WO2012128471A2 - Separator, method for manufacturing separator, and apparatus for manufacturing separator - Google Patents

Separator, method for manufacturing separator, and apparatus for manufacturing separator Download PDF

Info

Publication number
WO2012128471A2
WO2012128471A2 PCT/KR2012/000849 KR2012000849W WO2012128471A2 WO 2012128471 A2 WO2012128471 A2 WO 2012128471A2 KR 2012000849 W KR2012000849 W KR 2012000849W WO 2012128471 A2 WO2012128471 A2 WO 2012128471A2
Authority
WO
WIPO (PCT)
Prior art keywords
separator
cellulose fiber
fiber layer
manufacturing apparatus
layer
Prior art date
Application number
PCT/KR2012/000849
Other languages
French (fr)
Korean (ko)
Other versions
WO2012128471A3 (en
Inventor
김익수
김병석
와타나베케이
기무라나오타카
김규오
이재환
Original Assignee
주식회사 톱텍
신슈 다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011061736A external-priority patent/JP5860603B2/en
Application filed by 주식회사 톱텍, 신슈 다이가쿠 filed Critical 주식회사 톱텍
Publication of WO2012128471A2 publication Critical patent/WO2012128471A2/en
Publication of WO2012128471A3 publication Critical patent/WO2012128471A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator, a separator manufacturing method, and a separator manufacturing apparatus.
  • the separator using the paper which fixed the cellulose fiber is known (for example, refer patent document 1). Since the separator described in patent document 1 uses the paper which beat
  • the present invention has been made to solve the above problems, and an object thereof is to provide a separator having high mechanical strength, high insulation, high dendrite resistance, and high ion conductivity. Moreover, it aims at providing the manufacturing method and manufacturing apparatus of the separator which can manufacture such a separator.
  • the separator of the present invention includes at least one cellulose fiber layer and at least one nanofiber layer.
  • the fiber since the fiber is provided with a nanofiber layer having thin, fine voids and uniform characteristics, it has high insulation and high dendrite resistance.
  • the nanofiber layer since the nanofiber layer also has a large porosity, it has high electrolyte solution retention characteristics and high ion conductivity.
  • the separator of this invention since it is provided with a cellulose fiber layer, it has high mechanical strength.
  • the separator of the present invention becomes a separator having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity.
  • the cellulose fiber layer preferably has a thickness of 1 ⁇ m to 40 ⁇ m and an average fiber diameter of 0.1 ⁇ m to 10 ⁇ m.
  • the separator of the present invention since the thickness of the cellulose fiber layer is 40 ⁇ m or less, a thin separator can be manufactured, and a secondary battery or a capacitor having a large capacitance can be manufactured. Moreover, since the thickness of a cellulose fiber layer is 1 micrometer or more, mechanical strength does not fall.
  • the separator of the present invention since the cellulose fiber layer is made of cellulose fibers having an average fiber diameter of 0.1 ⁇ m or more, it is easy to maintain the strength of the cellulose fiber itself, and can form a cellulose fiber layer having sufficient mechanical strength without being too thick. have. On the other hand, since the cellulose fiber layer is made of cellulose fibers having an average fiber diameter of 10 ⁇ m or less, it is possible to manufacture a thin separator and to manufacture a non-aqueous battery having a large electric capacity.
  • the cellulose fiber layer is preferably made of cellulose fibers having an average fiber diameter of 2.0 mm or more.
  • the nanofiber layer has a porosity. ) Is in the range of 20% to 80%, and the average pore size is preferably in the range of 0.02 ⁇ m to 2 ⁇ m.
  • the porosity of a nanofiber layer exists in the range of 20%-80%, it has high electrolyte solution holding characteristic and it becomes possible to obtain high ion conductivity. Moreover, since the average pore size exists in the range of 0.02 micrometer-2 micrometers, and a dendrite does not easily invade a separator, it has high dendrite tolerance.
  • the separator of the present invention preferably has a structure in which the nanofiber layer is provided on both surfaces of the cellulose fiber layer.
  • the separator of the present invention preferably has a structure in which the cellulose fiber layer is provided on both surfaces of the nanofiber layer.
  • the method for producing a separator according to the present invention is a method for producing a separator for producing the separator according to the present invention, the process for preparing a long sheet made of the cellulose fiber layer and the nanosheet on one side of the long sheet being conveyed. It is characterized by including a step of forming a fiber layer.
  • the manufacturing method of the separator of this invention it becomes possible to manufacture the separator of this invention which has high mechanical strength, high insulation, high dendrite tolerance, and high ion conductivity continuously with high productivity.
  • a cellulose fiber layer in which the nanofiber layer was formed can be commercialized as it is. For this reason, the process of isolate
  • the method further includes a step of forming the nanofiber layer on the other side of the long sheet being conveyed.
  • the method for producing a separator according to the present invention is a method for producing a separator for producing the separator according to the present invention, in which a separator is produced by sequentially forming the nanofiber layer and the cellulose fiber layer on one side of a long sheet being conveyed. It is preferable.
  • a separator having a structure in which a nanofiber layer is provided on one side of the cellulose fiber layer a separator having a structure in which the nanofiber layer is provided on both sides of the cellulose fiber layer, and a cellulose fiber layer on both sides of the nanofiber layer It becomes possible to manufacture any separator of the separator of the installed structure.
  • the separator manufacturing apparatus of the present invention is a separator manufacturing apparatus for producing the separator of the present invention, and the nano-to-long sheet conveyed by the conveying apparatus for conveying the long sheet composed of the cellulose fiber layer and the conveying apparatus is nano. It is characterized by including the field emission device for forming a fiber layer.
  • the separator manufacturing apparatus of this invention it becomes possible to manufacture the separator of this invention which has high mechanical strength, high insulation, high dendrite tolerance, and high ion conductivity continuously with high productivity.
  • a cellulose fiber layer in which the nanofiber layer was formed can be used as a product as it is. For this reason, the process of isolate
  • the separator manufacturing apparatus of the present invention is a separator manufacturing apparatus for manufacturing the separator of the present invention, and includes a conveying apparatus for conveying a long sheet and an electric field for forming a nanofiber layer in the long sheet being conveyed by the conveying apparatus.
  • a cellulose fiber layer manufacturing apparatus which forms a cellulose fiber layer in the said elongate sheet
  • the separator having a structure in which a nanofiber layer is provided on one side of the cellulose fiber layer, the separator having a structure in which the nanofiber layer is provided on both sides of the cellulose fiber layer, and both sides of the nanofiber layer. It is possible to manufacture any of the separators having a structure in which a cellulose fiber layer is provided.
  • the cellulose fiber layer production apparatus is preferably a melt blow spinning device.
  • the cellulose fiber layer production apparatus is preferably an electric field emission device.
  • the present invention provides a separator having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity, and also provides a method and apparatus for manufacturing a separator capable of manufacturing such a separator.
  • FIG. 1 is a cross-sectional view of the separator 100 according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the separator manufacturing apparatus 1 according to the first embodiment.
  • FIG 3 is a diagram showing that the separator 100 is manufactured by the method for manufacturing a separator according to the first embodiment.
  • FIG. 4 is a cross-sectional view of the separator manufacturing apparatus 2 according to the second embodiment.
  • FIG 5 is a cross-sectional view of the separator 102 according to the third embodiment.
  • FIG. 6 is a cross-sectional view of the separator manufacturing apparatus 3 according to the third embodiment.
  • FIG. 7 is a diagram showing that the separator 102 is manufactured by the method for manufacturing a separator according to the third embodiment.
  • FIG. 8 is a cross-sectional view of the separator manufacturing apparatus 4 according to the fourth embodiment.
  • FIG 9 is a cross-sectional view of the separator manufacturing apparatus 5 according to the fifth embodiment.
  • FIG. 1 is a cross-sectional view of the separator 100 according to the first embodiment.
  • the separator 100 includes one cellulose fiber layer 110 and two nanofiber layers 120 and 130, and a nanofiber layer (on both sides of the cellulose fiber layer 110). 120 and 130 are provided.
  • the cellulose fiber layer 110 is made of cellulose fibers having a thickness of 1 ⁇ m to 40 ⁇ m and an average fiber diameter of 0.1 ⁇ m to 10 ⁇ m.
  • the nanofiber layers 120 and 130 have a porosity in the range of 20% to 80%, and an average pore size in the range of 0.02 m to 2 m.
  • the separator 100 is obtained by the manufacturing method of the separator which concerns on Embodiment 1 using the separator manufacturing apparatus 1 which concerns on Embodiment 1 mentioned later.
  • FIG. 3 is a diagram showing that the separator 100 is manufactured by the method for manufacturing a separator according to the first embodiment.
  • 3 (a) to 3 (c) are respective process diagrams.
  • the separator manufacturing apparatus 1 which concerns on Embodiment 1 is conveyed by the conveying apparatus 10 and the conveying apparatus 10 which convey the long sheet which consists of the elongate cellulose fiber layer 110, as shown in FIG.
  • the field emission device 20a which forms the nanofiber layer 120 (refer to FIG. 3 (b)) on one side of the thin cellulose fiber layer 110, and the nanofiber layer 130 (FIG. 3 (c) on the other side).
  • Field emission device 20b The field radiating device 20a and the field radiating device 20b are both top direction field radiating devices provided with top direction nozzles.
  • the conveying apparatus 10 is comprised so that the cellulose fiber layer 110 used as a base material layer may be conveyed from the field radiating apparatus 20a toward the field radiating apparatus 20b.
  • the conveying apparatus 10 moves the cellulose fiber layer 110 in the first direction (the A1 direction in FIG. 2) when the field radiating device 20a forms the nanofiber layer 120 (see FIG. 3B).
  • the cellulosic fiber layer 110 from the height position of the field radiating device 20a to the height position of the field radiating device 20b in the second direction (A2 direction) substantially perpendicular to the first direction,
  • the cellulose fiber layer 110 is conveyed in the third direction (A3 direction) opposite to the first direction.
  • the conveying apparatus 10 includes an feeding roller 11 for feeding the cellulose fiber layer 110, a winding roller 12 for winding the cellulose fiber layer 110, and a tension roller 13 for adjusting the pulling of the cellulose fiber layer 110. 18, the plurality of drive rollers 14 for conveying the cellulose fiber layer 110, the first reverse roller 16a for directing the conveyance direction of the cellulose fiber layer 110 from the field radiating device 20a, and And a second reverse roller 16b for directing the conveyance direction of the cellulose fiber layer 110 from the first reverse roller 16a toward the field radiating device 20b.
  • the feed roller 11, the winding roller 12, the tension rollers 13 and 18, and the some drive roller 14 comprise the conveyance mechanism (not shown) which conveys the cellulose fiber layer 110. do.
  • the plurality of drive rollers 14 are drive devices for transporting the cellulose fiber layer 110.
  • the first reversing roller 16a and the second reversing roller 16b are formed such that the cellulose fiber layer 110 is reversed so that the direction of one side of the cellulose fiber layer 110 and the direction of the other side are reversed while the cellulose fiber layer 110 is being conveyed.
  • the cellulose fiber layer inversion mechanism 15 which inverts this is comprised.
  • the cellulose fiber layer inversion mechanism 15 inverts the cellulose fiber layer 110 from the field emission device 20a in accordance with the height position of the field emission device 20b.
  • the field radiating apparatuses 20a and 20b are mounted on the housing body 21 via an insulating member 25, and the collector 24 located on the other side of the cellulose fiber 110 and one of the cellulose fiber layers 110 are provided.
  • a nozzle unit 22 located at a position opposite to the collector 24 on the surface side and having a plurality of nozzles 23 for discharging the polymer solution supplied from a polymer solution supply unit (not shown) toward the cellulose fiber layer 110; Between the collector 24 and the nozzle unit 22, a power supply 29 for applying a high voltage (for example, 10 kV to 80 kV), and an auxiliary belt device 26 to assist the cellulose fiber layer 110 to be conveyed. Equipped.
  • a high voltage for example, 10 kV to 80 kV
  • the nozzle unit 22 of the electric field radiating apparatus 20a, 20b is equipped with the some upward direction nozzle 23 which discharges a polymer solution from a discharge port to an upward direction as a some nozzle.
  • the field radiating device 20a is configured to discharge the polymer solution from the discharge ports of the plurality of top direction nozzles 23 to electrospin the nanofibers.
  • the plurality of upward direction nozzles 23 are arranged at a pitch of, for example, 1.5 cm to 6.0 cm.
  • the number of the some upward direction nozzles 23 is 36 pieces (6 * 6 pieces when it arranges in vertical or horizontal same number)-21904 pieces (148 * 148 pieces when it is arranged in vertical and horizontal same number), for example.
  • the nozzle unit 22 is a rectangle (square being 0.5m-3m in one side, for example from an upper surface). Inclusive).
  • the collector 24 is attached to the conductive housing body 21 via an insulating member.
  • the positive electrode of the power supply device 29 is connected to the collector 24, and the negative electrode of the power supply device 29 is connected to the housing body 21 and the nozzle unit 22.
  • the auxiliary belt device 26 includes an auxiliary belt 27 that rotates in synchronization with the conveyance speed of the cellulose fiber layer 110, and five auxiliary belt rollers 28 that assist the rotation of the auxiliary belt 27.
  • One of the five auxiliary belt rollers 28, or two or more rollers for the auxiliary belt, is a drive roller, and the remaining auxiliary belt rollers are driven rollers. Since the auxiliary belt 27 is provided between the collector 24 and the cellulose fiber layer 110, the cellulose fiber layer 110 is smoothly conveyed without being pulled by the collector 24 to which a positive high voltage is applied.
  • a polymer solution is prepared, and the polymer solution is supplied to the nozzle unit 22.
  • the elongate cellulose fiber layer 110 (refer to FIG. 3 (a)) is set in the conveying apparatus 10, and the cellulose fiber layer 110 is then moved from the feeding roller 11 toward the winding roller 12. It conveys at a predetermined conveyance speed.
  • the nanofiber layer 120 is formed on one side of the cellulose fiber layer 110 being conveyed by the field emission device 20a (see FIG. 3B).
  • the nanofiber layer 130 is formed in the other surface of the cellulose fiber layer 110 conveyed by the field emission apparatus 20b (refer FIG.3 (c)).
  • the separator 100 having the structure in which the nanofiber layers 120 and 130 are provided on both surfaces of the cellulose fiber layer 110 is completed.
  • polylactic acid polypropylene
  • PVAc polyvinyl acetate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PA polyamide
  • PUR polyurethane
  • PAN polyacrylonitrile
  • PAN polyetherimide
  • PCL polycaprolactone
  • PLA polylactic acid glycolic acid
  • PLGA silk, cellulose, chitosan and the like.
  • a solvent used for a polymer solution dichloromethane, dimethylformamide, dimethyl sulfoxide, methyl ethyl ketone, chloroform, acetone, water, formic acid, acetic acid, cyclohexane, THF, etc. can be used, for example. You may mix and use multiple types of solvent.
  • the polymer solution may contain additives such as conductivity enhancers.
  • a plant fiber used as a raw material of a cellulose fiber coniferous, manila hemp, cedar, a white, etc. can be used, for example. You may mix and use multiple types of fiber.
  • a conveyance speed can be set, for example at 0.2 m / min-100 m / min.
  • the voltage applied between the collector 24 and the nozzle unit 22 can be set between 10 kV and 80 kV, and preferably around 50 kV.
  • the temperature of a spinning zone can be set to 10 to 40 degreeC, for example.
  • the humidity of a radiation zone can be set to 20%-60%, for example.
  • the nanofiber layers 120 and 130 are characterized by thin fibers and fine pores, they have high insulation and high dendrite resistance.
  • the nanofiber layer also has a large porosity, it has high electrolyte solution retention characteristics and high ion conductivity.
  • the separator 100 which concerns on Embodiment 1, since the cellulose fiber layer 110 is provided, it has high mechanical strength.
  • the separator 100 according to Embodiment 1 becomes a separator having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity.
  • the separator 100 which concerns on Embodiment 1, since the thickness of the cellulose fiber layer 110 is 40 micrometers or less, it becomes possible to manufacture a thin separator and to manufacture a non-aqueous battery with a large electric capacity. In addition, since the thickness of the cellulose fiber layer 110 is 1 ⁇ m or more, the mechanical strength does not decrease.
  • the separator 100 which concerns on Embodiment 1
  • the cellulose fiber layer 110 consists of cellulose fiber of 0.1 micrometer or more of average fiber diameters
  • the cellulose fiber layer 110 consists of cellulose fiber of 10 micrometers or less of average fiber diameters, it becomes possible to manufacture a thin separator and to manufacture a non-aqueous battery with a large electric capacity.
  • the separator 100 which concerns on Embodiment 1, since the part which cellulose fibers intertwine increases, it becomes possible to comprise the separator which has sufficient mechanical strength, without making it thick.
  • the separator 100 which concerns on Embodiment 1, since the porosity of the nanofiber layers 120 and 130 exists in the range of 20%-80%, it has high electrolyte solution holding property and can obtain high ion conductivity. Moreover, since the average pore size exists in the range of 0.02 micrometer-2 micrometers, and a dendrite does not easily invade a separator, it has high dendrite tolerance.
  • the separator 100 which concerns on Embodiment 1, it becomes possible to prevent growth of dendrites on both surfaces of the cellulose fiber layer 110, and it becomes possible to comprise the separator with higher dendrite tolerance.
  • the separator of the present invention having high mechanical strength, high insulation, high dendrite resistance, and high ion conductivity can be continuously manufactured with high productivity.
  • the cellulose fiber layer 110 in which the nanofiber layers 120 and 130 were formed can be used as a product as it is. For this reason, the process of isolate
  • the separator manufacturing apparatus 1 which concerns on Embodiment 1, it becomes possible to manufacture the separator of this invention which has high mechanical strength, high insulation, high dendrite tolerance, and high ion conductivity continuously with high productivity.
  • the separator manufacturing apparatus 1 which concerns on Embodiment 1, the cellulose fiber layer 110 in which the nanofiber layers 120 and 130 were formed can be used as a product as it is. For this reason, the process of isolate
  • FIG. 4 is a cross-sectional view of the separator manufacturing apparatus 2 according to the second embodiment.
  • the separator manufacturing apparatus 2 according to the second embodiment has the same configuration as that of the separator manufacturing apparatus 1 according to the first embodiment, but the configuration of the electric field radiating apparatus is the first embodiment. It differs from the case of the separator manufacturing apparatus 1 which concerns. That is, in the separator manufacturing apparatus 2 which concerns on Embodiment 2, as shown in FIG. 4, the field emission apparatus 20a which forms the nanofiber layer 120 in one surface of the cellulose fiber layer 110 to be conveyed, and The field emission device 20c which forms the nanofiber layer 130 on the other side is provided.
  • the field emission device 20c is a downward direction field emission device having a downward direction nozzle.
  • the field radiating apparatus 20a and the field radiating apparatus 20c are the same straight line along the conveyance direction of the cellulose fiber layer 110 in this order. It is arrange
  • the field radiating device 20c is mounted on the support 35 through an insulating member, and is disposed on one side of the cellulose fiber 110 and the collector 34 on the other side of the cellulose fiber layer 110. It is provided with the nozzle unit 32 which has the several downward direction nozzle 33 located in the position which opposes, the power supply 29, and the auxiliary belt apparatus 36 which assists the cellulose fiber layer 110 to be conveyed. do.
  • the nozzle unit 32 is attached to the housing body 31 and has a some lower direction nozzle 33 which discharges a polymer solution from a discharge port to a downward direction as a some nozzle.
  • the collector 34 is mounted on the conductive support 35 via an insulating member.
  • the positive electrode of the power supply device 29 is connected to the collector 34, and the negative electrode of the power supply device 29 is the housing body 35. And the nozzle unit 32.
  • the auxiliary belt device 36 includes an auxiliary belt 37 that rotates in synchronization with the conveyance speed of the cellulose fiber layer 110, and five rollers 38 for assisting belts that assist the rotation of the auxiliary belt 37.
  • the separator manufacturing apparatus 2 according to the second embodiment is different from the case of the separator manufacturing apparatus 1 according to the first embodiment, although the configuration of the field radiating device is the same as that of the separator manufacturing apparatus 1 according to the first embodiment. It becomes possible to manufacture the separator of the present invention having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity continuously with high productivity.
  • the separator manufacturing apparatus 2 which concerns on Embodiment 2, the cellulose fiber layer 110 in which the nanofiber layer 120,130 was formed can be manufactured as it is. For this reason, the process of isolate
  • the separator manufacturing apparatus 2 which concerns on Embodiment 2, it becomes possible to manufacture the separator which has a structure in which the nanofiber layer was provided in both surfaces of a cellulose fiber layer, without making the installation height of a separator manufacturing apparatus very high.
  • the separator manufacturing apparatus 2 which concerns on Embodiment 2 has the structure similar to the case of the separator manufacturing apparatus 1 which concerns on Embodiment 1 except the structure of the field emission apparatus, the separator manufacturing apparatus which concerns on Embodiment 1 ( It has one of the effects that 1) has.
  • FIG 5 is a cross-sectional view of the separator 102 according to the third embodiment.
  • the separator 102 according to the third embodiment basically has the same configuration as the separator 100 according to the first embodiment, but the structure of the cellulose fiber layer is the separator 100 according to the first embodiment. It is different from the case. That is, the separator 102 which concerns on Embodiment 3 is equipped with the cellulose fiber layer 112 manufactured by the cellulose fiber layer manufacturing apparatus 40 mentioned later as shown in FIG.
  • the separator 102 is obtained by the separator method which concerns on Embodiment 3 using the separator manufacturing apparatus 3 which concerns on Embodiment 3 mentioned later.
  • FIG. 6 is a cross-sectional view of the separator manufacturing apparatus 3 according to the third embodiment.
  • FIG. 7 is a diagram showing that the separator 102 is manufactured by the method for manufacturing a separator according to the third embodiment.
  • the separator manufacturing apparatus 3 which concerns on Embodiment 3 basically has the same structure as the separator manufacturing apparatus 1 which concerns on Embodiment 1, but Embodiment 1 is the point which further comprises the structure of a conveying apparatus, and a cellulose fiber layer manufacturing apparatus. It differs from the case of the separator manufacturing apparatus 1 which concerns on this. That is, the separator manufacturing apparatus 3 which concerns on Embodiment 3 has the conveying apparatus 60 which conveys the long sheet W, the field emission apparatus 20a, 20b, and the cellulose fiber layer (as shown in FIG. 6). The cellulose fiber layer manufacturing apparatus 40 which forms 112 is provided.
  • the field emission apparatus 20a the elongate sheet inversion mechanism 65a mentioned later, the cellulose fiber layer manufacturing apparatus 40, and later mentioned
  • the long sheet reversing mechanism 65b and the electric field radiating device 20b are arranged along the conveyance direction of the long sheet W in this order.
  • the long sheet conveying apparatus 60 is provided as a conveying apparatus.
  • the long sheet conveying device 60 includes an feeding roller 61 for feeding the long sheet W, a winding roller 62 for winding the long sheet W, and a tension roller for adjusting the pulling of the long sheet W ( 63, 68, the some drive roller 64 which conveys the long sheet W, the 1st reverse roller 66a, 66c, and the 2nd reverse roller 66b, 66d.
  • the feed roller 61, the winding roller 62, the tension rollers 63 and 68, and the some drive roller 64 comprise the conveyance mechanism 60 which conveys the long sheet W.
  • the some drive roller 64 is a drive apparatus which conveys the long sheet W. As shown in FIG.
  • the 1st reversing roller 66a and the 2nd reversing roller 66b have the long sheet W so that the direction of the one surface of the long sheet W and the other surface may be reversed while the long sheet W is conveyed.
  • a long sheet reversing mechanism 65a for reversing the structure is formed.
  • the 1st reversing roller 66c and the 2nd reversing roller 66d are a long sheet
  • the long sheet inversion mechanism 65b which inverts (W) is constituted.
  • the field emission devices 20a and 20b have the same configuration as the field emission devices 20a and 20b used in the first embodiment.
  • the cellulose fiber layer manufacturing apparatus 40 forms the cellulose fiber layer 112 in the long sheet W conveyed by the long sheet conveying apparatus 60, as shown in FIG.
  • the cellulose fiber layer manufacturing apparatus 40 has a nozzle unit 42 having a plurality of downward direction nozzles 43 for discharging the cellulose solution supplied from the cellulose solution supply unit (not shown) toward the long sheet W, and toward the cellulose solution.
  • the high temperature airflow supply part 44 which injects high temperature airflow, and the high temperature airflow suction apparatus 47 are provided.
  • the nozzle unit 42 is attached to the housing body 21 and described later in the direction along the cellulose solution discharge direction and the plurality of downward direction nozzles 43 for discharging the cellulose solution downward from the discharge port as a plurality of nozzles. It has a high temperature airflow path (not shown) which flows the high temperature airflow supplied from the high temperature airflow supply part 44. As shown in FIG.
  • the plurality of downward direction nozzles 43 are arranged at a pitch of, for example, 1.5 cm to 6.0 cm.
  • the nozzle unit 42 may use a nozzle unit having various sizes and various shapes.
  • the hot airflow supply 44 includes a suction pump 45 and a heater 46.
  • the high temperature airflow supply 44 forms the high temperature airflow by heating the air blown in from the outside by the suction pump 84 with the heater 46.
  • the hot air flow is led to a hot air flow path (not shown) of the nozzle unit 42.
  • the heater 46 can adjust the output so that a high temperature airflow may be a predetermined temperature within a range of 120 ° C to 500 ° C.
  • the high temperature airflow suction device 47 is disposed on the inner surface side of the long sheet W as viewed from the nozzle unit 42, and the mesh member 48, the high temperature airflow suction unit 50, and the discharge pump 51 are disposed. Equipped.
  • the high temperature airflow flowing from the high temperature airflow path (not shown) is sucked by the high temperature airflow suction unit 50 through the mesh member 44 in which a plurality of holes for airflow passage are formed, and is discharged to the discharge pump 51. Is discharged to the outside.
  • FIG. 7 is a diagram showing that the separator 102 is manufactured by the method for manufacturing a separator according to the third embodiment.
  • 7A to 7E are respective process diagrams.
  • the cellulose solution is prepared in one cellulose fiber layer manufacturing apparatus 40, and the cellulose solution is supplied to the nozzle unit 42.
  • a polymer solution is prepared, and the polymer solution is supplied to each nozzle unit 22.
  • the long sheet W is set to the long sheet conveying apparatus 60, and the long sheet W is conveyed from the input roller 61 toward the winding roller 62 at a predetermined conveyance speed after that (FIG. See (a) of 7).
  • the cellulose solution is obtained by melting cellulose, which is a material of the cellulose fiber layer 112, or dissolving it in a solvent.
  • the nanofiber layer 120 is formed on one surface of the long sheet W by the field emission device 20a while conveying the long sheet 110 (see FIG. 7B).
  • the direction of one side of the long sheet W and the direction of the other side are reversed by the long sheet reversing mechanism 65a (inverting rollers 66a, 66b) so that one side becomes the upper side.
  • the cellulose fiber layer 112 is formed on one surface of the long sheet W by the cellulose fiber manufacturing apparatus 40 while conveying the long sheet W in which the nanofiber layer 120 was formed (FIG. 7 ( c)).
  • the nanofiber layer 120 and the nanofiber layer 130 are laminated
  • the long sheet reversing mechanism 65b (reversing rollers 66c, 66d) reverses the direction of the one surface of the long sheet W and the direction of the other surface such that one surface becomes the lower side.
  • the nanofiber layer 130 is formed on one side of the long sheet W by the field emission device 20b while conveying the long sheet W on which the nanofiber layer 120 and the cellulose fiber layer 112 are laminated. (See FIG. 7D). Thereby, the laminated sheet by which the nanofiber layer 120, the cellulose fiber layer 112, and the nanofiber layer 130 were laminated
  • the separator 102 and the long sheet are separated while the laminated sheet is introduced to manufacture the separator 102 (see FIG. 5E).
  • the separator 102 can be manufactured.
  • nonwoven fabric, woven fabric, knitted fabric, film, paper, etc. made of various materials can be used.
  • the thickness of a long sheet the thing of 5 micrometers-500 micrometers can be used, for example.
  • the thing of 10m-10km can be used, for example.
  • the separator manufacturing apparatus 3 which concerns on Embodiment 3 differs from the case of the separator manufacturing apparatus 1 which concerns on Embodiment 1 in that the structure of a conveying apparatus and the cellulose fiber layer manufacturing apparatus differ from the case of the separator manufacturing apparatus 1 which concerns on Embodiment 1, Like (1), it becomes possible to continuously manufacture the separator of the present invention having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity with high productivity.
  • the separator manufacturing apparatus 3 which concerns on Embodiment 3, it becomes possible to adjust the thickness of a cellulose fiber layer, the fiber length of a cellulose fiber, the porosity and the pore size of a cellulose fiber layer, and form the cellulose fiber layer which has a desired characteristic. It becomes possible. It is suitable for forming a cellulose fiber layer made of cellulose fibers having a relatively large average fiber diameter.
  • the separator manufacturing apparatus 3 which concerns on Embodiment 3 has the structure similar to the case of the separator manufacturing apparatus 1 which concerns on Embodiment 1 except having the structure of a conveying apparatus and the cellulose fiber layer manufacturing apparatus further, it implements. It has a corresponding effect among the effects which the separator manufacturing apparatus 1 which concerns on the form 1 has.
  • the order in which the field radiating device and the cellulose fiber layer manufacturing device are disposed is appropriately changed in the separator manufacturing apparatus 3 according to the third embodiment, so that both sides of the separator and the cellulose fiber layer having a structure in which the nanofiber layer is provided on one side of the cellulose fiber layer. It is possible to manufacture either the separator of the structure in which the nanofiber layer was provided, and the separator of the structure in which the cellulose fiber layer was provided on both surfaces of the nanofiber layer.
  • FIG. 8 is a cross-sectional view of the separator manufacturing apparatus 4 according to the fourth embodiment.
  • the separator manufacturing apparatus 4 which concerns on Embodiment 4 has the structure similarly to the separator manufacturing apparatus 3 which concerns on Embodiment 3, the structure of the separator manufacturing apparatus 3 which concerns on Embodiment 3 is a structure of the field emission apparatus. ) Is different. That is, in the separator manufacturing apparatus 4 which concerns on Embodiment 4, as shown in FIG. 8, 20 d of lower direction electric field emission apparatuses which form the nanofiber layer 120 in the elongate sheet W to be conveyed, The downward direction field emission device 20c which forms the nanofiber layer 130 in the elongate sheet W conveyed is provided.
  • the field radiating apparatus 20d, the cellulose fiber layer manufacturing apparatus 40, and the field radiating apparatus 20c are long sheets (in this order). It is arrange
  • the separator manufacturing apparatus 4 according to the fourth embodiment is different from the case of the separator manufacturing apparatus 3 according to the third embodiment, although the configuration of the field emission device is the same as that of the separator manufacturing apparatus 3 according to the third embodiment. It becomes possible to manufacture the separator of the present invention having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity continuously with high productivity.
  • the separator manufacturing apparatus 4 which concerns on Embodiment 4
  • the separator manufacturing apparatus 4 which concerns on Embodiment 4, it becomes possible to manufacture the separator which has a structure in which the nanofiber layer was provided in both surfaces of a cellulose fiber layer, without making the installation height of a separator manufacturing apparatus very high.
  • the separator manufacturing apparatus 4 which concerns on Embodiment 4 has the structure similar to the case of the separator manufacturing apparatus 3 which concerns on Embodiment 3 except the structure of the field emission apparatus, the separator manufacturing apparatus which concerns on Embodiment 3 ( It has a corresponding effect among the effects that 3) has.
  • FIG 9 is a cross-sectional view of the separator manufacturing apparatus 5 according to the fifth embodiment.
  • the separator manufacturing apparatus 5 according to the fifth embodiment basically has the same configuration as the separator manufacturing apparatus 4 according to the fourth embodiment, but the structure of the cellulose fiber layer manufacturing apparatus according to the fourth exemplary embodiment is the separator manufacturing apparatus 4 according to the fourth exemplary embodiment. It is different from the case. That is, in the separator manufacturing apparatus 5 which concerns on Embodiment 5, as shown in FIG. 9, the field emission apparatus 20e is provided as a cellulose fiber layer manufacturing apparatus.
  • the field radiator 20e is a top direction field radiator having a top direction nozzle.
  • the separator manufacturing apparatus 5 which concerns on Embodiment 5 differs from the separator manufacturing apparatus 4 which concerns on Embodiment 4,
  • the separator of the present invention having high mechanical strength, high insulation, high dendrite resistance, and high ion conductivity can be continuously manufactured with high productivity.
  • positions an electric field radiating device and a cellulose fiber layer manufacturing apparatus suitably. It is possible to manufacture either the separator of the structure in which the nanofiber layer was provided, and the separator of the structure in which the cellulose fiber layer was provided on both surfaces of the nanofiber layer.
  • the separator manufacturing apparatus 5 which concerns on Embodiment 5, it becomes possible to adjust the thickness of a cellulose fiber layer, the fiber length of a cellulose fiber, the porosity and the pore size of a cellulose fiber layer, and form the cellulose fiber layer which has a desired characteristic. It becomes possible. It is suitable for forming a cellulose fiber layer composed of cellulose fibers having a relatively small average fiber diameter.
  • the separator manufacturing apparatus 5 which concerns on Embodiment 5, it becomes possible to manufacture the separator which has a structure in which the nanofiber layer was provided in both surfaces of a cellulose fiber layer, without making the installation height of a separator manufacturing apparatus very high.
  • the separator manufacturing apparatus 5 which concerns on Embodiment 5 has the structure similar to the case of the separator manufacturing apparatus 4 which concerns on Embodiment 4 except the structure of a cellulose fiber layer manufacturing apparatus, the separator manufacturing apparatus which concerns on Embodiment 4 It has a corresponding effect among the effects of (4).
  • nanofiber layer forming apparatus for example, one, three or more field radiating apparatuses may be used.
  • one cellulose fiber layer production apparatus was used as the cellulose fiber layer production apparatus, but the present invention is not limited thereto.
  • two or more cellulose fiber layer production apparatuses may be used.
  • the melt blow spinning apparatus or the field spinning apparatus was used as a cellulose fiber layer manufacturing apparatus, this invention is not limited to this.
  • the separator of the structure which provided the nanofiber layer on both surfaces of the cellulose fiber layer was manufactured, this invention is not limited to this.
  • the separator which provided the nanofiber layer on one side of a cellulose fiber layer may be manufactured, and the separator which provided the cellulose fiber layer on both surfaces of a nanofiber layer may be manufactured.
  • the anode of the power supply device 29 is connected to the collector 24 and the cathode of the power supply device 29 is connected to the nozzle unit 22 in each said embodiment, this invention is not limited to this. .
  • the anode of the power supply device may be connected to the nozzle, and the cathode of the power supply device may be connected to the collector.

