, the mounting positions of the nozzles in the longitudinal direction (width direction of the long sheet) of the pipe bodies are shifted from each other in the adjacent pipe bodies among the pipe bodies to which the same kind of polymer solution is assigned. Becomes Thereby, the nanofibers which consist of each kind of polymer solution with respect to the elongate sheet conveyed along a conveyance direction can be deposited uniformly, respectively without an imbalance.
[8] 본 발명의 전계 방사 장치에서는 상기 노즐 및 각 관체는 도전성 부재로 이루어지고, 상기 전원 장치의 양전극 및 음전극 중 한쪽의 전극은 상기 컬렉터에 접속되며, 상기 전원 장치의 양전극 및 음전극 중 다른쪽 전극은 상기 각 관체에 접속되고, 상기 각 관체의 측을 접지 전위로 하고 있는 것이 바람직하다.[8] In the electric field radiating device of the present invention, the nozzle and each tube are made of a conductive member, one of the positive electrode and the negative electrode of the power supply device is connected to the collector, and the other of the positive and negative electrode of the power supply device. It is preferable that an electrode is connected to each said pipe | tube, and the side of each pipe | tube is made into ground potential.
이와 같이 각 관체측을 접지 전위로 하고 있으므로, 각 관체에 전기적으로 접속되어 있는 구성요소(예를 들면, 노즐 블록, 하우징체를 비롯하여 「노즐로부터 토출되기 전의 폴리머 용액」, 「폴리머 용액을 각 관체에 공급하기 위한 폴리머 용액 공급 장치」 등)」전체가 접지 전위가 되므로, 이들 각 구성요소를 고내전압 사양으로 할 필요가 없어진다. 따라서, 이들 각 구성요소를 고전압 사양으로 하는 것에 기인하여 전계 방사 장치의 기구가 복잡화되지 않게 된다. Thus, since each pipe | tube side is made into a ground potential, the components (for example, a nozzle block, a housing | casing body, including "a polymer solution before discharged from a nozzle" and a polymer solution are electrically connected to each pipe | tube, respectively. Since the entirety of the polymer solution supply device for supplying to " etc. ") becomes the ground potential, it is not necessary to make each of these components a high withstand voltage specification. Therefore, the mechanism of the field emission device is not complicated due to the high voltage specification of each of these components.
또한, 「폴리머 용액을 각 관체에 공급하기 위한 폴리머 용액 공급 장치」에는 폴리머 용액 탱크, 폴리머 용액 유통 파이프 및 폴리머 용액 공급량 제어 밸브 등이 포함되어 있다.In addition, the "polymer solution supply apparatus for supplying a polymer solution to each pipe | tube" includes a polymer solution tank, a polymer solution distribution pipe, a polymer solution supply amount control valve, and the like.
[9]본 발명의 전계 방사 장치에서는 상기 장척 시트의 폭방향을 따라서 상기 노즐 블록을 소정의 주기로 왕복 운동시키는 왕복 운동 구동부를 더 구비하는 것이 바람직하다.[9] In the electric field radiating device of the present invention, it is preferable to further include a reciprocating drive unit for reciprocating the nozzle block at a predetermined cycle along the width direction of the long sheet.
이와 같은 왕복 운동 구동부를 구비하는 것에 의해, 노즐 블록을 장척 시트의 폭방향을 따라서 왕복 운동시킬 수 있다. 이 경우, 왕복 운동 주기를 적절한 주기가 되도록 제어하면, 반송 방향으로 반송되어 가는 장척 시트에 대해, 각 노즐의 토출 위치가 다른 노즐의 토출 위치에 가능한 한 중복되지 않도록 할 수 있다. 이것에 의해 장척 시트(W)의 폴리머 섬유의 퇴적량을 균일화할 수 있다.By providing such a reciprocating drive part, a nozzle block can be reciprocated along the width direction of a long sheet. In this case, by controlling the reciprocating cycle so as to be an appropriate cycle, it is possible to prevent the discharge positions of the nozzles from overlapping with the discharge positions of the other nozzles with respect to the long sheet that is conveyed in the conveying direction. Thereby, the deposition amount of the polymer fiber of the elongate sheet W can be made uniform.
[10] 본 발명의 전계 방사 장치에서는 상기 노즐 블록과 상기 컬렉터의 간격을 조정 가능하도록 상기 노즐 블록을 구동시키는 간격 조정 구동부를 더 구비하는 것이 바람직하다.In the electric field radiating device of the present invention, it is preferable to further include a gap adjusting driver for driving the nozzle block so that the gap between the nozzle block and the collector can be adjusted.
이와 같은 간격 조정 구동부를 구비함으로써 노즐 블록과 컬렉터의 간격을 조정할 수 있다. 이 경우, 전계 방사를 개시하기 전에 컬렉터와 노즐 블록의 간격을 최적의 간격으로 조정해 두면, 노즐 블록과 컬렉터의 거리가 최적으로 설정된 상태에서 전계 방사를 실시할 수 있다. 또한, 컬렉터와 노즐 블록의 간격은 전계 방사 장치의 방사 조건, 폴리머 용액의 종류, 나노 섬유의 평균 직경, 나노 섬유 부직포의 두께 등을 고려하여 결정할 수 있다.By providing such a space | interval adjustment drive part, the space | interval of a nozzle block and a collector can be adjusted. In this case, if the distance between the collector block and the nozzle block is adjusted to the optimum interval before starting the field emission, the field emission can be performed while the distance between the nozzle block and the collector is optimally set. In addition, the distance between the collector and the nozzle block may be determined in consideration of the spinning conditions of the field emission device, the type of the polymer solution, the average diameter of the nanofibers, the thickness of the nanofiber nonwoven fabric, and the like.
[11] 본 발명의 나노 섬유 제조 장치는 장척 시트를 소정의 반송 방향으로 반송하는 반송 장치와, 상기 소정의 반송 방향으로 반송되어 가는 장척 시트를 전계 방사하는 전계 방사 장치를 구비한 나노 섬유 제조 장치로서, 상기 전계 방사 장치는[1] 내지[10] 중 어느 하나에 기재된 전계 방사 장치인 것을 특징으로 한다.[11] The nanofiber manufacturing apparatus of the present invention is a nanofiber manufacturing apparatus including a conveying apparatus for conveying a long sheet in a predetermined conveying direction and an electric field spinning apparatus for electric field spinning of the long sheet conveyed in the predetermined conveying direction. The field radiating device is characterized in that the field radiating device according to any one of [1] to [10].
본 발명의 나노 섬유 제조 장치에 의하면, 본 발명의 전계 방사 장치를 구비하므로 원하는 성능을 가진 나노 섬유를 안정적으로 생산하는 것이 가능해진다.According to the nanofiber manufacturing apparatus of the present invention, since the field emission device of the present invention is provided, it becomes possible to stably produce nanofibers having desired performance.
[12] 본 발명의 나노 섬유 제조 장치에서 상기 반송 장치는 상기 장척 시트를 공급하는 공급 롤러와, 상기 장척 시트를 소정의 반송 속도로 반송시키고, 또한 상기 전계 방사 장치에서 나노 섬유가 퇴적된 장척 시트를 감는 감기 롤러와, 상기 감기 롤러를 구동하는 감기 롤러 구동부와, 상기 전계 방사 장치보다 상기 공급 롤러측 및 상기 감기 롤러측에 각각 설치되고, 상기 장척 시트에 소정의 장력을 부여하기 위한 제 1 텐션 롤러 및 제 2 텐션 롤러를 구비하는 것이 바람직하다.[12] In the nanofiber manufacturing apparatus of the present invention, the conveying apparatus conveys the feeding roller for supplying the long sheet and the long sheet at a predetermined conveying speed, and the long sheet in which the nanofibers are deposited in the field spinning device. A winding roller for winding the winding roller, a winding roller driving unit for driving the winding roller, and a first tension provided on the supply roller side and the winding roller side than the field radiating device, respectively, to impart a predetermined tension to the long sheet. It is preferred to have a roller and a second tension roller.
이와 같은 구성을 가지는 것에 의해, 장척 시트를 반송 방향을 따라서 적절한 장력으로 반송시킬 수 있다.By having such a structure, a long sheet can be conveyed by appropriate tension along a conveyance direction.
[13] 본 발명의 나노 섬유 제조 장치에서 상기 제 1 텐션 롤러는 상기 제 1 텐션 롤러의 한쪽의 단부 및 다른쪽 단부의 수직 방향 및 수평 방향의 적어도 한쪽의 위치를 각 단부마다 독립하여 조정 가능하게 하는 제 1 텐션 롤러 위치 조정 기구를 구비하고, 상기 제 2 텐션 롤러는 상기 제 2 텐션 롤러의 한쪽의 단부 및 다른쪽 단부의 수직 방향 및 수평 방향의 적어도 한쪽의 위치를 각 단부마다 독립하여 조정 가능하게 하는 제 2 텐션 롤러 위치 조정 기구를 구비하는 것이 바람직하다. [13] In the nanofiber manufacturing apparatus of the present invention, the first tension roller is capable of independently adjusting at least one position in each of the ends in the vertical direction and the horizontal direction of one end portion and the other end portion of the first tension roller. And a first tension roller position adjustment mechanism, wherein the second tension roller is capable of independently adjusting at least one position in each of the vertical and horizontal directions of one end portion and the other end portion of the second tension roller for each end portion. It is desirable to have a second tension roller position adjustment mechanism.
이와 같은 구성을 가지는 것에 의해, 장척 시트의 반송 방향의 오차를 수정할 수 있고, 또한 적절한 장력이 되도록 장력의 조정도 용이하게 실시할 수 있다.By having such a structure, the error of the conveyance direction of a long sheet can be corrected, and tension adjustment can also be easily performed so that it may become an appropriate tension.
[14] 본 발명의 나노 섬유 제조 장치에서 상기 반송 장치는 상기 감기 롤러의 상기 나노 섬유가 퇴적된 장척 시트의 감기량을 나타내는 감기량 계측 정보를 출력하는 감기량 계측 정보 출력장치와, 상기 감기량 계측 정보 출력장치로부터 출력된 감기량 계측 정보에 기초하여 상기 감기 롤러 구동부를 제어하는 반송 속도 제어장치를 더 구비하는 것이 바람직하다.[14] In the nanofiber manufacturing apparatus of the present invention, the conveying apparatus includes: a winding amount measurement information output device for outputting winding amount measurement information indicating a winding amount of a long sheet on which the nanofibers of the winding roller are deposited; It is preferable to further provide a conveyance speed control apparatus which controls the said winding roller drive part based on the winding amount measurement information output from the measurement information output apparatus.
이와 같은 구성으로 하는 것에 의해, 감기 롤러의 「나노 섬유가 퇴적된 장척 시트」의 감기량이 변화해도 장척 시트의 반송 속도를 항상 일정하게 유지할 수 있다.By setting it as such a structure, even if the winding amount of the "long sheet by which the nanofibers were deposited" of the winding roller changes, the conveyance speed of a long sheet can always be kept constant.
[15] 본 발명의 나노 섬유 제조 장치에서 상기 반송 장치는 상기 전계 방사 장치와 감기 롤러 사이의 소정 위치에 설치되고, 상기 나노 섬유가 퇴적된 장척 시트를 상기 장척 시트의 폭방향을 따라서 절단하기 위한 절단 장치를 더 구비하는 것이 바람직하다.[15] In the nanofiber manufacturing apparatus of the present invention, the conveying apparatus is provided at a predetermined position between the field radiating apparatus and the winding roller, and for cutting the long sheet on which the nanofibers are deposited along the width direction of the long sheet. It is preferable to further provide a cutting device.
이와 같은 구성을 가지는 것에 의해, 「나노 섬유를 퇴적시킨 장척 시트」를 감기 롤러에 의해 소정량 감으면, 상기 「나노 섬유를 퇴적시킨 장척 시트」를 소정 위치에서 절단할 수 있다. 이 경우, 「나노 섬유를 퇴적시킨 장척 시트」를 감지 않은 감기 롤러를 새로 장착하고, 후속(後續)의 「나노 섬유를 퇴적시킨 장척 시트」의 선단을 상기 감기 롤러에 장착한다. 이와 같은 조작을 반복함으로써 「나노 섬유를 퇴적시킨 장척 시트」를 소정의 감기량마다 용이하게 꺼낼 수 있다.By having such a structure, when the "long sheet which nanofibers were deposited" was wound by a predetermined amount by the winding roller, the "long sheet which nanofibers were deposited" can be cut at a predetermined position. In this case, a winding roller which does not sense "a long sheet in which nanofibers are deposited" is newly attached, and a tip of a subsequent "long sheet in which nanofibers are deposited" is attached to the winding roller. By repeating such an operation, the "long sheet in which the nanofibers are deposited" can be easily taken out every predetermined winding amount.
또한, 본 발명의 나노 섬유 제조 장치에 의하면, 고기능·고감성 텍스타일 등의 의료품(衣料品), 헬스케어, 스킨 케어 등 미용 관련 용품, 와이핑클로스, 필터 등 산업 자재, 2차 전지의 세퍼레이터, 콘덴서의 세퍼레이터, 각종 촉매의 담체, 각종 센서 재료 등의 전자·기계 재료, 재생 의료(醫療) 재료, 바이오메디칼 재료, 의료용 MEMS 재료, 바이오센서 재료 등의 의료 재료 그 외의 폭넓은 용도로 사용 가능한 나노 섬유를 제조할 수 있다.Moreover, according to the nanofiber manufacturing apparatus of the present invention, medical products such as high-performance and highly sensitive textiles, beauty-related articles such as health care and skin care, industrial materials such as wiping cloth and filters, separators for secondary batteries, Nanomaterials that can be used for a wide range of applications such as capacitors of capacitors, carriers of various catalysts, electronic and mechanical materials such as various sensor materials, regenerative medical materials, biomedical materials, medical MEMS materials, and biosensor materials. Fibers can be produced.
본 발명은 노즐의 관리를 용이하게 하고, 또한 폴리머 용액의 공급 방법을 다양하게 설정할 수 있는 전계 방사 장치 및 나노 섬유 제조 장치를 제공한다.The present invention provides an electrospinning apparatus and a nanofiber manufacturing apparatus that can easily manage nozzles and can also variously set a method for supplying a polymer solution.
도 1은 실시형태에 따른 나노 섬유 제조 장치(1)를 설명하기 위해 도시한 도면이다.1 is a diagram for explaining the nanofiber production apparatus 1 according to the embodiment.
도 2는 도 1의 전계 방사 장치(200)를 꺼내 도시한 확대도이다.FIG. 2 is an enlarged view illustrating the field radiating apparatus 200 of FIG. 1 taken out.
도 3은 노즐 블록(250)을 설명하기 위해 도시한 도면이다.3 is a diagram illustrating the nozzle block 250.
도 4는 노즐(240)의 배열을 모식적으로 도시한 도면이다.4 is a diagram schematically showing the arrangement of the nozzles 240.
도 5는 주 제어장치(300)의 구성을 설명하기 위해 도시한 도면이다.5 is a view for explaining the configuration of the main control device 300.
도 6은 폴리머 용액 공급 장치(400)의 제 1 변형예를 설명하기 위해 도시한 도면이다.FIG. 6 is a diagram for explaining a first modification of the polymer solution supply device 400.
도 7은 폴리머 용액 공급 장치(400)의 제 2 변형예를 설명하기 위해 도시한 도면이다.FIG. 7 is a diagram for explaining a second modification of the polymer solution supply device 400.
도 8은 폴리머 용액 공급 장치(400)의 제 3 변형예를 설명하기 위해 도시한 도면이다.FIG. 8 is a diagram for explaining a third modification of the polymer solution supply device 400.
도 9는 종래의 나노 섬유 제조 장치(900)의 정면도이다.9 is a front view of a conventional nanofiber manufacturing apparatus 900.
이하, 본 발명의 나노 섬유 제조 장치에 대해, 도면에 도시한 실시형태에 기초하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the nanofiber manufacturing apparatus of this invention is described based on embodiment shown in drawing.
1.실시형태에 따른 전계 방사 장치 및 나노 섬유 제조 장치1.Field emission apparatus and nanofiber production apparatus according to the embodiment
도 1은 실시형태에 따른 나노 섬유 제조 장치(1)를 설명하기 위해 도시한 도면이다. 도 1의 (a)는 나노 섬유 제조 장치(1)의 정면도이고, 도 1의 (b)는 나노 섬유 제조 장치(1)의 평면도이다. 또한, 도 1에서는 실시형태에 따른 나노 섬유 제조 장치(1)를 설명할 때 필요한 구성요소가 도시되어 있고, 나노 섬유 제조 장치를 구성하는 하우징체 등의 도시는 생략되어 있다. 또한 도 1의 (a)에서 일부의 부재는 단면도로 도시하고 있다. 1 is a diagram for explaining the nanofiber production apparatus 1 according to the embodiment. FIG. 1A is a front view of the nanofiber production apparatus 1, and FIG. 1B is a plan view of the nanofiber production apparatus 1. In addition, in FIG. 1, the component required when demonstrating the nanofiber manufacturing apparatus 1 which concerns on embodiment is shown, and illustration of the housing | casing etc. which comprise a nanofiber manufacturing apparatus is abbreviate | omitted. In FIG. 1A, some members are shown in cross-sectional view.
