WO2021172560A1 - Conductive carbon material dispersant for energy device, conductive carbon material dispersion for energy device, composition for energy device electrode formation and manufacturing method therefor, energy device electrode, and energy device - Google Patents

Conductive carbon material dispersant for energy device, conductive carbon material dispersion for energy device, composition for energy device electrode formation and manufacturing method therefor, energy device electrode, and energy device Download PDF

Info

Publication number
WO2021172560A1
WO2021172560A1 PCT/JP2021/007505 JP2021007505W WO2021172560A1 WO 2021172560 A1 WO2021172560 A1 WO 2021172560A1 JP 2021007505 W JP2021007505 W JP 2021007505W WO 2021172560 A1 WO2021172560 A1 WO 2021172560A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy device
carbon material
conductive carbon
electrode
dispersant
Prior art date
Application number
PCT/JP2021/007505
Other languages
French (fr)
Japanese (ja)
Inventor
広喜 葛岡
拓也 西村
琢 澤木
健司 鈴木
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2022503365A priority Critical patent/JPWO2021172560A1/ja
Publication of WO2021172560A1 publication Critical patent/WO2021172560A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a conductive carbon material dispersant for an energy device, a conductive carbon material dispersion for an energy device, a composition for forming an energy device electrode and a method for producing the same, an energy device electrode, and an energy device.
  • a lithium ion secondary battery which is a non-aqueous electrolyte energy device having a high energy density, is widely used as a power source for mobile information terminals such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants).
  • a carbon material having a multilayer structure capable of inserting and releasing lithium ions between layers is mainly used as an active material for a negative electrode in a lithium ion secondary battery.
  • a lithium-containing metal composite oxide is mainly used.
  • these active materials a binder resin, a carbon material such as carbon black, a solvent (N-methyl-2-pyrrolidone, water, etc.), etc. are kneaded to prepare a slurry, and then this is prepared. Is applied to one or both sides of a metal foil as a current collector with a transfer roll or the like, the solvent is removed by drying to form a mixture layer, and then compression molding is performed with a roll press machine or the like.
  • the carbon material is added for the purpose of imparting electron conductivity in the electrode.
  • the amount of carbon material added which does not contribute to the increase in capacity, is being reduced.
  • the particle size of carbon materials is becoming smaller in order to reduce the amount of carbon materials added.
  • Japanese Unexamined Patent Publication No. 2012-59466 proposes a kneading process for efficiently and stably and uniformly dispersing a positive electrode mixture containing a carbon material.
  • International Publication No. 2012/014616 proposes a carbon slurry containing a polyvinylpyrrolidone-based polymer and a nonionic surfactant as a dispersant. Dispersants such as polyvinylpyrrolidone-based polymers and nonionic surfactants are effective in dispersing carbon materials.
  • the present disclosure has been made in view of the above-mentioned conventional circumstances, and an object of the present disclosure is to provide a conductive carbon material dispersant for an energy device having excellent dispersibility. Furthermore, it is an object of the present disclosure to provide a conductive carbon material dispersion for an energy device using this dispersant, a composition for forming an energy device electrode and a method for producing the same, an energy device electrode, and an energy device. ..
  • a conductive carbon material dispersant for energy devices containing a resin containing a structural unit derived from a nitrile group-containing monomer.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or a monovalent hydrocarbon group
  • n represents an integer of 1 to 50.
  • ⁇ 3> The conductive carbon material dispersant for energy devices according to ⁇ 1> or ⁇ 2>, wherein the structural unit derived from the nitrile group-containing monomer is contained in the main chain of the resin.
  • ⁇ 4> The item according to any one of ⁇ 1> to ⁇ 3>, wherein the ratio of the structural unit derived from the nitrile group-containing monomer to the resin based on the mass is more than 80% by mass and 100% by mass or less.
  • ⁇ 8> The conductive carbon material dispersion liquid for an energy device according to any one of ⁇ 5> to ⁇ 7>, wherein the average particle size of the conductive carbon material is 0.3 ⁇ m to 3 ⁇ m.
  • ⁇ 9> The conductive carbon material dispersion liquid for an energy device according to ⁇ 5>, wherein the conductive carbon material contains carbon fibers.
  • the solvent contains at least one of N-methyl-2-pyrrolidone and ⁇ -butyrolactone.
  • a binder resin, an active material, a conductive carbon material, a dispersant for dispersing the conductive carbon material, and a solvent are contained, and the dispersant is any of ⁇ 1> to ⁇ 4>.
  • a composition for forming an energy device electrode which comprises the conductive carbon material dispersant for an energy device according to item 1.
  • a method for producing a composition for forming an energy device electrode comprising a step of adding a binder resin to a dispersion liquid.
  • a conductive carbon material dispersant for an energy device having excellent dispersibility. Further, according to the present disclosure, it is possible to provide a conductive carbon material dispersion for an energy device using this dispersant, a composition for forming an energy device electrode and a method for producing the same, an energy device electrode, and an energy device. ..
  • the term "process” includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
  • the numerical range indicated by using "-" in the present disclosure includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • each component may contain a plurality of applicable substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • the particles corresponding to each component may include a plurality of types of particles.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term "layer” or “membrane” is used only in a part of the region in addition to the case where the layer or the membrane is formed in the entire region when the region in which the layer or the membrane is present is observed. The case where it is formed is also included.
  • the term “laminated” refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
  • “(meth) acrylic” means at least one of acrylic and methacryl
  • “(meth) acrylate” means at least one of acrylate and methacrylate.
  • the average thickness of a layer or film is a value given as an arithmetic mean value obtained by measuring the thickness of five points of the target layer or film. The thickness of the layer or film can be measured using a micrometer or the like. In the present disclosure, when the thickness of a layer or a film can be directly measured, it is measured using a micrometer. On the other hand, when measuring the thickness of one layer or the total thickness of a plurality of layers, the measurement may be performed by observing the cross section of the measurement target using an electron microscope.
  • the conductive carbon material dispersant for energy devices of the present disclosure (hereinafter, may be simply referred to as “dispersant”) is a resin containing a structural unit derived from a nitrile group-containing monomer (hereinafter, “specific nitrile resin”). May be referred to as).
  • specific nitrile resin a nitrile group-containing monomer
  • the present inventors have found that the dispersant of the present disclosure has excellent dispersibility with respect to carbon materials such as carbon black, and have completed the present invention.
  • nitrile group-containing monomer which is the source of the structural unit derived from the nitrile group-containing monomer contained in the specific nitrile resin, is not particularly limited. Examples thereof include acrylic nitrile group-containing monomers such as acrylonitrile and methacrylonitrile, cyanide nitrile group-containing monomers such as ⁇ -cyanoacrylate and dicyanovinylidene, and fumal nitrile group-containing monomers such as fumaronitrile. Be done. Among these, acrylonitrile is preferable in terms of ease of polymerization, cost performance, further improvement in dispersibility of the conductive carbon material, and the like.
  • the ratio of acrylonitrile to the nitrile group-containing monomer is preferably 5% by mass to 100% by mass, more preferably 50% by mass to 100% by mass, and 70% by mass to 100% by mass. Is even more preferable.
  • These nitrile group-containing monomers may be used alone or in combination of two or more.
  • the content of acrylonitrile is preferably, for example, 5% by mass to 95% by mass with respect to the total amount of the nitrile group-containing monomer. , 50% by mass to 95% by mass, more preferably.
  • the mass-based ratio of the structural unit derived from the nitrile group-containing monomer to the specific nitrile resin may be more than 80% by mass and 100% by mass or less, or 90% by mass to 100% by mass. , 92% by mass to 100% by mass.
  • the structural unit derived from the nitrile group-containing monomer is preferably contained in the main chain of the specific nitrile resin.
  • the "main chain" of the specific nitrile resin means a site in which the monomers are linked by polymerization when the specific nitrile resin is synthesized when the specific nitrile resin is linear, for example, acrylonitrile is polymerized. In the case of a polymer, it means an alkylene moiety in which vinyl groups in acrylonitrile are linked by polymerization.
  • the "main chain" of the specific nitrile resin means a portion of the copolymer that serves as a trunk.
  • the specific nitrile resin may contain a structural unit derived from a monomer represented by the following general formula (I), if necessary.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or a monovalent hydrocarbon group
  • n represents an integer of 1 to 50.
  • n is an integer of 1 to 50, preferably an integer of 2 to 30, more preferably an integer of 2 to 15, and an integer of 2 to 10. Is even more preferable. In another aspect, n is preferably an integer of 1 to 30, more preferably an integer of 1 to 15, and even more preferably an integer of 1 to 10.
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group, preferably a monovalent hydrocarbon group, for example, and a monovalent hydrocarbon group having 1 to 50 carbon atoms. It is more preferable that it is a monovalent hydrocarbon group having 1 to 25 carbon atoms, and it is particularly preferable that it is a monovalent hydrocarbon group having 1 to 12 carbon atoms.
  • Examples of the hydrocarbon group include an alkyl group and a phenyl group.
  • R 2 is particularly, it is appropriate that the carbon number of alkyl group or a phenyl group having 1 to 12.
  • the alkyl group may be linear, branched or cyclic.
  • Alkyl group and phenyl group represented by R 2 a part of hydrogen atoms may be substituted with a substituent.
  • Examples of the substituent when R 2 is an alkyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, an aromatic ring and the like. ..
  • R 2 is a phenyl group
  • the substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, substituents containing nitrogen atom, substituents containing phosphorus atom, aromatic ring and carbon number. Examples thereof include 3 to 10 cycloalkyl groups.
  • the monomer represented by the formula (I) a commercially available product or a synthetic product may be used.
  • Specific examples of the monomer represented by the formula (I) that can be obtained as a commercially available product include 2-methoxyethyl acrylate and ethoxydiethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate EC-).
  • methoxytriethylene glycol acrylate manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate MTG-A and manufactured by Shin-Nakamura Chemical Industry Co., Ltd., trade name: NK ester AM-30G
  • R 1 of the general formula (I) is a hydrogen atom, and R 2 is A compound having a methyl group and n of 9) is more preferable.
  • these monomers represented by the general formula (I) one type may be used alone, or two or more types may be used in combination.
  • the specific nitrile resin may contain a structural unit derived from a monomer represented by the formula (II), if necessary.
  • the monomer represented by the formula (II) used in the present disclosure is not particularly limited.
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkyl group having 4 to 100 carbon atoms.
  • R 4 is an alkyl group having 4 to 100 carbon atoms, preferably an alkyl group having 4 to 50 carbon atoms, and more preferably an alkyl group having 6 to 30 carbon atoms. , More preferably an alkyl group having 8 to 15 carbon atoms.
  • the alkyl group represented by R 4 may be linear, branched or cyclic.
  • Alkyl group represented by R 4, a part of hydrogen atoms may be substituted with a substituent.
  • substituents examples include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, and an aromatic ring.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • substituent containing a nitrogen atom examples of the substituent
  • substituent containing a phosphorus atom examples include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, and an aromatic ring.
  • the alkyl group represented by R 4 linear, other saturated alkyl group branched or cyclic fluoroalkyl group, chloro
  • the monomer represented by the formula (II) a commercially available product or a synthetic product may be used.
  • Specific examples of the commercially available monomer represented by the formula (II) include n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and amyl (meth).
  • Examples thereof include (meth) acrylic acid esters containing 4 to 100 alkyl groups.
  • R 4 is a fluoroalkyl group, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl acrylate, 2,2,3,3,4,5,4-heptafluoro Butyl acrylate, 2,2,3,4,5-hexafluorobutyl acrylate, nonafluoroisobutyl acrylate, 2,2,3,3,4,5,5-octafluoropentyl acrylate, 2,2 , 3,3,4,4,5,5,5-nonafluoropentyl acrylate, 2,2,3,3,4,5,5,6,6,6-undecafluorohexyl acrylate, 2, 2,3,3,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl acrylate, 3,3,4,4,5,5,6,6 7,7,8,8,9,9,10,10,10-heptadecafluorode
  • the specific nitrile resin may contain a structural unit derived from a carboxy group-containing monomer, if necessary.
  • the carboxy group-containing monomer are not particularly limited, and are acrylic carboxy group-containing monomer such as acrylic acid and methacrylic acid, croton-based carboxy group-containing monomer such as crotonic acid, maleic acid and its anhydride.
  • examples thereof include a maleine-based carboxy group-containing monomer such as a product, an itaconic acid-based carboxy group-containing monomer such as itaconic acid and its anhydride, and a citraconic carboxy group-containing monomer such as citraconic acid and its anhydride.
  • the specific nitrile resin is derived from a monomer-derived structural unit represented by the general formula (I), a monomer-derived structural unit represented by the general formula (II), and a carboxy group-containing monomer, if necessary. It may contain structural units derived from other monomers other than the structural units of.
  • the other monomer is not particularly limited, and is a (meth) acrylic containing an alkyl group having 1 to 3 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate.
  • Acid esters vinyl chloride, vinyl bromide, vinyl halides such as vinylidene chloride, imide maleate, phenylmaleimide, (meth) acrylamide, styrene, ⁇ -methylstyrene, vinyl acetate, sodium (meth) allylsulfonate, Examples thereof include sodium (meth) allyloxybenzene sulfonic acid, sodium styrene sulfonate, 2-acrylamide-2-methylpropanesulfonic acid and salts thereof. These other monomers may be used alone or in combination of two or more.
  • the ratio of the structural units derived from each of the above monomers contained in the specific nitrile resin is not particularly limited.
  • the ratio of the structural units derived from the nitrile group-containing monomer to the total of the structural units derived from each of the above-mentioned monomers contained in the specific nitrile resin may be 50 mol% to 100 mol%, and may be 80 mol% to 80 mol%. It may be 100 mol%, 90 mol% to 100 mol%, 95 mol% to 100 mol%.
  • n in the monomer represented by the formula (I) is It may indicate an integer of 2 to 50.
  • the ratio of the structural unit derived from the carboxy group-containing monomer and containing the carboxy group to 1 mol of the structural unit derived from the nitrile group-containing monomer may be 0.005 mol or less, and 0.001 mol or less. There may be.
  • the ratio of the structural unit derived from the monomer represented by the formula (I) to 1 mol of the structural unit derived from the nitrile group-containing monomer may be, for example, 0.001 mol to 0.2 mol, and is 0. It may be 0.003 mol to 0.05 mol, or 0.005 mol to 0.035 mol. If the ratio of the structural unit derived from the monomer represented by the formula (I) to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol, the dispersant of the present disclosure can be used. The ionic conductivity of the containing electrode mixture layer tends to be improved.
  • the specific nitrile resin contains a structural unit derived from a monomer represented by the formula (II), it is derived from the monomer represented by the formula (II) with respect to 1 mol of the structural unit derived from the nitrile group-containing monomer.
  • the ratio of structural units may be, for example, 0.001 mol to 0.2 mol, 0.003 mol to 0.05 mol, and 0.005 mol to 0.02 mol. May be good.
  • the specific nitrile resin contains a structural unit derived from a monomer represented by the formula (I) and a structural unit derived from a monomer represented by the formula (II), a structural unit derived from a nitrile group-containing monomer.
  • the total ratio of the monomer-derived structural unit represented by the formula (I) and the monomer-derived structural unit represented by the formula (II) to 1 mol is, for example, 0.001 mol to 0.2. It may be a molar amount, 0.003 mol to 0.05 mol, or 0.005 mol to 0.035 mol.
  • the ratio of structural units derived from other monomers to 1 mol of structural units derived from nitrile group-containing monomers is, for example, 0.005 mol. It may be up to 0.1 mol, 0.01 mol to 0.06 mol, or 0.03 mol to 0.05 mol.
  • the method for producing the specific nitrile resin is not particularly limited. Polymerization methods such as underwater precipitation polymerization, bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization can be applied. Precipitation polymerization in water is preferable in terms of ease of resin synthesis, ease of post-treatment such as recovery and purification, and the like. Hereinafter, the precipitation polymerization in water will be described in detail.
  • a water-soluble polymerization initiator As the polymerization initiator when performing precipitation polymerization in water, it is preferable to use a water-soluble polymerization initiator in terms of polymerization initiation efficiency and the like.
  • the water-soluble polymerization initiator include persulfates such as ammonium persulfate, potassium persulfite and sodium bisulfite, water-soluble peroxides such as hydrogen peroxide, and 2,2'-azobis (2-methylpropion amidine hydrochloride).
  • a combination of a water-soluble azo compound such as, an oxidizing agent such as persulfate, a reducing agent such as sodium bisulfite, ammonium hydrogen peroxide, sodium thiosulfite, and hydrosulfite, and a polymerization accelerator such as sulfuric acid, iron sulfate, and copper sulfate.
  • an oxidizing agent such as persulfate
  • a reducing agent such as sodium bisulfite, ammonium hydrogen peroxide, sodium thiosulfite, and hydrosulfite
  • a polymerization accelerator such as sulfuric acid, iron sulfate, and copper sulfate.
  • Redox type redox type
  • persulfates, water-soluble azo compounds and the like are preferable in terms of ease of resin synthesis and the like.
  • ammonium persulfate is particularly preferable.
  • the polymerization initiator is preferably used in the range of, for example, 0.001 mol% to 5 mol%, and 0.003 mol% to 2 with respect to the total amount of the monomers used in the synthesis of the specific nitrile resin. More preferably, it is used in the range of mol%.
  • a chain transfer agent When performing precipitation polymerization in water, a chain transfer agent can be used for the purpose of adjusting the molecular weight and the like.
  • the chain transfer agent include mercaptan compounds such as thioglycol, carbon tetrachloride, ⁇ -methylstyrene dimer and the like. Among these, ⁇ -methylstyrene dimer and the like are preferable in terms of having less odor and the like.
  • a solvent other than water can be added as needed, such as adjusting the particle size of the precipitated resin.
  • Solvents other than water include amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, and tetra.
  • Ureas such as methyl urea, lactones such as ⁇ -butyrolactone and ⁇ -caprolactone, carbonates such as propylene carbonate, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, methyl acetate, ethyl acetate, n-butyl acetate , Butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate, ethyl carbitol acetate and other esters, jig lime, triglime, tetraglyme and other glymes, toluene, xylene, cyclohexane and other hydrocarbons, dimethyl sulfoxide and other sulfoxides. , Sulfones such as sulfolane, alcohols such as methanol, isopropanol and n
  • the monomer is introduced into a solvent, and the polymerization temperature is preferably 0 ° C. to 100 ° C., more preferably 30 ° C. to 90 ° C., preferably 1 hour to 50 hours, more preferably 2 This is done by holding for hours to 12 hours.
  • the polymerization temperature is 0 ° C. or higher, the polymerization reaction tends to be promoted.
  • the polymerization temperature is 100 ° C. or lower, even when water is used as a solvent, the water tends to evaporate and the polymerization tends to be difficult to occur.
  • the heat of polymerization of the nitrile group-containing monomer tends to be large, it is preferable to proceed with the polymerization while dropping the nitrile group-containing monomer into the solvent.
  • the weight average molecular weight of the specific nitrile resin is preferably 10,000 to 1,000,000, more preferably 100,000 to 800,000, and even more preferably 250,000 to 700,000.
  • the weight average molecular weight refers to a value measured by the following method.
  • the object to be measured is dissolved in N-methyl-2-pyrrolidone, and a filter made of PTFE (polytetrafluoroethylene) [manufactured by Kurashiki Spinning Co., Ltd., for HPLC (high performance liquid chromatography) pretreatment, chromatographic disk, model number: 13N, pore size: 0.45 ⁇ m] to remove insoluble matter.
  • PTFE polytetrafluoroethylene
  • GPC GPC [Pump: L6200 Pump (manufactured by Hitachi, Ltd.), Detector: Differential refractometer detector L3300 RI Matter (manufactured by Hitachi, Ltd.), Columns: TSKgel-G5000HXL and TSKgel-G2000HXL (2 in total) (both Tosoh) (Manufactured by Co., Ltd.) are connected in series, column temperature: 30 ° C., eluent: N-methyl-2-pyrrolidone, flow velocity: 1.0 mL / min, standard substance: polystyrene], and the weight average molecular weight is measured.
  • the acid value of the specific nitrile resin is preferably 0 mgKOH / g to 70 mgKOH / g, more preferably 0 mgKOH / g to 20 mgKOH / g, and even more preferably 0 mgKOH / g to 5 mgKOH / g.
  • the acid value refers to a value measured by the following method. First, 1 g of the measurement target is precisely weighed, and then 30 g of acetone is added to the measurement target to dissolve the measurement target. Next, an appropriate amount of phenolphthalein, which is an indicator, is added to the solution to be measured, and titration is performed using a 0.1 N KOH aqueous solution.
  • the acid value is calculated from the titration result by the following formula (A) (in the formula, Vf indicates the titration amount (mL) of phenolphthalein, Wp indicates the mass (g) of the solution to be measured, and I is The percentage (% by mass) of the non-volatile content of the solution to be measured).
  • Acid value (mgKOH / g) 10 x Vf x 56.1 / (Wp x I) (A)
  • the non-volatile content of the solution to be measured is calculated from the weight of the residue after measuring about 1 mL of the solution to be measured in an aluminum pan, drying it on a hot plate heated to 160 ° C. for 15 minutes.
  • an unreacted monomer used when synthesizing the specific nitrile resin may remain as a component other than the specific nitrile resin.
  • the content of the unreacted monomer contained in the dispersant of the present disclosure is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less.
  • the conductive carbon material dispersion liquid for energy devices of the present disclosure (hereinafter, may be simply referred to as “dispersion liquid”) contains a conductive carbon material, a dispersant of the present disclosure, and a solvent.
  • the conductive carbon material contained in the dispersion liquid of the present disclosure is not particularly limited as long as it exhibits conductivity.
  • the conductive carbon material carbon black, graphite, carbon nanotubes, carbon fiber (carbon fiber) and the like can be used.
  • carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and the like.
  • graphite include natural graphite and artificial graphite.
  • carbon nanotubes include single-walled carbon nanotubes, two-walled carbon nanotubes, and multi-walled carbon nanotubes.
  • the carbon fiber include pitch-based carbon fiber, PAN-based carbon fiber, vapor phase carbon fiber (VGCF (registered trademark)) and the like.
  • VGCF vapor phase carbon fiber
  • As the conductive carbon material carbon black is preferable.
  • One type of conductive carbon material may be used alone, or two or more types may be used in combination.
  • the average primary particle size of the conductive carbon material is preferably 50 nm or less, more preferably 40 nm or less, and more preferably 30 nm or less. It is more preferable to have.
  • the average primary particle size of the conductive carbon material may be 10 nm or more. In the present disclosure, the average primary particle size means an average value of the diameters of several thousand primary particles.
  • the average particle size of the conductive carbon material is preferably 0.3 ⁇ m to 3 ⁇ m, more preferably 0.3 ⁇ m to 2 ⁇ m. It is more preferably 0.5 ⁇ m to 1.5 ⁇ m, and particularly preferably 0.8 ⁇ m to 1.0 ⁇ m.
  • the average particle size of the conductive carbon material is the particle size distribution obtained by measuring the particle size distribution of the conductive carbon material dispersion for energy devices based on the dynamic light scattering method (photon correlation method). It refers to the particle size where the number ratio is 50% when the number ratio is integrated from the one with the smallest diameter.
  • the measuring device based on the dynamic light scattering method include Zeta-potential & Particularsize Analyzer and ELSZ (Otsuka Electronics Co., Ltd.).
  • the average length of the conductive carbon material is preferably 1 ⁇ m to 50 ⁇ m, more preferably 2 ⁇ m to 30 ⁇ m, and 3 ⁇ m. It is more preferably about 10 ⁇ m.
  • the average diameter of the conductive carbon material is preferably 1 nm to 500 nm, more preferably 5 nm to 400 nm, and 10 nm to 10 nm. It is more preferably 300 nm.
  • select any 30 conductive carbon materials measure the length of each, and set the numerical value from the maximum side to the 5th and the numerical value from the minimum side to the 5th. Can be omitted, and the average value of the 20 intermediate values can be used as the average length. Since the average length of carbon nanotubes, carbon fibers, etc.
  • the length of the conductive carbon material can be approximated to be approximately linear. Therefore, the length of the conductive carbon material can be the length of the straight line when both ends thereof are connected by a straight line.
  • the average diameter of the conductive carbon material can be analyzed from electron micrographs (SEM, TEM, etc.). For example, select any 30 conductive carbon materials, measure the diameter of each, omit the 5th numerical value from the maximum side and the 5th numerical value from the minimum side, and 20 numerical values in the middle. The average value of may be the average diameter.
  • the diameter of the conductive carbon material means the maximum length in the direction orthogonal to the length direction of the conductive carbon material.
  • the content of the conductive carbon material contained in the dispersion liquid of the present disclosure is, for example, preferably 1% by mass to 50% by mass, more preferably 5% by mass to 25% by mass, and 5% by mass. It is more preferably to 15% by mass.
  • the dispersion liquid of the present disclosure contains the dispersant of the present disclosure.
  • the content of the dispersant of the present disclosure contained in the dispersion liquid of the present disclosure is, for example, preferably 0.1% by mass to 20% by mass, and 0.5% by mass to 15% by mass in some embodiments. It is more preferably 1% by mass to 10% by mass. In another aspect, it is preferably 0.1% by mass to 10% by mass, more preferably 0.2% by mass to 8% by mass, and 0.3% by mass to 6% by mass. Is even more preferable.
  • the solvent contained in the dispersion liquid of the present disclosure is not particularly limited as long as it can disperse the conductive carbon material.
  • As the solvent an amide-based solvent, a urea-based solvent, a lactone-based solvent, or a mixed solvent containing them is preferable from the viewpoint of solubility of the dispersant, and N-methyl-2-pyrrolidone, ⁇ -butyrolactone, or a mixed solvent containing them is contained. A mixed solvent is more preferable.
  • These solvents may be used alone or in combination of two or more.
  • the solvent preferably contains at least one of N-methyl-2-pyrrolidone and ⁇ -butyrolactone.
  • the viscosity of the dispersion liquid of the present disclosure at 25 ° C. is preferably 500 mPa ⁇ s to 50,000 mPa ⁇ s, more preferably 1000 mPa ⁇ s to 20000 mPa ⁇ s, and 2000 mPa ⁇ s to 10000 mPa ⁇ s. Is even more preferable.
  • the viscosity is measured using a rotary shear viscometer at 25 ° C. and a shear rate of 1.0 s- 1.
  • the dispersion liquid of the present disclosure can be prepared by mixing a conductive carbon material, the dispersant of the present disclosure, other components such as a leveling agent used as necessary, and a solvent, and stirring the mixture.
  • the disperser used for preparing the dispersion liquid include a homomixer, a high-pressure homomixer, a disperser, a high-pressure homogenizer, a static mixer, a membrane emulsifier, a fill mix (manufactured by Primix Corporation), and an ultrasonic disperser. Of these, fill mix is preferred.
  • various components used for preparing the dispersion liquid are pre-stirred with a disperser such as a homomixer and then stirred with a fill mix.
  • the distributed processing can be completed in a short time by using the fill mix.
  • the conditions for stirring with the fill mix are not particularly limited and can be carried out by a conventional method.
  • the conductive carbon material can be dispersed by stirring at a peripheral speed of 30 m / s for 30 seconds.
  • the stirring time when stirring with the fill mix may be in the range of 30 seconds to 10 minutes.
  • the energy device electrode forming composition of the present disclosure (hereinafter, may be referred to as an electrode forming composition) is a dispersion in which a binder resin, an active material, a conductive carbon material, and the conductive carbon material are dispersed. It contains an agent and a solvent, and the dispersant contains the dispersant of the present disclosure.
  • the electrode-forming composition of the present disclosure contains a binder resin.
  • the type of the binder resin is not particularly limited, and examples thereof include polyvinyl acetate, polymethylmethacrylate, nitrocellulose, fluororesin, and resins containing structural units derived from nitrile group-containing monomers. Among these, at least one of a fluororesin and a resin containing a structural unit derived from a nitrile group-containing monomer is preferable.
  • the fluororesin is not particularly limited as long as it contains a structural unit in which a part or all of hydrogen atoms in the polyethylene skeleton is replaced with a fluorine atom in the main chain.
  • the fluororesin include homopolymers such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinylfluoride (PVF), and polychlorotrifluoroethylene (PCTFE), and tetrafluoroethylene-perfluoropropylene copolymers.
  • FEP tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • chlorotrifluoroethylene-ethylene copolymer and other copolymers and carboxy these.
  • examples thereof include a modified product modified with a group or the like.
  • PVDF is preferable from the viewpoints of solubility in a solvent, swelling property in an electrolytic solution, flexibility of a resin, and the like.
  • these fluororesins may be used alone or in combination of two or more.
  • the resin containing a structural unit derived from a nitrile group-containing monomer may be the above-mentioned specific nitrile resin.
  • the resin containing a structural unit derived from a nitrile group-containing monomer one type may be used alone, or two or more types may be used in combination.
  • the content of the binder resin in the solid content of the electrode-forming composition of the present disclosure is preferably 0.1% by mass to 10% by mass, and more preferably 0.5% by mass to 5% by mass. , 0.5% by mass to 3% by mass, more preferably.
  • the “solid content” refers to a component obtained by removing a solvent from the components constituting the electrode-forming composition.
  • the electrode-forming composition of the present disclosure may contain an active material.
  • the active material used in the present disclosure is not particularly limited as long as it can reversibly insert and release lithium ions by charging and discharging a lithium ion secondary battery which is an energy device.
  • the positive electrode has a function of releasing lithium ions at the time of charging and receiving lithium ions at the time of discharging, while the negative electrode has a function opposite to that of the positive electrode of receiving lithium ions at the time of charging and releasing lithium ions at the time of discharging.
  • the active material used in the positive electrode and the negative electrode different materials are usually used according to the functions of each.
  • the active material (negative electrode active material) used for the negative electrode of the lithium ion secondary battery a material that can occlude and release lithium ions and is commonly used in the field of the lithium ion secondary battery can be used.
  • the negative electrode active material include metallic lithium, lithium alloys, intermetallic compounds, carbon materials, metal complexes, organic polymer compounds and the like.
  • One type of negative electrode active material may be used alone, or two or more types may be used in combination.
  • a carbon material is preferable.
  • the carbon material include natural graphite (scaly graphite and the like), graphite such as artificial graphite, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black and other carbon black, and carbon fiber.
  • the average particle size of the carbon material is preferably 0.1 ⁇ m to 60 ⁇ m, more preferably 0.5 ⁇ m to 30 ⁇ m.
  • the BET specific surface area of the carbon material is preferably 1 m 2 / g to 10 m 2 / g.
  • the average particle size of particles other than the conductive carbon material refers to a laser diffraction type particle size distribution measuring device (for example, SALD-3000J manufactured by Shimadzu Corporation) in which a sample is dispersed in purified water containing a surfactant. ), The value when the integration from the small diameter side is 50% (median diameter (D50)) in the volume-based particle size distribution.
  • the distance between the carbon hexagonal planes (d 002 ) in the X-ray wide-angle diffraction method is 3.35 ⁇ to 3.40 ⁇ from the viewpoint of further improving the battery characteristics, and the crystallites (Lc) in the c-axis direction.
  • Graphite having a value of 100 ⁇ or more is preferable.
  • the BET specific surface area can be measured from the nitrogen adsorption capacity according to, for example, JIS Z 8830: 2013.
  • As the evaluation device for example, QUANTACHROME Co., Ltd .: AUTOSORB-1 (trade name) can be used. Since it is considered that the water adsorbed on the sample surface and the structure affects the gas adsorption capacity, it is preferable to first perform a pretreatment for removing water by heating when measuring the BET specific surface area.
  • the measurement cell containing 0.05 g of the measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C., held for 3 hours or more, and then kept at room temperature (maintained in the depressurized state). Naturally cool to 25 ° C.).
  • the evaluation temperature is set to 77K, and the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
  • the active material (positive electrode active material) used for the positive electrode of the lithium ion secondary battery those commonly used in this field can be used, for example, a lithium-containing metal composite oxide, an olivine-type lithium salt, a chalcogen compound, and the like.
  • examples thereof include manganese dioxide.
  • the lithium-containing metal composite oxide is a metal oxide containing lithium and a transition metal, or a metal oxide in which a part of the transition metal in the metal oxide is replaced by a dissimilar element.