Abstract

The present invention relates to a separator, a method for manufacturing a separator, and an apparatus for manufacturing a separator, the separator (100) comprising: one cellulose fiber layer (110); a nanofiber layer (120) which is coupled to one surface of the cellulose fiber layer (110); and another nanfiber layer which is coupled to the other surface of the cellulose fiber layer (110), wherein the cellulose fiber layer (110) has a width of 1μm-40μm, is made from a cellulose fiber having an average diameter of 0.1μm-10μm, and wherein the cellulose fiber layer (110) is made from the cellulose fiber having an average length of at least 2.0mm, thereby providing the separator having high conductivity strength, high conductivity, high durability to dendrite, and high ion conductivity.

Description

세퍼레이터, 세퍼레이터 제조 방법 및 세퍼레이터 제조 장치Separator, Separator Manufacturing Method and Separator Manufacturing Equipment
본 발명은 세퍼레이터, 세퍼레이터 제조 방법 및 세퍼레이터 제조 장치에 관한 것이다.The present invention relates to a separator, a separator manufacturing method, and a separator manufacturing apparatus.
종래, 셀룰로스 섬유를 고해(叩解)한 종이를 이용한 세퍼레이터가 알려져 있다(예를 들면, 특허문헌 1 참조). 특허문헌 1에 기재된 세퍼레이터는 셀룰로스 섬유를 고해한 종이를 원료로 하고 있으므로, 종래 사용되고 있는 폴리올레핀계 세퍼레이터와 비교하여 높은 내열성을 가질 뿐만 아니라 높은 기계적 강도를 갖는다. 따라서, 특허문헌 1에 기재된 세퍼레이터에서는 세퍼레이터를 얇게 하여 이온 전도성을 높게 했다고 해도 높은 기계적 강도를 유지할 수 있다고 생각할 수 있다.Conventionally, the separator using the paper which fixed the cellulose fiber is known (for example, refer patent document 1). Since the separator described in patent document 1 uses the paper which beat | dissolved cellulose fiber as a raw material, it has not only high heat resistance but also high mechanical strength compared with the polyolefin type separator used conventionally. Therefore, in the separator of patent document 1, even if the separator is made thin and high ion conductivity, it can be considered that high mechanical strength can be maintained.
그러나, 본 발명의 발명자들의 연구에 의하면, 특허문헌 1에 기재된 세퍼레이터에서는 세퍼레이터를 얇게 하여 이온 전도성을 높게 한 경우에는 높은 기계적 강도는 유지할 수 있지만, 절연성 및 덴드라이트 내성이 저하되는 문제가 있는 것을 알았다.However, according to the studies of the inventors of the present invention, in the separator described in Patent Literature 1, when the separator is thinned to increase the ion conductivity, high mechanical strength can be maintained, but there is a problem that the insulation and the dendrite resistance are deteriorated. .
따라서, 본 발명은 상기와 같은 문제를 해결하기 위해 이루어진 것으로서, 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 세퍼레이터를 제공하는 것을 목적으로 한다. 또한, 이와 같은 세퍼레이터를 제조할 수 있는 세퍼레이터의 제조 방법 및 제조 장치를 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made to solve the above problems, and an object thereof is to provide a separator having high mechanical strength, high insulation, high dendrite resistance, and high ion conductivity. Moreover, it aims at providing the manufacturing method and manufacturing apparatus of the separator which can manufacture such a separator.
[1]본 발명의 세퍼레이터는 적어도 1개의 셀룰로스 섬유층과 적어도 1개의 나노 섬유층을 구비하는 것을 특징으로 한다.[1] The separator of the present invention includes at least one cellulose fiber layer and at least one nanofiber layer.
이 때문에, 본 발명의 세퍼레이터에 의하면, 섬유가 가늘고 공극(空隙)이 미세하며 균일한 특징을 가진 나노 섬유층을 구비하므로, 높은 절연성 및 높은 덴드라이트 내성을 갖는다. 또한, 나노 섬유층은 공극율이 큰 특징도 가지므로, 높은 전해액 유지 특성을 갖고 높은 이온 전도성을 갖는다.For this reason, according to the separator of the present invention, since the fiber is provided with a nanofiber layer having thin, fine voids and uniform characteristics, it has high insulation and high dendrite resistance. In addition, since the nanofiber layer also has a large porosity, it has high electrolyte solution retention characteristics and high ion conductivity.
또한, 본 발명의 세퍼레이터에 의하면, 셀룰로스 섬유층을 구비하므로, 높은 기계적 강도를 갖는다.Moreover, according to the separator of this invention, since it is provided with a cellulose fiber layer, it has high mechanical strength.
그 결과, 본 발명의 세퍼레이터는 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 세퍼레이터가 된다.As a result, the separator of the present invention becomes a separator having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity.
[2]본 발명의 세퍼레이터에서 상기 셀룰로스 섬유층은 두께가 1㎛~40㎛이고, 또한, 평균 섬유 직경이 0.1㎛~10㎛인 셀룰로스 섬유로 이루어진 것이 바람직하다.[2] In the separator of the present invention, the cellulose fiber layer preferably has a thickness of 1 µm to 40 µm and an average fiber diameter of 0.1 µm to 10 µm.
본 발명의 세퍼레이터에 의하면, 셀룰로스 섬유층의 두께가 40㎛ 이하이므로 얇은 세퍼레이터를 제조하는 것이 가능해지고, 전기 용량이 큰 2차 전지나 캐퍼시터를 제조하는 것이 가능해진다. 또한, 셀룰로스 섬유층의 두께가 1㎛ 이상이므로, 기계적 강도가 저하하지도 않는다.According to the separator of the present invention, since the thickness of the cellulose fiber layer is 40 µm or less, a thin separator can be manufactured, and a secondary battery or a capacitor having a large capacitance can be manufactured. Moreover, since the thickness of a cellulose fiber layer is 1 micrometer or more, mechanical strength does not fall.
또한, 본 발명의 세퍼레이터에 의하면, 셀룰로스 섬유층이 평균 섬유 직경 0.1㎛ 이상의 셀룰로스 섬유로 이루어지므로 셀룰로스 섬유 그 자체의 강도를 유지하기 쉬워지고, 그다지 두껍게 하지 않고 충분한 기계적 강도를 가진 셀룰로스 섬유층을 구성할 수 있다. 한편, 셀룰로스 섬유층이 평균 섬유 직경 10㎛ 이하의 셀룰로스 섬유로 이루어지므로 얇은 세퍼레이터를 제조하는 것이 가능해지고, 전기 용량이 큰 비수계 전지를 제조하는 것이 가능해진다.In addition, according to the separator of the present invention, since the cellulose fiber layer is made of cellulose fibers having an average fiber diameter of 0.1 µm or more, it is easy to maintain the strength of the cellulose fiber itself, and can form a cellulose fiber layer having sufficient mechanical strength without being too thick. have. On the other hand, since the cellulose fiber layer is made of cellulose fibers having an average fiber diameter of 10 µm or less, it is possible to manufacture a thin separator and to manufacture a non-aqueous battery having a large electric capacity.
[3]본 발명의 세퍼레이터에서 상기 셀룰로스 섬유층은 평균 섬유 직경 2.0 mm 이상의 셀룰로스 섬유로 이루어진 것이 바람직하다.[3] In the separator of the present invention, the cellulose fiber layer is preferably made of cellulose fibers having an average fiber diameter of 2.0 mm or more.
이와 같은 구성으로 함으로써, 셀룰로스 섬유들이 얽히는 부분이 많아지므로, 그다지 두껍게 하지 않고 충분한 기계적 강도를 가진 세퍼레이터를 구성하는 것이 가능해진다.With such a structure, since the part which cellulose fibers are entangled becomes many, it becomes possible to comprise the separator which has sufficient mechanical strength, without making it thick.
[4]본 발명의 세퍼레이터에서 상기 나노 섬유층은 공공률(空孔
Figure f961
)이 20%~80%의 범위내에 있고, 또한 평균 공공(空孔) 사이즈가 0.02㎛~2㎛의 범위 내에 있는 것이 바람직하다.
[4] In the separator of the present invention, the nanofiber layer has a porosity.
Figure f961
) Is in the range of 20% to 80%, and the average pore size is preferably in the range of 0.02 µm to 2 µm.
이와 같은 구성으로 함으로써, 나노 섬유층의 공공률이 20%~80%의 범위 내에 있으므로 높은 전해액 유지 특성을 갖고, 높은 이온 전도성을 얻는 것이 가능해진다. 또한, 평균 공공 사이즈가 0.02㎛~2㎛의 범위 내에 있고, 덴드라이트가 세퍼레이터에 침입하기 어려운 공공 사이즈이므로, 높은 덴드라이트 내성을 갖는다.By setting it as such a structure, since the porosity of a nanofiber layer exists in the range of 20%-80%, it has high electrolyte solution holding characteristic and it becomes possible to obtain high ion conductivity. Moreover, since the average pore size exists in the range of 0.02 micrometer-2 micrometers, and a dendrite does not easily invade a separator, it has high dendrite tolerance.
[5]본 발명의 세퍼레이터에서 상기 세퍼레이터는 상기 셀룰로스 섬유층의 양면에 상기 나노 섬유층이 설치된 구조를 갖는 것이 바람직하다.[5] In the separator of the present invention, the separator preferably has a structure in which the nanofiber layer is provided on both surfaces of the cellulose fiber layer.
이와 같은 구성으로 함으로써, 셀룰로스 섬유층의 양면에서 덴드라이트의 성장을 저지하는 것이 가능해지고, 더 높은 덴드라이트 내성을 가진 세퍼레이터를 구성하는 것이 가능해진다.By setting it as such a structure, it becomes possible to prevent growth of dendrites on both surfaces of a cellulose fiber layer, and it becomes possible to comprise the separator which has higher dendrite tolerance.
[6]본 발명의 세퍼레이터에서 상기 세퍼레이터는 상기 나노 섬유층의 양면에 상기 셀룰로스 섬유층이 설치된 구조를 가지는 것이 바람직하다.[6] In the separator of the present invention, the separator preferably has a structure in which the cellulose fiber layer is provided on both surfaces of the nanofiber layer.
이와 같은 구성으로 함으로써, 더 높은 강한 기계적 강도를 가진 세퍼레이터를 구성하는 것이 가능해진다.By setting it as such a structure, it becomes possible to comprise the separator which has higher strong mechanical strength.
[7]본 발명의 세퍼레이터의 제조 방법은 본 발명의 세퍼레이터를 제조하기 위한 세퍼레이터의 제조 방법으로서, 상기 셀룰로스 섬유층으로 이루어진 장척 시트를 준비하는 공정과, 반송되어 가는 상기 장척 시트의 한쪽 면에 상기 나노 섬유층을 형성하는 공정을 포함하는 것을 특징으로 한다.[7] The method for producing a separator according to the present invention is a method for producing a separator for producing the separator according to the present invention, the process for preparing a long sheet made of the cellulose fiber layer and the nanosheet on one side of the long sheet being conveyed. It is characterized by including a step of forming a fiber layer.
이 때문에 본 발명의 세퍼레이터의 제조 방법에 의하면, 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 본 발명의 세퍼레이터를 연속해서 높은 생산성으로 제조하는 것이 가능해진다.For this reason, according to the manufacturing method of the separator of this invention, it becomes possible to manufacture the separator of this invention which has high mechanical strength, high insulation, high dendrite tolerance, and high ion conductivity continuously with high productivity.
또한, 본 발명의 세퍼레이터의 제조 방법에 의하면, 나노 섬유층이 형성된 셀룰로스 섬유층을 그대로 제품화할 수 있다. 이 때문에 장척 시트로부터 세퍼레이터의 제품을 분리하는 공정을 생략할 수 있어, 더 생산성을 높이는 것이 가능해진다.Moreover, according to the manufacturing method of the separator of this invention, a cellulose fiber layer in which the nanofiber layer was formed can be commercialized as it is. For this reason, the process of isolate | separating the product of a separator from a long sheet can be skipped, and it becomes possible to improve productivity more.
[8]본 발명의 세퍼레이터의 제조 방법에서는 반송되어 가는 상기 장척 시트의 다른쪽 면에 상기 나노 섬유층을 형성하는 공정을 더 포함하는 것이 바람직하다.[8] In the method for producing a separator of the present invention, the method further includes a step of forming the nanofiber layer on the other side of the long sheet being conveyed.
이와 같은 방법으로 함으로써 셀룰로스 섬유층의 양면에 나노 섬유층이 설치된 구조의 세퍼레이터를 제조하는 것이 가능해진다.By such a method, it becomes possible to manufacture the separator of the structure in which the nanofiber layer was provided in both surfaces of the cellulose fiber layer.
[9]본 발명의 세퍼레이터의 제조 방법은 본 발명의 세퍼레이터를 제조하기 위한 세퍼레이터의 제조 방법으로서, 반송되어 가는 장척 시트의 한쪽 면에 상기 나노 섬유층과, 상기 셀룰로스 섬유층을 차례로 형성함으로써 세퍼레이터를 제조하는 것이 바람직하다.[9] The method for producing a separator according to the present invention is a method for producing a separator for producing the separator according to the present invention, in which a separator is produced by sequentially forming the nanofiber layer and the cellulose fiber layer on one side of a long sheet being conveyed. It is preferable.
이 때문에 본 발명의 세퍼레이터의 제조 방법에 의해서도 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 본 발명의 세퍼레이터를 연속해서 높은 생산성으로 제조하는 것이 가능해진다.For this reason, even by the manufacturing method of the separator of this invention, it becomes possible to manufacture the separator of this invention which has high mechanical strength, high insulation, high dendrite tolerance, and high ion conductivity continuously with high productivity.
또한, 나노 섬유층 및 셀룰로스 섬유층을 형성하는 순서를 적절히 조정함으로써 셀룰로스 섬유층의 한쪽 면에 나노 섬유층이 설치된 구조의 세퍼레이터, 셀룰로스 섬유층의 양면에 나노 섬유층이 설치된 구조의 세퍼레이터 및 나노 섬유층의 양면에 셀룰로스 섬유층이 설치된 구조의 세퍼레이터 중 어느 세퍼레이터도 제조하는 것이 가능해진다.Further, by appropriately adjusting the order of forming the nanofiber layer and the cellulose fiber layer, a separator having a structure in which a nanofiber layer is provided on one side of the cellulose fiber layer, a separator having a structure in which the nanofiber layer is provided on both sides of the cellulose fiber layer, and a cellulose fiber layer on both sides of the nanofiber layer It becomes possible to manufacture any separator of the separator of the installed structure.
[10]본 발명의 세퍼레이터 제조 장치는 본 발명의 세퍼레이터를 제조하기 위한 세퍼레이터 제조 장치로서, 상기 셀룰로스 섬유층으로 이루어진 장척 시트를 반송하는 반송 장치와, 상기 반송 장치에 의해 반송되어 가는 상기 장척 시트에 나노 섬유층을 형성하는 전계 방사 장치를 구비하는 것을 특징으로 한다.[10] The separator manufacturing apparatus of the present invention is a separator manufacturing apparatus for producing the separator of the present invention, and the nano-to-long sheet conveyed by the conveying apparatus for conveying the long sheet composed of the cellulose fiber layer and the conveying apparatus is nano. It is characterized by including the field emission device for forming a fiber layer.
이 때문에 본 발명의 세퍼레이터 제조 장치에 의하면, 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 본 발명의 세퍼레이터를 연속해서 높은 생산성으로 제조하는 것이 가능해진다.For this reason, according to the separator manufacturing apparatus of this invention, it becomes possible to manufacture the separator of this invention which has high mechanical strength, high insulation, high dendrite tolerance, and high ion conductivity continuously with high productivity.
또한, 본 발명의 세퍼레이터 제조 장치에 의하면, 나노 섬유층이 형성된 셀룰로스 섬유층을 그대로 제품으로 할 수 있다. 이 때문에 장척 시트로부터 세퍼레이터의 제품을 분리하는 공정을 생략할 수 있어, 더 생산성을 높게 하는 것이 가능해진다.Moreover, according to the separator manufacturing apparatus of this invention, a cellulose fiber layer in which the nanofiber layer was formed can be used as a product as it is. For this reason, the process of isolate | separating the product of a separator from a long sheet can be skipped, and it becomes possible to raise productivity more.
[11]본 발명의 세퍼레이터 제조 장치는 본 발명의 세퍼레이터를 제조하기 위한 세퍼레이터 제조 장치로서, 장척 시트를 반송하는 반송 장치와, 상기 반송 장치에 의해 반송되어 가는 상기 장척 시트에 나노 섬유층을 형성하는 전계 방사 장치와, 상기 반송 장치에 의해 반송되어 가는 상기 장척 시트에 셀룰로스 섬유층을 형성하는 셀룰로스 섬유층 제조 장치를 구비하는 것을 특징으로 한다.[11] The separator manufacturing apparatus of the present invention is a separator manufacturing apparatus for manufacturing the separator of the present invention, and includes a conveying apparatus for conveying a long sheet and an electric field for forming a nanofiber layer in the long sheet being conveyed by the conveying apparatus. A cellulose fiber layer manufacturing apparatus which forms a cellulose fiber layer in the said elongate sheet | seat conveyed by the spinning apparatus and the said conveying apparatus is characterized by the above-mentioned.
이 때문에 본 발명의 세퍼레이터 제조 장치에 의해서도 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 본 발명의 세퍼레이터를 연속해서 높은 생산성으로 제조하는 것이 가능해진다.For this reason, even with the separator manufacturing apparatus of this invention, it becomes possible to manufacture the separator of this invention which has high mechanical strength, high insulation, high dendrite tolerance, and high ion conductivity continuously with high productivity.
또한, 전계 방사 장치 및 셀룰로스 섬유층 제조 장치를 배치하는 순서를 적절히 조정함으로써, 셀룰로스 섬유층의 한쪽 면에 나노 섬유층이 설치된 구조의 세퍼레이터, 셀룰로스 섬유층의 양면에 나노 섬유층이 설치된 구조의 세퍼레이터 및 나노 섬유층의 양면에 셀룰로스 섬유층이 설치된 구조의 세퍼레이터중 어느 세퍼레이터도 제조하는 것이 가능해진다.In addition, by appropriately adjusting the order in which the field emission device and the cellulose fiber layer manufacturing apparatus are arranged, the separator having a structure in which a nanofiber layer is provided on one side of the cellulose fiber layer, the separator having a structure in which the nanofiber layer is provided on both sides of the cellulose fiber layer, and both sides of the nanofiber layer. It is possible to manufacture any of the separators having a structure in which a cellulose fiber layer is provided.