도 2는 도 1의 전계 방사 장치(200)을 꺼내 도시한 확대도이다.FIG. 2 is an enlarged view illustrating the field radiating apparatus 200 of FIG. 1 taken out.
도 3은 노즐 블록(250)을 설명하기 위해 도시한 도면이다. 도 3의 (a)는 노즐 블록(250)의 덮개체(251)를 분리한 경우의 사시도이고, 도 3의 (b)는 노즐 블록(250)의 덮개체(251)을 장착한 경우의 사시도이다. 도 4는 노즐(240)의 배열을 모식적으로 도시한 도면이다. 도 5는 주 제어장치(300)를 설명하기 위해 도시한 도면이다.3 is a diagram illustrating the nozzle block 250. FIG. 3A is a perspective view when the lid 251 of the nozzle block 250 is removed, and FIG. 3B is a perspective view when the lid 251 of the nozzle block 250 is mounted. to be. 4 is a diagram schematically showing the arrangement of the nozzles 240. 5 is a diagram illustrating the main control device 300.
실시형태에 따른 나노 섬유 제조 장치(1)는 도 1에 도시한 바와 같이, 장척 시트(W)를 소정의 반송 방향(a)으로 반송하는 반송 장치(100)와, 반송 방향(a)을 따라서 반송되어 가는 장척 시트(W)를 전계 방사하는 전계 방사 장치(200)와, 반송 장치(100)의 각 동작부(후술함) 및 전계 방사 장치(200)의 각 동작부를 제어하는 주 제어장치(300)를 구비한다.As shown in FIG. 1, the nanofiber manufacturing apparatus 1 which concerns on embodiment carries out the conveying apparatus 100 which conveys the elongate sheet W in the predetermined conveyance direction a, and the conveyance direction a. The electric field radiating apparatus 200 which electric-field radiates the elongate sheet W to be conveyed, the main control apparatus which controls each operation part (described below) of the conveying apparatus 100, and each operation part of the electric field radiating apparatus 200 ( 300).
실시형태에 따른 나노 섬유 제조 장치(1)는 상기한 각 구성요소 이외에도 장척 시트(W)에 나노 섬유를 퇴적시킬 때 발생하는 휘발성 성분을 연소하여 제거하는 VOC 처리 장치와, 전계 방사 장치(200)에 이상이 검출된 경우, 전계 방사 장치(200)의 전계 방사실(212)에 불활성 가스를 공급하는 불활성 가스 공급 장치 등을 구비하지만, 이들 도시는 생략한다.The nanofiber manufacturing apparatus 1 according to the embodiment includes a VOC processing apparatus for burning and removing volatile components generated when the nanofibers are deposited on the long sheet W, in addition to the components described above, and the field radiating apparatus 200. When abnormality is detected, although the inert gas supply apparatus etc. which supply an inert gas to the field emission chamber 212 of the field emission apparatus 200 are included, these illustration is abbreviate | omitted.
반송 장치(100)는 도 1에 도시한 바와 같이, 전계 방사되기 전의 장척 시트(W)를 공급하는 공급 롤러(101)와, 나노 섬유를 퇴적시킨 장척 시트(W)를 가열하는 가열 장치(117)와, 가열 장치(117)로 가열된 「나노 섬유를 퇴적시킨 장척 시트(W)」를 감는 감기 롤러(102)를 구비한다. 또한, 가열 장치(117)의 가열 온도는 장척 시트(W)나 나노 섬유의 종류에 따라서 다르지만, 예를 들면, 「장척 시트(W)」를 50℃~300℃의 온도로 가열할 수 있다. 또한 「나노 섬유를 퇴적시킨 장척 시트(W)」를 가열한 상태의 것을 나노 섬유 부직포라고 부르기도 한다.As shown in FIG. 1, the conveying apparatus 100 heats the supply roller 101 which supplies the long sheet W before electric field spinning, and the heating device 117 which heats the long sheet W which deposited the nanofiber. And the winding roller 102 which winds the "long sheet W which deposited the nanofiber" heated by the heating apparatus 117. As shown in FIG. In addition, although the heating temperature of the heating apparatus 117 changes with the kind of long sheet W and the nanofiber, for example, "long sheet W" can be heated to the temperature of 50 degreeC-300 degreeC. In addition, what is called a nanofiber nonwoven fabric in the state which heated "the long sheet W which deposited the nanofiber" was heated.
또한 반송 장치(100)는 공급 롤러(101)와 감기 롤러(102) 사이에 설치되는 보조 롤러(103, 104, 105, 106)와, 전계 방사 장치(200)보다 공급 롤러(101)측 및 감기 롤러(102) 측에 각각 설치되고, 장척 시트(W)에 소정의 장력을 부여하기 위한 제 1 텐션 롤러(107) 및 제 2 텐션 롤러(108)와, 제 1 텐션 롤러(107)의 한쪽의 단부 및 다른쪽 단부에 각각 설치되고, 제 1 텐션 롤러(107)의 위치 조정을 실시하기 위한 제 1 텐션 롤러 위치 조정 기구(109a, 109b)와, 제 2 텐션 롤러(108)의 한쪽의 단부 및 다른쪽 단부에 각각 설치되고, 제 2 텐션 롤러(108)의 위치 조정을 실시하기 위한 제 2 텐션 롤러 위치 조정 기구(110a, 110b)를 구비한다.In addition, the conveying apparatus 100 has the auxiliary rollers 103, 104, 105, 106 provided between the supply roller 101 and the winding roller 102, and the supply roller 101 side and the winding of the electric field radiating device 200. One of the first tension roller 107 and the second tension roller 108, and one of the first tension rollers 107, respectively provided on the roller 102 side to impart a predetermined tension to the long sheet W. It is provided in the end part and the other end part, respectively, and the 1st tension roller position adjustment mechanism 109a, 109b for performing the position adjustment of the 1st tension roller 107, the one end part of the 2nd tension roller 108, and It is provided in the other edge part, respectively, and is equipped with the 2nd tension roller position adjustment mechanism 110a, 110b for performing the position adjustment of the 2nd tension roller 108. As shown in FIG.
또한 반송 장치(100)는 감기 롤러(102)를 구동하는 감기 롤러 구동부(111)와, 감기 롤러(102)의 감기량을 계측하기 위한 정보(감기량 계측 정보라고 함)를 출력하는 감기량 계측 정보 출력장치(112)와, 가열 장치(117)와 감기 롤러(102)의 사이에 설치되고, 가열 장치(117)로 가열된 「나노 섬유를 퇴적시킨 장척 시트(W)」, 즉 나노 섬유 부직포를 한쪽의 면측(하면측)으로부터 지지하는 지지대(113)와, 지지대(113)상에 존재하는 나노 섬유 부직포를 상기 나노 섬유 부직포의 폭방향을 따라서 절단하기 위한 절단 장치(114)를 구비하고 있다.Moreover, the conveying apparatus 100 measures the winding amount drive which outputs the winding roller drive part 111 which drives the winding roller 102, and the information for measuring the winding amount of the winding roller 102 (referred to winding amount measurement information). The "long sheet W in which nanofibers were deposited", that is, nanofiber nonwoven fabric, installed between the information output device 112 and the heating device 117 and the winding roller 102 and heated by the heating device 117. And a cutting device 114 for cutting the nanofiber nonwoven fabric present on the support 113 along the width direction of the nanofiber nonwoven fabric. .
감기량 계측 정보 출력장치(112)로서는 예를 들면, 레이저 거리 센서 등을 이용할 수 있다. 감기량 계측 정보 출력장치(112)로서 레이저 거리 센서를 이용하는 경우, 레이저 거리 센서에 의해 감기 롤러(102)에 감긴 나노 섬유 부직포의 직경을 계측하고, 그 계측 결과를 감기량 계측 정보로서 주 제어장치(300)의 반송 속도 제어부(310)(도 5 참조)에 보낸다. 또한 절단 장치(114)는 나노 섬유 부직포를 절단 할 때, 나노 섬유 부직포를 지지대(113)상에서 누르는 누름판(115)과, 나노 섬유 부직포를 상기 나노 섬유 부직포의 폭방향으로 절단하는 커터(116)를 구비하고 있다. As the winding amount measurement information output device 112, for example, a laser distance sensor or the like can be used. When using the laser distance sensor as the winding amount measurement information output device 112, the diameter of the nanofiber nonwoven fabric wound on the winding roller 102 by the laser distance sensor is measured, and the measurement result is used as the winding amount measurement information as the main control device. It sends to the conveyance speed control part 310 of 300 (refer FIG. 5). Also, the cutting device 114 cuts the pressing plate 115 for pressing the nanofiber nonwoven fabric on the support 113 when cutting the nanofiber nonwoven fabric, and the cutter 116 for cutting the nanofiber nonwoven fabric in the width direction of the nanofiber nonwoven fabric. Equipped.
제 1 텐션 롤러 위치 조정 기구(109a, 109b)는 제 1 텐션 롤러(107)의 한쪽의 단부 및 다른쪽 단부의 수직 방향 및 수평 방향의 적어도 한쪽의 위치를 각 단부마다 독립하여 조정 가능하게 하는 기구를 구비하고 있다.The first tension roller position adjustment mechanisms 109a and 109b are mechanisms for independently adjusting at least one position in each of the ends in the vertical direction and the horizontal direction of one end portion and the other end portion of the first tension roller 107. Equipped with.
제 2 텐션 롤러 위치 조정 기구(110a, 110b)는 제 2 텐션 롤러(108)의 한쪽의 단부 및 다른쪽 단부의 수직 방향 및 수평 방향의 적어도 한쪽의 위치를 각 단부마다 독립하여 조정 가능하게 하는 기구를 구비하고 있다.The second tension roller position adjustment mechanisms 110a and 110b are mechanisms for independently adjusting at least one position in each of the ends in the vertical direction and the horizontal direction of one end portion and the other end portion of the second tension roller 108. Equipped with.
제 1 텐션 롤러 위치 조정 기구(109a, 109b)는 제 1 텐션 롤러(10)의 한쪽의 단부 및 다른쪽 단부마다 설치된 핸들 등의 조작부를 조작하는 것에 의해, 제 1 텐션 롤러(107)의 각 단부를 각 단부마다 독립하여 수직 방향 및 수평 방향의 적어도 한쪽 방향으로 각 단부를 이동시킬 수 있고, 그것에 따라서 제 1 텐션 롤러(107)의 기울기를 소정 범위로 조정 가능하게 하는 것이다. 제 1 텐션 롤러 위치 조정 기구(109a, 109b)도 제 2 텐션 롤러(108)에 대해 동일한 조작을 실시할 수 있다.Each end of the first tension roller 107 is operated by the first tension roller position adjustment mechanisms 109a and 109b by operating an operation unit such as a handle provided for one end and the other end of the first tension roller 10. It is possible to move each end in at least one direction of the vertical direction and the horizontal direction independently of each end, and to make it possible to adjust the inclination of the 1st tension roller 107 to a predetermined range accordingly. The 1st tension roller position adjustment mechanism 109a, 109b can also perform the same operation with respect to the 2nd tension roller 108. FIG.
제 1 텐션 롤러(107)및 제 2 텐션 롤러(108)에 이와 같은 제 1 텐션 롤러 위치 조정 기구(109a, 109b) 및 제 2 텐션 롤러 위치 조정 기구(110a, 110b)가 설치되어 있는 것에 의해, 전계 방사 장치(200)를 통과하는 장척 시트(W)의 장력을 적절한 장력으로 할 수 있다. 또한 반송 방향(a)에 대한 장척 시트(W)의 폭방향의 「오차」, 즉, 장척 시트(W)가 폭방향(y축을 따르는 방향)으로 어긋난 경우의 「오차」를 보정할 수 있다. 이것에 의해, 장척 시트(W)를 전계 방사하는데 최적의 반송 상태로 반송시킬 수 있다.The first tension roller position adjustment mechanisms 109a and 109b and the second tension roller position adjustment mechanisms 110a and 110b are provided in the first tension roller 107 and the second tension roller 108. The tension of the long sheet W passing through the field radiating device 200 can be made an appropriate tension. Moreover, the "error" in the width direction of the long sheet W with respect to the conveyance direction a, ie, the "error" when the long sheet W shift | deviates to the width direction (direction along a y-axis), can be corrected. As a result, the long sheet W can be conveyed in an optimal conveyance state for electric field spinning.
반송 속도 제어부(310)는 감기량 계측 정보에 기초하여 장척 시트(W)의 반송 속도가 소정 속도(일정 속도)가 되도록 감기 롤러 구동부(111)를 제어한다. 즉, 반송 속도 제어부(310)는 감기량 계측 정보 출력장치(112)로부터 보내져 온 감기량 계측 정보에 기초하여 장척 시트(W)의 반송 속도가 소정 속도(일정 속도)가 되도록 감기 롤러 구동부(111)를 제어한다.The conveyance speed control part 310 controls the winding roller drive part 111 so that the conveyance speed of the long sheet W may become predetermined speed (constant speed) based on winding amount measurement information. That is, the conveyance speed control part 310 is the winding roller drive part 111 so that the conveyance speed of the elongate sheet W may become a predetermined speed (constant speed) based on the winding amount measurement information sent from the winding amount measurement information output device 112. ).
전계 방사 장치(200)는 도 1 및 도 2에 도시한 바와 같이, 도전성을 갖는 하우징체(210)와, 장척 시트(W)가 반송되는 것을 보조하는 보조 벨트 장치(220)와, 하우징체(210)에 절연부재(211)을 통해 장착된 컬렉터(230)와, 컬렉터(230)에 대향하는 위치에 설치되어 폴리머 용액을 토출하는 복수의 노즐(240)을 구비한 노즐 블록(250)과, 컬렉터(230)와 노즐(240) 사이에 고전압(예를 들면, 10kV~80kV)을 인가하는 전원 장치(260)와, 컬렉터(230)와 노즐 블록(250)을 덮는 소정의 공간을 획정하는 전계 방사실(212)를 구비한다.As shown in FIGS. 1 and 2, the electric field radiating device 200 includes a conductive housing body 210, an auxiliary belt device 220 to assist the long sheet W from being conveyed, and a housing body ( A nozzle block 250 having a collector 230 mounted to the 210 through an insulating member 211, a plurality of nozzles 240 installed at a position opposite to the collector 230 and discharging the polymer solution; A power supply device 260 that applies a high voltage (eg, 10 kV to 80 kV) between the collector 230 and the nozzle 240, and an electric field that defines a predetermined space covering the collector 230 and the nozzle block 250. A radiation chamber 212 is provided.
또한 전계 방사 장치(200)는 도 1 및 도 2에는 도시되어 있지 않지만, 폴리머 용액을 노즐(240)에 공급하는 폴리머 용액 공급 장치(400)를 구비하고 있다(도 3 참조).In addition, although not shown in FIG. 1 and FIG. 2, the field emission device 200 includes a polymer solution supply device 400 for supplying a polymer solution to the nozzle 240 (see FIG. 3).
또한, 절연부재(211)는 예를 들면, 폴리아미드, 폴리아세탈, 폴리카보네이트, 변성 폴리페닐렌에테르, 폴리부틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 비정(非晶) 폴리아릴레이트, 폴리설폰, 폴리에테르설폰, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리이미드, 폴리에테르이미드, 불소 수지, 액정 폴리머, 폴리프로필렌, 고밀도 폴리에틸렌 또는 폴리에틸렌을 바람직하게 이용할 수 있다.The insulating member 211 may be, for example, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, amorphous polyarylate, polysulfone, poly Ethersulfone, polyphenylene sulfide, polyether ether ketone, polyimide, polyetherimide, fluororesin, liquid crystal polymer, polypropylene, high density polyethylene or polyethylene can be preferably used.
보조 벨트 장치(220)는 도 1 및 도 2에 도시한 바와 같이, 장척 시트(W)의 반송 속도에 동기하여 회전하는 보조 벨트(221)와, 보조 벨트(221)를 회전 구동시키는 구동 롤러(222)와, 구동 롤러(222)에 의해 보조 벨트(221)가 회전하는 것에 의해서 회전하는 종동 롤러(223)를 구비하고 있다.As shown in FIGS. 1 and 2, the auxiliary belt device 220 includes an auxiliary belt 221 rotating in synchronization with the conveying speed of the long sheet W, and a driving roller for rotating the auxiliary belt 221. 222 and the driven roller 223 which rotates as the auxiliary belt 221 rotates by the drive roller 222 are provided.
또한, 도 1 및 도 2에서는 좌측 롤러를 구동 롤러(222)로 하고, 우측 롤러를 종동 롤러(223)로 하고 있지만, 반대라도 좋고, 또한 2개의 롤러의 회전을 동기 시킬 수 있으면, 양쪽 모두 구동 롤러로 해도 좋다.In addition, although the left roller is used as the driving roller 222 and the right roller is the driven roller 223 in FIG. 1 and FIG. 2, if the opposite may be sufficient and rotation of two rollers can be synchronized, both drive. It is good also as a roller.
