WO2021172485A1 - Polyurethane resin aqueous dispersion - Google Patents
Polyurethane resin aqueous dispersion Download PDFInfo
- Publication number
- WO2021172485A1 WO2021172485A1 PCT/JP2021/007240 JP2021007240W WO2021172485A1 WO 2021172485 A1 WO2021172485 A1 WO 2021172485A1 JP 2021007240 W JP2021007240 W JP 2021007240W WO 2021172485 A1 WO2021172485 A1 WO 2021172485A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyurethane resin
- weight
- aqueous dispersion
- group
- active hydrogen
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/83—Chemically modified polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/15—Heterocyclic compounds having oxygen in the ring
- C08K5/151—Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
- C08K5/1515—Three-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
Definitions
- the present invention relates to a polyurethane resin aqueous dispersion.
- Polyurethane resin aqueous dispersions are used as highly functional aqueous dispersions in paints, adhesives, fiber processing agents, paper processing agents, inks, etc. because they have excellent film properties obtained by drying.
- solvent-based urethane dissolved in an organic solvent has been used in these applications, but due to the drawbacks of organic solvent toxicity, fire risk, environmental pollution, etc., in recent years, solvent-based urethane to polyurethane resin water-based Switching to dispersion is accelerating.
- the painting is applied to the base material by a painting gun or the like.
- a paint containing a polyurethane resin aqueous dispersion which generally has strong cohesiveness and is easy to form a film, is painted with a painting gun, the paint containing the polyurethane resin aqueous dispersion remaining in the painting gun after using the painting gun is washed and removed. It could be difficult to do.
- An object of the present invention is to provide a polyurethane resin aqueous dispersion which is excellent in storage stability and detergency after using a coating gun, and can obtain a film having excellent appearance after coating, water resistance and water adhesion. There is.
- the present inventors have found a polyurethane resin aqueous dispersion that can solve the above-mentioned problems. That is, in the present invention, the polyurethane resin (U) having an acidic group containing the active hydrogen component (A) and the organic polyisocyanate component (B) as essential constituent monomers and / or the acidic group contained in the polyurethane resin (U).
- the polyurethane resin (U) has a hydroxyl group and has
- the polyurethane resin (U) has an acid value of 5 to 18 mgKOH / g.
- a polyurethane resin aqueous dispersion (Q) having a viscosity of the polyurethane resin (U) of 100 to 1,000,000 Pa ⁇ s at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer. be.
- the polyurethane resin aqueous dispersion of the present invention is excellent in storage stability and detergency after using a painting gun, and can obtain a film having excellent appearance after painting, water resistance and water resistance.
- the polyurethane resin aqueous dispersion (Q) of the present invention is a polyurethane resin (U) having an acidic group containing an active hydrogen component (A) and an organic polyisocyanate component (B) as essential constituent monomers, and / or the polyurethane resin. It contains a polyurethane resin (U1) obtained by neutralizing the acidic group of (U) and an aqueous medium. Further, the polyurethane resin (U) has a hydroxyl group.
- the acid value of the polyurethane resin (U) is 5 to 18 mgKOH / g.
- the viscosity of the polyurethane resin (U) at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer is 100 to 1,000,000 Pa ⁇ s.
- the polyurethane resin aqueous dispersion (Q) of the present invention contains the polyurethane resin (U) and the polyurethane resin (U1), the polyurethane resin (U) or the polyurethane resin (U1) which is a precursor of the polyurethane resin (U1) ( It suffices that at least one of U) satisfies the mode to be satisfied by the following polyurethane resin (U) (preferably the preferred mode of the polyurethane resin (U)), and is a precursor of the polyurethane resin (U) and the polyurethane resin (U1).
- the polyurethane resin (U) may be used alone or in combination of two or more.
- the polyurethane resin (U1) may be used alone or in combination of two or more. At least one kind of polyurethane resin (U) and at least one kind of polyurethane resin (U1) may be used in combination.
- the polyurethane resin (U) is a resin containing the active hydrogen component (A) and the organic polyisocyanate component (B) as essential constituent monomers. Each component will be described below.
- the active hydrogen component (A) is a compound containing an active hydrogen-containing group.
- the active hydrogen-containing group means a group having an active hydrogen atom.
- the active hydrogen atom means a hydrogen atom that is bonded to an oxygen atom, a nitrogen atom, a sulfur atom, etc. and has a high reactivity with an isocyanate group, and as a group having this active hydrogen atom (active hydrogen-containing group), Examples thereof include a hydroxyl group, a primary amino group, a secondary amino group and a thiol group.
- the carboxyl group and the sulfo group are not included in the active hydrogen-containing group.
- the active hydrogen component (A) includes a high molecular weight polyol (A1), a low molecular weight polyol (A2), a compound having a hydrophilic group and an active hydrogen atom (A3), a chain extender (A4), and a reaction terminator (A4).
- A5 and the like can be mentioned.
- Examples of the polymer polyol (A1) include polymer polyols having a number average molecular weight of 300 or more.
- the number average molecular weight of the polymer polyol (A1) is preferably 500 or more, and more preferably 500 to 2,000.
- Mn number average molecular weight
- Mw weight average molecular weight
- GPC gel permeation chromatography
- polymer polyol (A1) examples include polyether polyols, polyester polyols, polycarbonate polyols and the like.
- polyether polyol examples include an aliphatic polyether polyol and an aromatic ring-containing polyether polyol.
- the polyether polyol does not include the polyester polyol and the polycarbonate polyol described later.
- aliphatic polyether polyol examples include an alkylene oxide adduct having 2 to 4 carbon atoms to an aliphatic polyhydric alcohol having 2 to 20 carbon atoms (ethylene glycol, propylene glycol, butanediol, dodecanediol, glycerin, etc.). Be done. Specific examples thereof include polyoxyethylene polyol [polyethylene glycol (hereinafter abbreviated as PEG) and the like], polyoxypropylene polyol [polypropylene glycol and the like], polyoxyethylene / propylene polyol, polytetramethylene ether glycol and the like.
- PEG polyethylene glycol
- PTMG1800 [Mn] 1,800 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.]
- PTMG3000 [Mn 3,000 poly Tetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.]
- PTMG4000 [Mn 4,000 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.]
- PTGL3000 [Mn 3,000 modified PTMG, Hodoya Chemical Industry Co., Ltd.] Manufactured by Sanyo Kasei Kogyo Co., Ltd.] and Sanniks
- polytetramethylene ether glycol having a Mn of 300 to 1300 and polytetramethylene ether glycol having an Mn of 1500 to 4000 is preferable from the viewpoint of water adhesion and heat resistant water adhesion.
- PTMG polytetramethylene ether glycol
- THF tetrahydrofuran
- aromatic ring-containing polyether polyol examples include an alkylene oxide adduct having 2 to 4 carbon atoms added to an aromatic ring and a compound having 6 to 20 carbon atoms (bisphenol, resorcin, etc.) having two or more hydroxyl groups.
- bisphenol A ethylene oxide (hereinafter abbreviated as EO) adduct bisphenol A EO 2 mol adduct, bisphenol A EO 4 mol adduct, bisphenol A EO 6 mol adduct, bisphenol A EO 8 mol adduct.
- PO bisphenol A propylene oxide
- the number average molecular weight of the polyether polyol contained in the active hydrogen component (A) is preferably 500 or more, and more preferably 500 to 2,000.
- polyester polyol examples include condensed polyester polyol, polylactone polyol, castor oil-based polyol and the like.
- the polyester polyol does not include the polycarbonate polyol described later.
- the condensed polyester polyol is a polyester polyol obtained by a low molecular weight (less than Mn300) polyhydric alcohol and a polyvalent carboxylic acid having 2 to 10 carbon atoms or an ester-forming derivative thereof.
- Low molecular weight polyhydric alcohols include aliphatic polyhydric alcohols of less than Mn300 and divalent to octavalent or higher, and alkylene oxides of phenols of less than Mn300 of divalent to 8 or higher (EO, PO, 1, 2). -, 1,3-, 2,3- or 1,4-butylene oxide, etc., hereinafter abbreviated as AO)
- Low molecular weight adducts can be used.
- low molecular weight polyhydric alcohols that can be used in condensed polyester polyols, preferred are ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexaneglycol, and EO or PO low molars of bisphenol A. Additives and combinations thereof.
- polyvalent carboxylic acids having 2 to 10 carbon atoms or ester-forming derivatives thereof that can be used in condensed polyester polyols are aliphatic dicarboxylic acids (succinic acid, adipic acid, azelaic acid, sebacic acid, fumaric acid, maleic acid, etc.).
- Alicyclic dicarboxylic acid (dimeric acid, etc.), aromatic dicarboxylic acid (terephthalic acid, isophthalic acid, phthalic acid, etc.), trivalent or higher polycarboxylic acid (trimellitic acid, pyromellitic acid, etc.), these Anhydrides (succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, etc.), their acid halides (dichloroide adipic acid, etc.), and these low molecular weight alkyl esters (dimethyl succinate, dimethyl phthalate, etc.) In addition, the combined use of these can be mentioned.
- condensed polyester polyol examples include polyethylene adipatediol, polybutylene adipatediol, polyhexamethylene adipatediol, polyhexamethyleneisophthalatediol, polyneopentyl adipatediol, polyethylenepropylene adipatediol, polyethylenebutylene adipatediol, and polybutylene.
- Hexamethylene adipate diol, polydiethylene adipate diol, poly (polytetramethylene ether) adipate diol, poly (3-methylpentylene adipate) diol, polyethylene azelate diol, polyethylene sebacate diol, polybutylene azelate diol, polybutylene comprise Examples thereof include catediol and polyneopentyl terephthalate diol.
- the polylactone polyol is a heavy adduct of a lactone to the low molecular weight polyhydric alcohol, and examples of the lactone include lactones having 4 to 12 carbon atoms ( ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, etc.). Be done.
- Specific examples of the polylactone polyol include polycaprolactone diol, polyvalerolactone diol, polycaprolactone triol and the like.
- Castor oil-based polyol includes castor oil and modified castor oil modified with polyol or AO.
- Modified castor oil can be produced by transesterification of castor oil and polyol and / or addition of AO.
- Examples of castor oil-based polyols include castor oil, trimethylolpropane-modified castor oil, pentaerythritol-modified castor oil, and EO (4 to 30 mol) adducts of castor oil.
- polycarbonate polyol examples include the low molecular weight polyhydric alcohol, a low molecular weight carbonate compound (for example, a dialkyl carbonate having an alkyl group having 1 to 6 carbon atoms, an alkylene carbonate having an alkylene group having 2 to 6 carbon atoms, and a polycarbonate polyol having 6 to 9 carbon atoms.
- polycarbonate polyol examples include polyhexamethylene carbonate diol, polypentamethylene carbonate diol, polytetramethylene carbonate diol and poly (tetramethylene / hexamethylene) carbonate diol (for example, 1,4-butanediol and 1,6-hexane).
- Diol) and the like obtained by condensing a diol while dealcoholizing it with a dialkyl carbonate.
- T4672 2,000 poly (tetramethylene / hexamethylene) carbonate diol, Asahi Kasei Chemicals Co., Ltd. ) Made] and the like.
- the active hydrogen component (A) is a polytetramethylene ether which is a high molecular weight polyol (A1) from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the range described in detail later and from the viewpoint of water adhesion and heat resistance. It is preferable that glycol is contained as an essential constituent monomer.
- the Mn of the polytetramethylene ether glycol is preferably 500 to 2,000 from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the range described in detail later.
- Examples of the small molecule polyol (A2) include small molecule polyols having a number average molecular weight (hereinafter abbreviated as Mn) of less than 300.
- Mn number average molecular weight
- the Mn of the small molecule polyol is a calculated value from the chemical formula.
- Examples of the low molecular weight polyol (A2) having a Mn of less than 300 include aliphatic dihydric alcohols, aliphatic trihydric alcohols, and tetrahydric or higher aliphatic alcohols.
- a dihydric aliphatic alcohol is preferable from the viewpoint of water resistance and heat-resistant yellowing, and the aliphatic dihydric alcohol includes ethylene glycol and propylene glycol.
- 1,4-Butanediol, neopentyl glycol and 1,6-hexanediol are particularly preferable, and trimethylolpropane is particularly preferable as the aliphatic trihydric alcohol.
- examples of the hydrophilic group of the compound (A3) having a hydrophilic group and an active hydrogen atom include a carboxyl group, a carboxylate group, a sulfo group and a sulfonat group. Further, as described above, the active hydrogen atom does not include a hydrogen atom derived from a carboxyl group and a sulfo group.
- examples of the compound (A3) having a hydrophilic group and an active hydrogen atom include a compound having a carboxyl group and having 2 to 10 carbon atoms [dialkylol alkanoic acid (2,2-dimethylolpropionic acid, 2,2-dimethylol).
- the active hydrogen component (A) may contain a compound (A31) having an acidic group (carboxyl group, etc.) as an essential constituent monomer among the compounds (A3) having a hydrophilic group and an active hydrogen atom. preferable.
- an acidic group can be introduced into the polyurethane resin (U).
- the compound (A31) is used in an amount that allows the acid value of the polyurethane resin (U) to be within the range described in detail later.
- Examples of the chain extender (A4) include compounds having two or more active hydrogen atoms other than (A1) to (A3), and specific examples thereof include water and diamines having 2 to 10 carbon atoms (ethylenediamine, propylene). Diamine, hexamethylenediamine, isophoronediamine, toluenediamine, piperazine, etc.), polyalkylene polyamines having 2 to 10 carbon atoms (diethylenetriamine, triethylenetetramine, etc.), hydrazine or a derivative thereof (dibasic acid dihydrazide, for example, adipic acid dihydrazide, etc.) ) And amino alcohols having 2 to 10 carbon atoms (ethanolamine, diethanolamine, 2-amino-2-methylpropanol, triethanolamine, etc.) and the like.
- reaction terminator (A5) examples include monoalcohols having 1 to 8 carbon atoms (methanol, ethanol, isopropanol, cellosolves, carbitols, etc.) and monoamines having 1 to 10 carbon atoms (monomethylamine, monoethylamine, mono).
- Mono or dialkylamines such as butylamines, dibutylamines and monooctylamines; mono- or dialkanolamines such as monoethanolamines, diethanolamines, propanolamines and diisopropanolamines) and the like.
- the active hydrogen component (A) contains a reaction terminator (A5).
- the chain extender (A4) and the reaction terminator (A5) affect the urea group content described later and also the viscosity of the polyurethane resin (U), they are used in an amount within a range that does not impair the effects of the present invention. There is a need to. Specifically, it is necessary to use the amount in the range in which the viscosity of the polyurethane resin (U) becomes a value described in detail later. Therefore, it is preferable to use the chain extender (A4) and the reaction terminator (A5) in an amount such that the urea group content in the polyurethane resin (U) becomes a value described later.
- the active hydrogen component (A) may be used alone or in combination of two or more.
- the organic polyisocyanate component (B) which is an essential constituent monomer of the polyurethane resin (U), is a compound having 2 to 3 or more isocyanate groups, and those conventionally used in polyurethane resin production and the like are used. Can be used.
- the organic polyisocyanate component (B) includes an aliphatic polyisocyanate (b1) having 4 to 22 carbon atoms, an alicyclic polyisocyanate (b2) having 8 to 18 carbon atoms, and an aromatic aliphatic polyisocyanate having 10 to 17 carbon atoms. (B3), aromatic polyisocyanates (b4) having 8 to 22 carbon atoms and derivatives of (b1) to (b4) (for example, isocyanurates) and the like can be mentioned.
- Examples of the aliphatic polyisocyanate (b1) having 4 to 22 carbon atoms include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, and 2-. Isocyanatoethyl-2,6-diisocyanatohexanoate and the like can be mentioned.
- Examples of the alicyclic polyisocyanate (b2) having 8 to 18 carbon atoms include isophorone diisocyanate (IPDI), dicyclohexylmethane 4,4'-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, and methylcyclohexylene diisocyanate (hydrogenated TDI). , Bis (2-isosianatoethyl) -4-cyclohexene-1,2-dicarboxylate, 2,5- or 2,6-norbornene diisocyanate and the like.
- IPDI isophorone diisocyanate
- MDI dicyclohexylmethane 4,4'-diisocyanate
- TDI methylcyclohexylene diisocyanate
- aromatic aliphatic polyisocyanate (b3) having 10 to 17 carbon atoms examples include m- and / or p-xylene diisocyanate (XDI), ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylene diisocyanate (TMXDI) and the like. Can be mentioned.
- aromatic polyisocyanate (b4) having 8 to 22 carbon atoms examples include 1,3- or 1,4-phenylenediocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI), 4,4'-or. 2,4'-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, 4,4', 4 ′′ -triphenylmethane triisocyanate, m- or p-isocyanatophenylsulfonyl isocyanate, crude MDI and the like. Be done.
- organic polyisocyanate components (B), (b1) and (b2) are preferable from the viewpoint of mechanical properties and weather resistance of the obtained film, and (b2) is more preferable, and (b2) is particularly preferable. IPDI and hydrogenated MDI.
- the organic polyisocyanate component (B) may be used alone or in combination of two or more. Among them, the organic polyisocyanate component (B) preferably contains a chain aliphatic polyisocyanate (b1) having 4 to 22 carbon atoms and / or an alicyclic polyisocyanate (b2) having 8 to 18 carbon atoms.
- the type of the organic polyisocyanate component (B) affects the urethane group content described later and also affects the viscosity of the polyurethane resin (U) described in detail later, it is necessary to use the organic polyisocyanate component (B) within a range that does not impair the effects of the present invention. There is. Specifically, it is necessary to use the polyurethane resin (U) in a range in which the viscosity becomes a value described later. Therefore, as the type of the organic polyisocyanate component (B), it is preferable to use an amount in which the urethane group content in the polyurethane resin (U) becomes a value described later.
- the polyurethane resin (U) may have a constituent monomer other than the active hydrogen component (A) and the organic polyisocyanate component (B).
- the constituent monomers other than the active hydrogen component (A) and the organic polyisocyanate component (B) include polyepoxy compounds having 2 to 30 carbon atoms (1,6-hexanediol diglycidyl ether, trimethylolpropane polyglycidyl ether, etc.). ) Etc. can be mentioned.
- the viscosity of the polyurethane resin (U) at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer is 100 to 1,000,000 Pa ⁇ s.
- the viscosity of the polyurethane resin (U) at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer is 100 to 150,000 Pa from the viewpoint of cleanability and appearance after using a painting gun.
- -It is preferably s. Further, from the viewpoint of water resistance and heat resistant water adhesion, it is more preferably 3,500 to 13,000 Pa ⁇ s, further preferably 3,500 to 9,000 Pa ⁇ s, and 3,500 to 3,500 to s.
- the viscosity using a rheometer can be measured under the following conditions using, for example, "MCR-302" manufactured by AntonioPaar. (Measurement condition) Measuring jig: Parallel plate “PP-08" (diameter 8 mm) Distance between plates: 0.5 mm Measurement temperature: 25 ° C Measurement mode: Rotational shear rate: 0.1 / sec
- polytetramethylene ether glycol which is a high molecular weight polyol (A1), is used as the active hydrogen component (A), and the urethane group content and The urethane group content is set to a preferable value described later, and the equivalent ratio of isocyanate groups / active hydrogen atoms is set to a preferable value described later for the active hydrogen component (A) and the organic polyisocyanate component (B) constituting the polyurethane resin (U).
- the molecular weight of the polyurethane resin (U) is set to a preferable value described later, and the acid value is set to a value described later, and the like can be mentioned.
- the molecular weight of the polyurethane resin (U) can be increased by increasing the equivalent ratio of isocyanate groups / active hydrogen atoms within a preferable range described later to increase the molecular weight of the polyurethane resin (U). The viscosity of can be increased.
- the viscosity of the polyurethane resin (U) can be increased by increasing the urethane group content, the urea group content, and the acid value within the range of the values described later. Further, for example, when the viscosity of the polyurethane resin (U) is high, the molecular weight of the polyurethane resin (U) can be lowered by reducing the equivalent ratio of isocyanate groups / active hydrogen atoms within a preferable range described later, and the polyurethane resin (U) can be reduced. The viscosity of U) can be reduced. Further, the viscosity of the polyurethane resin (U) can be reduced by lowering the urethane group content, the urea group content, and the acid value within the range of the values described later.
- the polyurethane resin (U) [including the polyurethane resin (U) which is a precursor of the polyurethane resin (U1)] for measuring the viscosity from the polyurethane resin aqueous dispersion (Q), the following methods and the like are used. Can be mentioned.
- the component other than the polyurethane resin (U) contained in the polyurethane resin aqueous dispersion (Q) [including the neutralizing agent of the polyurethane resin (U) described later] is a volatile component
- the polyurethane resin (containing a neutralizing agent for the polyurethane resin (U) described later) is heated or the like.
- Polyurethane resin (U) can be obtained by volatilizing components other than U).
- the polyurethane resin (U) is purified by known chromatography using a volatile solvent as a mobile phase, and then heated or the like.
- the polyurethane resin (U) can be obtained by removing the volatile solvent and the like.
- the neutralizing agent for the polyurethane resin (U) described later is non-volatile, the components other than the polyurethane resin (U) are removed by the above method after performing a salt exchange reaction with a volatile base. Then, the polyurethane resin (U) can be obtained.
- the urethane group content of the polyurethane resin (U) is 1.0 to 3.5 mmol / g based on the weight of the polyurethane resin (U) from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the above-mentioned viscosity. It is preferably 1.0 to 1.5 mmol / g, more preferably 1.0 to 1.2 mmol / g, and particularly preferably 1.1 to 1.2 mmol / g. preferable.
- the urea group content of the polyurethane resin (U) is preferably 0.8 mmol / g or less based on the weight of the polyurethane resin (U) from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the above-mentioned viscosity. ..
- the urea group content is preferably 0.05 mmol / g or more, preferably 0.5 mmol / g or more, based on the weight of the polyurethane resin (U). It is more preferable to have.
- the ratio of the urea group content to the urethane group content is preferably 0.45 or more from the viewpoint of water adhesion and heat resistant water adhesion, and is preferably 0. It is more preferably 47 to 0.80.
- the ratio of the urea group to the urethane group content can be quantified by 1 1 H-NMR.
- the amounts of the active hydrogen component (A) and the organic polyisocyanate component (B) may be appropriately adjusted.
- the urethane group content can be calculated from the N atom content quantified by the nitrogen analyzer, the ratio of the urea group to the urethane group content, and the alohanate group and burette group content.
- the total amount of N atoms derived from “urethane group” and “urea group” is calculated by subtracting the amount of N atoms derived from "alohaneate group” and "buret group” from “N atom content”. do.
- the amounts of N atoms derived from the "urethane group” and the "urea group” are calculated from the ratio of the urethane group and the urea group, respectively. From this value, the urethane group concentration is calculated.
- the amino group content, the water content and the isocyanate group content in the raw material of the polyurethane resin (U) may be appropriately adjusted.
- the urea group content can be calculated from the N atom content quantified by a nitrogen analyzer, the ratio of the urea group to urethane group contents, and the alohanate group and burette group contents.
- the total amount of N atoms derived from “urethane group” and “urea group” is calculated by subtracting the amount of N atoms derived from "alohaneate group” and “buret group” from "N atom content”. do.
- the amounts of N atoms derived from the "urethane group” and the "urea group” are calculated from the ratio of the urethane group and the urea group, respectively. From this value, the urea group concentration is calculated.
- the total content of the alohanate group and the burette group in the polyurethane resin (U) is 0 based on the weight of the polyurethane resin (U) from the viewpoint of film forming property and water resistance of the obtained film. It is preferably 0.1 mmol / g or less, more preferably 0.03 mmol / g or less, particularly preferably 0.01 mmol / g or less, particularly preferably 0.003 mmol / g or less, and most preferably 0.001 mmol / g or less. Is.
- the amino group content in the raw material of the polyurethane resin (U) and the isocyanate group with respect to the equivalent of the hydroxyl group and the amino group may be appropriately adjusted.
- the reaction temperature can be set to 120 ° C. or lower or 180 ° C. or higher to suppress the formation of alohanate groups and burette groups.
- the content of alohanate group and burette group is measured by gas chromatography.
- the Mn of the polyurethane resin (U) is preferably 1,500 to 8,000, more preferably 2,000 to 7,500, particularly 2,000 to 7,500, from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the above-mentioned viscosity. It is preferably 2,000 to 6,000, particularly preferably 2,000 to 5,500, and most preferably 2,000 to 5,000.
- the Mn of the polyurethane resin (U) can be set in a desired range.
- the Mw of the polyurethane resin (U) is preferably 4,000 to 20,000, more preferably 5,000 to 18,000, and even more preferably 5,000 to 18,000, from the viewpoint of adjusting the viscosity of (U) to the above-mentioned viscosity. It is 6,500 to 15,000, particularly preferably 7,000 to 9,800, and most preferably 7,000 to 7,600.
- Mn and Mw are values measured by the above-mentioned gel permeation chromatography (GPC).
- GPC gel permeation chromatography
- the polyurethane resin (U) has a hydroxyl group.
- the hydroxyl value of the polyurethane resin (U) is preferably 15 to 100 mgKOH / g from the viewpoint of paint gun detergency and appearance.
- Examples of the hydroxyl group of the polyurethane resin (U) include a hydroxyl group derived from the active hydrogen component (A), and the hydroxyl value can be adjusted by adjusting the amounts of the active hydrogen component (A) and the organic polyisocyanate component (B). Can be adjusted to the above-mentioned preferable range.
- the hydroxyl value of the polyurethane resin (U) is a value measured according to JIS K0070 (1992).