[12]본 발명의 세퍼레이터 제조 장치에서 상기 셀룰로스 섬유층 제조 장치는 멜트블로 방사 장치인 것이 바람직하다.[12] In the separator production apparatus of the present invention, the cellulose fiber layer production apparatus is preferably a melt blow spinning device.
이와 같은 구성으로 함으로써 셀룰로스 섬유층의 두께, 셀룰로스 섬유의 섬유 길이, 셀룰로스 섬유층의 공공률이나 공공 사이즈를 조정하는 것이 가능해지고, 원하는 특성을 가진 셀룰로스 섬유층을 형성하는 것이 가능해진다. 평균 섬유 직경이 비교적 큰 셀룰로스 섬유로 이루어진 셀룰로스 섬유층을 형성하는 경우에 적합하다.By such a configuration, it is possible to adjust the thickness of the cellulose fiber layer, the fiber length of the cellulose fiber, the porosity and the pore size of the cellulose fiber layer, and to form a cellulose fiber layer having desired characteristics. It is suitable for forming a cellulose fiber layer made of cellulose fibers having a relatively large average fiber diameter.
[13]본 발명의 세퍼레이터 제조 장치에서 상기 셀룰로스 섬유층 제조 장치는 전계 방사 장치인 것이 바람직하다.[13] In the separator production apparatus of the present invention, the cellulose fiber layer production apparatus is preferably an electric field emission device.
이와 같은 구성으로 하는 것에 의해서도 셀룰로스 섬유층의 두께, 셀룰로스 섬유의 섬유 길이, 셀룰로스 섬유층의 공공률이나 공공사이즈를 조정하는 것이 가능해지고, 원하는 특성을 가진 셀룰로스 섬유층을 형성하는 것이 가능해진다. 평균 섬유 직경이 비교적 작은 셀룰로스 섬유로 이루어진 셀룰로스 섬유층을 형성하는 경우에 적합하다.By such a configuration, it is possible to adjust the thickness of the cellulose fiber layer, the fiber length of the cellulose fiber, the porosity and the pore size of the cellulose fiber layer, and to form a cellulose fiber layer having desired characteristics. It is suitable for forming a cellulose fiber layer composed of cellulose fibers having a relatively small average fiber diameter.
본 발명은 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 세퍼레이터를 제공하고, 또한 그와 같은 세퍼레이터를 제조할 수 있는 세퍼레이터의 제조 방법 및 제조 장치를 제공한다.The present invention provides a separator having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity, and also provides a method and apparatus for manufacturing a separator capable of manufacturing such a separator.
도 1은 실시형태 1에 따른 세퍼레이터(100)의 단면도이다.1 is a cross-sectional view of the separator 100 according to the first embodiment.
도 2는 실시형태 1에 따른 세퍼레이터 제조 장치(1)의 단면도이다.2 is a cross-sectional view of the separator manufacturing apparatus 1 according to the first embodiment.
도 3은 실시형태 1에 따른 세퍼레이터의 제조 방법에 의해 세퍼레이터(100)가 제조되는 것을 나타내는 도면이다.3 is a diagram showing that the separator 100 is manufactured by the method for manufacturing a separator according to the first embodiment.
도 4는 실시형태 2에 따른 세퍼레이터 제조 장치(2)의 단면도이다.4 is a cross-sectional view of the separator manufacturing apparatus 2 according to the second embodiment.
도 5는 실시형태 3에 따른 세퍼레이터(102)의 단면도이다.5 is a cross-sectional view of the separator 102 according to the third embodiment.
도 6은 실시형태 3에 따른 세퍼레이터 제조 장치(3)의 단면도이다.6 is a cross-sectional view of the separator manufacturing apparatus 3 according to the third embodiment.
도 7은 실시형태 3에 따른 세퍼레이터의 제조 방법에 의해 세퍼레이터(102)가 제조되는 것을 나타내는 도면이다.FIG. 7 is a diagram showing that the separator 102 is manufactured by the method for manufacturing a separator according to the third embodiment.
도 8은 실시형태 4에 따른 세퍼레이터 제조 장치(4)의 단면도이다.8 is a cross-sectional view of the separator manufacturing apparatus 4 according to the fourth embodiment.
도 9는 실시형태 5에 따른 세퍼레이터 제조 장치(5)의 단면도이다.9 is a cross-sectional view of the separator manufacturing apparatus 5 according to the fifth embodiment.
이하, 본 발명의 세퍼레이터, 세퍼레이터 제조 장치 및 세퍼레이터 제조 방법으로 대해, 도면에 도시한 실시형태에 기초하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the separator, the separator manufacturing apparatus, and the separator manufacturing method of this invention are demonstrated based on embodiment shown in drawing.
[실시형태 1][Embodiment 1]
1.실시형태 1에 따른 세퍼레이터의 구성1. Configuration of the separator according to the first embodiment
우선, 실시형태 1에 따른 세퍼레이터(100)의 구성을 설명한다.First, the structure of the separator 100 which concerns on Embodiment 1 is demonstrated.
도 1은 실시형태 1에 따른 세퍼레이터(100)의 단면도이다.1 is a cross-sectional view of the separator 100 according to the first embodiment.
실시형태 1에 따른 세퍼레이터(100)는 도 1에 도시한 바와 같이, 1개의 셀룰로스 섬유층(110)과 2개의 나노 섬유층(120, 130)을 구비하고, 셀룰로스 섬유층(110)의 양면에 나노 섬유층(120, 130)이 설치된 구조를 갖는다.As shown in FIG. 1, the separator 100 according to Embodiment 1 includes one cellulose fiber layer 110 and two nanofiber layers 120 and 130, and a nanofiber layer (on both sides of the cellulose fiber layer 110). 120 and 130 are provided.
셀룰로스 섬유층(110)은 두께가 1㎛~40㎛이고, 또한 평균 섬유 직경이 0.1㎛~10㎛인 셀룰로스 섬유로 이루어진다.The cellulose fiber layer 110 is made of cellulose fibers having a thickness of 1 μm to 40 μm and an average fiber diameter of 0.1 μm to 10 μm.
나노 섬유층(120, 130)은 공공률이 20%~80%의 범위내에 있고, 또한 평균 공공 사이즈가 0.02㎛~2㎛의 범위내에 있다. The nanofiber layers 120 and 130 have a porosity in the range of 20% to 80%, and an average pore size in the range of 0.02 m to 2 m.
세퍼레이터(100)는 후술하는 실시형태 1에 따른 세퍼레이터 제조 장치(1)를 이용하여, 실시형태 1에 따른 세퍼레이터의 제조 방법에 의해 얻어진 것이다.The separator 100 is obtained by the manufacturing method of the separator which concerns on Embodiment 1 using the separator manufacturing apparatus 1 which concerns on Embodiment 1 mentioned later.
2.실시형태 1에 따른 세퍼레이터 제조 장치(1)의 구성2.Configuration of Separator Manufacturing Apparatus 1 According to Embodiment 1
도 2는 실시형태에 따른 세퍼레이터 제조 장치(1)의 단면도이다. 또한, 도 2에서는 폴리머 용액 공급부의 도시를 생략하고 있다. 이것은 후술하는 이하의 도면에 대해서도 동일하다. 도 3은 실시형태 1에 따른 세퍼레이터의 제조 방법에 의해 세퍼레이터(100)가 제조되는 것을 도시한 도면이다. 도 3의 (a) 내지 도 3의 (c)는 각 공정도이다.2 is a cross-sectional view of the separator manufacturing apparatus 1 according to the embodiment. In addition, illustration of the polymer solution supply part is abbreviate | omitted in FIG. This also applies to the following drawings which will be described later. FIG. 3 is a diagram showing that the separator 100 is manufactured by the method for manufacturing a separator according to the first embodiment. 3 (a) to 3 (c) are respective process diagrams.
실시형태 1에 따른 세퍼레이터 제조 장치(1)는 도 2에 도시한 바와 같이, 장척의 셀룰로스 섬유층(110)으로 이루어진 장척 시트를 반송하는 반송 장치(10)와, 반송 장치(10)에 의해 반송되어 가는 셀룰로스 섬유층(110)의 한쪽 면에 나노 섬유층(120)(도 3의 (b) 참조)을 형성하는 전계 방사 장치(20a)와, 다른쪽 면에 나노 섬유층(130)(도 3의 (c) 참조)을 형성하는 전계 방사 장치(20b)를 구비한다. 전계 방사 장치(20a) 및 전계 방사 장치(20b)는 모두 상부 방향식 노즐을 구비한 상부 방향식 전계 방사 장치이다.The separator manufacturing apparatus 1 which concerns on Embodiment 1 is conveyed by the conveying apparatus 10 and the conveying apparatus 10 which convey the long sheet which consists of the elongate cellulose fiber layer 110, as shown in FIG. The field emission device 20a which forms the nanofiber layer 120 (refer to FIG. 3 (b)) on one side of the thin cellulose fiber layer 110, and the nanofiber layer 130 (FIG. 3 (c) on the other side). Field emission device 20b). The field radiating device 20a and the field radiating device 20b are both top direction field radiating devices provided with top direction nozzles.
반송 장치(10)는 전계 방사 장치(20a)로부터 전계 방사 장치(20b)를 향해 기재층이 되는 셀룰로스 섬유층(110)을 반송하도록 구성되어 있다. 반송 장치(10)는 전계 방사 장치(20a)가 나노 섬유층(120)을 형성할 때(후술하는 도 3의 (b) 참조)는 셀룰로스 섬유층(110)을 제 1 방향(도 2의 A1 방향)으로 반송하고, 전계 방사 장치(20a)의 높이 위치에서 전계 방사 장치(20b)의 높이 위치까지 셀룰로스 섬유층(110)을 제 1 방향과 대략 수직인 제 2 방향(A2 방향)으로 반송하며, 전계 방사 장치(20b)가 나노 섬유층(130)을 형성할 때(후술하는 도 3의 (c) 참조)는 셀룰로스 섬유층(110)을 제 1 방향과 반대가 되는 제 3 방향(A3 방향)으로 반송한다.The conveying apparatus 10 is comprised so that the cellulose fiber layer 110 used as a base material layer may be conveyed from the field radiating apparatus 20a toward the field radiating apparatus 20b. The conveying apparatus 10 moves the cellulose fiber layer 110 in the first direction (the A1 direction in FIG. 2) when the field radiating device 20a forms the nanofiber layer 120 (see FIG. 3B). The cellulosic fiber layer 110 from the height position of the field radiating device 20a to the height position of the field radiating device 20b in the second direction (A2 direction) substantially perpendicular to the first direction, When the device 20b forms the nanofiber layer 130 (see FIG. 3C to be described later), the cellulose fiber layer 110 is conveyed in the third direction (A3 direction) opposite to the first direction.
반송 장치(10)는 셀룰로스 섬유층(110)을 투입하는 투입 롤러(11)와, 셀룰로스 섬유층(110)을 감는 감기 롤러(12)와, 셀룰로스 섬유층(110)의 당김을 조정하는 텐션 롤러(13, 18)와, 셀룰로스 섬유층(110)을 반송하는 복수의 구동 롤러(14)와, 전계 방사 장치(20a)로부터의 셀룰로스 섬유층(110)의 반송 방향을 상방으로 향하게 하는 제 1 반전 롤러(16a)와, 제 1 반전 롤러(16a)로부터의 셀룰로스 섬유층(110)의 반송 방향을 전계 방사 장치(20b)쪽으로 향하게 하는 제 2 반전 롤러(16b)를 구비한다.The conveying apparatus 10 includes an feeding roller 11 for feeding the cellulose fiber layer 110, a winding roller 12 for winding the cellulose fiber layer 110, and a tension roller 13 for adjusting the pulling of the cellulose fiber layer 110. 18, the plurality of drive rollers 14 for conveying the cellulose fiber layer 110, the first reverse roller 16a for directing the conveyance direction of the cellulose fiber layer 110 from the field radiating device 20a, and And a second reverse roller 16b for directing the conveyance direction of the cellulose fiber layer 110 from the first reverse roller 16a toward the field radiating device 20b.
이 중, 투입 롤러(11), 감기 롤러(12), 텐션 롤러(13, 18) 및 복수의 구동 롤러(14)는 셀룰로스 섬유층(110)을 반송하는 반송 기구(부호를 도시하지 않음)를 구성한다. 복수의 구동 롤러(14)는 셀룰로스 섬유층(110)을 반송하는 구동 장치이다.Among these, the feed roller 11, the winding roller 12, the tension rollers 13 and 18, and the some drive roller 14 comprise the conveyance mechanism (not shown) which conveys the cellulose fiber layer 110. do. The plurality of drive rollers 14 are drive devices for transporting the cellulose fiber layer 110.
제 1 반전 롤러(16a) 및 제 2 반전 롤러(16b)는 셀룰로스 섬유층(110)이 반송되어 가는 도중에 셀룰로스 섬유층(110)의 한쪽 면의 방향과 다른쪽 면의 방향이 반대로 되도록 셀룰로스 섬유층(110)을 반전시키는 셀룰로스 섬유층 반전 기구(15)를 구성한다. 셀룰로스 섬유층 반전 기구(15)는 전계 방사 장치(20b)의 높이 위치에 맞춰 전계 방사 장치(20a)로부터의 셀룰로스 섬유층(110)을 반전시킨다.The first reversing roller 16a and the second reversing roller 16b are formed such that the cellulose fiber layer 110 is reversed so that the direction of one side of the cellulose fiber layer 110 and the direction of the other side are reversed while the cellulose fiber layer 110 is being conveyed. The cellulose fiber layer inversion mechanism 15 which inverts this is comprised. The cellulose fiber layer inversion mechanism 15 inverts the cellulose fiber layer 110 from the field emission device 20a in accordance with the height position of the field emission device 20b.
전계 방사 장치(20a, 20b)는 하우징체(21)에 절연부재(25)를 통해 장착되고, 셀룰로스 섬유(110)의 다른쪽 면측에 위치하는 컬렉터(24)와, 셀룰로스 섬유층(110)의 한쪽 면측의 컬렉터(24)에 대향하는 위치에 위치하고, 도시하지 않는 폴리머 용액 공급부로부터 공급되는 폴리머 용액을 셀룰로스 섬유층(110)을 향해 토출하는 복수의 노즐(23)을 구비한 노즐 유닛(22)과, 컬렉터(24)와 노즐 유닛(22)의 사이에 고전압(예를 들면 10kV~80kV)을 인가하는 전원 장치(29)와, 셀룰로스 섬유층(110)이 반송되는 것을 보조하는 보조 벨트 장치(26)를 구비한다.The field radiating apparatuses 20a and 20b are mounted on the housing body 21 via an insulating member 25, and the collector 24 located on the other side of the cellulose fiber 110 and one of the cellulose fiber layers 110 are provided. A nozzle unit 22 located at a position opposite to the collector 24 on the surface side and having a plurality of nozzles 23 for discharging the polymer solution supplied from a polymer solution supply unit (not shown) toward the cellulose fiber layer 110; Between the collector 24 and the nozzle unit 22, a power supply 29 for applying a high voltage (for example, 10 kV to 80 kV), and an auxiliary belt device 26 to assist the cellulose fiber layer 110 to be conveyed. Equipped.
전계 방사 장치(20a, 20b)의 노즐 유닛(22)은 복수의 노즐로서 폴리머 용액을 토출구로부터 상부 방향으로 토출하는 복수의 상부 방향 노즐(23)을 구비한다. 그리고, 전계 방사 장치(20a)는 복수의 상부 방향 노즐(23)의 토출구로부터 폴리머 용액을 토출하여 나노 섬유를 전계 방사하도록 구성되어 있다.The nozzle unit 22 of the electric field radiating apparatus 20a, 20b is equipped with the some upward direction nozzle 23 which discharges a polymer solution from a discharge port to an upward direction as a some nozzle. The field radiating device 20a is configured to discharge the polymer solution from the discharge ports of the plurality of top direction nozzles 23 to electrospin the nanofibers.
복수의 상부 방향 노즐(23)은 예를 들면, 1.5cm~6.0cm의 피치로 배열되어 있다. 복수의 상부 방향 노즐(23)의 수는 예를 들면, 36개(종횡 동수로 배열한 경우, 6개×6개)~21904개(종횡 동수로 배열한 경우, 148개×148개)이다.The plurality of upward direction nozzles 23 are arranged at a pitch of, for example, 1.5 cm to 6.0 cm. The number of the some upward direction nozzles 23 is 36 pieces (6 * 6 pieces when it arranges in vertical or horizontal same number)-21904 pieces (148 * 148 pieces when it is arranged in vertical and horizontal same number), for example.
또한, 본 발명의 세퍼레이터 제조 장치에는 여러 가지 크기 및 여러 가지 형상을 가진 노즐 유닛을 이용할 수 있지만, 노즐 유닛(22)은 예를 들면, 상면에서 봤을 때 한변이 0.5m~3m의 장방형(정방형을 포함함)으로 보이는 크기 및 형상을 갖는다.In addition, although the nozzle unit which has a various size and a various shape can be used for the separator manufacturing apparatus of this invention, the nozzle unit 22 is a rectangle (square being 0.5m-3m in one side, for example from an upper surface). Inclusive).
컬렉터(24)는 도전성을 가진 하우징체(21)에 절연부재를 통해 장착되어 있다. 전원 장치(29)의 양극은 컬렉터(24)에 접속되고, 전원 장치(29)의 음극은 하우징체(21) 및 노즐 유닛(22)에 접속되어 있다.The collector 24 is attached to the conductive housing body 21 via an insulating member. The positive electrode of the power supply device 29 is connected to the collector 24, and the negative electrode of the power supply device 29 is connected to the housing body 21 and the nozzle unit 22.
보조 벨트 장치(26)는 셀룰로스 섬유층(110)의 반송 속도에 동기하여 회전하는 보조 벨트(27)와, 보조 벨트(27)의 회전을 돕는 5개의 보조 벨트용 롤러(28)를 구비한다. 5개의 보조 벨트용 롤러(28) 중 1개 또는 2개 이상의 보조 벨트용 롤러는 구동 롤러이고, 나머지 보조 벨트용 롤러는 종동 롤러이다. 컬렉터(24)와 셀룰로스 섬유층(110)의 사이에 보조 벨트(27)가 설치되어 있으므로 셀룰로스 섬유층(110)은 양의 고전압이 인가되어 있는 컬렉터(24)에 당겨지지 않고 원활하게 반송되게 된다.The auxiliary belt device 26 includes an auxiliary belt 27 that rotates in synchronization with the conveyance speed of the cellulose fiber layer 110, and five auxiliary belt rollers 28 that assist the rotation of the auxiliary belt 27. One of the five auxiliary belt rollers 28, or two or more rollers for the auxiliary belt, is a drive roller, and the remaining auxiliary belt rollers are driven rollers. Since the auxiliary belt 27 is provided between the collector 24 and the cellulose fiber layer 110, the cellulose fiber layer 110 is smoothly conveyed without being pulled by the collector 24 to which a positive high voltage is applied.
3.실시형태 1에 따른 세퍼레이터의 제조 방법3. Manufacturing method of separator according to Embodiment 1
이하, 상기와 같이 구성된 실시형태 1에 따른 세퍼레이터 제조 장치(1)를 이용하여 세퍼레이터(100)를 제조하는 방법(실시형태 1에 따른 세퍼레이터의 제조 방법)에 대해 설명한다.Hereinafter, the method (manufacturing method of the separator which concerns on Embodiment 1) which manufactures the separator 100 using the separator manufacturing apparatus 1 concerning Embodiment 1 comprised as mentioned above is demonstrated.
(a) 방사 준비(a) Preparation for spinning