  • examples of the dissimilar elements include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, B and the like, and Mn, Al, etc. Co, Ni, Mg and the like are preferable.
  • One type of dissimilar element may be used alone, or two or more types may be used in combination.
  • lithium-containing metal composite oxide examples include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1 1-y O z (Li).
  • M 1 is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb, V and B.
  • Li x Ni 1-y M 2 y Oz in Li x Ni 1-y M 2 y Oz , M 2 is Na, Mg, Sc, Y, Mn, Fe, Co, Indicates at least one element selected from the group consisting of Cu, Zn, Al, Cr, Pb, Sb, V and B
  • Li x Mn 2 O 4 Li x Mn 2-y M 3 y O 4
  • M 3 is selected from the group consisting of Na, Mg, Sc, Y, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V and B. It indicates at least one kind of element.
  • M 3 is selected from the group consisting of Na, Mg, Sc, Y, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V and B. It indicates at least one kind of element.
  • x is in the range of 0 ⁇ x ⁇ 1.2
  • y is in the range of 0 to 0.9
  • z is in the range of 2.0 to 2.3.
  • the x value indicating the molar ratio of lithium increases or decreases depending on charging and discharging.
  • the chalcogen compound include titanium disulfide and molybdenum disulfide.
  • Other positive electrode active materials include Li 2 MPO 4 F (in Li 2 MPO 4 F, M is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb. , Sb, V and at least one element selected from the group consisting of B).
  • One type of positive electrode active material may be used alone, or two or more types may be used in combination.
  • the average particle size of the positive electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m, and more preferably 0.5 ⁇ m to 30 ⁇ m.
  • the BET specific surface area of the positive electrode active material is preferably 1 m 2 / g to 10 m 2 / g.
  • the electrode-forming composition of the present disclosure contains a conductive carbon material.
  • a conductive carbon material contained in the electrode forming composition of the present disclosure are as described above.
  • the content of the conductive carbon material in the solid content of the electrode forming composition of the present disclosure is preferably 0.1% by mass to 10% by mass, and preferably 0.5% by mass to 5% by mass. More preferably, it is 1% by mass to 3% by mass.
  • the electrode-forming composition of the present disclosure contains a dispersant.
  • the dispersant contained in the electrode-forming composition of the present disclosure includes the dispersant of the present disclosure.
  • the electrode-forming composition of the present disclosure may contain other dispersants other than the dispersants of the present disclosure, if necessary. Examples of other dispersants include polyvinylpyrrolidone, polyvinyl alcohol and the like.
  • the content of the dispersant in the solid content of the electrode forming composition of the present disclosure is preferably 0.1% by mass to 10% by mass, and more preferably 0.2% by mass to 5% by mass. , 0.3% by mass to 3% by mass, more preferably.
  • the content of the dispersant of the present disclosure in the dispersant contained in the composition for forming electrodes of the present disclosure is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. It is more preferably mass% or more, and particularly preferably 100 mass%.
  • the electrode-forming composition of the present disclosure contains a solvent.
  • the solvent include water, an amide solvent, a urea solvent, a lactone solvent and the like, or a mixed solvent containing them.
  • a mixed solvent containing them is preferable, and N-methyl-2-pyrrolidone, ⁇ -butyrolactone or a mixed solvent containing them is more preferable.
  • These solvents may be used alone or in combination of two or more.
  • the content of the solvent is not particularly limited as long as it is equal to or more than the minimum amount necessary for the binder resin to be kept in a dissolved state at room temperature (for example, 25 ° C.).
  • the viscosity is usually adjusted while adding a solvent, so it is preferable to use an arbitrary amount that is not excessively diluted.
  • the electrode-forming composition of the present disclosure includes, as necessary, other materials such as a cross-linking component for complementing the swelling resistance to the electrolytic solution, and a rubber component for complementing the flexibility and flexibility of the electrode. It is also possible to add various additives such as a settling inhibitor, a defoaming agent, a leveling agent and the like for improving the electrode coatability of the slurry.
  • the electrode-forming composition of the present disclosure preferably has a viscosity at 25 ° C. of 500 mPa ⁇ s to 50,000 mPa ⁇ s, more preferably 1000 mPa ⁇ s to 20000 mPa ⁇ s, and 2000 mPa ⁇ s to 10000 mPa ⁇ s. Is more preferable.
  • the method for producing the electrode-forming composition of the present disclosure is not particularly limited.
  • a step of preparing an active material dispersion liquid by mixing the active material and the dispersion liquid of the present disclosure, and adding a binder resin to the active material dispersion liquid may have a step of adding.
  • the active material dispersion liquid is prepared by mixing the active material, the dispersion liquid of the present disclosure, and other components used as necessary, and stirring the mixture.
  • Examples of the apparatus used for mixing and stirring include a planetary mixer, a homomixer, a high-pressure homomixer, a disperser, a high-pressure homogenizer, a static mixer, a membrane emulsifier, and an ultrasonic disperser.
  • the binder resin added to the active material dispersion liquid is mixed by stirring to obtain the electrode forming composition of the present disclosure.
  • the stirring method is not particularly limited, and examples thereof include the stirring method using the above-mentioned device mentioned in the step of preparing the active material dispersion liquid.
  • a powdery conductive carbon material may be further added in order to adjust the content of the conductive carbon material.
  • the method for producing the electrode-forming composition of the present disclosure may include a step of adding a conductive carbon material to the active material dispersion liquid obtained in the step of preparing the active material dispersion liquid.
  • the other components may be added in the step of preparing the active material dispersion liquid. It may be added in the step of adding the binder resin to the active material dispersion liquid, or may be added in both steps.
  • the energy device electrode of the present disclosure is provided on the surface of at least one of the current collector and the current collector, and is produced by the method for producing the energy device electrode forming composition of the present disclosure. It has an electrode mixture layer formed by using an object.
  • the energy device electrodes of the present disclosure can be used as electrodes for lithium ion secondary batteries, electric double layer capacitors, solar cells, fuel cells and the like. The case where the energy device electrode of the present disclosure is applied to the electrode of the lithium ion secondary battery will be described in detail below, but the energy device electrode of the present disclosure is not limited to the following contents.
  • the current collector used in the present disclosure is not particularly limited, and a current collector commonly used in the field of a lithium ion secondary battery can be used.
  • Examples of the current collector (positive electrode current collector) used for the positive electrode of the lithium ion secondary battery include sheets and foils containing stainless steel, aluminum, titanium and the like. Among these, a sheet or foil containing aluminum is preferable.
  • the thickness of the sheet and the foil is not particularly limited, and from the viewpoint of ensuring the strength and workability required for the current collector, for example, it is preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 80 ⁇ m, and 5 ⁇ m. It is more preferably ⁇ 50 ⁇ m.
  • Examples of the current collector (negative electrode current collector) used for the negative electrode of the lithium ion secondary battery include sheets and foils containing stainless steel, nickel, copper and the like. Among these, a sheet or foil containing copper is preferable.
  • the thickness of the sheet and the foil is not particularly limited, and from the viewpoint of ensuring the strength and workability required for the current collector, for example, it is preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 100 ⁇ m, and 5 ⁇ m. It is more preferably ⁇ 50 ⁇ m.
  • the electrode mixture layer used in the lithium ion secondary battery can be formed by using an energy device electrode forming composition containing an active material, a solvent and the like.
  • a positive electrode mixture layer is formed by using a composition for forming an energy device electrode containing a positive electrode active material.
  • a negative electrode mixture layer is formed by using a composition for forming an energy device electrode containing a negative electrode active material.
  • a slurry of the energy device electrode forming composition produced by the method for producing the electrode forming composition of the present disclosure is applied onto at least one surface of the current collector, and then the solvent is dried. It can be removed and rolled if necessary.
  • the slurry can be applied using, for example, a comma coater or the like. It is appropriate that the coating is performed so that the ratio of the positive electrode capacity to the negative electrode capacity (negative electrode capacity / positive electrode capacity) is 1 or more in the opposing electrodes.
  • the amount of the slurry applied is, for example, preferably 5 g / m 2 to 500 g / m 2 and more preferably 50 g / m 2 to 300 g / m 2 in terms of the dry mass of the electrode mixture layer per side. ..
  • the solvent is removed, for example, by drying at 50 ° C. to 150 ° C., preferably 80 ° C. to 120 ° C. for 1 minute to 20 minutes, preferably 3 minutes to 10 minutes.
  • the rolling is carried out using, for example, a roll press machine, and when the density of the mixture layer is the mixture layer of the negative electrode, for example, 1 g / cm 3 to 2 g / cm 3 , preferably 1.2 g / cm 3 to In the case of the positive mixture layer so as to be 1.8 g / cm 3 , for example, it is pressed to be 2 g / cm 3 to 5 g / cm 3 , preferably 2 g / cm 3 to 4 g / cm 3. .. Further, in order to remove the residual solvent and adsorbed water in the electrode, for example, vacuum drying may be performed at 100 ° C. to 150 ° C. for 1 hour to 20 hours.
  • the energy device of the present disclosure comprises the energy device electrode of the present disclosure.
  • Examples of the energy device of the present disclosure include a lithium ion secondary battery, an electric double layer capacitor, a solar cell, a fuel cell and the like.
  • the case where the energy device is a lithium ion secondary battery will be described in detail below, but the energy device of the present disclosure is not limited to the following contents.
  • the lithium ion secondary battery includes, for example, a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution.
  • the energy device electrodes of the present disclosure are used as at least one of a positive electrode and a negative electrode.
  • examples of the other electrode include those commonly used in the field of energy devices.
  • the separator is not particularly limited as long as it electronically insulates between the positive electrode and the negative electrode, has ion permeability, and has resistance to oxidizing property on the positive electrode side and reducing property on the negative electrode side.
  • a resin, an inorganic substance, or the like is used as the material (material) of the separator satisfying such characteristics.
  • an olefin polymer As the resin, an olefin polymer, a fluoropolymer, a cellulosic polymer, a polyimide, a nylon, or the like is used. Specifically, it is preferable to select from materials that are stable to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet made of polyolefin such as polyethylene or polypropylene, a non-woven fabric, or the like.
  • oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, barium sulfate, sulfates such as calcium sulfate, and glass are used.
  • a fiber-shaped or particle-shaped inorganic substance adhered to a thin-film-shaped base material such as a non-woven fabric, a woven fabric, or a microporous film can be used as a separator.
  • a thin film-shaped base material those having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m are preferably used.
  • a fiber-shaped or particle-shaped inorganic substance formed into a composite porous layer by using a binder such as a resin can be used as a separator.
  • this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to serve as a separator.
  • this composite porous layer may be formed on the surface of another separator to form a multilayer separator.
  • a composite porous layer in which alumina particles having a 90% particle size (D90) of less than 1 ⁇ m are bound using a fluororesin as a binder may be formed on the surface of the positive electrode.
  • the electrolytic solution contains a solute (supporting salt) and a non-aqueous solvent, and further contains various additives as needed.
  • the solute is usually dissolved in a non-aqueous solvent.
  • the electrolyte is, for example, impregnated in the separator.
  • solute those commonly used in this field can be used, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl. 10.
  • Lower aliphatic carboxylic acid lithium, LiCl, LiBr, LiI, chloroborane lithium, borates, imide salts and the like can be mentioned.
  • borates include bis (1,2-benzenediorate (2-) -O, O') lithium borate and bis (2,3-naphthalenedioleate (2-) -O, O') borate.
  • imide salts include imidelithium bistrifluoromethanesulfonate ((CF 3 SO 2 ) 2 NLi) and imide lithium trifluoromethanesulfonate nonafluorobutane sulfonate ((CF 3 SO 2 ) (C 4 F 9 SO 2 ) NLi). ), Imid lithium bispentafluoroethanesulfonate ((C 2 F 5 SO 2 ) 2 NLi) and the like.
  • One type of solute may be used alone, or two or more types may be used in combination.
  • the amount of the solute dissolved in a non-aqueous solvent is preferably 0.5 mol / L to 2 mol / L.
  • non-aqueous solvent examples thereof include cyclic carbonate ester, chain carbonate ester, and cyclic carboxylic acid ester.
  • examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC).
  • examples of the chain carbonic acid ester include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • GBL ⁇ -butyrolactone
  • VTL ⁇ -valerolactone
  • One type of non-aqueous solvent may be used alone, or two or more types may be used in combination.
  • the non-aqueous solvent preferably contains vinylene carbonate (VC).
  • the content is preferably 0.1% by mass to 2% by mass, and 0.2% by mass to 1.5% by mass, based on the total amount of the non-aqueous solvent. Is more preferable.
  • a laminated lithium ion secondary battery can be manufactured, for example, as follows. First, the positive electrode and the negative electrode are cut into a square shape, and tabs are welded to the respective electrodes to prepare positive electrode terminals and negative electrode terminals. An electrode laminate laminated with a separator interposed between the positive electrode and the negative electrode is produced, and in that state, the electrode laminate is housed in an aluminum laminate pack, and the positive electrode terminal and the negative electrode terminal are taken out of the aluminum laminate pack and sealed. Next, the electrolytic solution is poured into the aluminum laminate pack, and the opening of the aluminum laminate pack is sealed. As a result, a lithium ion secondary battery can be obtained.
  • FIG. 1 shows a cross-sectional view of a lithium ion secondary battery to which the present disclosure is applied.
  • the lithium ion secondary battery 1 of the present disclosure has a battery container 6 made of nickel-plated steel and having a bottomed cylindrical shape.
  • the battery container 6 houses an electrode group 5 in which a strip-shaped positive electrode plate 2 and a negative electrode plate 3 are wound in a spiral cross section via a separator 4.
  • the separator 4 is set to, for example, a width of 58 mm and a thickness of 30 ⁇ m.
  • a ribbon-shaped positive electrode tab terminal made of aluminum whose one end is fixed to the positive electrode plate 2 is led out from the upper end surface of the electrode group 5.
  • the other end of the positive electrode tab terminal is arranged above the electrode group 5 and is ultrasonically bonded to the lower surface of the disk-shaped battery lid that serves as the positive electrode external terminal.
  • a ribbon-shaped negative electrode tab terminal made of copper whose one end is fixed to the negative electrode plate 3 is led out.
  • the other end of the negative electrode tab terminal is joined to the inner bottom of the battery container 6 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are led out to opposite sides of both end faces of the electrode group 5, respectively.
  • the entire circumference of the outer peripheral surface of the electrode group 5 is provided with an insulating coating (not shown).
  • the battery lid is caulked and fixed to the upper part of the battery container 6 via an insulating resin gasket. Therefore, the inside of the lithium ion secondary battery 1 is sealed. Further, an electrolytic solution (not shown) is injected into the battery container 6.
  • Example 1 (Synthesis of specific nitrile resin) 397.2 g of purified water was added to a 0.5 liter separable flask equipped with a stirrer, a thermometer, a cooling tube and a nitrogen introduction tube, the inside of the system was replaced with nitrogen, and the temperature was raised to 73.0 ° C. After dissolving 347.0 mg of ammonium persulfate in 2.5 g of purified water, the whole amount was added into the system.
  • AM-90G acrylonitrile (nitrile group-containing monomer, hereinafter sometimes referred to as AN) and methoxypolyethylene glycol acrylate (monomer described in formula (I), Shin-Nakamura Kagaku).
  • AM-90G manufactured by Kogyo Co., Ltd., hereinafter may be referred to as AM-90G.
  • a mixture of 5.2 g was added dropwise over 2 hours and then reacted for 1 hour. After dissolving 420.0 mg of ammonium persulfate in 7.8 g of purified water, the whole amount was added into the system and reacted for 1 hour.
  • the temperature in the system was raised to 90.0 ° C., and the reaction was carried out over 1 hour.
  • the inside of the system was kept in a nitrogen atmosphere, and stirring was continued at 250 rpm.
  • the reaction solution was suction-filtered, and the precipitated resin was filtered off.
  • the filtered resin was washed with 1000.0 g of purified water. The washed resin was dried in a vacuum dryer set at 60 ° C. and 150 Pa for 24 hours to obtain a specific nitrile resin.
  • NMP N-methyl-2-pyrrolidone
  • Carbon black manufactured by Denka Co., Ltd., Li-435, primary particle size 23 nm (catalog value), hereinafter sometimes referred to as Li-435
  • a disperser Principal Co., Ltd., Fillmix FM-30L
  • 1.0 g and 8.3 g of an NMP solution of a specific nitrile resin were added, and NMP was further added so that the solid content concentration became 12.0% by mass (3.2 g in Example 1), and then Philmix FM-30L. was stirred at a peripheral speed of 30 m / s for 30 seconds to obtain a conductive carbon material dispersion liquid 1 for an energy device.
  • Example 2 A conductive carbon material dispersion 2 for an energy device was obtained in the same manner as in Example 1 except that the stirring time in Fillmix FM-30L was changed from 30 seconds to 1 minute.
  • Example 3 A conductive carbon material dispersion 3 for an energy device was obtained in the same manner as in Example 1 except that the stirring time in Fillmix FM-30L was changed from 30 seconds to 3 minutes.
  • Example 4 A conductive carbon material dispersion 4 for an energy device was obtained in the same manner as in Example 1 except that the stirring time in Fillmix FM-30L was changed from 30 seconds to 5 minutes.
  • Example 5 A conductive carbon material dispersion 5 for an energy device was obtained in the same manner as in Example 1 except that the stirring time in Fillmix FM-30L was changed from 30 seconds to 10 minutes.
  • Example 6 A conductive carbon material dispersion 6 for an energy device was obtained in the same manner as in Example 3 except that 1.0 g of Li-435 and 2.3 g of an NMP solution of a specific nitrile resin were used.
  • Example 7 A conductive carbon material dispersion 7 for an energy device was obtained in the same manner as in Example 3 except that the amount of Li-435 was 1.0 g and the amount of the NMP solution of the specific nitrile resin was 6.5 g.
  • Example 8> A conductive carbon material dispersion 8 for an energy device was obtained in the same manner as in Example 3 except that Li-435 was 0.8 g and the NMP solution of the specific nitrile resin was 9.6 g.
  • Example 9 In the synthesis of the specific nitrile resin, a conductive carbon material dispersion liquid 9 for an energy device was obtained in the same manner as in Example 3 except that the reaction temperature was changed from 73.0 ° C. to 75.0 ° C.
  • Example 10 In the synthesis of the specific nitrile resin, a conductive carbon material dispersion liquid 10 for an energy device was obtained in the same manner as in Example 3 except that the reaction temperature was changed from 73.0 ° C. to 76.0 ° C.
  • Example 11 In the synthesis of the specific nitrile resin, a conductive carbon material dispersion 11 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to a mixture of 37.2 g of AN and 6.1 g of AM-90G. ..
  • Example 12 In the synthesis of the specific nitrile resin, a conductive carbon material dispersion liquid 12 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to a mixture of 39.0 g of AN and 4.3 g of AM-90G. ..
  • Example 13 In the synthesis of the specific nitrile resin, a conductive carbon material dispersion liquid 13 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to a mixture of 39.8 g of AN and 3.5 g of AM-90G. ..
  • Example 14 In the synthesis of the specific nitrile resin, a conductive carbon material dispersion 14 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to a mixture of 40.7 g of AN and 2.6 g of AM-90G. ..
  • Example 15 In the synthesis of the specific nitrile resin, a conductive carbon material dispersion 15 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to a mixture of 42.0 g of AN and 1.3 g of AM-90G. ..
  • Example 16 In the synthesis of the specific nitrile resin, a conductive carbon material dispersion liquid 16 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to 43.3 g of AN.
  • Example 16-2 A conductive carbon material dispersion liquid 16-2 for an energy device was obtained in the same manner as in Example 3 except that 1.0 g of Li-435 and 5.1 g of an NMP solution of a specific nitrile resin were used.
  • Example 16-3 A conductive carbon material dispersion liquid 16-3 for an energy device was obtained in the same manner as in Example 3 except that the amount of Li-435 was 0.8 g and the amount of the NMP solution of the specific nitrile resin was 8.0 g.
  • Example 16-4 A conductive carbon material dispersion liquid 16-4 for an energy device was obtained in the same manner as in Example 3 except that 0.7 g of Li-435 and 9.2 g of an NMP solution of a specific nitrile resin were used.
  • Example 16-5 Instead of Li-435, use 1.0 g of carbon black (manufactured by Denka Co., Ltd., Li-100, primary particle size 35 nm (catalog value), hereinafter sometimes referred to as Li-100), and use NMP solution 1 of a specific nitrile resin.
  • a conductive carbon material dispersion 16-5 for an energy device was obtained in the same manner as in Example 3 except that the amount was .2 g.
  • Example 16-6 A conductive carbon material dispersion liquid 16-6 for an energy device was obtained in the same manner as in Example 3 except that Li-100 was 1.0 g instead of Li-435 and an NMP solution of a specific nitrile resin was 2.4 g. rice field.
  • Example 16-7 A conductive carbon material dispersion liquid 16-7 for an energy device was obtained in the same manner as in Example 3 except that Li-100 was 1.0 g instead of Li-435 and an NMP solution of a specific nitrile resin was 5.1 g. rice field.
  • Example 16-8 A conductive carbon material dispersion liquid 16-8 for an energy device was obtained in the same manner as in Example 3 except that Li-100 was 1.0 g instead of Li-435 and an NMP solution of a specific nitrile resin was 6.6 g. rice field.
  • Example 16-9> instead of Li-435, use 1.5 g of carbon black (manufactured by Denka Co., Ltd., Li-400, primary particle size 48 nm (catalog value), hereinafter sometimes referred to as Li-400), and use NMP solution 0 of the specific nitrile resin.
  • a conductive carbon material dispersion 16-9 for an energy device was obtained in the same manner as in Example 3 except that the amount was 9.9 g.
  • Example 16-10 A conductive carbon material dispersion liquid 16-10 for an energy device was obtained in the same manner as in Example 3 except that Li-400 was 1.0 g instead of Li-435 and an NMP solution of a specific nitrile resin was 1.2 g. rice field.
  • Example 16-11> A conductive carbon material dispersion for energy devices 16-11 was obtained in the same manner as in Example 3 except that Li-400 was 1.0 g instead of Li-435 and NMP solution of a specific nitrile resin was 2.4 g. rice field.
  • Example 16-12 A conductive carbon material dispersion for energy devices 16-12 was obtained in the same manner as in Example 3 except that Li-400 was 1.0 g instead of Li-435 and NMP solution of a specific nitrile resin was 5.1 g. rice field.
  • Example 16-13 Conductive carbon material dispersion liquid 16-13 for energy devices was obtained in the same manner as in Example 3 except that Li-400 was 1.0 g instead of Li-435 and the NMP solution of the specific nitrile resin was 6.6 g. rice field.
  • Example 16-14> instead of Li-435, use 1.5 g of vapor-phase carbon fiber (Showa Denko Co., Ltd., VGCF-H, average length 6 ⁇ m, average diameter 150 nm, hereinafter sometimes referred to as VGCF-H), and use a specific nitrile resin.
  • a conductive carbon material dispersion liquid 16-14 for an energy device was obtained in the same manner as in Example 3 except that the NMP solution was 0.9 g.
  • Example 16-15 A conductive carbon material dispersion liquid 16-15 for an energy device was obtained in the same manner as in Example 3 except that VGCF-H was 1.0 g instead of Li-435 and an NMP solution of a specific nitrile resin was 1.2 g. rice field.
  • Example 16-16 Conductive carbon material dispersion liquid 16-16 for energy devices was obtained in the same manner as in Example 3 except that VGCF-H was 1.0 g instead of Li-435 and NMP solution of the specific nitrile resin was 2.4 g. rice field.
  • ⁇ Comparative example 1> A conductive carbon material dispersion C1 for an energy device was obtained in the same manner as in Example 1 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin.
  • PVDF polyvinylidene fluoride
  • ⁇ Comparative example 2> A conductive carbon material dispersion C2 for an energy device was obtained in the same manner as in Example 2 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin.
  • PVDF polyvinylidene fluoride
  • ⁇ Comparative example 3> A conductive carbon material dispersion C3 for an energy device was obtained in the same manner as in Example 3 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin.
  • PVDF polyvinylidene fluoride
  • ⁇ Comparative example 4> A conductive carbon material dispersion C4 for an energy device was obtained in the same manner as in Example 4 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin.
  • PVDF polyvinylidene fluoride
  • ⁇ Comparative example 5> A conductive carbon material dispersion C5 for an energy device was obtained in the same manner as in Example 5 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin.
  • PVDF polyvinylidene fluoride
  • ⁇ Comparative Example 5-2> A conductive carbon material dispersion liquid C5-2 for an energy device was prepared in the same manner as in Example 3 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin and Li-100 was used instead of Li-435. Obtained.
  • PVDF polyvinylidene fluoride
  • ⁇ Comparative Example 5-3> A conductive carbon material dispersion C5-3 for an energy device was prepared in the same manner as in Example 3 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin and Li-400 was used instead of Li-435. Obtained.
  • PVDF polyvinylidene fluoride
  • ⁇ Comparative Example 5-4> A conductive carbon material dispersion liquid C5-4 for an energy device was prepared in the same manner as in Example 3 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin and VGCF-H was used instead of Li-435. Obtained.
  • PVDF polyvinylidene fluoride
  • GPC [Pump: L6200 Pump (manufactured by Hitachi, Ltd.), Detector: Differential refractometer detector L3300 RI Matter (manufactured by Hitachi, Ltd.), Columns: TSKgel-G5000HXL and TSKgel-G2000HXL (2 in total) (both Tosoh) (Manufactured by Co., Ltd.) were connected in series, and the weight average molecular weight was measured using a column temperature of 30 ° C., an eluent: N-methyl-2-pyrrolidone, a flow velocity: 1.0 mL / min, and a standard substance: polystyrene]. The results are shown in Tables 1 to 3.
  • Examples and comparative examples using carbon black Li-435, Li-100 or Li-400 as the conductive carbon material are attached to a particle size distribution measuring instrument (Otsuka Electronics Co., Ltd., Zeta-potential & Liquidsize Analyzer, ELSZ). About 80% of the glass capacity was added to the glass cell of No. 1 and set in the measuring section of the particle size distribution measuring device, and the measurement was carried out 70 times. In the obtained number particle size distribution, the particle size (D50) was determined to be 50% when the number ratios were integrated from the one with the smallest particle size. This particle size (D50) corresponds to the dispersed particle size of carbon black. Dispersibility was evaluated according to the following criteria using visual appearance observation and dispersed particle size.
  • A has the highest dispersibility and D has the lowest dispersibility.
  • D Visually agglomerates Conductive For Examples and Comparative Examples in which VGCF-H was used as the sex carbon material, the dispersed particle size was determined in the same manner as in the case of carbon black, and dispersed according to the following criteria using visual appearance observation and the dispersed particle size. Gender was evaluated. It should be noted that A has the highest dispersibility and C has the lowest dispersibility.
  • C Visually agglomerated
  • Examples 1 to 16 and 16-2 to 16-13 containing the specific nitrile resin are Comparative Examples 1 to 5, 5-2 or 5 containing PVDF, which is a resin containing no structural unit derived from a nitrile group-containing monomer. It can be seen that the dispersibility of carbon black, which is a conductive carbon material, is superior to that of -3. In Examples 3 and 11 to 16, the amount of the monomer represented by the formula (I) was changed, but since good dispersibility of the conductive carbon material was obtained in both cases, the conductivity was obtained. It is suggested that the improvement of the dispersibility of the carbon material is due to the effect of the structural unit derived from the nitrile group-containing monomer.
  • Examples 16-14 to 16-16 using VGCF-H as the conductive carbon material are compared with Comparative Example 5-4 containing PVDF, which is a resin containing no structural unit derived from a nitrile group-containing monomer. , It can be seen that the dispersibility of VGCF-H is excellent. From this, it can be seen that the specific nitrile resin is effective not only for carbon black but also for dispersion of vapor phase carbon fibers.
  • Example 17> Preparation of composition for forming energy device electrodes (electrode slurry for energy devices)) After mixing the positive electrode active material (manufactured by Yumicore Japan Co., Ltd., MX6, hereinafter sometimes referred to as NMC) and the conductive carbon material dispersion liquid 3 for energy devices obtained in Example 3, the NMP solution of PVDF and An electrode slurry for an energy device was obtained by adding and mixing NMP for adjusting the viscosity. The solid content ratio (positive electrode active material: conductive carbon material: specific nitrile resin: PVDF) in the electrode slurry for energy devices was mixed so as to be 96% by mass: 2% by mass: 1% by mass: 1% by mass. ..
  • the obtained electrode slurry for energy devices was applied evenly and uniformly to one side of an aluminum foil (current collector) having a thickness of 15 ⁇ m so that the coating amount after drying was 230 g / m 2. Then, it was dried and rolled by a press to a density of 3.3 g / cm 3 to obtain an energy device electrode.
  • Example 18 Using the conductive carbon material dispersion for energy devices 6 obtained in Example 6, the solid content ratio (positive electrode active material: conductive carbon material: specific nitrile resin: PVDF) in the electrode slurry for energy devices was 96% by mass. An energy device for evaluation was produced in the same manner as in Example 17 except that it was changed to%: 2% by mass: 0.3% by mass: 1.7% by mass.
  • Example 19 Using the conductive carbon material dispersion for energy devices 7 obtained in Example 7, the solid content ratio (positive electrode active material: conductive carbon material: specific nitrile resin: PVDF) in the electrode slurry for energy devices was 96% by mass. An energy device for evaluation was produced in the same manner as in Example 17 except that the ratio was changed to%: 2% by mass: 0.8% by mass: 1.2% by mass.
  • Example 20 Using the conductive carbon material dispersion for energy devices 8 obtained in Example 8, the solid content ratio (positive electrode active material: conductive carbon material: specific nitrile resin: PVDF) in the electrode slurry for energy devices is 96 mass by mass.
  • An energy device for evaluation was produced in the same manner as in Example 17 except that the ratio was changed to%: 2% by mass: 1.4% by mass: 0.6% by mass.
  • Example 21 An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 11 for an energy device obtained in Example 11 was used.
  • Example 22 An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 12 for an energy device obtained in Example 12 was used.
  • Example 23 An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 13 for an energy device obtained in Example 13 was used.
  • Example 24 An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 14 for an energy device obtained in Example 14 was used.
  • Example 25 An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 15 for an energy device obtained in Example 15 was used.
  • Example 26 An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 16 for an energy device obtained in Example 16 was used.
  • the prepared energy device for evaluation was placed in a constant temperature bath at 25.0 ° C. and connected to a charging / discharging device (Toyo System Co., Ltd., TOSCAT-3200). After a constant current charge of 0.10 C to 4.2 V, a constant voltage charge was performed at 4.2 V until the current value became 0.01 C. Then, a constant current was discharged to 2.7 V at 0.10 C. This charging / discharging was repeated for 3 cycles to initialize the evaluation energy device.
  • the unit “C” means "current value (A) / battery capacity (Ah)".
  • the initialized energy device for evaluation is placed in a constant temperature bath at 25.0 ° C., connected to a charging / discharging device (Toyo System Co., Ltd., TOSCAT-3200), and then charged / discharged in the order of (1) to (5) below.
  • a charging / discharging device Toyo System Co., Ltd., TOSCAT-3200
  • TOSCAT-3200 Toyo System Co., Ltd., TOSCAT-3200
  • a constant current discharge was performed up to 2.7 V with a current value of 0.33 C, and the discharge capacity was measured.
  • (3) After a constant current charge of 0.20 C to 4.2 V, a constant voltage charge was performed at 4.2 V until the current value became 0.01 C.
  • a constant current discharge was performed up to 2.7 V with a current value of 0.50 C, and the discharge capacity was measured.
  • (4) After a constant current charge of 0.20 C to 4.2 V, a constant voltage charge was performed at 4.2 V until the current value became 0.01 C.
  • a constant current discharge was performed up to 2.7 V with a current value of 1.00 C, and the discharge capacity was measured.
  • the maintenance rate was calculated by the following formula using the discharge capacity at 0.20 C and the discharge capacity at 3.00 C, and the output characteristics were evaluated according to the following criteria. It is shown that A has the best output characteristics and D has the worst output characteristics. The results are shown in Table 5.
  • Maintenance rate Discharge capacity at 3.00C x Discharge capacity at 100 / 0.20C A: 85% or more B: 80% or more, less than 85% C: 75% or more, less than 80% D: less than 75%
  • the DC resistance was evaluated using the result of evaluating the output characteristics of the evaluation energy device.
  • the horizontal axis plots the current values during discharge of (1) to (5) above, and the vertical axis plots the voltage difference between before discharge and 5 seconds after the start of discharge, and the DC resistance is calculated from the slope.
  • DCR increase rate DC resistance before repeated charging / discharging x 100 / DC resistance after repeating charging / discharging A: Less than 180% B: 180% or more, less than 190% C: 190% or more