- the polyurethane resin (U) has an acidic group.
- the acid value of the polyurethane resin (U) is 5 to 18 mgKOH / g, preferably 5 to 15 mgKOH / g, and more preferably 5 to 10 mgKOH / g from the viewpoint of water resistance and adhesion.
- Examples of the acidic group contained in the polyurethane resin (U) include an acidic group derived from the compound (A31) having an acidic group, and a carboxyl group and a sulfo group.
- the acid value can be adjusted to the above-mentioned preferable range by adjusting the amount of the compound (A31) having an acidic group or the like.
- the acid value of the polyurethane resin (U) is a value measured according to JIS K0070 (1992).
- the weight ratio of the insoluble component generated when the polyurethane resin (U) and acetone (such as 25 ° C. acetone) having a weight 10 times that of the polyurethane resin (U) are stirred at 80 ° C. for 180 minutes in a sealed state is used for painting gun cleaning. From the viewpoint of properties, it is preferably 5% by weight or less based on the weight of the added polyurethane resin (U).
- the following method can be used as a method for measuring the weight ratio of the insoluble component.
- Wg of polyurethane resin (U) is placed in a pressure-resistant airtight container with an inner diameter of 6 cm and a depth of 12 cm together with a stirrer chip having a length of 3 cm. (Acetone at ° C., etc.) is added, and the mixture is stirred at 80 ° C. for 180 minutes in a hermetically sealed manner to obtain a mixed solution.
- the obtained mixed solution is filtered through a SUS mesh (opening 75 ⁇ m) whose weight (W1) has been measured in advance, and then filtered with acetone (the same weight as acetone charged in a pressure-resistant airtight container such as 25 ° C. acetone). To wash.
- Weight ratio of insoluble component (%) ⁇ (W2-W1) / W ⁇ x 100
- polyurethane resin (U) for measuring the viscosity is used as a method for obtaining the polyurethane resin (U) for measuring the weight ratio of the insoluble component from the polyurethane resin aqueous dispersion (Q)
- a method of obtaining from the polyurethane resin aqueous dispersion (Q) ”and the like can be used.
- polytetramethylene ether glycol which is a high molecular weight polyol (A1)
- A1 a high molecular weight polyol
- the amount is set to the above-mentioned preferable value, and the equivalent ratio of the isocyanate group / active hydrogen atom is set to the above-mentioned preferable value (0.6) with respect to the active hydrogen component (A) and the organic polyisocyanate component (B) constituting the polyurethane resin (U).
- the molecular weight of the urethane resin (U) is set to the above-mentioned preferable value
- the acid value is set to the above-mentioned value.
- the weight ratio of the insoluble component of the polyurethane resin (U) when the weight ratio of the insoluble component of the polyurethane resin (U) is high, the molecular weight of the polyurethane resin (U) can be lowered by reducing the equivalent ratio of the isocyanate group / active hydrogen atom within a preferable range described later. The weight ratio of the insoluble component can be reduced. Further, by lowering the urethane group content, the urea group content, and the acid value within the above-mentioned range, the weight ratio of the insoluble component can be reduced.
- the polyurethane resin (U1) in the present invention is a polyurethane resin obtained by neutralizing the acidic group of the polyurethane resin (U).
- the acidic group of the polyurethane resin (U) is preferably an acidic group derived from the compound (A31) having an acidic group (carboxyl group or the like).
- Examples of the neutralizing agent used for neutralizing the acidic group derived from the compound (A31) include ammonia, amine compounds having 1 to 20 carbon atoms, and hydroxides of alkali metals (sodium, potassium, lithium, etc.). ..
- Examples of amine compounds having 1 to 20 carbon atoms include primary amines (monomethylamine, monoethylamine, monobutylamine, monoethanolamine, 2-amino-2-methyl-1-propanol, etc.) and secondary amines (dimethylamine, diethylamine). , Dibutylamine, diethanolamine, N-methyldiethanolamine, etc.) and tertiary amines (trimethylamine, triethylamine, dimethylethylamine, N, N-dimethylaminoethanol, triethanolamine, etc.) and the like.
- amine compounds having a low vapor pressure at 25 ° C. are preferable from the viewpoint of the odor of the aqueous dispersion and the water resistance of the obtained film, and more preferable are triethylamine, monoethanolamine, diethanolamine and N-methyl. Diethanolamine, N, N-dimethylaminoethanol.
- the aqueous dispersion (Q) of the polyurethane resin (U) in the present invention can be produced by dispersing the polyurethane resin (U) and / or the polyurethane resin (U1) in water.
- the polyurethane resin aqueous dispersion (Q) of the present invention may be used as an antioxidant, an antioxidant, a weathering stabilizer, a plasticizer, a mold release agent, etc., if necessary.
- Additives can be included.
- the amount of these additives used is preferably 10% by weight or less, more preferably 3% by weight or less, and particularly preferably 1% by weight or less, based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1). ..
- the polyurethane resin aqueous dispersion (Q) of the present invention is produced by producing the polyurethane resin (U) and / or the polyurethane resin (U1) by the following methods (1), (2), (3) or (4). It can be manufactured with.
- (1) A method in which an active hydrogen component (A) and an organic polyisocyanate component (B) are collectively mixed, and after a urethanization reaction, the above-mentioned neutralizing agent is mixed if necessary and dispersed in an aqueous medium.
- a urethane prepolymer (P) having an isocyanate group at the terminal obtained by reacting an active hydrogen component (A) [(A1) to (A3), etc.] with an organic polyisocyanate component (B) is produced.
- an extension reaction is carried out with a chain extender (A4), and then a stop reaction is carried out with a reaction terminator (A5).
- the neutralizing agent is mixed in a predetermined weight ratio and dispersed in an aqueous medium.
- the aqueous medium include water (pure water and the like) and a mixture of water and an organic solvent described later.
- the active hydrogen component (A) contains a compound (A3) containing a hydrophilic group and an active hydrogen atom. ..
- the polyurethane resin aqueous dispersion (Q) in the present invention includes, if necessary, a urethane prepolymer (P) and a polyurethane resin from the viewpoint of dispersibility of the polyurethane resin (U) and the polyurethane resin (U1) and the stability of the aqueous dispersion. (U) and / or the polyurethane resin (U1) may be dispersed in water in the presence of the dispersant (g).
- Dispersants (g) include nonionic surfactants (g1), anionic surfactants (g2), cationic surfactants (g3), amphoteric surfactants (g4) and other emulsified surfactants (g5). ).
- the dispersant (g) may be used alone or in combination of two or more.
- nonionic surfactant (g1) examples include an AO-added nonionic surfactant and a polyhydric alcohol-based nonionic surfactant.
- the AO addition type includes EO addition of an aliphatic alcohol having 10 to 20 carbon atoms, EO addition of phenol, EO addition of nonylphenol, EO addition of alkylamine having 8 to 22 carbon atoms, and EO addition of polypropylene glycol.
- Examples of the polyhydric alcohol type include fatty acid (8 to 24 carbon atoms) esters of polyhydric (3 to 8 or higher) alcohols (2 to 30 carbon atoms) (for example, glycerin monostearate and glycerin). Monooleate, sorbitan monolaurate, sorbitan monooleate, etc.) and alkyl (4 to 24 carbon atoms) poly (polymerization degree 1 to 10) glycoside and the like can be mentioned.
- anionic surfactant (g2) examples include ether carboxylic acid having a hydrocarbon group having 8 to 24 carbon atoms or a salt thereof [lauryl ether sodium acetate and (poly) oxyethylene (additional molars 1 to 100) lauryl ether.
- Sulfate or ether sulfate having a hydrocarbon group having 8 to 24 carbon atoms and salts thereof [sodium lauryl sulfate, (poly) oxyethylene (additional moles 1 to 100) sodium lauryl sulfate, (poly) ) Oxyethylene (additional moles 1 to 100) triethanolamine lauryl sulfate and (poly) oxyethylene (additional moles 1 to 100) coconut oil fatty acid monoethanolamide sodium sulfate, etc.]; Hydrocarbon groups having 8 to 24 carbon atoms Sulfate having (sodium dodecylbenzene sulfonate, etc.); sulfosuccinate having one or two hydrocarbon groups having 8 to 24 carbon atoms; phosphate ester or ether having a hydrocarbon group having 8 to 24 carbon atoms.
- Phosphate esters and their salts [sodium lauryl phosphate and (poly) oxyethylene (additional moles 1 to 100) sodium lauryl ether phosphate, etc.]; fatty acid salts having hydrocarbon groups with 8 to 24 carbon atoms [lauric acid] Sodium and triethanolamine laurate, etc.]; and acylated amino acid salts having a hydrocarbon group having 8 to 24 carbon atoms [sodium coconut oil fatty acid methyl taurine, sodium coconut oil fatty acid sarcosin sodium, coconut oil fatty acid sarcosin triethanolamine, N- Palm oil fatty acid acyl-L-glutamate triethanolamine, N-coconut oil fatty acid acyl-L-sodium glutamate, sodium lauroylmethyl- ⁇ -alanine, etc.] can be mentioned.
- Examples of the cationic surfactant (g3) include quaternary ammonium salt type [stearyltrimethylammonium chloride, behenyltrimethylammonium chloride, distearyldimethylammonium chloride and lanolin fatty acid ethyl sulfate aminopropylethyldimethylammonium, etc.] and amine salt type. [Diethylaminoethylamide stearate, dilaurylamine hydrochloride, oleylamine hydrochloride, etc.] can be mentioned.
- amphoteric tenside agent (g4) examples include betaine-type amphoteric tenside agents [coconut oil fatty acid amidopropyldimethylaminoacetate betaine, lauryldimethylaminoacetate betaine, 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium. Betaine, laurylhydroxysulfobetaine, lauroylamide ethylhydroxyethylcarboxymethylbetaine sodium hydroxypropyl phosphate, etc.] and amino acid amphoteric tenside [ ⁇ -laurylaminopropionate, etc.] can be mentioned.
- emulsifying dispersants (g5) include, for example, polyvinyl alcohol, starch and derivatives thereof, cellulose derivatives such as carboxymethyl cellulose, methyl cellulose and hydroxyethyl cellulose, carboxyl group-containing (co) polymers such as sodium polyacrylate, and US Patent No. Examples thereof include the emulsion dispersant having a urethane group or an ester group described in 5906704 (for example, a polycaprolactone polyol and a polyether diol linked with a polyisocyanate).
- the dispersant (g) may be used before the urethanization reaction of the polyurethane resin (U), during the urethanization reaction, after the urethanization reaction, before the water dispersion step of the polyurethane resin (U), during the water dispersion step, or after the water dispersion. Although it may be added at the appropriate time, it is preferable to add it before the water dispersion step or during the water dispersion step from the viewpoint of the dispersibility of the polyurethane resin (U) and the stability of the aqueous dispersion.
- the content of the dispersant (g) is preferably 0.01 to 20% by weight, more preferably 0.01 to 10% by weight, particularly preferably 0.01 to 10% by weight, based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1). Is 0.1 to 5% by weight.
- the total weight of the constituent unit derived from the compound (A3) and the dispersant (g) in the polyurethane resin (U) and the polyurethane resin (U1) is based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1). It is preferably 0.01 to 20% by weight, more preferably 0.1 to 15% by weight, and particularly preferably 0.6 to 10% by weight.
- the polyurethane resin aqueous dispersion (Q) in the present invention is an organic solvent [ketone solvent (eg acetone and methyl ethyl ketone), ester solvent (eg ethyl acetate), ether solvent (eg tetrahydrofuran), amide solvent (eg N, N-dimethylformamide and N-methylpyrrolidone), alcohol solvents (eg isopropyl alcohol) and aromatic hydrocarbon solvents (eg toluene)] may be included.
- organic solvent ketone solvent (eg acetone and methyl ethyl ketone), ester solvent (eg ethyl acetate), ether solvent (eg tetrahydrofuran), amide solvent (eg N, N-dimethylformamide and N-methylpyrrolidone), alcohol solvents (eg isopropyl alcohol) and aromatic hydrocarbon solvents (eg toluene)
- the polyurethane resin (U) and the urethane prepolymer (P) are obtained by heating the active hydrogen component (A) and the organic polyisocyanate component (B) in a heatable facility and reacting them.
- Kolben a uniaxial or biaxial kneader, a plastic mill, a universal kneader, or the like, and a method of heating and reacting while stirring or kneading can be mentioned.
- the method of heating and reacting while stirring or kneading increases the homogeneity of the obtained polyurethane resin (U), and the mechanical properties, durability, chemical resistance, abrasion resistance, etc. of the obtained film are increased. Is preferred because it tends to be better.
- the polyurethane resin (U) is preferably reacted at a ratio of an isocyanate group / active hydrogen atom equivalent ratio of 0.6 to 0.95. Further, when the polyurethane resin (U) is produced by reacting the active hydrogen component (A) and the organic polyisocyanate component (B), the weight ratio of water in the reaction system is such that the urea group content is the above-mentioned preferable value. From the viewpoint of adjusting to 1.45% by weight or less based on the weight of the polyurethane resin (U), it is preferable.
- the reaction temperature at the time of producing the polyurethane resin (U) and the urethane prepolymer (P) is 60 to 120 ° C. or 180 to 250 ° C. from the viewpoint of the content of the alohanate group and the burette group of the polyurethane resin (U). It is preferable, more preferably 60 to 110 ° C. or 180 to 240 ° C., and most preferably 60 to 100 ° C. or 180 to 230 ° C.
- the time for producing the polyurethane resin (U) and the urethane prepolymer (P) can be appropriately selected depending on the equipment used, but is preferably 1 minute to 100 hours, more preferably 3 minutes to 30 hours. It is particularly preferably 5 minutes to 20 hours. Within this range, a polyurethane resin (U) capable of fully exerting the effects of the present invention can be obtained.
- reaction catalysts titanium octylate, bismuth octylate, etc.
- reaction retarders phosphoric acid, etc.
- the amount of these catalysts or reaction retardants added is preferably 0.001 to 3% by weight, more preferably 0.005 to 2% by weight, and particularly preferably 0.01 to, based on the weight of the polyurethane resin (U). 1% by weight.
- any device having a dispersing ability can be used, but temperature control, supply of granular or block-shaped resin, dispersion ability, etc. From the viewpoint, it is preferable to use a rotary dispersion / mixing device, an ultrasonic dispersion / kneader, and a rotary dispersion / mixing device having a particularly excellent dispersion ability is more preferable.
- the main dispersion principle of the rotary dispersion mixing device is that a shearing force is applied to the processed material from the outside by the rotation of the drive unit or the like to make the processed material into fine particles and disperse the particles.
- the rotary dispersion mixing device can be operated under normal pressure, reduced pressure or pressurization.
- rotary dispersion mixer examples include a mixer having general stirring blades such as Max Blend and helical blades, TK homomixer [manufactured by Primix Corporation], Clairemix [manufactured by M-Technique Co., Ltd.], and fill mix.
- TK homomixer manufactured by Primix Corporation
- Clairemix manufactured by M-Technique Co., Ltd.
- fill mix [Primix Corporation], Ultra Turlux [IKA Co., Ltd.], Ebara Milder [Ebara Corporation], Cavitron (Eurotech Co., Ltd.) and Biomixer [Nippon Seiki Co., Ltd.], etc. Is exemplified.
- the number of rotations when the polyurethane resin (U) or urethane prepolymer (P) is dispersed using the rotary dispersion mixing device is preferably 10 to 30,000 rpm, more preferably 20,000 to 20,000 rpm, and particularly. It is preferably 30 to 10000 rpm.
- the main dispersion principle of the ultrasonic dispersion device is to apply energy from the outside to the processed material by the vibration of the drive unit to make it fine particles and disperse it.
- the ultrasonic disperser can be operated under normal pressure, reduced pressure or pressurization.
- an ultrasonic disperser commercially available from Ikemoto Rika Kogyo Co., Ltd., Cosmo Bio Co., Ltd., Ginsen Co., Ltd., etc. can be used.
- the frequency at which the polyurethane resin (U) or urethane prepolymer (P) is dispersed using the ultrasonic disperser is preferably 1 to 100 kHz, more preferably 3 to 60 kHz, particularly from the viewpoint of dispersion ability. It is preferably 10 to 30 kHz.
- the main dispersion principle of the kneader is to knead the processed material in the rotating part of the kneader to give energy to make it into fine particles and disperse it. Further, the kneader can be operated under normal pressure, reduced pressure or pressurization.
- a twin-screw extruder [PCM-30 manufactured by Ikegai Corp.]
- a kneader [KRC kneader manufactured by Kurimoto, Ltd., etc.]
- a universal mixer [Hibismix manufactured by Primix Corporation, etc.]
- Plast mills [Lab plast mills manufactured by Toyo Seiki Seisakusho Co., Ltd., etc.]
- the number of rotations when the polyurethane resin (U) or urethane prepolymer (P) is dispersed using a kneader is preferably 1 to 1000 rpm, more preferably 3 to 500 rpm, and particularly preferably 10. ⁇ 200 rpm.
- the time for treating the polyurethane resin (U) or urethane prepolymer (P) and water in the disperser is preferably 10 seconds to 10 hours, more preferably 1 minute to 3 hours, most preferably from the viewpoint of dispersibility. Is 10 to 60 minutes.
- one kind of additive selected from pH adjusters, defoamers, antifoaming agents, antioxidants, anticoloring agents, plasticizers, mold release agents, etc. is used as necessary. The above can be added. Further, if necessary, solvent removal, concentration, dilution and the like may be performed after dispersion.
- the device for reacting the chain extender (A4) and the reaction terminator (A5) after dispersing the urethane prepolymer (P) is not particularly limited, but the reaction is carried out while mixing with the disperser or a static mixer or the like. It is preferable to let it.
- the polyurethane resin aqueous dispersion (Q) of the present invention is a polyurethane resin (U') other than the polyurethane resin (U) and the polyurethane resin (U1) as long as the effects of the present invention are not impaired, and a rheometer is used. It may contain a polyurethane resin (U'1) having a viscosity of more than 1,000,000 Pa ⁇ s at 25 ° C. measured at a shear rate of 0.1 / s. From the viewpoint of paint gun cleaning property, the weight ratio of the polyurethane resin (U'1) is preferably 40% by weight or less based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1). It is preferably 10% by weight or less, particularly preferably 5% by weight or less, and most preferably 1% by weight or less.
- the polyurethane resin aqueous dispersion (Q) of the present invention contains a reactive group capable of reacting with an active hydrogen-containing group (hydroxyl group or the like) contained in the polyurethane resin (U). It is preferable to contain a cross-linking agent (C) having two or more of them.
- the mixture of the polyurethane resin (U) and the cross-linking agent (C) may form one particle, and the polyurethane resin (U) and the cross-linking agent (C) may be formed. ) May exist in the state of separate particles.
- the cross-linking agent (C) can also be cross-linked with the acidic group of the polyurethane resin (U).
- the cross-linking agent (C) is selected from the group consisting of a blocked isocyanate compound (c1), a melamine compound (c2), an oxazoline compound (c3), a carbodiimide compound (c4), an aziridine compound (c5) and an epoxy compound (c6). At least one cross-linking agent can be mentioned.
- the blocked isocyanate compound (c1) is not particularly limited as long as it has two or more blocked isocyanate groups in the molecule, and for example, the polyisocyanate compound exemplified as the organic polyisocyanate component (B) is known as a blocking agent [ Phenols, secondary or tertiary alcohols, oximes, aliphatic or aromatic secondary amines, phthalate imides, lactams, active methylene compounds (malonic acid dialkyl esters, etc.), pyrazole compounds (Pyrazole and 3,5-dimethylpyrazole, etc.) and acidic sodium sulfite, etc.] and the like are blocked.
- a blocking agent Phenols, secondary or tertiary alcohols, oximes, aliphatic or aromatic secondary amines, phthalate imides, lactams, active methylene compounds (malonic acid dialkyl esters, etc.), pyrazole compounds (Pyrazole and 3,5-di
- blocked isocyanate compounds (c1) include Duranate series (Duranate 17B-60P, TPA-B80E, MF-B60B, MF-K60B, SBB-70P, SBN-70D, SBF-" manufactured by Asahi Kasei Chemicals Co., Ltd. 70E, E402-B80B, WM44-L70G, etc.) and the like.
- the melamine compound (c2) is not particularly limited as long as it is a methylolated melamine compound or a methoxymethylolated melamine compound having two or more methylol groups or methoxymethylol groups in the molecule, and is, for example, the Uban series manufactured by Mitsui Chemicals Co., Ltd. [Uban 120, 20HS, 2021, 2028, 228, 2860, 22R, etc.], Cymel series manufactured by Nippon Cytec Co., Ltd.
- the oxazoline compound (c3) is not particularly limited as long as it is a compound having two or more oxazoline groups (oxazoline skeleton) in the molecule, and is, for example, 2,2'-isopropyrinebis (4-phenyl-2-oxazoline) or the like.
- Examples thereof include copolymers with (meth) acrylic esters, (meth) acrylic acid amidovinyl acetate, styrene, and ⁇ -methylstyrene styrene sulfonate sodium, etc.].
- Examples of commercially available products of the oxazoline compound (c3) include "Epocross K-2010E”, “Epocross K-2020E” and “Epocross WS-500” manufactured by Nippon Shokubai Co., Ltd.
- the carbodiimide compound (c4) is not particularly limited as long as it is a compound having two or more carbodiimide groups in the molecule, for example, the aliphatic polyisocyanate (b1) having 4 to 22 carbon atoms and an alicyclic having 8 to 18 carbon atoms.
- An aliphatic polycarbodiimide [poly (hexamethylene) obtained by polymerizing a formula polyisocyanate (b2), an aromatic aliphatic polyisocyanate (b3) having 10 to 17 carbon atoms or an aromatic polycarbodiimide (b4) having 8 to 22 carbon atoms.
- Carbodiimide), etc.] alicyclic polycarbodiimide [poly (4,4'-dicyclohexylmethanecarbodiimide), etc.] and aromatic polycarbodiimide [poly (p-phenylene carbodiimide), poly (4,4'-diphenylmethanecarbodiimide) and poly (Diisopropylphenylcarbodiimide), etc.].
- Commercially available products of the carbodiimide compound (c4) include "carbodilite V-01”, “carbodilite V02”, “carbodilite V-03", “carbodilite V-04", and “carbodilite V-05” manufactured by Nisshinbo Holdings. Examples thereof include “carbodilite V-07", “carbodilite V-09”, “carbodilite E-02", “carbodilite E-03A” and “carbodilite E-04".
- the aziridine compound (c5) is not particularly limited as long as it is a compound having two or more aziridinyl groups in the molecule, and is, for example, tetramethylolmethanetris ( ⁇ -aziridinyl propionate) and trimethylolpropane tris ( ⁇ -azili). Ridinyl propionate).
- the epoxy compound (c6) is not particularly limited as long as it is a compound having two or more epoxy groups in the molecule, and is, for example, resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and glycerol.
- examples thereof include polyglycidyl ether, hydrogenated bisphenol A diglycidyl ether, trimethyl propane polyglycidyl ether, pentaerythritol polyglycidyl ether and polypropylene glycol diglycidyl ether.
- the cross-linking agent (C) may be used alone or in combination of two or more.
- the content of the cross-linking agent (C) in the polyurethane resin aqueous dispersion (Q) is preferably 30% by weight or less, more preferably 0.1 to 25% by weight, based on the solid content weight of the polyurethane resin aqueous dispersion (Q). %.
- the solid content concentration [weight ratio of components (solid content) other than volatile components] of the polyurethane resin aqueous dispersion (Q) obtained by the production method of the present invention is preferably from the viewpoint of ease of handling of the aqueous dispersion. It is 20 to 65% by weight, more preferably 25 to 55% by weight.
- For the solid content concentration about 1 g of the aqueous dispersion was thinly spread on a Petri dish, weighed precisely, and then heated at 130 ° C. for 45 minutes using a circulating constant temperature dryer, and then weighed and weighed before heating. It can be obtained by calculating the ratio (percentage) of the residual weight after heating to the weight.
- the ratio of the total weight of the polyurethane resin (U) contained in the polyurethane resin aqueous dispersion (Q) and the polyurethane resin (U) which is a precursor of the polyurethane resin (U1) is the ratio of the polyurethane resin aqueous dispersion (Q). Based on the weight of the solid content, it is preferably 15 to 100% by weight, more preferably 25 to 100% by weight, particularly preferably 40 to 100% by weight, and 55 to 100% by weight. Is most preferable.
- the ratio of the total weight of the polyurethane resin (U) contained in the polyurethane resin aqueous dispersion (Q) and the polyurethane resin (U) which is a precursor of the polyurethane resin (U1) is the ratio of the polyurethane resin aqueous dispersion (Q).
- the weight obtained by subtracting the weight of the cross-linking agent (C) from the weight of the solid content it is preferably 20 to 100% by weight, more preferably 30 to 100% by weight, and 45 to 100% by weight. Is particularly preferable, and 60 to 100% by weight is most preferable.
- the viscosity of the polyurethane resin aqueous dispersion (Q) obtained by the production method of the present invention is preferably 10 to 100,000 mPa ⁇ s, more preferably 10 to 5,000 mPa ⁇ s.
- the viscosity is a value measured at a constant temperature of 25 ° C. using a BL type viscometer.
- the pH of the polyurethane resin aqueous dispersion (Q) obtained by the production method of the present invention is preferably 2 to 12, more preferably 4 to 10.
- the pH is a value measured at 25 ° C. with pH Meter M-12 [manufactured by HORIBA, Ltd.].