2대의 전계 방사 장치(20a, 20b)의 각각에 있어서 폴리머 용액을 준비하고, 상기 폴리머 용액을 노즐 유닛(22)에 공급한다. 또한, 장척의 셀룰로스 섬유층(110)(도 3의 (a) 참조)을 반송 장치(10)에 설정하고, 그 후, 셀룰로스 섬유층(110)을 투입 롤러(11)로부터 감기 롤러(12)를 향해 소정의 반송 속도로 반송한다.In each of the two field radiating apparatuses 20a and 20b, a polymer solution is prepared, and the polymer solution is supplied to the nozzle unit 22. In addition, the elongate cellulose fiber layer 110 (refer to FIG. 3 (a)) is set in the conveying apparatus 10, and the cellulose fiber layer 110 is then moved from the feeding roller 11 toward the winding roller 12. It conveys at a predetermined conveyance speed.
(b) 전계 방사(1)(b) field radiation (1)
계속해서, 전계 방사 장치(20a)에 의해 반송되어 가는 셀룰로스 섬유층(110)의 한쪽 면에 나노 섬유층(120)을 형성한다(도 3의 (b) 참조).Subsequently, the nanofiber layer 120 is formed on one side of the cellulose fiber layer 110 being conveyed by the field emission device 20a (see FIG. 3B).
(c) 장척 시트 반전(c) long sheet reversal
 계속해서, 장척 시트 반전 기구(15)(반전 롤러(16a, 16b))에 의해, 셀룰로스 섬유층(110)의 한쪽 면이 하측이 되도록 셀룰로스 섬유층(110)의 한쪽 면의 방향과 다른쪽 면의 방향을 반전시킨다.Then, by the long sheet reversing mechanism 15 ( inversion rollers 16a and 16b), the direction of one side of the cellulose fiber layer 110 and the direction of the other side so that one side of the cellulose fiber layer 110 is lowered. Invert
d) 전계 방사(2)d) field emission (2)
계속해서, 전계 방사 장치(20b)에 의해 반송되어 가는 셀룰로스 섬유층(110)의 다른쪽 면에 나노 섬유층(130)을 형성한다(도 3의 (c) 참조). 이것에 의해 셀룰로스 섬유층(110)의 양면에 나노 섬유층(120, 130)이 설치된 구조의 세퍼레이터(100)가 완성된다. Then, the nanofiber layer 130 is formed in the other surface of the cellulose fiber layer 110 conveyed by the field emission apparatus 20b (refer FIG.3 (c)). As a result, the separator 100 having the structure in which the nanofiber layers 120 and 130 are provided on both surfaces of the cellulose fiber layer 110 is completed.
이하, 실시형태 1에 따른 세퍼레이터의 제조 방법의 방사 조건을 예시적으로 나타낸다.Hereinafter, the spinning conditions of the manufacturing method of the separator which concerns on Embodiment 1 are shown by way of example.
나노 섬유의 원료가 되는 폴리머로서는, 예를 들면 폴리락트산(PLA), 폴리프로필렌(PP), 폴리아세트산비닐(PVAc), 폴리에틸렌테레프탈레이트(PET), 폴리부틸렌테레프탈레이트(PBT), 폴리에틸렌나프탈레이트(PEN), 폴리아미드(PA), 폴리우레탄(PUR), 폴리비닐알콜(PVA), 폴리아크릴로니트릴(PAN), 폴리에테르이미드(PEI), 폴리카프로락톤(PCL), 폴리락트산글리콜산(PLGA), 실크, 셀룰로스, 키토산 등을 이용할 수 있다.As a polymer used as a raw material of a nanofiber, for example, polylactic acid (PLA), polypropylene (PP), polyvinyl acetate (PVAc), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polyamide (PA), polyurethane (PUR), polyvinyl alcohol (PVA), polyacrylonitrile (PAN), polyetherimide (PEI), polycaprolactone (PCL), polylactic acid glycolic acid ( PLGA), silk, cellulose, chitosan and the like.
폴리머 용액에 이용하는 용매로서는, 예를 들면 디클로로메탄, 디메틸포름아미드, 디메틸설폭시드, 메틸에틸케톤, 클로로포름, 아세톤, 물, 포름산, 아세트산, 시클로헥산, THF 등을 이용할 수 있다. 복수 종류의 용매를 혼합하여 이용해도 좋다. 폴리머 용액에는 도전성 향상제 등의 첨가제를 함유시켜도 좋다.As a solvent used for a polymer solution, dichloromethane, dimethylformamide, dimethyl sulfoxide, methyl ethyl ketone, chloroform, acetone, water, formic acid, acetic acid, cyclohexane, THF, etc. can be used, for example. You may mix and use multiple types of solvent. The polymer solution may contain additives such as conductivity enhancers.
셀룰로스 섬유의 원료가 되는 식물 섬유로서는, 예를 들면, 침엽수, 마닐라삼, 삼지닥나무, 닥나무 등을 이용할 수 있다. 복수 종류의 섬유를 혼합하여 이용해도 좋다.As a plant fiber used as a raw material of a cellulose fiber, coniferous, manila hemp, cedar, a white, etc. can be used, for example. You may mix and use multiple types of fiber.
반송 속도는, 예를 들면 0.2m/분~100m/분으로 설정할 수 있다. 컬렉터(24)와 노즐 유닛(22)의 사이에 인가하는 전압은 10kV~80kV로 설정할 수 있고, 50kV부근에 설정하는 것이 바람직하다.A conveyance speed can be set, for example at 0.2 m / min-100 m / min. The voltage applied between the collector 24 and the nozzle unit 22 can be set between 10 kV and 80 kV, and preferably around 50 kV.
방사 구역의 온도는, 예를 들면 10℃~40℃로 설정할 수 있다. 방사 구역의 습도는, 예를 들면 20%~60%로 설정할 수 있다.The temperature of a spinning zone can be set to 10 to 40 degreeC, for example. The humidity of a radiation zone can be set to 20%-60%, for example.
4.실시형태 1에 따른 세퍼레이터(100)의 효과4.Effect of Separator 100 According to Embodiment 1
실시형태 1에 따른 세퍼레이터(100)에 의하면, 섬유가 가늘고 공극이 미세한 특징을 가진 나노 섬유층(120, 130)을 구비하므로, 높은 절연성 및 높은 덴드라이트 내성을 갖는다. 또한, 나노 섬유층은 공극율이 큰 특징도 가지므로, 높은 전해액 유지 특성을 갖고 높은 이온 전도성을 갖는다.According to the separator 100 according to Embodiment 1, since the nanofiber layers 120 and 130 are characterized by thin fibers and fine pores, they have high insulation and high dendrite resistance. In addition, since the nanofiber layer also has a large porosity, it has high electrolyte solution retention characteristics and high ion conductivity.
또한, 실시형태 1에 따른 세퍼레이터(100)에 의하면, 셀룰로스 섬유층(110)을 구비하므로, 높은 기계적 강도를 갖는다.Moreover, according to the separator 100 which concerns on Embodiment 1, since the cellulose fiber layer 110 is provided, it has high mechanical strength.
그 결과, 실시형태 1에 따른 세퍼레이터(100)는 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 세퍼레이터가 된다.As a result, the separator 100 according to Embodiment 1 becomes a separator having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity.
또한, 실시형태 1에 따른 세퍼레이터(100)에 의하면, 셀룰로스 섬유층(110)의 두께가 40㎛ 이하이므로, 얇은 세퍼레이터를 제조하는 것이 가능해지고, 전기 용량이 큰 비수계 전지를 제조하는 것이 가능해진다. 또한, 셀룰로스 섬유층(110)의 두께가 1㎛ 이상이므로, 기계적 강도가 저하하지도 않는다.Moreover, according to the separator 100 which concerns on Embodiment 1, since the thickness of the cellulose fiber layer 110 is 40 micrometers or less, it becomes possible to manufacture a thin separator and to manufacture a non-aqueous battery with a large electric capacity. In addition, since the thickness of the cellulose fiber layer 110 is 1 µm or more, the mechanical strength does not decrease.
또한, 실시형태 1에 따른 세퍼레이터(100)에 의하면, 셀룰로스 섬유층(110)이 평균 섬유 직경 0.1㎛ 이상의 셀룰로스 섬유로 이루어지므로, 셀룰로스 섬유 그 자체의 강도를 유지하기 쉬워지고, 그다지 두껍게 하지 않고 충분한 기계적 강도를 가진 셀룰로스 섬유층을 구성할 수 있다. 한편, 셀룰로스 섬유층(110)이 평균 섬유 직경 10㎛ 이하의 셀룰로스 섬유로 이루어지므로 얇은 세퍼레이터를 제조하는 것이 가능해지고, 전기 용량이 큰 비수계 전지를 제조하는 것이 가능해진다.Moreover, according to the separator 100 which concerns on Embodiment 1, since the cellulose fiber layer 110 consists of cellulose fiber of 0.1 micrometer or more of average fiber diameters, it becomes easy to maintain the strength of the cellulose fiber itself, and it does not thicken enough mechanical enough. It is possible to construct a cellulose fiber layer having strength. On the other hand, since the cellulose fiber layer 110 consists of cellulose fiber of 10 micrometers or less of average fiber diameters, it becomes possible to manufacture a thin separator and to manufacture a non-aqueous battery with a large electric capacity.
또한, 실시형태 1에 따른 세퍼레이터(100)에 의하면, 셀룰로스 섬유들이 얽히는 부분이 많아지므로, 그다지 두껍게 하지 않고 충분한 기계적 강도를 가진 세퍼레이터를 구성하는 것이 가능해진다.Moreover, according to the separator 100 which concerns on Embodiment 1, since the part which cellulose fibers intertwine increases, it becomes possible to comprise the separator which has sufficient mechanical strength, without making it thick.
또한, 실시형태 1에 따른 세퍼레이터(100)에 의하면, 나노 섬유층(120, 130)의 공공률이 20%~80%의 범위 내에 있으므로 높은 전해액 유지 특성을 갖고, 높은 이온 전도성을 얻는 것이 가능해진다. 또한, 평균 공공 사이즈가 0.02㎛~2㎛의 범위 내에 있고, 덴드라이트가 세퍼레이터에 침입하기 어려운 공공 사이즈이므로, 높은 덴드라이트 내성을 갖는다.Moreover, according to the separator 100 which concerns on Embodiment 1, since the porosity of the nanofiber layers 120 and 130 exists in the range of 20%-80%, it has high electrolyte solution holding property and can obtain high ion conductivity. Moreover, since the average pore size exists in the range of 0.02 micrometer-2 micrometers, and a dendrite does not easily invade a separator, it has high dendrite tolerance.
또한, 실시형태 1에 따른 세퍼레이터(100)에 의하면, 셀룰로스 섬유층(110)의 양면에서 덴드라이트의 성장을 저지하는 것이 가능해지고, 더 높은 덴드라이트 내성을 가진 세퍼레이터를 구성하는 것이 가능해진다.Moreover, according to the separator 100 which concerns on Embodiment 1, it becomes possible to prevent growth of dendrites on both surfaces of the cellulose fiber layer 110, and it becomes possible to comprise the separator with higher dendrite tolerance.
5.실시형태 1에 따른 세퍼레이터의 제조 방법의 효과5.Effect of the manufacturing method of the separator concerning Embodiment 1
실시형태 1에 따른 세퍼레이터의 제조 방법에 의하면, 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 본 발명의 세퍼레이터를 연속해서 높은 생산성으로 제조하는 것이 가능해진다.According to the method for manufacturing a separator according to Embodiment 1, the separator of the present invention having high mechanical strength, high insulation, high dendrite resistance, and high ion conductivity can be continuously manufactured with high productivity.
또한, 실시형태 1에 따른 세퍼레이터의 제조 방법에 의하면, 나노 섬유층(120, 130)이 형성된 셀룰로스 섬유층(110)을 그대로 제품으로 할 수 있다. 이 때문에 장척 시트로부터 세퍼레이터의 제품을 분리하는 공정을 생략할 수 있어, 더 생산성을 높이는 것이 가능해진다.Moreover, according to the manufacturing method of the separator which concerns on Embodiment 1, the cellulose fiber layer 110 in which the nanofiber layers 120 and 130 were formed can be used as a product as it is. For this reason, the process of isolate | separating the product of a separator from a long sheet can be skipped, and it becomes possible to improve productivity more.
6.실시형태 1에 따른 세퍼레이터 제조 장치(1)의 효과6.Effect of the separator manufacturing apparatus 1 which concerns on Embodiment 1
실시형태 1에 따른 세퍼레이터 제조 장치(1)에 의하면, 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 본 발명의 세퍼레이터를 연속해서 높은 생산성으로 제조하는 것이 가능해진다.According to the separator manufacturing apparatus 1 which concerns on Embodiment 1, it becomes possible to manufacture the separator of this invention which has high mechanical strength, high insulation, high dendrite tolerance, and high ion conductivity continuously with high productivity.
또한, 실시형태 1에 따른 세퍼레이터 제조 장치(1)에 의하면, 나노 섬유층(120, 130)이 형성된 셀룰로스 섬유층(110)을 그대로 제품으로 할 수 있다. 이 때문에 장척 시트로부터 세퍼레이터의 제품을 분리하는 공정을 생략할 수 있어, 더 생산성을 높게 하는 것이 가능해진다.Moreover, according to the separator manufacturing apparatus 1 which concerns on Embodiment 1, the cellulose fiber layer 110 in which the nanofiber layers 120 and 130 were formed can be used as a product as it is. For this reason, the process of isolate | separating the product of a separator from a long sheet can be skipped, and it becomes possible to raise productivity more.
[실시형태 2][Embodiment 2]
도 4는 실시형태 2에 따른 세퍼레이터 제조 장치(2)의 단면도이다.4 is a cross-sectional view of the separator manufacturing apparatus 2 according to the second embodiment.
실시형태 2에 따른 세퍼레이터 제조 장치(2)는 도 4에 도시한 바와 같이, 기본적으로는 실시형태 1에 따른 세퍼레이터 제조 장치(1)와 동일한 구성을 갖지만, 전계 방사 장치의 구성이 실시형태 1에 따른 세퍼레이터 제조 장치(1)의 경우와 다르다. 즉, 실시형태 2에 따른 세퍼레이터 제조 장치(2)에서는 도 4에 도시한 바와 같이, 반송되어 가는 셀룰로스 섬유층(110)의 한쪽 면에 나노 섬유층(120)을 형성하는 전계 방사 장치(20a)와, 다른쪽 면에 나노 섬유층(130)을 형성하는 전계 방사 장치(20c)를 구비한다. 전계 방사 장치(20c)는 하부 방향식 노즐을 가진 하부 방향식 전계 방사 장치이다.As shown in FIG. 4, the separator manufacturing apparatus 2 according to the second embodiment has the same configuration as that of the separator manufacturing apparatus 1 according to the first embodiment, but the configuration of the electric field radiating apparatus is the first embodiment. It differs from the case of the separator manufacturing apparatus 1 which concerns. That is, in the separator manufacturing apparatus 2 which concerns on Embodiment 2, as shown in FIG. 4, the field emission apparatus 20a which forms the nanofiber layer 120 in one surface of the cellulose fiber layer 110 to be conveyed, and The field emission device 20c which forms the nanofiber layer 130 on the other side is provided. The field emission device 20c is a downward direction field emission device having a downward direction nozzle.
실시형태 2에 따른 세퍼레이터 제조 장치(2)에서는 도 4에 도시한 바와 같이, 전계 방사 장치(20a)와, 전계 방사 장치(20c)가 이 순서로 셀룰로스 섬유층(110)의 반송 방향을 따라서 동일 직선상이 되도록 배치되어 있다.In the separator manufacturing apparatus 2 which concerns on Embodiment 2, as shown in FIG. 4, the field radiating apparatus 20a and the field radiating apparatus 20c are the same straight line along the conveyance direction of the cellulose fiber layer 110 in this order. It is arrange | positioned so that it may become a phase.
전계 방사 장치(20c)는 지지대(35)에 절연부재를 통해 장착되고, 셀룰로스 섬유(110)의 한쪽 면측에 위치하는 컬렉터(34)와, 셀룰로스 섬유층(110)의 다른쪽 면측의 컬렉터(34)에 대향하는 위치에 위치하는 복수의 하부 방향 노즐(33)을 가진 노즐 유닛(32)과, 전원 장치(29)와, 셀룰로스 섬유층(110)가 반송되는 것을 보조하는 보조 벨트 장치(36)를 구비한다.The field radiating device 20c is mounted on the support 35 through an insulating member, and is disposed on one side of the cellulose fiber 110 and the collector 34 on the other side of the cellulose fiber layer 110. It is provided with the nozzle unit 32 which has the several downward direction nozzle 33 located in the position which opposes, the power supply 29, and the auxiliary belt apparatus 36 which assists the cellulose fiber layer 110 to be conveyed. do.
노즐 유닛(32)은 하우징체(31)에 장착되고, 복수의 노즐로서 폴리머 용액을 토출구로부터 하부 방향으로 토출하는 복수의 하부 방향 노즐(33)을 갖는다.The nozzle unit 32 is attached to the housing body 31 and has a some lower direction nozzle 33 which discharges a polymer solution from a discharge port to a downward direction as a some nozzle.
컬렉터(34)는 도전성을 가진 지지대(35)에 절연부재를 통해 장착되어 있다.전원 장치(29)의 양극은 컬렉터(34)에 접속되고, 전원 장치(29)의 음극은 하우징체(35) 및 노즐 유닛(32)에 접속되어 있다.The collector 34 is mounted on the conductive support 35 via an insulating member. The positive electrode of the power supply device 29 is connected to the collector 34, and the negative electrode of the power supply device 29 is the housing body 35. And the nozzle unit 32.
보조 벨트 장치(36)는 셀룰로스 섬유층(110)의 반송 속도에 동기하여 회전하는 보조 벨트(37)와, 보조 벨트(37)의 회전을 돕는 5개의 보조 벨트용 롤러(38)를 구비한다.The auxiliary belt device 36 includes an auxiliary belt 37 that rotates in synchronization with the conveyance speed of the cellulose fiber layer 110, and five rollers 38 for assisting belts that assist the rotation of the auxiliary belt 37.
이와 같이, 실시형태 2에 따른 세퍼레이터 제조 장치(2)는 전계 방사 장치의 구성이 실시형태 1에 따른 세퍼레이터 제조 장치(1)의 경우와 다르지만, 실시형태 1에 따른 세퍼레이터 제조 장치(1)와 마찬가지로 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 본 발명의 세퍼레이터를 연속해서 높은 생산성으로 제조하는 것이 가능해진다.As described above, the separator manufacturing apparatus 2 according to the second embodiment is different from the case of the separator manufacturing apparatus 1 according to the first embodiment, although the configuration of the field radiating device is the same as that of the separator manufacturing apparatus 1 according to the first embodiment. It becomes possible to manufacture the separator of the present invention having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity continuously with high productivity.
또한, 실시형태 2에 따른 세퍼레이터 제조 장치(2)에 의하면, 나노 섬유층(120, 130)이 형성된 셀룰로스 섬유층(110)을 그대로 제품화할 수 있다. 이 때문에, 장척 시트로부터 세퍼레이터의 제품을 분리하는 공정을 생략할 수 있어, 더 생산성을 높게 하는 것이 가능해진다.Moreover, according to the separator manufacturing apparatus 2 which concerns on Embodiment 2, the cellulose fiber layer 110 in which the nanofiber layer 120,130 was formed can be manufactured as it is. For this reason, the process of isolate | separating the product of a separator from a long sheet can be skipped, and it becomes possible to raise productivity more.