보조 벨트(221)는 절연성, 또 다공성 엔드리스 벨트로 이루어진다. 또한 보조 벨트(221)는 0.7mm~10.0mm의 두께를 가진 폴리머 기재로 이루어지는 것이 바람직하다. 폴리머로서는, 폴리에틸렌, 폴리아세틸렌, 폴리우레탄, 폴리프로필렌, 나일론 등의 폴리아미드, 폴리아세탈, 폴리카보네이트, 변성 폴리페닐렌에테르, 폴리부틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 비정 폴리아릴레이트, 폴리설폰, 폴리에테르설폰, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리이미드, 폴리에테르이미드, 불소 수지, 액정 폴리머 등을 바람직하게 이용할 수 있다.The auxiliary belt 221 is made of an insulating and porous endless belt. In addition, the auxiliary belt 221 is preferably made of a polymer substrate having a thickness of 0.7mm ~ 10.0mm. Examples of the polymer include polyamides such as polyethylene, polyacetylene, polyurethane, polypropylene, nylon, polyacetal, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, amorphous polyarylate, polysulfone, Polyether sulfone, polyphenylene sulfide, polyether ether ketone, polyimide, polyetherimide, fluororesin, liquid crystal polymer and the like can be preferably used.
보조 벨트 장치(220)는 보조 벨트(221)가 컬렉터(230)를 둘러싸도록 설치되어 있다. 그리고, 장척 시트(W)는 보조 벨트(221)의 외주측에 접촉된 상태로 구동 롤러(222)측에서 접혀 반송된다.The auxiliary belt device 220 is provided so that the auxiliary belt 221 surrounds the collector 230. And the long sheet W is folded and conveyed by the drive roller 222 side in the state which contacted the outer peripheral side of the auxiliary belt 221. As shown in FIG.
이와 같이, 컬렉터(230)와 장척 시트(W)의 사이에 보조 벨트(221)가 설치되어 있는 것에 의해, 장척 시트(W)는 양측의 고전압이 인가되어 있는 컬렉터(230)에 당겨지지 않고 원활하게 반송되게 된다. 또한 보조 벨트(221)는 절연성 또 다공성 엔드리스 벨트로 이루어지므로, 컬렉터(230)와 노즐(240) 사이에 형성되는 전계 분포에 큰 영향을 미치지 않는다.In this way, since the auxiliary belt 221 is provided between the collector 230 and the long sheet W, the long sheet W is smoothly pulled by the collector 230 to which the high voltages of both sides are applied. Will be returned. In addition, since the auxiliary belt 221 is made of an insulating and porous endless belt, it does not significantly affect the electric field distribution formed between the collector 230 and the nozzle 240.
또한 보조 벨트(221)의 폭은 컬렉터(230)의 폭보다 넓은 것을 이용한다. 이것에 의해, 장척 시트(W)와 컬렉터(230)의 사이에 보조 벨트(221)가 확실히 존재하게 되고, 장척 시트(W)가 컬렉터(230)에 당겨지거나, 장척 시트(W)의 원활한 반송이 방해받는 것을 확실히 방지하는 것이 가능해진다.In addition, the width of the auxiliary belt 221 is wider than the width of the collector 230 is used. As a result, the auxiliary belt 221 is reliably present between the long sheet W and the collector 230, and the long sheet W is pulled by the collector 230, or the conveyance of the long sheet W is smooth. It is possible to surely prevent this from being disturbed.
노즐 블록(250)은 도 3에 도시한 바와 같이, 한쪽 단부가 폐색단으로 되어 있고, 다른쪽 단부가 폴리머 용액 공급구로 되어 있는 복수개(7개로 함)의 관체(271~277)를 구비하고 있다. 관체(271~277)는 각각의 관체가 장척 시트(W)의 폭방향을 따라서 설치되어 있다. 즉, 관체(271~277)는 각각의 관체가 도 3의 y-y' 방향을 따라서 설치되어 있다. 또한, 관체(271~277)는 각 관체가 노즐 블록(250)에 대해 착탈 자유롭게 장착되어 있다.As shown in Fig. 3, the nozzle block 250 includes a plurality of pipe bodies 271 to 277 having one end thereof as a closed end and the other end as a polymer solution supply port. . As for the tube bodies 271-277, each tube body is provided along the width direction of the elongate sheet W. As shown in FIG. That is, each of the tubes 271 to 277 is provided along the y-y 'direction in FIG. 3. In addition, in each of the tubular bodies 271 to 277, the tubular bodies are freely attached to the nozzle block 250.
이들 관체(271~277)에는 각 관체마다 상기 관체의 길이 방향을 따라서 소정수의 노즐(240)이 소정 피치마다 장착되어 있다. 또한, 노즐(240) 및 관체(271~277)는 예를 들면, 구리, 스텐레스강, 알루미늄 등 도전 부재로 이루어지고, 노즐(240)은 관체(271~277)에 대해 전기적으로 접속된 상태로 관체(271~277)에 장착되어 있다.In each of the tubes 271 to 277, a predetermined number of nozzles 240 are attached to each tube in predetermined lengths along the longitudinal direction of the tube. In addition, the nozzle 240 and the tubular bodies 271-277 are made of a conductive member such as copper, stainless steel, aluminum, and the like, and the nozzle 240 is electrically connected to the tubular bodies 271-277. It is attached to the tube bodies 271-277.
폴리머 용액 공급 장치(400)는 도 3에 도시한 바와 같이, 성분이 다른 복수 종류(종류 A 및 종류 B의 2종류로 함)의 폴리머 용액을 저류하는 2개의 폴리머 용액 탱크(411, 412)(이하, 제 1 폴리머 용액 탱크(411), 제 2 폴리머 용액 탱크(412)라고 함)와, 종류 A의 폴리머 용액 및 종류 B의 폴리머 용액을 이들 폴리머 용액의 종류마다 각 관체(271~277)까지 유통시키는 7개의 폴리머 용액 유통 파이프(421~427)를 구비한다. 또한, 제 1 폴리머 용액 탱크(411) 및 제 2 폴리머 용액 탱크(412)에 저류되어 있는 폴리머 용액을 각 관체(271~277)에 소정의 압력을 가한 상태로 공급 가능하게 하기 위한 폴리머 용액 공급 펌프(도시하지 않음)도 설치되어 있다.As shown in Fig. 3, the polymer solution supply device 400 includes two polymer solution tanks 411 and 412 for storing polymer solutions of plural kinds (having two kinds of types A and B) having different components ( Hereinafter, the first polymer solution tank 411 and the second polymer solution tank 412), the polymer solution of type A and the polymer solution of type B are supplied to each tube 271-277 for each type of these polymer solutions. Seven polymer solution distribution pipes 421-427 made to flow are provided. In addition, a polymer solution supply pump for supplying the polymer solution stored in the first polymer solution tank 411 and the second polymer solution tank 412 with a predetermined pressure applied to each of the tubular bodies 271 to 277. (Not shown) is also provided.
또한, 실시형태에 따른 전계 방사 장치(200)에서는 제 1 폴리머 용액 탱크(411)는 종류 A의 폴리머 용액을 저류하는 폴리머 용액 탱크이고, 제 2 폴리머 용액 탱크(412)는 종류 B의 폴리머 용액을 저류하는 폴리머 용액 탱크로 한다. 또한, 폴리머 용액 유통 파이프(421~427) 중 폴리머 용액 유통 파이프(421~424)는 종류 A의 폴리머 용액을 유통시키는 폴리머 용액 유통 파이프이고, 폴리머 용액 유통 파이프(425~427)는 종류 B의 폴리머 용액을 유통시키는 폴리머 용액 유통 파이프로 한다.Further, in the field radiating device 200 according to the embodiment, the first polymer solution tank 411 is a polymer solution tank for storing a type A polymer solution, and the second polymer solution tank 412 is for a type B polymer solution. It is set as the storage tank of the polymer solution. The polymer solution distribution pipes 421 to 424 of the polymer solution distribution pipes 421 to 427 are polymer solution distribution pipes for circulating a polymer solution of type A, and the polymer solution distribution pipes 425 to 427 are polymers of type B. It is set as the polymer solution distribution pipe which distributes a solution.
그리고, 종류 A의 폴리머 용액을 유통시키는 폴리머 용액 유통 파이프(421~424)는 관체(271~277) 중 관체(271, 273, 275, 277)의 각 폴리머 용액 공급구에 접속되고, 종류 B의 폴리머 용액을 유통시키는 폴리머 용액 유통 파이프(425~427)는 관체(271~277)) 중 관체(272, 274, 276)의 각 폴리머 용액 공급구에 접속되어 있다.The polymer solution distribution pipes 421 to 424 for circulating the polymer solution of type A are connected to the respective polymer solution supply ports of the tubes 271, 273, 275, and 277 of the tubes 271 to 277, respectively. The polymer solution distribution pipes 425 to 427 for circulating the polymer solution are connected to respective polymer solution supply ports of the tubes 272, 274 and 276 in the tubes 271 to 277.
또한, 폴리머 용액 유통 파이프(421~427)에는 폴리머 용액의 공급량의 제어를 가능하게 하기 위한 폴리머 용액 공급량 제어 밸브(431~437)가 설치되어 있다. 또한, 「폴리머 용액의 공급량의 제어를 가능하게 한다」라고 하는 것은, 폴리머 용액 공급량 제어 밸브(431~437)의 개량(開量)을 제로에서 최대까지 제어 가능하게 하는 것을 의미하고 있다. 이것에 의해, 폴리머 용액의 공급량을 제로에서 최대값까지의 사이에서 임의로 제어 가능하게 한다.Further, the polymer solution supply pipes 421 to 427 are provided with polymer solution supply amount control valves 431 to 437 for enabling control of the supply amount of the polymer solution. In addition, "to enable the control of the supply amount of the polymer solution" means that the improvement of the polymer solution supply amount control valves 431 to 437 can be controlled from zero to the maximum. This makes it possible to arbitrarily control the supply amount of the polymer solution from zero to the maximum value.
또한, 도 3에 있어서, 노즐(240)을 나타내는 부호는 도면의 간소화를 위해, 각 일부의 노즐에만 부여되어 있다.In addition, in FIG. 3, the code | symbol which shows the nozzle 240 is attached only to each one part nozzle for simplicity of drawing.
또한 각 관체(271~277)에 장착되어 있는 노즐(240)은 노즐 블록(250)을 반송 방향(a)을 따라서 봤을 때는, 동일한 종류의 폴리머 용액이 할당되어 있는 각 관체에 장착되어 있는 각 노즐에 의한 반송 방향의 열이, 장척 시트(W)의 면과 평행한 평면상에 있어서 반송 방향(a)에 대해 소정 각도의 기울기를 가진 직선상에 나열하도록 각 관체에 장착되어 있다.In addition, when the nozzle 240 is attached to each of the tubes 271 to 277, the nozzle block 250 is viewed along the conveying direction a, each nozzle is attached to each tube to which the same kind of polymer solution is assigned. The column of the conveyance direction by is attached to each pipe | tube so that it may arrange on the straight line which has the inclination of a predetermined angle with respect to the conveyance direction a in the plane parallel to the surface of the elongate sheet W. As shown in FIG.
즉, 실시형태에 따른 전계 방사 장치(200)에서는 도 4에 도시한 바와 같이, 종류 A의 폴리머 용액이 할당되어 있는 각 관체(271, 273, 275, 277)에 장착되어 있는 노즐(240)의 반송 방향(a)의 열이, 장척 시트(W)의 면과 평행한 평면상에 있어서 반송 방향(a)에 대해 소정 각도(θ1)의 기울기를 가진 직선(L1)으로 나열하도록 각 관체(271, 273, 275, 277)에 장착되어 있고, 또한 종류 B의 폴리머 용액이 할당되어 있는 각 관체(272, 274, 276)에 장착되어 있는 노즐(240)의 반송 방향(a)의 열이, 장척 시트(W)의 면과 평행한 평면상에서 반송 방향(a)에 대해 소정 각도(θ2)의 기울기를 가진 직선(L2)으로 나열하도록 각 관체(272, 274, 276)에 장착되어 있다.That is, in the field radiating device 200 according to the embodiment, as shown in FIG. 4, the nozzles 240 mounted on the respective tubes 271, 273, 275, and 277 to which a polymer solution of type A is assigned are used. Each tubular body 271 so that the column of conveyance direction a may arrange in the straight line L1 which has the inclination of predetermined angle (theta) 1 with respect to conveyance direction a on the plane parallel to the surface of elongate sheet W. , 273, 275, 277, and the heat in the conveying direction a of the nozzle 240 mounted on each of the tubular bodies 272, 274, 276 to which the polymer solution of type B is assigned is elongated. It is attached to each tubular body 272, 274, 276 so that it may arrange in a straight line L2 with the inclination of predetermined angle (theta) 2 with respect to the conveyance direction a on the plane parallel to the surface of the sheet | seat W. As shown in FIG.
또한, 도 4에서 종류 A의 폴리머 용액이 할당되어 있는 각 관체(271, 273, 275, 277)에 장착되어 있는 노즐(240)은 백색 동그라미로 나타내고, 종류 B의 폴리머 용액이 할당되어 있는 각 관체(272, 274, 276)에 장착되어 있는 노즐(240)은 회색 동그라미로 나타내고 있다.In Fig. 4, the nozzles 240 mounted on the tubes 271, 273, 275, and 277 to which the polymer solution of type A is assigned are indicated by white circles, and each tube body to which the polymer solution of type B is assigned. The nozzles 240 mounted on 272, 274, and 276 are shown by gray circles.
각 노즐(240)이 이와 같은 배열이 되도록 각 노즐(240)을 각 관체(271~277)에 장착하는 것에 의해, 동일한 종류의 폴리머 용액이 할당되어 있는 관체의 길이 방향(장척 시트(W)의 폭방향)의 노즐(240)의 장착 위치가 인접하는 관체에 있어서 서로 어긋난 위치가 되므로, 반송 방향(a)을 따라서 반송되어 가는 장척 시트(W)에 대해 종류 A의 폴리머 용액으로 이루어진 나노 섬유 및 종류 B의 폴리머 용액으로 이루어진 나노 섬유를 각각 불균형 없이 균일하게 퇴적시킬 수 있다.By attaching each nozzle 240 to each tube 271 to 277 so that each nozzle 240 is arranged in such a manner, the length of the tube body (long sheet W) to which the same kind of polymer solution is assigned. Since the mounting position of the nozzle 240 of the width direction becomes a mutually shifted position in the adjacent pipe | tube, the nanofiber which consists of a polymer solution of type A with respect to the long sheet W conveyed along the conveyance direction a, and Nanofibers consisting of polymer solutions of type B can each be deposited uniformly without imbalance.
또한 노즐 블록(250)은 도 2에 도시한 바와 같이, 폴리머 용액을 각 노즐(240)의 토출구로부터 상부 방향으로 토출하도록 전계 방사 장치(200)의 전계 방사실(212)에 설치되어 있다. 그리고, 각 노즐(240)의 토출구로부터 폴리머 용액을 오버플로우시키면서 각 노즐(240)의 토출구로부터 소정의 폴리머 용액을 토출하여 장척 시트(W)를 전계 방사하여 장척 시트(W)에 나노 섬유를 퇴적시킨다.In addition, as shown in FIG. 2, the nozzle block 250 is provided in the field emission chamber 212 of the field emission device 200 so as to discharge the polymer solution upward from the discharge port of each nozzle 240. Then, a predetermined polymer solution is discharged from the discharge port of each nozzle 240 while overflowing the polymer solution from the discharge port of each nozzle 240 to electrospin the long sheet W to deposit nanofibers on the long sheet W. Let's do it.
이 때문에, 노즐 블록(250)은 오버플로우한 폴리머 용액을 저류할 수 있는 용기형상을 이루고 있으며, 노즐 블록(250)의 저면에는 폴리머 용액을 배출하기 위한 폴리머 용액 배출구(253)(도 3 참조)가 설치되어 있다. 이 폴리머 용액 배출구 (253)에는 폴리머 용액 배출용 파이프(254)가 접속되어 있다. 또한, 폴리머 용액 배출구로부터 배출된 폴리머 용액을 폴리머 용액의 종류마다 회수하면, 각 종류의 폴리머 용액을 재이용하는 것도 가능하다.For this reason, the nozzle block 250 has a container shape capable of storing the overflowed polymer solution, and a polymer solution outlet 253 for discharging the polymer solution on the bottom of the nozzle block 250 (see FIG. 3). Is installed. The polymer solution discharge port 253 is connected with a polymer solution discharge pipe 254. If the polymer solution discharged from the polymer solution outlet is recovered for each type of polymer solution, it is also possible to reuse each kind of polymer solution.
또한 노즐 블록(250)은 도 3의 (b)에 도시한 바와 같이, 상단 개구면이 덮개체(251)에 의해 덮인 상태로 이용된다. 또한, 덮개체(251)에는 각 노즐(240)을 상방으로 돌출시키기 위한 노즐 관통구멍(252)이 각 노즐(240)에 대응하여 설치되어 있다.In addition, as shown in FIG. 3B, the nozzle block 250 is used in a state where the upper opening surface is covered by the lid 251. Further, a nozzle through hole 252 for protruding the nozzles 240 upward is provided in the lid 251 corresponding to each nozzle 240.