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This conductive carbon material dispersant for an energy device contains a resin comprising structural units derived from nitrile group-containing monomers.

Description

エネルギーデバイス用導電性炭素材料分散剤、エネルギーデバイス用導電性炭素材料分散液、エネルギーデバイス電極形成用組成物及びその製造方法、エネルギーデバイス電極、並びに、エネルギーデバイスConductive carbon material dispersant for energy devices, conductive carbon material dispersion for energy devices, compositions for forming energy device electrodes and their manufacturing methods, energy device electrodes, and energy devices
 本開示は、エネルギーデバイス用導電性炭素材料分散剤、エネルギーデバイス用導電性炭素材料分散液、エネルギーデバイス電極形成用組成物及びその製造方法、エネルギーデバイス電極、並びに、エネルギーデバイスに関する。 The present disclosure relates to a conductive carbon material dispersant for an energy device, a conductive carbon material dispersion for an energy device, a composition for forming an energy device electrode and a method for producing the same, an energy device electrode, and an energy device.
 ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)等の携帯情報端末の電源として、高エネルギー密度を有する非水電解液系のエネルギーデバイスであるリチウムイオン二次電池が広く使用されている。 A lithium ion secondary battery, which is a non-aqueous electrolyte energy device having a high energy density, is widely used as a power source for mobile information terminals such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants).
 リチウムイオン二次電池には、負極の活物質として、リチウムイオンの層間への挿入(リチウム層間化合物の形成)及び放出が可能な多層構造を有する炭素材料が主に用いられる。また、正極の活物質としては、リチウム含有金属複合酸化物が主に用いられる。リチウムイオン二次電池の電極は、これらの活物質、バインダー樹脂、カーボンブラック等の炭素材料、溶媒(N-メチル-2-ピロリドン、水等)などを混練してスラリーを調製し、次いで、これを転写ロール等で集電体である金属箔の片面又は両面に塗布し、溶媒を乾燥により除去して合剤層を形成後、ロールプレス機等で圧縮成形して作製される。 A carbon material having a multilayer structure capable of inserting and releasing lithium ions between layers (formation of a lithium interlayer compound) is mainly used as an active material for a negative electrode in a lithium ion secondary battery. Further, as the active material of the positive electrode, a lithium-containing metal composite oxide is mainly used. For the electrodes of the lithium ion secondary battery, these active materials, a binder resin, a carbon material such as carbon black, a solvent (N-methyl-2-pyrrolidone, water, etc.), etc. are kneaded to prepare a slurry, and then this is prepared. Is applied to one or both sides of a metal foil as a current collector with a transfer roll or the like, the solvent is removed by drying to form a mixture layer, and then compression molding is performed with a roll press machine or the like.
 炭素材料は、電極内に電子伝導性を付与する目的で添加されている。近年のリチウムイオン二次電池の高容量化のトレンドにおいては、高容量化に寄与しない炭素材料の添加量の低減が進んでいる。炭素材料の添加量の低減に向け、炭素材料の小粒径化が進んでいる。 The carbon material is added for the purpose of imparting electron conductivity in the electrode. In the recent trend of increasing the capacity of lithium ion secondary batteries, the amount of carbon material added, which does not contribute to the increase in capacity, is being reduced. The particle size of carbon materials is becoming smaller in order to reduce the amount of carbon materials added.
 特開2012-59466号公報では、炭素材料を含む正極合剤を効率よく安定して均一分散させる混練プロセスが提案されている。
 また、国際公開第2012/014616号では、ポリビニルピロリドン系高分子とノニオン系界面活性剤とを分散剤として含有するカーボンスラリーが提案されている。ポリビニルピロリドン系高分子及びノニオン系界面活性剤のような分散剤は、炭素材料の分散に有効である。
Japanese Unexamined Patent Publication No. 2012-59466 proposes a kneading process for efficiently and stably and uniformly dispersing a positive electrode mixture containing a carbon material.
Further, International Publication No. 2012/014616 proposes a carbon slurry containing a polyvinylpyrrolidone-based polymer and a nonionic surfactant as a dispersant. Dispersants such as polyvinylpyrrolidone-based polymers and nonionic surfactants are effective in dispersing carbon materials.
 炭素材料の添加量の低減のためには、平均粒子径の小さな炭素材料を用いることが有効である。しかしながら、特開2012-59466号公報に記載の混練プロセスは、平均粒子径が小さい炭素材料には効果が低いことがある。
 また、国際公開第2012/014616号に記載の分散剤は、炭素材料の分散には有効であるが、電池内で酸化分解等の副反応を起こしやすく、電池の容量低下、ガス発生等の別の課題を招く懸念がある。
 そのため、平均粒子径の小さい炭素材料の分散に有効な分散剤が求められていた。
 本開示は、上記従来の事情に鑑みてなされたものであり、分散性に優れるエネルギーデバイス用導電性炭素材料分散剤を提供することを目的とする。さらに、本開示は、この分散剤を用いたエネルギーデバイス用導電性炭素材料分散液、エネルギーデバイス電極形成用組成物及びその製造方法、エネルギーデバイス電極、並びに、エネルギーデバイスを提供することを目的とする。
In order to reduce the amount of carbon material added, it is effective to use a carbon material having a small average particle size. However, the kneading process described in JP2012-59466 may be less effective for carbon materials having a small average particle size.
Further, although the dispersant described in International Publication No. 2012/014616 is effective for dispersing carbon materials, side reactions such as oxidative decomposition are likely to occur in the battery, and the capacity of the battery is reduced, gas is generated, and the like. There is a concern that it will lead to problems.
Therefore, an effective dispersant for dispersing a carbon material having a small average particle size has been required.
The present disclosure has been made in view of the above-mentioned conventional circumstances, and an object of the present disclosure is to provide a conductive carbon material dispersant for an energy device having excellent dispersibility. Furthermore, it is an object of the present disclosure to provide a conductive carbon material dispersion for an energy device using this dispersant, a composition for forming an energy device electrode and a method for producing the same, an energy device electrode, and an energy device. ..
 前記課題を達成するための具体的手段は以下の通りである。
<1> ニトリル基含有単量体由来の構造単位を含む樹脂を含有するエネルギーデバイス用導電性炭素材料分散剤。
<2> 前記樹脂が、下記式(I)で表される単量体由来の構造単位をさらに含む<1>に記載のエネルギーデバイス用導電性炭素材料分散剤。
Specific means for achieving the above-mentioned problems are as follows.
<1> A conductive carbon material dispersant for energy devices containing a resin containing a structural unit derived from a nitrile group-containing monomer.
<2> The conductive carbon material dispersant for an energy device according to <1>, wherein the resin further contains a structural unit derived from a monomer represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[式(I)中、Rは水素原子又はメチル基を示し、Rは水素原子又は1価の炭化水素基を示し、nは1~50の整数を示す。]
<3> 前記ニトリル基含有単量体由来の構造単位が、前記樹脂の主鎖に含まれる<1>又は<2>に記載のエネルギーデバイス用導電性炭素材料分散剤。
<4> 前記樹脂に占める前記ニトリル基含有単量体由来の構造単位の質量基準の割合が、80質量%を超え100質量%以下である<1>~<3>のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散剤。
<5> 導電性炭素材料と、<1>~<4>のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散剤と、溶媒と、を含有するエネルギーデバイス用導電性炭素材料分散液。
<6> 前記導電性炭素材料の平均一次粒径が、50nm以下である<5>に記載のエネルギーデバイス用導電性炭素材料分散液。
<7> 前記導電性炭素材料が、カーボンブラックを含む<5>又は<6>に記載のエネルギーデバイス用導電性炭素材料分散液。
<8> 前記導電性炭素材料の平均粒子径が、0.3μm~3μmである<5>~<7>のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散液。
<9> 前記導電性炭素材料が、炭素繊維を含む<5>に記載のエネルギーデバイス用導電性炭素材料分散液。
<10> 前記溶媒が、N-メチル-2-ピロリドン及びγ-ブチロラクトンの少なくとも一方を含む<5>~<9>のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散液。
<11> バインダー樹脂と、活物質と、導電性炭素材料と、前記導電性炭素材料を分散する分散剤と、溶媒と、を含有し、前記分散剤が、<1>~<4>のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散剤を含むエネルギーデバイス電極形成用組成物。
<12> 活物質と、<5>~<10>のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散液と、を混合して活物質分散液を調製する工程と、前記活物質分散液にバインダー樹脂を添加する工程と、を有するエネルギーデバイス電極形成用組成物の製造方法。
<13> 前記活物質分散液に、導電性炭素材料を添加する工程を有する<12>に記載のエネルギーデバイス電極形成用組成物の製造方法。
<14> 集電体と、
 前記集電体の少なくとも一方の表面上に設けられ、<12>又は<13>に記載のエネルギーデバイス電極形成用組成物の製造方法により製造されたエネルギーデバイス電極形成用組成物を用いて形成された電極合剤層と、
を有するエネルギーデバイス電極。
<15> <14>に記載のエネルギーデバイス電極を備えるエネルギーデバイス。
[In formula (I), R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom or a monovalent hydrocarbon group, and n represents an integer of 1 to 50. ]
<3> The conductive carbon material dispersant for energy devices according to <1> or <2>, wherein the structural unit derived from the nitrile group-containing monomer is contained in the main chain of the resin.
<4> The item according to any one of <1> to <3>, wherein the ratio of the structural unit derived from the nitrile group-containing monomer to the resin based on the mass is more than 80% by mass and 100% by mass or less. Conductive carbon material dispersant for energy devices.
<5> A conductive carbon material dispersion liquid for an energy device containing a conductive carbon material, a conductive carbon material dispersant for an energy device according to any one of <1> to <4>, and a solvent. ..
<6> The conductive carbon material dispersion liquid for an energy device according to <5>, wherein the average primary particle size of the conductive carbon material is 50 nm or less.
<7> The conductive carbon material dispersion liquid for an energy device according to <5> or <6>, wherein the conductive carbon material contains carbon black.
<8> The conductive carbon material dispersion liquid for an energy device according to any one of <5> to <7>, wherein the average particle size of the conductive carbon material is 0.3 μm to 3 μm.
<9> The conductive carbon material dispersion liquid for an energy device according to <5>, wherein the conductive carbon material contains carbon fibers.
<10> The conductive carbon material dispersion liquid for an energy device according to any one of <5> to <9>, wherein the solvent contains at least one of N-methyl-2-pyrrolidone and γ-butyrolactone.
<11> A binder resin, an active material, a conductive carbon material, a dispersant for dispersing the conductive carbon material, and a solvent are contained, and the dispersant is any of <1> to <4>. A composition for forming an energy device electrode, which comprises the conductive carbon material dispersant for an energy device according to item 1.
<12> A step of preparing an active material dispersion liquid by mixing the active material and the conductive carbon material dispersion liquid for an energy device according to any one of <5> to <10>, and the above-mentioned active material. A method for producing a composition for forming an energy device electrode, comprising a step of adding a binder resin to a dispersion liquid.
<13> The method for producing an energy device electrode forming composition according to <12>, which comprises a step of adding a conductive carbon material to the active material dispersion liquid.
<14> With the current collector
It is formed by using the energy device electrode forming composition provided on at least one surface of the current collector and produced by the method for producing the energy device electrode forming composition according to <12> or <13>. With the electrode mixture layer
Energy device electrode with.
<15> An energy device including the energy device electrode according to <14>.
 本開示によれば、分散性に優れるエネルギーデバイス用導電性炭素材料分散剤を提供することができる。さらに、本開示によれば、この分散剤を用いたエネルギーデバイス用導電性炭素材料分散液、エネルギーデバイス電極形成用組成物及びその製造方法、エネルギーデバイス電極、並びに、エネルギーデバイスを提供することができる。 According to the present disclosure, it is possible to provide a conductive carbon material dispersant for an energy device having excellent dispersibility. Further, according to the present disclosure, it is possible to provide a conductive carbon material dispersion for an energy device using this dispersant, a composition for forming an energy device electrode and a method for producing the same, an energy device electrode, and an energy device. ..
本開示を適用したリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery to which this disclosure is applied.
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 Hereinafter, the mode for implementing the present disclosure will be described in detail. However, the present disclosure is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit this disclosure.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、各成分には、該当する物質が複数種含まれていてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において、各成分に該当する粒子には、複数種の粒子が含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味する。
 本開示において、層又は膜の平均厚さは、対象となる層又は膜の5点の厚さを測定し、その算術平均値として与えられる値とする。
 層又は膜の厚さは、マイクロメーター等を用いて測定することができる。本開示において、層又は膜の厚さを直接測定可能な場合には、マイクロメーターを用いて測定する。一方、1つの層の厚さ又は複数の層の総厚さを測定する場合には、電子顕微鏡を用いて、測定対象の断面を観察することで測定してもよい。
In the present disclosure, the term "process" includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
The numerical range indicated by using "-" in the present disclosure includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, the particles corresponding to each component may include a plurality of types of particles. When a plurality of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, the term "layer" or "membrane" is used only in a part of the region in addition to the case where the layer or the membrane is formed in the entire region when the region in which the layer or the membrane is present is observed. The case where it is formed is also included.
In the present disclosure, the term "laminated" refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
In the present disclosure, "(meth) acrylic" means at least one of acrylic and methacryl, and "(meth) acrylate" means at least one of acrylate and methacrylate.
In the present disclosure, the average thickness of a layer or film is a value given as an arithmetic mean value obtained by measuring the thickness of five points of the target layer or film.
The thickness of the layer or film can be measured using a micrometer or the like. In the present disclosure, when the thickness of a layer or a film can be directly measured, it is measured using a micrometer. On the other hand, when measuring the thickness of one layer or the total thickness of a plurality of layers, the measurement may be performed by observing the cross section of the measurement target using an electron microscope.
<エネルギーデバイス用導電性炭素材料分散剤>
 本開示のエネルギーデバイス用導電性炭素材料分散剤(以下、単に「分散剤」と称することがある。)は、ニトリル基含有単量体由来の構造単位を含む樹脂(以下、「特定ニトリル樹脂」と称することがある。)を含有する。
 本発明者等は鋭意検討の結果、本開示の分散剤が、カーボンブラック等の炭素材料に対して優れた分散性を有することを見いだして、本発明を完成させた。
<Conductive carbon material dispersant for energy devices>
The conductive carbon material dispersant for energy devices of the present disclosure (hereinafter, may be simply referred to as “dispersant”) is a resin containing a structural unit derived from a nitrile group-containing monomer (hereinafter, “specific nitrile resin”). May be referred to as).
As a result of diligent studies, the present inventors have found that the dispersant of the present disclosure has excellent dispersibility with respect to carbon materials such as carbon black, and have completed the present invention.
 以下に、本開示の分散剤を構成する成分について詳細に説明する。 The components constituting the dispersant of the present disclosure will be described in detail below.
-ニトリル基含有単量体-
 特定ニトリル樹脂に含まれるニトリル基含有単量体由来の構造単位の元となるニトリル基含有単量体としては、特に制限はない。例えば、アクリロニトリル、メタクリロニトリル等のアクリル系ニトリル基含有単量体、α-シアノアクリレート、ジシアノビニリデン等のシアン系ニトリル基含有単量体、フマロニトリル等のフマル系ニトリル基含有単量体などが挙げられる。
 これらの中では、重合のし易さ、コストパフォーマンス、導電性炭素材料のさらなる分散性の向上等の点で、アクリロニトリルであることが好ましい。ニトリル基含有単量体に占めるアクリロニトリルの比率は、5質量%~100質量%であることが好ましく、50質量%~100質量%であることがより好ましく、70質量%~100質量%であることがさらに好ましい。これらのニトリル基含有単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ニトリル基含有単量体としてアクリロニトリルとメタクリロニトリルとを併用する場合、アクリロニトリルの含有率は、ニトリル基含有単量体の全量に対して、例えば、5質量%~95質量%であることが好ましく、50質量%~95質量%であることがより好ましい。
 特定ニトリル樹脂に占める前記ニトリル基含有単量体由来の構造単位の質量基準の割合は、80質量%を超え100質量%以下であってもよく、90質量%~100質量%であってもよく、92質量%~100質量%であってもよい。
-Nitrile group-containing monomer-
The nitrile group-containing monomer, which is the source of the structural unit derived from the nitrile group-containing monomer contained in the specific nitrile resin, is not particularly limited. Examples thereof include acrylic nitrile group-containing monomers such as acrylonitrile and methacrylonitrile, cyanide nitrile group-containing monomers such as α-cyanoacrylate and dicyanovinylidene, and fumal nitrile group-containing monomers such as fumaronitrile. Be done.
Among these, acrylonitrile is preferable in terms of ease of polymerization, cost performance, further improvement in dispersibility of the conductive carbon material, and the like. The ratio of acrylonitrile to the nitrile group-containing monomer is preferably 5% by mass to 100% by mass, more preferably 50% by mass to 100% by mass, and 70% by mass to 100% by mass. Is even more preferable. These nitrile group-containing monomers may be used alone or in combination of two or more.
When acrylonitrile and methacrylonitrile are used in combination as the nitrile group-containing monomer, the content of acrylonitrile is preferably, for example, 5% by mass to 95% by mass with respect to the total amount of the nitrile group-containing monomer. , 50% by mass to 95% by mass, more preferably.
The mass-based ratio of the structural unit derived from the nitrile group-containing monomer to the specific nitrile resin may be more than 80% by mass and 100% by mass or less, or 90% by mass to 100% by mass. , 92% by mass to 100% by mass.
 ニトリル基含有単量体由来の構造単位は、特定ニトリル樹脂の主鎖に含まれることが好ましい。本開示において特定ニトリル樹脂の「主鎖」とは、特定ニトリル樹脂が直鎖状である場合、特定ニトリル樹脂を合成する際に単量体が重合により連結した部位をいい、例えば、アクリロニトリルを重合したポリマーであれば、アクリロニトリル中のビニル基が重合により連結したアルキレン部位をいう。また、特定ニトリル樹脂がグラフト重合体である場合、特定ニトリル樹脂の「主鎖」とは、幹となる共重合体の部分をいう。 The structural unit derived from the nitrile group-containing monomer is preferably contained in the main chain of the specific nitrile resin. In the present disclosure, the "main chain" of the specific nitrile resin means a site in which the monomers are linked by polymerization when the specific nitrile resin is synthesized when the specific nitrile resin is linear, for example, acrylonitrile is polymerized. In the case of a polymer, it means an alkylene moiety in which vinyl groups in acrylonitrile are linked by polymerization. When the specific nitrile resin is a graft polymer, the "main chain" of the specific nitrile resin means a portion of the copolymer that serves as a trunk.
-式(I)で表される単量体-
 特定ニトリル樹脂は、必要に応じて下記一般式(I)で表される単量体由来の構造単位を含んでもよい。
-Monomer represented by the formula (I)-
The specific nitrile resin may contain a structural unit derived from a monomer represented by the following general formula (I), if necessary.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(I)中、Rは水素原子又はメチル基を示し、Rは水素原子又は1価の炭化水素基を示し、nは1~50の整数を示す。 In formula (I), R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom or a monovalent hydrocarbon group, and n represents an integer of 1 to 50.
 式(I)中、nは1~50の整数であり、ある態様では、2~30の整数であることが好ましく、2~15の整数であることがより好ましく、2~10の整数であることがさらに好ましい。また、その他の態様では、nは1~30の整数であることが好ましく、1~15の整数であることがより好ましく、1~10の整数であることがさらに好ましい。
 式(I)中、Rは、水素原子又は1価の炭化水素基であり、例えば、1価の炭化水素基であることが好ましく、炭素数が1~50である1価の炭化水素基であることがより好ましく、炭素数が1~25である1価の炭化水素基であることがさらに好ましく、炭素数が1~12である1価の炭化水素基であることが特に好ましい。
 炭化水素基としては、例えば、アルキル基及びフェニル基が挙げられる。Rは、特に、炭素数が1~12のアルキル基又はフェニル基であることが適当である。アルキル基は、直鎖状であっても分岐鎖状であっても環状であってもよい。
 Rで示されるアルキル基及びフェニル基は、一部の水素原子が置換基で置換されていてもよい。Rがアルキル基である場合の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環などが挙げられる。Rがフェニル基である場合の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環、炭素数が3~10のシクロアルキル基などが挙げられる。
In formula (I), n is an integer of 1 to 50, preferably an integer of 2 to 30, more preferably an integer of 2 to 15, and an integer of 2 to 10. Is even more preferable. In another aspect, n is preferably an integer of 1 to 30, more preferably an integer of 1 to 15, and even more preferably an integer of 1 to 10.
In the formula (I), R 2 is a hydrogen atom or a monovalent hydrocarbon group, preferably a monovalent hydrocarbon group, for example, and a monovalent hydrocarbon group having 1 to 50 carbon atoms. It is more preferable that it is a monovalent hydrocarbon group having 1 to 25 carbon atoms, and it is particularly preferable that it is a monovalent hydrocarbon group having 1 to 12 carbon atoms.
Examples of the hydrocarbon group include an alkyl group and a phenyl group. R 2 is particularly, it is appropriate that the carbon number of alkyl group or a phenyl group having 1 to 12. The alkyl group may be linear, branched or cyclic.
Alkyl group and phenyl group represented by R 2, a part of hydrogen atoms may be substituted with a substituent. Examples of the substituent when R 2 is an alkyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, an aromatic ring and the like. .. When R 2 is a phenyl group, the substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, substituents containing nitrogen atom, substituents containing phosphorus atom, aromatic ring and carbon number. Examples thereof include 3 to 10 cycloalkyl groups.
 式(I)で表される単量体としては、市販品を用いても合成品を用いてもよい。市販品として入手可能な式(I)で表される単量体としては、具体的には、例えば、2-メトキシエチルアクリレート、エトキシジエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートEC-A)、メトキシトリエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートMTG-A及び新中村化学工業株式会社製、商品名:NKエステルAM-30G)、メトキシポリ(n=9)エチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレート130-A及び新中村化学工業株式会社製、商品名:NKエステルAM-90G)、メトキシポリ(n=13)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-130G)、メトキシポリ(n=23)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-230G)、オクトキシポリ(n=18)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルA-OC-18E)、フェノキシジエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートP-200A及び新中村化学工業株式会社製、商品名:NKエステルAMP-20GY)、フェノキシポリ(n=6)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAMP-60G)、ノニルフェノールEO付加物(n=4)アクリレート(共栄社化学株式会社製、商品名:ライトアクリレートNP-4EA)、ノニルフェノールEO付加物(n=8)アクリレート(共栄社化学株式会社製、商品名:ライトアクリレートNP-8EA)、メトキシジエチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステルMC及び新中村化学工業株式会社製、商品名:NKエステルM-20G)、メトキシトリエチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステルMTG)、メトキシポリ(n=9)エチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステル130MA及び新中村化学工業株式会社製、商品名:NKエステルM-90G)、メトキシポリ(n=23)エチレングリコールメタクリレート(新中村化学工業株式会社製、商品名:NKエステルM-230G)並びにメトキシポリ(n=30)エチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステル041MA)が挙げられる。
 これらの中では、ニトリル基含有単量体と共重合させる場合の反応性等の点から、メトキシポリ(n=9)エチレングリコールアクリレート(一般式(I)のRが水素原子で、Rがメチル基で、nが9の化合物)がより好ましい。これらの一般式(I)で表される単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the monomer represented by the formula (I), a commercially available product or a synthetic product may be used. Specific examples of the monomer represented by the formula (I) that can be obtained as a commercially available product include 2-methoxyethyl acrylate and ethoxydiethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate EC-). A), methoxytriethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate MTG-A and manufactured by Shin-Nakamura Chemical Industry Co., Ltd., trade name: NK ester AM-30G), methoxypoly (n = 9) ethylene glycol Acrylic (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate 130-A and Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AM-90G), methoxypoly (n = 13) ethylene glycol acrylate (Shin-Nakamura Chemical Co., Ltd.) Company, trade name: NK ester AM-130G), methoxypoly (n = 23) ethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd., trade name: NK ester AM-230G), octoxypoly (n = 18) ethylene glycol acrylate (Made by Shin-Nakamura Chemical Co., Ltd., Product name: NK ester A-OC-18E), Phenoxydiethylene glycol acrylate (Made by Kyoeisha Chemical Co., Ltd., Product name: Light acrylate P-200A and Shin-Nakamura Chemical Co., Ltd., Product name : NK ester AMP-20GY), Phenoxypoly (n = 6) ethylene glycol acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester AMP-60G), nonylphenol EO adduct (n = 4) acrylate (Kyoeisha Chemical Co., Ltd.) Made by Kyoeisha Chemical Co., Ltd., trade name: Light Acrylate NP-4EA), nonylphenol EO adduct (n = 8) acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light Acrylate NP-8EA), methoxydiethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) , Product name: Light ester MC and manufactured by Shin-Nakamura Chemical Industry Co., Ltd., Product name: NK ester M-20G), methoxytriethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., Product name: Light ester MTG), methoxypoly (n = 9) Ethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light Ester 130MA and Shin Nakamura Chemical Co., Ltd., trade name: NK ester M-90G), methoxypoly (n = 23) ethylene glycol methacrylate (Shin Nakamura Chemical Co., Ltd.) Made by Kogyo Co., Ltd., trade name: NK Ester M-230G) and Met Examples thereof include xipoly (n = 30) ethylene glycol methacrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light ester 041MA).
Among these, from the viewpoint of reactivity when copolymerized with a nitrile group-containing monomer, methoxypoly (n = 9) ethylene glycol acrylate (R 1 of the general formula (I) is a hydrogen atom, and R 2 is A compound having a methyl group and n of 9) is more preferable. As these monomers represented by the general formula (I), one type may be used alone, or two or more types may be used in combination.
-式(II)で表される単量体-
 特定ニトリル樹脂は、必要に応じて式(II)で表される単量体由来の構造単位を含んでもよい。本開示で用いられる式(II)で表される単量体としては、特に制限はない。
-Monomer represented by formula (II)-
The specific nitrile resin may contain a structural unit derived from a monomer represented by the formula (II), if necessary. The monomer represented by the formula (II) used in the present disclosure is not particularly limited.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(II)中、Rは水素原子又はメチル基を示し、Rは炭素数が4~100のアルキル基を示す。 In formula (II), R 3 represents a hydrogen atom or a methyl group, and R 4 represents an alkyl group having 4 to 100 carbon atoms.
 式(II)中、Rは、炭素数が4~100のアルキル基であり、好ましくは炭素数が4~50のアルキル基であり、より好ましくは炭素数が6~30のアルキル基であり、さらに好ましくは炭素数が8~15のアルキル基である。
 Rで表されるアルキル基は、直鎖状であっても分岐鎖状であっても環状であってもよい。
 Rで示されるアルキル基は、一部の水素原子が置換基で置換されていてもよい。置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環などが挙げられる。例えば、Rで示されるアルキル基としては、直鎖状、分岐鎖状又は環状の飽和アルキル基の他、フルオロアルキル基、クロロアルキル基、ブロモアルキル基、ヨウ化アルキル基等のハロゲン化アルキル基などが挙げられる。
In formula (II), R 4 is an alkyl group having 4 to 100 carbon atoms, preferably an alkyl group having 4 to 50 carbon atoms, and more preferably an alkyl group having 6 to 30 carbon atoms. , More preferably an alkyl group having 8 to 15 carbon atoms.
The alkyl group represented by R 4 may be linear, branched or cyclic.
Alkyl group represented by R 4, a part of hydrogen atoms may be substituted with a substituent. Examples of the substituent include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, and an aromatic ring. For example, the alkyl group represented by R 4, linear, other saturated alkyl group branched or cyclic fluoroalkyl group, chloroalkyl group, bromo group, halogenated alkyl group such as an alkyl iodide group And so on.