- the polyurethane resin aqueous dispersion (Q) of the present invention is an aqueous coating composition, an aqueous adhesive composition, an aqueous fiber processing agent composition (binder composition for pigment printing, a binder composition for non-woven fabric, a bundling agent for reinforcing fibers).
- compositions binder compositions for antibacterial agents, raw material compositions for artificial leather / synthetic leather, etc.
- water-based coating compositions waterproof coating composition, water-repellent coating composition, antifouling coating composition, etc.
- water-based paper treatment agents Although it can be used in compositions, water-based ink compositions, etc., it is particularly preferably used as a water-based paint composition, a water-based adhesive composition, and a water-based fiber processing agent composition because of its excellent film-forming property and water resistance. can do.
- additives such as coating resin, cross-linking agent, catalyst, pigment, pigment dispersant, viscosity modifier, defoamer, leveling agent, preservative, deterioration prevention
- coating resin cross-linking agent
- catalyst pigment, pigment dispersant, viscosity modifier, defoamer, leveling agent, preservative, deterioration prevention
- agents stabilizers, antifreeze agents and the like
- the preparation of the water-based paint using the polyurethane resin aqueous dispersion (Q) of the present invention will be described below.
- the urethane resin (U) in the polyurethane resin aqueous dispersion (Q) of the present invention other water-dispersible resins or water-soluble paints are used in the water-based paint, if necessary, for the purpose of assisting the formation of a coating film and improving the binder function.
- a resin may be used in combination.
- the polyurethane resin aqueous dispersion (Q) used for the aqueous coating material preferably contains the above-mentioned cross-linking agent (C).
- water-dispersible resins or water-soluble resins used in combination with water-based paints include water-dispersible or water-soluble polyurethane resins, polyacrylic resins, polyester resins, etc. other than the polyurethane resin in the present invention. These other resins can be appropriately selected from those commonly used in each application for each application of the water-based coating material.
- the solid content of the polyurethane resin aqueous dispersion (Q) of the present invention in the aqueous coating material is preferably 0.1 to 60% by weight, more preferably 1 to 50% by weight, based on the weight of the aqueous coating material.
- the content of the other resin in the water-based paint is preferably 60% by weight or less, more preferably 50% by weight or less, based on the weight of the water-based paint.
- the amount of the cross-linking agent (C) added to the water-based paint is preferably 30% by weight or less, more preferably 0.1 to 20% by weight, based on the solid content weight of the water-based paint.
- the water-based paint can further contain one or more kinds of pigments, pigment dispersants, viscosity modifiers, antifoaming agents, preservatives, deterioration inhibitors, stabilizers, antifreeze agents, water and the like.
- Pigments include inorganic pigments having a solubility in water of 1 or less (for example, white pigments, black pigments, gray pigments, red pigments, brown pigments, yellow pigments, green pigments, blue pigments, purple pigments and metallic pigments) and organic pigments (for example, purple pigments and metallic pigments).
- inorganic pigments having a solubility in water of 1 or less
- organic pigments for example, purple pigments and metallic pigments.
- the content of the pigment is preferably 50% by weight or less, more preferably 30% by weight or less, based on the weight of the aqueous paint.
- the pigment dispersant include the above-mentioned dispersant (g), and the content of the pigment dispersant is preferably 20% by weight or less, more preferably 15% by weight or less, based on the weight of the pigment.
- Viscosity adjusting agents include thickeners such as inorganic viscosity adjusting agents (sodium silicate, bentonite, etc.), cellulose-based viscosity adjusting agents (methyl cellulose having Mn of 20,000 or more, carboxymethyl cellulose, hydroxymethyl cellulose, etc.), and protein-based viscosity. Adjusters (casein, casein soda, ammonium casein, etc.), acrylics (sodium polyacrylate with Mn of 20,000 or more, ammonium polyacrylate, etc.) and vinyl viscosity adjusters (polyvinyl alcohol with Mn of 20,000 or more) Etc.).
- inorganic viscosity adjusting agents sodium silicate, bentonite, etc.
- cellulose-based viscosity adjusting agents methyl cellulose having Mn of 20,000 or more, carboxymethyl cellulose, hydroxymethyl cellulose, etc.
- protein-based viscosity protein-based viscosity. Adjusters (casein, casein soda, ammonium
- defoaming agent examples include long-chain alcohols (octyl alcohol and the like), sorbitan derivatives (sorbitan monooleate and the like), silicone oils (polymethylsiloxane and polyether-modified silicones and the like) and the like.
- Examples of the preservative include an organic nitrogen-sulfur compound-based preservative and an organic sulfur halide-based preservative.
- Examples of the deterioration inhibitor and stabilizer include hindered phenol-based, hindered amine-based, hydrazine-based, phosphorus-based, benzophenone-based and benzotriazole-based deterioration inhibitor and stabilizer. ..
- Examples of the antifreeze agent include ethylene glycol and propylene glycol.
- the contents of the viscosity regulator, antifoaming agent, preservative, deterioration inhibitor, stabilizer and antifreeze agent are preferably 5% by weight or less, more preferably 3% by weight or less, respectively, based on the weight of the water-based paint. be.
- a solvent may be further added to the water-based paint for the purpose of improving the appearance of the coating film after drying.
- the solvent to be added include monohydric alcohols having 1 to 20 carbon atoms (methanol, ethanol, propanol, etc.), glycols having 1 to 20 carbon atoms (ethylene glycol, propylene glycol, diethylene glycol, etc.), and 3 having 1 to 20 carbon atoms. Alcohols having a value higher than the value (glycerin, etc.) and cellosolves having 1 to 20 carbon atoms (methyl, ethyl cellosolves, etc.) and the like can be used.
- the content of the solvent to be added is preferably 20% by weight or less, more preferably 15% by weight or less, based on the weight of the aqueous coating material.
- the aqueous coating material using the polyurethane resin aqueous dispersion (Q) of the present invention is produced by mixing and stirring the polyurethane resin aqueous dispersion (Q) of the present invention and each of the above-mentioned components. At the time of mixing, all the components may be mixed at the same time, or each component may be added stepwise and mixed.
- the solid content concentration of the water-based paint is preferably 10 to 70% by weight, more preferably 15 to 60% by weight.
- the aqueous adhesive using the polyurethane resin aqueous dispersion (Q) of the present invention will be described below.
- the resin used for the water-based adhesive the polyurethane resin (U) and / or the polyurethane resin (U1) in the polyurethane resin aqueous dispersion (Q) of the present invention may be used as it is, but the SBR latex resin or acrylic resin may be used.
- a water-dispersible or water-soluble resin other than the typical polyurethane resin can be used in combination.
- the ratio of the total weight of the polyurethane resin (U) and the polyurethane resin (U1) to the total weight of the resin is preferably 1% by weight or more, more preferably 10% by weight or more.
- auxiliary materials and additives used in the adhesive for example, a cross-linking agent, a plasticizer, and a tackifier, as long as the cohesiveness of the adhesive containing the polyurethane resin aqueous dispersion (Q) of the present invention is not impaired.
- Fillers, pigments, thickeners, antioxidants, UV absorbers, surfactants, flame retardants and the like can also be used.
- the base material (adhesive body) on which the adhesive is used is not particularly limited.
- a laminate of adherends obtained using an adhesive is also included in the present invention.
- the fiber processing agent containing the polyurethane resin aqueous dispersion (Q) of the present invention includes, if necessary, known defoaming agents, wetting agents, and various resin aqueous dispersions (polyurethane aqueous dispersions other than the present invention, acrylic aqueous dispersions). Body, SBR latex, etc.) and softeners, etc. can be blended.
- these blending amounts are preferably 30% by weight or less (more preferably 20% by weight or less) based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1) in terms of solid content.
- the content is preferably 1% by weight or less (more preferably 0.1 to 0.5% by weight).
- a pH adjuster can be added.
- Examples of the pH adjuster include salts of alkaline substances such as strong bases (alkali metals and the like) and weak acids (acids having a pKa of more than 2.0, such as carbonic acid and phosphoric acid) (sodium bicarbonate and the like), or acidic substances (acetic acid and the like). Can be mentioned.
- the amount of the pH adjuster is preferably 0.01 to 0.3% by weight based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1).
- the solid content (nonvolatile content) concentration of the aqueous fiber processing agent is not particularly limited, but is preferably 10 to 50% by weight, more preferably 15 to 45% by weight.
- the viscosity (25 ° C.) is preferably 10 to 100,000 mPa ⁇ s.
- the part means a weight part.
- a simple pressurizing reaction device equipped with a stirrer and a heating device is provided with a high molecular weight polyol (A1), a low molecular weight polyol (A2), a compound (A3), and an organic polyisocyanate as the active hydrogen component (A) shown in Table 1.
- the component (B) and the organic solvent were charged in the weights shown in Table 1 and stirred at 95 ° C. for 15 hours to carry out a urethanization reaction to produce an acetone solution of a polyurethane resin.
- a polyurethane resin aqueous dispersion (Q-1) containing a polyurethane resin (U1) was obtained by performing a filtration operation in which the content was adjusted to be% by weight and filtered through a SUS mesh having a mesh size of 100 ⁇ m.
- Example 2 ⁇ Examples 2 to 11>
- the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent, and the ion-exchanged water were changed to the contents shown in Table 1, but the same as in Example 1.
- the same procedure was carried out to obtain polyurethane resin aqueous dispersions (Q-2) to (Q-11) containing a polyurethane resin (U1).
- a chain extender (A4) as an active hydrogen component (A) was added.
- a simple pressurizing reaction device equipped with a stirrer and a heating device is provided with a high molecular weight polyol (A1), a low molecular weight polyol (A2), a compound (A3), and an organic polyisocyanate as the active hydrogen component (A) shown in Table 1.
- the component (B) and the organic solvent were charged in the weights shown in Table 1 and stirred at 95 ° C. for 15 hours to carry out a urethanization reaction, and the urethanization reaction was carried out. %) Was manufactured.
- the above isocyanate group content was measured in accordance with JIS K7301-1995, 6.3 Isocyanate group content.
- the reaction terminator (A5) as the active hydrogen component (A) shown in Table 1 was added to the obtained urethane prepolymer acetone solution with stirring at 30 ° C., homogenized at 60 rpm for 60 minutes, and the polyurethane resin acetone solution was added.
- Manufactured While stirring the acetone solution of the obtained polyurethane resin at 30 ° C., 4.49 parts of triethylamine was added as a neutralizing agent, homogenized at 60 rpm for 30 minutes, kept at 30 ° C., and ionized under stirring at 500 rpm.
- the emulsification operation was carried out by gradually adding 628.83 parts of exchanged water. Next, after distilling off acetone at 65 ° C.
- a polyurethane resin aqueous dispersion (Q-12) containing a polyurethane resin (U1) was obtained by performing a filtration operation in which the content was adjusted to be% by weight and filtered through a SUS mesh having a mesh size of 100 ⁇ m.
- Example 12 ⁇ Examples 13 to 14 and 16> In Example 12, except that the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent and the ion-exchanged water were changed to the contents shown in Table 1, the same as in Example 12. The same procedure was carried out to obtain polyurethane resin aqueous dispersions (Q-13) to (Q-14) and (Q-16) containing a polyurethane resin (U1).
- Example 15 the weights of the high molecular weight polyol (A1), the low molecular weight polyol (A2), the compound (A3), the organic polyisocyanate component (B), and the organic solvent as the active hydrogen component (A) are shown in Table 1.
- the same procedure as in Example 12 was carried out except that the contents were changed to produce an acetone solution of urethane prepolymer (isocyanate group content of the solution: 1.25% by weight).
- a polyurethane resin aqueous dispersion containing a polyurethane resin (U1) was carried out in the same manner as in Example 12 except that the weights of the active hydrogen component (A5), the neutralizing agent and the ion-exchanged water were changed to the contents shown in Table 1. (Q-15) was obtained.
- a simple pressurizing reaction device equipped with a stirrer and a heating device is provided with a high molecular weight polyol (A1), a low molecular weight polyol (A2), a compound (A3), and an organic polyisocyanate as the active hydrogen component (A) shown in Table 1.
- the component (B) and the organic solvent were charged in the weights shown in Table 1 and stirred at 95 ° C. for 15 hours to carry out a urethanization reaction, and the urethanization reaction was carried out. %) Was manufactured.
- a polyurethane resin aqueous dispersion (Q-17) containing a polyurethane resin (U1) was obtained by performing a filtration operation in which the content was adjusted to be% by weight and filtered through a SUS mesh having a mesh size of 100 ⁇ m.
- Example 18 In Example 17, except that the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent, and the ion-exchanged water were changed to the contents shown in Table 1, the same as in Example 17. The same procedure was carried out to obtain a polyurethane resin aqueous dispersion (Q-18) containing a polyurethane resin (U1).
- Example 19 90 parts by weight of the polyurethane resin aqueous dispersion (Q-12) produced in Example 12 and 10 parts by weight of the polyurethane resin aqueous dispersion (Q'-1) produced in Comparative Example 1 below are mixed to obtain a polyurethane resin.
- Example 2 the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent, and the ion-exchanged water were changed to the contents shown in Table 2, except that the contents were changed to those shown in Example 1. The same procedure was carried out to obtain comparative polyurethane resin aqueous dispersions (Q'-2) to (Q'-3) containing a comparative polyurethane resin (U1').
- Example 2 the emulsification operation was carried out in the same manner as in Example 1 except that triethylamine was not added and the weight of the ion-exchanged water was changed to the weight shown in Table 2. After that, the steps from the distillation operation of acetone to the filtration operation were carried out in the same manner as in Example 1, and the polyurethane resin aqueous dispersion for comparison (Q'-4) containing the polyurethane resin for comparison (U1') was carried out.
- Q'-4 polyurethane resin aqueous dispersion for comparison
- U1' the polyurethane resin for comparison
- the polymer polyols (A1) used in Examples 1 to 19 and Comparative Examples 1 to 4 are as follows.
- the polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained.
- the urethane group content and urea group content of the polyurethane resins (U) and (U') are quantified by the N atom content quantified by a nitrogen analyzer [ANTEK7000 (manufactured by Antec)] and 1 H-NMR. It was calculated from the ratio of urethane group to urea group and the content of alohanate group and burette group described later. 1 1 H-NMR measurement was carried out by the method described in "Structural Study of Polyurethane Resin by NMR: Takeda Research Institute Bulletin 34 (2), 224-323 (1975)".
- the urea group is derived from the ratio of the integrated amount of hydrogen derived from the urea group near the chemical shift of 6 ppm and the integrated amount of hydrogen derived from the urethane group near the chemical shift of 7 ppm.
- the weight ratio of the urethane group to the urethane group was measured, and the urethane group and urea group contents were calculated from the weight ratio, the N atom content, and the alohanate group and burette group contents.
- the weight ratio of urea group to urethane group is calculated from the ratio of the integrated amount of hydrogen derived from the urea group near the chemical shift of 8 ppm and the integrated amount of hydrogen derived from the urethane group near the chemical shift of 9 ppm.
- the urethane group and urea group contents were calculated from the weight ratio, the N atom content, and the alohanate group and burette group contents.
- the polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained.
- the polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained.
- the resin viscosity of the obtained polyurethane resin was measured using a rheometer (“MCR-302” manufactured by AntonioPaar).
- the polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained.
- the acid value and hydroxyl value of the polyurethane resins (U) and (U') were measured according to JIS K0070 (1992).
- Thickening rate (%) (V2-V1) / V1 ⁇ 100 ⁇ : -50% ⁇ thickening rate ⁇ + 50% ⁇ : -100% ⁇ thickening rate ⁇ -50% or + 50% ⁇ thickening rate ⁇ + 100% X: thickening rate ⁇ -100% or + 100% ⁇ thickening rate
- ⁇ Evaluation method of paint gun cleaning property 70 parts of rutile-type titanium dioxide, 10 parts of "Disperbyk 190" (manufactured by Big Chemie Japan) and 34.3 parts of ion-exchanged water were premixed and then dispersed with a paint shaker for 30 minutes to obtain a pigment-dispersed paste. 205.71 parts of urethane resin aqueous dispersion and 10 parts of "Cymel202" were added to the obtained pigment paste and mixed uniformly to obtain a paint for evaluating paint gun detergency.
- ⁇ There is no paint residue inside the bell, and there is no paint residue in the discharge hole.
- ⁇ There is no paint residue on the inside of the bell, and the paint residue on the discharge hole is at a level where there is no problem with painting.
- ⁇ A little paint remains on the inside of the bell, and a little paint remains on the discharge hole.
- X A considerable amount of paint remains on the inside of the bell and in the discharge hole.
- ⁇ Evaluation method of coating film appearance A commercially available cationic electrodeposition coating test piece is coated with the above-mentioned coating gun detergency evaluation paint by air spray coating so that the film thickness is 20 ⁇ m, preheated at 80 ° C. for 5 minutes, and then 30 at 140 ° C. The test piece was heat-cured for 1 minute to obtain a test piece on which a coating film was formed. The quality ( ⁇ or ⁇ ) of the appearance of the coating film on the test piece was visually evaluated.
- the mixture is applied to a commercially available cationic electrodeposition coating test piece by air spray coating to a thickness of 20 ⁇ m, preheated at 80 ° C. for 5 minutes, and then heat-cured at 140 ° C. for 30 minutes to obtain a coating film. Obtained.
- the obtained coating film was immersed in warm water at 40 ° C. for 240 hours, pulled up, and the surface moisture was removed with a dry cloth, and then dried at 25 ° C. for 2 hours.
- the polyurethane resin aqueous dispersion of the present invention is excellent in storage stability and detergency after using a coating gun, and can obtain a film having excellent appearance after coating, water resistance and water resistance, and thus has a coating composition. It can be suitably used for products, adhesive compositions, fiber processing agent compositions and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
The present invention addresses the problem of providing a polyurethane resin aqueous dispersion that has excellent storage stability and washability when being used in a paint gun and that can provide a coating having excellent post-painting appearance, water-resistant adhesiveness, and hot water-resistant adhesiveness. A polyurethane resin aqueous dispersion (Q) according to the present invention contains: an aqueous medium; and a polyurethane resin (U) having an acidic group and including, as an essential structural monomer, an active hydrogen component (A) and an organic polyisocyanate component (B), and/or a polyurethane resin (U1) obtained by neutralizing the acidic group included in the polyurethane resin (U). The polyurethane resin (U) has a hydroxyl group. The acid value of the polyurethane resin (U) is 5-18 mgKOH/g. The viscosity of the polyurethane resin (U) at 25°C as measured using a rheometer at a shear rate of 0.1/s is 100-1,000,000 Pa·s.
Description
本発明は、ポリウレタン樹脂水性分散体に関する。
The present invention relates to a polyurethane resin aqueous dispersion.
ポリウレタン樹脂水性分散体は、乾燥することにより得られる皮膜特性が優れることから、高機能水性分散体として、塗料、接着剤、繊維加工処理剤、紙処理剤及びインキ等に使用されており、今後も環境保全、省資源及び安全性等の観点から、ますます重要性を増していくと考えられる。従来、これらの用途では有機溶剤に溶解した溶剤系ウレタンが使用されていたが、有機溶剤の毒性、火災の危険性、環境汚染性等の欠点があるため、近年では溶剤系ウレタンからポリウレタン樹脂水性分散体への切り替えに拍車がかかっている。
Polyurethane resin aqueous dispersions are used as highly functional aqueous dispersions in paints, adhesives, fiber processing agents, paper processing agents, inks, etc. because they have excellent film properties obtained by drying. However, it is expected to become more and more important from the viewpoints of environmental protection, resource saving and safety. Conventionally, solvent-based urethane dissolved in an organic solvent has been used in these applications, but due to the drawbacks of organic solvent toxicity, fire risk, environmental pollution, etc., in recent years, solvent-based urethane to polyurethane resin water-based Switching to dispersion is accelerating.
ポリウレタン樹脂水性分散体を塗料用途で用いる場合、その塗料は塗装ガン等によって基材に塗装される。一般的に凝集力が強く、造膜しやすいポリウレタン樹脂水性分散体を含有する塗料を塗装ガンで塗装した場合、塗装ガン使用後に塗装ガン中に残るポリウレタン樹脂水性分散体を含有する塗料を洗浄除去することが困難となる場合があった。
また、ポリウレタン樹脂水性分散体を含有する塗料を塗装ガン等によりスプレー塗装した場合、塗着した時点では塗膜の均一性(表面の平滑性)が低く、塗膜外観が悪化するという問題があった。
この塗装ガン使用後の洗浄性及び外観の問題は、特許文献1のように末端イソシアネート基とブロック化剤とを反応させた低分子量のポリウレタン樹脂の水性分散体を用いることで、改善することができる。しかしながら、特許文献1のポリウレタン樹脂の水性分散体は、長期間保存した場合に増粘し、貯蔵安定性が悪いという問題があった。 When the polyurethane resin aqueous dispersion is used for painting purposes, the painting is applied to the base material by a painting gun or the like. When a paint containing a polyurethane resin aqueous dispersion, which generally has strong cohesiveness and is easy to form a film, is painted with a painting gun, the paint containing the polyurethane resin aqueous dispersion remaining in the painting gun after using the painting gun is washed and removed. It could be difficult to do.
Further, when a paint containing an aqueous dispersion of polyurethane resin is spray-painted with a painting gun or the like, there is a problem that the uniformity of the coating film (surface smoothness) is low at the time of coating and the appearance of the coating film is deteriorated. rice field.
The problems of detergency and appearance after using this coating gun can be improved by using an aqueous dispersion of a low molecular weight polyurethane resin in which a terminal isocyanate group is reacted with a blocking agent as in Patent Document 1. can. However, the aqueous dispersion of the polyurethane resin of Patent Document 1 has a problem that it thickens when stored for a long period of time and has poor storage stability.
また、ポリウレタン樹脂水性分散体を含有する塗料を塗装ガン等によりスプレー塗装した場合、塗着した時点では塗膜の均一性(表面の平滑性)が低く、塗膜外観が悪化するという問題があった。
この塗装ガン使用後の洗浄性及び外観の問題は、特許文献1のように末端イソシアネート基とブロック化剤とを反応させた低分子量のポリウレタン樹脂の水性分散体を用いることで、改善することができる。しかしながら、特許文献1のポリウレタン樹脂の水性分散体は、長期間保存した場合に増粘し、貯蔵安定性が悪いという問題があった。 When the polyurethane resin aqueous dispersion is used for painting purposes, the painting is applied to the base material by a painting gun or the like. When a paint containing a polyurethane resin aqueous dispersion, which generally has strong cohesiveness and is easy to form a film, is painted with a painting gun, the paint containing the polyurethane resin aqueous dispersion remaining in the painting gun after using the painting gun is washed and removed. It could be difficult to do.
Further, when a paint containing an aqueous dispersion of polyurethane resin is spray-painted with a painting gun or the like, there is a problem that the uniformity of the coating film (surface smoothness) is low at the time of coating and the appearance of the coating film is deteriorated. rice field.
The problems of detergency and appearance after using this coating gun can be improved by using an aqueous dispersion of a low molecular weight polyurethane resin in which a terminal isocyanate group is reacted with a blocking agent as in Patent Document 1. can. However, the aqueous dispersion of the polyurethane resin of Patent Document 1 has a problem that it thickens when stored for a long period of time and has poor storage stability.
また、塗料を塗装した物品は、屋外で使用されることがあるため、塗装後の皮膜の基材に対する耐水密着性も求められており、ポリウレタン樹脂水性分散体には、前記の塗装ガン使用後の洗浄性、外観及び貯蔵安定性に加えて、耐水密着性及び耐熱水密着性の両立も求められていた。
In addition, since articles coated with paint may be used outdoors, water resistance of the coated film to the substrate is also required, and the polyurethane resin aqueous dispersion is used after the above-mentioned coating gun is used. In addition to the detergency, appearance and storage stability of the above, it has been required to have both water-resistant and heat-resistant water adhesion.
本発明の課題は、貯蔵安定性、塗装ガン使用後の洗浄性に優れ、塗装後の外観、耐水密着性及び耐熱水密着性に優れた皮膜を得ることができるポリウレタン樹脂水性分散体を提供することにある。
An object of the present invention is to provide a polyurethane resin aqueous dispersion which is excellent in storage stability and detergency after using a coating gun, and can obtain a film having excellent appearance after coating, water resistance and water adhesion. There is.
本発明者らは、鋭意検討を重ねた結果、前記の課題を解決できるポリウレタン樹脂水性分散体を見出した。即ち、本発明は、活性水素成分(A)及び有機ポリイソシアネート成分(B)を必須構成単量体とする酸性基を有するポリウレタン樹脂(U)並びに/又は前記ポリウレタン樹脂(U)が有する酸性基を中和してなるポリウレタン樹脂(U1)と、水性媒体とを含有するポリウレタン樹脂水性分散体であって、
前記ポリウレタン樹脂(U)が水酸基を有し、
前記ポリウレタン樹脂(U)の酸価が5~18mgKOH/gであり、
レオメーターを用いて0.1/sの剪断速度で測定される25℃での前記ポリウレタン樹脂(U)の粘度が100~1,000,000Pa・sであるポリウレタン樹脂水性分散体(Q)である。 As a result of diligent studies, the present inventors have found a polyurethane resin aqueous dispersion that can solve the above-mentioned problems. That is, in the present invention, the polyurethane resin (U) having an acidic group containing the active hydrogen component (A) and the organic polyisocyanate component (B) as essential constituent monomers and / or the acidic group contained in the polyurethane resin (U). A polyurethane resin aqueous dispersion containing a polyurethane resin (U1) obtained by neutralizing the above and an aqueous medium.
The polyurethane resin (U) has a hydroxyl group and has
The polyurethane resin (U) has an acid value of 5 to 18 mgKOH / g.