또한, 실시형태 2에 따른 세퍼레이터 제조 장치(2)에 의하면, 세퍼레이터 제조 장치의 설치 높이를 그다지 높게 하지 않고, 셀룰로스 섬유층의 양면에 나노 섬유층이 설치된 구조를 가진 세퍼레이터를 제조하는 것이 가능해진다.Moreover, according to the separator manufacturing apparatus 2 which concerns on Embodiment 2, it becomes possible to manufacture the separator which has a structure in which the nanofiber layer was provided in both surfaces of a cellulose fiber layer, without making the installation height of a separator manufacturing apparatus very high.
또한, 실시형태 2에 따른 세퍼레이터 제조 장치(2)는 전계 방사 장치의 구성 이외는 실시형태 1에 따른 세퍼레이터 제조 장치(1)의 경우와 동일한 구성을 가지므로, 실시형태 1에 따른 세퍼레이터 제조 장치(1)가 가진 효과 중 해당하는 효과를 갖는다.In addition, since the separator manufacturing apparatus 2 which concerns on Embodiment 2 has the structure similar to the case of the separator manufacturing apparatus 1 which concerns on Embodiment 1 except the structure of the field emission apparatus, the separator manufacturing apparatus which concerns on Embodiment 1 ( It has one of the effects that 1) has.
[실시형태 3][Embodiment 3]
1.실시형태 3에 따른 세퍼레이터(102)의 구성1. Configuration of Separator 102 According to Embodiment 3
실시형태 3에 따른 세퍼레이터(102)의 구성을 설명한다.The structure of the separator 102 which concerns on Embodiment 3 is demonstrated.
도 5는 실시형태 3에 따른 세퍼레이터(102)의 단면도이다.5 is a cross-sectional view of the separator 102 according to the third embodiment.
실시형태 3에 따른 세퍼레이터(102)는 도 5에 도시한 바와 같이, 기본적으로는 실시형태 1에 따른 세퍼레이터(100)와 동일한 구성을 갖지만, 셀룰로스 섬유층의 구성이 실시형태 1에 따른 세퍼레이터(100)의 경우와 다르다. 즉, 실시형태 3에 따른 세퍼레이터(102)에서는 도 5에 도시한 바와 같이, 후술하는 셀룰로스 섬유층 제조 장치(40)에 의해 제조된 셀룰로스 섬유층(112)을 구비한다.As shown in FIG. 5, the separator 102 according to the third embodiment basically has the same configuration as the separator 100 according to the first embodiment, but the structure of the cellulose fiber layer is the separator 100 according to the first embodiment. It is different from the case. That is, the separator 102 which concerns on Embodiment 3 is equipped with the cellulose fiber layer 112 manufactured by the cellulose fiber layer manufacturing apparatus 40 mentioned later as shown in FIG.
세퍼레이터(102)는 후술하는 실시형태 3에 따른 세퍼레이터 제조 장치(3)를 이용하여, 실시형태 3에 따른 세퍼레이터 방법에 의해 얻어진 것이다.The separator 102 is obtained by the separator method which concerns on Embodiment 3 using the separator manufacturing apparatus 3 which concerns on Embodiment 3 mentioned later.
2.실시형태 3에 따른 세퍼레이터 제조 장치(3)의 구성 2.Configuration of Separator Manufacturing Apparatus 3 According to Embodiment 3
도 6은 실시형태 3에 따른 세퍼레이터 제조 장치(3)의 단면도이다. 도 7은 실시형태 3에 따른 세퍼레이터의 제조 방법에 의해 세퍼레이터(102)가 제조되는 것을 나타내는 도면이다.6 is a cross-sectional view of the separator manufacturing apparatus 3 according to the third embodiment. FIG. 7 is a diagram showing that the separator 102 is manufactured by the method for manufacturing a separator according to the third embodiment.
실시형태 3에 따른 세퍼레이터 제조 장치(3)는 기본적으로는 실시형태 1에 따른 세퍼레이터 제조 장치(1)와 동일한 구성을 갖지만, 반송 장치의 구성 및 셀룰로스 섬유층 제조 장치를 더 구비하는 점에서 실시형태 1에 따른 세퍼레이터 제조 장치(1)의 경우와 다르다. 즉, 실시형태 3에 따른 세퍼레이터 제조 장치(3)는 도 6에 도시한 바와 같이, 장척 시트(W)를 반송하는 반송 장치(60)와, 전계 방사 장치(20a, 20b)와, 셀룰로스 섬유층(112)을 형성하는 셀룰로스 섬유층 제조 장치(40)를 구비한다.The separator manufacturing apparatus 3 which concerns on Embodiment 3 basically has the same structure as the separator manufacturing apparatus 1 which concerns on Embodiment 1, but Embodiment 1 is the point which further comprises the structure of a conveying apparatus, and a cellulose fiber layer manufacturing apparatus. It differs from the case of the separator manufacturing apparatus 1 which concerns on this. That is, the separator manufacturing apparatus 3 which concerns on Embodiment 3 has the conveying apparatus 60 which conveys the long sheet W, the field emission apparatus 20a, 20b, and the cellulose fiber layer (as shown in FIG. 6). The cellulose fiber layer manufacturing apparatus 40 which forms 112 is provided.
실시형태 3에 따른 세퍼레이터 제조 장치(3)에서는 도 6에 도시한 바와 같이, 전계 방사 장치(20a)와, 후술하는 장척 시트 반전 기구(65a)와, 셀룰로스 섬유층 제조 장치(40)와, 후술하는 장척 시트 반전 기구(65b)와, 전계 방사 장치(20b)가 이 순서로 장척 시트(W)의 반송 방향을 따라서 배치되어 있다.In the separator manufacturing apparatus 3 which concerns on Embodiment 3, as shown in FIG. 6, the field emission apparatus 20a, the elongate sheet inversion mechanism 65a mentioned later, the cellulose fiber layer manufacturing apparatus 40, and later mentioned The long sheet reversing mechanism 65b and the electric field radiating device 20b are arranged along the conveyance direction of the long sheet W in this order.
반송 장치로서 장척 시트 반송 장치(60)를 구비한다.The long sheet conveying apparatus 60 is provided as a conveying apparatus.
장척 시트 반송 장치(60)는 장척 시트(W)를 투입하는 투입 롤러(61)와, 장척 시트(W)를 감는 감기 롤러(62)와, 장척 시트(W)의 당김을 조정하는 텐션 롤러(63, 68)와, 장척 시트(W)를 반송하는 복수의 구동 롤러(64)와, 제 1 반전 롤러(66a, 66 c)와, 제 2 반전 롤러(66b, 66d)를 구비한다.The long sheet conveying device 60 includes an feeding roller 61 for feeding the long sheet W, a winding roller 62 for winding the long sheet W, and a tension roller for adjusting the pulling of the long sheet W ( 63, 68, the some drive roller 64 which conveys the long sheet W, the 1st reverse roller 66a, 66c, and the 2nd reverse roller 66b, 66d.
이 중, 투입 롤러(61), 감기 롤러(62), 텐션 롤러(63, 68) 및 복수의 구동 롤러(64)는 장척 시트(W)를 반송하는 반송 기구(60)를 구성한다. 복수의 구동 롤러(64)는 장척 시트(W)를 반송하는 구동 장치이다.Among these, the feed roller 61, the winding roller 62, the tension rollers 63 and 68, and the some drive roller 64 comprise the conveyance mechanism 60 which conveys the long sheet W. As shown in FIG. The some drive roller 64 is a drive apparatus which conveys the long sheet W. As shown in FIG.
제 1 반전 롤러(66a) 및 제 2 반전 롤러(66b)는 장척 시트(W)가 반송되어 가는 도중에 장척 시트(W)의 한쪽 면의 방향과 다른쪽 면의 방향이 반대가 되도록 장척 시트(W)를 반전시키는 장척 시트 반전 기구(65a)를 구성한다. 또한, 제 1 반전 롤러(66c) 및 제 2 반전 롤러(66d)는 장척 시트(W)가 반송되어 가는 도중에 장척 시트(W)의 한쪽 면의 방향과 다른쪽 면의 방향이 반대가 되도록 장척 시트(W)를 반전시키는 장척 시트 반전 기구(65b)를 구성한다.The 1st reversing roller 66a and the 2nd reversing roller 66b have the long sheet W so that the direction of the one surface of the long sheet W and the other surface may be reversed while the long sheet W is conveyed. ), A long sheet reversing mechanism 65a for reversing the structure is formed. In addition, the 1st reversing roller 66c and the 2nd reversing roller 66d are a long sheet | seat so that the direction of the one surface of the long sheet W and the other surface may be reversed while the long sheet W is conveyed. The long sheet inversion mechanism 65b which inverts (W) is constituted.
전계 방사 장치(20a, 20b)는 실시형태 1에서 이용한 전계 방사 장치(20a, 20b)와 동일한 구성을 갖는다.The field emission devices 20a and 20b have the same configuration as the field emission devices 20a and 20b used in the first embodiment.
셀룰로스 섬유층 제조 장치(40)는 도 6에 도시한 바와 같이, 장척 시트 반송 장치(60)에 의해 반송되어 가는 장척 시트(W)에 셀룰로스 섬유층(112)을 형성한다.The cellulose fiber layer manufacturing apparatus 40 forms the cellulose fiber layer 112 in the long sheet W conveyed by the long sheet conveying apparatus 60, as shown in FIG.
셀룰로스 섬유층 제조 장치(40)는 도시하지 않은 셀룰로스 용액 공급부로부터 공급되는 셀룰로스 용액을 장척 시트(W)를 향해 토출하는 복수의 하부 방향 노즐(43)을 가진 노즐 유닛(42)과, 셀룰로스 용액을 향해 고온 기류를 분사하는 고온 기류 공급부(44)와, 고온 기류 흡인 장치(47)를 구비한다.The cellulose fiber layer manufacturing apparatus 40 has a nozzle unit 42 having a plurality of downward direction nozzles 43 for discharging the cellulose solution supplied from the cellulose solution supply unit (not shown) toward the long sheet W, and toward the cellulose solution. The high temperature airflow supply part 44 which injects high temperature airflow, and the high temperature airflow suction apparatus 47 are provided.
노즐 유닛(42)은 하우징체(21)에 장착되고, 복수의 노즐로서 셀룰로스 용액을 토출구로부터 하부 방향으로 토출하는 복수의 하부 방향 노즐(43)과, 셀룰로스 용액 토출 방향을 따르는 방향을 향해 후술하는 고온 기류 공급부(44)로부터 공급된 고온 기류를 흘리는 고온 기류 경로(도시하지 않음)를 갖는다. 복수의 하부 방향 노즐(43)은 예를 들면, 1.5cm~6.0cm의 피치로 배열되어 있다. 노즐 유닛(42)은 여러 가지 크기 및 여러 가지 형상을 가진 노즐 유닛을 이용할 수 있다.The nozzle unit 42 is attached to the housing body 21 and described later in the direction along the cellulose solution discharge direction and the plurality of downward direction nozzles 43 for discharging the cellulose solution downward from the discharge port as a plurality of nozzles. It has a high temperature airflow path (not shown) which flows the high temperature airflow supplied from the high temperature airflow supply part 44. As shown in FIG. The plurality of downward direction nozzles 43 are arranged at a pitch of, for example, 1.5 cm to 6.0 cm. The nozzle unit 42 may use a nozzle unit having various sizes and various shapes.
고온 기류 공급부(44)는 흡입 펌프(45)와 히터(46)를 구비한다.The hot airflow supply 44 includes a suction pump 45 and a heater 46.
고온 기류 공급부(44)는 흡입 펌프(84)에 의해 외부로부터 취입된 공기를 히터(46)에 의해 가열함으로써 고온 기류를 형성한다. 상기 고온 기류는 노즐 유닛(42)의 고온 기류 경로(도시하지 않음)로 인도된다. 히터(46)는 고온 기류를 120℃~500℃의 범위 내에 있는 소정의 온도가 되도록 출력을 조절할 수 있다.The high temperature airflow supply 44 forms the high temperature airflow by heating the air blown in from the outside by the suction pump 84 with the heater 46. The hot air flow is led to a hot air flow path (not shown) of the nozzle unit 42. The heater 46 can adjust the output so that a high temperature airflow may be a predetermined temperature within a range of 120 ° C to 500 ° C.
고온 기류 흡인 장치(47)는 노즐 유닛(42)에서 봐서 장척 시트(W)의 내면측에 배치되고, 그물형상 부재(48)와, 고온 기류 흡인부(50)와, 배출 펌프(51)를 구비한다.The high temperature airflow suction device 47 is disposed on the inner surface side of the long sheet W as viewed from the nozzle unit 42, and the mesh member 48, the high temperature airflow suction unit 50, and the discharge pump 51 are disposed. Equipped.
고온 기류 경로(도시하지 않음)로부터 흐르게 된 고온 기류는 기류 통과용 다수의 구멍이 형성되어 있는 그물형상 부재(44)를 통해 고온 기류 흡인부(50)에 의해 흡인되고, 배출 펌프(51)에 의해 외부로 배출된다.The high temperature airflow flowing from the high temperature airflow path (not shown) is sucked by the high temperature airflow suction unit 50 through the mesh member 44 in which a plurality of holes for airflow passage are formed, and is discharged to the discharge pump 51. Is discharged to the outside.
3.실시형태 3에 따른 세퍼레이터의 제조 방법3. Manufacturing method of separator according to Embodiment 3
이하, 상기와 같이 구성된 실시형태 3에 따른 세퍼레이터 제조 장치(3)를 이용하여 세퍼레이터를 제조하는 방법(실시형태 3에 따른 세퍼레이터 제조 방법)에 대해 설명한다.Hereinafter, the method (separator manufacturing method which concerns on Embodiment 3) which manufactures a separator using the separator manufacturing apparatus 3 which concerns on Embodiment 3 comprised as mentioned above is demonstrated.
도 7은 실시형태 3에 따른 세퍼레이터의 제조 방법에 의해 세퍼레이터(102)가 제조되는 것을 나타내는 도면이다. 도 7의 (a) 내지 도 7의 (e)는 각 공정도이다.FIG. 7 is a diagram showing that the separator 102 is manufactured by the method for manufacturing a separator according to the third embodiment. 7A to 7E are respective process diagrams.
(a) 방사 준비(a) Preparation for spinning
1대의 셀룰로스 섬유층 제조 장치(40)에 셀룰로스 용액을 준비하고, 상기 셀룰로스 용액을 노즐 유닛(42)에 공급한다. 또한, 2대의 전계 방사 장치(20a, 20b)의 각각에 있어서 폴리머 용액을 준비하고, 상기 폴리머 용액을 각각의 노즐 유닛(22)에 공급한다. 또한, 장척 시트(W)를 장척 시트 반송 장치(60)에 설정하고, 그 후, 장척 시트(W)를 투입 롤러(61)로부터 감기 롤러(62)를 향해 소정의 반송 속도로 반송한다(도 7의 (a) 참조). 셀룰로스 용액은 셀룰로스 섬유층(112)의 재료가 되는 셀룰로스를 용융한 것 또는 용매로 용해한 것이다.The cellulose solution is prepared in one cellulose fiber layer manufacturing apparatus 40, and the cellulose solution is supplied to the nozzle unit 42. In addition, in each of the two field radiating apparatuses 20a and 20b, a polymer solution is prepared, and the polymer solution is supplied to each nozzle unit 22. Moreover, the long sheet W is set to the long sheet conveying apparatus 60, and the long sheet W is conveyed from the input roller 61 toward the winding roller 62 at a predetermined conveyance speed after that (FIG. See (a) of 7). The cellulose solution is obtained by melting cellulose, which is a material of the cellulose fiber layer 112, or dissolving it in a solvent.
(b) 전계 방사(1)(b) field radiation (1)
계속해서, 장척 시트(110)를 반송하면서 전계 방사 장치(20a)에 의해 장척 시트(W)의 한쪽 면에 나노 섬유층(120)을 형성한다(도 7의 (b) 참조).Subsequently, the nanofiber layer 120 is formed on one surface of the long sheet W by the field emission device 20a while conveying the long sheet 110 (see FIG. 7B).
(c) 장척 시트 반전(1)(c) Long sheet reversal (1)
계속해서, 장척 시트 반전 기구(65a)(반전 롤러(66a, 66b))에 의해 한쪽 면이 상측이 되도록 장척 시트(W)의 한쪽 면의 방향과 다른쪽 면의 방향을 반전시킨다.Subsequently, the direction of one side of the long sheet W and the direction of the other side are reversed by the long sheet reversing mechanism 65a (inverting rollers 66a, 66b) so that one side becomes the upper side.
(d) 셀룰로스 섬유층 제조(d) Cellulose Fiber Layer Preparation
계속해서, 나노 섬유층(120)이 형성된 장척 시트(W)를 반송하면서, 셀룰로스 섬유 제조 장치(40)에 의해 장척 시트(W)의 한쪽 면에 셀룰로스 섬유층(112)을 형성한다(도 7의 (c) 참조). 이것에 의해, 장척 시트(W)의 한쪽 면에 나노 섬유층(120) 및 나노 섬유층(130)이 이 순서로 적층된다.Subsequently, the cellulose fiber layer 112 is formed on one surface of the long sheet W by the cellulose fiber manufacturing apparatus 40 while conveying the long sheet W in which the nanofiber layer 120 was formed (FIG. 7 ( c)). Thereby, the nanofiber layer 120 and the nanofiber layer 130 are laminated | stacked in this order on one surface of the elongate sheet W. As shown in FIG.
(c) 장척 시트 반전(2)(c) Long sheet reversal (2)
계속해서, 장척 시트 반전 기구(65b)(반전 롤러(66c, 66d))에 의해, 한쪽 면이 하측이 되도록 장척 시트(W)의 한쪽 면의 방향과 다른쪽 면의 방향을 반전시킨다.Subsequently, the long sheet reversing mechanism 65b (reversing rollers 66c, 66d) reverses the direction of the one surface of the long sheet W and the direction of the other surface such that one surface becomes the lower side.
(e) 전계 방사(2)(e) field radiation (2)
계속해서, 나노 섬유층(120) 및 셀룰로스 섬유층(112)이 적층된 장척 시트(W)를 반송하면서 전계 방사 장치(20b)에 의해 장척 시트(W)의 한쪽 면에 나노 섬유층(130)을 형성한다(도 7의 (d) 참조). 이것에 의해, 장척 시트(W)의 한쪽 면에 나노 섬유층(120), 셀룰로스 섬유층(112) 및 나노 섬유층(130)이 이 순서로 적층된 적층 시트가 제조된다. 그 후, 감기 롤러(12)에 의해 적층 시트가 감겨진다.Subsequently, the nanofiber layer 130 is formed on one side of the long sheet W by the field emission device 20b while conveying the long sheet W on which the nanofiber layer 120 and the cellulose fiber layer 112 are laminated. (See FIG. 7D). Thereby, the laminated sheet by which the nanofiber layer 120, the cellulose fiber layer 112, and the nanofiber layer 130 were laminated | stacked in this order on one side of the elongate sheet | seat W is manufactured. Thereafter, the laminated sheet is wound by the winding roller 12.
(f) 세퍼레이터와 장척 시트의 분리(f) Separation of separator and long sheet
그 후, 적층 시트를 투입하면서 세퍼레이터와 장척 시트를 분리하여 세퍼레이터(102)를 제조한다(도 5의 (e) 참조).Thereafter, the separator 102 and the long sheet are separated while the laminated sheet is introduced to manufacture the separator 102 (see FIG. 5E).
이상의 방법에 의해, 세퍼레이터(102)를 제조할 수 있다.By the above method, the separator 102 can be manufactured.
장척 시트로서는 각종 재료로 이루어진 부직포, 직물, 편물, 필름, 종이 등을 이용할 수 있다. 장척 시트의 두께는, 예를 들면 5㎛~500㎛의 것을 이용할 수 있다. 장척 시트의 길이는, 예를 들면 10m~10km의 것을 이용할 수 있다.As the long sheet, nonwoven fabric, woven fabric, knitted fabric, film, paper, etc. made of various materials can be used. As for the thickness of a long sheet, the thing of 5 micrometers-500 micrometers can be used, for example. As for the length of a long sheet, the thing of 10m-10km can be used, for example.