 式(II)で表される単量体としては、市販品を用いても合成品を用いてもよい。市販品として入手可能な式(II)で表される単量体としては、具体的には、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の炭素数が4~100のアルキル基を含む(メタ)アクリル酸のエステル類が挙げられる。
 また、Rがフルオロアルキル基である場合、1,1-ビス(トリフルオロメチル)-2,2,2-トリフルオロエチルアクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチルアクリレート、2,2,3,4,4,4-へキサフルオロブチルアクリレート、ノナフルオロイソブチルアクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルアクリレート、2,2,3,3,4,4,5,5,5-ノナフルオロペンチルアクリレート、2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシルアクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルアクリレート、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシルアクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ノナデカフルオロデシルアクリレート等のアクリレート化合物、ノナフルオロ-t-ブチルメタクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチルメタクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチルメタクリレート、ヘプタデカフルオロオクチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-ヘキサデカフルオロノニルメタクリレート等のメタクリレート化合物などが挙げられる。
 これらの一般式(II)で表される単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As the monomer represented by the formula (II), a commercially available product or a synthetic product may be used. Specific examples of the commercially available monomer represented by the formula (II) include n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and amyl (meth). ) Acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) ) Acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, etc. Examples thereof include (meth) acrylic acid esters containing 4 to 100 alkyl groups.
When R 4 is a fluoroalkyl group, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl acrylate, 2,2,3,3,4,5,4-heptafluoro Butyl acrylate, 2,2,3,4,5-hexafluorobutyl acrylate, nonafluoroisobutyl acrylate, 2,2,3,3,4,5,5-octafluoropentyl acrylate, 2,2 , 3,3,4,4,5,5,5-nonafluoropentyl acrylate, 2,2,3,3,4,5,5,6,6,6-undecafluorohexyl acrylate, 2, 2,3,3,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl acrylate, 3,3,4,4,5,5,6,6 7,7,8,8,9,9,10,10,10-heptadecafluorodecylacrylate, 2,2,3,3,4,4,5,5,6,6,7,7,8, Acrylate compounds such as 8,9,9,10,10,10-nonadecafluorodecylacrylate, nonafluoro-t-butyl methacrylate, 2,2,3,3,4,4-heptafluorobutyl methacrylate, 2, 2,3,3,4,5,5-octafluoropentyl methacrylate, 2,2,3,3,4,5,5,6,6,7,7-dodecafluoroheptyl methacrylate, heptadeca Fluorooctyl methacrylate, 2,2,3,3,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl methacrylate, 2,2,3,3,4 Examples thereof include methacrylate compounds such as 4,5,5,6,6,7,7,8,8,9,9-hexadecafluorononyl methacrylate.
As these monomers represented by the general formula (II), one type may be used alone, or two or more types may be used in combination.
-カルボキシ基含有単量体-
 特定ニトリル樹脂は、必要に応じてカルボキシ基含有単量体由来の構造単位を含んでもよい。
 カルボキシ基含有単量体の具体例としては特に制限はなく、アクリル酸、メタクリル酸等のアクリル系カルボキシ基含有単量体、クロトン酸等のクロトン系カルボキシ基含有単量体、マレイン酸及びその無水物等のマレイン系カルボキシ基含有単量体、イタコン酸及びその無水物等のイタコン系カルボキシ基含有単量体、シトラコン酸及びその無水物等のシトラコン系カルボキシ基含有単量体などが挙げられる。
-Carboxy group-containing monomer-
The specific nitrile resin may contain a structural unit derived from a carboxy group-containing monomer, if necessary.
Specific examples of the carboxy group-containing monomer are not particularly limited, and are acrylic carboxy group-containing monomer such as acrylic acid and methacrylic acid, croton-based carboxy group-containing monomer such as crotonic acid, maleic acid and its anhydride. Examples thereof include a maleine-based carboxy group-containing monomer such as a product, an itaconic acid-based carboxy group-containing monomer such as itaconic acid and its anhydride, and a citraconic carboxy group-containing monomer such as citraconic acid and its anhydride.
-その他の単量体-
 特定ニトリル樹脂は、必要に応じて一般式(I)で表される単量体由来の構造単位、一般式(II)で表される単量体由来の構造単位及びカルボキシ基含有単量体由来の構造単位以外のその他の単量体由来の構造単位を含んでもよい。
 その他の単量体としては、特に限定されるものではなく、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート等の炭素数が1~3のアルキル基を含む(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α-メチルスチレン、酢酸ビニル、(メタ)アリルスルホン酸ナトリウム、(メタ)アリルオキシベンゼンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩などが挙げられる。これらその他の単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-Other monomers-
The specific nitrile resin is derived from a monomer-derived structural unit represented by the general formula (I), a monomer-derived structural unit represented by the general formula (II), and a carboxy group-containing monomer, if necessary. It may contain structural units derived from other monomers other than the structural units of.
The other monomer is not particularly limited, and is a (meth) acrylic containing an alkyl group having 1 to 3 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate. Acid esters, vinyl chloride, vinyl bromide, vinyl halides such as vinylidene chloride, imide maleate, phenylmaleimide, (meth) acrylamide, styrene, α-methylstyrene, vinyl acetate, sodium (meth) allylsulfonate, Examples thereof include sodium (meth) allyloxybenzene sulfonic acid, sodium styrene sulfonate, 2-acrylamide-2-methylpropanesulfonic acid and salts thereof. These other monomers may be used alone or in combination of two or more.
-各単量体由来の構造単位の比率-
 特定ニトリル樹脂に含まれる上記各単量体由来の構造単位の比率は、特に限定されるものではない。
 特定ニトリル樹脂に含まれる上記各単量体由来の構造単位の合計に占めるニトリル基含有単量体由来の構造単位の比率は、50モル%~100モル%であってもよく、80モル%~100モル%であってもよく、90モル%~100モル%であってもよく、95モル%~100モル%であってもよい。
 各単量体由来の構造単位の合計に占めるニトリル基含有単量体由来の構造単位の比率が90モル%~100モル%である場合、式(I)で表される単量体におけるnは、2~50の整数を示すものであってもよい。
 ニトリル基含有単量体由来の構造単位1モルに対するカルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率は、0.005モル以下であってもよく、0.001モル以下であってもよい。
 ニトリル基含有単量体由来の構造単位1モルに対する式(I)で表される単量体由来の構造単位の比率は、例えば、0.001モル~0.2モルであってもよく、0.003モル~0.05モルであってもよく、0.005モル~0.035モルであってもよい。ニトリル基含有単量体由来の構造単位1モルに対する式(I)で表される単量体由来の構造単位の比率が0.001モル~0.2モルであれば、本開示の分散剤を含む電極合剤層のイオン伝導性が向上する傾向にある。
-Ratio of structural units derived from each monomer-
The ratio of the structural units derived from each of the above monomers contained in the specific nitrile resin is not particularly limited.
The ratio of the structural units derived from the nitrile group-containing monomer to the total of the structural units derived from each of the above-mentioned monomers contained in the specific nitrile resin may be 50 mol% to 100 mol%, and may be 80 mol% to 80 mol%. It may be 100 mol%, 90 mol% to 100 mol%, 95 mol% to 100 mol%.
When the ratio of the structural units derived from the nitrile group-containing monomer to the total structural units derived from each monomer is 90 mol% to 100 mol%, n in the monomer represented by the formula (I) is It may indicate an integer of 2 to 50.
The ratio of the structural unit derived from the carboxy group-containing monomer and containing the carboxy group to 1 mol of the structural unit derived from the nitrile group-containing monomer may be 0.005 mol or less, and 0.001 mol or less. There may be.
The ratio of the structural unit derived from the monomer represented by the formula (I) to 1 mol of the structural unit derived from the nitrile group-containing monomer may be, for example, 0.001 mol to 0.2 mol, and is 0. It may be 0.003 mol to 0.05 mol, or 0.005 mol to 0.035 mol. If the ratio of the structural unit derived from the monomer represented by the formula (I) to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol, the dispersant of the present disclosure can be used. The ionic conductivity of the containing electrode mixture layer tends to be improved.
 特定ニトリル樹脂に式(II)で表される単量体由来の構造単位が含まれる場合、ニトリル基含有単量体由来の構造単位1モルに対する式(II)で表される単量体由来の構造単位の比率は、例えば、0.001モル~0.2モルであってもよく、0.003モル~0.05モルであってもよく、0.005モル~0.02モルであってもよい。 When the specific nitrile resin contains a structural unit derived from a monomer represented by the formula (II), it is derived from the monomer represented by the formula (II) with respect to 1 mol of the structural unit derived from the nitrile group-containing monomer. The ratio of structural units may be, for example, 0.001 mol to 0.2 mol, 0.003 mol to 0.05 mol, and 0.005 mol to 0.02 mol. May be good.
 特定ニトリル樹脂に式(I)で表される単量体由来の構造単位及び式(II)で表される単量体由来の構造単位が含まれる場合、ニトリル基含有単量体由来の構造単位1モルに対する式(I)で表される単量体由来の構造単位及び式(II)で表される単量体由来の構造単位の合計の比率は、例えば、0.001モル~0.2モルであってもよく、0.003モル~0.05モルであってもよく、0.005モル~0.035モルであってもよい。 When the specific nitrile resin contains a structural unit derived from a monomer represented by the formula (I) and a structural unit derived from a monomer represented by the formula (II), a structural unit derived from a nitrile group-containing monomer. The total ratio of the monomer-derived structural unit represented by the formula (I) and the monomer-derived structural unit represented by the formula (II) to 1 mol is, for example, 0.001 mol to 0.2. It may be a molar amount, 0.003 mol to 0.05 mol, or 0.005 mol to 0.035 mol.
 特定ニトリル樹脂にその他の単量体由来の構造単位が含まれる場合、ニトリル基含有単量体由来の構造単位1モルに対するその他の単量体由来の構造単位の比率は、例えば、0.005モル~0.1モルであってもよく、0.01モル~0.06モルであってもよく、0.03モル~0.05モルであってもよい。 When the specific nitrile resin contains structural units derived from other monomers, the ratio of structural units derived from other monomers to 1 mol of structural units derived from nitrile group-containing monomers is, for example, 0.005 mol. It may be up to 0.1 mol, 0.01 mol to 0.06 mol, or 0.03 mol to 0.05 mol.
-特定ニトリル樹脂の製造方法-
 特定ニトリル樹脂の製造方法は特に限定されるものではない。水中沈殿重合、塊状重合、懸濁重合、乳化重合、溶液重合等の重合方法を適用することが可能である。樹脂合成のし易さ、回収、精製等といった後処理のし易さなどの点で、水中沈殿重合が好ましい。
 以下、水中沈殿重合について詳細に説明する。
-Manufacturing method of specific nitrile resin-
The method for producing the specific nitrile resin is not particularly limited. Polymerization methods such as underwater precipitation polymerization, bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization can be applied. Precipitation polymerization in water is preferable in terms of ease of resin synthesis, ease of post-treatment such as recovery and purification, and the like.
Hereinafter, the precipitation polymerization in water will be described in detail.
-重合開始剤-
 水中沈殿重合を行う際の重合開始剤としては、重合開始効率等の点で水溶性重合開始剤を用いることが好ましい。
 水溶性重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩、過酸化水素等の水溶性過酸化物、2,2’-アゾビス(2-メチルプロピオンアミジンハイドロクロライド)等の水溶性アゾ化合物、過硫酸塩等の酸化剤と亜硫酸水素ナトリウム、亜硫酸水素アンモニウム、チオ硫酸ナトリウム、ハイドロサルファイト等の還元剤と硫酸、硫酸鉄、硫酸銅等の重合促進剤とを組合せた酸化還元型(レドックス型)などが挙げられる。
 これらの中では、樹脂合成のし易さ等の点で過硫酸塩、水溶性アゾ化合物等が好ましい。過硫酸塩の中では、過硫酸アンモニウムが特に好ましい。
 なお、ニトリル基含有単量体としてアクリロニトリルを選択し、式(I)で表される単量体としてメトキシポリ(n=9)エチレングリコールアクリレートを選択して水中沈殿重合を行った場合、単量体の状態では両者とも水溶性であることから、水溶性重合開始剤が有効に作用し、重合がスムーズに始まる。そして、重合が進むにつれて重合物が析出してくるため、反応系が懸濁状態となり、最終的に未反応物の少ない特定ニトリル樹脂が高収率で得られる。
 重合開始剤は、特定ニトリル樹脂の合成に使用される単量体の総量に対し、例えば、0.001モル%~5モル%の範囲で使用されることが好ましく、0.003モル%~2モル%の範囲で使用されることがより好ましい。
-Polymerization initiator-
As the polymerization initiator when performing precipitation polymerization in water, it is preferable to use a water-soluble polymerization initiator in terms of polymerization initiation efficiency and the like.
Examples of the water-soluble polymerization initiator include persulfates such as ammonium persulfate, potassium persulfite and sodium bisulfite, water-soluble peroxides such as hydrogen peroxide, and 2,2'-azobis (2-methylpropion amidine hydrochloride). A combination of a water-soluble azo compound such as, an oxidizing agent such as persulfate, a reducing agent such as sodium bisulfite, ammonium hydrogen peroxide, sodium thiosulfite, and hydrosulfite, and a polymerization accelerator such as sulfuric acid, iron sulfate, and copper sulfate. Redox type (redox type) and the like.
Among these, persulfates, water-soluble azo compounds and the like are preferable in terms of ease of resin synthesis and the like. Among the persulfates, ammonium persulfate is particularly preferable.
When acrylonitrile is selected as the nitrile group-containing monomer and methoxypoly (n = 9) ethylene glycol acrylate is selected as the monomer represented by the formula (I) and precipitation polymerization is carried out in water, the monomer is used. Since both are water-soluble in the above state, the water-soluble polymerization initiator acts effectively and the polymerization starts smoothly. Then, as the polymerization progresses, the polymer is precipitated, so that the reaction system is suspended, and finally, a specific nitrile resin having a small amount of unreacted substances can be obtained in high yield.
The polymerization initiator is preferably used in the range of, for example, 0.001 mol% to 5 mol%, and 0.003 mol% to 2 with respect to the total amount of the monomers used in the synthesis of the specific nitrile resin. More preferably, it is used in the range of mol%.
-連鎖移動剤-
 水中沈殿重合を行う際には、分子量調節等の目的で、連鎖移動剤を用いることができる。連鎖移動剤としては、チオグリコール等のメルカプタン化合物、四塩化炭素、α-メチルスチレンダイマーなどが挙げられる。これらの中では、臭気が少ない等の点で、α-メチルスチレンダイマー等が好ましい。
-Chain transfer agent-
When performing precipitation polymerization in water, a chain transfer agent can be used for the purpose of adjusting the molecular weight and the like. Examples of the chain transfer agent include mercaptan compounds such as thioglycol, carbon tetrachloride, α-methylstyrene dimer and the like. Among these, α-methylstyrene dimer and the like are preferable in terms of having less odor and the like.
-溶媒-
 水中沈殿重合を行う際には、析出する樹脂の粒子径の調節等、必要に応じて、水以外の溶媒を加えることもできる。
 水以外の溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチルウレア等のウレア類、γ-ブチロラクトン、γ-カプロラクトン等のラクトン類、プロピレンカーボネート等のカーボネート類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、トルエン、キシレン、シクロヘキサン等の炭化水素類、ジメチルスルホキシド等のスルホキシド類、スルホラン等のスルホン類、メタノール、イソプロパノール、n-ブタノール等のアルコール類などが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-solvent-
When performing precipitation polymerization in water, a solvent other than water can be added as needed, such as adjusting the particle size of the precipitated resin.
Solvents other than water include amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, and tetra. Ureas such as methyl urea, lactones such as γ-butyrolactone and γ-caprolactone, carbonates such as propylene carbonate, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, methyl acetate, ethyl acetate, n-butyl acetate , Butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate, ethyl carbitol acetate and other esters, jig lime, triglime, tetraglyme and other glymes, toluene, xylene, cyclohexane and other hydrocarbons, dimethyl sulfoxide and other sulfoxides. , Sulfones such as sulfolane, alcohols such as methanol, isopropanol and n-butanol. These solvents may be used alone or in combination of two or more.
-重合条件-
 水中沈殿重合は、例えば、単量体を溶媒中に導入し、重合温度を好ましくは0℃~100℃、より好ましくは30℃~90℃として、好ましくは1時間~50時間、より好ましくは2時間~12時間保持することによって行われる。
 重合温度が0℃以上であれば、重合反応が促進される傾向にある。また、重合温度が100℃以下であれば、溶媒として水を使用したときでも、水が蒸発して重合ができなくなりにくい傾向にある。
 特に、ニトリル基含有単量体の重合熱が大きい傾向にあるため、ニトリル基含有単量体を溶媒中に滴下しながら重合を進めることが好ましい。
-Polymerization conditions-
In the precipitation polymerization in water, for example, the monomer is introduced into a solvent, and the polymerization temperature is preferably 0 ° C. to 100 ° C., more preferably 30 ° C. to 90 ° C., preferably 1 hour to 50 hours, more preferably 2 This is done by holding for hours to 12 hours.
When the polymerization temperature is 0 ° C. or higher, the polymerization reaction tends to be promoted. Further, when the polymerization temperature is 100 ° C. or lower, even when water is used as a solvent, the water tends to evaporate and the polymerization tends to be difficult to occur.
In particular, since the heat of polymerization of the nitrile group-containing monomer tends to be large, it is preferable to proceed with the polymerization while dropping the nitrile group-containing monomer into the solvent.
 特定ニトリル樹脂の重量平均分子量は、10000~1000000であることが好ましく、100000~800000であることがより好ましく、250000~700000であることがさらに好ましい。
 本開示において、重量平均分子量は下記方法により測定された値をいう。
 測定対象をN-メチル-2-ピロリドンに溶解し、PTFE(ポリテトラフルオロエチレン)製フィルタ〔倉敷紡績株式会社製、HPLC(高速液体クロマトグラフィー)前処理用、クロマトディスク、型番:13N、孔径:0.45μm〕を通して不溶分を除去する。GPC〔ポンプ:L6200 Pump(株式会社日立製作所製)、検出器:示差屈折率検出器L3300 RI Monitor(株式会社日立製作所製)、カラム:TSKgel-G5000HXLとTSKgel-G2000HXL(計2本)(共に東ソー株式会社製)を直列に接続、カラム温度:30℃、溶離液:N-メチル-2-ピロリドン、流速:1.0mL/分、標準物質:ポリスチレン〕を用い、重量平均分子量を測定する。
The weight average molecular weight of the specific nitrile resin is preferably 10,000 to 1,000,000, more preferably 100,000 to 800,000, and even more preferably 250,000 to 700,000.
In the present disclosure, the weight average molecular weight refers to a value measured by the following method.
The object to be measured is dissolved in N-methyl-2-pyrrolidone, and a filter made of PTFE (polytetrafluoroethylene) [manufactured by Kurashiki Spinning Co., Ltd., for HPLC (high performance liquid chromatography) pretreatment, chromatographic disk, model number: 13N, pore size: 0.45 μm] to remove insoluble matter. GPC [Pump: L6200 Pump (manufactured by Hitachi, Ltd.), Detector: Differential refractometer detector L3300 RI Matter (manufactured by Hitachi, Ltd.), Columns: TSKgel-G5000HXL and TSKgel-G2000HXL (2 in total) (both Tosoh) (Manufactured by Co., Ltd.) are connected in series, column temperature: 30 ° C., eluent: N-methyl-2-pyrrolidone, flow velocity: 1.0 mL / min, standard substance: polystyrene], and the weight average molecular weight is measured.
 特定ニトリル樹脂の酸価は、0mgKOH/g~70mgKOH/gであることが好ましく、0mgKOH/g~20mgKOH/gであることがより好ましく、0mgKOH/g~5mgKOH/gであることがさらに好ましい。
 本開示において、酸価は下記方法により測定された値をいう。
 まず、測定対象1gを精秤した後、その測定対象にアセトンを30g添加し、測定対象を溶解する。次いで、指示薬であるフェノールフタレインを測定対象の溶液に適量添加して、0.1NのKOH水溶液を用いて滴定する。そして、滴定結果より下記式(A)により酸価を算出する(式中、Vfはフェノールフタレインの滴定量(mL)を示し、Wpは測定対象の溶液の質量(g)を示し、Iは測定対象の溶液の不揮発分の割合(質量%)を示す)。
 酸価(mgKOH/g)=10×Vf×56.1/(Wp×I)  (A)
 なお、測定対象の溶液の不揮発分は、測定対象の溶液をアルミパンに約1mL量り取り、160℃に加熱したホットプレート上で15分間乾燥させ、残渣重量から算出する。
The acid value of the specific nitrile resin is preferably 0 mgKOH / g to 70 mgKOH / g, more preferably 0 mgKOH / g to 20 mgKOH / g, and even more preferably 0 mgKOH / g to 5 mgKOH / g.
In the present disclosure, the acid value refers to a value measured by the following method.
First, 1 g of the measurement target is precisely weighed, and then 30 g of acetone is added to the measurement target to dissolve the measurement target. Next, an appropriate amount of phenolphthalein, which is an indicator, is added to the solution to be measured, and titration is performed using a 0.1 N KOH aqueous solution. Then, the acid value is calculated from the titration result by the following formula (A) (in the formula, Vf indicates the titration amount (mL) of phenolphthalein, Wp indicates the mass (g) of the solution to be measured, and I is The percentage (% by mass) of the non-volatile content of the solution to be measured).
Acid value (mgKOH / g) = 10 x Vf x 56.1 / (Wp x I) (A)
The non-volatile content of the solution to be measured is calculated from the weight of the residue after measuring about 1 mL of the solution to be measured in an aluminum pan, drying it on a hot plate heated to 160 ° C. for 15 minutes.
 本開示の分散剤には、特定ニトリル樹脂以外の成分として、特定ニトリル樹脂を合成する際に用いられる未反応の単量体が残存していてもよい。本開示の分散剤に含有される未反応の単量体の含有率は、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。 In the dispersant of the present disclosure, an unreacted monomer used when synthesizing the specific nitrile resin may remain as a component other than the specific nitrile resin. The content of the unreacted monomer contained in the dispersant of the present disclosure is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less.
<エネルギーデバイス用導電性炭素材料分散液>
 本開示のエネルギーデバイス用導電性炭素材料分散液(以下、単に「分散液」と称することがある。)は、導電性炭素材料と、本開示の分散剤と、溶媒と、を含有する。
<Conductive carbon material dispersion for energy devices>
The conductive carbon material dispersion liquid for energy devices of the present disclosure (hereinafter, may be simply referred to as “dispersion liquid”) contains a conductive carbon material, a dispersant of the present disclosure, and a solvent.
 以下に、本開示の分散液を構成する成分について詳細に説明する。 The components constituting the dispersion liquid of the present disclosure will be described in detail below.
-導電性炭素材料-
 本開示の分散液に含有される導電性炭素材料は、導電性を示すものであれば特に限定されるものではない。
 導電性炭素材料としては、カーボンブラック、黒鉛、カーボンナノチューブ、炭素繊維(カーボンファイバー)等を使用できる。
 カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等が挙げられる。黒鉛としては、天然黒鉛、人造黒鉛等が挙げられる。
 カーボンナノチューブとしては、単層のカーボンナノチューブ、2層のカーボンナノチューブ、多層のカーボンナノチューブ等が挙げられる。
 炭素繊維としては、ピッチ系炭素繊維、PAN系炭素繊維、気相法炭素繊維(VGCF(登録商標))等が挙げられる。
 導電性炭素材料としては、カーボンブラックが好ましい。
 導電性炭素材料は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-Conductive carbon material-
The conductive carbon material contained in the dispersion liquid of the present disclosure is not particularly limited as long as it exhibits conductivity.
As the conductive carbon material, carbon black, graphite, carbon nanotubes, carbon fiber (carbon fiber) and the like can be used.
Examples of carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and the like. Examples of graphite include natural graphite and artificial graphite.
Examples of carbon nanotubes include single-walled carbon nanotubes, two-walled carbon nanotubes, and multi-walled carbon nanotubes.
Examples of the carbon fiber include pitch-based carbon fiber, PAN-based carbon fiber, vapor phase carbon fiber (VGCF (registered trademark)) and the like.
As the conductive carbon material, carbon black is preferable.
One type of conductive carbon material may be used alone, or two or more types may be used in combination.
 導電性炭素材料としてカーボンブラック、黒鉛等の粒子状の材料を用いる場合、導電性炭素材料の平均一次粒径は、50nm以下であることが好ましく、40nm以下であることがより好ましく、30nm以下であることがさらに好ましい。導電性炭素材料の平均一次粒径は、10nm以上であってもよい。
 本開示において、平均一次粒径とは、数千個程度の一次粒子の直径の平均値をいう。
When a particulate material such as carbon black or graphite is used as the conductive carbon material, the average primary particle size of the conductive carbon material is preferably 50 nm or less, more preferably 40 nm or less, and more preferably 30 nm or less. It is more preferable to have. The average primary particle size of the conductive carbon material may be 10 nm or more.
In the present disclosure, the average primary particle size means an average value of the diameters of several thousand primary particles.
 導電性炭素材料としてカーボンブラック、黒鉛等の粒子状の材料を用いる場合、導電性炭素材料の平均粒子径は、0.3μm~3μmであることが好ましく、0.3μm~2μmであることがより好ましく、0.5μm~1.5μmであることがさらに好ましく、0.8μm~1.0μmであることが特に好ましい。
 導電性炭素材料の平均粒子径とは、エネルギーデバイス用導電性炭素材料分散液についての粒度分布を動的光散乱法(光子相関法)に基づいて測定して得られた個数粒度分布において、粒径の小さいものからその個数割合を積算した際に50%となるところの粒径をいう。動的光散乱法(光子相関法)に基づく測定装置としては、例えば、Zeta-potential&Particlesize Analyzer、ELSZ(大塚電子株式会社)が挙げられる。
 導電性炭素材料としてカーボンナノチューブ、炭素繊維等の繊維状の材料を用いる場合、導電性炭素材料の平均長さは、1μm~50μmであることが好ましく、2μm~30μmであることがより好ましく、3μm~10μmであることがさらに好ましい。
 導電性炭素材料としてカーボンナノチューブ、炭素繊維等の繊維状の材料を用いる場合、導電性炭素材料の平均直径は、1nm~500nmであることが好ましく、5nm~400nmであることがより好ましく、10nm~300nmであることがさらに好ましい。
 導電性炭素材料の平均長さは、任意の30本の導電性炭素材料を選択し、それぞれの長さを測定し、最大側から5番目までの数値と、最小側から5番目までの数値とを省き、中間の20個の数値の平均値を平均長さとすることができる。なお、カーボンナノチューブ、炭素繊維等の平均長さは数十μm以下と短いため、導電性炭素材料の長さは概ね直線状に近似することができる。よって、導電性炭素材料の長さは、その両端を直線で結んだときの当該直線の長さとすることができる。
 導電性炭素材料の平均直径は、電子顕微鏡(SEM、TEM等)写真から分析し得る。例えば、任意の30本の導電性炭素材料を選択し、それぞれの直径を測定し、最大側から5番目までの数値と、最小側から5番目までの数値とを省き、中間の20個の数値の平均値を平均直径とすればよい。なお、導電性炭素材料の直径とは、導電性炭素材料の長さ方向と直交する方向の最大長さをいう。
When a particulate material such as carbon black or graphite is used as the conductive carbon material, the average particle size of the conductive carbon material is preferably 0.3 μm to 3 μm, more preferably 0.3 μm to 2 μm. It is more preferably 0.5 μm to 1.5 μm, and particularly preferably 0.8 μm to 1.0 μm.
The average particle size of the conductive carbon material is the particle size distribution obtained by measuring the particle size distribution of the conductive carbon material dispersion for energy devices based on the dynamic light scattering method (photon correlation method). It refers to the particle size where the number ratio is 50% when the number ratio is integrated from the one with the smallest diameter. Examples of the measuring device based on the dynamic light scattering method (photon correlation method) include Zeta-potential & Particularsize Analyzer and ELSZ (Otsuka Electronics Co., Ltd.).
When a fibrous material such as carbon nanotubes or carbon fibers is used as the conductive carbon material, the average length of the conductive carbon material is preferably 1 μm to 50 μm, more preferably 2 μm to 30 μm, and 3 μm. It is more preferably about 10 μm.
When a fibrous material such as carbon nanotubes or carbon fibers is used as the conductive carbon material, the average diameter of the conductive carbon material is preferably 1 nm to 500 nm, more preferably 5 nm to 400 nm, and 10 nm to 10 nm. It is more preferably 300 nm.
For the average length of the conductive carbon material, select any 30 conductive carbon materials, measure the length of each, and set the numerical value from the maximum side to the 5th and the numerical value from the minimum side to the 5th. Can be omitted, and the average value of the 20 intermediate values can be used as the average length. Since the average length of carbon nanotubes, carbon fibers, etc. is as short as several tens of μm or less, the length of the conductive carbon material can be approximated to be approximately linear. Therefore, the length of the conductive carbon material can be the length of the straight line when both ends thereof are connected by a straight line.
The average diameter of the conductive carbon material can be analyzed from electron micrographs (SEM, TEM, etc.). For example, select any 30 conductive carbon materials, measure the diameter of each, omit the 5th numerical value from the maximum side and the 5th numerical value from the minimum side, and 20 numerical values in the middle. The average value of may be the average diameter. The diameter of the conductive carbon material means the maximum length in the direction orthogonal to the length direction of the conductive carbon material.
 本開示の分散液に含有される導電性炭素材料の含有率は、例えば、1質量%~50質量%であることが好ましく、5質量%~25質量%であることがより好ましく、5質量%~15質量%であることがさらに好ましい。 The content of the conductive carbon material contained in the dispersion liquid of the present disclosure is, for example, preferably 1% by mass to 50% by mass, more preferably 5% by mass to 25% by mass, and 5% by mass. It is more preferably to 15% by mass.
-分散剤-
 本開示の分散液は、本開示の分散剤を含有する。本開示の分散液に含有される本開示の分散剤の含有率は、例えば、ある態様では、0.1質量%~20質量%であることが好ましく、0.5質量%~15質量%であることがより好ましく、1質量%~10質量%であることがさらに好ましい。また、他の態様では、0.1質量%~10質量%であることが好ましく、0.2質量%~8質量%であることがより好ましく、0.3質量%~6質量%であることがさらに好ましい。