In a polyurethane resin aqueous dispersion (Q) having a viscosity of the polyurethane resin (U) of 100 to 1,000,000 Pa · s at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer. be.
前記ポリウレタン樹脂(U)が水酸基を有し、
前記ポリウレタン樹脂(U)の酸価が5~18mgKOH/gであり、
レオメーターを用いて0.1/sの剪断速度で測定される25℃での前記ポリウレタン樹脂(U)の粘度が100~1,000,000Pa・sであるポリウレタン樹脂水性分散体(Q)である。 As a result of diligent studies, the present inventors have found a polyurethane resin aqueous dispersion that can solve the above-mentioned problems. That is, in the present invention, the polyurethane resin (U) having an acidic group containing the active hydrogen component (A) and the organic polyisocyanate component (B) as essential constituent monomers and / or the acidic group contained in the polyurethane resin (U). A polyurethane resin aqueous dispersion containing a polyurethane resin (U1) obtained by neutralizing the above and an aqueous medium.
The polyurethane resin (U) has a hydroxyl group and has
The polyurethane resin (U) has an acid value of 5 to 18 mgKOH / g.
In a polyurethane resin aqueous dispersion (Q) having a viscosity of the polyurethane resin (U) of 100 to 1,000,000 Pa · s at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer. be.
本発明のポリウレタン樹脂水性分散体は、貯蔵安定性、塗装ガン使用後の洗浄性に優れ、また、塗装後の外観、耐水密着性及び耐熱水密着性が優れた皮膜を得ることができる。
The polyurethane resin aqueous dispersion of the present invention is excellent in storage stability and detergency after using a painting gun, and can obtain a film having excellent appearance after painting, water resistance and water resistance.
本発明のポリウレタン樹脂水性分散体(Q)は、活性水素成分(A)及び有機ポリイソシアネート成分(B)を必須構成単量体とする酸性基を有するポリウレタン樹脂(U)並びに/又は前記ポリウレタン樹脂(U)が有する酸性基を中和してなるポリウレタン樹脂(U1)と、水性媒体とを含有する。
また、前記のポリウレタン樹脂(U)は、水酸基を有する。
また、前記のポリウレタン樹脂(U)の酸価は、5~18mgKOH/gである。
また、レオメーターを用いて0.1/sの剪断速度で測定される25℃での前記のポリウレタン樹脂(U)の粘度は、100~1,000,000Pa・sである。 The polyurethane resin aqueous dispersion (Q) of the present invention is a polyurethane resin (U) having an acidic group containing an active hydrogen component (A) and an organic polyisocyanate component (B) as essential constituent monomers, and / or the polyurethane resin. It contains a polyurethane resin (U1) obtained by neutralizing the acidic group of (U) and an aqueous medium.
Further, the polyurethane resin (U) has a hydroxyl group.
The acid value of the polyurethane resin (U) is 5 to 18 mgKOH / g.
The viscosity of the polyurethane resin (U) at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer is 100 to 1,000,000 Pa · s.
また、前記のポリウレタン樹脂(U)は、水酸基を有する。
また、前記のポリウレタン樹脂(U)の酸価は、5~18mgKOH/gである。
また、レオメーターを用いて0.1/sの剪断速度で測定される25℃での前記のポリウレタン樹脂(U)の粘度は、100~1,000,000Pa・sである。 The polyurethane resin aqueous dispersion (Q) of the present invention is a polyurethane resin (U) having an acidic group containing an active hydrogen component (A) and an organic polyisocyanate component (B) as essential constituent monomers, and / or the polyurethane resin. It contains a polyurethane resin (U1) obtained by neutralizing the acidic group of (U) and an aqueous medium.
Further, the polyurethane resin (U) has a hydroxyl group.
The acid value of the polyurethane resin (U) is 5 to 18 mgKOH / g.
The viscosity of the polyurethane resin (U) at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer is 100 to 1,000,000 Pa · s.
<ポリウレタン樹脂(U)>
まず、前記の性質を有するポリウレタン樹脂(U)について、ポリウレタン樹脂(U)が満たすべき態様及びポリウレタン樹脂(U)の好ましい態様を説明する。
なお、本発明のポリウレタン樹脂水性分散体(Q)が、ポリウレタン樹脂(U)を含有せず、ポリウレタン樹脂(U1)を含有する場合、ポリウレタン樹脂(U1)の前駆体であるポリウレタン樹脂(U)が、下記のポリウレタン樹脂(U)が満たすべき態様(好ましくはポリウレタン樹脂(U)の好ましい態様)を満たしていれば良い。
また、本発明のポリウレタン樹脂水性分散体(Q)が、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)を含有する場合、ポリウレタン樹脂(U)又はポリウレタン樹脂(U1)の前駆体であるポリウレタン樹脂(U)の少なくとも一方が、下記のポリウレタン樹脂(U)が満たすべき態様(好ましくはポリウレタン樹脂(U)の好ましい態様)を満たしていれば良く、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の前駆体であるポリウレタン樹脂(U)の両方が、下記のポリウレタン樹脂(U)が満たすべき態様(好ましくはポリウレタン樹脂(U)の好ましい態様)を満たしていることが好ましい。
ポリウレタン樹脂(U)は、単独で用いても、2種類以上を併用してもよい。ポリウレタン樹脂(U1)も、単独で用いても、2種類以上を併用してもかまわない。少なくとも1種のポリウレタン樹脂(U)と少なくとも1種のポリウレタン樹脂(U1)を併用してもよい。 <Polyurethane resin (U)>
First, regarding the polyurethane resin (U) having the above-mentioned properties, a mode to be satisfied by the polyurethane resin (U) and a preferable mode of the polyurethane resin (U) will be described.
When the polyurethane resin aqueous dispersion (Q) of the present invention does not contain the polyurethane resin (U) but contains the polyurethane resin (U1), the polyurethane resin (U) which is a precursor of the polyurethane resin (U1) However, it suffices that the following aspects of the polyurethane resin (U) to be satisfied (preferably the preferred aspects of the polyurethane resin (U)) are satisfied.
When the polyurethane resin aqueous dispersion (Q) of the present invention contains the polyurethane resin (U) and the polyurethane resin (U1), the polyurethane resin (U) or the polyurethane resin (U1) which is a precursor of the polyurethane resin (U1) ( It suffices that at least one of U) satisfies the mode to be satisfied by the following polyurethane resin (U) (preferably the preferred mode of the polyurethane resin (U)), and is a precursor of the polyurethane resin (U) and the polyurethane resin (U1). It is preferable that both of the polyurethane resin (U), which is the body, satisfy the aspects to be satisfied by the following polyurethane resin (U) (preferably the preferred embodiment of the polyurethane resin (U)).
The polyurethane resin (U) may be used alone or in combination of two or more. The polyurethane resin (U1) may be used alone or in combination of two or more. At least one kind of polyurethane resin (U) and at least one kind of polyurethane resin (U1) may be used in combination.
まず、前記の性質を有するポリウレタン樹脂(U)について、ポリウレタン樹脂(U)が満たすべき態様及びポリウレタン樹脂(U)の好ましい態様を説明する。
なお、本発明のポリウレタン樹脂水性分散体(Q)が、ポリウレタン樹脂(U)を含有せず、ポリウレタン樹脂(U1)を含有する場合、ポリウレタン樹脂(U1)の前駆体であるポリウレタン樹脂(U)が、下記のポリウレタン樹脂(U)が満たすべき態様(好ましくはポリウレタン樹脂(U)の好ましい態様)を満たしていれば良い。
また、本発明のポリウレタン樹脂水性分散体(Q)が、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)を含有する場合、ポリウレタン樹脂(U)又はポリウレタン樹脂(U1)の前駆体であるポリウレタン樹脂(U)の少なくとも一方が、下記のポリウレタン樹脂(U)が満たすべき態様(好ましくはポリウレタン樹脂(U)の好ましい態様)を満たしていれば良く、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の前駆体であるポリウレタン樹脂(U)の両方が、下記のポリウレタン樹脂(U)が満たすべき態様(好ましくはポリウレタン樹脂(U)の好ましい態様)を満たしていることが好ましい。
ポリウレタン樹脂(U)は、単独で用いても、2種類以上を併用してもよい。ポリウレタン樹脂(U1)も、単独で用いても、2種類以上を併用してもかまわない。少なくとも1種のポリウレタン樹脂(U)と少なくとも1種のポリウレタン樹脂(U1)を併用してもよい。 <Polyurethane resin (U)>
First, regarding the polyurethane resin (U) having the above-mentioned properties, a mode to be satisfied by the polyurethane resin (U) and a preferable mode of the polyurethane resin (U) will be described.
When the polyurethane resin aqueous dispersion (Q) of the present invention does not contain the polyurethane resin (U) but contains the polyurethane resin (U1), the polyurethane resin (U) which is a precursor of the polyurethane resin (U1) However, it suffices that the following aspects of the polyurethane resin (U) to be satisfied (preferably the preferred aspects of the polyurethane resin (U)) are satisfied.
When the polyurethane resin aqueous dispersion (Q) of the present invention contains the polyurethane resin (U) and the polyurethane resin (U1), the polyurethane resin (U) or the polyurethane resin (U1) which is a precursor of the polyurethane resin (U1) ( It suffices that at least one of U) satisfies the mode to be satisfied by the following polyurethane resin (U) (preferably the preferred mode of the polyurethane resin (U)), and is a precursor of the polyurethane resin (U) and the polyurethane resin (U1). It is preferable that both of the polyurethane resin (U), which is the body, satisfy the aspects to be satisfied by the following polyurethane resin (U) (preferably the preferred embodiment of the polyurethane resin (U)).
The polyurethane resin (U) may be used alone or in combination of two or more. The polyurethane resin (U1) may be used alone or in combination of two or more. At least one kind of polyurethane resin (U) and at least one kind of polyurethane resin (U1) may be used in combination.
ポリウレタン樹脂(U)は、前述の通り、活性水素成分(A)及び有機ポリイソシアネート成分(B)を必須構成単量体としてなる樹脂である。
以下各成分について説明する。 As described above, the polyurethane resin (U) is a resin containing the active hydrogen component (A) and the organic polyisocyanate component (B) as essential constituent monomers.
Each component will be described below.
以下各成分について説明する。 As described above, the polyurethane resin (U) is a resin containing the active hydrogen component (A) and the organic polyisocyanate component (B) as essential constituent monomers.
Each component will be described below.
<活性水素成分(A)>
活性水素成分(A)とは、活性水素含有基を含有する化合物である。本発明において活性水素含有基とは、活性水素原子を有する基を意味する。活性水素原子とは、酸素原子、窒素原子及び硫黄原子等に結合し、イソシアネート基との反応性に富んだ水素原子を意味し、この活性水素原子を有する基(活性水素含有基)としては、水酸基、第1級アミノ基、第2級アミノ基及びチオール基等が挙げられる。
尚、本発明においては、カルボキシル基及びスルホ基は活性水素含有基に含まれない。 <Active hydrogen component (A)>
The active hydrogen component (A) is a compound containing an active hydrogen-containing group. In the present invention, the active hydrogen-containing group means a group having an active hydrogen atom. The active hydrogen atom means a hydrogen atom that is bonded to an oxygen atom, a nitrogen atom, a sulfur atom, etc. and has a high reactivity with an isocyanate group, and as a group having this active hydrogen atom (active hydrogen-containing group), Examples thereof include a hydroxyl group, a primary amino group, a secondary amino group and a thiol group.
In the present invention, the carboxyl group and the sulfo group are not included in the active hydrogen-containing group.
活性水素成分(A)とは、活性水素含有基を含有する化合物である。本発明において活性水素含有基とは、活性水素原子を有する基を意味する。活性水素原子とは、酸素原子、窒素原子及び硫黄原子等に結合し、イソシアネート基との反応性に富んだ水素原子を意味し、この活性水素原子を有する基(活性水素含有基)としては、水酸基、第1級アミノ基、第2級アミノ基及びチオール基等が挙げられる。
尚、本発明においては、カルボキシル基及びスルホ基は活性水素含有基に含まれない。 <Active hydrogen component (A)>
The active hydrogen component (A) is a compound containing an active hydrogen-containing group. In the present invention, the active hydrogen-containing group means a group having an active hydrogen atom. The active hydrogen atom means a hydrogen atom that is bonded to an oxygen atom, a nitrogen atom, a sulfur atom, etc. and has a high reactivity with an isocyanate group, and as a group having this active hydrogen atom (active hydrogen-containing group), Examples thereof include a hydroxyl group, a primary amino group, a secondary amino group and a thiol group.
In the present invention, the carboxyl group and the sulfo group are not included in the active hydrogen-containing group.
また、活性水素成分(A)としては、高分子ポリオール(A1)、低分子ポリオール(A2)、親水性基及び活性水素原子を有する化合物(A3)、鎖伸長剤(A4)及び反応停止剤(A5)等が挙げられる。
The active hydrogen component (A) includes a high molecular weight polyol (A1), a low molecular weight polyol (A2), a compound having a hydrophilic group and an active hydrogen atom (A3), a chain extender (A4), and a reaction terminator (A4). A5) and the like can be mentioned.
高分子ポリオール(A1)としては、数平均分子量300以上の高分子ポリオール等が挙げられる。
高分子ポリオール(A1)の数平均分子量は、500以上であることが好ましく、500~2,000であることが更に好ましい。 Examples of the polymer polyol (A1) include polymer polyols having a number average molecular weight of 300 or more.
The number average molecular weight of the polymer polyol (A1) is preferably 500 or more, and more preferably 500 to 2,000.
高分子ポリオール(A1)の数平均分子量は、500以上であることが好ましく、500~2,000であることが更に好ましい。 Examples of the polymer polyol (A1) include polymer polyols having a number average molecular weight of 300 or more.
The number average molecular weight of the polymer polyol (A1) is preferably 500 or more, and more preferably 500 to 2,000.
尚、本明細書において、数平均分子量(以下、Mnと略記することがある)及び重量平均分子量(以下、Mwと略記することがある)は、ポリスチレンを標準としてゲルパーミュエーションクロマトグラフィー(GPC)によって測定されるものである。
Mw及びMnは以下の測定方法で測定される。
(Mw及びMnの測定方法)
試料(高分子ポリオール、ポリウレタン樹脂又はポリウレタン水性分散体)を、DMF中に固形分が0.125重量%となるように加えて、常温で1時間撹拌溶解後、0.3μmの孔径のフィルターでろ過して、得られたろ液に含まれている成分のMwとMnを、DMFを溶媒として、また、ポリスチレンを分子量標準として用いて、GPCにより測定する。
GPC測定条件は以下の通りである。
装置:「HLC-8220GPC」[東ソー(株)製]
カラム:「Guardcolumn α」+「TSKgel α-M」[いずれも東ソー(株)製]
試料溶液:0.125重量%のジメチルホルムアミド溶液
溶離液:ジメチルホルムアミド
溶液注入量:100μl
流量:1ml/分
測定温度:40℃
検出装置:屈折率検出器
基準物質:標準ポリスチレン(TSKstandard POLYSTYRENE)[東ソー(株)製] In the present specification, the number average molecular weight (hereinafter, may be abbreviated as Mn) and the weight average molecular weight (hereinafter, may be abbreviated as Mw) are gel permeation chromatography (GPC) using polystyrene as a standard. ) Is measured.
Mw and Mn are measured by the following measuring methods.
(Measuring method of Mw and Mn)
A sample (high molecular weight polystyrene, polyurethane resin or aqueous polyurethane dispersion) is added to DMF so that the solid content is 0.125% by weight, and the mixture is stirred and dissolved at room temperature for 1 hour, and then filtered through a filter having a pore size of 0.3 μm. After filtration, the components Mw and Mn contained in the obtained filtrate are measured by GPC using DMF as a solvent and polystyrene as a molecular weight standard.
The GPC measurement conditions are as follows.
Equipment: "HLC-8220GPC" [manufactured by Tosoh Corporation]
Column: "Guardcolumn α" + "TSKgel α-M" [both manufactured by Tosoh Corporation]
Sample solution: 0.125 wt% dimethylformamide solution Eluent: Dimethylformamide solution Injection amount: 100 μl
Flow rate: 1 ml / min Measurement temperature: 40 ° C
Detector: Refractive index detector Reference material: Standard polystyrene (TSK standard POLYSTYRENE) [manufactured by Tosoh Corporation]
Mw及びMnは以下の測定方法で測定される。
(Mw及びMnの測定方法)
試料(高分子ポリオール、ポリウレタン樹脂又はポリウレタン水性分散体)を、DMF中に固形分が0.125重量%となるように加えて、常温で1時間撹拌溶解後、0.3μmの孔径のフィルターでろ過して、得られたろ液に含まれている成分のMwとMnを、DMFを溶媒として、また、ポリスチレンを分子量標準として用いて、GPCにより測定する。
GPC測定条件は以下の通りである。
装置:「HLC-8220GPC」[東ソー(株)製]
カラム:「Guardcolumn α」+「TSKgel α-M」[いずれも東ソー(株)製]
試料溶液:0.125重量%のジメチルホルムアミド溶液
溶離液:ジメチルホルムアミド
溶液注入量:100μl
流量:1ml/分
測定温度:40℃
検出装置:屈折率検出器
基準物質:標準ポリスチレン(TSKstandard POLYSTYRENE)[東ソー(株)製] In the present specification, the number average molecular weight (hereinafter, may be abbreviated as Mn) and the weight average molecular weight (hereinafter, may be abbreviated as Mw) are gel permeation chromatography (GPC) using polystyrene as a standard. ) Is measured.
Mw and Mn are measured by the following measuring methods.
(Measuring method of Mw and Mn)
A sample (high molecular weight polystyrene, polyurethane resin or aqueous polyurethane dispersion) is added to DMF so that the solid content is 0.125% by weight, and the mixture is stirred and dissolved at room temperature for 1 hour, and then filtered through a filter having a pore size of 0.3 μm. After filtration, the components Mw and Mn contained in the obtained filtrate are measured by GPC using DMF as a solvent and polystyrene as a molecular weight standard.
The GPC measurement conditions are as follows.
Equipment: "HLC-8220GPC" [manufactured by Tosoh Corporation]
Column: "Guardcolumn α" + "TSKgel α-M" [both manufactured by Tosoh Corporation]
Sample solution: 0.125 wt% dimethylformamide solution Eluent: Dimethylformamide solution Injection amount: 100 μl
Flow rate: 1 ml / min Measurement temperature: 40 ° C
Detector: Refractive index detector Reference material: Standard polystyrene (TSK standard POLYSTYRENE) [manufactured by Tosoh Corporation]
高分子ポリオール(A1)としては、ポリエーテルポリオール、ポリエステルポリオール及びポリカーボネートポリオール等が挙げられる。
Examples of the polymer polyol (A1) include polyether polyols, polyester polyols, polycarbonate polyols and the like.
ポリエーテルポリオールとしては、脂肪族ポリエーテルポリオール及び芳香環含有ポリエーテルポリオール等が挙げられる。
尚、ポリエーテルポリオールには、後述のポリエステルポリオール及びポリカーボネートポリオールは含まれないものとする。 Examples of the polyether polyol include an aliphatic polyether polyol and an aromatic ring-containing polyether polyol.
The polyether polyol does not include the polyester polyol and the polycarbonate polyol described later.
尚、ポリエーテルポリオールには、後述のポリエステルポリオール及びポリカーボネートポリオールは含まれないものとする。 Examples of the polyether polyol include an aliphatic polyether polyol and an aromatic ring-containing polyether polyol.
The polyether polyol does not include the polyester polyol and the polycarbonate polyol described later.
脂肪族ポリエーテルポリオールとしては、炭素数2~20の脂肪族多価アルコール(エチレングリコール、プロピレングリコール、ブタンジオール、ドデカンジオール及びグリセリン等)への炭素数2~4のアルキレンオキサイド付加物等が挙げられる。
具体的にはポリオキシエチレンポリオール[ポリエチレングリコール(以下、PEGと略記)等]、ポリオキシプロピレンポリオール[ポリプロピレングリコール等]、ポリオキシエチレン/プロピレンポリオール及びポリテトラメチレンエーテルグリコール等が挙げられる。 Examples of the aliphatic polyether polyol include an alkylene oxide adduct having 2 to 4 carbon atoms to an aliphatic polyhydric alcohol having 2 to 20 carbon atoms (ethylene glycol, propylene glycol, butanediol, dodecanediol, glycerin, etc.). Be done.
Specific examples thereof include polyoxyethylene polyol [polyethylene glycol (hereinafter abbreviated as PEG) and the like], polyoxypropylene polyol [polypropylene glycol and the like], polyoxyethylene / propylene polyol, polytetramethylene ether glycol and the like.
具体的にはポリオキシエチレンポリオール[ポリエチレングリコール(以下、PEGと略記)等]、ポリオキシプロピレンポリオール[ポリプロピレングリコール等]、ポリオキシエチレン/プロピレンポリオール及びポリテトラメチレンエーテルグリコール等が挙げられる。 Examples of the aliphatic polyether polyol include an alkylene oxide adduct having 2 to 4 carbon atoms to an aliphatic polyhydric alcohol having 2 to 20 carbon atoms (ethylene glycol, propylene glycol, butanediol, dodecanediol, glycerin, etc.). Be done.
Specific examples thereof include polyoxyethylene polyol [polyethylene glycol (hereinafter abbreviated as PEG) and the like], polyoxypropylene polyol [polypropylene glycol and the like], polyoxyethylene / propylene polyol, polytetramethylene ether glycol and the like.
脂肪族ポリエーテルポリオールの市販品としては、PTMG650[Mn=650のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]、PTMG1000[Mn=1,000のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]、PTMG1300[Mn=1,300のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]、PTMG1500[Mn=1,500のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]、PTMG1800[Mn=1,800のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]、PTMG2000[Mn=2,000のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]、PTMG3000[Mn=3,000のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]、PTMG4000[Mn=4,000のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]、PTGL3000[Mn=3,000の変性PTMG、保土谷化学工業(株)製]、及びサンニックスジオールGP-3000[Mn=3,000のポリプロピレンエーテルトリオール、三洋化成工業(株)製]等が挙げられる。
これらの中でも、耐水密着性及び耐熱水密着性の観点から、Mnが300~1300であるポリテトラメチレンエーテルグリコールと、Mnが1500~4000であるポリテトラメチレンエーテルグリコールとの組み合わせが好ましい。 Commercially available aliphatic polyether polyols include PTMG650 [Mn = 650 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG1000 [Mn = 1,000 polytetramethylene ether glycol, Mitsubishi Chemical Co., Ltd.]. , PTMG1300 [Mn = 1,300 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG1500 [Mn = 1,500 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG1800 [Mn] = 1,800 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG2000 [Mn = 2,000 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG3000 [Mn = 3,000 poly Tetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG4000 [Mn = 4,000 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTGL3000 [Mn = 3,000 modified PTMG, Hodoya Chemical Industry Co., Ltd.] Manufactured by Sanyo Kasei Kogyo Co., Ltd.] and Sanniks Diol GP-3000 [Mn = 3,000 polypropylene ether triol, manufactured by Sanyo Kasei Kogyo Co., Ltd.] and the like.
Among these, a combination of polytetramethylene ether glycol having a Mn of 300 to 1300 and polytetramethylene ether glycol having an Mn of 1500 to 4000 is preferable from the viewpoint of water adhesion and heat resistant water adhesion.
これらの中でも、耐水密着性及び耐熱水密着性の観点から、Mnが300~1300であるポリテトラメチレンエーテルグリコールと、Mnが1500~4000であるポリテトラメチレンエーテルグリコールとの組み合わせが好ましい。 Commercially available aliphatic polyether polyols include PTMG650 [Mn = 650 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG1000 [Mn = 1,000 polytetramethylene ether glycol, Mitsubishi Chemical Co., Ltd.]. , PTMG1300 [Mn = 1,300 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG1500 [Mn = 1,500 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG1800 [Mn] = 1,800 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG2000 [Mn = 2,000 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG3000 [Mn = 3,000 poly Tetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTMG4000 [Mn = 4,000 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Co., Ltd.], PTGL3000 [Mn = 3,000 modified PTMG, Hodoya Chemical Industry Co., Ltd.] Manufactured by Sanyo Kasei Kogyo Co., Ltd.] and Sanniks Diol GP-3000 [Mn = 3,000 polypropylene ether triol, manufactured by Sanyo Kasei Kogyo Co., Ltd.] and the like.
Among these, a combination of polytetramethylene ether glycol having a Mn of 300 to 1300 and polytetramethylene ether glycol having an Mn of 1500 to 4000 is preferable from the viewpoint of water adhesion and heat resistant water adhesion.
脂肪族ポリエーテルポリオールの具体的な作製方法として、ポリエーテルポリオールであるポリテトラメチレンエーテルグリコール(PTMG)を例にすると、一般的な製造方法であるテトラヒドロフラン(THF)の開環重合により製造する方法等が挙げられる。
As a specific method for producing an aliphatic polyether polyol, taking polytetramethylene ether glycol (PTMG), which is a polyether polyol, as an example, a method for producing an aliphatic polyether polyol by ring-opening polymerization of tetrahydrofuran (THF), which is a general production method. And so on.