또한 노즐 블록(250)은 왕복 운동 구동부(255)(도 5 참조)에 의해 장척 시트(W)의 폭방향으로 왕복 운동가능하게 되어 있고, 또한 간격 조정 구동부(256)(도 5 참조)에 의해 컬렉터(230)의 간격을 조정 가능하게 하고 있다. 이들 왕복 운동 구동부(255) 및 간격 조정 구동부(256)는 주 제어장치(300)에 의해 제어된다. 또한, 노즐 블록(250)을 장척 시트(W)의 폭방향으로 왕복 운동시키기 위한 기구 및 컬렉터(230)의 간격을 조정하기 위한 기구는 공지된 기구를 이용할 수 있으므로, 이들 각 기구의 구체적인 구조 등은 도시 및 설명을 생략한다.Further, the nozzle block 250 is capable of reciprocating in the width direction of the long seat W by the reciprocating drive unit 255 (see FIG. 5), and furthermore, by the gap adjusting driver 256 (see FIG. 5). The space | interval of the collector 230 is adjustable. These reciprocating drive unit 255 and the gap adjustment drive unit 256 are controlled by the main control unit 300. In addition, since the mechanism for making the nozzle block 250 reciprocate in the width direction of the elongate sheet W, and the mechanism for adjusting the space | interval of the collector 230 can use a well-known mechanism, the specific structure of each mechanism, etc. Omit illustration and description.
그러나, 전원 장치(260)는 컬렉터(230)와 각 노즐(240)의 사이에 소정의 전압을 부여하지만, 컬렉터(230)와 각 노즐(240)의 사이에 소정의 전압을 부여하기 위해 실시형태에 따른 전계 방사 장치(200)에서는 전원 장치(260)의 한쪽의 전극(양극으로 함)은 컬렉터(230)에 접속하고, 다른쪽 전극(음극으로 함)은 노즐(240)이 아니라 관체(271~277)에 접속하도록 되어 있다. 그리고, 노즐(240)측, 즉 관체(271~277)측이 접지 전위가 되도록 하고 있다.However, although the power supply device 260 imparts a predetermined voltage between the collector 230 and each nozzle 240, the embodiment is for imparting a predetermined voltage between the collector 230 and each nozzle 240. In the field radiating device 200 according to the present invention, one electrode (referred to as an anode) of the power supply device 260 is connected to the collector 230, and the other electrode (required to be a cathode) is not a nozzle 240, but a tube 271. 277). Then, the nozzle 240 side, that is, the tube bodies 271 to 277 side are set to the ground potential.
또한, 노즐 블록(250)이 도전성을 가진 부재로 이루어지고, 또한 상기 노즐 블록(250)과 관체(271~277)가 전기적으로 접속된 상태로 되어 있으면, 전원 장치(260)의 음극은 노즐 블록(250)에 접속하도록 해도 좋고, 또한 노즐 블록(250)과 하우징체(210)가 전기적으로 접속된 상태로 되어 있으면, 전원 장치(260)의 음극은 하우징체(210)에 접속하도록 해도 좋다. 어느 경우에도 노즐(240)측, 즉 관체(271~277)측, 노즐 블록(250)측 또는 하우징체(210)측이 접지 전위가 되도록 한다.In addition, when the nozzle block 250 is made of a conductive member, and the nozzle block 250 and the tubular bodies 271 to 277 are in an electrically connected state, the cathode of the power supply device 260 is a nozzle block. The negative electrode of the power supply device 260 may be connected to the housing body 210 when the nozzle block 250 and the housing body 210 are electrically connected to each other. In either case, the nozzle 240 side, that is, the tube bodies 271 to 277 side, the nozzle block 250 side, or the housing body 210 side is set to have a ground potential.
이와 같이, 노즐(240)측, 즉 관체(271~277)측, 노즐 블록(250)측 또는 하우징체(210)측이 접지 전위가 되도록 하는 것에 의해, 노즐(240), 관체(271~277), 노즐 블록(250) 및 하우징체(210)를 비롯하여 노즐(240)로부터 토출되기 전의 폴리머 용액, 폴리머 용액 공급 장치(400) 전부가 접지 전위가 된다.In this way, the nozzle 240 and the pipe bodies 271 to 277 are formed by bringing the nozzle 240 side, that is, the pipe bodies 271 to 277 side, the nozzle block 250 side, or the housing body 210 side to the ground potential. ), The nozzle block 250 and the housing body 210, all of the polymer solution and the polymer solution supply device 400 before being discharged from the nozzle 240 become ground potentials.
이것에 의해, 전계 방사 장치(200) 및 나노 섬유 제조 장치(1)를 조작하는 조작자의 안전을 확보할 수 있고, 또한 폴리머 용액 공급 장치(400)를 고내전압 사양으로 할 필요가 없어진다.Thereby, the safety of the operator who operates the electric field emission apparatus 200 and the nanofiber manufacturing apparatus 1 can be ensured, and the polymer solution supply apparatus 400 does not need to make high withstand voltage specification.
상기와 같이 구성된 전계 방사 장치(200)는 온도 20℃~40℃, 습도 20%~60%의 분위기로 조정된 방에 설치되는 것이 바람직하다.The field radiating device 200 configured as described above is preferably installed in a room adjusted to an atmosphere having a temperature of 20 ° C to 40 ° C and a humidity of 20% to 60%.
주 제어장치(300)는 전계 방사 장치(200) 및 반송 장치(100)을 제어하는 기능을 갖고 있다. 구체적으로는 도 5에 도시한 바와 같이, 감기량 계측 정보에 기초하여 반송 속도를 제어하는 반송 속도 제어부(310)와, 노즐 블록(250)을 왕복 운동시키기 위한 왕복 운동 구동부(255)를 제어하는 왕복 운동 제어부(320)와, 노즐 블록(250)의 간격 조정을 실시하기 위한 간격 조정 구동부(256)를 제어하는 간격 조정 제어부(330)를 구비한다.The main control device 300 has a function of controlling the electric field radiating device 200 and the conveying device 100. Specifically, as shown in FIG. 5, the transfer speed control unit 310 for controlling the transfer speed based on the winding amount measurement information and the reciprocating drive unit 255 for reciprocating the nozzle block 250 are controlled. The reciprocating motion control part 320 and the space | interval adjustment control part 330 which controls the space | interval adjustment drive part 256 for performing the space | interval adjustment of the nozzle block 250 are provided.
또한 주 제어장치(300)는 이와 같은 제어 외에 전계 방사 장치(200)에서는 전원 장치(260) 및 보조 벨트 장치(220)의 제어를 실시하는 기능을 갖고, 반송 장치(100)에서는 가열 장치(117)를 제어하는 기능을 갖고 있다. 또한 나노 섬유 제조 장치(1) 전체를 고려한 경우에는 VOC 처리 장치(도시하지 않음), 불활성 가스 제어장치(도시하지 않음) 등을 제어하는 기능도 갖고 있다.In addition to the above control, the main control device 300 has a function of controlling the power supply device 260 and the auxiliary belt device 220 in the electric field radiating device 200, and the heating device 117 in the conveying device 100. ) To control. In addition, when the whole nanofiber manufacturing apparatus 1 is considered, it has a function which controls a VOC processing apparatus (not shown), an inert gas control apparatus (not shown), etc.
또한 제 1 텐션 롤러 위치 조정 기구(109a, 109b), 제 2 텐션 롤러 위치 조정 기구(110a, 110b), 절단 장치(114) 등에 모터 등의 구동부를 설치하면, 제 1 텐션 롤러(107), 제 2 텐션 롤러(108)의 위치 제어 및 절단 장치(114)의 절단 제어를 주 제어장치(300)에 의해 실시하는 것도 가능하다. 또한, 절단 장치(114)의 절단 제어를 실시할 경우에는 나노 섬유 부직포의 감기량이 소정량에 이르면, 전계 방사 장치(200)에 의한 전계 방사 동작을 정지하고, 또한 감기 롤러(102)에 의한 나노 섬유 부직포의 감기 등 장척 시트(W)의 반송 동작을 정지한 상태로 누름판(115) 및 커터(116)를 동작시키기 위한 신호를 출력한다. 커터(116)에 의해 나노 섬유 부직포를 절단할 때는 누름판(115)으로 나노 섬유 부직포를 누른 상태로 하여 커터(116)에 의해 나노 섬유 부직포를 절단한다.If the first tension roller position adjusting mechanisms 109a and 109b, the second tension roller position adjusting mechanisms 110a and 110b and the cutting device 114 are provided with a drive unit such as a motor, the first tension roller 107 and the first It is also possible to control the position control of the two tension roller 108 and the cutting control of the cutting device 114 by the main control device 300. When cutting control of the cutting device 114 is performed, when the winding amount of the nanofiber nonwoven fabric reaches a predetermined amount, the field spinning operation by the field spinning device 200 is stopped, and the nano by the winding roller 102 is further stopped. A signal for operating the press plate 115 and the cutter 116 is output in a state where the conveyance operation of the long sheet W such as winding of the fiber nonwoven fabric is stopped. When cutting the nanofiber nonwoven fabric by the cutter 116, the nanofiber nonwoven fabric is cut by the cutter 116 while pressing the nanofiber nonwoven fabric by the pressing plate 115.
2.실시형태에 따른 나노 섬유 제조 장치를 이용한 나노 섬유 제조 방법2. Nanofiber production method using nanofiber production apparatus according to the embodiment
이하, 상기와 같이 구성된 실시형태에 따른 나노 섬유 제조 장치(1)를 이용하여 나노 섬유 부직포를 제조하는 방법에 대해 설명한다.Hereinafter, the method of manufacturing a nanofiber nonwoven fabric using the nanofiber manufacturing apparatus 1 which concerns on embodiment comprised as mentioned above is demonstrated.
우선, 장척 시트(W)를 반송 장치(100)에 설정하고, 그 후, 장척 시트(W)를 공급 롤러로부터 공급하면서 감기 롤러(102)로 감는 것에 의해, 소정의 반송 속도로 반송시킨다. 그리고, 전계 방사 장치(200)에 있어서, 각 관체(271~277)에 장착되어 있는 각 노즐(240)로부터 장척 시트(W)에 폴리머 용액을 토출하는 것에 의해 나노 섬유를 순차 퇴적시킨다.First, the long sheet W is set in the conveying apparatus 100, and after that, it is conveyed by the winding roller 102, supplying the long sheet W from a supply roller, and it conveys at a predetermined conveyance speed. In the field radiating device 200, nanofibers are sequentially deposited by discharging the polymer solution from the nozzles 240 mounted to the respective tubular bodies 271 to 277 to the long sheet W. FIG.
또한, 이와 같은 동작을 개시하기 전에, 컬렉터(230)와 노즐 블록(250)의 간격을 간격 조정 구동부(256)에 의해 최적의 간격으로 조정할 수 있다. 컬렉터(230)와 노즐 블록(250)의 간격은 전계 방사 장치(200)의 방사 조건, 폴리머 용액의 종류, 나노 섬유의 평균 직경, 제조해야 할 나노 섬유 부직포의 두께 등을 고려하여 결정할 수 있다. 이것에 의해, 노즐 블록(250)과 컬렉터(230)의 간격이 최적으로 설정된 상태하에서 전계 방사를 실시할 수 있다.In addition, before starting such an operation, the space | interval between the collector 230 and the nozzle block 250 can be adjusted by the space | interval adjustment drive part 256 at the optimal space | interval. The distance between the collector 230 and the nozzle block 250 may be determined in consideration of the spinning conditions of the field emission device 200, the type of the polymer solution, the average diameter of the nanofibers, and the thickness of the nonwoven fabric to be manufactured. Thereby, electric field emission can be performed in the state in which the space | interval of the nozzle block 250 and the collector 230 was set optimally.
그러나, 실시형태에 따른 나노 섬유 제조 장치(1)에서는 제 1 폴리머 용액 탱크(411)에는 종류 A의 폴리머 용액이 저류되어 있고, 제 2 폴리머 용액 탱크(412)에는 종류 B의 폴리머 용액이 저류되어 있다. 그리고, 종류 A의 폴리머 용액은 폴리머 용액 유통 파이프(421~424)를 유통하여 관체(271, 273, 275, 277)에 공급되고, 종류 B의 폴리머 용액은 폴리머 용액 유통 파이프(425~427)를 유통하여 관체(272, 274, 276)에 공급된다.However, in the nanofiber manufacturing apparatus 1 according to the embodiment, a type A polymer solution is stored in the first polymer solution tank 411, and a type B polymer solution is stored in the second polymer solution tank 412. have. Then, the polymer solution of type A distributes the polymer solution distribution pipes 421 to 424 and is supplied to the tubular bodies 271, 273, 275, and 277, and the polymer solution of type B passes through the polymer solution distribution pipes 425 to 427. It is distributed and supplied to the tubes 272, 274, 276.
이 때문에, 반송 방향(a)을 따라서 반송되어 가는 장척 시트(W)에 대해, 각 관체(271~277)의 각 노즐(240)로부터는 종류 A의 폴리머 용액과 종류 B의 폴리머 용액이 번갈아 토출된다. 이것에 의해 장척 시트(W)에는 종류 A의 폴리머 용액과 종류 B의 폴리머 용액이 혼합된 상태의 나노 섬유를 퇴적시킬 수 있다.For this reason, the polymer solution of type A and the polymer solution of type B are discharged alternately from each nozzle 240 of each tubular body 271-277 with respect to the long sheet W conveyed along a conveyance direction a. do. Thereby, the long sheet W can deposit nanofibers in a state in which a polymer solution of type A and a polymer solution of type B are mixed.
또한 장척 시트(W)에 나노 섬유를 순차 퇴적시키는 동작을 실시할 때, 왕복 운동 구동부(255)에 의해 노즐 블록(250)을 장척 시트(W)의 폭방향으로 왕복 운동시키면서 장척 시트(W)에 폴리머 용액을 토출하는 동작을 실시한다. 또한, 왕복 운동 구동부(255)의 왕복 운동 주기는 노즐(240)의 배열 피치와 장척 시트(W)의 반송 속도에 기초하여 설정한다. 즉, 반송 방향(a)으로 반송되어 가는 장척 시트(W)에 대해, 각 노즐(240)의 토출 위치가 다른 노즐의 토출 위치와 가능한 한 중복되지 않도록 왕복 운동 주기를 설정한다. 이것에 의해 장척 시트(W)의 폴리머 섬유의 퇴적량을 균일화할 수 있다.Further, when the nanofibers are sequentially deposited on the long sheet W, the long sheet W is reciprocated by the reciprocating drive unit 255 while reciprocating the nozzle block 250 in the width direction of the long sheet W. The operation of discharging the polymer solution is performed. In addition, the reciprocating cycle of the reciprocating drive unit 255 is set based on the arrangement pitch of the nozzle 240 and the conveyance speed of the long sheet W. As shown in FIG. That is, with respect to the long sheet W conveyed in the conveyance direction a, the reciprocating cycle is set so that the discharge position of each nozzle 240 may not overlap with the discharge position of another nozzle as much as possible. Thereby, the deposition amount of the polymer fiber of the elongate sheet W can be made uniform.
이와 같이 하여 장척 시트(W)에 폴리머 섬유를 퇴적시킨 후, 「나노 섬유를 퇴적시킨 장척 시트(W)」를 가열 장치(117)로 가열하는 것에 의해 나노 섬유 부직포를 제조할 수 있다. 또한, 실시형태에 따른 나노 섬유 제조 장치(1)에서는 상기한 바와 같이, 장척 시트(W)에는 다른 종류의 폴리머 용액이 혼합된 상태의 나노 섬유를 퇴적시킬 수 있고, 그것을 가열하는 것에 의해 제조된 나노 섬유 부직포는 한 종류의 폴리머 용액에 의해 제조된 나노 섬유 부직포와는 다른 품질의 나노 섬유 부직포가 되고, 보다 폭넓은 용도로 사용 가능해진다.After depositing the polymer fibers in the long sheet W in this manner, the nanofiber nonwoven fabric can be produced by heating the "long sheet W in which the nanofibers are deposited" with the heating device 117. In addition, in the nanofiber manufacturing apparatus 1 according to the embodiment, as described above, the long sheet W can deposit nanofibers in a state in which different kinds of polymer solutions are mixed, and are produced by heating them. The nanofiber nonwoven fabric becomes a nanofiber nonwoven fabric of a different quality from the nanofiber nonwoven fabric produced by one kind of polymer solution, and can be used for a wider range of applications.