-Dispersant-
The dispersion liquid of the present disclosure contains the dispersant of the present disclosure. The content of the dispersant of the present disclosure contained in the dispersion liquid of the present disclosure is, for example, preferably 0.1% by mass to 20% by mass, and 0.5% by mass to 15% by mass in some embodiments. It is more preferably 1% by mass to 10% by mass. In another aspect, it is preferably 0.1% by mass to 10% by mass, more preferably 0.2% by mass to 8% by mass, and 0.3% by mass to 6% by mass. Is even more preferable.
-溶媒-
 本開示の分散液に含有される溶媒としては、導電性炭素材料を分散することのできるものであれば特に限定されるものではない。
 溶剤としては、分散剤の溶解性等の点で、アミド系溶媒、ウレア系溶媒、ラクトン系溶媒等又はそれらを含む混合溶媒が好ましく、N-メチル-2-ピロリドン、γ-ブチロラクトン又はそれらを含む混合溶媒がより好ましい。これらの溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらの中でも、溶剤は、N-メチル-2-ピロリドン及びγ-ブチロラクトンの少なくとも一方を含有することが好ましい。
-solvent-
The solvent contained in the dispersion liquid of the present disclosure is not particularly limited as long as it can disperse the conductive carbon material.
As the solvent, an amide-based solvent, a urea-based solvent, a lactone-based solvent, or a mixed solvent containing them is preferable from the viewpoint of solubility of the dispersant, and N-methyl-2-pyrrolidone, γ-butyrolactone, or a mixed solvent containing them is contained. A mixed solvent is more preferable. These solvents may be used alone or in combination of two or more.
Among these, the solvent preferably contains at least one of N-methyl-2-pyrrolidone and γ-butyrolactone.
-分散液の粘度-
 本開示の分散液についての25℃における粘度は、500mPa・s~50000mPa・sであることが好ましく、1000mPa・s~20000mPa・sであることがより好ましく、2000mPa・s~10000mPa・sであることがさらに好ましい。
 なお、本開示において、粘度は回転式せん断粘度計を用いて、25℃、せん断速度1.0s-1で測定される。
-Viscosity of dispersion-
The viscosity of the dispersion liquid of the present disclosure at 25 ° C. is preferably 500 mPa · s to 50,000 mPa · s, more preferably 1000 mPa · s to 20000 mPa · s, and 2000 mPa · s to 10000 mPa · s. Is even more preferable.
In the present disclosure, the viscosity is measured using a rotary shear viscometer at 25 ° C. and a shear rate of 1.0 s- 1.
-分散液の調製-
 本開示の分散液は、導電性炭素材料と、本開示の分散剤と、必要に応じて用いられるレベリング剤等のその他の成分と、溶剤とを混合し、撹拌して調製することができる。
 分散液の調製に用いられる分散機としては、ホモミキサー、高圧ホモミキサー、ディスパーサー、高圧ホモジナイザー、スタティックミキサー、膜乳化機、フィルミックス(プライミクス株式会社製)、超音波分散機等が挙げられる。これらの中でも、フィルミックスが好ましい。
 分散液の調製に用いられる各種成分をホモミキサー等の分散機で予備撹拌した後、フィルミックスを用いて撹拌することがより好ましい。フィルミックスを用いることで分散処理を短時間で完了することができる。フィルミックスで撹拌する際の条件は特に限定されず、常用の方法で行うことができ、例えば、周速30m/sで30秒撹拌することで導電性炭素材料を分散させることができる。フィルミックスで撹拌する際の撹拌時間は、30秒~10分の範囲としてもよい。
-Preparation of dispersion-
The dispersion liquid of the present disclosure can be prepared by mixing a conductive carbon material, the dispersant of the present disclosure, other components such as a leveling agent used as necessary, and a solvent, and stirring the mixture.
Examples of the disperser used for preparing the dispersion liquid include a homomixer, a high-pressure homomixer, a disperser, a high-pressure homogenizer, a static mixer, a membrane emulsifier, a fill mix (manufactured by Primix Corporation), and an ultrasonic disperser. Of these, fill mix is preferred.
It is more preferable that various components used for preparing the dispersion liquid are pre-stirred with a disperser such as a homomixer and then stirred with a fill mix. The distributed processing can be completed in a short time by using the fill mix. The conditions for stirring with the fill mix are not particularly limited and can be carried out by a conventional method. For example, the conductive carbon material can be dispersed by stirring at a peripheral speed of 30 m / s for 30 seconds. The stirring time when stirring with the fill mix may be in the range of 30 seconds to 10 minutes.
<エネルギーデバイス電極形成用組成物及びその製造方法>
 本開示のエネルギーデバイス電極形成用組成物(以下、電極形成用組成物と称することがある。)は、バインダー樹脂と、活物質と、導電性炭素材料と、前記導電性炭素材料を分散する分散剤と、溶媒と、を含有し、分散剤が本開示の分散剤を含むものである。
<Composition for forming energy device electrodes and method for producing the same>
The energy device electrode forming composition of the present disclosure (hereinafter, may be referred to as an electrode forming composition) is a dispersion in which a binder resin, an active material, a conductive carbon material, and the conductive carbon material are dispersed. It contains an agent and a solvent, and the dispersant contains the dispersant of the present disclosure.
 以下に、本開示の電極形成用組成物を構成する成分について詳細に説明する。 The components constituting the electrode-forming composition of the present disclosure will be described in detail below.
-バインダー樹脂-
 本開示の電極形成用組成物は、バインダー樹脂を含有する。バインダー樹脂の種類は特に限定されるものではなく、ポリ酢酸ビニル、ポリメチルメタクリレート、ニトロセルロース、フッ素樹脂、ニトリル基含有単量体由来の構造単位を含む樹脂等が挙げられる。
 これらの中でも、フッ素樹脂及びニトリル基含有単量体由来の構造単位を含む樹脂の少なくとも一方が好ましい。
-Binder resin-
The electrode-forming composition of the present disclosure contains a binder resin. The type of the binder resin is not particularly limited, and examples thereof include polyvinyl acetate, polymethylmethacrylate, nitrocellulose, fluororesin, and resins containing structural units derived from nitrile group-containing monomers.
Among these, at least one of a fluororesin and a resin containing a structural unit derived from a nitrile group-containing monomer is preferable.
 フッ素樹脂としては、主鎖に、ポリエチレン骨格中における水素原子の一部又は全部をフッ素原子に置換した構造単位を含む樹脂であれば、特に制限がない。
 フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリビニルフルオライド(PVF)、ポリクロロトリフルオロエチレン(PCTFE)等のホモポリマー、テトラフルオロエチレン-パーフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-エチレン共重合体(ETFE)、クロロトリフルオロエチレン-エチレン共重合体等の共重合体、またこれらをカルボキシ基等で変性した変性物などが挙げられる。これらの中でも、溶媒への溶解性、電解液への膨潤性、樹脂の柔軟性等の観点から、PVDFが好ましい。また、これらフッ素樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The fluororesin is not particularly limited as long as it contains a structural unit in which a part or all of hydrogen atoms in the polyethylene skeleton is replaced with a fluorine atom in the main chain.
Examples of the fluororesin include homopolymers such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinylfluoride (PVF), and polychlorotrifluoroethylene (PCTFE), and tetrafluoroethylene-perfluoropropylene copolymers. (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE), chlorotrifluoroethylene-ethylene copolymer and other copolymers, and carboxy these. Examples thereof include a modified product modified with a group or the like. Among these, PVDF is preferable from the viewpoints of solubility in a solvent, swelling property in an electrolytic solution, flexibility of a resin, and the like. Further, these fluororesins may be used alone or in combination of two or more.
 ニトリル基含有単量体由来の構造単位を含む樹脂としては、既述の特定ニトリル樹脂であってもよい。ニトリル基含有単量体由来の構造単位を含む樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The resin containing a structural unit derived from a nitrile group-containing monomer may be the above-mentioned specific nitrile resin. As the resin containing a structural unit derived from a nitrile group-containing monomer, one type may be used alone, or two or more types may be used in combination.
 本開示の電極形成用組成物の固形分に占めるバインダー樹脂の含有率は、0.1質量%~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましく、0.5質量%~3質量%であることがさらに好ましい。
 本開示において「固形分」とは、電極形成用組成物を構成する成分から溶剤を除いた成分をいう。
The content of the binder resin in the solid content of the electrode-forming composition of the present disclosure is preferably 0.1% by mass to 10% by mass, and more preferably 0.5% by mass to 5% by mass. , 0.5% by mass to 3% by mass, more preferably.
In the present disclosure, the “solid content” refers to a component obtained by removing a solvent from the components constituting the electrode-forming composition.
-活物質-
 本開示の電極形成用組成物は、活物質を含有していてもよい。本開示で用いられる活物質は、例えば、エネルギーデバイスであるリチウムイオン二次電池の充放電により可逆的にリチウムイオンを挿入及び放出できるものであれば特に制限はない。なお、正極は、充電時にリチウムイオンを放出し、放電時にリチウムイオンを受け取るという機能を有する一方、負極は、充電時にリチウムイオンを受け取り、放電時にリチウムイオンを放出するという正極とは逆の機能を有する。そのため、正極及び負極で使用される活物質は、通常、それぞれの有する機能にあわせて、異なる材料が使用される。
-Active material-
The electrode-forming composition of the present disclosure may contain an active material. The active material used in the present disclosure is not particularly limited as long as it can reversibly insert and release lithium ions by charging and discharging a lithium ion secondary battery which is an energy device. The positive electrode has a function of releasing lithium ions at the time of charging and receiving lithium ions at the time of discharging, while the negative electrode has a function opposite to that of the positive electrode of receiving lithium ions at the time of charging and releasing lithium ions at the time of discharging. Have. Therefore, as the active material used in the positive electrode and the negative electrode, different materials are usually used according to the functions of each.
 リチウムイオン二次電池の負極に用いられる活物質(負極活物質)としては、リチウムイオンを吸蔵及び放出可能な材料であって、リチウムイオン二次電池の分野で常用されるものを使用できる。負極活物質としては、例えば、金属リチウム、リチウム合金、金属間化合物、炭素材料、金属錯体、有機高分子化合物等が挙げられる。負極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、炭素材料が好ましい。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、炭素繊維などが挙げられる。炭素材料の平均粒子径は、0.1μm~60μmであることが好ましく、0.5μm~30μmであることがより好ましい。また、炭素材料のBET比表面積は、1m/g~10m/gであることが好ましい。
 本開示において、導電性炭素材料以外の粒子の平均粒子径とは、界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))とする。
As the active material (negative electrode active material) used for the negative electrode of the lithium ion secondary battery, a material that can occlude and release lithium ions and is commonly used in the field of the lithium ion secondary battery can be used. Examples of the negative electrode active material include metallic lithium, lithium alloys, intermetallic compounds, carbon materials, metal complexes, organic polymer compounds and the like. One type of negative electrode active material may be used alone, or two or more types may be used in combination. Among these, a carbon material is preferable. Examples of the carbon material include natural graphite (scaly graphite and the like), graphite such as artificial graphite, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black and other carbon black, and carbon fiber. The average particle size of the carbon material is preferably 0.1 μm to 60 μm, more preferably 0.5 μm to 30 μm. The BET specific surface area of the carbon material is preferably 1 m 2 / g to 10 m 2 / g.
In the present disclosure, the average particle size of particles other than the conductive carbon material refers to a laser diffraction type particle size distribution measuring device (for example, SALD-3000J manufactured by Shimadzu Corporation) in which a sample is dispersed in purified water containing a surfactant. ), The value when the integration from the small diameter side is 50% (median diameter (D50)) in the volume-based particle size distribution.
 炭素材料の中でも特に、電池特性をより向上できる観点から、X線広角回折法における炭素六角平面の間隔(d002)が3.35Å~3.40Åであり、c軸方向の結晶子(Lc)が100Å以上である黒鉛が好ましい。
 また、炭素材料の中でも特に、サイクル特性及び安全性をより向上できる観点からは、X線広角回折法における炭素六角平面の間隔(d002)が3.50Å~3.95Åである非晶質炭素が好ましい。
Among the carbon materials, the distance between the carbon hexagonal planes (d 002 ) in the X-ray wide-angle diffraction method is 3.35 Å to 3.40 Å from the viewpoint of further improving the battery characteristics, and the crystallites (Lc) in the c-axis direction. Graphite having a value of 100 Å or more is preferable.
Amorphous carbon having a carbon hexagonal plane spacing (d 002 ) of 3.50 Å to 3.95 Å in the X-ray wide-angle diffraction method, among other carbon materials, from the viewpoint of further improving cycle characteristics and safety. Is preferable.
 BET比表面積は、例えば、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。評価装置としては、例えば、QUANTACHROME社製:AUTOSORB-1(商品名)を用いることができる。試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、BET比表面積の測定を行う際には、まず加熱による水分除去の前処理を行うことが好ましい。
 前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
The BET specific surface area can be measured from the nitrogen adsorption capacity according to, for example, JIS Z 8830: 2013. As the evaluation device, for example, QUANTACHROME Co., Ltd .: AUTOSORB-1 (trade name) can be used. Since it is considered that the water adsorbed on the sample surface and the structure affects the gas adsorption capacity, it is preferable to first perform a pretreatment for removing water by heating when measuring the BET specific surface area.
In the pretreatment, the measurement cell containing 0.05 g of the measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C., held for 3 hours or more, and then kept at room temperature (maintained in the depressurized state). Naturally cool to 25 ° C.). After this pretreatment, the evaluation temperature is set to 77K, and the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
 一方、リチウムイオン二次電池の正極に用いられる活物質(正極活物質)としては、この分野で常用されるものを使用でき、例えば、リチウム含有金属複合酸化物、オリビン型リチウム塩、カルコゲン化合物、二酸化マンガン等が挙げられる。リチウム含有金属複合酸化物は、リチウムと遷移金属とを含む金属酸化物又は該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、例えば、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V、B等が挙げられ、Mn、Al、Co、Ni、Mg等が好ましい。異種元素は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 On the other hand, as the active material (positive electrode active material) used for the positive electrode of the lithium ion secondary battery, those commonly used in this field can be used, for example, a lithium-containing metal composite oxide, an olivine-type lithium salt, a chalcogen compound, and the like. Examples thereof include manganese dioxide. The lithium-containing metal composite oxide is a metal oxide containing lithium and a transition metal, or a metal oxide in which a part of the transition metal in the metal oxide is replaced by a dissimilar element. Here, examples of the dissimilar elements include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, B and the like, and Mn, Al, etc. Co, Ni, Mg and the like are preferable. One type of dissimilar element may be used alone, or two or more types may be used in combination.
 リチウム含有金属複合酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo 1-y(LiCo 1-y中、MはNa、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiNi1-y (LiNi1-y 中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiMn、LiMn2-y (LiMn2-y 中、MはNa、Mg、Sc、Y、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)等が挙げられる。ここで、xは0<x≦1.2の範囲であり、yは0~0.9の範囲であり、zは2.0~2.3の範囲である。また、リチウムのモル比を示すx値は、充放電により増減する。
 また、オリビン型リチウム塩としては、例えば、LiFePO等が挙げられる。カルコゲン化合物としては、例えば、二硫化チタン及び二硫化モリブデンが挙げられる。また、その他の正極活物質としては、LiMPOF(LiMPOF中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)が挙げられる。正極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the lithium-containing metal composite oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , and Li x Co y M 1 1-y O z (Li). In x Co y M 1 1-y Oz , M 1 is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb, V and B. (Indicates the element of the species.), Li x Ni 1-y M 2 y Oz (in Li x Ni 1-y M 2 y Oz , M 2 is Na, Mg, Sc, Y, Mn, Fe, Co, Indicates at least one element selected from the group consisting of Cu, Zn, Al, Cr, Pb, Sb, V and B), Li x Mn 2 O 4 , Li x Mn 2-y M 3 y O 4 ( In Li x Mn 2-y M 3 y O 4 , M 3 is selected from the group consisting of Na, Mg, Sc, Y, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V and B. It indicates at least one kind of element.) And the like. Here, x is in the range of 0 <x ≦ 1.2, y is in the range of 0 to 0.9, and z is in the range of 2.0 to 2.3. Further, the x value indicating the molar ratio of lithium increases or decreases depending on charging and discharging.
Moreover, as an olivine type lithium salt, for example, LiFePO 4 and the like can be mentioned. Examples of the chalcogen compound include titanium disulfide and molybdenum disulfide. Other positive electrode active materials include Li 2 MPO 4 F (in Li 2 MPO 4 F, M is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb. , Sb, V and at least one element selected from the group consisting of B). One type of positive electrode active material may be used alone, or two or more types may be used in combination.
 正極活物質の平均粒子径は、0.1μm~60μmであることが好ましく、0.5μm~30μmであることがより好ましい。また、正極活物質のBET比表面積は、1m/g~10m/gであることが好ましい。 The average particle size of the positive electrode active material is preferably 0.1 μm to 60 μm, and more preferably 0.5 μm to 30 μm. The BET specific surface area of the positive electrode active material is preferably 1 m 2 / g to 10 m 2 / g.
-導電性炭素材料-
 本開示の電極形成用組成物は、導電性炭素材料を含有する。本開示の電極形成用組成物に含有される導電性炭素材料の具体例等は、既述のとおりである。
 本開示の電極形成用組成物の固形分に占める導電性炭素材料の含有率は、0.1質量%~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましく、1質量%~3質量%であることがさらに好ましい。
-Conductive carbon material-
The electrode-forming composition of the present disclosure contains a conductive carbon material. Specific examples of the conductive carbon material contained in the electrode forming composition of the present disclosure are as described above.
The content of the conductive carbon material in the solid content of the electrode forming composition of the present disclosure is preferably 0.1% by mass to 10% by mass, and preferably 0.5% by mass to 5% by mass. More preferably, it is 1% by mass to 3% by mass.
-分散剤-
 本開示の電極形成用組成物は、分散剤を含有する。本開示の電極形成用組成物に含有される分散剤として、本開示の分散剤が含まれる。本開示の電極形成用組成物は、必要に応じて、本開示の分散剤以外のその他の分散剤を含有してもよい。
 その他の分散剤としては、ポリビニルピロリドン、ポリビニルアルコール等が挙げられる。
 本開示の電極形成用組成物の固形分に占める分散剤の含有率は、0.1質量%~10質量%であることが好ましく、0.2質量%~5質量%であることがより好ましく、0.3質量%~3質量%であることがさらに好ましい。
 また、本開示の電極形成用組成物に含有される分散剤に占める本開示の分散剤の含有率は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、100質量%であることが特に好ましい。
-Dispersant-
The electrode-forming composition of the present disclosure contains a dispersant. The dispersant contained in the electrode-forming composition of the present disclosure includes the dispersant of the present disclosure. The electrode-forming composition of the present disclosure may contain other dispersants other than the dispersants of the present disclosure, if necessary.
Examples of other dispersants include polyvinylpyrrolidone, polyvinyl alcohol and the like.
The content of the dispersant in the solid content of the electrode forming composition of the present disclosure is preferably 0.1% by mass to 10% by mass, and more preferably 0.2% by mass to 5% by mass. , 0.3% by mass to 3% by mass, more preferably.
The content of the dispersant of the present disclosure in the dispersant contained in the composition for forming electrodes of the present disclosure is preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. It is more preferably mass% or more, and particularly preferably 100 mass%.
-溶媒-
 本開示の電極形成用組成物は、溶媒を含有する。溶媒としては、水、アミド系溶媒、ウレア系溶媒、ラクトン系溶媒等又はそれらを含む混合溶媒が挙げられ、バインダー樹脂の溶解性等の点で、アミド系溶媒、ウレア系溶媒、ラクトン系溶媒等又はそれらを含む混合溶媒が好ましく、N-メチル-2-ピロリドン、γ-ブチロラクトン又はそれらを含む混合溶媒がより好ましい。これらの溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-solvent-
The electrode-forming composition of the present disclosure contains a solvent. Examples of the solvent include water, an amide solvent, a urea solvent, a lactone solvent and the like, or a mixed solvent containing them. In terms of solubility of the binder resin and the like, an amide solvent, a urea solvent, a lactone solvent and the like, etc. Alternatively, a mixed solvent containing them is preferable, and N-methyl-2-pyrrolidone, γ-butyrolactone or a mixed solvent containing them is more preferable. These solvents may be used alone or in combination of two or more.
 溶媒の含有量は、常温(例えば、25℃)でバインダー樹脂が溶解状態を保てる必要最低限の量以上であれば、特に制限はない。なお、エネルギーデバイスの電極作製におけるスラリー調製工程では、通常、溶媒を加えながら粘度調整を行うため、必要以上に希釈し過ぎない任意の量とすることが好ましい。 The content of the solvent is not particularly limited as long as it is equal to or more than the minimum amount necessary for the binder resin to be kept in a dissolved state at room temperature (for example, 25 ° C.). In the slurry preparation step in the electrode production of the energy device, the viscosity is usually adjusted while adding a solvent, so it is preferable to use an arbitrary amount that is not excessively diluted.
-その他の添加剤-
 本開示の電極形成用組成物には、必要に応じてその他の材料として、電解液に対する耐膨潤性を補完するための架橋成分、電極の柔軟性及び可とう性を補完するためのゴム成分、スラリーの電極塗工性を向上させるための沈降防止剤、消泡剤、レベリング剤等といった各種添加剤などを配合することもできる。
-Other additives-
The electrode-forming composition of the present disclosure includes, as necessary, other materials such as a cross-linking component for complementing the swelling resistance to the electrolytic solution, and a rubber component for complementing the flexibility and flexibility of the electrode. It is also possible to add various additives such as a settling inhibitor, a defoaming agent, a leveling agent and the like for improving the electrode coatability of the slurry.
-電極形成用組成物の物性-
 本開示の電極形成用組成物は、25℃における粘度が、500mPa・s~50000mPa・sであることが好ましく、1000mPa・s~20000mPa・sであることがより好ましく、2000mPa・s~10000mPa・sであることがさらに好ましい。
-Physical characteristics of the electrode forming composition-
The electrode-forming composition of the present disclosure preferably has a viscosity at 25 ° C. of 500 mPa · s to 50,000 mPa · s, more preferably 1000 mPa · s to 20000 mPa · s, and 2000 mPa · s to 10000 mPa · s. Is more preferable.
-電極形成用組成物の製造方法-
 本開示の電極形成用組成物の製造方法は、特に限定されるものではない。
 本開示の電極形成用組成物の製造方法の一例としては、活物質と、本開示の分散液と、を混合して活物質分散液を調製する工程と、前記活物質分散液にバインダー樹脂を添加する工程と、を有するものであってもよい。
 活物質分散液を調製する工程では、活物質と、本開示の分散液と、必要に応じて用いられるその他の成分とを混合し、撹拌することで活物質分散液が調製される。
 混合及び撹拌に用いられる装置としては、プラネタリーミキサー、ホモミキサー、高圧ホモミキサー、ディスパーサー、高圧ホモジナイザー、スタティックミキサー、膜乳化機、超音波分散機等が挙げられる。
-Manufacturing method of electrode forming composition-
The method for producing the electrode-forming composition of the present disclosure is not particularly limited.
As an example of the method for producing the electrode-forming composition of the present disclosure, a step of preparing an active material dispersion liquid by mixing the active material and the dispersion liquid of the present disclosure, and adding a binder resin to the active material dispersion liquid. It may have a step of adding.
In the step of preparing the active material dispersion liquid, the active material dispersion liquid is prepared by mixing the active material, the dispersion liquid of the present disclosure, and other components used as necessary, and stirring the mixture.
Examples of the apparatus used for mixing and stirring include a planetary mixer, a homomixer, a high-pressure homomixer, a disperser, a high-pressure homogenizer, a static mixer, a membrane emulsifier, and an ultrasonic disperser.
 活物質分散液にバインダー樹脂を添加する工程では、活物質分散液に添加されたバインダー樹脂を撹拌により混合して、本開示の電極形成用組成物を得る。撹拌方法は特に限定されるものではなく、活物質分散液を調製する工程で挙げられた上述の装置を用いた撹拌方法が挙げられる。 In the step of adding the binder resin to the active material dispersion liquid, the binder resin added to the active material dispersion liquid is mixed by stirring to obtain the electrode forming composition of the present disclosure. The stirring method is not particularly limited, and examples thereof include the stirring method using the above-mentioned device mentioned in the step of preparing the active material dispersion liquid.
 活物質分散液にバインダー樹脂を添加する工程では、導電性炭素材料の含有率の調整のため、粉体状の導電性炭素材料をさらに添加してもよい。
 また、本開示の電極形成用組成物の製造方法は、活物質分散液を調製する工程で得られた活物質分散液に、導電性炭素材料を添加する工程を有してもよい。
In the step of adding the binder resin to the active material dispersion liquid, a powdery conductive carbon material may be further added in order to adjust the content of the conductive carbon material.
Further, the method for producing the electrode-forming composition of the present disclosure may include a step of adding a conductive carbon material to the active material dispersion liquid obtained in the step of preparing the active material dispersion liquid.
 本開示の電極形成用組成物が活物質、バインダー樹脂、導電性炭素材料以外のその他の成分を含有する場合、その他の成分は、活物質分散液を調製する工程で添加されてもよいし、活物質分散液にバインダー樹脂を添加する工程で添加されてもよいし、両工程で添加されてもよい。 When the electrode-forming composition of the present disclosure contains other components other than the active material, the binder resin, and the conductive carbon material, the other components may be added in the step of preparing the active material dispersion liquid. It may be added in the step of adding the binder resin to the active material dispersion liquid, or may be added in both steps.
<エネルギーデバイス電極>
 本開示のエネルギーデバイス電極は、集電体と、前記集電体の少なくとも一方の表面上に設けられ、本開示のエネルギーデバイス電極形成用組成物の製造方法により製造されたエネルギーデバイス電極形成用組成物を用いて形成された電極合剤層と、を有する。
 本開示のエネルギーデバイス電極は、リチウムイオン二次電池、電気二重層キャパシタ、太陽電池、燃料電池等の電極として用いることができる。
 以下に、本開示のエネルギーデバイス電極をリチウムイオン二次電池の電極に適用した場合について詳細に説明するが、本開示のエネルギーデバイス電極は下記内容に限定されるものではない。
<Energy device electrode>
The energy device electrode of the present disclosure is provided on the surface of at least one of the current collector and the current collector, and is produced by the method for producing the energy device electrode forming composition of the present disclosure. It has an electrode mixture layer formed by using an object.
The energy device electrodes of the present disclosure can be used as electrodes for lithium ion secondary batteries, electric double layer capacitors, solar cells, fuel cells and the like.
The case where the energy device electrode of the present disclosure is applied to the electrode of the lithium ion secondary battery will be described in detail below, but the energy device electrode of the present disclosure is not limited to the following contents.
-集電体-
 本開示で用いられる集電体としては、特に限定されるものではなく、リチウムイオン二次電池の分野で常用されるものを使用できる。
 リチウムイオン二次電池の正極に用いられる集電体(正極集電体)としては、ステンレス鋼、アルミニウム、チタン等を含有するシート、箔などが挙げられる。
 これらの中でも、アルミニウムを含有するシート又は箔が好ましい。シート及び箔の厚さは特に限定されず、集電体として必要な強度及び加工性を確保する観点から、例えば、1μm~500μmであることが好ましく、2μm~80μmであることがより好ましく、5μm~50μmであることがさらに好ましい。
 リチウムイオン二次電池の負極に用いられる集電体(負極集電体)としては、ステンレス鋼、ニッケル、銅等を含むシート、箔などが挙げられる。
 これらの中でも、銅を含有するシート又は箔が好ましい。シート及び箔の厚さは特に限定されず、集電体として必要な強度及び加工性を確保する観点から、例えば、1μm~500μmであることが好ましく、2μm~100μmであることがより好ましく、5μm~50μmであることがさらに好ましい。
-Current collector-
The current collector used in the present disclosure is not particularly limited, and a current collector commonly used in the field of a lithium ion secondary battery can be used.
Examples of the current collector (positive electrode current collector) used for the positive electrode of the lithium ion secondary battery include sheets and foils containing stainless steel, aluminum, titanium and the like.