芳香環含有ポリエーテルポリオールとしては、芳香環及び2個以上の水酸基を有する炭素数6~20の化合物(ビスフェノール及びレゾルシン等)への炭素数2~4のアルキレンオキサイド付加物等が挙げられる。
具体的には、ビスフェノールAのエチレンオキサイド(以下、EOと略記)付加物[ビスフェノールAのEO2モル付加物、ビスフェノールAのEO4モル付加物、ビスフェノールAのEO6モル付加物、ビスフェノールAのEO8モル付加物、ビスフェノールAのEO10モル付加物及びビスフェノールAのEO20モル付加物等]及びビスフェノールAのプロピレンオキサイド(以下、POと略記)付加物[ビスフェノールAのPO2モル付加物、ビスフェノールAのPO3モル付加物、ビスフェノールAのPO5モル付加物等]等のビスフェノール骨格を有するポリオール並びにレゾルシンのEO又はPO付加物等が挙げられる。
芳香環含有ポリエーテルポリオールの市販品としては、ニューポールBPE-20T:[Mn=321、水酸基価が349mgKOH/gのビスフェノールAのエチレンオキサイド付加物、三洋化成工業(株)製]等が挙げられる。 Examples of the aromatic ring-containing polyether polyol include an alkylene oxide adduct having 2 to 4 carbon atoms added to an aromatic ring and a compound having 6 to 20 carbon atoms (bisphenol, resorcin, etc.) having two or more hydroxyl groups.
Specifically, bisphenol A ethylene oxide (hereinafter abbreviated as EO) adduct [bisphenol A EO 2 mol adduct, bisphenol A EO 4 mol adduct, bisphenol A EO 6 mol adduct, bisphenol A EO 8 mol adduct. Bisphenol A EO 10 mol adduct, bisphenol A EO 20 mol adduct, etc.] and bisphenol A propylene oxide (hereinafter abbreviated as PO) adduct [bisphenol A PO 2 mol adduct, bisphenol A PO 3 mol adduct, etc. , PO5 molar adduct of bisphenol A, etc.] and the like, and EO or PO adduct of resorcin and the like having a bisphenol skeleton.
Examples of commercially available aromatic ring-containing polyether polyols include New Pole BPE-20T: [Mn = 321 and ethylene oxide adduct of bisphenol A having a hydroxyl value of 349 mgKOH / g, manufactured by Sanyo Kasei Kogyo Co., Ltd.]. ..
具体的には、ビスフェノールAのエチレンオキサイド(以下、EOと略記)付加物[ビスフェノールAのEO2モル付加物、ビスフェノールAのEO4モル付加物、ビスフェノールAのEO6モル付加物、ビスフェノールAのEO8モル付加物、ビスフェノールAのEO10モル付加物及びビスフェノールAのEO20モル付加物等]及びビスフェノールAのプロピレンオキサイド(以下、POと略記)付加物[ビスフェノールAのPO2モル付加物、ビスフェノールAのPO3モル付加物、ビスフェノールAのPO5モル付加物等]等のビスフェノール骨格を有するポリオール並びにレゾルシンのEO又はPO付加物等が挙げられる。
芳香環含有ポリエーテルポリオールの市販品としては、ニューポールBPE-20T:[Mn=321、水酸基価が349mgKOH/gのビスフェノールAのエチレンオキサイド付加物、三洋化成工業(株)製]等が挙げられる。 Examples of the aromatic ring-containing polyether polyol include an alkylene oxide adduct having 2 to 4 carbon atoms added to an aromatic ring and a compound having 6 to 20 carbon atoms (bisphenol, resorcin, etc.) having two or more hydroxyl groups.
Specifically, bisphenol A ethylene oxide (hereinafter abbreviated as EO) adduct [bisphenol A EO 2 mol adduct, bisphenol A EO 4 mol adduct, bisphenol A EO 6 mol adduct, bisphenol A EO 8 mol adduct. Bisphenol A EO 10 mol adduct, bisphenol A EO 20 mol adduct, etc.] and bisphenol A propylene oxide (hereinafter abbreviated as PO) adduct [bisphenol A PO 2 mol adduct, bisphenol A PO 3 mol adduct, etc. , PO5 molar adduct of bisphenol A, etc.] and the like, and EO or PO adduct of resorcin and the like having a bisphenol skeleton.
Examples of commercially available aromatic ring-containing polyether polyols include New Pole BPE-20T: [Mn = 321 and ethylene oxide adduct of bisphenol A having a hydroxyl value of 349 mgKOH / g, manufactured by Sanyo Kasei Kogyo Co., Ltd.]. ..
活性水素成分(A)が含有するポリエーテルポリオールの数平均分子量は、500以上であることが好ましく、500~2,000であることが更に好ましい。
The number average molecular weight of the polyether polyol contained in the active hydrogen component (A) is preferably 500 or more, and more preferably 500 to 2,000.
ポリエステルポリオールとしては、縮合型ポリエステルポリオール、ポリラクトンポリオール及びヒマシ油系ポリオール等が挙げられる。
尚、ポリエステルポリオールには、後述のポリカーボネートポリオールは含まれないものとする。 Examples of the polyester polyol include condensed polyester polyol, polylactone polyol, castor oil-based polyol and the like.
The polyester polyol does not include the polycarbonate polyol described later.
尚、ポリエステルポリオールには、後述のポリカーボネートポリオールは含まれないものとする。 Examples of the polyester polyol include condensed polyester polyol, polylactone polyol, castor oil-based polyol and the like.
The polyester polyol does not include the polycarbonate polyol described later.
縮合型ポリエステルポリオールは、低分子量(Mn300未満)多価アルコールと炭素数2~10の多価カルボン酸又はそのエステル形成性誘導体とのポリエステルポリオールである。
低分子量多価アルコールとしては、Mn300未満の2価~8価又はそれ以上の脂肪族多価アルコール及びMn300未満の2価~8価又はそれ以上のフェノールのアルキレンオキサイド(EO、PO、1,2-、1,3-、2,3-又は1,4-ブチレンオキサイド等を表し、以下AOと略記)低モル付加物が使用できる。
縮合型ポリエステルポリオールに使用できる低分子量多価アルコールの内好ましいのは、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサングリコール、ビスフェノールAのEO又はPO低モル付加物及びこれらの併用である。 The condensed polyester polyol is a polyester polyol obtained by a low molecular weight (less than Mn300) polyhydric alcohol and a polyvalent carboxylic acid having 2 to 10 carbon atoms or an ester-forming derivative thereof.
Low molecular weight polyhydric alcohols include aliphatic polyhydric alcohols of less than Mn300 and divalent to octavalent or higher, and alkylene oxides of phenols of less than Mn300 of divalent to 8 or higher (EO, PO, 1, 2). -, 1,3-, 2,3- or 1,4-butylene oxide, etc., hereinafter abbreviated as AO) Low molecular weight adducts can be used.
Of the low molecular weight polyhydric alcohols that can be used in condensed polyester polyols, preferred are ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexaneglycol, and EO or PO low molars of bisphenol A. Additives and combinations thereof.
低分子量多価アルコールとしては、Mn300未満の2価~8価又はそれ以上の脂肪族多価アルコール及びMn300未満の2価~8価又はそれ以上のフェノールのアルキレンオキサイド(EO、PO、1,2-、1,3-、2,3-又は1,4-ブチレンオキサイド等を表し、以下AOと略記)低モル付加物が使用できる。
縮合型ポリエステルポリオールに使用できる低分子量多価アルコールの内好ましいのは、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサングリコール、ビスフェノールAのEO又はPO低モル付加物及びこれらの併用である。 The condensed polyester polyol is a polyester polyol obtained by a low molecular weight (less than Mn300) polyhydric alcohol and a polyvalent carboxylic acid having 2 to 10 carbon atoms or an ester-forming derivative thereof.
Low molecular weight polyhydric alcohols include aliphatic polyhydric alcohols of less than Mn300 and divalent to octavalent or higher, and alkylene oxides of phenols of less than Mn300 of divalent to 8 or higher (EO, PO, 1, 2). -, 1,3-, 2,3- or 1,4-butylene oxide, etc., hereinafter abbreviated as AO) Low molecular weight adducts can be used.
Of the low molecular weight polyhydric alcohols that can be used in condensed polyester polyols, preferred are ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexaneglycol, and EO or PO low molars of bisphenol A. Additives and combinations thereof.
縮合型ポリエステルポリオールに使用できる炭素数2~10の多価カルボン酸又はそのエステル形成性誘導体としては、脂肪族ジカルボン酸(コハク酸、アジピン酸、アゼライン酸、セバシン酸、フマル酸及びマレイン酸等)、脂環式ジカルボン酸(ダイマー酸等)、芳香族ジカルボン酸(テレフタル酸、イソフタル酸及びフタル酸等)、3価又はそれ以上のポリカルボン酸(トリメリット酸及びピロメリット酸等)、これらの無水物(無水コハク酸、無水マレイン酸、無水フタル酸及び無水トリメリット酸等)、これらの酸ハロゲン化物(アジピン酸ジクロライド等)、これらの低分子量アルキルエステル(コハク酸ジメチル及びフタル酸ジメチル等)並びこれらの併用等が挙げられる。
Examples of polyvalent carboxylic acids having 2 to 10 carbon atoms or ester-forming derivatives thereof that can be used in condensed polyester polyols are aliphatic dicarboxylic acids (succinic acid, adipic acid, azelaic acid, sebacic acid, fumaric acid, maleic acid, etc.). , Alicyclic dicarboxylic acid (dimeric acid, etc.), aromatic dicarboxylic acid (terephthalic acid, isophthalic acid, phthalic acid, etc.), trivalent or higher polycarboxylic acid (trimellitic acid, pyromellitic acid, etc.), these Anhydrides (succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, etc.), their acid halides (dichloroide adipic acid, etc.), and these low molecular weight alkyl esters (dimethyl succinate, dimethyl phthalate, etc.) In addition, the combined use of these can be mentioned.
縮合型ポリエステルポリオールの具体例としては、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3-メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール及びポリネオペンチルテレフタレートジオール等が挙げられる。
Specific examples of the condensed polyester polyol include polyethylene adipatediol, polybutylene adipatediol, polyhexamethylene adipatediol, polyhexamethyleneisophthalatediol, polyneopentyl adipatediol, polyethylenepropylene adipatediol, polyethylenebutylene adipatediol, and polybutylene. Hexamethylene adipate diol, polydiethylene adipate diol, poly (polytetramethylene ether) adipate diol, poly (3-methylpentylene adipate) diol, polyethylene azelate diol, polyethylene sebacate diol, polybutylene azelate diol, polybutylene ceva Examples thereof include catediol and polyneopentyl terephthalate diol.
縮合型ポリエステルポリオールの市販品としては、クラレポリオールP-1010[Mn=1,000のポリ(3-メチルペンチレンアジペート)ジオール、クラレ(株)製]、クラレポリオールP-2010[Mn=2,000のポリ(3-メチルペンチレンアジペート)ジオール、クラレ(株)製]、クラレポリオールP-3010[Mn=3,000のポリ(3-メチルペンチレンアジペート)ジオール、クラレ(株)製]、クラレポリオールP-4010[Mn=4,000のポリ(3-メチルペンチレンアジペート)ジオール、クラレ(株)製]、サンエスター2610[Mn=1,000のポリエチレンアジペートジオール、三洋化成工業(株)製]、サンエスター4620[Mn=2,000のポリテトラメチレンアジペートジオール]、及びサンエスター2620[Mn=2,000のポリエチレンアジペートジオール、三洋化成工業(株)製]等が挙げられる。
Commercially available products of the condensed polyester polyol include Clare polyol P-1010 [Mn = 1,000 poly (3-methylpentylene adipate) diol, manufactured by Kurare Co., Ltd.], Clare polyol P-1010 [Mn = 2, 000 poly (3-methylpentylene adipate) diol, manufactured by Clare Co., Ltd.], Clare polyol P-3010 [Mn = 3,000 poly (3-methylpentylene adipate) diol, manufactured by Clare Co., Ltd.], Claret Polyester P-4010 [Mn = 4,000 poly (3-methylpentylene adipate) diol, manufactured by Claret Co., Ltd.], Sun Esther 2610 [Mn = 1,000 polyethylene adipate diol, Sanyo Kasei Kogyo Co., Ltd. ], Sun Esther 4620 [Mn = 2,000 polytetramethylene adipate diol], Sun Esther 2620 [Mn = 2,000 polyethylene adipate diol, manufactured by Sanyo Kasei Kogyo Co., Ltd.] and the like.
ポリラクトンポリオールは、前記低分子量多価アルコールへのラクトンの重付加物であり、ラクトンとしては、炭素数4~12のラクトン(γ-ブチロラクトン、γ-バレロラクトン及びε-カプロラクトン等)等が挙げられる。
ポリラクトンポリオールの具体例としては、ポリカプロラクトンジオール、ポリバレロラクトンジオール及びポリカプロラクトントリオール等が挙げられる。 The polylactone polyol is a heavy adduct of a lactone to the low molecular weight polyhydric alcohol, and examples of the lactone include lactones having 4 to 12 carbon atoms (γ-butyrolactone, γ-valerolactone, ε-caprolactone, etc.). Be done.
Specific examples of the polylactone polyol include polycaprolactone diol, polyvalerolactone diol, polycaprolactone triol and the like.
ポリラクトンポリオールの具体例としては、ポリカプロラクトンジオール、ポリバレロラクトンジオール及びポリカプロラクトントリオール等が挙げられる。 The polylactone polyol is a heavy adduct of a lactone to the low molecular weight polyhydric alcohol, and examples of the lactone include lactones having 4 to 12 carbon atoms (γ-butyrolactone, γ-valerolactone, ε-caprolactone, etc.). Be done.
Specific examples of the polylactone polyol include polycaprolactone diol, polyvalerolactone diol, polycaprolactone triol and the like.
ヒマシ油系ポリオールには、ヒマシ油、及びポリオール又はAOで変性された変性ヒマシ油が含まれる。変性ヒマシ油はヒマシ油とポリオールとのエステル交換及び/又はAO付加により製造できる。ヒマシ油系ポリオールとしては、ヒマシ油、トリメチロールプロパン変性ヒマシ油、ペンタエリスリトール変性ヒマシ油、ヒマシ油のEO(4~30モル)付加物等が挙げられる。
Castor oil-based polyol includes castor oil and modified castor oil modified with polyol or AO. Modified castor oil can be produced by transesterification of castor oil and polyol and / or addition of AO. Examples of castor oil-based polyols include castor oil, trimethylolpropane-modified castor oil, pentaerythritol-modified castor oil, and EO (4 to 30 mol) adducts of castor oil.
ポリカーボネートポリオールとしては、前記低分子量多価アルコールと、低分子カーボネート化合物(例えば、アルキル基の炭素数1~6のジアルキルカーボネート、炭素数2~6のアルキレン基を有するアルキレンカーボネート及び炭素数6~9のアリール基を有するジアリールカーボネート)とを、脱アルコール反応させながら縮合させることによって製造されるポリカーボネートポリオール等が挙げられる。低分子量多価アルコール及びアルキレンカーボネートはそれぞれ2種以上併用してもよい。
Examples of the polycarbonate polyol include the low molecular weight polyhydric alcohol, a low molecular weight carbonate compound (for example, a dialkyl carbonate having an alkyl group having 1 to 6 carbon atoms, an alkylene carbonate having an alkylene group having 2 to 6 carbon atoms, and a polycarbonate polyol having 6 to 9 carbon atoms. Examples thereof include a polycarbonate polyol produced by condensing a diaryl carbonate having an aryl group of (1) with a dealcohol reaction. Two or more kinds of low molecular weight polyhydric alcohols and alkylene carbonates may be used in combination.
ポリカーボネートポリオールの具体例としては、ポリヘキサメチレンカーボネートジオール、ポリペンタメチレンカーボネートジオール、ポリテトラメチレンカーボネートジオール及びポリ(テトラメチレン/ヘキサメチレン)カーボネートジオール(例えば1,4-ブタンジオールと1,6-ヘキサンジオールをジアルキルカーボネートと脱アルコール反応させながら縮合させて得られるジオール)等が挙げられる。
Specific examples of the polycarbonate polyol include polyhexamethylene carbonate diol, polypentamethylene carbonate diol, polytetramethylene carbonate diol and poly (tetramethylene / hexamethylene) carbonate diol (for example, 1,4-butanediol and 1,6-hexane). Diol) and the like obtained by condensing a diol while dealcoholizing it with a dialkyl carbonate.
ポリカーボネートポリオールの市販品としては、ニッポラン980R[Mn=2,000のポリヘキサメチレンカーボネートジオール、日本ポリウレタン工業(株)製]、クラレポリオールC-1090[Mn=1,000のポリ(3-メチル-5-ペンタンジオール/ヘキサメチレン)カーボネートジオール、クラレ(株)製]、クラレポリオールC-2090[Mn=2,000のポリ(3-メチル-5-ペンタンジオール/ヘキサメチレン)カーボネートジオール、クラレ(株)製]、クラレポリオールC-3090[Mn=3,000のポリ(3-メチル-5-ペンタンジオール/ヘキサメチレン)カーボネートジオール、クラレ(株)製]、クラレポリオールC-4090[Mn=4,000のポリ(3-メチル-5-ペンタンジオール/ヘキサメチレン)カーボネートジオール、クラレ(株)製]、及びT4672[Mn=2,000のポリ(テトラメチレン/ヘキサメチレン)カーボネートジオール、旭化成ケミカルズ(株)製]等が挙げられる。
Commercially available polycarbonate polyols include Nipponolane 980R [Mn = 2,000 polyhexamethylene carbonate diol, manufactured by Nippon Polyurethane Industry Co., Ltd.] and Clare polyol C-1090 [Mn = 1,000 poly (3-methyl-). 5-Pentanediol / Hexamethylene) carbonate diol, manufactured by Kuraray Co., Ltd.], Kurare polyol C-2090 [Mn = 2,000 poly (3-methyl-5-pentanediol / hexamethylene) carbonate diol, Kuraray Co., Ltd. ), Claret polyol C-3090 [Mn = 3,000 poly (3-methyl-5-pentanediol / hexamethylene) carbonate diol, Claret Co., Ltd.], Claret polyol C-4090 [Mn = 4, 000 poly (3-methyl-5-pentanediol / hexamethylene) carbonate diol, manufactured by Claret Co., Ltd.], and T4672 [Mn = 2,000 poly (tetramethylene / hexamethylene) carbonate diol, Asahi Kasei Chemicals Co., Ltd. ) Made] and the like.
活性水素成分(A)は、ポリウレタン樹脂(U)の粘度を後に詳述する範囲に調整する観点や耐水密着性及び耐熱水密着性の観点から、高分子ポリオール(A1)であるポリテトラメチレンエーテルグリコールを必須構成単量体として含有していることが好ましい。
ポリテトラメチレンエーテルグリコールのMnは、ポリウレタン樹脂(U)の粘度を後に詳述する範囲に調整する観点から、500~2,000であることが好ましい。 The active hydrogen component (A) is a polytetramethylene ether which is a high molecular weight polyol (A1) from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the range described in detail later and from the viewpoint of water adhesion and heat resistance. It is preferable that glycol is contained as an essential constituent monomer.
The Mn of the polytetramethylene ether glycol is preferably 500 to 2,000 from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the range described in detail later.
ポリテトラメチレンエーテルグリコールのMnは、ポリウレタン樹脂(U)の粘度を後に詳述する範囲に調整する観点から、500~2,000であることが好ましい。 The active hydrogen component (A) is a polytetramethylene ether which is a high molecular weight polyol (A1) from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the range described in detail later and from the viewpoint of water adhesion and heat resistance. It is preferable that glycol is contained as an essential constituent monomer.
The Mn of the polytetramethylene ether glycol is preferably 500 to 2,000 from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the range described in detail later.
低分子ポリオール(A2)としては、数平均分子量(以下、Mnと略記)300未満の低分子ポリオール等が挙げられる。
尚、低分子ポリオールのMnは化学式からの計算値である。 Examples of the small molecule polyol (A2) include small molecule polyols having a number average molecular weight (hereinafter abbreviated as Mn) of less than 300.
The Mn of the small molecule polyol is a calculated value from the chemical formula.
尚、低分子ポリオールのMnは化学式からの計算値である。 Examples of the small molecule polyol (A2) include small molecule polyols having a number average molecular weight (hereinafter abbreviated as Mn) of less than 300.
The Mn of the small molecule polyol is a calculated value from the chemical formula.
Mn300未満の低分子ポリオール(A2)としては、脂肪族2価アルコール、脂肪族3価アルコール及び4価以上の脂肪族アルコール等が挙げられる。Mn300未満の低分子ポリオール(A2)の内、耐水性及び耐熱黄変性の観点から好ましいのは、2~3価の脂肪族アルコールであり、脂肪族2価アルコールとしては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール及び1,6-ヘキサンジオールが特に好ましく、脂肪族3価アルコールとしては、トリメチロールプロパンが特に好ましい。
Examples of the low molecular weight polyol (A2) having a Mn of less than 300 include aliphatic dihydric alcohols, aliphatic trihydric alcohols, and tetrahydric or higher aliphatic alcohols. Among the low molecular weight polyols (A2) having a Mn of less than 300, a dihydric aliphatic alcohol is preferable from the viewpoint of water resistance and heat-resistant yellowing, and the aliphatic dihydric alcohol includes ethylene glycol and propylene glycol. 1,4-Butanediol, neopentyl glycol and 1,6-hexanediol are particularly preferable, and trimethylolpropane is particularly preferable as the aliphatic trihydric alcohol.
本発明において親水性基及び活性水素原子を有する化合物(A3)の親水性基とは、カルボキシル基、カルボキシレート基、スルホ基及びスルホナト基等が挙げられる。
また活性水素原子には、前述の通り、カルボキシル基及びスルホ基由来の水素原子は含まれないものとする。
親水性基及び活性水素原子を有する化合物(A3)としては、カルボキシル基を有する炭素数が2~10の化合物[ジアルキロールアルカン酸(2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロールヘプタン酸及び2,2-ジメチロールオクタン酸等)、酒石酸及びアミノ酸(グリシン、アラニン及びバリン等)等]、スルホ基を有する炭素数が2~16の化合物[3-(2,3-ジヒドロキシプロポキシ)-1-プロパンスルホン酸及びスルホイソフタル酸ジ(エチレングリコール)エステル等]、スルファミン酸基を有する炭素数が2~10の化合物[N,N-ビス(2-ヒドロキシルエチル)スルファミン酸等]等が挙げられる。
これらのうちで好ましいのはカルボキシル基又はカルボキシレート基を有する化合物であり、更に好ましいのは2,2-ジメチロールプロピオン酸及び2,2-ジメチロールブタン酸である。 In the present invention, examples of the hydrophilic group of the compound (A3) having a hydrophilic group and an active hydrogen atom include a carboxyl group, a carboxylate group, a sulfo group and a sulfonat group.
Further, as described above, the active hydrogen atom does not include a hydrogen atom derived from a carboxyl group and a sulfo group.
Examples of the compound (A3) having a hydrophilic group and an active hydrogen atom include a compound having a carboxyl group and having 2 to 10 carbon atoms [dialkylol alkanoic acid (2,2-dimethylolpropionic acid, 2,2-dimethylol). Butanoic acid, 2,2-dimethylol heptanic acid and 2,2-dimethylol octanoic acid, etc.), tartrate and amino acids (glycine, alanine, valine, etc.), etc.], compounds with sulfo groups and 2 to 16 carbon atoms [ 3- (2,3-dihydroxypropoxy) -1-propanesulfonic acid and sulfoisophthalic acid di (ethylene glycol) ester, etc.], compounds having a sulfamic acid group and having 2 to 10 carbon atoms [N, N-bis (2) -Hydrethyl) sulfamic acid, etc.] and the like.
Of these, compounds having a carboxyl group or a carboxylate group are preferable, and 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are more preferable.
また活性水素原子には、前述の通り、カルボキシル基及びスルホ基由来の水素原子は含まれないものとする。
親水性基及び活性水素原子を有する化合物(A3)としては、カルボキシル基を有する炭素数が2~10の化合物[ジアルキロールアルカン酸(2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロールヘプタン酸及び2,2-ジメチロールオクタン酸等)、酒石酸及びアミノ酸(グリシン、アラニン及びバリン等)等]、スルホ基を有する炭素数が2~16の化合物[3-(2,3-ジヒドロキシプロポキシ)-1-プロパンスルホン酸及びスルホイソフタル酸ジ(エチレングリコール)エステル等]、スルファミン酸基を有する炭素数が2~10の化合物[N,N-ビス(2-ヒドロキシルエチル)スルファミン酸等]等が挙げられる。
これらのうちで好ましいのはカルボキシル基又はカルボキシレート基を有する化合物であり、更に好ましいのは2,2-ジメチロールプロピオン酸及び2,2-ジメチロールブタン酸である。 In the present invention, examples of the hydrophilic group of the compound (A3) having a hydrophilic group and an active hydrogen atom include a carboxyl group, a carboxylate group, a sulfo group and a sulfonat group.
Further, as described above, the active hydrogen atom does not include a hydrogen atom derived from a carboxyl group and a sulfo group.
Examples of the compound (A3) having a hydrophilic group and an active hydrogen atom include a compound having a carboxyl group and having 2 to 10 carbon atoms [dialkylol alkanoic acid (2,2-dimethylolpropionic acid, 2,2-dimethylol). Butanoic acid, 2,2-dimethylol heptanic acid and 2,2-dimethylol octanoic acid, etc.), tartrate and amino acids (glycine, alanine, valine, etc.), etc.], compounds with sulfo groups and 2 to 16 carbon atoms [ 3- (2,3-dihydroxypropoxy) -1-propanesulfonic acid and sulfoisophthalic acid di (ethylene glycol) ester, etc.], compounds having a sulfamic acid group and having 2 to 10 carbon atoms [N, N-bis (2) -Hydrethyl) sulfamic acid, etc.] and the like.
Of these, compounds having a carboxyl group or a carboxylate group are preferable, and 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are more preferable.