이와 같이 제조된 나노 섬유 부직포는 감기 롤러(102)에 의해 감긴다. 이 때, 감기량 계측 정보 출력장치(112)가 감기 롤러(102)에 감긴 나노 섬유 부직포의 감기량을 계측하고, 그 계측 결과를 감기량 계측 정보로서 주 제어장치(300)의 반송 속도 제어부(310)에 출력한다. 반송 속도 제어부(310)는 감기량 계측 정보에 기초하여 장척 시트(W)의 반송 속도가 일정 속도가 되도록 감기 롤러 구동부(111)를 제어한다.The nanofiber nonwoven fabric thus produced is wound by a winding roller 102. At this time, the winding amount measurement information output device 112 measures the winding amount of the nanofiber nonwoven fabric wound on the winding roller 102, and uses the measurement result as the winding amount measurement information to convey the speed control unit of the main control device 300 ( Output to 310). The conveyance speed control part 310 controls the winding roller drive part 111 so that the conveyance speed of the elongate sheet | seat W may become a fixed speed based on winding amount measurement information.
또한 감기량이 소정량이 된 경우에는 절단 장치(114)에 의해 나노 섬유 부직포를 절단할 수 있다. 절단 장치(114)에 의해 나노 섬유 부직포를 절단할 때는 누름판(115)에 의해 나노 섬유 부직포를 누른 상태로 커터(116)에 의해 절단한다. 나노 섬유 부직포를 절단할 때는 전계 방사 장치(200)에 의한 전계 방사 동작을 정지하고, 또한 감기 롤러(102)에 의한 나노 섬유 부직포의 감기 등 장척 시트(W)의 반송 동작을 정지한 상태로 실시한다.In addition, when the winding amount becomes a predetermined amount, the nanofiber nonwoven fabric can be cut by the cutting device 114. When cutting a nanofiber nonwoven fabric by the cutting device 114, it cuts by the cutter 116, holding the nanofiber nonwoven fabric by the press board 115. When cutting the nanofiber nonwoven fabric, the field spinning operation by the field spinning device 200 is stopped, and the conveying operation of the long sheet W such as winding the nanofiber nonwoven fabric by the winding roller 102 is stopped. do.
이것에 의해, 감기 롤러(102)에는 소정량의 나노 섬유 부직포가 감긴 상태가 된다. 그리고, 나노 섬유 부직포가 감기지 않은 감기 롤러(102)를 설정하고, 후속의 나노 섬유 부직포의 선단을 감기 롤러(102)에 감고, 순차적으로 제조되어 오는 나노 섬유 부직포를 감아 간다. 이와 같은 조작을 순차적으로 실시함으로써 소정의 감기량만큼 감긴 나노 섬유 부직포를 계속해서 제조할 수 있다.As a result, a predetermined amount of nanofiber nonwoven fabric is wound around the winding roller 102. And the winding roller 102 which the nanofiber nonwoven fabric is not wound up is set, the front end of the subsequent nanofiber nonwoven fabric is wound up to the winding roller 102, and the nanofiber nonwoven fabric which is manufactured sequentially is wound up. By sequentially performing such an operation, the nanofiber nonwoven fabric wound by a predetermined winding amount can be continuously produced.
또한, 절단 장치(114)에 의한 절단 동작은 주 제어장치(300)에 의해 자동적으로 절단 동작시키는 것도 가능하다. 즉, 주 제어장치(300)에서는 나노 섬유 부직포의 감기량이 소정량에 이르면, 전계 방사 장치(200)에 의한 전계 방사 동작을 정지하고, 또한 감기 롤러(102)에 의한 나노 섬유 부직포의 감기 등 장척 시트(W)의 반송 동작을 정지한 상태로 누름판(115) 및 커터(116)를 동작시키기 위한 신호를 출력한다. 커터(116)에 의해 나노 섬유 부직포를 절단할 때는 누름판(115)으로 나노 섬유 부직포를 누른 상태로 커터(116)에 의해 나노 섬유 부직포를 절단한다. 이것에 의해, 절단 동작을 자동적으로 실시할 수 있다.In addition, the cutting operation by the cutting device 114 can be automatically cut by the main control device 300. That is, in the main controller 300, when the winding amount of the nanofiber nonwoven fabric reaches a predetermined amount, the field spinning operation by the field radiating device 200 is stopped, and the winding of the nanofiber nonwoven fabric by the winding roller 102 is elongated. A signal for operating the pressing plate 115 and the cutter 116 in a state where the conveyance operation of the sheet W is stopped is output. When cutting the nanofiber nonwoven fabric by the cutter 116, the nanofiber nonwoven fabric is cut by the cutter 116 while pressing the nanofiber nonwoven fabric with the pressing plate 115. Thereby, cutting operation | movement can be performed automatically.
또한 나노 섬유 부직포의 제조를 실시하고 있는 도중에 장척 시트(W)의 장력의 조정이나 장척 시트(W)의 폭방향의 위치를 조정할 필요가 생긴 경우에는, 제 1 텐션 롤러 위치 조정 기구(109a, 109b) 및 제 2 텐션 롤러 위치 조정 기구(110a, 110b)를 적절히 조정함으로써 장척 시트(W)를 최적의 장력으로 할 수 있고, 또한 장척 시트(W)의 폭방향의 위치를 최적의 위치로 할 수 있다.Moreover, when it is necessary to adjust the tension of the elongate sheet W and the position of the width direction of the elongate sheet W during the manufacture of a nanofiber nonwoven fabric, the 1st tension roller position adjustment mechanism 109a, 109b ) And the second tension roller position adjustment mechanisms 110a and 110b as appropriate, the long sheet W can be optimally tensioned and the long sheet W in the width direction can be optimally positioned. have.
여기서, 실시형태에 따른 나노 섬유 제조 방법의 방사 조건을 예시적으로 도시한다. 장척 시트(W)로서는 각종 재료로 이루어진 부직포, 직물, 편물 등을 이용할 수 있다. 장척 시트(W)의 두께는, 예를 들면 5㎛~500㎛의 것을 이용할 수 있다.Here, the spinning conditions of the nanofiber manufacturing method according to the embodiment are exemplarily shown. As the long sheet W, a nonwoven fabric, a woven fabric, a knitted fabric, etc. made of various materials can be used. As for the thickness of the elongate sheet W, the thing of 5 micrometers-500 micrometers can be used, for example.
나노 섬유의 원료가 되는 폴리머로서는, 예를 들면 폴리락트산(PLA), 폴리프로필렌(PP), 폴리아세트산비닐(PVAc), 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리에틸렌나프탈레이트(PEN), 폴리아미드(PA), 폴리우레탄(PU), 폴리비닐알콜(PVA), 폴리아크릴로니트릴(PAN), 폴리에테르이미드(PEI), 폴리카프로락톤(PCL), 폴리락트산글리콜산(PLGA), 폴리불화비닐리덴(PVDF), 실크, 셀룰로스, 키토산 등을 이용할 수 있다.As a polymer used as a raw material of a nanofiber, for example, polylactic acid (PLA), polypropylene (PP), polyvinyl acetate (PVAc), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), polyamide (PA), polyurethane (PU), polyvinyl alcohol (PVA), polyacrylonitrile (PAN), polyetherimide (PEI), polycaprolactone (PCL), polylactic acid glycolic acid ( PLGA), polyvinylidene fluoride (PVDF), silk, cellulose, chitosan, and the like.
폴리머 용액에 이용하는 용매로서는, 예를 들면 디클로로메탄, 디메틸포름아미드, 디메틸설폭시드, 메틸에틸케톤, 클로로포름, 아세톤, 물, 포름산, 아세트산, 시클로헥산, THF, 데카히드로나프탈렌(Decalin), 디메틸포름아미드(DMAc) 등을 이용할 수 있다. 복수 종류의 용매를 혼합하여 이용해도 좋다. 폴리머 용액에는 도전성 향상제 등의 첨가제를 함유시켜도 좋다.Examples of the solvent used for the polymer solution include dichloromethane, dimethylformamide, dimethyl sulfoxide, methyl ethyl ketone, chloroform, acetone, water, formic acid, acetic acid, cyclohexane, THF, decahydronaphthalene (Decalin), and dimethylformamide. (DMAc) and the like can be used. You may mix and use multiple types of solvent. The polymer solution may contain additives such as conductivity enhancers.
또한 장척 시트(W)의 반송 속도는, 예를 들면 5mm/분~10m/분으로 설정할 수 있다. 노즐과 컬렉터(230)와 노즐 블록(250)에 인가하는 전압은 10kV~80kV로 설정할 수 있다. In addition, the conveyance speed of the elongate sheet W can be set to 5 mm / min-10 m / min, for example. The voltage applied to the nozzle, the collector 230, and the nozzle block 250 may be set to 10 kV to 80 kV.
또한 전계 방사 장치(200)의 전계 방사실(212)의 온도는, 예를 들면 20℃~40℃로 설정할 수 있다. 전계 방사실(212)의 습도는, 예를 들면 20%~60%로 설정할 수 있다.In addition, the temperature of the field emission chamber 212 of the field emission apparatus 200 can be set to 20 degreeC-40 degreeC, for example. The humidity of the field emission chamber 212 can be set to 20% to 60%, for example.
그러나, 전계 방사를 실시했을 때, 노즐(240)로부터 오버플로우한 폴리머 용액은 폴리머 용액 배출구(253)로부터 폴리머 용액 배출용 파이프(254)를 통해 배출되지만, 배출된 폴리머 용액을 회수하여 나노 섬유의 원료로서 재이용하는 경우에는 도시하지 않은 폴리머 용액 회수 장치를 설치하는 것에 의해 재이용할 수 있다.However, when the field spinning is performed, the polymer solution overflowed from the nozzle 240 is discharged from the polymer solution outlet 253 through the polymer solution discharge pipe 254, but the discharged polymer solution is recovered to recover the nanofibers. When reusing as a raw material, it can reuse by providing the polymer solution collection | recovery apparatus which is not shown in figure.
이 경우, 종류 A의 폴리머 용액과 종류 B의 폴리머 용액을 별도로 회수하는 것이 바람직하다. 그리고, 회수한 종류 A의 폴리머 용액은 폴리머 용액 회수 장치의 종류 A용 재생 탱크에 이송하고, 또한 회수한 종류 B의 폴리머 용액은 폴리머 용액 회수 장치의 종류 B용 재생 탱크로 이송하고, 그 후 회수한 종류 A 및 종류 B의 각각의 폴리머 용액의 조성을 측정하고, 상기 측정 결과에 따라서 종류 A 및 종류 B의 폴리머 용액에 용매 그외의 필요한 성분을 각각 첨가하는 처리를 실시한다.In this case, it is preferable to recover the polymer solution of type A and the polymer solution of type B separately. Then, the recovered type A polymer solution is transferred to the regeneration tank for type A of the polymer solution recovery device, and the recovered type B polymer solution is transferred to the regeneration tank for type B of the polymer solution recovery device, and then recovered. The composition of each polymer solution of one type A and type B is measured, and the process which adds a solvent and other necessary components to each of the polymer solutions of type A and type B according to the said measurement result is performed, respectively.
이와 같은 처리를 실시하여 회수한 종류 A 및 종류 B의 폴리머 용액을 원래의 종류 A 및 종류 B의 폴리머 용액, 즉 제 1 폴리머 용액 탱크(411)에 저류되어 있는 종류 A의 폴리머 용액 및 제 2 폴리머 용액 탱크(412)에 저류되어 있는 종류 B의 폴리머 용액의 조성과 동일하거나 매우 가까운 조성을 가진 폴리머 용액으로 재생하는 것이 가능해진다.The polymer solution of type A and type B recovered by such a treatment is recovered from the original type A and type B polymer solution, that is, the type A polymer solution and the second polymer stored in the first polymer solution tank 411. It is possible to regenerate with a polymer solution having a composition that is the same as or very close to that of the type B polymer solution stored in the solution tank 412.
이것을 실현하기 위해서는 노즐 블록(250)은 내부를 각 관체(271~277)에 대응하여 나누고, 각 관체(271~277)에 대응한 폴리머 용액 회수실을 형성하며, 또한 각 관체(271~277)에 대응한 폴리머 용액 회수실 각각에 폴리머 용액 배출구(253)를 설치한다. 그리고, 이들 각 폴리머 용액 배출구에는 각각 폴리머 용액 배출용 파이프(254)를 접속하고, 각 폴리머 용액 배출용 파이프를 통해 배출되는 종류 A 및 종류 B의 폴리머 용액을 각각 대응하는 종류의 재생 탱크에 공급한다. 이와 같은 구성으로 함으로써 오버플로우한 폴리머 용액을 종류마다 회수하여 종류마다 재생 가능하게 할 수 있다.In order to realize this, the nozzle block 250 divides the inside corresponding to each tube 271-277, forms a polymer solution recovery chamber corresponding to each tube 271-277, and each tube 271-277. The polymer solution outlet 253 is provided in each of the polymer solution recovery chambers. Then, each of the polymer solution discharge ports is connected with a polymer solution discharge pipe 254, and the polymer solution of type A and type B discharged through the polymer solution discharge pipe is supplied to a corresponding type of regeneration tank, respectively. . With such a configuration, the overflowed polymer solution can be recovered for each type and can be reproduced for each type.
3.실시형태에 따른 전계 방사 장치 및 나노 섬유 제조 장치의 효과3.Effects of the field emission device and the nanofiber production device according to the embodiment
 실시형태에 따른 전계 방사 장치(200)에 의하면, 각 노즐(240)은 노즐 블록(250)에 직접적으로 장착되는 것이 아니라 소정 수씩 각 관체(271~277)에 장착되어 있다. 이 때문에, 노즐(240)의 보수나 교환 등을 실시하는 경우에는 노즐의 보수나 교환을 실시해야 하는 관체만을 노즐 블록(250)으로부터 분리하여 실시하면 좋다. 이것에 의해 관체 단위로 노즐의 보수나 교환이 가능해지므로 관리가 용이해진다. 또한 예를 들면, 장척 시트(W)의 폭방향으로 배열되어 있는 관체마다 폴리머 용액의 공급량을 제어하거나 각 관체(271~277)마다 다른 종류의 폴리머 용액을 공급할 수 있다.According to the field emission device 200 which concerns on embodiment, each nozzle 240 is not attached directly to the nozzle block 250, but is attached to each tubular body 271-277 by predetermined number. For this reason, when repairing or replacing the nozzle 240, only the tubular body which should be repaired or replaced with the nozzle may be removed from the nozzle block 250. As a result, the nozzle can be repaired or replaced in a tubular unit, and management becomes easy. For example, the supply amount of the polymer solution can be controlled for each tube arranged in the width direction of the long sheet W, or a different kind of polymer solution can be supplied for each tube 271-277.
각 관체(271~277)마다 폴리머 용액의 공급량을 제어할 때는 각 관체(271~277)에 대응하여 설치되어 있는 폴리머 용액 공급량 제어 밸브(431~437)에 의해 용이하게 실시할 수 있다. 또한, 필요에 따라서, 어느 특정의 관체에 대해서는 폴리머 용액을 공급하지 않도록 하는 것도 가능하다. When controlling the supply amount of the polymer solution for each tube 271-277, the polymer solution supply amount control valves 431-437 provided corresponding to each tube 271-277 can be easily implemented. Moreover, as needed, it is also possible not to supply a polymer solution with respect to any specific pipe | tube.
또한, 상기 실시형태에서 설명한 바와 같이, 관체(271, 273, 275, 277)에는 종류 A의 폴리머 용액을 공급하고, 관체(272, 274, 276)에는 종류 B의 폴리머 용액을 공급하도록 관체마다 다른 종류의 폴리머 용액을 공급할 수 있다. 이것에 의해 장척 시트(W)에는 종류 A의 폴리머 용액과 종류 B의 폴리머 용액이 혼합된 상태의 복합 나노 섬유를 퇴적시킬 수 있고, 그것을 가열하는 것에 의해 제조된 나노 섬유 부직포는 한 종류의 폴리머 용액에 의해 제조된 나노 섬유 부직포와는 다른 품질의 나노 섬유 부직포가 되고, 보다 폭 넓은 용도로 사용 가능해진다.In addition, as described in the above embodiments, the tubulars 271, 273, 275, and 277 are supplied with a polymer solution of type A, and the tubulars 272, 274, and 276 are supplied with a polymer solution of type B to the tubular bodies. It is possible to supply a kind of polymer solution. Thereby, the long sheet W can deposit a composite nanofiber in a state in which a polymer solution of type A and a polymer solution of type B are mixed, and the nanofiber nonwoven fabric produced by heating it is a polymer solution of one kind. It becomes the nanofiber nonwoven fabric of a quality different from the nanofiber nonwoven fabric manufactured by this, and can be used for a wider use.
이와 같이, 실시형태에 따른 전계 방사 장치(200)에 의하면, 폴리머 용액의 공급 방법을 다양하게 설정할 수 있다.Thus, according to the field emission device 200 which concerns on embodiment, the supply method of a polymer solution can be set variously.
또한, 노즐(240)이 소정 수씩 각 관체(271~277)에 장착되어 있는 것에 의해, 노즐(240)의 보수나 교환 등을 실시하는 경우에는 노즐의 보수나 교환을 실시해야 하는 관체만을 노즐 블록(250)으로부터 분리하여 실시하면 되고, 관체 단위로 노즐의 보수나 교환이 가능해지므로 관리가 용이해지는 효과도 얻어진다.In addition, since the nozzles 240 are attached to each of the tubes 271 to 277 by a predetermined number, when the nozzles 240 are repaired or replaced, only the tubes to which the nozzles should be repaired or replaced are nozzle blocks. What is necessary is just to isolate | separate from 250, and since a nozzle can be repaired or replaced by a tubular unit, the effect which becomes easy management is also acquired.