4.실시형태 3에 따른 세퍼레이터 제조 장치(3)의 효과4.Effect of the separator manufacturing apparatus 3 which concerns on Embodiment 3
실시형태 3에 따른 세퍼레이터 제조 장치(3)는 반송 장치의 구성 및 셀룰로스 섬유층 제조 장치를 더 구비하는 점이 실시형태 1에 따른 세퍼레이터 제조 장치(1)의 경우와 다르지만, 실시형태 1에 따른 세퍼레이터 제조 장치(1)와 마찬가지로 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 본 발명의 세퍼레이터를 연속해서 높은 생산성으로 제조하는 것이 가능해진다.Although the separator manufacturing apparatus 3 which concerns on Embodiment 3 differs from the case of the separator manufacturing apparatus 1 which concerns on Embodiment 1 in that the structure of a conveying apparatus and the cellulose fiber layer manufacturing apparatus differ from the case of the separator manufacturing apparatus 1 which concerns on Embodiment 1, Like (1), it becomes possible to continuously manufacture the separator of the present invention having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity with high productivity.
또한, 실시형태 3에 따른 세퍼레이터 제조 장치(3)에 의하면, 셀룰로스 섬유층의 두께, 셀룰로스 섬유의 섬유 길이, 셀룰로스 섬유층의 공공률이나 공공 사이즈를 조정하는 것이 가능해지고, 원하는 특성을 가진 셀룰로스 섬유층을 형성하는 것이 가능해진다. 평균 섬유 직경이 비교적 큰 셀룰로스 섬유로 이루어진 셀룰로스 섬유층을 형성하는 경우에 적합하다.Moreover, according to the separator manufacturing apparatus 3 which concerns on Embodiment 3, it becomes possible to adjust the thickness of a cellulose fiber layer, the fiber length of a cellulose fiber, the porosity and the pore size of a cellulose fiber layer, and form the cellulose fiber layer which has a desired characteristic. It becomes possible. It is suitable for forming a cellulose fiber layer made of cellulose fibers having a relatively large average fiber diameter.
또한, 실시형태 3에 따른 세퍼레이터 제조 장치(3)는 반송 장치의 구성 및 셀룰로스 섬유층 제조 장치를 더 구비한 점 이외에는 실시형태 1에 따른 세퍼레이터 제조 장치(1)의 경우와 동일한 구성을 가지므로, 실시형태 1에 따른 세퍼레이터 제조 장치(1)가 가진 효과 중 해당하는 효과를 가진다.In addition, since the separator manufacturing apparatus 3 which concerns on Embodiment 3 has the structure similar to the case of the separator manufacturing apparatus 1 which concerns on Embodiment 1 except having the structure of a conveying apparatus and the cellulose fiber layer manufacturing apparatus further, it implements. It has a corresponding effect among the effects which the separator manufacturing apparatus 1 which concerns on the form 1 has.
본 발명에서는 전계 방사 장치 및 셀룰로스 섬유층 제조 장치를 배치하는 순서를 실시형태 3에 따른 세퍼레이터 제조 장치(3)에서 적절히 변경함으로써, 셀룰로스 섬유층의 한쪽 면에 나노 섬유층이 설치된 구조의 세퍼레이터, 셀룰로스 섬유층의 양면에 나노 섬유층이 설치된 구조의 세퍼레이터 및 나노 섬유층의 양면에 셀룰로스 섬유층이 설치된 구조의 세퍼레이터 중 어느 세퍼레이터도 제조하는 것이 가능해진다.In the present invention, the order in which the field radiating device and the cellulose fiber layer manufacturing device are disposed is appropriately changed in the separator manufacturing apparatus 3 according to the third embodiment, so that both sides of the separator and the cellulose fiber layer having a structure in which the nanofiber layer is provided on one side of the cellulose fiber layer. It is possible to manufacture either the separator of the structure in which the nanofiber layer was provided, and the separator of the structure in which the cellulose fiber layer was provided on both surfaces of the nanofiber layer.
[실시형태 4][Embodiment 4]
도 8은 실시형태 4에 따른 세퍼레이터 제조 장치(4)의 단면도이다.8 is a cross-sectional view of the separator manufacturing apparatus 4 according to the fourth embodiment.
실시형태 4에 따른 세퍼레이터 제조 장치(4)는, 기본적으로는 실시형태 3에 따른 세퍼레이터 제조 장치(3)와 동일한 구성을 가지지만, 전계 방사 장치의 구성이 실시형태 3에 따른 세퍼레이터 제조 장치(3)의 경우와 다르다. 즉, 실시형태 4에 따른 세퍼레이터 제조 장치(4)에서는 도 8에 도시한 바와 같이, 반송되어 가는 장척 시트(W)에 나노 섬유층(120)을 형성하는 하부 방향식 전계 방사 장치(20d)와, 반송되어 가는 장척 시트(W)에 나노 섬유층(130)을 형성하는 하부 방향식 전계 방사 장치(20c)를 구비한다.Although the separator manufacturing apparatus 4 which concerns on Embodiment 4 has the structure similarly to the separator manufacturing apparatus 3 which concerns on Embodiment 3, the structure of the separator manufacturing apparatus 3 which concerns on Embodiment 3 is a structure of the field emission apparatus. ) Is different. That is, in the separator manufacturing apparatus 4 which concerns on Embodiment 4, as shown in FIG. 8, 20 d of lower direction electric field emission apparatuses which form the nanofiber layer 120 in the elongate sheet W to be conveyed, The downward direction field emission device 20c which forms the nanofiber layer 130 in the elongate sheet W conveyed is provided.
실시형태 4에 따른 세퍼레이터 제조 장치(4)에서는 도 8에 도시한 바와 같이, 전계 방사 장치(20d)와, 셀룰로스 섬유층 제조 장치(40)와, 전계 방사 장치(20c)가 이 순서로 장척 시트(W)의 반송 방향을 따라서 동일 직선상이 되도록 배치되어 있다.In the separator manufacturing apparatus 4 which concerns on Embodiment 4, as shown in FIG. 8, the field radiating apparatus 20d, the cellulose fiber layer manufacturing apparatus 40, and the field radiating apparatus 20c are long sheets (in this order). It is arrange | positioned so that it may become the same linear form along the conveyance direction of W).
이와 같이, 실시형태 4에 따른 세퍼레이터 제조 장치(4)는 전계 방사 장치의 구성이 실시형태 3에 따른 세퍼레이터 제조 장치(3)의 경우와 다르지만, 실시형태 3에 따른 세퍼레이터 제조 장치(3)와 마찬가지로 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 본 발명의 세퍼레이터를 연속해서 높은 생산성으로 제조하는 것이 가능해진다.In this manner, the separator manufacturing apparatus 4 according to the fourth embodiment is different from the case of the separator manufacturing apparatus 3 according to the third embodiment, although the configuration of the field emission device is the same as that of the separator manufacturing apparatus 3 according to the third embodiment. It becomes possible to manufacture the separator of the present invention having high mechanical strength, high insulation, high dendrite resistance and high ion conductivity continuously with high productivity.
또한, 실시형태 4에 따른 세퍼레이터 제조 장치(4)에 의하면, 전계 방사 장치 및 셀룰로스 섬유층 제조 장치를 배치하는 순서를 적절히 조정함으로써, 셀룰로스 섬유층의 한쪽 면에 나노 섬유층이 설치된 구조의 세퍼레이터, 셀룰로스 섬유층의 양면에 나노 섬유층이 설치된 구조의 세퍼레이터 및 나노 섬유층의 양면에 셀룰로스 섬유층이 설치된 구조의 세퍼레이터중 어느 세퍼레이터도 제조하는 것이 가능해진다.Moreover, according to the separator manufacturing apparatus 4 which concerns on Embodiment 4, the separator and the cellulose fiber layer of the structure by which the nanofiber layer was provided in one side of a cellulose fiber layer by adjusting the order which arrange | positions an electric field radiating device and a cellulose fiber layer manufacturing apparatus appropriately. It becomes possible to manufacture either the separator of the structure in which the nanofiber layer was provided in both surfaces, and the separator of the structure in which the cellulose fiber layer was provided in both surfaces of the nanofiber layer.
또한, 실시형태 4에 따른 세퍼레이터 제조 장치(4)에 의하면, 세퍼레이터 제조 장치의 설치 높이를 그다지 높게 하지 않고, 셀룰로스 섬유층의 양면에 나노 섬유층이 설치된 구조를 가진 세퍼레이터를 제조하는 것이 가능해진다.Moreover, according to the separator manufacturing apparatus 4 which concerns on Embodiment 4, it becomes possible to manufacture the separator which has a structure in which the nanofiber layer was provided in both surfaces of a cellulose fiber layer, without making the installation height of a separator manufacturing apparatus very high.
또한, 실시형태 4에 따른 세퍼레이터 제조 장치(4)는 전계 방사 장치의 구성 이외는 실시형태 3에 따른 세퍼레이터 제조 장치(3)의 경우와 동일한 구성을 가지므로, 실시형태 3에 따른 세퍼레이터 제조 장치(3)가 가진 효과 중 해당하는 효과를 갖는다.In addition, since the separator manufacturing apparatus 4 which concerns on Embodiment 4 has the structure similar to the case of the separator manufacturing apparatus 3 which concerns on Embodiment 3 except the structure of the field emission apparatus, the separator manufacturing apparatus which concerns on Embodiment 3 ( It has a corresponding effect among the effects that 3) has.
[실시형태 5][Embodiment 5]
도 9는 실시형태 5에 따른 세퍼레이터 제조 장치(5)의 단면도이다.9 is a cross-sectional view of the separator manufacturing apparatus 5 according to the fifth embodiment.
실시형태 5에 따른 세퍼레이터 제조 장치(5)는 기본적으로는 실시형태 4에 따른 세퍼레이터 제조 장치(4)와 동일한 구성을 갖지만, 셀룰로스 섬유층 제조 장치의 구성이 실시형태 4에 따른 세퍼레이터 제조 장치(4)의 경우와 다르다. 즉, 실시형태 5에 따른 세퍼레이터 제조 장치(5)에서는 도 9에 도시한 바와 같이, 셀룰로스 섬유층 제조 장치로서 전계 방사 장치(20e)를 구비한다. 전계 방사 장치(20e)는 상부 방향식 노즐을 가진 상부 방향식 전계 방사 장치이다.The separator manufacturing apparatus 5 according to the fifth embodiment basically has the same configuration as the separator manufacturing apparatus 4 according to the fourth embodiment, but the structure of the cellulose fiber layer manufacturing apparatus according to the fourth exemplary embodiment is the separator manufacturing apparatus 4 according to the fourth exemplary embodiment. It is different from the case. That is, in the separator manufacturing apparatus 5 which concerns on Embodiment 5, as shown in FIG. 9, the field emission apparatus 20e is provided as a cellulose fiber layer manufacturing apparatus. The field radiator 20e is a top direction field radiator having a top direction nozzle.
이와 같이, 실시형태 5에 따른 세퍼레이터 제조 장치(5)는 셀룰로스 섬유 제조 장치의 구성이 실시형태 4에 따른 세퍼레이터 제조 장치(4)의 경우와 다르지만, 실시형태 4에 따른 세퍼레이터 제조 장치(4)와 마찬가지로 높은 기계적 강도, 높은 절연성, 높은 덴드라이트 내성 및 높은 이온 전도성을 가진 본 발명의 세퍼레이터를 연속해서 높은 생산성으로 제조하는 것이 가능해진다.Thus, although the structure of a cellulose fiber manufacturing apparatus differs from the case of the separator manufacturing apparatus 4 which concerns on Embodiment 4, the separator manufacturing apparatus 5 which concerns on Embodiment 5 differs from the separator manufacturing apparatus 4 which concerns on Embodiment 4, Likewise, the separator of the present invention having high mechanical strength, high insulation, high dendrite resistance, and high ion conductivity can be continuously manufactured with high productivity.
또한, 실시형태 5에 따른 세퍼레이터 제조 장치(5)에 의하면, 전계 방사 장치 및 셀룰로스 섬유층 제조 장치를 배치하는 순서를 적절히 조정함으로써 셀룰로스 섬유층의 한쪽 면에 나노 섬유층이 설치된 구조의 세퍼레이터, 셀룰로스 섬유층의 양면에 나노 섬유층이 설치된 구조의 세퍼레이터 및 나노 섬유층의 양면에 셀룰로스 섬유층이 설치된 구조의 세퍼레이터 중 어느 세퍼레이터도 제조하는 것이 가능해진다.Moreover, according to the separator manufacturing apparatus 5 which concerns on Embodiment 5, the separator of the structure in which the nanofiber layer was provided in one side of a cellulose fiber layer, and both surfaces of a cellulose fiber layer by adjusting the order which arrange | positions an electric field radiating device and a cellulose fiber layer manufacturing apparatus suitably. It is possible to manufacture either the separator of the structure in which the nanofiber layer was provided, and the separator of the structure in which the cellulose fiber layer was provided on both surfaces of the nanofiber layer.
또한, 실시형태 5에 따른 세퍼레이터 제조 장치(5)에 의하면, 셀룰로스 섬유층의 두께, 셀룰로스 섬유의 섬유 길이, 셀룰로스 섬유층의 공공률이나 공공 사이즈를 조정하는 것이 가능해지고, 원하는 특성을 가진 셀룰로스 섬유층을 형성하는 것이 가능해진다. 평균 섬유 직경이 비교적 작은 셀룰로스 섬유로 이루어진 셀룰로스 섬유층을 형성하는 경우에 적합하다.Moreover, according to the separator manufacturing apparatus 5 which concerns on Embodiment 5, it becomes possible to adjust the thickness of a cellulose fiber layer, the fiber length of a cellulose fiber, the porosity and the pore size of a cellulose fiber layer, and form the cellulose fiber layer which has a desired characteristic. It becomes possible. It is suitable for forming a cellulose fiber layer composed of cellulose fibers having a relatively small average fiber diameter.
또한, 실시형태 5에 따른 세퍼레이터 제조 장치(5)에 의하면, 세퍼레이터 제조 장치의 설치 높이를 그다지 높게 하지 않고, 셀룰로스 섬유층의 양면에 나노 섬유층이 설치된 구조를 가진 세퍼레이터를 제조하는 것이 가능해진다.Moreover, according to the separator manufacturing apparatus 5 which concerns on Embodiment 5, it becomes possible to manufacture the separator which has a structure in which the nanofiber layer was provided in both surfaces of a cellulose fiber layer, without making the installation height of a separator manufacturing apparatus very high.
또한, 실시형태 5에 따른 세퍼레이터 제조 장치(5)는 셀룰로스 섬유층 제조 장치의 구성 이외는 실시형태 4에 따른 세퍼레이터 제조 장치(4)의 경우와 동일한 구성을 가지므로, 실시형태 4에 따른 세퍼레이터 제조 장치(4)가 가진 효과 중 해당하는 효과를 가진다.In addition, since the separator manufacturing apparatus 5 which concerns on Embodiment 5 has the structure similar to the case of the separator manufacturing apparatus 4 which concerns on Embodiment 4 except the structure of a cellulose fiber layer manufacturing apparatus, the separator manufacturing apparatus which concerns on Embodiment 4 It has a corresponding effect among the effects of (4).
이상, 본 발명을 상기 실시형태에 기초하여 설명했지만, 본 발명은 상기 실시형태에 한정되지 않는다. 그 취지를 일탈하지 않는 범위에서 여러 가지 형태로 실시하는 것이 가능하고, 예를 들면, 다음과 같은 변형도 가능하다.As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to the said embodiment. Various forms can be implemented in the range which does not deviate from the meaning, For example, the following modification is also possible.
(1) 상기 각 실시형태에서는 나노 섬유층 형성 장치로서 2대의 전계 방사 장치를 이용했지만, 본 발명은 이것에 한정되지 않는다. 나노 섬유층 형성 장치로서 예를 들면 1대 또는 3대 이상의 전계 방사 장치를 이용해도 좋다.(1) In each said embodiment, although two field emission apparatuses were used as a nanofiber layer forming apparatus, this invention is not limited to this. As the nanofiber layer forming apparatus, for example, one, three or more field radiating apparatuses may be used.
(2) 실시형태 3 내지 실시형태 5에서는 셀룰로스 섬유층 제조 장치로서 1대의 셀룰로스 섬유층 제조 장치를 이용했지만, 본 발명은 이것에 한정되지 않는다.예를 들면, 2대 이상의 셀룰로스 섬유층 제조 장치를 이용해도 좋다. 또한, 셀룰로스 섬유층 제조 장치로서 멜트블로 방사 장치 또는 전계 방사 장치를 이용했지만, 본 발명은 이것에 한정되지 않는다. 예를 들면, 스판본드 방사 장치, 니들 펀치 방사 장치 그 외의 방사 장치를 이용해도 좋다(2) In Embodiments 3 to 5, one cellulose fiber layer production apparatus was used as the cellulose fiber layer production apparatus, but the present invention is not limited thereto. For example, two or more cellulose fiber layer production apparatuses may be used. . In addition, although the melt blow spinning apparatus or the field spinning apparatus was used as a cellulose fiber layer manufacturing apparatus, this invention is not limited to this. For example, you may use a spanbond spinning apparatus, a needle punch spinning apparatus, or another spinning apparatus.
(3) 상기 각 실시형태에서는 셀룰로스 섬유층의 양면에 나노 섬유층을 설치한 구조의 세퍼레이터를 제조했지만, 본 발명은 이것에 한정되지 않는다. 예를 들면, 셀룰로스 섬유층의 한면에 나노 섬유층을 설치한 세퍼레이터를 제조해도 좋고, 나노 섬유층의 양면에 셀룰로스 섬유층을 설치한 세퍼레이터를 제조해도 좋다. 또한, 셀룰로스 섬유층과 나노 섬유층이 각각 2층 이상 교대로 적층된 구조의 세퍼레이터를 제조해도 좋다.(3) In each said embodiment, although the separator of the structure which provided the nanofiber layer on both surfaces of the cellulose fiber layer was manufactured, this invention is not limited to this. For example, the separator which provided the nanofiber layer on one side of a cellulose fiber layer may be manufactured, and the separator which provided the cellulose fiber layer on both surfaces of a nanofiber layer may be manufactured. Moreover, you may manufacture the separator of the structure in which a cellulose fiber layer and a nanofiber layer were laminated | stacked alternately two or more layers, respectively.
(4) 상기 각 실시형태에서는 전원 장치(29)의 양극이 컬렉터(24)에 접속되고, 전원 장치(29)의 음극이 노즐 유닛(22)에 접속되어 있지만, 본 발명은 이것에 한정되지 않는다. 예를 들면, 전원 장치의 양극이 노즐에 접속되고, 전원 장치의 음극이 컬렉터에 접속되어 있어도 좋다.(4) Although the anode of the power supply device 29 is connected to the collector 24 and the cathode of the power supply device 29 is connected to the nozzle unit 22 in each said embodiment, this invention is not limited to this. . For example, the anode of the power supply device may be connected to the nozzle, and the cathode of the power supply device may be connected to the collector.