活性水素成分(A)は、親水性基及び活性水素原子を有する化合物(A3)の内、酸性基(カルボキシル基等)を有する化合物(A31)を必須構成単量体として含有していることが好ましい。化合物(A31)を用いることにより、ポリウレタン樹脂(U)に酸性基を導入することができる。
前記の化合物(A31)は、ポリウレタン樹脂(U)の酸価を、後に詳述する範囲にできる量で使用する。 The active hydrogen component (A) may contain a compound (A31) having an acidic group (carboxyl group, etc.) as an essential constituent monomer among the compounds (A3) having a hydrophilic group and an active hydrogen atom. preferable. By using the compound (A31), an acidic group can be introduced into the polyurethane resin (U).
The compound (A31) is used in an amount that allows the acid value of the polyurethane resin (U) to be within the range described in detail later.
前記の化合物(A31)は、ポリウレタン樹脂(U)の酸価を、後に詳述する範囲にできる量で使用する。 The active hydrogen component (A) may contain a compound (A31) having an acidic group (carboxyl group, etc.) as an essential constituent monomer among the compounds (A3) having a hydrophilic group and an active hydrogen atom. preferable. By using the compound (A31), an acidic group can be introduced into the polyurethane resin (U).
The compound (A31) is used in an amount that allows the acid value of the polyurethane resin (U) to be within the range described in detail later.
鎖伸長剤(A4)としては、(A1)~(A3)以外の活性水素原子を2個以上有する化合物が挙げられ、具体的には、水、炭素数2~10のジアミン類(エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、トルエンジアミン及びピペラジン等)、炭素数2~10のポリアルキレンポリアミン類(ジエチレントリアミン及びトリエチレンテトラミン等)、ヒドラジン又はその誘導体(二塩基酸ジヒドラジド、例えばアジピン酸ジヒドラジド等)及び炭素数2~10のアミノアルコール類(エタノールアミン、ジエタノールアミン、2-アミノ-2-メチルプロパノール及びトリエタノールアミン等)等が挙げられる。
Examples of the chain extender (A4) include compounds having two or more active hydrogen atoms other than (A1) to (A3), and specific examples thereof include water and diamines having 2 to 10 carbon atoms (ethylenediamine, propylene). Diamine, hexamethylenediamine, isophoronediamine, toluenediamine, piperazine, etc.), polyalkylene polyamines having 2 to 10 carbon atoms (diethylenetriamine, triethylenetetramine, etc.), hydrazine or a derivative thereof (dibasic acid dihydrazide, for example, adipic acid dihydrazide, etc.) ) And amino alcohols having 2 to 10 carbon atoms (ethanolamine, diethanolamine, 2-amino-2-methylpropanol, triethanolamine, etc.) and the like.
反応停止剤(A5)としては、炭素数1~8のモノアルコール類(メタノール、エタノール、イソプロパノール、セロソルブ類及びカルビトール類等)、炭素数1~10のモノアミン類(モノメチルアミン、モノエチルアミン、モノブチルアミン、ジブチルアミン及びモノオクチルアミン等のモノ又はジアルキルアミン;モノエタノールアミン、ジエタノールアミン、プロパノールアミン及びジイソプロパノールアミン等のモノ又はジアルカノールアミン等)等が挙げられる。
具体的には、2-アミノエタノール、2,2’-イミノジエタノール、1-アミノ-2-プロパノール、3-アミノ-1-プロパノール等が挙げられる。
耐水密着性及び耐熱水密着性の観点から、活性水素成分(A)が反応停止剤(A5)を含有することが好ましい。 Examples of the reaction terminator (A5) include monoalcohols having 1 to 8 carbon atoms (methanol, ethanol, isopropanol, cellosolves, carbitols, etc.) and monoamines having 1 to 10 carbon atoms (monomethylamine, monoethylamine, mono). Mono or dialkylamines such as butylamines, dibutylamines and monooctylamines; mono- or dialkanolamines such as monoethanolamines, diethanolamines, propanolamines and diisopropanolamines) and the like.
Specific examples thereof include 2-aminoethanol, 2,2'-iminodiethanol, 1-amino-2-propanol, 3-amino-1-propanol and the like.
From the viewpoint of water resistance and heat resistance, it is preferable that the active hydrogen component (A) contains a reaction terminator (A5).
具体的には、2-アミノエタノール、2,2’-イミノジエタノール、1-アミノ-2-プロパノール、3-アミノ-1-プロパノール等が挙げられる。
耐水密着性及び耐熱水密着性の観点から、活性水素成分(A)が反応停止剤(A5)を含有することが好ましい。 Examples of the reaction terminator (A5) include monoalcohols having 1 to 8 carbon atoms (methanol, ethanol, isopropanol, cellosolves, carbitols, etc.) and monoamines having 1 to 10 carbon atoms (monomethylamine, monoethylamine, mono). Mono or dialkylamines such as butylamines, dibutylamines and monooctylamines; mono- or dialkanolamines such as monoethanolamines, diethanolamines, propanolamines and diisopropanolamines) and the like.
Specific examples thereof include 2-aminoethanol, 2,2'-iminodiethanol, 1-amino-2-propanol, 3-amino-1-propanol and the like.
From the viewpoint of water resistance and heat resistance, it is preferable that the active hydrogen component (A) contains a reaction terminator (A5).
鎖伸長剤(A4)及び反応停止剤(A5)は、後述のウレア基含有量に影響し、ポリウレタン樹脂(U)の粘度にも影響するため、本発明の効果を損ねない範囲の量で使用する必要がある。具体的には、ポリウレタン樹脂(U)の粘度が後に詳述する値となる範囲の量で使用する必要がある。
よって、鎖伸長剤(A4)及び反応停止剤(A5)は、ポリウレタン樹脂(U)中のウレア基含有量が後述の値となる量を使用することが好ましい。 Since the chain extender (A4) and the reaction terminator (A5) affect the urea group content described later and also the viscosity of the polyurethane resin (U), they are used in an amount within a range that does not impair the effects of the present invention. There is a need to. Specifically, it is necessary to use the amount in the range in which the viscosity of the polyurethane resin (U) becomes a value described in detail later.
Therefore, it is preferable to use the chain extender (A4) and the reaction terminator (A5) in an amount such that the urea group content in the polyurethane resin (U) becomes a value described later.
よって、鎖伸長剤(A4)及び反応停止剤(A5)は、ポリウレタン樹脂(U)中のウレア基含有量が後述の値となる量を使用することが好ましい。 Since the chain extender (A4) and the reaction terminator (A5) affect the urea group content described later and also the viscosity of the polyurethane resin (U), they are used in an amount within a range that does not impair the effects of the present invention. There is a need to. Specifically, it is necessary to use the amount in the range in which the viscosity of the polyurethane resin (U) becomes a value described in detail later.
Therefore, it is preferable to use the chain extender (A4) and the reaction terminator (A5) in an amount such that the urea group content in the polyurethane resin (U) becomes a value described later.
活性水素成分(A)は、単独で使用しても2種以上を併用してもよい。
The active hydrogen component (A) may be used alone or in combination of two or more.
<有機ポリイソシアネート成分(B)>
ポリウレタン樹脂(U)の必須構成単量体である有機ポリイソシアネート成分(B)は、2~3個又はそれ以上のイソシアネート基を有する化合物であり、従来ポリウレタン樹脂製造に使用されているもの等が使用できる。
有機ポリイソシアネート成分(B)としては、炭素数4~22の脂肪族ポリイソシアネート(b1)、炭素数8~18の脂環式ポリイソシアネート(b2)、炭素数10~17の芳香脂肪族ポリイソシアネート(b3)、炭素数8~22の芳香族ポリイソシアネート(b4)及び(b1)~(b4)の誘導体(例えばイソシアヌレート化物)等が挙げられる。 <Organic polyisocyanate component (B)>
The organic polyisocyanate component (B), which is an essential constituent monomer of the polyurethane resin (U), is a compound having 2 to 3 or more isocyanate groups, and those conventionally used in polyurethane resin production and the like are used. Can be used.
The organic polyisocyanate component (B) includes an aliphatic polyisocyanate (b1) having 4 to 22 carbon atoms, an alicyclic polyisocyanate (b2) having 8 to 18 carbon atoms, and an aromatic aliphatic polyisocyanate having 10 to 17 carbon atoms. (B3), aromatic polyisocyanates (b4) having 8 to 22 carbon atoms and derivatives of (b1) to (b4) (for example, isocyanurates) and the like can be mentioned.
ポリウレタン樹脂(U)の必須構成単量体である有機ポリイソシアネート成分(B)は、2~3個又はそれ以上のイソシアネート基を有する化合物であり、従来ポリウレタン樹脂製造に使用されているもの等が使用できる。
有機ポリイソシアネート成分(B)としては、炭素数4~22の脂肪族ポリイソシアネート(b1)、炭素数8~18の脂環式ポリイソシアネート(b2)、炭素数10~17の芳香脂肪族ポリイソシアネート(b3)、炭素数8~22の芳香族ポリイソシアネート(b4)及び(b1)~(b4)の誘導体(例えばイソシアヌレート化物)等が挙げられる。 <Organic polyisocyanate component (B)>
The organic polyisocyanate component (B), which is an essential constituent monomer of the polyurethane resin (U), is a compound having 2 to 3 or more isocyanate groups, and those conventionally used in polyurethane resin production and the like are used. Can be used.
The organic polyisocyanate component (B) includes an aliphatic polyisocyanate (b1) having 4 to 22 carbon atoms, an alicyclic polyisocyanate (b2) having 8 to 18 carbon atoms, and an aromatic aliphatic polyisocyanate having 10 to 17 carbon atoms. (B3), aromatic polyisocyanates (b4) having 8 to 22 carbon atoms and derivatives of (b1) to (b4) (for example, isocyanurates) and the like can be mentioned.
炭素数4~22の脂肪族ポリイソシアネート(b1)としては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート等が挙げられる。
Examples of the aliphatic polyisocyanate (b1) having 4 to 22 carbon atoms include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, and 2-. Isocyanatoethyl-2,6-diisocyanatohexanoate and the like can be mentioned.
炭素数8~18の脂環式ポリイソシアネート(b2)としては、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン4,4’-ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水添TDI)、ビス(2-イソシアナトエチル)-4-シクロヘキセン-1,2-ジカルボキシレート、2,5-又は2,6-ノルボルナンジイソシアネート等が挙げられる。
Examples of the alicyclic polyisocyanate (b2) having 8 to 18 carbon atoms include isophorone diisocyanate (IPDI), dicyclohexylmethane 4,4'-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, and methylcyclohexylene diisocyanate (hydrogenated TDI). , Bis (2-isosianatoethyl) -4-cyclohexene-1,2-dicarboxylate, 2,5- or 2,6-norbornene diisocyanate and the like.
炭素数10~17の芳香脂肪族ポリイソシアネート(b3)としては、m-及び/又はp-キシリレンジイソシアネート(XDI)、α,α,α’,α’-テトラメチルキシリレンジイソシアネート(TMXDI)等が挙げられる。
Examples of the aromatic aliphatic polyisocyanate (b3) having 10 to 17 carbon atoms include m- and / or p-xylene diisocyanate (XDI), α, α, α', α'-tetramethylxylene diisocyanate (TMXDI) and the like. Can be mentioned.
炭素数8~22の芳香族ポリイソシアネート(b4)としては、1,3-又は1,4-フェニレンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート(TDI)、4,4’-又は2,4’-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート、4,4’,4’’-トリフェニルメタントリイソシアネート、m-又はp-イソシアナトフェニルスルホニルイソシアネート、クルードMDI等が挙げられる。
Examples of the aromatic polyisocyanate (b4) having 8 to 22 carbon atoms include 1,3- or 1,4-phenylenediocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI), 4,4'-or. 2,4'-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, 4,4', 4 ″ -triphenylmethane triisocyanate, m- or p-isocyanatophenylsulfonyl isocyanate, crude MDI and the like. Be done.
有機ポリイソシアネート成分(B)の内、得られる皮膜の機械的物性及び耐候性の観点から好ましいのは(b1)及び(b2)であり、更に好ましいのは(b2)であり、特に好ましいのはIPDI及び水添MDIである。
有機ポリイソシアネート成分(B)は、単独で使用しても2種以上を併用してもよい。中でも、有機ポリイソシアネート成分(B)が、炭素数4~22の鎖状脂肪族ポリイソシアネート(b1)及び/又は炭素数8~18の脂環式ポリイソシアネート(b2)を含有することが好ましい。 Among the organic polyisocyanate components (B), (b1) and (b2) are preferable from the viewpoint of mechanical properties and weather resistance of the obtained film, and (b2) is more preferable, and (b2) is particularly preferable. IPDI and hydrogenated MDI.
The organic polyisocyanate component (B) may be used alone or in combination of two or more. Among them, the organic polyisocyanate component (B) preferably contains a chain aliphatic polyisocyanate (b1) having 4 to 22 carbon atoms and / or an alicyclic polyisocyanate (b2) having 8 to 18 carbon atoms.
有機ポリイソシアネート成分(B)は、単独で使用しても2種以上を併用してもよい。中でも、有機ポリイソシアネート成分(B)が、炭素数4~22の鎖状脂肪族ポリイソシアネート(b1)及び/又は炭素数8~18の脂環式ポリイソシアネート(b2)を含有することが好ましい。 Among the organic polyisocyanate components (B), (b1) and (b2) are preferable from the viewpoint of mechanical properties and weather resistance of the obtained film, and (b2) is more preferable, and (b2) is particularly preferable. IPDI and hydrogenated MDI.
The organic polyisocyanate component (B) may be used alone or in combination of two or more. Among them, the organic polyisocyanate component (B) preferably contains a chain aliphatic polyisocyanate (b1) having 4 to 22 carbon atoms and / or an alicyclic polyisocyanate (b2) having 8 to 18 carbon atoms.
有機ポリイソシアネート成分(B)の種類は、後述のウレタン基含有量に影響し、後に詳述するポリウレタン樹脂(U)の粘度にも影響するため、本発明の効果を損ねない範囲で使用する必要がある。具体的には、ポリウレタン樹脂(U)の粘度が後述の値となる範囲で使用する必要がある。
よって、有機ポリイソシアネート成分(B)の種類は、ポリウレタン樹脂(U)中のウレタン基含有量が後述の値となる量を使用することが好ましい。 Since the type of the organic polyisocyanate component (B) affects the urethane group content described later and also affects the viscosity of the polyurethane resin (U) described in detail later, it is necessary to use the organic polyisocyanate component (B) within a range that does not impair the effects of the present invention. There is. Specifically, it is necessary to use the polyurethane resin (U) in a range in which the viscosity becomes a value described later.
Therefore, as the type of the organic polyisocyanate component (B), it is preferable to use an amount in which the urethane group content in the polyurethane resin (U) becomes a value described later.
よって、有機ポリイソシアネート成分(B)の種類は、ポリウレタン樹脂(U)中のウレタン基含有量が後述の値となる量を使用することが好ましい。 Since the type of the organic polyisocyanate component (B) affects the urethane group content described later and also affects the viscosity of the polyurethane resin (U) described in detail later, it is necessary to use the organic polyisocyanate component (B) within a range that does not impair the effects of the present invention. There is. Specifically, it is necessary to use the polyurethane resin (U) in a range in which the viscosity becomes a value described later.
Therefore, as the type of the organic polyisocyanate component (B), it is preferable to use an amount in which the urethane group content in the polyurethane resin (U) becomes a value described later.
なお、ポリウレタン樹脂(U)は、活性水素成分(A)及び有機ポリイソシアネート成分(B)以外の構成単量体を有していてもよい。
活性水素成分(A)及び有機ポリイソシアネート成分(B)以外の構成単量体としては、炭素数2~30のポリエポキシ化合物(1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル等)等が挙げられる。 The polyurethane resin (U) may have a constituent monomer other than the active hydrogen component (A) and the organic polyisocyanate component (B).
Examples of the constituent monomers other than the active hydrogen component (A) and the organic polyisocyanate component (B) include polyepoxy compounds having 2 to 30 carbon atoms (1,6-hexanediol diglycidyl ether, trimethylolpropane polyglycidyl ether, etc.). ) Etc. can be mentioned.
活性水素成分(A)及び有機ポリイソシアネート成分(B)以外の構成単量体としては、炭素数2~30のポリエポキシ化合物(1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル等)等が挙げられる。 The polyurethane resin (U) may have a constituent monomer other than the active hydrogen component (A) and the organic polyisocyanate component (B).
Examples of the constituent monomers other than the active hydrogen component (A) and the organic polyisocyanate component (B) include polyepoxy compounds having 2 to 30 carbon atoms (1,6-hexanediol diglycidyl ether, trimethylolpropane polyglycidyl ether, etc.). ) Etc. can be mentioned.
ポリウレタン樹脂(U)について、レオメーターを用いて0.1/sの剪断速度で測定される25℃でのポリウレタン樹脂(U)の粘度は、100~1,000,000Pa・sである。
また、レオメーターを用いて0.1/sの剪断速度で測定される25℃でのポリウレタン樹脂(U)の粘度は、塗装ガン使用後の洗浄性及び外観の観点から、100~150,000Pa・sであることが好ましい。さらに、耐水密着性及び耐熱水密着性の観点から、3,500~13,000Pa・sであることがより好ましく、3,500~9,000Pa・sであることが更に好ましく、3,500~4,500Pa・sであることが特に好ましい。
レオメーターを用いた粘度は、例えば、AntonPaar社製「MCR-302」を使用して以下の条件で測定できる。
(測定条件)
測定治具:パラレルプレート「PP-08」(直径8mm)
プレート間距離:0.5mm
測定温度:25℃
測定モード:回転
せん断速度:0.1/秒 For the polyurethane resin (U), the viscosity of the polyurethane resin (U) at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer is 100 to 1,000,000 Pa · s.
The viscosity of the polyurethane resin (U) at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer is 100 to 150,000 Pa from the viewpoint of cleanability and appearance after using a painting gun. -It is preferably s. Further, from the viewpoint of water resistance and heat resistant water adhesion, it is more preferably 3,500 to 13,000 Pa · s, further preferably 3,500 to 9,000 Pa · s, and 3,500 to 3,500 to s. It is particularly preferably 4,500 Pa · s.
The viscosity using a rheometer can be measured under the following conditions using, for example, "MCR-302" manufactured by AntonioPaar.
(Measurement condition)
Measuring jig: Parallel plate "PP-08" (diameter 8 mm)
Distance between plates: 0.5 mm
Measurement temperature: 25 ° C
Measurement mode: Rotational shear rate: 0.1 / sec
また、レオメーターを用いて0.1/sの剪断速度で測定される25℃でのポリウレタン樹脂(U)の粘度は、塗装ガン使用後の洗浄性及び外観の観点から、100~150,000Pa・sであることが好ましい。さらに、耐水密着性及び耐熱水密着性の観点から、3,500~13,000Pa・sであることがより好ましく、3,500~9,000Pa・sであることが更に好ましく、3,500~4,500Pa・sであることが特に好ましい。
レオメーターを用いた粘度は、例えば、AntonPaar社製「MCR-302」を使用して以下の条件で測定できる。
(測定条件)
測定治具:パラレルプレート「PP-08」(直径8mm)
プレート間距離:0.5mm
測定温度:25℃
測定モード:回転
せん断速度:0.1/秒 For the polyurethane resin (U), the viscosity of the polyurethane resin (U) at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer is 100 to 1,000,000 Pa · s.
The viscosity of the polyurethane resin (U) at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer is 100 to 150,000 Pa from the viewpoint of cleanability and appearance after using a painting gun. -It is preferably s. Further, from the viewpoint of water resistance and heat resistant water adhesion, it is more preferably 3,500 to 13,000 Pa · s, further preferably 3,500 to 9,000 Pa · s, and 3,500 to 3,500 to s. It is particularly preferably 4,500 Pa · s.
The viscosity using a rheometer can be measured under the following conditions using, for example, "MCR-302" manufactured by AntonioPaar.
(Measurement condition)
Measuring jig: Parallel plate "PP-08" (diameter 8 mm)
Distance between plates: 0.5 mm
Measurement temperature: 25 ° C
Measurement mode: Rotational shear rate: 0.1 / sec
ポリウレタン樹脂(U)の粘度を前記の範囲とするためには、前述の通り、活性水素成分(A)として、高分子ポリオール(A1)であるポリテトラメチレンエーテルグリコールを用い、ウレタン基含有量及びウレア基含有量を後述の好ましい値とし、ポリウレタン樹脂(U)を構成する活性水素成分(A)及び有機ポリイソシアネート成分(B)について、イソシアネート基/活性水素原子の当量比を後述の好ましい値(0.6~0.95)とし、ポリウレタン樹脂(U)の分子量を後述の好ましい値とし、酸価を後述の値にする方法等が挙げられる。
例えば、ポリウレタン樹脂(U)の粘度が低い場合、イソシアネート基/活性水素原子の当量比を後述の好ましい範囲内で、大きくすることにより、ポリウレタン樹脂(U)の分子量を上げ、ポリウレタン樹脂(U)の粘度を上昇させることができる。また、ウレタン基含有量、ウレア基含有量、酸価を後述の値の範囲で高くすることで、ポリウレタン樹脂(U)の粘度を上昇させることができる。
また、例えば、ポリウレタン樹脂(U)の粘度が高い場合、イソシアネート基/活性水素原子の当量比を後述の好ましい範囲内で、小さくすることにより、ポリウレタン樹脂(U)の分子量を下げ、ポリウレタン樹脂(U)の粘度を低減させることができる。また、ウレタン基含有量、ウレア基含有量、酸価を後述の値の範囲で低くすることで、ポリウレタン樹脂(U)の粘度を低減させることができる。 In order to keep the viscosity of the polyurethane resin (U) within the above range, as described above, polytetramethylene ether glycol, which is a high molecular weight polyol (A1), is used as the active hydrogen component (A), and the urethane group content and The urethane group content is set to a preferable value described later, and the equivalent ratio of isocyanate groups / active hydrogen atoms is set to a preferable value described later for the active hydrogen component (A) and the organic polyisocyanate component (B) constituting the polyurethane resin (U). 0.6 to 0.95), a method in which the molecular weight of the polyurethane resin (U) is set to a preferable value described later, and the acid value is set to a value described later, and the like can be mentioned.
For example, when the viscosity of the polyurethane resin (U) is low, the molecular weight of the polyurethane resin (U) can be increased by increasing the equivalent ratio of isocyanate groups / active hydrogen atoms within a preferable range described later to increase the molecular weight of the polyurethane resin (U). The viscosity of can be increased. Further, the viscosity of the polyurethane resin (U) can be increased by increasing the urethane group content, the urea group content, and the acid value within the range of the values described later.
Further, for example, when the viscosity of the polyurethane resin (U) is high, the molecular weight of the polyurethane resin (U) can be lowered by reducing the equivalent ratio of isocyanate groups / active hydrogen atoms within a preferable range described later, and the polyurethane resin (U) can be reduced. The viscosity of U) can be reduced. Further, the viscosity of the polyurethane resin (U) can be reduced by lowering the urethane group content, the urea group content, and the acid value within the range of the values described later.
例えば、ポリウレタン樹脂(U)の粘度が低い場合、イソシアネート基/活性水素原子の当量比を後述の好ましい範囲内で、大きくすることにより、ポリウレタン樹脂(U)の分子量を上げ、ポリウレタン樹脂(U)の粘度を上昇させることができる。また、ウレタン基含有量、ウレア基含有量、酸価を後述の値の範囲で高くすることで、ポリウレタン樹脂(U)の粘度を上昇させることができる。
また、例えば、ポリウレタン樹脂(U)の粘度が高い場合、イソシアネート基/活性水素原子の当量比を後述の好ましい範囲内で、小さくすることにより、ポリウレタン樹脂(U)の分子量を下げ、ポリウレタン樹脂(U)の粘度を低減させることができる。また、ウレタン基含有量、ウレア基含有量、酸価を後述の値の範囲で低くすることで、ポリウレタン樹脂(U)の粘度を低減させることができる。 In order to keep the viscosity of the polyurethane resin (U) within the above range, as described above, polytetramethylene ether glycol, which is a high molecular weight polyol (A1), is used as the active hydrogen component (A), and the urethane group content and The urethane group content is set to a preferable value described later, and the equivalent ratio of isocyanate groups / active hydrogen atoms is set to a preferable value described later for the active hydrogen component (A) and the organic polyisocyanate component (B) constituting the polyurethane resin (U). 0.6 to 0.95), a method in which the molecular weight of the polyurethane resin (U) is set to a preferable value described later, and the acid value is set to a value described later, and the like can be mentioned.
For example, when the viscosity of the polyurethane resin (U) is low, the molecular weight of the polyurethane resin (U) can be increased by increasing the equivalent ratio of isocyanate groups / active hydrogen atoms within a preferable range described later to increase the molecular weight of the polyurethane resin (U). The viscosity of can be increased. Further, the viscosity of the polyurethane resin (U) can be increased by increasing the urethane group content, the urea group content, and the acid value within the range of the values described later.
Further, for example, when the viscosity of the polyurethane resin (U) is high, the molecular weight of the polyurethane resin (U) can be lowered by reducing the equivalent ratio of isocyanate groups / active hydrogen atoms within a preferable range described later, and the polyurethane resin (U) can be reduced. The viscosity of U) can be reduced. Further, the viscosity of the polyurethane resin (U) can be reduced by lowering the urethane group content, the urea group content, and the acid value within the range of the values described later.