또한 각 관체(271~277)에 장착되는 각 노즐(240)은 도 4에 도시한 바와 같이, 반송 방향(a)에 대해 소정 각도(θ1, θ)의 기울기를 가진 직선(L1, L2)으로 나열하도록 각 관체(271~277)에 장착되어 있다. 이 때문에, 노즐(240)은 각 관체(271~277)의 길이 방향에 있어서 서로 어긋난 위치가 되므로, 장척 시트(W)에 불균형없이 폴리머 용액을 토출할 수 있고, 균일한 두께를 가진 고품질의 나노 섬유를 제조할 수 있다.Moreover, each nozzle 240 mounted in each tubular body 271-277 is the straight line L1, L2 which has inclination of predetermined angle (theta) 1 and (theta) with respect to the conveyance direction a as shown in FIG. It is attached to each pipe body 271-277 so that it may be arranged. For this reason, since the nozzles 240 are shifted from each other in the longitudinal direction of each of the tubular bodies 271-277, the polymer solution can be discharged to the long sheet W without imbalance, and the nanoparticles of high quality having a uniform thickness are provided. Fibers can be produced.
또한, 실시형태에 따른 전계 방사 장치(200)에 의하면, 노즐(240)측, 즉 관체(271~277)측, 노즐 블록(250)측 또는 하우징체(210)측을 접지 전위로 하고 있으므로 노즐 블록(250), 하우징체(210)을 비롯하여 각 노즐(240)로부터 토출되기 전의 폴리머 용액, 폴리머 용액 공급 장치(400) 전부가 접지 전위가 된다. 이 때문에 전계 방사 장치(200) 및 나노 섬유 제조 장치(1)를 조작하는 조작자의 안전을 확보할 수 있고, 또한 이들 각 구성요소를 고내전압 사양으로 할 필요가 없어진다.Moreover, according to the field emission device 200 which concerns on embodiment, since the nozzle 240 side, ie, the tube body 271-277 side, the nozzle block 250 side, or the housing body 210 side is made into ground potential, a nozzle The block 250, the housing body 210, the polymer solution before being discharged from each nozzle 240, and the polymer solution supply device 400 all become ground potentials. For this reason, the safety of the operator who operates the electric field emission apparatus 200 and the nanofiber manufacturing apparatus 1 can be ensured, and it is not necessary to make each of these components into a high withstand voltage specification.
또한, 실시형태에 따른 전계 방사 장치(200)에 의하면, 장척 시트(W)의 폭방향을 따라서 노즐 블록(250)을 소정의 주기로 왕복 운동 가능하게 하고 있으므로, 장척 시트(W)의 나노 섬유의 퇴적량을 균일화하는 것이 가능해진다. 또한 노즐 블록(250)과 컬렉터(230)의 간격을 조정 가능하게 하므로, 최적의 조건으로 전계 방사를 실시하는 것이 가능해진다.Moreover, according to the field emission apparatus 200 which concerns on embodiment, since the nozzle block 250 can be reciprocated by a predetermined period along the width direction of the long sheet W, the nanofiber of the long sheet W is The deposition amount can be made uniform. Moreover, since the space | interval of the nozzle block 250 and the collector 230 can be adjusted, it becomes possible to perform electric field emission on an optimal condition.
또한 실시형태에 따른 나노 섬유 제조 장치(1)에 의하면, 제 1 텐션 롤러(107) 및 제 2 텐션 롤러(108)의 각 단부의 위치를 조정 가능하게 하므로, 제 1 텐션 롤러(107)와 제 2 텐션 롤러(108) 사이의 장척 시트(W)의 장력을 적절한 장력으로 설정하는 것이 가능한 것은 물론, 반송 방향(a)에 대한 장척 시트(W)의 폭방향의 「오차」등의 수정도 용이하게 실시할 수 있고, 장척 시트(W)를 항상 적절한 상태로 반송시킬 수 있다. 그것에 의해 균일한 두께를 가진 고품질의 나노 섬유 부직포를 제조할 수 있다.Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on embodiment, since the position of each edge part of the 1st tension roller 107 and the 2nd tension roller 108 can be adjusted, the 1st tension roller 107 and the 1st agent are made. It is not only possible to set the tension of the long sheet W between the two tension rollers 108 to an appropriate tension, but also to easily correct the "error" in the width direction of the long sheet W with respect to the conveying direction a. It can carry out easily, and the long sheet W can always be conveyed in a suitable state. Thereby, a high quality nanofiber nonwoven fabric having a uniform thickness can be produced.
또한 실시형태에 따른 나노 섬유 제조 장치(1)에 의하면, 감기 롤러(102)에 감긴 나노 섬유 부직포의 감기량을 계측하고, 계측된 감기량에 기초하여 반송 속도를 제어하도록 하고 있으므로, 전계 방사 장치(200)를 통과하는 장척 시트(W)의 반송 속도를 일정한 속도로 유지할 수 있고, 그것에 의해 균일한 두께를 가진 고품질의 나노 섬유 부직포를 제조할 수 있다.Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on embodiment, since the winding amount of the nanofiber nonwoven fabric wound by the winding roller 102 is measured and a conveyance speed is controlled based on the measured winding amount, the field emission apparatus The conveying speed of the elongate sheet W passing through 200 can be maintained at a constant speed, whereby a high quality nanofiber nonwoven fabric having a uniform thickness can be produced.
또한 실시형태에 따른 나노 섬유 제조 장치(1)에 의하면, 가열 장치(117)와 감기 롤러(102)의 사이에 절단 장치(114)가 설치되어 있으므로 감기 롤러에 소정량의 나노 섬유 부직포가 감기면, 상기 나노 섬유 부직포를 절단할 수 있다. 이 경우, 나노 섬유 부직포가 감기지 않은 감기 롤러를 장착하고, 후속의 나노 섬유 부직포의 선단을 상기 감기 롤러에 접속한다. 이와 같은 조작을 반복함으로써 소정량의 감기가 종료된 나노 섬유 부직포를 용이하게 꺼낼 수 있다. Moreover, according to the nanofiber manufacturing apparatus 1 which concerns on embodiment, since the cutting device 114 is provided between the heating apparatus 117 and the winding roller 102, when a predetermined amount of nanofiber nonwoven fabric is wound by a winding roller, The nanofiber nonwoven fabric can be cut. In this case, the winding roller which the nanofiber nonwoven fabric is not wound is attached, and the front-end | tip of the subsequent nanofiber nonwoven fabric is connected to the said winding roller. By repeating such an operation, the nanofiber nonwoven fabric in which the predetermined amount of winding is finished can be easily taken out.
4.폴리머 용액 공급 장치(400)의 변형예4. Variation of Polymer Solution Supply Device 400
도 6은 폴리머 용액 공급 장치(400)의 제 1 변형예를 설명하기 위해 도시한 도면이다. 또한, 도 6의 (a)는 관체(271~277)를 2개의 그룹으로 나눈 경우를 나타내고, 도 6의 (b)는 관체(271~277)를 3개의 그룹으로 나눈 경우를 나타내고 있다.FIG. 6 is a diagram for explaining a first modification of the polymer solution supply device 400. 6 (a) shows a case where the tubes 271 to 277 are divided into two groups, and FIG. 6 (b) shows a case where the tubes 271 to 277 are divided into three groups.
도 7은 폴리머 용액 공급 장치(400)의 제 2 변형예를 설명하기 위해 도시한 도면이다. 도 8은 폴리머 용액 공급 장치(400)의 제 3 변형예를 설명하기 위해 도시한 도면이다.FIG. 7 is a diagram for explaining a second modification of the polymer solution supply device 400. FIG. 8 is a diagram for explaining a third modification of the polymer solution supply device 400.
또한, 도 6 내지 도 8에서는 폴리머 용액 공급 장치(400) 및 관체(271~277)를 간략화하여 모식적으로 도시하고 있다. 또한, 각 관체(271~277)에 장착되어 있는 각 노즐(240)은 도시를 생략하고 있다.6 to 8 schematically show the polymer solution supply device 400 and the tubular bodies 271 to 277 in a simplified manner. In addition, each nozzle 240 attached to each tubular body 271-277 has abbreviate | omitted illustration.
[제 1 변형예][First modification]
폴리머 용액 공급 장치(400)의 제 1 변형예는 도 6의 (a)에 도시한 바와 같이, 반송 방향(a)을 따라서 나열되어 있는 소정 수의 관체를 1개의 그룹으로서 관체(271~277)을 나누고, 각 그룹 마다 종류가 다른 폴리머 용액을 공급하는 구성으로 한 것이다. 도 6의 (a)에 도시한 예에서는 관체(271~277) 중 관체(271~274)를 제 1 그룹(G1)으로 하고, 관체(271~277) 중 관체(275~277)를 제 2 그룹(G2)으로 하여 제 1 그룹(G1)의 관체(271~274)에는 종류 A의 폴리머 용액을 공급하고, 제 2 그룹(G2)의 관체(275~277)에는 종류 B의 폴리머 용액을 공급하는 구성으로 하고 있다.In the first modification of the polymer solution supply device 400, as shown in FIG. 6 (a), the tube bodies 271 to 277 have a predetermined number of tubes arranged along the conveying direction a as a group. It is set as the structure which supplies a different kind of polymer solution for each group. In the example shown to (a) of FIG. 6, the tube 271-274 is the 1st group G1 among the tube bodies 271-277, and the tube 275-277 is 2nd among the tube bodies 271-277. As the group G2, the polymer solution of type A is supplied to the tubes 271 to 274 of the first group G1, and the polymer solution of the type B is supplied to the tubes 275 to 277 of the second group G2. I am in a constitution.
또한, 그룹의 수 및 각 그룹의 관체의 갯수는 임의이다. 예를 들면, 관체의 갯수가 실시형태와 같이 7개(관체(271~277))라고 하면, 도 6의 (b)에 도시한 바와 같이, 전체를 3개의 그룹(G1, G2, G3)으로 나누고, 제 1 그룹(G1)은 2개(관체(271, 272))로 하고, 제 2 그룹(G2)은 3개(관체(273~275))로 하며, 제 3 그룹(G3)은 2개(관체(276, 277))로 하여 제 1 그룹의 관체(271, 272)에는 종류 A의 폴리머 용액을 공급하고, 제 2 그룹의 관체(273~275)에는 종류 B의 폴리머 용액을 공급하며, 제 3 그룹의 관체(276, 277)에는 종류 A의 폴리머 용액을 공급하는 것도 가능하다.In addition, the number of groups and the number of tubes in each group are arbitrary. For example, if the number of pipe bodies is seven (pipe bodies 271 to 277) as in the embodiment, as shown in Fig. 6B, the entire body is divided into three groups G1, G2, and G3. The first group G1 is divided into two (pipe bodies 271 and 272), the second group G2 is divided into three tubes (pipes 273 to 275), and the third group G3 is divided into two. A type A polymer solution is supplied to the first group of tubulars 271 and 272 as a dog (tube bodies 276 and 277), and a type B polymer solution is supplied to the tubular bodies 273 to 275 of the second group. It is also possible to supply a polymer solution of type A to the tubular bodies 276 and 277 of the third group.
또한, 종류 A 및 종류 B와는 다른 종류 C의 폴리머 용액도 사용 가능하게 하면, 제 3 그룹의 관체(276, 277)에는 종류 C의 폴리머 용액을 공급하는 것도 가능하다.In addition, if a polymer solution of a type C different from the types A and B can be used, it is also possible to supply a type C polymer solution to the tubular bodies 276 and 277 of the third group.
제 1 변형예에 의하면, 도 6의 (a)에 의해 제조되는 나노 섬유 부직포는 장척 시트(W)의 표면에 종류 A의 폴리머 용액으로 이루어진 나노 섬유가 퇴적되고, 그 위에 종류 B의 폴리머 용액으로 이루어진 나노 섬유가 퇴적되게 되며, 또한, 도 6의 (b)에 의해 제조되는 나노 섬유 부직포는 폴리머 용액으로서 종류 A 및 종류 B의 폴리머 용액에 첨가하여 종류 C의 폴리머 용액을 사용했다고 하면, 장척 시트(W)의 표면에 종류 A의 폴리머 용액으로 이루어진 나노 섬유가 퇴적되고, 그 위에 종류 B의 폴리머 용액으로 이루어진 나노 섬유가 퇴적되며, 또한 그 위에 종류 C의 폴리머 용액으로 이루어진 나노 섬유가 퇴적된다.According to the first modification, in the nanofiber nonwoven fabric produced by FIG. 6A, nanofibers composed of a polymer solution of type A are deposited on the surface of the elongated sheet W, and a polymer solution of type B is deposited thereon. When the nanofibers formed are deposited, and the nanofiber nonwoven fabric produced by FIG. 6B is added to the polymer solution of type A and type B as a polymer solution, a polymer solution of type C is used. On the surface of (W), nanofibers composed of polymer solution of type A are deposited, nanofibers composed of polymer solution of type B are deposited thereon, and nanofibers composed of polymer solution of type C are deposited thereon.
[제 2 변형예][Second modification]
폴리머 용액 공급 장치(400)의 제 2 변형예는 도 7에 도시한 바와 같이, 각 관체(271~277)의 각 폴리머 용액 공급구에 접속되어 있는 종류 A의 폴리머 용액을 유통시키는 폴리머 용액 유통 파이프(421~424) 및 종류 B의 폴리머 용액을 유통시키는 폴리머 용액 유통 파이프(421~424)를, 각각 도중에 한 개의 폴리머 용액 유통 파이프(420A, 420B)로 하여, 상기 폴리머 용액 유통 파이프(420A)는 제 1 폴리머 용액 탱크(411)에 접속하고, 상기 폴리머 용액 유통 파이프(420B)는 제 2 폴리머 용액 탱크(412)에 접속하는 구성으로 한 것이다.As shown in FIG. 7, the second modification of the polymer solution supply device 400 is a polymer solution distribution pipe for circulating a polymer solution of type A connected to each polymer solution supply port of each tube 271 to 277. The polymer solution distribution pipe 420A is a polymer solution distribution pipe 421 to 424 for distributing the 421 to 424 and the type B polymer solutions to each of the polymer solution distribution pipes 420A and 420B. It connects to the 1st polymer solution tank 411, and the said polymer solution flow pipe 420B is connected to the 2nd polymer solution tank 412.
폴리머 용액 공급 장치(400)를 도 7과 같은 구성으로 한 경우, 폴리머 용액 공급량 제어 밸브(431~437)(도 7에서는 도시하지 않음)는, 도 3과 마찬가지로 각 관체(271~277)에 대응하여 폴리머 용액 유통 파이프(421~427)에 설치하도록 해도 좋은 것은 물론이지만, 폴리머 용액의 종류마다 일괄하여 공급량을 제어 가능하게 하면 좋은 경우에는, 도 7에 도시한 바와 같이, 폴리머 용액 유통 파이프(420A)에는 종류 A의 폴리머 용액의 공급량을 제어하기 위한 폴리머 용액 공급량 제어 밸브 (430A)를 설치하고, 폴리머 용액 유통 파이프(420B)에는 종류 B의 폴리머 용액의 공급량을 제어하기 위한 폴리머 용액 공급량 제어 밸브(430B)를 설치하는 것도 가능하다. 이와 같은 구성으로 하는 것에 의해, 폴리머 용액의 종류마다 공급량을 일괄 제어할 수 있다.When the polymer solution supply device 400 is configured as shown in FIG. 7, the polymer solution supply amount control valves 431 to 437 (not shown in FIG. 7) correspond to the respective tubular bodies 271 to 277 as in FIG. 3. Although it is a matter of course, it may be provided in the polymer solution distribution pipes 421 to 427, but if it is possible to control the supply amount collectively for each type of polymer solution, as shown in FIG. 7, the polymer solution distribution pipe 420A ) Is provided with a polymer solution supply amount control valve 430A for controlling the supply amount of a type A polymer solution, and the polymer solution distribution pipe 420B has a polymer solution supply amount control valve for controlling the supply amount of a type B polymer solution ( It is also possible to install 430B). By setting it as such a structure, supply amount can be collectively controlled for every kind of polymer solution.
또한, 제 2 변형예에 나타낸 폴리머 용액 유통 파이프의 구성은 도 6에 도시한 제 1 변형예에 나타내는 폴리머 용액 공급 장치(400)에서도 적용 가능한 것은 물론이다.In addition, of course, the structure of the polymer solution distribution pipe shown in the 2nd modification is also applicable to the polymer solution supply apparatus 400 shown in the 1st modification shown in FIG.