Claims (13)

  1. 적어도 1개의 셀룰로스 섬유층과, At least one cellulose fiber layer,
    적어도 1개의 나노 섬유층을 구비하는 것을 특징으로 하는 세퍼레이터.A separator comprising at least one nanofiber layer.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 셀룰로스 섬유층은 두께가 1㎛~40㎛이고, 또한 평균 섬유 직경이 0.1㎛~10㎛인 셀룰로스 섬유로 이루어진 것을 특징으로 하는 세퍼레이터.The cellulose fiber layer has a thickness of 1 μm to 40 μm and an average fiber diameter of 0.1 μm to 10 μm.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 셀룰로스 섬유층은 평균 섬유 길이가 2.0mm 이상인 셀룰로스 섬유로 이루어진 것을 특징으로 하는 세퍼레이터.The cellulose fiber layer is a separator, characterized in that consisting of cellulose fibers having an average fiber length of 2.0mm or more.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 나노 섬유층은 공공률이 20%~80%의 범위내에 있고, 또한 평균 공공 사이즈가 0.02㎛~2㎛의 범위 내에 있는 것을 특징으로 하는 세퍼레이터.The nanofiber layer has a porosity in the range of 20% to 80%, and an average pore size in the range of 0.02 μm to 2 μm.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 세퍼레이터는 상기 셀룰로스 섬유층의 양면에 상기 나노 섬유층이 설치된 구조를 갖는 것을 특징으로 하는 세퍼레이터.The separator has a structure characterized in that the nanofiber layer is provided on both sides of the cellulose fiber layer.
  6. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 세퍼레이터는 상기 나노 섬유층의 양면에 상기 셀룰로스 섬유층이 설치된 구조를 갖는 것을 특징으로 하는 세퍼레이터.The separator has a structure characterized in that the cellulose fiber layer is provided on both sides of the nanofiber layer.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 기재된 세퍼레이터를 제조하기 위한 세퍼레이터의 제조 방법에 있어서, In the manufacturing method of the separator for manufacturing the separator of any one of Claims 1-6,
    상기 셀룰로스 섬유층으로 이루어진 장척 시트를 준비하는 공정, 및 Preparing a long sheet composed of the cellulose fiber layer, and
    반송되어 가는 상기 장척 시트에의 한쪽 면에 상기 나노 섬유층을 형성하는 공정을 포함하는 것을 특징으로 하는 세퍼레이터의 제조 방법.A method for producing a separator, comprising the step of forming the nanofiber layer on one side of the long sheet being conveyed.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    반송되어 가는 상기 장척 시트의 다른쪽 면에 상기 나노 섬유층을 형성하는 공정을 더 포함하는 것을 특징으로 하는 세퍼레이터의 제조 방법.A method for producing a separator, further comprising the step of forming the nanofiber layer on the other side of the long sheet being conveyed.
  9. 제 1 항 내지 제 6 항 중 어느 한 항에 기재된 세퍼레이터를 제조하기 위한 세퍼레이터의 제조 방법에 있어서,In the manufacturing method of the separator for manufacturing the separator of any one of Claims 1-6,
    반송되어 가는 장척 시트의 한쪽 면에 상기 나노 섬유층과, 상기 셀룰로스 섬유층을 차례로 형성함으로써 세퍼레이터를 제조하는 것을 특징으로 하는 세퍼레이터의 제조 방법.The separator is manufactured by forming the said nanofiber layer and the said cellulose fiber layer in order on one side of the elongate sheet | seat conveyed, The manufacturing method of the separator characterized by the above-mentioned.
  10. 제 1 항 내지 제 6 항 중 어느 한 항에 기재된 세퍼레이터를 제조하기 위한 세퍼레이터 제조 장치에 있어서, In the separator manufacturing apparatus for manufacturing the separator as described in any one of Claims 1-6,
    상기 셀룰로스 섬유층으로 이루어진 장척 시트를 반송하는 반송 장치, 및A conveying apparatus for conveying a long sheet of the cellulose fiber layer, and
    상기 반송 장치에 의해 반송되어 가는 상기 장척 시트에 나노 섬유층을 형성하는 전계 방사 장치를 구비하는 것을 특징으로 하는 세퍼레이터 제조 장치.The separator manufacturing apparatus characterized by including the field emission apparatus which forms a nanofiber layer in the said elongate sheet conveyed by the said conveying apparatus.
  11. 제 1 항 내지 제 6 항 중 어느 한 항에 기재되 세퍼레이터를 제조하기 위한 세퍼레이터 제조 장치에 있어서, In the separator manufacturing apparatus for manufacturing a separator as described in any one of Claims 1-6,
    장척 시트를 반송하는 반송 장치, A conveying device for conveying a long sheet,
    상기 반송 장치에 의해 반송되어 가는 상기 장척 시트에 나노 섬유층을 형성하는 전계 방사 장치, 및An electrospinning apparatus for forming a nanofiber layer on the long sheet being conveyed by the conveying apparatus, and
    상기 반송 장치에 의해 반송되어 가는 상기 장척 시트에 셀룰로스 섬유층을 형성하는 셀룰로스 섬유층 제조 장치를 구비하는 것을 특징으로 하는 세퍼레이터 제조 장치.A cellulose fiber layer manufacturing apparatus which forms a cellulose fiber layer in the said elongate sheet conveyed by the said conveying apparatus, The separator manufacturing apparatus characterized by the above-mentioned.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 셀룰로스 섬유층 제조 장치는 멜트블로 방사 장치인 것을 특징으로 하는 세퍼레이터 제조 장치.The apparatus for producing a cellulose fiber layer is a separator manufacturing apparatus, characterized in that the melt blow spinning device.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 셀룰로스 섬유층 제조 장치는 전계 방사 장치인 것을 특징으로 하는 세퍼레이터 제조 장치.The cellulose fiber layer manufacturing apparatus is a separator manufacturing apparatus, characterized in that the field radiating device.
PCT/KR2012/000849 2011-03-18 2012-02-06 Separator, method for manufacturing separator, and apparatus for manufacturing separator WO2012128471A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-061736 2011-03-18
JP2011061736A JP5860603B2 (en) 2011-03-18 2011-03-18 Separator manufacturing equipment
KR1020110125756A KR20120109289A (en) 2011-03-18 2011-11-29 A separator, a method and an apparatus for manufacturing the same
KR10-2011-0125756 2011-11-29