粘度を測定するためのポリウレタン樹脂(U)[ポリウレタン樹脂(U1)の前駆体であるポリウレタン樹脂(U)を含む]を、ポリウレタン樹脂水性分散体(Q)から得る方法としては、以下の方法等が挙げられる。
ポリウレタン樹脂水性分散体(Q)が含有するポリウレタン樹脂(U)以外の成分[後述のポリウレタン樹脂(U)の中和剤を含む]が揮発性を有する成分の場合、加熱等により、ポリウレタン樹脂(U)以外の成分を揮発させることで、ポリウレタン樹脂(U)を得ることができる。
また、ポリウレタン樹脂水性分散体(Q)が不揮発性の成分を含有する場合は、揮発性の溶剤を移動相として、公知のクロマトグラフィーにより、ポリウレタン樹脂(U)を精製し、その後、加熱等により揮発性の溶剤等を除去することで、ポリウレタン樹脂(U)を得ることができる。
また、後述のポリウレタン樹脂(U)の中和剤が不揮発性である場合は、揮発性の塩基と塩交換反応をした後に、前記の方法により、ポリウレタン樹脂(U)以外の成分を除去することで、ポリウレタン樹脂(U)を得ることができる。 As a method for obtaining the polyurethane resin (U) [including the polyurethane resin (U) which is a precursor of the polyurethane resin (U1)] for measuring the viscosity from the polyurethane resin aqueous dispersion (Q), the following methods and the like are used. Can be mentioned.
When the component other than the polyurethane resin (U) contained in the polyurethane resin aqueous dispersion (Q) [including the neutralizing agent of the polyurethane resin (U) described later] is a volatile component, the polyurethane resin (containing a neutralizing agent for the polyurethane resin (U) described later) is heated or the like. Polyurethane resin (U) can be obtained by volatilizing components other than U).
When the polyurethane resin aqueous dispersion (Q) contains a non-volatile component, the polyurethane resin (U) is purified by known chromatography using a volatile solvent as a mobile phase, and then heated or the like. The polyurethane resin (U) can be obtained by removing the volatile solvent and the like.
When the neutralizing agent for the polyurethane resin (U) described later is non-volatile, the components other than the polyurethane resin (U) are removed by the above method after performing a salt exchange reaction with a volatile base. Then, the polyurethane resin (U) can be obtained.
ポリウレタン樹脂水性分散体(Q)が含有するポリウレタン樹脂(U)以外の成分[後述のポリウレタン樹脂(U)の中和剤を含む]が揮発性を有する成分の場合、加熱等により、ポリウレタン樹脂(U)以外の成分を揮発させることで、ポリウレタン樹脂(U)を得ることができる。
また、ポリウレタン樹脂水性分散体(Q)が不揮発性の成分を含有する場合は、揮発性の溶剤を移動相として、公知のクロマトグラフィーにより、ポリウレタン樹脂(U)を精製し、その後、加熱等により揮発性の溶剤等を除去することで、ポリウレタン樹脂(U)を得ることができる。
また、後述のポリウレタン樹脂(U)の中和剤が不揮発性である場合は、揮発性の塩基と塩交換反応をした後に、前記の方法により、ポリウレタン樹脂(U)以外の成分を除去することで、ポリウレタン樹脂(U)を得ることができる。 As a method for obtaining the polyurethane resin (U) [including the polyurethane resin (U) which is a precursor of the polyurethane resin (U1)] for measuring the viscosity from the polyurethane resin aqueous dispersion (Q), the following methods and the like are used. Can be mentioned.
When the component other than the polyurethane resin (U) contained in the polyurethane resin aqueous dispersion (Q) [including the neutralizing agent of the polyurethane resin (U) described later] is a volatile component, the polyurethane resin (containing a neutralizing agent for the polyurethane resin (U) described later) is heated or the like. Polyurethane resin (U) can be obtained by volatilizing components other than U).
When the polyurethane resin aqueous dispersion (Q) contains a non-volatile component, the polyurethane resin (U) is purified by known chromatography using a volatile solvent as a mobile phase, and then heated or the like. The polyurethane resin (U) can be obtained by removing the volatile solvent and the like.
When the neutralizing agent for the polyurethane resin (U) described later is non-volatile, the components other than the polyurethane resin (U) are removed by the above method after performing a salt exchange reaction with a volatile base. Then, the polyurethane resin (U) can be obtained.
ポリウレタン樹脂(U)のウレタン基含有量は、ポリウレタン樹脂(U)の粘度を上述の粘度に調整する観点から、ポリウレタン樹脂(U)の重量を基準として1.0~3.5mmol/gであることが好ましく、1.0~1.5mmol/gであることがより好ましく、1.0~1.2mmol/gであることが更に好ましく、1.1~1.2mmol/gであることが特に好ましい。
ポリウレタン樹脂(U)のウレア基含有量は、ポリウレタン樹脂(U)の粘度を上述の粘度に調整する観点から、ポリウレタン樹脂(U)の重量を基準として0.8mmol/g以下であることが好ましい。また、耐水密着性及び耐熱水密着性の観点から、ウレア基含有量は、ポリウレタン樹脂(U)の重量を基準として、0.05mmol/g以上であることが好ましく、0.5mmol/g以上であることが更に好ましい。
また、ウレア基含有量及びウレタン基含有量の比率[ウレア基含有量/ウレタン基含有量]は、耐水密着性及び耐熱水密着性の観点から、0.45以上であることが好ましく、0.47~0.80であることが更に好ましい。ウレア基とウレタン基の含有量の比率は、1H-NMRによって定量することができる。 The urethane group content of the polyurethane resin (U) is 1.0 to 3.5 mmol / g based on the weight of the polyurethane resin (U) from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the above-mentioned viscosity. It is preferably 1.0 to 1.5 mmol / g, more preferably 1.0 to 1.2 mmol / g, and particularly preferably 1.1 to 1.2 mmol / g. preferable.
The urea group content of the polyurethane resin (U) is preferably 0.8 mmol / g or less based on the weight of the polyurethane resin (U) from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the above-mentioned viscosity. .. From the viewpoint of water adhesion and heat resistance, the urea group content is preferably 0.05 mmol / g or more, preferably 0.5 mmol / g or more, based on the weight of the polyurethane resin (U). It is more preferable to have.
The ratio of the urea group content to the urethane group content [urea group content / urethane group content] is preferably 0.45 or more from the viewpoint of water adhesion and heat resistant water adhesion, and is preferably 0. It is more preferably 47 to 0.80. The ratio of the urea group to the urethane group content can be quantified by 1 1 H-NMR.
ポリウレタン樹脂(U)のウレア基含有量は、ポリウレタン樹脂(U)の粘度を上述の粘度に調整する観点から、ポリウレタン樹脂(U)の重量を基準として0.8mmol/g以下であることが好ましい。また、耐水密着性及び耐熱水密着性の観点から、ウレア基含有量は、ポリウレタン樹脂(U)の重量を基準として、0.05mmol/g以上であることが好ましく、0.5mmol/g以上であることが更に好ましい。
また、ウレア基含有量及びウレタン基含有量の比率[ウレア基含有量/ウレタン基含有量]は、耐水密着性及び耐熱水密着性の観点から、0.45以上であることが好ましく、0.47~0.80であることが更に好ましい。ウレア基とウレタン基の含有量の比率は、1H-NMRによって定量することができる。 The urethane group content of the polyurethane resin (U) is 1.0 to 3.5 mmol / g based on the weight of the polyurethane resin (U) from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the above-mentioned viscosity. It is preferably 1.0 to 1.5 mmol / g, more preferably 1.0 to 1.2 mmol / g, and particularly preferably 1.1 to 1.2 mmol / g. preferable.
The urea group content of the polyurethane resin (U) is preferably 0.8 mmol / g or less based on the weight of the polyurethane resin (U) from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the above-mentioned viscosity. .. From the viewpoint of water adhesion and heat resistance, the urea group content is preferably 0.05 mmol / g or more, preferably 0.5 mmol / g or more, based on the weight of the polyurethane resin (U). It is more preferable to have.
The ratio of the urea group content to the urethane group content [urea group content / urethane group content] is preferably 0.45 or more from the viewpoint of water adhesion and heat resistant water adhesion, and is preferably 0. It is more preferably 47 to 0.80. The ratio of the urea group to the urethane group content can be quantified by 1 1 H-NMR.
ポリウレタン樹脂(U)のウレタン基含有量を所望の範囲とするには、活性水素成分(A)及び有機ポリイソシアネート成分(B)の量を適宜調整すればよい。
ウレタン基含有量は、窒素分析計によって定量されるN原子含有量、ウレア基とウレタン基の含有量の比率並びにアロハネート基及びビューレット基含有量から算出することができる。まず、「N原子含有量」から、「アロハネート基」及び「ビューレット基」由来のN原子の量を減算することで、「ウレタン基」及び「ウレア基」由来のN原子の合計量を算出する。次に、ウレタン基とウレア基の比率から、「ウレタン基」及び「ウレア基」由来のN原子の量をそれぞれ算出する。この値から、ウレタン基濃度を算出する。 In order to make the urethane group content of the polyurethane resin (U) within a desired range, the amounts of the active hydrogen component (A) and the organic polyisocyanate component (B) may be appropriately adjusted.
The urethane group content can be calculated from the N atom content quantified by the nitrogen analyzer, the ratio of the urea group to the urethane group content, and the alohanate group and burette group content. First, the total amount of N atoms derived from "urethane group" and "urea group" is calculated by subtracting the amount of N atoms derived from "alohaneate group" and "buret group" from "N atom content". do. Next, the amounts of N atoms derived from the "urethane group" and the "urea group" are calculated from the ratio of the urethane group and the urea group, respectively. From this value, the urethane group concentration is calculated.
ウレタン基含有量は、窒素分析計によって定量されるN原子含有量、ウレア基とウレタン基の含有量の比率並びにアロハネート基及びビューレット基含有量から算出することができる。まず、「N原子含有量」から、「アロハネート基」及び「ビューレット基」由来のN原子の量を減算することで、「ウレタン基」及び「ウレア基」由来のN原子の合計量を算出する。次に、ウレタン基とウレア基の比率から、「ウレタン基」及び「ウレア基」由来のN原子の量をそれぞれ算出する。この値から、ウレタン基濃度を算出する。 In order to make the urethane group content of the polyurethane resin (U) within a desired range, the amounts of the active hydrogen component (A) and the organic polyisocyanate component (B) may be appropriately adjusted.
The urethane group content can be calculated from the N atom content quantified by the nitrogen analyzer, the ratio of the urea group to the urethane group content, and the alohanate group and burette group content. First, the total amount of N atoms derived from "urethane group" and "urea group" is calculated by subtracting the amount of N atoms derived from "alohaneate group" and "buret group" from "N atom content". do. Next, the amounts of N atoms derived from the "urethane group" and the "urea group" are calculated from the ratio of the urethane group and the urea group, respectively. From this value, the urethane group concentration is calculated.
ポリウレタン樹脂(U)中のウレア基含有量を所望の範囲とするには、ポリウレタン樹脂(U)の原料中のアミノ基含有量、水分含量及びイソシアネート基含有量を適宜調整すればよい。
ウレア基含有量は、窒素分析計によって定量されるN原子含有量、ウレア基とウレタン基の含有量の比率並びにアロハネート基及びビューレット基含有量から算出することができる。まず、「N原子含有量」から、「アロハネート基」及び「ビューレット基」由来のN原子の量を減算することで、「ウレタン基」及び「ウレア基」由来のN原子の合計量を算出する。次に、ウレタン基とウレア基の比率から、「ウレタン基」及び「ウレア基」由来のN原子の量をそれぞれ算出する。この値から、ウレア基濃度を算出する。 In order to make the urea group content in the polyurethane resin (U) within a desired range, the amino group content, the water content and the isocyanate group content in the raw material of the polyurethane resin (U) may be appropriately adjusted.
The urea group content can be calculated from the N atom content quantified by a nitrogen analyzer, the ratio of the urea group to urethane group contents, and the alohanate group and burette group contents. First, the total amount of N atoms derived from "urethane group" and "urea group" is calculated by subtracting the amount of N atoms derived from "alohaneate group" and "buret group" from "N atom content". do. Next, the amounts of N atoms derived from the "urethane group" and the "urea group" are calculated from the ratio of the urethane group and the urea group, respectively. From this value, the urea group concentration is calculated.
ウレア基含有量は、窒素分析計によって定量されるN原子含有量、ウレア基とウレタン基の含有量の比率並びにアロハネート基及びビューレット基含有量から算出することができる。まず、「N原子含有量」から、「アロハネート基」及び「ビューレット基」由来のN原子の量を減算することで、「ウレタン基」及び「ウレア基」由来のN原子の合計量を算出する。次に、ウレタン基とウレア基の比率から、「ウレタン基」及び「ウレア基」由来のN原子の量をそれぞれ算出する。この値から、ウレア基濃度を算出する。 In order to make the urea group content in the polyurethane resin (U) within a desired range, the amino group content, the water content and the isocyanate group content in the raw material of the polyurethane resin (U) may be appropriately adjusted.
The urea group content can be calculated from the N atom content quantified by a nitrogen analyzer, the ratio of the urea group to urethane group contents, and the alohanate group and burette group contents. First, the total amount of N atoms derived from "urethane group" and "urea group" is calculated by subtracting the amount of N atoms derived from "alohaneate group" and "buret group" from "N atom content". do. Next, the amounts of N atoms derived from the "urethane group" and the "urea group" are calculated from the ratio of the urethane group and the urea group, respectively. From this value, the urea group concentration is calculated.
本発明において、ポリウレタン樹脂(U)中のアロハネート基及びビューレット基の含有量の合計値は、造膜性及び得られる皮膜の耐水性の観点から、ポリウレタン樹脂(U)の重量に基づいて0.1mmol/g以下であることが好ましく、更に好ましくは0.03mmol/g以下、特に好ましくは0.01mmol/g以下、とりわけ好ましくは0.003mmol/g以下、最も好ましくは0.001mmol/g以下である。
In the present invention, the total content of the alohanate group and the burette group in the polyurethane resin (U) is 0 based on the weight of the polyurethane resin (U) from the viewpoint of film forming property and water resistance of the obtained film. It is preferably 0.1 mmol / g or less, more preferably 0.03 mmol / g or less, particularly preferably 0.01 mmol / g or less, particularly preferably 0.003 mmol / g or less, and most preferably 0.001 mmol / g or less. Is.
ポリウレタン樹脂(U)のアロハネート基及びビューレット基の含有量の合計値を所望の範囲とするには、ポリウレタン樹脂(U)の原料中のアミノ基含有量、水酸基及びアミノ基の当量に対するイソシアネート基の当量の比、ウレタン化反応温度等を適宜調整すればよい。特に、反応温度については、120℃以下又は180℃以上とすることによりアロハネート基及びビューレット基の生成を抑えることができる。
アロハネート基及びビューレット基の含有量は、ガスクロマトグラフィー法で測定される。 In order to make the total value of the alohanate group and burette group content of the polyurethane resin (U) within the desired range, the amino group content in the raw material of the polyurethane resin (U) and the isocyanate group with respect to the equivalent of the hydroxyl group and the amino group The ratio of the equivalent amounts of the above, the urethanization reaction temperature, and the like may be appropriately adjusted. In particular, the reaction temperature can be set to 120 ° C. or lower or 180 ° C. or higher to suppress the formation of alohanate groups and burette groups.
The content of alohanate group and burette group is measured by gas chromatography.
アロハネート基及びビューレット基の含有量は、ガスクロマトグラフィー法で測定される。 In order to make the total value of the alohanate group and burette group content of the polyurethane resin (U) within the desired range, the amino group content in the raw material of the polyurethane resin (U) and the isocyanate group with respect to the equivalent of the hydroxyl group and the amino group The ratio of the equivalent amounts of the above, the urethanization reaction temperature, and the like may be appropriately adjusted. In particular, the reaction temperature can be set to 120 ° C. or lower or 180 ° C. or higher to suppress the formation of alohanate groups and burette groups.
The content of alohanate group and burette group is measured by gas chromatography.
ポリウレタン樹脂(U)のMnは、ポリウレタン樹脂(U)の粘度を上述の粘度に調整する観点から、好ましくは1,500~8,000であり、更に好ましくは2,000~7,500、特に好ましくは2,000~6,000、とりわけ好ましくは2,000~5,500、最も好ましくは2,000~5,000である。
活性水素成分(A)及び有機ポリイソシアネート成分(B)の量を適宜調整することにより、ポリウレタン樹脂(U)のMnを所望の範囲にすることができる。 The Mn of the polyurethane resin (U) is preferably 1,500 to 8,000, more preferably 2,000 to 7,500, particularly 2,000 to 7,500, from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the above-mentioned viscosity. It is preferably 2,000 to 6,000, particularly preferably 2,000 to 5,500, and most preferably 2,000 to 5,000.
By appropriately adjusting the amounts of the active hydrogen component (A) and the organic polyisocyanate component (B), the Mn of the polyurethane resin (U) can be set in a desired range.
活性水素成分(A)及び有機ポリイソシアネート成分(B)の量を適宜調整することにより、ポリウレタン樹脂(U)のMnを所望の範囲にすることができる。 The Mn of the polyurethane resin (U) is preferably 1,500 to 8,000, more preferably 2,000 to 7,500, particularly 2,000 to 7,500, from the viewpoint of adjusting the viscosity of the polyurethane resin (U) to the above-mentioned viscosity. It is preferably 2,000 to 6,000, particularly preferably 2,000 to 5,500, and most preferably 2,000 to 5,000.
By appropriately adjusting the amounts of the active hydrogen component (A) and the organic polyisocyanate component (B), the Mn of the polyurethane resin (U) can be set in a desired range.
ポリウレタン樹脂(U)のMwは、(U)の粘度を上述の粘度に調整する観点から、好ましくは4,000~20,000であり、より好ましくは5,000~18,000、更に好ましくは6,500~15,000、特に好ましくは7,000~9,800、最も好ましくは7,000~7,600である。
The Mw of the polyurethane resin (U) is preferably 4,000 to 20,000, more preferably 5,000 to 18,000, and even more preferably 5,000 to 18,000, from the viewpoint of adjusting the viscosity of (U) to the above-mentioned viscosity. It is 6,500 to 15,000, particularly preferably 7,000 to 9,800, and most preferably 7,000 to 7,600.
Mn及びMwは、前述のゲルパーミュエーションクロマトグラフィー(GPC)により測定した値である。
GPC測定において、測定に用いられる溶剤に対するポリウレタン樹脂(U)の溶解度が90重量%未満[0.125重量%の固形分濃度となるようにDMFに溶解させる際、実際に溶解する試料が0.1125重量%(=0.125×0.90)未満]の場合はGPCの測定精度が低下する。その場合、分子量の正確な測定が困難なため、当該ポリウレタン樹脂の分子量は無限大と定義した。 Mn and Mw are values measured by the above-mentioned gel permeation chromatography (GPC).
In the GPC measurement, when the polyurethane resin (U) is dissolved in DMF so that the solubility of the polyurethane resin (U) in the solvent used for the measurement is less than 90% by weight [0.125% by weight of the solid content concentration], the sample actually dissolved is 0. If it is less than 1125% by weight (= 0.125 × 0.90)], the measurement accuracy of GPC is lowered. In that case, since it is difficult to accurately measure the molecular weight, the molecular weight of the polyurethane resin is defined as infinite.
GPC測定において、測定に用いられる溶剤に対するポリウレタン樹脂(U)の溶解度が90重量%未満[0.125重量%の固形分濃度となるようにDMFに溶解させる際、実際に溶解する試料が0.1125重量%(=0.125×0.90)未満]の場合はGPCの測定精度が低下する。その場合、分子量の正確な測定が困難なため、当該ポリウレタン樹脂の分子量は無限大と定義した。 Mn and Mw are values measured by the above-mentioned gel permeation chromatography (GPC).
In the GPC measurement, when the polyurethane resin (U) is dissolved in DMF so that the solubility of the polyurethane resin (U) in the solvent used for the measurement is less than 90% by weight [0.125% by weight of the solid content concentration], the sample actually dissolved is 0. If it is less than 1125% by weight (= 0.125 × 0.90)], the measurement accuracy of GPC is lowered. In that case, since it is difficult to accurately measure the molecular weight, the molecular weight of the polyurethane resin is defined as infinite.
ポリウレタン樹脂(U)は、前述の通り、水酸基を有する。
ポリウレタン樹脂(U)の水酸基価は、塗装ガン洗浄性及び外観の観点から、15~100mgKOH/gであることが好ましい。
前記のポリウレタン樹脂(U)が有する水酸基は、活性水素成分(A)由来の水酸基等が挙げられ、活性水素成分(A)及び有機ポリイソシアネート成分(B)の量を調整することで、水酸基価を前記の好ましい範囲に調整することができる。
ポリウレタン樹脂(U)の水酸基価は、JIS K0070(1992)に準じて測定した値である。 As described above, the polyurethane resin (U) has a hydroxyl group.
The hydroxyl value of the polyurethane resin (U) is preferably 15 to 100 mgKOH / g from the viewpoint of paint gun detergency and appearance.
Examples of the hydroxyl group of the polyurethane resin (U) include a hydroxyl group derived from the active hydrogen component (A), and the hydroxyl value can be adjusted by adjusting the amounts of the active hydrogen component (A) and the organic polyisocyanate component (B). Can be adjusted to the above-mentioned preferable range.
The hydroxyl value of the polyurethane resin (U) is a value measured according to JIS K0070 (1992).
ポリウレタン樹脂(U)の水酸基価は、塗装ガン洗浄性及び外観の観点から、15~100mgKOH/gであることが好ましい。
前記のポリウレタン樹脂(U)が有する水酸基は、活性水素成分(A)由来の水酸基等が挙げられ、活性水素成分(A)及び有機ポリイソシアネート成分(B)の量を調整することで、水酸基価を前記の好ましい範囲に調整することができる。
ポリウレタン樹脂(U)の水酸基価は、JIS K0070(1992)に準じて測定した値である。 As described above, the polyurethane resin (U) has a hydroxyl group.
The hydroxyl value of the polyurethane resin (U) is preferably 15 to 100 mgKOH / g from the viewpoint of paint gun detergency and appearance.
Examples of the hydroxyl group of the polyurethane resin (U) include a hydroxyl group derived from the active hydrogen component (A), and the hydroxyl value can be adjusted by adjusting the amounts of the active hydrogen component (A) and the organic polyisocyanate component (B). Can be adjusted to the above-mentioned preferable range.
The hydroxyl value of the polyurethane resin (U) is a value measured according to JIS K0070 (1992).
ポリウレタン樹脂(U)は、前述の通り、酸性基を有する。
ポリウレタン樹脂(U)の酸価は、耐水密着性の観点から、5~18mgKOH/gであり、好ましくは5~15mgKOH/gであり、更に好ましくは5~10mgKOH/gである。
ポリウレタン樹脂(U)が有する酸性基は、酸性基を有する化合物(A31)由来の酸性基等が挙げられ、カルボキシル基及びスルホ基等が挙げられる。酸性基を有する化合物(A31)の量を調整する等により、酸価を前記の好ましい範囲に調整することができる。
ポリウレタン樹脂(U)の酸価は、JIS K0070(1992)に準じて測定した値である。 As described above, the polyurethane resin (U) has an acidic group.
The acid value of the polyurethane resin (U) is 5 to 18 mgKOH / g, preferably 5 to 15 mgKOH / g, and more preferably 5 to 10 mgKOH / g from the viewpoint of water resistance and adhesion.
Examples of the acidic group contained in the polyurethane resin (U) include an acidic group derived from the compound (A31) having an acidic group, and a carboxyl group and a sulfo group. The acid value can be adjusted to the above-mentioned preferable range by adjusting the amount of the compound (A31) having an acidic group or the like.
The acid value of the polyurethane resin (U) is a value measured according to JIS K0070 (1992).
ポリウレタン樹脂(U)の酸価は、耐水密着性の観点から、5~18mgKOH/gであり、好ましくは5~15mgKOH/gであり、更に好ましくは5~10mgKOH/gである。
ポリウレタン樹脂(U)が有する酸性基は、酸性基を有する化合物(A31)由来の酸性基等が挙げられ、カルボキシル基及びスルホ基等が挙げられる。酸性基を有する化合物(A31)の量を調整する等により、酸価を前記の好ましい範囲に調整することができる。
ポリウレタン樹脂(U)の酸価は、JIS K0070(1992)に準じて測定した値である。 As described above, the polyurethane resin (U) has an acidic group.
The acid value of the polyurethane resin (U) is 5 to 18 mgKOH / g, preferably 5 to 15 mgKOH / g, and more preferably 5 to 10 mgKOH / g from the viewpoint of water resistance and adhesion.
Examples of the acidic group contained in the polyurethane resin (U) include an acidic group derived from the compound (A31) having an acidic group, and a carboxyl group and a sulfo group. The acid value can be adjusted to the above-mentioned preferable range by adjusting the amount of the compound (A31) having an acidic group or the like.
The acid value of the polyurethane resin (U) is a value measured according to JIS K0070 (1992).