Among these, a sheet or foil containing aluminum is preferable. The thickness of the sheet and the foil is not particularly limited, and from the viewpoint of ensuring the strength and workability required for the current collector, for example, it is preferably 1 μm to 500 μm, more preferably 2 μm to 80 μm, and 5 μm. It is more preferably ~ 50 μm.
Examples of the current collector (negative electrode current collector) used for the negative electrode of the lithium ion secondary battery include sheets and foils containing stainless steel, nickel, copper and the like.
Among these, a sheet or foil containing copper is preferable. The thickness of the sheet and the foil is not particularly limited, and from the viewpoint of ensuring the strength and workability required for the current collector, for example, it is preferably 1 μm to 500 μm, more preferably 2 μm to 100 μm, and 5 μm. It is more preferably ~ 50 μm.
-電極合剤層-
 リチウムイオン二次電池に用いられる電極合剤層は、活物質、溶媒等を含むエネルギーデバイス電極形成用組成物を用いて形成することができる。
 正極活物質を含むエネルギーデバイス電極形成用組成物を用いることで正極合剤層が形成される。一方、負極活物質を含むエネルギーデバイス電極形成用組成物を用いることで負極合剤層が形成される。
-Electrode mixture layer-
The electrode mixture layer used in the lithium ion secondary battery can be formed by using an energy device electrode forming composition containing an active material, a solvent and the like.
A positive electrode mixture layer is formed by using a composition for forming an energy device electrode containing a positive electrode active material. On the other hand, a negative electrode mixture layer is formed by using a composition for forming an energy device electrode containing a negative electrode active material.
 電極合剤層は、本開示の電極形成用組成物の製造方法により製造されたエネルギーデバイス電極形成用組成物のスラリーを集電体の少なくとも一方の表面上に塗布し、次いで溶媒を乾燥して除去し、必要に応じて圧延して形成することができる。
 スラリーの塗布は、例えば、コンマコーター等を用いて行うことができる。塗布は、対向する電極において、正極容量と負極容量との比率(負極容量/正極容量)が1以上になるように行うことが適当である。
 スラリーの塗布量は、例えば、電極合剤層の片面当たりの乾燥質量が、5g/m~500g/mであることが好ましく、50g/m~300g/mであることがより好ましい。
 溶媒の除去は、例えば、50℃~150℃、好ましくは、80℃~120℃で、1分~20分間、好ましくは、3分~10分間乾燥することによって行われる。
 圧延は、例えばロールプレス機を用いて行われ、合剤層の密度が、負極の合剤層の場合、例えば、1g/cm~2g/cm、好ましくは、1.2g/cm~1.8g/cmとなるように、正極の合剤層の場合、例えば、2g/cm~5g/cm、好ましくは、2g/cm~4g/cmとなるようにプレスされる。
 さらに、電極内の残留溶媒、吸着水の除去等のため、例えば、100℃~150℃で1時間~20時間真空乾燥してもよい。
For the electrode mixture layer, a slurry of the energy device electrode forming composition produced by the method for producing the electrode forming composition of the present disclosure is applied onto at least one surface of the current collector, and then the solvent is dried. It can be removed and rolled if necessary.
The slurry can be applied using, for example, a comma coater or the like. It is appropriate that the coating is performed so that the ratio of the positive electrode capacity to the negative electrode capacity (negative electrode capacity / positive electrode capacity) is 1 or more in the opposing electrodes.
The amount of the slurry applied is, for example, preferably 5 g / m 2 to 500 g / m 2 and more preferably 50 g / m 2 to 300 g / m 2 in terms of the dry mass of the electrode mixture layer per side. ..
The solvent is removed, for example, by drying at 50 ° C. to 150 ° C., preferably 80 ° C. to 120 ° C. for 1 minute to 20 minutes, preferably 3 minutes to 10 minutes.
The rolling is carried out using, for example, a roll press machine, and when the density of the mixture layer is the mixture layer of the negative electrode, for example, 1 g / cm 3 to 2 g / cm 3 , preferably 1.2 g / cm 3 to In the case of the positive mixture layer so as to be 1.8 g / cm 3 , for example, it is pressed to be 2 g / cm 3 to 5 g / cm 3 , preferably 2 g / cm 3 to 4 g / cm 3. ..
Further, in order to remove the residual solvent and adsorbed water in the electrode, for example, vacuum drying may be performed at 100 ° C. to 150 ° C. for 1 hour to 20 hours.
<エネルギーデバイス>
 本開示のエネルギーデバイスは、本開示のエネルギーデバイス電極を備える。本開示のエネルギーデバイスとしては、リチウムイオン二次電池、電気二重層キャパシタ、太陽電池、燃料電池等が挙げられる。
 以下に、エネルギーデバイスがリチウムイオン二次電池の場合について詳細に説明するが、本開示のエネルギーデバイスは下記内容に限定されるものではない。
<Energy device>
The energy device of the present disclosure comprises the energy device electrode of the present disclosure. Examples of the energy device of the present disclosure include a lithium ion secondary battery, an electric double layer capacitor, a solar cell, a fuel cell and the like.
The case where the energy device is a lithium ion secondary battery will be described in detail below, but the energy device of the present disclosure is not limited to the following contents.
 リチウムイオン二次電池は、例えば、正極と、負極と、正極と負極との間に介在するセパレータと、電解液と、を備える。
 正極及び負極の少なくとも一方として、本開示のエネルギーデバイス電極が用いられる。なお、正極又は負極の一方として、本開示のエネルギーデバイス電極以外のその他の電極が用いられる場合、その他の電極としては、エネルギーデバイスの分野で常用されるものが挙げられる。
The lithium ion secondary battery includes, for example, a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution.
The energy device electrodes of the present disclosure are used as at least one of a positive electrode and a negative electrode. When an electrode other than the energy device electrode of the present disclosure is used as one of the positive electrode and the negative electrode, examples of the other electrode include those commonly used in the field of energy devices.
-セパレータ-
 セパレータは、正極及び負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物等が用いられる。
-Separator-
The separator is not particularly limited as long as it electronically insulates between the positive electrode and the negative electrode, has ion permeability, and has resistance to oxidizing property on the positive electrode side and reducing property on the negative electrode side. As the material (material) of the separator satisfying such characteristics, a resin, an inorganic substance, or the like is used.
 上記樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート、不織布などを用いることが好ましい。 As the resin, an olefin polymer, a fluoropolymer, a cellulosic polymer, a polyimide, a nylon, or the like is used. Specifically, it is preferable to select from materials that are stable to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet made of polyolefin such as polyethylene or polypropylene, a non-woven fabric, or the like.
 無機物としては、アルミナ、二酸化ケイ素等の酸化物類、窒化アルミニウム、窒化ケイ素等の窒化物類、硫酸バリウム、硫酸カルシウム等の硫酸塩類、ガラスなどが用いられる。例えば、繊維形状又は粒子形状の上記無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。
 薄膜形状の基材としては、孔径が0.01μm~1μmであり、厚さが5μm~50μmのものが好適に用いられる。また、例えば、繊維形状又は粒子形状の上記無機物を、樹脂等の結着剤を用いて複合多孔層としたものをセパレータとして用いることができる。さらに、この複合多孔層を、正極又は負極の表面に形成し、セパレータとしてもよい。あるいは、この複合多孔層を他のセパレータの表面に形成し、多層セパレータとしてもよい。例えば、90%粒子径(D90)が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として結着させた複合多孔層を、正極の表面に形成してもよい。
As the inorganic substance, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, barium sulfate, sulfates such as calcium sulfate, and glass are used. For example, a fiber-shaped or particle-shaped inorganic substance adhered to a thin-film-shaped base material such as a non-woven fabric, a woven fabric, or a microporous film can be used as a separator.
As the thin film-shaped base material, those having a pore diameter of 0.01 μm to 1 μm and a thickness of 5 μm to 50 μm are preferably used. Further, for example, a fiber-shaped or particle-shaped inorganic substance formed into a composite porous layer by using a binder such as a resin can be used as a separator. Further, this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to serve as a separator. Alternatively, this composite porous layer may be formed on the surface of another separator to form a multilayer separator. For example, a composite porous layer in which alumina particles having a 90% particle size (D90) of less than 1 μm are bound using a fluororesin as a binder may be formed on the surface of the positive electrode.
-電解液-
 電解液は、溶質(支持塩)と非水溶媒とを含み、さらに必要に応じて各種添加剤を含む。溶質は通常非水溶媒中に溶解する。電解液は、例えば、セパレータに含浸される。
-Electrolyte-
The electrolytic solution contains a solute (supporting salt) and a non-aqueous solvent, and further contains various additives as needed. The solute is usually dissolved in a non-aqueous solvent. The electrolyte is, for example, impregnated in the separator.
 溶質としては、この分野で常用されるものを使用でき、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類、イミド塩類等が挙げられる。ホウ酸塩類としては、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等が挙げられる。イミド塩類としては、ビストリフルオロメタンスルホン酸イミドリチウム((CFSONLi)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム((CFSO)(CSO)NLi)、ビスペンタフルオロエタンスルホン酸イミドリチウム((CSONLi)等が挙げられる。溶質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。溶質の非水溶媒に対する溶解量は、0.5モル/L~2モル/Lとすることが好ましい。 As the solute, those commonly used in this field can be used, for example, LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl. 10. Lower aliphatic carboxylic acid lithium, LiCl, LiBr, LiI, chloroborane lithium, borates, imide salts and the like can be mentioned. Examples of borates include bis (1,2-benzenediorate (2-) -O, O') lithium borate and bis (2,3-naphthalenedioleate (2-) -O, O') borate. Lithium, bis (2,2'-biphenyldiorate (2-) -O, O') lithium borate, bis (5-fluoro-2-olate-1-benzenesulfonic acid-O, O') lithium borate And so on. Examples of imide salts include imidelithium bistrifluoromethanesulfonate ((CF 3 SO 2 ) 2 NLi) and imide lithium trifluoromethanesulfonate nonafluorobutane sulfonate ((CF 3 SO 2 ) (C 4 F 9 SO 2 ) NLi). ), Imid lithium bispentafluoroethanesulfonate ((C 2 F 5 SO 2 ) 2 NLi) and the like. One type of solute may be used alone, or two or more types may be used in combination. The amount of the solute dissolved in a non-aqueous solvent is preferably 0.5 mol / L to 2 mol / L.
 非水溶媒としては、この分野で常用されるものを使用でき、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル等が挙げられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等が挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。非水溶媒は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the non-aqueous solvent, those commonly used in this field can be used, and examples thereof include cyclic carbonate ester, chain carbonate ester, and cyclic carboxylic acid ester. Examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC). Examples of the chain carbonic acid ester include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like. Examples of the cyclic carboxylic acid ester include γ-butyrolactone (GBL) and γ-valerolactone (GVL). One type of non-aqueous solvent may be used alone, or two or more types may be used in combination.
 また、電池特性をより向上できる観点から、非水溶媒はビニレンカーボネート(VC)を含有することが好ましい。 Further, from the viewpoint of further improving the battery characteristics, the non-aqueous solvent preferably contains vinylene carbonate (VC).
 ビニレンカーボネート(VC)を含有する場合の含有率は、非水溶媒全量に対して、0.1質量%~2質量%であることが好ましく、0.2質量%~1.5質量%であることがより好ましい。 When vinylene carbonate (VC) is contained, the content is preferably 0.1% by mass to 2% by mass, and 0.2% by mass to 1.5% by mass, based on the total amount of the non-aqueous solvent. Is more preferable.
 以下に、本開示をラミネート型のリチウムイオン二次電池に適用した実施の形態について説明する。 Hereinafter, embodiments in which the present disclosure is applied to a laminated lithium ion secondary battery will be described.
 ラミネート型のリチウムイオン二次電池は、例えば、次のようにして作製できる。まず、正極と負極を角形に切断し、それぞれの電極にタブを溶接し正極端子及び負極端子を作製する。正極と負極との間にセパレータを介在させ積層した電極積層体を作製し、その状態でアルミニウム製のラミネートパック内に収容し、正極端子及び負極端子をアルミラミネートパックの外に出し密封する。次いで、電解液をアルミラミネートパック内に注液し、アルミラミネートパックの開口部を密封する。これにより、リチウムイオン二次電池が得られる。 A laminated lithium ion secondary battery can be manufactured, for example, as follows. First, the positive electrode and the negative electrode are cut into a square shape, and tabs are welded to the respective electrodes to prepare positive electrode terminals and negative electrode terminals. An electrode laminate laminated with a separator interposed between the positive electrode and the negative electrode is produced, and in that state, the electrode laminate is housed in an aluminum laminate pack, and the positive electrode terminal and the negative electrode terminal are taken out of the aluminum laminate pack and sealed. Next, the electrolytic solution is poured into the aluminum laminate pack, and the opening of the aluminum laminate pack is sealed. As a result, a lithium ion secondary battery can be obtained.
 次に、図面を参照して、本開示を18650タイプの円柱状リチウムイオン二次電池に適用した実施の形態について説明する。 Next, an embodiment in which the present disclosure is applied to an 18650 type columnar lithium ion secondary battery will be described with reference to the drawings.
 図1は、本開示を適用したリチウムイオン二次電池の断面図を示す。
 図1に示すように、本開示のリチウムイオン二次電池1は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器6を有している。電池容器6には、帯状の正極板2及び負極板3がセパレータ4を介して断面渦巻状に捲回された電極群5が収容されている。セパレータ4は、例えば、幅が58mm、厚さが30μmに設定される。電極群5の上端面には、一端部を正極板2に固定されたアルミニウム製でリボン状の正極タブ端子が導出されている。正極タブ端子の他端部は、電極群5の上側に配置され正極外部端子となる円盤状の電池蓋の下面に超音波溶接で接合されている。一方、電極群5の下端面には、一端部を負極板3に固定された銅製でリボン状の負極タブ端子が導出されている。負極タブ端子の他端部は、電池容器6の内底部に抵抗溶接で接合されている。従って、正極タブ端子及び負極タブ端子は、それぞれ電極群5の両端面の互いに反対側に導出されている。なお、電極群5の外周面全周には、図示を省略した絶縁被覆が施されている。電池蓋は、絶縁性の樹脂製ガスケットを介して電池容器6の上部にカシメ固定されている。このため、リチウムイオン二次電池1の内部は密封されている。また、電池容器6内には、図示しない電解液が注液されている。
FIG. 1 shows a cross-sectional view of a lithium ion secondary battery to which the present disclosure is applied.
As shown in FIG. 1, the lithium ion secondary battery 1 of the present disclosure has a battery container 6 made of nickel-plated steel and having a bottomed cylindrical shape. The battery container 6 houses an electrode group 5 in which a strip-shaped positive electrode plate 2 and a negative electrode plate 3 are wound in a spiral cross section via a separator 4. The separator 4 is set to, for example, a width of 58 mm and a thickness of 30 μm. A ribbon-shaped positive electrode tab terminal made of aluminum whose one end is fixed to the positive electrode plate 2 is led out from the upper end surface of the electrode group 5. The other end of the positive electrode tab terminal is arranged above the electrode group 5 and is ultrasonically bonded to the lower surface of the disk-shaped battery lid that serves as the positive electrode external terminal. On the other hand, on the lower end surface of the electrode group 5, a ribbon-shaped negative electrode tab terminal made of copper whose one end is fixed to the negative electrode plate 3 is led out. The other end of the negative electrode tab terminal is joined to the inner bottom of the battery container 6 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are led out to opposite sides of both end faces of the electrode group 5, respectively. The entire circumference of the outer peripheral surface of the electrode group 5 is provided with an insulating coating (not shown). The battery lid is caulked and fixed to the upper part of the battery container 6 via an insulating resin gasket. Therefore, the inside of the lithium ion secondary battery 1 is sealed. Further, an electrolytic solution (not shown) is injected into the battery container 6.
 以下、本開示を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
<実施例1>
(特定ニトリル樹脂の合成)
 撹拌機、温度計、冷却管及び窒素導入管を装着した0.5リットルのセパラブルフラスコに、精製水を397.2g加え、系内を窒素で置換し、73.0℃まで昇温した。精製水2.5gに過硫酸アンモニウム347.0mgを溶解させた後、全量を系内に添加した。次いで、系内にモノマーとして、アクリロニトリル(ニトリル基含有単量体、以下ANと記載することがある。)38.1gとメトキシポリエチレングリコールアクリレート(式(I)に記載の単量体、新中村化学工業株式会社製、AM-90G、以下AM-90Gと記載することがある。)5.2gの混合物を2時間かけて滴下した後、1時間反応させた。精製水7.8gに過硫酸アンモニウム420.0mgを溶解させた後、全量を系内に添加し、1時間反応させた。次いで、系内の温度を90.0℃まで昇温し、1時間かけて反応させた。上記工程中は、系内を窒素雰囲気で保ち、250回転/分で撹拌を続けた。室温(25℃)に冷却後、反応液を吸引ろ過し、析出した樹脂を濾別した。濾別した樹脂を精製水1000.0gで洗浄した。洗浄した樹脂を60℃、150Paに設定した真空乾燥機で24時間乾燥して、特定ニトリル樹脂を得た。撹拌機、温度計及び冷却管を装着した0.5リットルセパラブルフラスコ内に、N-メチル-2-ピロリドン(以下NMPと記載することがある。)423.0gを加え、100℃に昇温した後、特定ニトリル樹脂の粉末27.0gを加え、300回転/分で5時間撹拌し、特定ニトリル樹脂のNMP溶液とした。
<Example 1>
(Synthesis of specific nitrile resin)
397.2 g of purified water was added to a 0.5 liter separable flask equipped with a stirrer, a thermometer, a cooling tube and a nitrogen introduction tube, the inside of the system was replaced with nitrogen, and the temperature was raised to 73.0 ° C. After dissolving 347.0 mg of ammonium persulfate in 2.5 g of purified water, the whole amount was added into the system. Next, as monomers in the system, 38.1 g of acrylonitrile (nitrile group-containing monomer, hereinafter sometimes referred to as AN) and methoxypolyethylene glycol acrylate (monomer described in formula (I), Shin-Nakamura Kagaku). AM-90G manufactured by Kogyo Co., Ltd., hereinafter may be referred to as AM-90G.) A mixture of 5.2 g was added dropwise over 2 hours and then reacted for 1 hour. After dissolving 420.0 mg of ammonium persulfate in 7.8 g of purified water, the whole amount was added into the system and reacted for 1 hour. Then, the temperature in the system was raised to 90.0 ° C., and the reaction was carried out over 1 hour. During the above step, the inside of the system was kept in a nitrogen atmosphere, and stirring was continued at 250 rpm. After cooling to room temperature (25 ° C.), the reaction solution was suction-filtered, and the precipitated resin was filtered off. The filtered resin was washed with 1000.0 g of purified water. The washed resin was dried in a vacuum dryer set at 60 ° C. and 150 Pa for 24 hours to obtain a specific nitrile resin. 423.0 g of N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP) was added to a 0.5 liter separable flask equipped with a stirrer, a thermometer and a cooling tube, and the temperature was raised to 100 ° C. After that, 27.0 g of the specific nitrile resin powder was added, and the mixture was stirred at 300 rpm for 5 hours to prepare an NMP solution of the specific nitrile resin.
(エネルギーデバイス用導電性炭素材料分散液の作製)
 分散機(プライミクス株式会社製、フィルミックスFM-30L)の専用容器にカーボンブラック(デンカ株式会社製、Li-435、一次粒径23nm(カタログ値)、以下Li-435と記載することがある)1.0g及び特定ニトリル樹脂のNMP溶液8.3gを加え、さらに固形分濃度が12.0質量%になるようNMPを加えた(実施例1においては3.2g)後、フィルミックスFM-30Lを用いて周速30m/sで30秒間撹拌し、エネルギーデバイス用導電性炭素材料分散液1を得た。
(Preparation of conductive carbon material dispersion for energy devices)
Carbon black (manufactured by Denka Co., Ltd., Li-435, primary particle size 23 nm (catalog value), hereinafter sometimes referred to as Li-435) in a special container for a disperser (Primix Co., Ltd., Fillmix FM-30L). 1.0 g and 8.3 g of an NMP solution of a specific nitrile resin were added, and NMP was further added so that the solid content concentration became 12.0% by mass (3.2 g in Example 1), and then Philmix FM-30L. Was stirred at a peripheral speed of 30 m / s for 30 seconds to obtain a conductive carbon material dispersion liquid 1 for an energy device.
<実施例2>
 フィルミックスFM-30Lでの撹拌時間を30秒間から1分間に変更した以外は、実施例1と同様にしてエネルギーデバイス用導電性炭素材料分散液2を得た。
<Example 2>
A conductive carbon material dispersion 2 for an energy device was obtained in the same manner as in Example 1 except that the stirring time in Fillmix FM-30L was changed from 30 seconds to 1 minute.
<実施例3>
 フィルミックスFM-30Lでの撹拌時間を30秒間から3分間に変更した以外は、実施例1と同様にしてエネルギーデバイス用導電性炭素材料分散液3を得た。
<Example 3>
A conductive carbon material dispersion 3 for an energy device was obtained in the same manner as in Example 1 except that the stirring time in Fillmix FM-30L was changed from 30 seconds to 3 minutes.
<実施例4>
 フィルミックスFM-30Lでの撹拌時間を30秒間から5分間に変更した以外は、実施例1と同様にしてエネルギーデバイス用導電性炭素材料分散液4を得た。
<Example 4>
A conductive carbon material dispersion 4 for an energy device was obtained in the same manner as in Example 1 except that the stirring time in Fillmix FM-30L was changed from 30 seconds to 5 minutes.
<実施例5>
 フィルミックスFM-30Lでの撹拌時間を30秒間から10分間に変更した以外は、実施例1と同様にしてエネルギーデバイス用導電性炭素材料分散液5を得た。
<Example 5>
A conductive carbon material dispersion 5 for an energy device was obtained in the same manner as in Example 1 except that the stirring time in Fillmix FM-30L was changed from 30 seconds to 10 minutes.
<実施例6>
 Li-435を1.0g、特定ニトリル樹脂のNMP溶液を2.3gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液6を得た。
<Example 6>
A conductive carbon material dispersion 6 for an energy device was obtained in the same manner as in Example 3 except that 1.0 g of Li-435 and 2.3 g of an NMP solution of a specific nitrile resin were used.
<実施例7>
 Li-435を1.0g、特定ニトリル樹脂のNMP溶液を6.5gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液7を得た。
<Example 7>
A conductive carbon material dispersion 7 for an energy device was obtained in the same manner as in Example 3 except that the amount of Li-435 was 1.0 g and the amount of the NMP solution of the specific nitrile resin was 6.5 g.
<実施例8>
 Li-435を0.8g、特定ニトリル樹脂のNMP溶液を9.6gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液8を得た。
<Example 8>
A conductive carbon material dispersion 8 for an energy device was obtained in the same manner as in Example 3 except that Li-435 was 0.8 g and the NMP solution of the specific nitrile resin was 9.6 g.
<実施例9>
 特定ニトリル樹脂の合成において、反応温度を73.0℃から75.0℃に変更した以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液9を得た。
<Example 9>
In the synthesis of the specific nitrile resin, a conductive carbon material dispersion liquid 9 for an energy device was obtained in the same manner as in Example 3 except that the reaction temperature was changed from 73.0 ° C. to 75.0 ° C.
<実施例10>
 特定ニトリル樹脂の合成において、反応温度を73.0℃から76.0℃に変更した以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液10を得た。
<Example 10>
In the synthesis of the specific nitrile resin, a conductive carbon material dispersion liquid 10 for an energy device was obtained in the same manner as in Example 3 except that the reaction temperature was changed from 73.0 ° C. to 76.0 ° C.
<実施例11>
 特定ニトリル樹脂の合成において、モノマーをANの37.2gとAM-90Gの6.1gの混合物に変更した以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液11を得た。
<Example 11>
In the synthesis of the specific nitrile resin, a conductive carbon material dispersion 11 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to a mixture of 37.2 g of AN and 6.1 g of AM-90G. ..
<実施例12>
 特定ニトリル樹脂の合成において、モノマーをANの39.0gとAM-90Gの4.3gの混合物に変更した以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液12を得た。
<Example 12>
In the synthesis of the specific nitrile resin, a conductive carbon material dispersion liquid 12 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to a mixture of 39.0 g of AN and 4.3 g of AM-90G. ..
<実施例13>
 特定ニトリル樹脂の合成において、モノマーをANの39.8gとAM-90Gの3.5gの混合物に変更した以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液13を得た。
<Example 13>
In the synthesis of the specific nitrile resin, a conductive carbon material dispersion liquid 13 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to a mixture of 39.8 g of AN and 3.5 g of AM-90G. ..
<実施例14>
 特定ニトリル樹脂の合成において、モノマーをANの40.7gとAM-90Gの2.6gの混合物に変更した以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液14を得た。
<Example 14>
In the synthesis of the specific nitrile resin, a conductive carbon material dispersion 14 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to a mixture of 40.7 g of AN and 2.6 g of AM-90G. ..
<実施例15>
 特定ニトリル樹脂の合成において、モノマーをANの42.0gとAM-90Gの1.3gの混合物に変更した以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液15を得た。
<Example 15>
In the synthesis of the specific nitrile resin, a conductive carbon material dispersion 15 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to a mixture of 42.0 g of AN and 1.3 g of AM-90G. ..
<実施例16>
 特定ニトリル樹脂の合成において、モノマーをANの43.3gに変更した以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16を得た。
<Example 16>
In the synthesis of the specific nitrile resin, a conductive carbon material dispersion liquid 16 for an energy device was obtained in the same manner as in Example 3 except that the monomer was changed to 43.3 g of AN.
<実施例16-2>
 Li-435を1.0g、特定ニトリル樹脂のNMP溶液を5.1gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-2を得た。
<Example 16-2>
A conductive carbon material dispersion liquid 16-2 for an energy device was obtained in the same manner as in Example 3 except that 1.0 g of Li-435 and 5.1 g of an NMP solution of a specific nitrile resin were used.
<実施例16-3>
 Li-435を0.8g、特定ニトリル樹脂のNMP溶液を8.0gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-3を得た。
<Example 16-3>
A conductive carbon material dispersion liquid 16-3 for an energy device was obtained in the same manner as in Example 3 except that the amount of Li-435 was 0.8 g and the amount of the NMP solution of the specific nitrile resin was 8.0 g.
<実施例16-4>
 Li-435を0.7g、特定ニトリル樹脂のNMP溶液を9.2gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-4を得た。
<Example 16-4>
A conductive carbon material dispersion liquid 16-4 for an energy device was obtained in the same manner as in Example 3 except that 0.7 g of Li-435 and 9.2 g of an NMP solution of a specific nitrile resin were used.
<実施例16-5>
 Li-435に替えてカーボンブラック(デンカ株式会社製、Li-100、一次粒径35nm(カタログ値)、以下Li-100と記載することがある)1.0gとし、特定ニトリル樹脂のNMP溶液1.2gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-5を得た。
<Example 16-5>
Instead of Li-435, use 1.0 g of carbon black (manufactured by Denka Co., Ltd., Li-100, primary particle size 35 nm (catalog value), hereinafter sometimes referred to as Li-100), and use NMP solution 1 of a specific nitrile resin. A conductive carbon material dispersion 16-5 for an energy device was obtained in the same manner as in Example 3 except that the amount was .2 g.
<実施例16-6>
 Li-435に替えてLi-100を1.0gとし、特定ニトリル樹脂のNMP溶液2.4gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-6を得た。
<Example 16-6>
A conductive carbon material dispersion liquid 16-6 for an energy device was obtained in the same manner as in Example 3 except that Li-100 was 1.0 g instead of Li-435 and an NMP solution of a specific nitrile resin was 2.4 g. rice field.
<実施例16-7>
 Li-435に替えてLi-100を1.0gとし、特定ニトリル樹脂のNMP溶液5.1gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-7を得た。
<Example 16-7>
A conductive carbon material dispersion liquid 16-7 for an energy device was obtained in the same manner as in Example 3 except that Li-100 was 1.0 g instead of Li-435 and an NMP solution of a specific nitrile resin was 5.1 g. rice field.
<実施例16-8>
 Li-435に替えてLi-100を1.0gとし、特定ニトリル樹脂のNMP溶液6.6gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-8を得た。
<Example 16-8>
A conductive carbon material dispersion liquid 16-8 for an energy device was obtained in the same manner as in Example 3 except that Li-100 was 1.0 g instead of Li-435 and an NMP solution of a specific nitrile resin was 6.6 g. rice field.
<実施例16-9>
 Li-435に替えてカーボンブラック(デンカ株式会社製、Li-400、一次粒径48nm(カタログ値)、以下Li-400と記載することがある)1.5gとし、特定ニトリル樹脂のNMP溶液0.9gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-9を得た。