[제 3 변형예][Third modification]
폴리머 용액 공급 장치(400)의 제 3 변형예는 도 8에 도시한 바와 같이, 1개의 탱크(폴리머 용액 탱크(413)라고 함)의 내부를 나눠 복수의 폴리머 용액 저류실을 설치하는 구성으로 한 것이다. 즉, 상기 실시형태에 따른 나노 섬유 제조 장치(1)에서는 폴리머 용액의 종류는 2 종류(종류 A의 폴리머 용액 및 종류 B의 폴리머 용액)로 하고 있으므로, 폴리머 용액 탱크(413)의 내부에 2개의 폴리머 용액 저류실(413A, 413B)(이하, 제 1 폴리머 용액 저류실(413A), 제 2 폴리머 용액 저류실(413B)이라고 함)을 설치한다. 또한, 제 1 폴리머 용액 저류실(413A)은 종류 A의 폴리머 용액을 저류하는 폴리머 용액 저류실이고, 제 2 폴리머 용액 저류실(413 B)은 종류 B의 폴리머 용액을 저류하는 폴리머 용액 저류실이라고 한다.As shown in FIG. 8, the third modified example of the polymer solution supply device 400 is configured to provide a plurality of polymer solution storage chambers by dividing the inside of one tank (referred to as the polymer solution tank 413). will be. That is, in the nanofiber manufacturing apparatus 1 according to the embodiment described above, two types of polymer solutions (type A polymer solution and type B polymer solution) are used. Polymer solution storage chambers 413A and 413B (hereinafter referred to as first polymer solution storage chamber 413A and second polymer solution storage chamber 413B) are provided. The first polymer solution storage chamber 413A is a polymer solution storage chamber for storing a polymer solution of type A, and the second polymer solution storage chamber 413 B is a polymer solution storage chamber for storing a polymer solution of type B. do.
제 1 폴리머 용액 저류실(413A) 및 제 2 폴리머 용액 저류실(413B)로부터 각 관체(271~277)로의 폴리머 용액 유통 파이프(421~427)의 배관 방법은 상기 실시형태에서 설명한 것과 마찬가지로(도 3 참조), 종류 A의 폴리머 용액과 종류 B의 폴리머 용액을 각 관체(271~277)에 번갈아 공급하도록 해도 좋고, 제 1 변형예(도 6 참조) 또는 제 2 변형예(도 7 참조)에 나타낸 공급 방법이라도 좋다.The piping method of the polymer solution distribution pipes 421 to 427 from the first polymer solution storage chamber 413A and the second polymer solution storage chamber 413B to the respective pipe bodies 271 to 277 is the same as described in the above embodiment (Fig. 3), the polymer solution of type A and the polymer solution of type B may be alternately supplied to each tube 271 to 277, and the first modification (see FIG. 6) or the second modification (see FIG. 7) may be used. The supply method shown may be sufficient.
 이상, 본 발명을 상기 실시형태에 기초하여 설명했지만, 본 발명은 상기 실시형태에 한정되지 않고, 그 요지를 일탈하지 않는 범위에서 여러 가지 변형 실시가 가능하며, 예를 들면, 하기에 나타내는 변형도 가능하다.As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to the said embodiment, Various deformation | transformation implementation is possible in the range which does not deviate from the summary, For example, the deformation | transformation figure shown below is It is possible.
(1) 상기 실시형태에서는 폴리머 용액의 종류를 2 종류(종류 A의 폴리머 용액 및 종류 B의 폴리머 용액)의 경우에 대해 설명했지만, 폴리머 용액의 종류는 2 종류에 한정되지 않고, 3 종류 이상이라도 좋다.(1) In the above embodiment, the type of polymer solution has been described in the case of two types (polymer solution of type A and polymer solution of type B), but the type of polymer solution is not limited to two types, good.
(2) 상기 실시형태에서는 관체의 수는 7개(관체(271~277))로 했지만, 7개에 한정되지 않는다. 또한 각 관체에 장착되는 노즐의 수는 반드시 각 관체에서 동일한 수일 필요도 없다.(2) In the said embodiment, although the number of pipe bodies was seven pieces (pipe bodies 271-277), it is not limited to seven pieces. In addition, the number of nozzles attached to each tube does not necessarily need to be the same number in each tube.
(3) 상기 실시형태에서는 각 관체(271~277)는 장척 시트(W)와 평행한 평면상에서 반송 방향(a)에 대해 반드시 직교하도록 설치할 필요가 없고, 반송 방향(a)에 대해 다소의 기울기를 가진 상태로 설치하도록 해도 좋다.(3) In the said embodiment, each tubular body 271-277 does not need to be installed so that it may orthogonally cross with respect to a conveyance direction a on the plane parallel to the elongate sheet | seat W, and has a slight inclination with respect to a conveyance direction a. It may be installed with the.
(4) 상기 실시형태에서는 전계 방사 장치(200)가 1대인 경우를 예를 들어 설명했지만, 본 발명은 이것에 한정되지 않는다. 예를 들면, 2대 이상의 전계 방사 장치를 구비해도 좋다.(4) In the said embodiment, although the case where there was one electrospinning apparatus 200 was demonstrated to an example, this invention is not limited to this. For example, two or more field emission devices may be provided.
(5) 상기 실시형태에서는 노즐(240)이 상부 방향으로 되어 있는 노즐 블록(250)을 구비한 전계 방사 장치(200)를 이용하여 본 발명의 나노 섬유 제조 장치를 설명했지만, 본 발명은 이것에 한정되지 않는다. 예를 들면, 노즐이 하부 방향으로 되어 있는 노즐 블록을 가진 전계 방사 장치나 노즐이 가로 방향으로 되어 있는 노즐 블록을 가진 전계 방사 장치를 구비한 나노 섬유 제조 장치에 본 발명을 적용할 수도 있다.(5) In the above embodiment, the nanofiber production apparatus of the present invention has been described using the field emission device 200 having the nozzle block 250 in which the nozzle 240 is in an upward direction. It is not limited. For example, the present invention can also be applied to a nanofiber production apparatus having an electric field spinning device having a nozzle block in which the nozzle is in a downward direction or a field spinning device having a nozzle block in which the nozzle is in a horizontal direction.
(6) 상기 실시형태에서는 전원 장치(260)의 양극이 컬렉터(230)에 접속되고, 전원 장치(260)의 음극이 관체(271~277)에 접속된 경우를 예를 들어 설명했지만, 본 발명은 이것에 한정되지 않는다. 예를 들면, 전원 장치(260)의 음극이 컬렉터(230)에 접속되고, 전원 장치(260)의 양극이 관체(271~277)에 접속되어 있어도 좋다.(6) In the above embodiment, the case where the positive electrode of the power supply device 260 is connected to the collector 230 and the negative electrode of the power supply device 260 is connected to the tubular bodies 271 to 277 has been described by way of example. Is not limited to this. For example, the negative electrode of the power supply device 260 may be connected to the collector 230, and the positive electrode of the power supply device 260 may be connected to the tubular bodies 271 to 277.
(7) 상기 실시형태에서는 전계 방사를 실시할 때의 이상 발생시의 대처 방법에 대해서는 언급하지 않았지만, 장시간에 걸쳐 전계 방사 장치(200)를 연속해서 운전하는 중에 전계 방사 장치(200)에 이상이 발생한 경우에는, 상기 이상을 즉시 검출 가능하게 하는 기능을 갖게 하는 것도 가능하다.(7) Although the above-mentioned embodiment does not mention the countermeasure when the abnormality occurs when performing the field radiation, the abnormality occurred in the field radiation apparatus 200 while continuously operating the field radiating apparatus 200 for a long time. In this case, it is also possible to have a function that makes it possible to detect the abnormality immediately.
예를 들면, 전원 장치(260)에는 전류량을 계측하고, 상기 계측값을 주 제어장치(300)로 송신하는 기능을 갖게 하며, 또한 주 제어장치(300)에는 전원 장치(260)의 전류량이 이상값인 경우에는 전원 장치(260)를 제어하는 기능을 갖게 하도록 하는 것도 가능하다.For example, the power supply device 260 has a function of measuring the amount of current and transmitting the measured value to the main control device 300, and the main control device 300 has an abnormal amount of current of the power supply device 260. In the case of a value, it is possible to have a function of controlling the power supply 260.
이것에 의해, 컬렉터(230)와 관체(271~277)의 사이에 소정 전압을 인가한 상태로 전계 방사를 실시할 때, 전계 방사 장치(200)에 상한 이상의 전류가 전원 장치(260)로부터 공급되고 있는 것을 검지했을 때, 주 제어장치(300)는 전류 공급을 정지시키도록 전원 장치(260)를 제어하는 것이 가능해진다. 또한 반대로 전계 방사 장치(200)에 하한 이하의 전류가 전원 장치(260)로부터 공급되어 있는 것을 검지했을 때, 주 제어장치(300)는 이상이라는 경고 신호를 내도록 전원 장치(260)를 제어하는 것도 가능하다.Thereby, when electric field emission is performed in the state which applied the predetermined voltage between the collector 230 and the tube bodies 271-277, the electric current more than an upper limit to the electric field radiator 200 is supplied from the power supply device 260. When detecting that it is being done, the main control device 300 can control the power supply device 260 to stop the current supply. On the contrary, when the electric field radiator 200 detects that the electric current below the lower limit is supplied from the power supply device 260, the main control device 300 controls the power supply device 260 to give a warning signal of abnormality. It is possible.
또한, 주 제어장치(300)가 전원 장치(260)에 대해 전류 공급을 정지시키도록 제어한 경우에 주 제어장치(300)는 도시하지 않는 불활성 가스 공급 장치에 대해 불활성 가스를 전계 방사 장치(200)의 전계 방사실(212)에 공급시키는 신호를 송신해도 좋다. 이것에 의해, 화재 등의 사고를 미리 막을 수 있어 보다 안전성이 높은 나노 섬유 제조 장치를 실현하는 것이 가능해진다.In addition, when the main controller 300 controls the power supply unit 260 to stop the current supply, the main controller 300 emits inert gas to the field radiating apparatus 200 with respect to the inert gas supply device (not shown). The signal to be supplied to the electric field radiation chamber 212 may be transmitted. This makes it possible to prevent an accident such as a fire in advance and to realize a nanofiber manufacturing apparatus with higher safety.
(8) 상기 실시형태에서는 노즐(240)의 형상 등에 대해서는 언급하지 않았지만, 예를 들면, 노즐 선단부가 노즐(240)의 중심 축에 비스듬히 교차하는 평면을 따라서 절단한 형상으로 되어 있는 노즐을 이용하는 것도 가능하다. 노즐 선단부를 이와 같은 형상으로 하는 것에 의해, 노즐 선단부로부터 오버플로우하는 폴리머 용액이 노즐 선단부에서 체류하지 않고 신속히 흘러 떨어지게 된다. 이 때문에 전계 방사하는 과정에서 폴리머 용액으로부터 용매가 휘발되는 양을 매우 적게 할 수 있고, 또한 노즐(240)의 토출구의 근방에서 생성하는 폴리머 고화물의 양을 매우 적게 할 수 있다.(8) Although the shape and the like of the nozzle 240 are not mentioned in the above embodiment, it is also possible to use, for example, a nozzle having a shape in which the tip of the nozzle is cut along a plane intersecting obliquely with the central axis of the nozzle 240. It is possible. By setting the nozzle tip in such a shape, the polymer solution which overflows from the nozzle tip flows quickly without remaining in the nozzle tip. For this reason, the amount of solvent volatilized from the polymer solution in the process of electric field spinning can be made very small, and the amount of polymer solidified in the vicinity of the discharge port of the nozzle 240 can be made very small.
(9) 상기 실시형태에서는 감기 롤러(102)에 감긴 나노 섬유 부직포의 감기량에 의해 반송 속도를 제어하는 것에 의해, 장척 시트(W)의 반송 속도를 일정한 속도가 되도록 했지만, 감기량에 의한 반송 속도의 제어 뿐만 아니라 예를 들면, 퇴적된 나노 섬유의 통기도 또는 퇴적된 나노 섬유의 두께를 계측하고, 그 계측 결과에 기초하여 반송 속도를 적절히 제어할 수도 있다. 이 경우, 퇴적된 나노 섬유의 통기도 또는 퇴적된 나노 섬유의 두께가 소정의 값에 가능한 한 근접하도록 반송 속도를 제어한다. 이것에 의해, 균일한 통기도 또는 두께를 가진 나노 섬유 부직포를 생산하는 것이 가능해진다.(9) In the said embodiment, although the conveyance speed of the elongate sheet W was made constant by controlling the conveyance speed by the winding amount of the nanofiber nonwoven fabric wound by the winding roller 102, conveyance by the winding amount In addition to controlling the speed, for example, the ventilation of the deposited nanofibers or the thickness of the deposited nanofibers can be measured, and the conveyance speed can be appropriately controlled based on the measurement results. In this case, the conveyance speed is controlled such that the air permeability of the deposited nanofibers or the thickness of the deposited nanofibers is as close as possible to a predetermined value. This makes it possible to produce nanofiber nonwoven fabrics having a uniform air permeability or thickness.
또한, 이 경우의 나노 섬유의 통기도란, 장척 시트(W)상에 퇴적시킨 나노 섬유층과 장척 시트(W)가 적층된 상태로 통기도를 계측한 경우의 통기도를 말한다. 또한 나노 섬유의 두께란, 장척 시트(W)상에 퇴적시킨 나노 섬유층과 장척 시트(W)가 적층된 상태로 두께를 계측한 경우의 두께를 말한다.In addition, the air permeability of the nanofiber in this case means the air permeability at the time of measuring the air permeability in the state which the nanofiber layer deposited on the elongate sheet W and the elongate sheet W were laminated | stacked. In addition, the thickness of a nanofiber means the thickness at the time of measuring the thickness in the state which the nanofiber layer deposited on the elongate sheet W and the elongate sheet W were laminated | stacked.
(10) 상기 실시형태에서는 1개의 전계 방사 장치(200)에 1개의 노즐 블록이 설치된 경우를 예시했지만, 본 발명은 이것에 한정되지 않고, 예를 들면, 1개의 전계 방사 장치(200)에 2개 이상의 노즐 블록을 가진 구성이라도 좋다. 이 경우, 각 노즐 블록에는 상기 실시형태에서 설명한 바와 같이 소정 수의 노즐을 장착한 소정 갯수의 관체가 배열된다. 또한 각 노즐 블록마다 왕복 운동 및 컬렉터(230)의 사이의 간격 조정을 실시하도록 하는 것도 가능하다.(10) Although the above embodiment exemplifies a case in which one nozzle block is provided in one field radiating device 200, the present invention is not limited thereto, and for example, two pieces of one field radiating device 200 are provided. The structure which has more than one nozzle block may be sufficient. In this case, as described in the above embodiments, each nozzle block is arranged with a predetermined number of pipes provided with a predetermined number of nozzles. In addition, it is also possible to adjust the space between the reciprocating motion and the collector 230 for each nozzle block.
또한, 각 노즐 블록마다 왕복 운동시키는 경우에는 각 노즐 블록을 같은 주기로 왕복 운동시킬 수도 있고, 각 노즐 블록을 다른 주기로 왕복 운동시킬 수도 있다. 또한 각 노즐 블록 마다 컬렉터(230) 사이의 간격 조정을 실시하는 경우에는 각 노즐 블록을 같은 간격으로 할 수도 있고, 각 노즐 블록마다 다른 간격으로 설정할 수도 있다.In addition, when reciprocating for each nozzle block, each nozzle block may be reciprocated by the same period, and each nozzle block may be reciprocated by another period. In addition, when adjusting the space | interval between the collectors 230 for each nozzle block, each nozzle block may be set to the same space | interval, and each nozzle block may be set to a different space | interval.
(11) 폴리머 용액 공급 장치(400)의 구성은 상기 실시형태에 나타내는 구성(도 3 참조), 제 1 변형예에 나타내는 구성(도 6 참조) 및 제 2 변형예에 나타내는 구성(도 7 참조)에 한정되지 않고, 여러 가지 변형 실시가 가능하다.(11) The structure of the polymer solution supply apparatus 400 is the structure shown in the said embodiment (refer FIG. 3), the structure shown in 1st modification (refer FIG. 6), and the structure shown in a 2nd modification (refer FIG. 7). It is not limited to this, Various modifications are possible.
(12) 상기 실시형태에서는 반송 장치(100)에는 가열 장치(117)를 설치한 경우를 예시했지만, 제조하는 나노 섬유의 종류나 나노 섬유 제조 장치의 기종 등에 따라서는 가열 장치를 설치할 필요가 없는 경우도 있다.(12) Although the case where the heating apparatus 117 is provided in the conveyance apparatus 100 was illustrated in the said embodiment, when it is not necessary to provide a heating apparatus depending on the kind of nanofiber to manufacture, the model of a nanofiber manufacturing apparatus, etc. There is also.