Publications (2)

Publication Number Publication Date
WO2012128471A2 true WO2012128471A2 (en) 2012-09-27
WO2012128471A3 WO2012128471A3 (en) 2012-11-22

Family

ID=46879839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000849 WO2012128471A2 (en) 2011-03-18 2012-02-06 Separator, method for manufacturing separator, and apparatus for manufacturing separator

Country Status (1)

Country Link
WO (1) WO2012128471A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019126979A1 (en) * 2017-12-26 2019-07-04 广州华创化工材料科技开发有限公司 Lithium ion battery separator substrate as well as preparation method and application thereof
CN112332020A (en) * 2020-10-31 2021-02-05 华南理工大学 Cross-scale micro-nano cellulose lithium ion battery diaphragm and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040108525A (en) * 2003-06-17 2004-12-24 (주)삼신크리에이션 A complex membrane for electrochemical device, manufacturing method and electrochemical device having the same
JP2008235047A (en) * 2007-03-22 2008-10-02 Kuraray Co Ltd Separator for electrochemical cell, and its manufacturing method
JP2009099836A (en) * 2007-10-18 2009-05-07 Kuraray Co Ltd Separator for capacitor, and capacitor
JP2011035373A (en) * 2009-07-10 2011-02-17 Tomoegawa Paper Co Ltd Separator for power storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040108525A (en) * 2003-06-17 2004-12-24 (주)삼신크리에이션 A complex membrane for electrochemical device, manufacturing method and electrochemical device having the same
JP2008235047A (en) * 2007-03-22 2008-10-02 Kuraray Co Ltd Separator for electrochemical cell, and its manufacturing method
JP2009099836A (en) * 2007-10-18 2009-05-07 Kuraray Co Ltd Separator for capacitor, and capacitor
JP2011035373A (en) * 2009-07-10 2011-02-17 Tomoegawa Paper Co Ltd Separator for power storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019126979A1 (en) * 2017-12-26 2019-07-04 广州华创化工材料科技开发有限公司 Lithium ion battery separator substrate as well as preparation method and application thereof
US11616272B2 (en) 2017-12-26 2023-03-28 Fibrway Material Science & Technology Development Co., Ltd. Battery separator substrate including dense layer formed on support layer, and method for preparing the same
CN112332020A (en) * 2020-10-31 2021-02-05 华南理工大学 Cross-scale micro-nano cellulose lithium ion battery diaphragm and preparation method thereof
CN112332020B (en) * 2020-10-31 2022-06-14 华南理工大学 Cross-scale micro-nano cellulose lithium ion battery diaphragm and preparation method thereof

Also Published As

Publication number Publication date
WO2012128471A3 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
WO2012128472A2 (en) Apparatus for manufacturing separator
WO2012077868A1 (en) Method and device for manufacturing nanofiber
WO2015016450A1 (en) Multi-layered nanofiber filter medium using electro-blowing, melt-blowing or electrospinning, and method for manufacturing same
JP5860603B2 (en) Separator manufacturing equipment
WO2014171624A1 (en) Electrospinning apparatus
WO2014171625A1 (en) Electrospinning apparatus
WO2012002754A2 (en) Filter media for a liquid filter using an electrospun nanofiber web, method for manufacturing same, and liquid filter using same
WO2015069008A1 (en) Separation membrane for electrochemical element
WO2017026876A1 (en) Nanofiber for filter medium, filter medium comprising same, method for producing same, and filter unit comprising same
WO2013183882A1 (en) Conductive adhesive tape and method for manufacturing same
WO2012111930A2 (en) Electrospinning apparatus, and apparatus for manufacturing nanofibers
WO2013183887A1 (en) Electromagnetic wave shielding sheet, method for manufacturing same, and embedded antenna comprising same
WO2012077873A1 (en) Method and device for manufacturing nanofibers
WO2014142450A1 (en) Method for preparing porous separation membrane for second battery and porous separation membrane for second battery prepared thereby
WO2012128473A2 (en) Apparatus for manufacturing separator
WO2020022851A1 (en) Separator and electrochemical device comprising same
WO2012128471A2 (en) Separator, method for manufacturing separator, and apparatus for manufacturing separator
WO2014196689A1 (en) Method for manufacturing asymmetric polyvinlylidenefluoride hollow fiber membrane and hollow fiber membrane manufactured therefrom
WO2012077864A1 (en) Field emission device and nanofiber manufacturing device
WO2014142449A1 (en) Method for manufacturing multi-layer separation film for secondary battery having improved heat resistance, and multi-layer separation film manufactured thereby
WO2016190694A4 (en) Aramid paper, manufacturing method therefor, and use thereof
WO2012077870A1 (en) Nanofiber manufacturing device
WO2018131897A1 (en) Graphene-based liquid crystal dispersion liquid, liquid crystal composite elastic fiber and method for preparing same
WO2014137095A1 (en) Filter medium having nanofibers on both sides of base and having improved heat resistance, and manufacturing method therefor
WO2018110990A1 (en) Filter medium, method for manufacturing same and filter unit comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760237

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12760237

Country of ref document: EP

Kind code of ref document: A2