<Example 16-9>
Instead of Li-435, use 1.5 g of carbon black (manufactured by Denka Co., Ltd., Li-400, primary particle size 48 nm (catalog value), hereinafter sometimes referred to as Li-400), and use NMP solution 0 of the specific nitrile resin. A conductive carbon material dispersion 16-9 for an energy device was obtained in the same manner as in Example 3 except that the amount was 9.9 g.
<実施例16-10>
 Li-435に替えてLi-400を1.0gとし、特定ニトリル樹脂のNMP溶液1.2gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-10を得た。
<Example 16-10>
A conductive carbon material dispersion liquid 16-10 for an energy device was obtained in the same manner as in Example 3 except that Li-400 was 1.0 g instead of Li-435 and an NMP solution of a specific nitrile resin was 1.2 g. rice field.
<実施例16-11>
 Li-435に替えてLi-400を1.0gとし、特定ニトリル樹脂のNMP溶液2.4gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-11を得た。
<Example 16-11>
A conductive carbon material dispersion for energy devices 16-11 was obtained in the same manner as in Example 3 except that Li-400 was 1.0 g instead of Li-435 and NMP solution of a specific nitrile resin was 2.4 g. rice field.
<実施例16-12>
 Li-435に替えてLi-400を1.0gとし、特定ニトリル樹脂のNMP溶液5.1gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-12を得た。
<Example 16-12>
A conductive carbon material dispersion for energy devices 16-12 was obtained in the same manner as in Example 3 except that Li-400 was 1.0 g instead of Li-435 and NMP solution of a specific nitrile resin was 5.1 g. rice field.
<実施例16-13>
 Li-435に替えてLi-400を1.0gとし、特定ニトリル樹脂のNMP溶液6.6gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-13を得た。
<Example 16-13>
Conductive carbon material dispersion liquid 16-13 for energy devices was obtained in the same manner as in Example 3 except that Li-400 was 1.0 g instead of Li-435 and the NMP solution of the specific nitrile resin was 6.6 g. rice field.
<実施例16-14>
 Li-435に替えて気相法炭素繊維(昭和電工株式会社、VGCF-H、平均長さ6μm、平均直径150nm、以下、VGCF-Hと記載することがある)1.5gとし、特定ニトリル樹脂のNMP溶液0.9gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-14を得た。
<Example 16-14>
Instead of Li-435, use 1.5 g of vapor-phase carbon fiber (Showa Denko Co., Ltd., VGCF-H, average length 6 μm, average diameter 150 nm, hereinafter sometimes referred to as VGCF-H), and use a specific nitrile resin. A conductive carbon material dispersion liquid 16-14 for an energy device was obtained in the same manner as in Example 3 except that the NMP solution was 0.9 g.
<実施例16-15>
 Li-435に替えてVGCF-Hを1.0gとし、特定ニトリル樹脂のNMP溶液1.2gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-15を得た。
<Example 16-15>
A conductive carbon material dispersion liquid 16-15 for an energy device was obtained in the same manner as in Example 3 except that VGCF-H was 1.0 g instead of Li-435 and an NMP solution of a specific nitrile resin was 1.2 g. rice field.
<実施例16-16>
 Li-435に替えてVGCF-Hを1.0gとし、特定ニトリル樹脂のNMP溶液2.4gとした以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液16-16を得た。
<Example 16-16>
Conductive carbon material dispersion liquid 16-16 for energy devices was obtained in the same manner as in Example 3 except that VGCF-H was 1.0 g instead of Li-435 and NMP solution of the specific nitrile resin was 2.4 g. rice field.
<比較例1>
 特定ニトリル樹脂の代わりに、ポリフッ化ビニリデン(PVDF)を用いた以外は、実施例1と同様にしてエネルギーデバイス用導電性炭素材料分散液C1を得た。
<Comparative example 1>
A conductive carbon material dispersion C1 for an energy device was obtained in the same manner as in Example 1 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin.
<比較例2>
 特定ニトリル樹脂の代わりに、ポリフッ化ビニリデン(PVDF)を用いた以外は、実施例2と同様にしてエネルギーデバイス用導電性炭素材料分散液C2を得た。
<Comparative example 2>
A conductive carbon material dispersion C2 for an energy device was obtained in the same manner as in Example 2 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin.
<比較例3>
 特定ニトリル樹脂の代わりに、ポリフッ化ビニリデン(PVDF)を用いた以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液C3を得た。
<Comparative example 3>
A conductive carbon material dispersion C3 for an energy device was obtained in the same manner as in Example 3 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin.
<比較例4>
 特定ニトリル樹脂の代わりに、ポリフッ化ビニリデン(PVDF)を用いた以外は、実施例4と同様にしてエネルギーデバイス用導電性炭素材料分散液C4を得た。
<Comparative example 4>
A conductive carbon material dispersion C4 for an energy device was obtained in the same manner as in Example 4 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin.
<比較例5>
 特定ニトリル樹脂の代わりに、ポリフッ化ビニリデン(PVDF)を用いた以外は、実施例5と同様にしてエネルギーデバイス用導電性炭素材料分散液C5を得た。
<Comparative example 5>
A conductive carbon material dispersion C5 for an energy device was obtained in the same manner as in Example 5 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin.
<比較例5-2>
 特定ニトリル樹脂の代わりにポリフッ化ビニリデン(PVDF)を用い、Li-435に替えてLi-100を用いた以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液C5-2を得た。
<Comparative Example 5-2>
A conductive carbon material dispersion liquid C5-2 for an energy device was prepared in the same manner as in Example 3 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin and Li-100 was used instead of Li-435. Obtained.
<比較例5-3>
 特定ニトリル樹脂の代わりにポリフッ化ビニリデン(PVDF)を用い、Li-435に替えてLi-400を用いた以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液C5-3を得た。
<Comparative Example 5-3>
A conductive carbon material dispersion C5-3 for an energy device was prepared in the same manner as in Example 3 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin and Li-400 was used instead of Li-435. Obtained.
<比較例5-4>
 特定ニトリル樹脂の代わりにポリフッ化ビニリデン(PVDF)を用い、Li-435に替えてVGCF-Hを用いた以外は、実施例3と同様にしてエネルギーデバイス用導電性炭素材料分散液C5-4を得た。
<Comparative Example 5-4>
A conductive carbon material dispersion liquid C5-4 for an energy device was prepared in the same manner as in Example 3 except that polyvinylidene fluoride (PVDF) was used instead of the specific nitrile resin and VGCF-H was used instead of Li-435. Obtained.
(特定ニトリル樹脂の重量平均分子量の測定)
 実施例1~16等で用いられた特定ニトリル樹脂を、濃度が0.1質量%になるようNMPで希釈し、PTFE(ポリテトラフルオロエチレン)製フィルタ〔倉敷紡績株式会社製、HPLC(高速液体クロマトグラフィー)前処理用、クロマトディスク、型番:13N、孔径:0.45μm〕を通して不溶分を除去した。GPC〔ポンプ:L6200 Pump(株式会社日立製作所製)、検出器:示差屈折率検出器L3300 RI Monitor(株式会社日立製作所製)、カラム:TSKgel-G5000HXLとTSKgel-G2000HXL(計2本)(共に東ソー株式会社製)を直列に接続、カラム温度:30℃、溶離液:N-メチル-2-ピロリドン、流速:1.0mL/分、標準物質:ポリスチレン〕を用いて重量平均分子量を測定した。結果を表1~表3に示す。
(Measurement of weight average molecular weight of specific nitrile resin)
The specific nitrile resin used in Examples 1 to 16 and the like is diluted with NMP so that the concentration becomes 0.1% by mass, and a filter made of PTFE (polytetrafluoroethylene) [manufactured by Kurashiki Spinning Co., Ltd., HPLC (high performance liquid)). Chromatography) Insoluble matter was removed through pretreatment, chromatodisc, model number: 13N, pore size: 0.45 μm]. GPC [Pump: L6200 Pump (manufactured by Hitachi, Ltd.), Detector: Differential refractometer detector L3300 RI Matter (manufactured by Hitachi, Ltd.), Columns: TSKgel-G5000HXL and TSKgel-G2000HXL (2 in total) (both Tosoh) (Manufactured by Co., Ltd.) were connected in series, and the weight average molecular weight was measured using a column temperature of 30 ° C., an eluent: N-methyl-2-pyrrolidone, a flow velocity: 1.0 mL / min, and a standard substance: polystyrene]. The results are shown in Tables 1 to 3.
(エネルギーデバイス用導電性炭素材料分散液の分散性評価)
 実施例1~16、実施例16-2~16-16、比較例1~5及び比較例5-2~5-4に記載のエネルギーデバイス用導電性炭素材料分散液の分散性は、外観観察及び分散粒径に基づいて評価した。エネルギーデバイス用導電性炭素材料分散液中のカーボンブラック濃度又はVGCF-H濃度が1.0質量%になるようNMPで希釈した。希釈液を目視で観察し、凝集物の有無を確認した。目視で凝集物がないものについては、分散粒径を評価した。
 導電性炭素材料としてカーボンブラックであるLi-435、Li-100又はLi-400を用いた実施例及び比較例については、粒度分布測定器(大塚電子株式会社、Zeta-potential&Particlesize Analyzer、ELSZ)に付属のガラスセルに、調整した分散液をガラス容量の8割程度加え、粒度分布測定器の測定部にセットし、積算回数70回の測定を実施した。得られた個数粒度分布において、粒径の小さいものから、その個数割合を積算した際に50%となるところの粒径(D50)を求めた。この粒径(D50)は、カーボンブラックの分散粒径に該当する。目視での外観観察及び分散粒径を用いて、以下の基準で分散性を評価した。なお、Aが最も分散性に優れ、Dが最も分散性に劣ることを示す。
A:粒径(D50)が1.0μm未満
B:粒径(D50)が1.0μm以上、3.0μm未満
C:粒径(D50)が3.0μm以上
D:目視での凝集物あり
 導電性炭素材料としてVGCF-Hを用いた実施例及び比較例については、カーボンブラックの場合と同様にして分散粒径を求め、目視での外観観察及び分散粒径を用いて、以下の基準で分散性を評価した。なお、Aが最も分散性に優れ、Cが最も分散性に劣ることを示す。
A:粒径(D50)が7.0μm未満
B:粒径(D50)が7.0μm以上、10.0μm未満
C:目視での凝集物あり
(Evaluation of dispersibility of conductive carbon material dispersion for energy devices)
The dispersibility of the conductive carbon material dispersion liquid for energy devices according to Examples 1 to 16, Examples 16-2 to 16-16, Comparative Examples 1 to 5, and Comparative Examples 5-2 to 5-4 is observed in appearance. And evaluated based on the dispersed particle size. It was diluted with NMP so that the carbon black concentration or the VGCF-H concentration in the conductive carbon material dispersion for energy devices was 1.0% by mass. The diluted solution was visually observed to confirm the presence or absence of agglomerates. For those without agglomerates visually, the dispersed particle size was evaluated.
Examples and comparative examples using carbon black Li-435, Li-100 or Li-400 as the conductive carbon material are attached to a particle size distribution measuring instrument (Otsuka Electronics Co., Ltd., Zeta-potential & Liquidsize Analyzer, ELSZ). About 80% of the glass capacity was added to the glass cell of No. 1 and set in the measuring section of the particle size distribution measuring device, and the measurement was carried out 70 times. In the obtained number particle size distribution, the particle size (D50) was determined to be 50% when the number ratios were integrated from the one with the smallest particle size. This particle size (D50) corresponds to the dispersed particle size of carbon black. Dispersibility was evaluated according to the following criteria using visual appearance observation and dispersed particle size. It should be noted that A has the highest dispersibility and D has the lowest dispersibility.
A: Particle size (D50) is less than 1.0 μm B: Particle size (D50) is 1.0 μm or more and less than 3.0 μm C: Particle size (D50) is 3.0 μm or more D: Visually agglomerates Conductive For Examples and Comparative Examples in which VGCF-H was used as the sex carbon material, the dispersed particle size was determined in the same manner as in the case of carbon black, and dispersed according to the following criteria using visual appearance observation and the dispersed particle size. Gender was evaluated. It should be noted that A has the highest dispersibility and C has the lowest dispersibility.
A: Particle size (D50) is less than 7.0 μm B: Particle size (D50) is 7.0 μm or more and less than 10.0 μm C: Visually agglomerated
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 特定ニトリル樹脂を含む実施例1~16、16-2~16-13は、ニトリル基含有単量体由来の構造単位を含まない樹脂であるPVDFを含む比較例1~5、5-2又は5-3と比較して、導電性炭素材料であるカーボンブラックの分散性に優れることが分かる。実施例3及び実施例11~16は式(I)で表される単量体の量を変更しているが、いずれも導電性炭素材料の良好な分散性が得られたことから、導電性炭素材料の分散性の向上はニトリル基含有単量体由来の構造単位の効果によるものであると示唆される。
 導電性炭素材料としてVGCF-Hを用いた実施例16-14~16-16は、ニトリル基含有単量体由来の構造単位を含まない樹脂であるPVDFを含む比較例5-4と比較して、VGCF-Hの分散性に優れることが分かる。このことから、特定ニトリル樹脂は、カーボンブラックだけでなく、気相法炭素繊維の分散にも有効であることがわかる。
Examples 1 to 16 and 16-2 to 16-13 containing the specific nitrile resin are Comparative Examples 1 to 5, 5-2 or 5 containing PVDF, which is a resin containing no structural unit derived from a nitrile group-containing monomer. It can be seen that the dispersibility of carbon black, which is a conductive carbon material, is superior to that of -3. In Examples 3 and 11 to 16, the amount of the monomer represented by the formula (I) was changed, but since good dispersibility of the conductive carbon material was obtained in both cases, the conductivity was obtained. It is suggested that the improvement of the dispersibility of the carbon material is due to the effect of the structural unit derived from the nitrile group-containing monomer.
Examples 16-14 to 16-16 using VGCF-H as the conductive carbon material are compared with Comparative Example 5-4 containing PVDF, which is a resin containing no structural unit derived from a nitrile group-containing monomer. , It can be seen that the dispersibility of VGCF-H is excellent. From this, it can be seen that the specific nitrile resin is effective not only for carbon black but also for dispersion of vapor phase carbon fibers.
<実施例17>
(エネルギーデバイス電極形成用組成物(エネルギーデバイス用電極スラリー)の作製)
 正極活物質(ユミコアジャパン株式会社製、MX6、以下NMCと記載することがある)及び実施例3で得られたエネルギーデバイス用導電性炭素材料分散液3を混合した後、PVDFのNMP溶液及び粘度調整用のNMPを加え混合することでエネルギーデバイス用電極スラリーを得た。なお、エネルギーデバイス用電極スラリー中の固形分比率(正極活物質:導電性炭素材料:特定ニトリル樹脂:PVDF)は、96質量%:2質量%:1質量%:1質量%となるよう混合した。
<Example 17>
(Preparation of composition for forming energy device electrodes (electrode slurry for energy devices))
After mixing the positive electrode active material (manufactured by Yumicore Japan Co., Ltd., MX6, hereinafter sometimes referred to as NMC) and the conductive carbon material dispersion liquid 3 for energy devices obtained in Example 3, the NMP solution of PVDF and An electrode slurry for an energy device was obtained by adding and mixing NMP for adjusting the viscosity. The solid content ratio (positive electrode active material: conductive carbon material: specific nitrile resin: PVDF) in the electrode slurry for energy devices was mixed so as to be 96% by mass: 2% by mass: 1% by mass: 1% by mass. ..
(エネルギーデバイス電極の作製)
 得られたエネルギーデバイス用電極スラリーを厚さ15μmのアルミ箔(集電体)の片面に乾燥後塗工量が230g/mになるよう均等かつ均質に塗布した。その後、乾燥処理を施し、プレスにより密度3.3g/cmになるよう圧延化してエネルギーデバイス電極を得た。
(Manufacturing of energy device electrodes)
The obtained electrode slurry for energy devices was applied evenly and uniformly to one side of an aluminum foil (current collector) having a thickness of 15 μm so that the coating amount after drying was 230 g / m 2. Then, it was dried and rolled by a press to a density of 3.3 g / cm 3 to obtain an energy device electrode.
(エネルギーデバイスの作製)
 直径2.00cmのステンレス製コイン外装容器に、直径1.50cmの円形に切断したエネルギーデバイス電極と、直径1.80cmの円形に切断した厚さ20μmのポリエチレン製微多孔膜からなるセパレータとをこの順に積層し、電解液(1.20MのLiPFを含有するエチレンカーボネート/エチルメチルカーボネート/ジメチルカーボネート=2/2/3(体積比)の混合溶液+ビニレンカーボネート0.80質量%)を溢れない程度に数滴垂らした。さらに、直径1.60cmの円形に切断した金属リチウムとスペーサとして直径1.60cmの円形に切断した厚さ200μmのステンレス板とをこの順に重ね、ポリプロピレン製のパッキンを介してステンレス製のキャップを被せ、コイン電池作製用のかしめ機で密封して評価用のエネルギーデバイスを作製した。
(Manufacturing of energy device)
In a stainless coin outer container having a diameter of 2.00 cm, an energy device electrode cut into a circle with a diameter of 1.50 cm and a separator made of a polyethylene microporous film having a thickness of 20 μm cut into a circle with a diameter of 1.80 cm are placed therein. Laminate in order and do not overflow the electrolytic solution (mixed solution of ethylene carbonate / ethylmethyl carbonate / dimethyl carbonate = 2/2/3 (volume ratio) containing 1.20M LiPF 6 + vinylene carbonate 0.80% by mass). A few drops were dropped. Further, metallic lithium cut into a circle with a diameter of 1.60 cm and a stainless plate with a thickness of 200 μm cut into a circle with a diameter of 1.60 cm as a spacer are stacked in this order, and a stainless cap is put on the metal via a polypropylene packing. , An energy device for evaluation was manufactured by sealing with a caulking machine for manufacturing a coin battery.
<実施例18>
 実施例6で得られたエネルギーデバイス用導電性炭素材料分散液6を使用し、エネルギーデバイス用電極スラリー中の固形分比率(正極活物質:導電性炭素材料:特定ニトリル樹脂:PVDF)を96質量%:2質量%:0.3質量%:1.7質量%に変更した以外は、実施例17と同様にして評価用のエネルギーデバイスを作製した。
<Example 18>
Using the conductive carbon material dispersion for energy devices 6 obtained in Example 6, the solid content ratio (positive electrode active material: conductive carbon material: specific nitrile resin: PVDF) in the electrode slurry for energy devices was 96% by mass. An energy device for evaluation was produced in the same manner as in Example 17 except that it was changed to%: 2% by mass: 0.3% by mass: 1.7% by mass.
<実施例19>
 実施例7で得られたエネルギーデバイス用導電性炭素材料分散液7を使用し、エネルギーデバイス用電極スラリー中の固形分比率(正極活物質:導電性炭素材料:特定ニトリル樹脂:PVDF)を96質量%:2質量%:0.8質量%:1.2質量%に変更した以外は、実施例17と同様にして評価用のエネルギーデバイスを作製した。
<Example 19>
Using the conductive carbon material dispersion for energy devices 7 obtained in Example 7, the solid content ratio (positive electrode active material: conductive carbon material: specific nitrile resin: PVDF) in the electrode slurry for energy devices was 96% by mass. An energy device for evaluation was produced in the same manner as in Example 17 except that the ratio was changed to%: 2% by mass: 0.8% by mass: 1.2% by mass.
<実施例20>
 実施例8で得られたエネルギーデバイス用導電性炭素材料分散液8を使用し、エネルギーデバイス用電極スラリー中の固形分比率(正極活物質:導電性炭素材料:特定ニトリル樹脂:PVDF)を96質量%:2質量%:1.4質量%:0.6質量%に変更した以外は、実施例17と同様にして評価用のエネルギーデバイスを作製した。
<Example 20>
Using the conductive carbon material dispersion for energy devices 8 obtained in Example 8, the solid content ratio (positive electrode active material: conductive carbon material: specific nitrile resin: PVDF) in the electrode slurry for energy devices is 96 mass by mass. An energy device for evaluation was produced in the same manner as in Example 17 except that the ratio was changed to%: 2% by mass: 1.4% by mass: 0.6% by mass.
<実施例21>
 実施例11で得られたエネルギーデバイス用導電性炭素材料分散液11を使用した以外は、実施例18と同様にして評価用のエネルギーデバイスを作製した。
<Example 21>
An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 11 for an energy device obtained in Example 11 was used.
<実施例22>
 実施例12で得られたエネルギーデバイス用導電性炭素材料分散液12を使用した以外は、実施例18と同様にして評価用のエネルギーデバイスを作製した。
<Example 22>
An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 12 for an energy device obtained in Example 12 was used.
<実施例23>
 実施例13で得られたエネルギーデバイス用導電性炭素材料分散液13を使用した以外は、実施例18と同様にして評価用のエネルギーデバイスを作製した。
<Example 23>
An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 13 for an energy device obtained in Example 13 was used.
<実施例24>
 実施例14で得られたエネルギーデバイス用導電性炭素材料分散液14を使用した以外は、実施例18と同様にして評価用のエネルギーデバイスを作製した。
<Example 24>
An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 14 for an energy device obtained in Example 14 was used.
<実施例25>
 実施例15で得られたエネルギーデバイス用導電性炭素材料分散液15を使用した以外は、実施例18と同様にして評価用のエネルギーデバイスを作製した。
<Example 25>
An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 15 for an energy device obtained in Example 15 was used.
<実施例26>
 実施例16で得られたエネルギーデバイス用導電性炭素材料分散液16を使用した以外は、実施例18と同様にして評価用のエネルギーデバイスを作製した。
<Example 26>
An energy device for evaluation was produced in the same manner as in Example 18 except that the conductive carbon material dispersion liquid 16 for an energy device obtained in Example 16 was used.
<比較例6>
 比較例1で得られたエネルギーデバイス用導電性炭素材料分散液C1を使用し、エネルギーデバイス用電極スラリー中の固形分比率(正極活物質:導電性炭素材料:PVDF)を96質量%:2質量%:2質量%に変更した以外は、実施例17と同様にして評価用のエネルギーデバイスを作製した。
<Comparative Example 6>
Using the conductive carbon material dispersion C1 for energy devices obtained in Comparative Example 1, the solid content ratio (positive electrode active material: conductive carbon material: PVDF) in the electrode slurry for energy devices was 96% by mass: 2% by mass. %: An energy device for evaluation was produced in the same manner as in Example 17 except that the content was changed to 2% by mass.
<比較例7>
 比較例2で得られたエネルギーデバイス用導電性炭素材料分散液C2を使用した以外は、比較例6と同様にして評価用のエネルギーデバイスを作製した。
<Comparative Example 7>
An energy device for evaluation was produced in the same manner as in Comparative Example 6 except that the conductive carbon material dispersion liquid C2 for an energy device obtained in Comparative Example 2 was used.
<比較例8>
 比較例3で得られたエネルギーデバイス用導電性炭素材料分散液C3を使用した以外は、比較例6と同様にして評価用のエネルギーデバイスを作製した。
<Comparative Example 8>
An energy device for evaluation was produced in the same manner as in Comparative Example 6 except that the conductive carbon material dispersion liquid C3 for an energy device obtained in Comparative Example 3 was used.
<比較例9>
 比較例4で得られたエネルギーデバイス用導電性炭素材料分散液C4を使用した以外は、比較例6と同様にして評価用のエネルギーデバイスを作製した。
<Comparative Example 9>
An energy device for evaluation was produced in the same manner as in Comparative Example 6 except that the conductive carbon material dispersion liquid C4 for an energy device obtained in Comparative Example 4 was used.
<比較例10>
 比較例5で得られたエネルギーデバイス用導電性炭素材料分散液C5を使用した以外は、比較例6と同様にして評価用のエネルギーデバイスを作製した。
<Comparative Example 10>
An energy device for evaluation was produced in the same manner as in Comparative Example 6 except that the conductive carbon material dispersion liquid C5 for an energy device obtained in Comparative Example 5 was used.
(評価用エネルギーデバイスの初期化)
 作製した評価用のエネルギーデバイスを25.0℃の恒温槽内に入れ、充放電装置(東洋システム株式会社、TOSCAT-3200)に接続した。0.10Cで4.2Vまで定電流充電した後、4.2Vで電流値が0.01Cになるまで定電圧充電した。次いで、0.10Cで2.7Vまで定電流放電した。この充放電を3サイクル繰り返して、評価用エネルギーデバイスを初期化した。なお、単位「C」は“電流値(A)/電池容量(Ah)”を意味する。
(Initialization of evaluation energy device)
The prepared energy device for evaluation was placed in a constant temperature bath at 25.0 ° C. and connected to a charging / discharging device (Toyo System Co., Ltd., TOSCAT-3200). After a constant current charge of 0.10 C to 4.2 V, a constant voltage charge was performed at 4.2 V until the current value became 0.01 C. Then, a constant current was discharged to 2.7 V at 0.10 C. This charging / discharging was repeated for 3 cycles to initialize the evaluation energy device. The unit "C" means "current value (A) / battery capacity (Ah)".
(出力特性の評価)
 初期化した評価用エネルギーデバイスを25.0℃の恒温槽内に入れ、充放電装置(東洋システム株式会社、TOSCAT-3200)に接続した後、下記(1)~(5)の順番に充放電させた。
(1)0.20Cの電流値で4.2Vまで定電流充電した後、4.2Vで電流値が0.01Cになるまで定電圧充電した。0.20Cの電流値で2.7Vまで定電流放電し、放電容量を測定した。
(2)0.20Cの電流値で4.2Vまで定電流充電した後、4.2Vで電流値が0.01Cになるまで定電圧充電した。0.33Cの電流値で2.7Vまで定電流放電し、放電容量を測定した。
(3)0.20Cの電流値で4.2Vまで定電流充電した後、4.2Vで電流値が0.01Cになるまで定電圧充電した。0.50Cの電流値で2.7Vまで定電流放電し、放電容量を測定した。
(4)0.20Cの電流値で4.2Vまで定電流充電した後、4.2Vで電流値が0.01Cになるまで定電圧充電した。1.00Cの電流値で2.7Vまで定電流放電し、放電容量を測定した。
(5)0.20Cの電流値で4.2Vまで定電流充電した後、4.2Vで電流値が0.01Cになるまで定電圧充電した。3.00Cの電流値で2.7Vまで定電流放電し、放電容量を測定した。
(Evaluation of output characteristics)
The initialized energy device for evaluation is placed in a constant temperature bath at 25.0 ° C., connected to a charging / discharging device (Toyo System Co., Ltd., TOSCAT-3200), and then charged / discharged in the order of (1) to (5) below. I let you.
(1) After a constant current charge of 0.20 C to 4.2 V, a constant voltage charge was performed at 4.2 V until the current value became 0.01 C. A constant current discharge was performed up to 2.7 V with a current value of 0.20 C, and the discharge capacity was measured.
(2) After a constant current charge of 0.20 C to 4.2 V, a constant voltage charge was performed at 4.2 V until the current value became 0.01 C. A constant current discharge was performed up to 2.7 V with a current value of 0.33 C, and the discharge capacity was measured.
(3) After a constant current charge of 0.20 C to 4.2 V, a constant voltage charge was performed at 4.2 V until the current value became 0.01 C. A constant current discharge was performed up to 2.7 V with a current value of 0.50 C, and the discharge capacity was measured.
(4) After a constant current charge of 0.20 C to 4.2 V, a constant voltage charge was performed at 4.2 V until the current value became 0.01 C. A constant current discharge was performed up to 2.7 V with a current value of 1.00 C, and the discharge capacity was measured.
(5) After a constant current charge of 0.20 C to 4.2 V, a constant voltage charge was performed at 4.2 V until the current value became 0.01 C. A constant current discharge was performed up to 2.7 V at a current value of 3.00 C, and the discharge capacity was measured.
 0.20Cでの放電容量と3.00Cでの放電容量を用いて下式で維持率を算出し、以下の基準で出力特性を評価した。なお、Aが最も出力特性に優れ、Dが最も出力特性に劣ることを示す。結果を表5に示す。
維持率=3.00Cでの放電容量×100/0.20Cでの放電容量
A:85%以上
B:80%以上、85%未満
C:75%以上、80%未満
D:75%未満
The maintenance rate was calculated by the following formula using the discharge capacity at 0.20 C and the discharge capacity at 3.00 C, and the output characteristics were evaluated according to the following criteria. It is shown that A has the best output characteristics and D has the worst output characteristics. The results are shown in Table 5.
Maintenance rate = Discharge capacity at 3.00C x Discharge capacity at 100 / 0.20C A: 85% or more B: 80% or more, less than 85% C: 75% or more, less than 80% D: less than 75%
(直流抵抗の評価)
 評価用エネルギーデバイスの出力特性を評価した結果を用いて、直流抵抗を評価した。
横軸に上記(1)~(5)の放電時の電流値を、縦軸に放電前と放電開始5秒後の電圧差をプロットし、その傾きから直流抵抗を算出した。
(Evaluation of DC resistance)
The DC resistance was evaluated using the result of evaluating the output characteristics of the evaluation energy device.
The horizontal axis plots the current values during discharge of (1) to (5) above, and the vertical axis plots the voltage difference between before discharge and 5 seconds after the start of discharge, and the DC resistance is calculated from the slope.
(サイクル特性の評価)
 出力特性を評価したエネルギーデバイスを25.0℃の恒温槽内に入れ、充放電装置(東洋システム株式会社、TOSCAT-3200)に接続した。0.10Cで4.2Vまで定電流充電した後、4.2Vで電流値が0.01Cになるまで定電圧充電した。0.10Cで2.7Vまで定電流放電し、放電容量を測定した。この充放電を20回繰り返した。20回充放電を繰り返した後の評価用エネルギーデバイスの直流抵抗を上記の方法で算出し、下式を用いてDCR上昇率を算出して、以下の基準でサイクル特性を評価した。なお、Aが最もサイクル特性に優れ、Cが最もサイクル特性に劣ることを示す。結果を表2に示す。
DCR上昇率=充放電を繰り返す前の直流抵抗×100/充放電を繰り返した後の直流抵抗
A:180%未満
B:180%以上、190%未満
C:190%以上
(Evaluation of cycle characteristics)
The energy device whose output characteristics were evaluated was placed in a constant temperature bath at 25.0 ° C. and connected to a charging / discharging device (Toyo System Co., Ltd., TOSCAT-3200). After a constant current charge of 0.10 C to 4.2 V, a constant voltage charge was performed at 4.2 V until the current value became 0.01 C. A constant current discharge was performed at 0.10 C to 2.7 V, and the discharge capacity was measured. This charging / discharging was repeated 20 times. The DC resistance of the evaluation energy device after repeating charging and discharging 20 times was calculated by the above method, the DCR increase rate was calculated using the following formula, and the cycle characteristics were evaluated according to the following criteria. It is shown that A has the best cycle characteristics and C has the worst cycle characteristics. The results are shown in Table 2.
DCR increase rate = DC resistance before repeated charging / discharging x 100 / DC resistance after repeating charging / discharging A: Less than 180% B: 180% or more, less than 190% C: 190% or more
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 2020年2月28日に出願された国際出願PCT/JP2020/008361の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of the international application PCT / JP2020 / 008361 filed on February 28, 2020 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (15)