Claims (15)

  1. 컬렉터와, 상기 컬렉터에 대향하는 위치에 설치되어 폴리머 용액을 토출하는 복수의 노즐이 2 차원적으로 배치된 노즐 블록과, 상기 폴리머 용액을 상기 노즐에 공급하는 폴리머 용액 공급 장치와, 상기 컬렉터와 상기 노즐의 사이에 고전압을 부여하는 전원 장치를 구비하고, 상기 컬렉터와 상기 노즐의 사이를 소정의 반송 방향으로 반송되어 가는 장척 시트에 상기 폴리머 용액을 토출하는 것에 의해 나노 섬유를 퇴적시키는 전계 방사 장치에 있어서, A nozzle block having a collector, a plurality of nozzles disposed in a position opposite to the collector and discharging a polymer solution in two dimensions, a polymer solution supply device for supplying the polymer solution to the nozzle, the collector and the An electric field radiator comprising: a power supply device for applying a high voltage between nozzles, and depositing the nanofibers by discharging the polymer solution to a long sheet that is conveyed between the collector and the nozzle in a predetermined conveying direction. In
    상기 폴리머 용액 공급 장치는, The polymer solution supply device,
    성분이 다른 복수 종류의 폴리머 용액을 저류하는 폴리머 용액 탱크와, 상기 복수 종류의 폴리머 용액을 폴리머 용액의 종류마다 유통시키는 복수의 폴리머 용액 유통 파이프를 구비하고, A polymer solution tank for storing a plurality of types of polymer solutions having different components, and a plurality of polymer solution distribution pipes for distributing the plurality of types of polymer solutions for each type of polymer solution,
    상기 노즐 블록은, The nozzle block,
    상기 장척 시트의 폭방향을 따라서 설치되고, 한쪽의 단부가 폐색단(閉
    Figure f96c
    端)으로 되어 있고 다른쪽 단부가 폴리머 용액 공급구로 되어 있는 관체(管體)를 상기 장척 시트의 반송 방향을 따라서 복수개 구비하고, 상기 복수의 관체의 각 관체에는 상기 노즐이 상기 각 관체의 길이 방향을 따라서 소정 수씩 장착되어 있고, 또한 상기 각 관체의 각 폴리머 용액 공급구에는 상기 관체에 할당된 종류의 폴리머 용액이 공급되도록 상기 관체에 할당된 종류의 폴리머 용액을 유통시키는 폴리머 용액 유통 파이프가 접속되어 있는 것을 특징으로 하는 전계 방사 장치.
    It is provided along the width direction of the said elongate sheet, and one end part is obstructed.
    Figure f96c
    Iv) a plurality of pipes, each of which is a polymer solution supply port, the other end being provided along the conveying direction of the long sheet, wherein the nozzles are provided in the pipes of the pipes in the longitudinal direction of the pipes. And a polymer solution distribution pipe for circulating the polymer solution of the type assigned to the tube so that a polymer solution of the type assigned to the tube is supplied to each polymer solution supply port of each tube. The field emission device characterized in that.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 각 관체는 상기 노즐 블록에 대해 착탈 자유롭게 장착되어 있는 것을 특징으로 하는 전계 방사 장치.Each said tube body is detachably attached to the said nozzle block, The field emission apparatus characterized by the above-mentioned.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 폴리머 용액 유통 파이프에는 상기 각 관체마다 폴리머 용액의 공급량의 제어를 가능하게 하는 폴리머 용액 공급량 제어 밸브가 상기 각 관체에 대응하여 설치되어 있는 것을 특징으로 하는 전계 방사 장치.And said polymer solution supply pipe is provided in said polymer solution distribution pipe corresponding to each of said tubes in order to control the amount of supply of the polymer solution to each of said tubes.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 폴리머 용액 유통 파이프에는 상기 폴리머 용액의 종류마다 상기 폴리머 용액의 공급량을 일괄 제어 가능하게 하는 폴리머 용액 공급량 제어 밸브가 설치되어 있는 것을 특징으로 하는 전계 방사 장치.And the polymer solution supply amount control valve is provided in the polymer solution distribution pipe so as to collectively control the supply amount of the polymer solution for each type of the polymer solution.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 폴리머 용액 탱크는 상기 폴리머 용액의 종류마다 개별로 설치되어 있는 것을 특징으로 하는 전계 방사 장치.And said polymer solution tank is provided separately for each type of said polymer solution.
  6. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 폴리머 용액 탱크는 상기 복수 종류의 폴리머 용액을 상기 폴리머 용액의 종류마다 저류 가능하게 하는 복수의 폴리머 용액 저류실이 형성되도록 내부가 분할되어 있는 것을 특징으로 하는 전계 방사 장치.And the polymer solution tank is divided inside such that a plurality of polymer solution storage chambers capable of storing the plurality of polymer solutions for each type of polymer solution are formed.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 6,
    상기 각 관체에 장착되어 있는 노즐은, 상기 노즐 블록을 상기 반송 방향을 따라서 보았을 때는 동일한 종류의 폴리머 용액이 할당되어 있는 각 관체에 장착되어 있는 각 노즐에 의한 반송 방향의 열이, 상기 장척 시트의 면과 평행한 평면상에서 상기 반송 방향에 대해 소정 각도의 기울기를 가진 직선상에 나열하도록 상기 각 관체에 장착되어 있는 것을 특징으로 하는 전계 방사 장치.When the nozzles attached to the respective tubular bodies are viewed along the conveying direction, the nozzles mounted on the respective tubular bodies have heat in the conveying direction by the nozzles mounted on the respective tubular bodies to which the same kind of polymer solution is assigned. The field radiating apparatus according to claim 1, wherein the pipes are mounted to the respective tubes so as to be arranged on a straight line having an inclination of a predetermined angle with respect to the conveying direction on a plane parallel to the plane.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 7,
    상기 각 노즐 및 각 관체는 도전성 부재로 이루어지고, 상기 전원 장치의 양전극 및 음전극 중 한쪽의 전극은 상기 컬렉터에 접속되고, 상기 전원 장치의 양전극 및 음전극 중 다른쪽 전극은 상기 각 관체에 접속되며, 상기 각 관체의 측을 접지 전위로 하고 있는 것을 특징으로 하는 전계 방사 장치.Each nozzle and each tube is made of a conductive member, one of the positive and negative electrodes of the power supply is connected to the collector, and the other of the positive and negative electrodes of the power supply is connected to the respective tubes, The field radiating apparatus characterized by the above-mentioned side of each tubular body being a ground potential.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 8,
    상기 장척 시트의 폭방향을 따라서 상기 노즐 블록을 소정의 주기로 왕복 운동시키는 왕복 운동 구동부를 더 구비하는 것을 특징으로 하는 전계 방사 장치.And a reciprocating drive unit for reciprocating the nozzle block at a predetermined cycle along the width direction of the long sheet.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 9,
    상기 노즐 블록과 상기 컬렉터의 간격을 조정 가능하도록 상기 노즐 블록을 구동시키는 간격 조정 구동부를 더 구비하는 것을 특징으로 하는 전계 방사 장치.And an interval adjusting driver for driving the nozzle block to adjust the gap between the nozzle block and the collector.
  11. 장척 시트를 소정의 반송 방향으로 반송하는 반송 장치와, 상기 소정의 반송 방향으로 반송되어 가는 장척 시트를 전계 방사하는 전계 방사 장치를 구비한 나노 섬유 제조 장치로서, As a nanofiber manufacturing apparatus provided with the conveying apparatus which conveys a long elongate sheet to a predetermined conveyance direction, and the electric field spinning apparatus which electric-field spins the elongate sheet conveyed in the said predetermined conveyance direction,
    상기 전계 방사 장치는 제 1 항 내지 제 10 항 중 어느 하나에 기재된 전계 방사 장치인 것을 특징으로 하는 나노 섬유 제조 장치.The field spinning device is a field spinning device according to any one of claims 1 to 10.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 반송 장치는, The conveying device,
    상기 장척 시트를 공급하는 공급 롤러, A feed roller for supplying the long sheet,
    상기 장척 시트를 소정의 반송 속도로 반송시키고, 또한 상기 전계 방사 장치에서 나노 섬유가 퇴적된 장척 시트를 감는 감기 롤러, A winding roller which conveys the long sheet at a predetermined conveying speed and winds the long sheet on which the nanofibers are deposited in the field spinning apparatus;
    상기 감기 롤러를 구동하는 감기 롤러 구동부, 및A winding roller driving unit for driving the winding roller, and
    상기 전계 방사 장치보다 상기 공급 롤러측 및 상기 감기 롤러측에 각각 설치되고, 상기 장척 시트에 소정의 장력을 부여하기 위한 제 1 텐션 롤러 및 제 2 텐션 롤러를 구비하는 것을 특징으로 하는 나노 섬유 제조 장치.It is provided in the said supply roller side and the said winding roller side rather than the said field radiating apparatus, The nanofiber manufacturing apparatus characterized by including the 1st tension roller and a 2nd tension roller for giving a predetermined tension to the said elongate sheet | seat. .
  13. 제 12 항에 있어서,The method of claim 12,
    상기 제 1 텐션 롤러는, 상기 제 1 텐션 롤러의 한쪽의 단부 및 다른쪽 단부의 수직 방향 및 수평 방향의 적어도 한쪽의 위치를 각 단부마다 독립하여 조정 가능하게 하는 제 1 텐션 롤러 위치 조정 기구를 구비하고, The first tension roller includes a first tension roller position adjustment mechanism that enables independent adjustment of at least one position in each of the ends in the vertical direction and the horizontal direction of one end portion and the other end portion of the first tension roller. and,
    상기 제 2 텐션 롤러는, 상기 제 2 텐션 롤러의 한쪽의 단부 및 다른쪽 단부의 수직 방향 및 수평 방향의 적어도 한쪽의 위치를 각 단부마다 독립하여 조정 가능하게 하는 제 2 텐션 롤러 위치 조정 기구를 구비하는 것을 특징으로 하는 나노 섬유 제조 장치.The second tension roller includes a second tension roller position adjustment mechanism that enables independent adjustment of at least one position in each of the vertical and horizontal directions of one end portion and the other end portion of the second tension roller. Nanofiber manufacturing apparatus, characterized in that.
  14. 제 12 항 또는 제 13 항에 있어서,The method according to claim 12 or 13,
    상기 반송 장치는, The conveying device,
    상기 감기 롤러의 상기 나노 섬유가 퇴적된 장척 시트의 감기량을 나타내는 감기량 계측 정보를 출력하는 감기량 계측 정보 출력장치, 및A winding amount measurement information output device for outputting winding amount measurement information indicating a winding amount of the long sheet on which the nanofibers of the winding roller are deposited;
    상기 감기량 계측 정보 출력장치로부터 출력된 감기량 계측 정보에 기초하여 상기 감기 롤러 구동부를 제어하는 반송 속도 제어장치를 더 구비하는 것을 특징으로 하는 나노 섬유 제조 장치.And a conveying speed control device for controlling the winding roller drive unit based on the winding amount measurement information output from the winding amount measurement information output device.
  15. 제 12 항 내지 제 14 항 중 어느 한 항에 있어서,The method according to any one of claims 12 to 14,
    상기 반송 장치는, The conveying device,
    상기 전계 방사 장치와 감기 롤러 사이의 소정 위치에 설치되고, 상기 나노 섬유가 퇴적된 장척 시트를 상기 장척 시트의 폭방향을 따라서 절단하기 위한 절단 장치를 더 구비하는 것을 특징으로 하는 나노 섬유 제조 장치.And a cutting device provided at a predetermined position between the electric field radiating device and the winding roller, for cutting the long sheet on which the nanofibers are deposited along the width direction of the long sheet.
PCT/KR2012/000847 2011-02-15 2012-02-06 Electrospinning apparatus, and apparatus for manufacturing nanofibers WO2012111930A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011030312A JP5802022B2 (en) 2011-02-15 2011-02-15 Electrospinning apparatus and nanofiber manufacturing apparatus
JP2011-030312 2011-02-15
KR1020110125755A KR101162045B1 (en) 2011-02-15 2011-11-29 An electrospinning apparatus and an apparatus for manufacturing nano-fiber
KR10-2011-0125755 2011-11-29

Publications (2)

Publication Number Publication Date
WO2012111930A2 true WO2012111930A2 (en) 2012-08-23
WO2012111930A3 WO2012111930A3 (en) 2012-11-29

Family

ID=46673012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000847 WO2012111930A2 (en) 2011-02-15 2012-02-06 Electrospinning apparatus, and apparatus for manufacturing nanofibers

Country Status (1)

Country Link
WO (1) WO2012111930A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103334166A (en) * 2013-06-18 2013-10-02 清华大学 Electrospinning liquid filamentation device and electrostatic spinning machine
CN103757719A (en) * 2014-02-12 2014-04-30 厦门大学 Fiber felt manufacturing device
CN104164706A (en) * 2014-07-14 2014-11-26 厦门大学 Evenly-liquid-spraying batch electrostatic spinning device
CN105019042A (en) * 2015-07-28 2015-11-04 博裕纤维科技(苏州)有限公司 Uniform solution feeding system for multi-nozzle electrospinning mass production equipment
CN111690992A (en) * 2019-03-12 2020-09-22 株式会社东芝 Nozzle unit, electric field spinning nozzle and electric field spinning device
EP3722476A1 (en) 2019-04-09 2020-10-14 Basf Se Nanofibre fleece composite
WO2021038021A1 (en) 2019-08-30 2021-03-04 Basf Se Water vapour-permeable composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458946B1 (en) * 2002-08-16 2004-12-03 (주)삼신크리에이션 Electrospinning apparatus for producing nanofiber and electrospinning nozzle pack for the same
KR20070047873A (en) * 2005-11-03 2007-05-08 김학용 Method of manufacturing multi-layer textile comprising nanofiber layer
JP2010031426A (en) * 2008-07-30 2010-02-12 Shinshu Univ Electrospinning apparatus, and polymer nanofiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100458946B1 (en) * 2002-08-16 2004-12-03 (주)삼신크리에이션 Electrospinning apparatus for producing nanofiber and electrospinning nozzle pack for the same
KR20070047873A (en) * 2005-11-03 2007-05-08 김학용 Method of manufacturing multi-layer textile comprising nanofiber layer
JP2010031426A (en) * 2008-07-30 2010-02-12 Shinshu Univ Electrospinning apparatus, and polymer nanofiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103334166A (en) * 2013-06-18 2013-10-02 清华大学 Electrospinning liquid filamentation device and electrostatic spinning machine
CN103757719A (en) * 2014-02-12 2014-04-30 厦门大学 Fiber felt manufacturing device
CN104164706A (en) * 2014-07-14 2014-11-26 厦门大学 Evenly-liquid-spraying batch electrostatic spinning device
CN105019042A (en) * 2015-07-28 2015-11-04 博裕纤维科技(苏州)有限公司 Uniform solution feeding system for multi-nozzle electrospinning mass production equipment
CN111690992A (en) * 2019-03-12 2020-09-22 株式会社东芝 Nozzle unit, electric field spinning nozzle and electric field spinning device
EP3722476A1 (en) 2019-04-09 2020-10-14 Basf Se Nanofibre fleece composite
WO2021038021A1 (en) 2019-08-30 2021-03-04 Basf Se Water vapour-permeable composite material
US11739475B2 (en) 2019-08-30 2023-08-29 Basf Se Water vapor-permeable composite material

Also Published As

Publication number Publication date
WO2012111930A3 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
WO2012111930A2 (en) Electrospinning apparatus, and apparatus for manufacturing nanofibers
KR101154211B1 (en) An electrospinning apparatus and an apparatus for manufacturing nano-fiber
KR101162045B1 (en) An electrospinning apparatus and an apparatus for manufacturing nano-fiber
WO2014171625A1 (en) Electrospinning apparatus
CN103370457B (en) Nano-fiber manufacturing apparatus
WO2019124663A1 (en) Melt-electrospinning device for mass production of nanofibers, and solvent-free melt-electrospinning method
WO2012128472A2 (en) Apparatus for manufacturing separator
WO2012077867A1 (en) Nanofiber manufacturing device
WO2014171624A1 (en) Electrospinning apparatus
KR101040059B1 (en) An apparatus for manufacturing nano-fiber and the method for manufacturing nano-fiber
WO2012077873A1 (en) Method and device for manufacturing nanofibers
JP5860603B2 (en) Separator manufacturing equipment
WO2015016450A1 (en) Multi-layered nanofiber filter medium using electro-blowing, melt-blowing or electrospinning, and method for manufacturing same
CN1985030A (en) Improved electroblowing web formation process
WO2012077864A1 (en) Field emission device and nanofiber manufacturing device
WO2012077870A1 (en) Nanofiber manufacturing device
WO2012077871A1 (en) Nanofiber manufaturing device and air supply device therefor
WO2021172753A1 (en) Nanofilter having improved filter efficiency and lifespan, and method for manufacturing same
JP2013147770A (en) Device for manufacturing nanofiber
WO2012128473A2 (en) Apparatus for manufacturing separator
WO2012077865A1 (en) Field emission device and nanofiber manufacturing device
WO2012077866A1 (en) Nano-fiber manufacturing device
WO2012128471A2 (en) Separator, method for manufacturing separator, and apparatus for manufacturing separator
WO2016171330A1 (en) Apparatus for manufacturing mask pack comprising nanofibers and method for manufacturing same
WO2012077869A1 (en) Method and device for manufacturing nanofiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747559

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747559

Country of ref document: EP

Kind code of ref document: A2