  1.  ニトリル基含有単量体由来の構造単位を含む樹脂を含有するエネルギーデバイス用導電性炭素材料分散剤。 A conductive carbon material dispersant for energy devices containing a resin containing a structural unit derived from a nitrile group-containing monomer.
  2.  前記樹脂が、下記式(I)で表される単量体由来の構造単位をさらに含む請求項1に記載のエネルギーデバイス用導電性炭素材料分散剤。
    Figure JPOXMLDOC01-appb-C000001

    [式(I)中、Rは水素原子又はメチル基を示し、Rは水素原子又は1価の炭化水素基を示し、nは1~50の整数を示す。]
    The conductive carbon material dispersant for an energy device according to claim 1, wherein the resin further contains a structural unit derived from a monomer represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001

    [In formula (I), R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom or a monovalent hydrocarbon group, and n represents an integer of 1 to 50. ]
  3.  前記ニトリル基含有単量体由来の構造単位が、前記樹脂の主鎖に含まれる請求項1又は請求項2に記載のエネルギーデバイス用導電性炭素材料分散剤。 The conductive carbon material dispersant for an energy device according to claim 1 or 2, wherein the structural unit derived from the nitrile group-containing monomer is contained in the main chain of the resin.
  4.  前記樹脂に占める前記ニトリル基含有単量体由来の構造単位の質量基準の割合が、80質量%を超え100質量%以下である請求項1~請求項3のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散剤。 The energy device according to any one of claims 1 to 3, wherein the ratio of the structural unit derived from the nitrile group-containing monomer to the resin based on the mass is more than 80% by mass and 100% by mass or less. For conductive carbon material dispersant.
  5.  導電性炭素材料と、請求項1~請求項4のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散剤と、溶媒と、を含有するエネルギーデバイス用導電性炭素材料分散液。 A conductive carbon material dispersion for an energy device containing a conductive carbon material, the conductive carbon material dispersant for an energy device according to any one of claims 1 to 4, and a solvent.
  6.  前記導電性炭素材料の平均一次粒径が、50nm以下である請求項5に記載のエネルギーデバイス用導電性炭素材料分散液。 The conductive carbon material dispersion liquid for an energy device according to claim 5, wherein the average primary particle size of the conductive carbon material is 50 nm or less.
  7.  前記導電性炭素材料が、カーボンブラックを含む請求項5又は請求項6に記載のエネルギーデバイス用導電性炭素材料分散液。 The conductive carbon material dispersion liquid for an energy device according to claim 5 or 6, wherein the conductive carbon material contains carbon black.
  8.  前記導電性炭素材料の平均粒子径が、0.3μm~3μmである請求項5~請求項7のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散液。 The conductive carbon material dispersion liquid for an energy device according to any one of claims 5 to 7, wherein the average particle size of the conductive carbon material is 0.3 μm to 3 μm.
  9.  前記導電性炭素材料が、炭素繊維を含む請求項5に記載のエネルギーデバイス用導電性炭素材料分散液。 The conductive carbon material dispersion liquid for an energy device according to claim 5, wherein the conductive carbon material contains carbon fibers.
  10.  前記溶媒が、N-メチル-2-ピロリドン及びγ-ブチロラクトンの少なくとも一方を含む請求項5~請求項9のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散液。 The conductive carbon material dispersion for an energy device according to any one of claims 5 to 9, wherein the solvent contains at least one of N-methyl-2-pyrrolidone and γ-butyrolactone.
  11.  バインダー樹脂と、活物質と、導電性炭素材料と、前記導電性炭素材料を分散する分散剤と、溶媒と、を含有し、前記分散剤が、請求項1~請求項4のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散剤を含むエネルギーデバイス電極形成用組成物。 The dispersant contains a binder resin, an active material, a conductive carbon material, a dispersant for dispersing the conductive carbon material, and a solvent, and the dispersant is any one of claims 1 to 4. A composition for forming an energy device electrode, which comprises the conductive carbon material dispersant for an energy device according to.
  12.  活物質と、請求項5~請求項10のいずれか1項に記載のエネルギーデバイス用導電性炭素材料分散液と、を混合して活物質分散液を調製する工程と、前記活物質分散液にバインダー樹脂を添加する工程と、を有するエネルギーデバイス電極形成用組成物の製造方法。 A step of preparing an active material dispersion liquid by mixing the active material and the conductive carbon material dispersion liquid for an energy device according to any one of claims 5 to 10, and the active material dispersion liquid. A method for producing a composition for forming an energy device electrode, comprising a step of adding a binder resin.
  13.  前記活物質分散液に、導電性炭素材料を添加する工程を有する請求項12に記載のエネルギーデバイス電極形成用組成物の製造方法。 The method for producing an energy device electrode forming composition according to claim 12, further comprising a step of adding a conductive carbon material to the active material dispersion liquid.
  14.  集電体と、
     前記集電体の少なくとも一方の表面上に設けられ、請求項12又は請求項13に記載のエネルギーデバイス電極形成用組成物の製造方法により製造されたエネルギーデバイス電極形成用組成物を用いて形成された電極合剤層と、
    を有するエネルギーデバイス電極。
    With the current collector
    It is formed by using an energy device electrode forming composition provided on at least one surface of the current collector and produced by the method for producing an energy device electrode forming composition according to claim 12 or 13. With the electrode mixture layer
    Energy device electrode with.
  15.  請求項14に記載のエネルギーデバイス電極を備えるエネルギーデバイス。 An energy device including the energy device electrode according to claim 14.
PCT/JP2021/007505 2020-02-28 2021-02-26 Conductive carbon material dispersant for energy device, conductive carbon material dispersion for energy device, composition for energy device electrode formation and manufacturing method therefor, energy device electrode, and energy device WO2021172560A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022503365A JPWO2021172560A1 (en) 2020-02-28 2021-02-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/008361 WO2021171568A1 (en) 2020-02-28 2020-02-28 Conductive carbon material dispersant for energy device, conductive carbon material dispersion for energy device, composition for energy device electrode formation and manufacturing method therefor, energy device electrode, and energy device
JPPCT/JP2020/008361 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021172560A1 true WO2021172560A1 (en) 2021-09-02

Family

ID=77490486

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/008361 WO2021171568A1 (en) 2020-02-28 2020-02-28 Conductive carbon material dispersant for energy device, conductive carbon material dispersion for energy device, composition for energy device electrode formation and manufacturing method therefor, energy device electrode, and energy device
PCT/JP2021/007505 WO2021172560A1 (en) 2020-02-28 2021-02-26 Conductive carbon material dispersant for energy device, conductive carbon material dispersion for energy device, composition for energy device electrode formation and manufacturing method therefor, energy device electrode, and energy device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008361 WO2021171568A1 (en) 2020-02-28 2020-02-28 Conductive carbon material dispersant for energy device, conductive carbon material dispersion for energy device, composition for energy device electrode formation and manufacturing method therefor, energy device electrode, and energy device

Country Status (3)

Country Link
JP (1) JPWO2021172560A1 (en)
TW (1) TW202137615A (en)
WO (2) WO2021171568A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203555A (en) * 2013-04-02 2014-10-27 東洋インキScホールディングス株式会社 Composition for secondary battery electrode formation, method for manufacturing the same, secondary battery electrode, and secondary battery
JP2015128006A (en) * 2013-12-27 2015-07-09 花王株式会社 Aqueous conductive paste
JP2016021390A (en) * 2014-06-19 2016-02-04 日本ゼオン株式会社 Conductive material fluid dispersion for electrochemical devices, slurry for electrochemical device positive electrodes, positive electrode for electrochemical devices, and electrochemical device
JP2016065142A (en) * 2014-09-25 2016-04-28 第一工業製薬株式会社 Dispersant for carbon material
WO2018021073A1 (en) * 2016-07-28 2018-02-01 デンカ株式会社 Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery
JP2018067406A (en) * 2016-10-18 2018-04-26 松本油脂製薬株式会社 Dispersant composition for secondary battery slurry and use of the same
JP2018530113A (en) * 2016-03-24 2018-10-11 エルジー・ケム・リミテッド Composition for forming positive electrode of secondary battery, and positive electrode for secondary battery and secondary battery produced using the same
JP2018533175A (en) * 2016-03-24 2018-11-08 エルジー・ケム・リミテッド Conductive material dispersion and secondary battery manufactured using the same
JP2018534731A (en) * 2015-12-10 2018-11-22 エルジー・ケム・リミテッド Conductive material dispersion and lithium secondary battery produced using the same
JP2018534747A (en) * 2015-10-28 2018-11-22 エルジー・ケム・リミテッド Conductive material dispersion and lithium secondary battery produced using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203555A (en) * 2013-04-02 2014-10-27 東洋インキScホールディングス株式会社 Composition for secondary battery electrode formation, method for manufacturing the same, secondary battery electrode, and secondary battery
JP2015128006A (en) * 2013-12-27 2015-07-09 花王株式会社 Aqueous conductive paste
JP2016021390A (en) * 2014-06-19 2016-02-04 日本ゼオン株式会社 Conductive material fluid dispersion for electrochemical devices, slurry for electrochemical device positive electrodes, positive electrode for electrochemical devices, and electrochemical device
JP2016065142A (en) * 2014-09-25 2016-04-28 第一工業製薬株式会社 Dispersant for carbon material
JP2018534747A (en) * 2015-10-28 2018-11-22 エルジー・ケム・リミテッド Conductive material dispersion and lithium secondary battery produced using the same
JP2018534731A (en) * 2015-12-10 2018-11-22 エルジー・ケム・リミテッド Conductive material dispersion and lithium secondary battery produced using the same
JP2018530113A (en) * 2016-03-24 2018-10-11 エルジー・ケム・リミテッド Composition for forming positive electrode of secondary battery, and positive electrode for secondary battery and secondary battery produced using the same
JP2018533175A (en) * 2016-03-24 2018-11-08 エルジー・ケム・リミテッド Conductive material dispersion and secondary battery manufactured using the same
WO2018021073A1 (en) * 2016-07-28 2018-02-01 デンカ株式会社 Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery
JP2018067406A (en) * 2016-10-18 2018-04-26 松本油脂製薬株式会社 Dispersant composition for secondary battery slurry and use of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LV SHENGHUA, HU HAOYAN, HOU YONGGANG, LEI YING, SUN LI, ZHANG JIA, LIU LEIPENG: "Investigation of the Effects of Polymer Dispersants on Dispersion of GO Nanosheets in Cement Composites and Relative Microstructures/Performances", NANOMATERIALS, vol. 8, no. 12, pages 964, XP055850464, DOI: 10.3390/nano8120964 *

Also Published As

Publication number Publication date
WO2021171568A1 (en) 2021-09-02
TW202137615A (en) 2021-10-01
JPWO2021172560A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US9171675B2 (en) Electrical storage device, lithium ion capacitor and negative electrode for lithium ion capacitor
WO2006033173A1 (en) Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device
JP6658733B2 (en) Binder resin composition, electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2018038122A1 (en) Lithium ion secondary battery
JP6789498B2 (en) Compositions for forming energy device electrodes, positive electrodes for energy devices and energy devices
JP6904413B2 (en) Resin for energy device electrode, composition for forming energy device electrode, energy device electrode and energy device
JP6988879B2 (en) Resin mixture for energy device electrode, composition for forming energy device electrode, positive electrode for energy device and energy device
JP6885411B2 (en) Electrodes for energy devices and energy devices
JP6728582B2 (en) Lithium ion secondary battery
WO2021172560A1 (en) Conductive carbon material dispersant for energy device, conductive carbon material dispersion for energy device, composition for energy device electrode formation and manufacturing method therefor, energy device electrode, and energy device
WO2021176963A1 (en) Electrode binder, electrode mixture, energy device electrode, and energy device
WO2020208799A1 (en) Dispersant for positive electrode of power storage device
WO2017138537A1 (en) Binder resin composition, method for producing binder resin composition, composition for forming lithium ion secondary battery electrode, method for producing composition for forming lithium ion secondary battery electrode, electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP7091602B2 (en) Electrodes for energy devices and energy devices
JP2020145073A (en) Electrode binder, electrode mixture, electrode for energy device, and energy device
WO2022004540A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2018087897A1 (en) Resin for energy device electrodes, composition for forming energy device electrode, energy device electrode, and energy device
JPWO2019188430A1 (en) Method for manufacturing electrode binder, electrode mixture, energy device electrode, energy device, energy device resin, carbon material dispersion, and carbon material dispersion
JP2018067400A (en) Composition, collector with ground layer, electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.12.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 21761204

Country of ref document: EP

Kind code of ref document: A1