前記ポリウレタン樹脂(U)と、その10倍の重量のアセトン(25℃のアセトン等)とを、80℃で180分間、密閉下で撹拌した際に生じる不溶解成分の重量割合は、塗装ガン洗浄性の観点から、添加したポリウレタン樹脂(U)の重量を基準として5重量%以下であることが好ましい。
不溶解成分の重量割合の測定方法としては、以下の方法を用いることができる。
(不溶解成分の重量割合の測定方法)
Wgのポリウレタン樹脂(U)を内径6cm、深さ12cmの耐圧密閉容器に長さ3cmのスターラーチップと共に仕込み、ポリウレタン樹脂(U)の10倍の重量(Wgが1gの場合10g)のアセトン(25℃のアセトン等)を加えて、80℃で180分間、密閉下で撹拌し混合液を得る。
得られた混合液を予め重量(W1)を測定したSUS製メッシュ(目開き75μm)でろ過したのち、アセトン(25℃のアセトン等、耐圧密閉容器に仕込んだアセトンと同じ重量)でろ過残さを洗浄する。ろ過残さとSUS製メッシュを105℃で30分間乾燥させたのち合計重量(W2)を測定する。不溶解成分の重量割合は下記式により算出する。
不溶解成分の重量割合(%)={(W2-W1)/W}×100
なお、不溶解成分の重量割合を測定するためのポリウレタン樹脂(U)を、ポリウレタン樹脂水性分散体(Q)から得る方法としては、前記の「粘度を測定するためのポリウレタン樹脂(U)を、ポリウレタン樹脂水性分散体(Q)から得る方法」等を用いることができる。 The weight ratio of the insoluble component generated when the polyurethane resin (U) and acetone (such as 25 ° C. acetone) having a weight 10 times that of the polyurethane resin (U) are stirred at 80 ° C. for 180 minutes in a sealed state is used for painting gun cleaning. From the viewpoint of properties, it is preferably 5% by weight or less based on the weight of the added polyurethane resin (U).
The following method can be used as a method for measuring the weight ratio of the insoluble component.
(Measuring method of weight ratio of insoluble components)
Wg of polyurethane resin (U) is placed in a pressure-resistant airtight container with an inner diameter of 6 cm and a depth of 12 cm together with a stirrer chip having a length of 3 cm. (Acetone at ° C., etc.) is added, and the mixture is stirred at 80 ° C. for 180 minutes in a hermetically sealed manner to obtain a mixed solution.
The obtained mixed solution is filtered through a SUS mesh (opening 75 μm) whose weight (W1) has been measured in advance, and then filtered with acetone (the same weight as acetone charged in a pressure-resistant airtight container such as 25 ° C. acetone). To wash. The filtration residue and the SUS mesh are dried at 105 ° C. for 30 minutes, and then the total weight (W2) is measured. The weight ratio of the insoluble component is calculated by the following formula.
Weight ratio of insoluble component (%) = {(W2-W1) / W} x 100
As a method for obtaining the polyurethane resin (U) for measuring the weight ratio of the insoluble component from the polyurethane resin aqueous dispersion (Q), the above-mentioned "polyurethane resin (U) for measuring the viscosity" is used. A method of obtaining from the polyurethane resin aqueous dispersion (Q) ”and the like can be used.
不溶解成分の重量割合の測定方法としては、以下の方法を用いることができる。
(不溶解成分の重量割合の測定方法)
Wgのポリウレタン樹脂(U)を内径6cm、深さ12cmの耐圧密閉容器に長さ3cmのスターラーチップと共に仕込み、ポリウレタン樹脂(U)の10倍の重量(Wgが1gの場合10g)のアセトン(25℃のアセトン等)を加えて、80℃で180分間、密閉下で撹拌し混合液を得る。
得られた混合液を予め重量(W1)を測定したSUS製メッシュ(目開き75μm)でろ過したのち、アセトン(25℃のアセトン等、耐圧密閉容器に仕込んだアセトンと同じ重量)でろ過残さを洗浄する。ろ過残さとSUS製メッシュを105℃で30分間乾燥させたのち合計重量(W2)を測定する。不溶解成分の重量割合は下記式により算出する。
不溶解成分の重量割合(%)={(W2-W1)/W}×100
なお、不溶解成分の重量割合を測定するためのポリウレタン樹脂(U)を、ポリウレタン樹脂水性分散体(Q)から得る方法としては、前記の「粘度を測定するためのポリウレタン樹脂(U)を、ポリウレタン樹脂水性分散体(Q)から得る方法」等を用いることができる。 The weight ratio of the insoluble component generated when the polyurethane resin (U) and acetone (such as 25 ° C. acetone) having a weight 10 times that of the polyurethane resin (U) are stirred at 80 ° C. for 180 minutes in a sealed state is used for painting gun cleaning. From the viewpoint of properties, it is preferably 5% by weight or less based on the weight of the added polyurethane resin (U).
The following method can be used as a method for measuring the weight ratio of the insoluble component.
(Measuring method of weight ratio of insoluble components)
Wg of polyurethane resin (U) is placed in a pressure-resistant airtight container with an inner diameter of 6 cm and a depth of 12 cm together with a stirrer chip having a length of 3 cm. (Acetone at ° C., etc.) is added, and the mixture is stirred at 80 ° C. for 180 minutes in a hermetically sealed manner to obtain a mixed solution.
The obtained mixed solution is filtered through a SUS mesh (opening 75 μm) whose weight (W1) has been measured in advance, and then filtered with acetone (the same weight as acetone charged in a pressure-resistant airtight container such as 25 ° C. acetone). To wash. The filtration residue and the SUS mesh are dried at 105 ° C. for 30 minutes, and then the total weight (W2) is measured. The weight ratio of the insoluble component is calculated by the following formula.
Weight ratio of insoluble component (%) = {(W2-W1) / W} x 100
As a method for obtaining the polyurethane resin (U) for measuring the weight ratio of the insoluble component from the polyurethane resin aqueous dispersion (Q), the above-mentioned "polyurethane resin (U) for measuring the viscosity" is used. A method of obtaining from the polyurethane resin aqueous dispersion (Q) ”and the like can be used.
不溶解成分の重量割合を、前記の好ましい値とするためには、活性水素成分(A)として、高分子ポリオール(A1)であるポリテトラメチレンエーテルグリコールを用い、ウレタン基含有量及びウレア基含有量を前述の好ましい値とし、ポリウレタン樹脂(U)を構成する活性水素成分(A)及び有機ポリイソシアネート成分(B)について、イソシアネート基/活性水素原子の当量比を後述の好ましい値(0.6~0.95)とし、ウレタン樹脂(U)の分子量を前述の好ましい値とし、酸価を前述の値にする方法等が挙げられる。
例えば、ポリウレタン樹脂(U)の不溶解成分の重量割合が高い場合、イソシアネート基/活性水素原子の当量比を後述の好ましい範囲内で、小さくすることにより、ポリウレタン樹脂(U)の分子量を下げ、不溶解成分の重量割合を低減させることができる。また、ウレタン基含有量、ウレア基含有量、酸価を前述の値の範囲で低くすることで、不溶解成分の重量割合を低減させることができる。 In order to set the weight ratio of the insoluble component to the above-mentioned preferable value, polytetramethylene ether glycol, which is a high molecular weight polyol (A1), is used as the active hydrogen component (A), and the urethane group content and the urea group are contained. The amount is set to the above-mentioned preferable value, and the equivalent ratio of the isocyanate group / active hydrogen atom is set to the above-mentioned preferable value (0.6) with respect to the active hydrogen component (A) and the organic polyisocyanate component (B) constituting the polyurethane resin (U). ~ 0.95), the molecular weight of the urethane resin (U) is set to the above-mentioned preferable value, and the acid value is set to the above-mentioned value.
For example, when the weight ratio of the insoluble component of the polyurethane resin (U) is high, the molecular weight of the polyurethane resin (U) can be lowered by reducing the equivalent ratio of the isocyanate group / active hydrogen atom within a preferable range described later. The weight ratio of the insoluble component can be reduced. Further, by lowering the urethane group content, the urea group content, and the acid value within the above-mentioned range, the weight ratio of the insoluble component can be reduced.
例えば、ポリウレタン樹脂(U)の不溶解成分の重量割合が高い場合、イソシアネート基/活性水素原子の当量比を後述の好ましい範囲内で、小さくすることにより、ポリウレタン樹脂(U)の分子量を下げ、不溶解成分の重量割合を低減させることができる。また、ウレタン基含有量、ウレア基含有量、酸価を前述の値の範囲で低くすることで、不溶解成分の重量割合を低減させることができる。 In order to set the weight ratio of the insoluble component to the above-mentioned preferable value, polytetramethylene ether glycol, which is a high molecular weight polyol (A1), is used as the active hydrogen component (A), and the urethane group content and the urea group are contained. The amount is set to the above-mentioned preferable value, and the equivalent ratio of the isocyanate group / active hydrogen atom is set to the above-mentioned preferable value (0.6) with respect to the active hydrogen component (A) and the organic polyisocyanate component (B) constituting the polyurethane resin (U). ~ 0.95), the molecular weight of the urethane resin (U) is set to the above-mentioned preferable value, and the acid value is set to the above-mentioned value.
For example, when the weight ratio of the insoluble component of the polyurethane resin (U) is high, the molecular weight of the polyurethane resin (U) can be lowered by reducing the equivalent ratio of the isocyanate group / active hydrogen atom within a preferable range described later. The weight ratio of the insoluble component can be reduced. Further, by lowering the urethane group content, the urea group content, and the acid value within the above-mentioned range, the weight ratio of the insoluble component can be reduced.
<ポリウレタン樹脂(U1)>
本発明におけるポリウレタン樹脂(U1)は、ポリウレタン樹脂(U)が有する酸性基を中和してなるポリウレタン樹脂である。ここで、ポリウレタン樹脂(U)が有する酸性基としては、酸性基(カルボキシル基等)を有する化合物(A31)由来の酸性基であることが好ましい。 <Polyurethane resin (U1)>
The polyurethane resin (U1) in the present invention is a polyurethane resin obtained by neutralizing the acidic group of the polyurethane resin (U). Here, the acidic group of the polyurethane resin (U) is preferably an acidic group derived from the compound (A31) having an acidic group (carboxyl group or the like).
本発明におけるポリウレタン樹脂(U1)は、ポリウレタン樹脂(U)が有する酸性基を中和してなるポリウレタン樹脂である。ここで、ポリウレタン樹脂(U)が有する酸性基としては、酸性基(カルボキシル基等)を有する化合物(A31)由来の酸性基であることが好ましい。 <Polyurethane resin (U1)>
The polyurethane resin (U1) in the present invention is a polyurethane resin obtained by neutralizing the acidic group of the polyurethane resin (U). Here, the acidic group of the polyurethane resin (U) is preferably an acidic group derived from the compound (A31) having an acidic group (carboxyl group or the like).
また、化合物(A31)由来の酸性基の中和に用いる中和剤としては、アンモニア、炭素数1~20のアミン化合物及びアルカリ金属(ナトリウム、カリウム及びリチウム等)の水酸化物等が挙げられる。
Examples of the neutralizing agent used for neutralizing the acidic group derived from the compound (A31) include ammonia, amine compounds having 1 to 20 carbon atoms, and hydroxides of alkali metals (sodium, potassium, lithium, etc.). ..
炭素数1~20のアミン化合物としては、1級アミン(モノメチルアミン、モノエチルアミン、モノブチルアミン、モノエタノールアミン及び2-アミノ-2-メチル-1-プロパノール等)、2級アミン(ジメチルアミン、ジエチルアミン、ジブチルアミン、ジエタノールアミン及びN-メチルジエタノールアミン等)及び3級アミン(トリメチルアミン、トリエチルアミン、ジメチルエチルアミン、N,N-ジメチルアミノエタノール及びトリエタノールアミン等)等が挙げられる。
Examples of amine compounds having 1 to 20 carbon atoms include primary amines (monomethylamine, monoethylamine, monobutylamine, monoethanolamine, 2-amino-2-methyl-1-propanol, etc.) and secondary amines (dimethylamine, diethylamine). , Dibutylamine, diethanolamine, N-methyldiethanolamine, etc.) and tertiary amines (trimethylamine, triethylamine, dimethylethylamine, N, N-dimethylaminoethanol, triethanolamine, etc.) and the like.
これらの内、水性分散体の臭気及び得られる皮膜の耐水性の観点から好ましいものは、25℃における蒸気圧が低いアミン化合物であり、更に好ましいのはトリエチルアミン、モノエタノールアミン、ジエタノールアミン及びN-メチルジエタノールアミン、N,N-ジメチルアミノエタノールである。
Of these, amine compounds having a low vapor pressure at 25 ° C. are preferable from the viewpoint of the odor of the aqueous dispersion and the water resistance of the obtained film, and more preferable are triethylamine, monoethanolamine, diethanolamine and N-methyl. Diethanolamine, N, N-dimethylaminoethanol.
<ポリウレタン樹脂水性分散体(Q)>
本発明におけるポリウレタン樹脂(U)の水性分散体(Q)は、ポリウレタン樹脂(U)及び/又はポリウレタン樹脂(U1)を水中に分散して製造することができる。 <Polyurethane resin aqueous dispersion (Q)>
The aqueous dispersion (Q) of the polyurethane resin (U) in the present invention can be produced by dispersing the polyurethane resin (U) and / or the polyurethane resin (U1) in water.
本発明におけるポリウレタン樹脂(U)の水性分散体(Q)は、ポリウレタン樹脂(U)及び/又はポリウレタン樹脂(U1)を水中に分散して製造することができる。 <Polyurethane resin aqueous dispersion (Q)>
The aqueous dispersion (Q) of the polyurethane resin (U) in the present invention can be produced by dispersing the polyurethane resin (U) and / or the polyurethane resin (U1) in water.
本発明のポリウレタン樹脂水性分散体(Q)は、ポリウレタン樹脂(U)及び/又はポリウレタン樹脂(U1)と共に、必要により酸化防止剤、着色防止剤、耐候安定剤、可塑剤及び離型剤等の添加剤を含有することができる。これらの添加剤の使用量はポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量に基づいて、好ましくは10重量%以下、更に好ましくは3重量%以下、特に好ましくは1重量%以下である。
The polyurethane resin aqueous dispersion (Q) of the present invention, together with the polyurethane resin (U) and / or the polyurethane resin (U1), may be used as an antioxidant, an antioxidant, a weathering stabilizer, a plasticizer, a mold release agent, etc., if necessary. Additives can be included. The amount of these additives used is preferably 10% by weight or less, more preferably 3% by weight or less, and particularly preferably 1% by weight or less, based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1). ..
本発明のポリウレタン樹脂水性分散体(Q)は、以下の(1)、(2)、(3)又は(4)の方法等により、ポリウレタン樹脂(U)及び/又はポリウレタン樹脂(U1)の製造を伴いながら製造することができる。
(1)活性水素成分(A)と有機ポリイソシアネート成分(B)とを一括混合して、ウレタン化反応後に、必要により前記の中和剤を混合し、水性媒体中に分散させる方法。
(2)活性水素成分(A)と有機ポリイソシアネート成分(B)とを一括混合して、混合物を水に分散後ウレタン化反応を行い、必要により前記の中和剤を混合する方法。
(3)活性水素成分(A)[(A1)~(A3)等]と有機ポリイソシアネート成分(B)とを反応させて得られる末端にイソシアネート基を有するウレタンプレポリマー(P)と、前記の中和剤とを所定の重量比で混合して、水中に分散した後に(P)を鎖伸長剤(A4)で伸長反応させ、必要により反応停止剤(A5)による停止反応を行う方法。
(4)活性水素成分(A)[(A1)~(A3)等]と有機ポリイソシアネート成分(B)とを反応させて得られる末端にイソシアネート基を有するウレタンプレポリマー(P)を製造する。その後、必要により鎖伸長剤(A4)で伸長反応させた後に、反応停止剤(A5)による停止反応を行う。次いで、必要により前記の中和剤を所定の重量比で混合して、水性媒体中に分散させる方法。
水性媒体としては、水(純水等)及び水と後述の有機溶剤との混合物等が挙げられる。 The polyurethane resin aqueous dispersion (Q) of the present invention is produced by producing the polyurethane resin (U) and / or the polyurethane resin (U1) by the following methods (1), (2), (3) or (4). It can be manufactured with.
(1) A method in which an active hydrogen component (A) and an organic polyisocyanate component (B) are collectively mixed, and after a urethanization reaction, the above-mentioned neutralizing agent is mixed if necessary and dispersed in an aqueous medium.
(2) A method in which the active hydrogen component (A) and the organic polyisocyanate component (B) are collectively mixed, the mixture is dispersed in water, a urethanization reaction is carried out, and the above-mentioned neutralizing agent is mixed if necessary.
(3) The urethane prepolymer (P) having an isocyanate group at the terminal obtained by reacting the active hydrogen component (A) [(A1) to (A3), etc.] with the organic polyisocyanate component (B), and the above-mentioned A method in which a neutralizing agent is mixed at a predetermined weight ratio, dispersed in water, and then (P) is extended with a chain extender (A4), and if necessary, a stop reaction is carried out with a reaction terminator (A5).
(4) A urethane prepolymer (P) having an isocyanate group at the terminal obtained by reacting an active hydrogen component (A) [(A1) to (A3), etc.] with an organic polyisocyanate component (B) is produced. Then, if necessary, an extension reaction is carried out with a chain extender (A4), and then a stop reaction is carried out with a reaction terminator (A5). Then, if necessary, the neutralizing agent is mixed in a predetermined weight ratio and dispersed in an aqueous medium.
Examples of the aqueous medium include water (pure water and the like) and a mixture of water and an organic solvent described later.
(1)活性水素成分(A)と有機ポリイソシアネート成分(B)とを一括混合して、ウレタン化反応後に、必要により前記の中和剤を混合し、水性媒体中に分散させる方法。
(2)活性水素成分(A)と有機ポリイソシアネート成分(B)とを一括混合して、混合物を水に分散後ウレタン化反応を行い、必要により前記の中和剤を混合する方法。
(3)活性水素成分(A)[(A1)~(A3)等]と有機ポリイソシアネート成分(B)とを反応させて得られる末端にイソシアネート基を有するウレタンプレポリマー(P)と、前記の中和剤とを所定の重量比で混合して、水中に分散した後に(P)を鎖伸長剤(A4)で伸長反応させ、必要により反応停止剤(A5)による停止反応を行う方法。
(4)活性水素成分(A)[(A1)~(A3)等]と有機ポリイソシアネート成分(B)とを反応させて得られる末端にイソシアネート基を有するウレタンプレポリマー(P)を製造する。その後、必要により鎖伸長剤(A4)で伸長反応させた後に、反応停止剤(A5)による停止反応を行う。次いで、必要により前記の中和剤を所定の重量比で混合して、水性媒体中に分散させる方法。
水性媒体としては、水(純水等)及び水と後述の有機溶剤との混合物等が挙げられる。 The polyurethane resin aqueous dispersion (Q) of the present invention is produced by producing the polyurethane resin (U) and / or the polyurethane resin (U1) by the following methods (1), (2), (3) or (4). It can be manufactured with.
(1) A method in which an active hydrogen component (A) and an organic polyisocyanate component (B) are collectively mixed, and after a urethanization reaction, the above-mentioned neutralizing agent is mixed if necessary and dispersed in an aqueous medium.
(2) A method in which the active hydrogen component (A) and the organic polyisocyanate component (B) are collectively mixed, the mixture is dispersed in water, a urethanization reaction is carried out, and the above-mentioned neutralizing agent is mixed if necessary.
(3) The urethane prepolymer (P) having an isocyanate group at the terminal obtained by reacting the active hydrogen component (A) [(A1) to (A3), etc.] with the organic polyisocyanate component (B), and the above-mentioned A method in which a neutralizing agent is mixed at a predetermined weight ratio, dispersed in water, and then (P) is extended with a chain extender (A4), and if necessary, a stop reaction is carried out with a reaction terminator (A5).
(4) A urethane prepolymer (P) having an isocyanate group at the terminal obtained by reacting an active hydrogen component (A) [(A1) to (A3), etc.] with an organic polyisocyanate component (B) is produced. Then, if necessary, an extension reaction is carried out with a chain extender (A4), and then a stop reaction is carried out with a reaction terminator (A5). Then, if necessary, the neutralizing agent is mixed in a predetermined weight ratio and dispersed in an aqueous medium.
Examples of the aqueous medium include water (pure water and the like) and a mixture of water and an organic solvent described later.
なお、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の水への分散性の観点から、活性水素成分(A)が親水性基と活性水素原子を含有する化合物(A3)を含有することが好ましい。
本発明におけるポリウレタン樹脂水性分散体(Q)は、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の分散性及び水性分散体の安定性の観点から、必要によりウレタンプレポリマー(P)と、ポリウレタン樹脂(U)及び/又はポリウレタン樹脂(U1)を分散剤(g)の存在下で水に分散させたものでもよい。 From the viewpoint of dispersibility of the polyurethane resin (U) and the polyurethane resin (U1) in water, it is preferable that the active hydrogen component (A) contains a compound (A3) containing a hydrophilic group and an active hydrogen atom. ..
The polyurethane resin aqueous dispersion (Q) in the present invention includes, if necessary, a urethane prepolymer (P) and a polyurethane resin from the viewpoint of dispersibility of the polyurethane resin (U) and the polyurethane resin (U1) and the stability of the aqueous dispersion. (U) and / or the polyurethane resin (U1) may be dispersed in water in the presence of the dispersant (g).
本発明におけるポリウレタン樹脂水性分散体(Q)は、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の分散性及び水性分散体の安定性の観点から、必要によりウレタンプレポリマー(P)と、ポリウレタン樹脂(U)及び/又はポリウレタン樹脂(U1)を分散剤(g)の存在下で水に分散させたものでもよい。 From the viewpoint of dispersibility of the polyurethane resin (U) and the polyurethane resin (U1) in water, it is preferable that the active hydrogen component (A) contains a compound (A3) containing a hydrophilic group and an active hydrogen atom. ..
The polyurethane resin aqueous dispersion (Q) in the present invention includes, if necessary, a urethane prepolymer (P) and a polyurethane resin from the viewpoint of dispersibility of the polyurethane resin (U) and the polyurethane resin (U1) and the stability of the aqueous dispersion. (U) and / or the polyurethane resin (U1) may be dispersed in water in the presence of the dispersant (g).
分散剤(g)としては、ノニオン性界面活性剤(g1)、アニオン性界面活性剤(g2)、カチオン性界面活性剤(g3)、両性界面活性剤(g4)及びその他の乳化分散剤(g5)が挙げられる。分散剤(g)は単独で使用してもよいし、2種以上を併用することもできる。
Dispersants (g) include nonionic surfactants (g1), anionic surfactants (g2), cationic surfactants (g3), amphoteric surfactants (g4) and other emulsified surfactants (g5). ). The dispersant (g) may be used alone or in combination of two or more.
ノニオン性界面活性剤(g1)としては、例えばAO付加型ノニオン性界面活性剤及び多価アルコール型ノニオン性界面活性剤が挙げられる。AO付加型としては、炭素数10~20の脂肪族アルコールのEO付加物、フェノールのEO付加物、ノニルフェノールのEO付加物、炭素数8~22のアルキルアミンのEO付加物及びポリプロピレングリコールのEO付加物等が挙げられ、多価アルコール型としては、多価(3~8価又はそれ以上)アルコール(炭素数2~30)の脂肪酸(炭素数8~24)エステル(例えばグリセリンモノステアレート、グリセリンモノオレエート、ソルビタンモノラウレート及びソルビタンモノオレエート等)及びアルキル(炭素数4~24)ポリ(重合度1~10)グリコシド等が挙げられる。
Examples of the nonionic surfactant (g1) include an AO-added nonionic surfactant and a polyhydric alcohol-based nonionic surfactant. The AO addition type includes EO addition of an aliphatic alcohol having 10 to 20 carbon atoms, EO addition of phenol, EO addition of nonylphenol, EO addition of alkylamine having 8 to 22 carbon atoms, and EO addition of polypropylene glycol. Examples of the polyhydric alcohol type include fatty acid (8 to 24 carbon atoms) esters of polyhydric (3 to 8 or higher) alcohols (2 to 30 carbon atoms) (for example, glycerin monostearate and glycerin). Monooleate, sorbitan monolaurate, sorbitan monooleate, etc.) and alkyl (4 to 24 carbon atoms) poly (polymerization degree 1 to 10) glycoside and the like can be mentioned.
アニオン性界面活性剤(g2)としては、例えば炭素数8~24の炭化水素基を有するエーテルカルボン酸又はその塩[ラウリルエーテル酢酸ナトリウム及び(ポリ)オキシエチレン(付加モル数1~100)ラウリルエーテル酢酸ナトリウム等];炭素数8~24の炭化水素基を有する硫酸エステル又はエーテル硫酸エステル及びそれらの塩[ラウリル硫酸ナトリウム、(ポリ)オキシエチレン(付加モル数1~100)ラウリル硫酸ナトリウム、(ポリ)オキシエチレン(付加モル数1~100)ラウリル硫酸トリエタノールアミン及び(ポリ)オキシエチレン(付加モル数1~100)ヤシ油脂肪酸モノエタノールアミド硫酸ナトリウム等];炭素数8~24の炭化水素基を有するスルホン酸塩[ドデシルベンゼンスルホン酸ナトリウム等];炭素数8~24の炭化水素基を1個又は2個有するスルホコハク酸塩;炭素数8~24の炭化水素基を有するリン酸エステル又はエーテルリン酸エステル及びそれらの塩[ラウリルリン酸ナトリウム及び(ポリ)オキシエチレン(付加モル数1~100)ラウリルエーテルリン酸ナトリウム等];炭素数8~24の炭化水素基を有する脂肪酸塩[ラウリン酸ナトリウム及びラウリン酸トリエタノールアミン等];並びに炭素数8~24の炭化水素基を有するアシル化アミノ酸塩[ヤシ油脂肪酸メチルタウリンナトリウム、ヤシ油脂肪酸サルコシンナトリウム、ヤシ油脂肪酸サルコシントリエタノールアミン、N-ヤシ油脂肪酸アシル-L-グルタミン酸トリエタノールアミン、N-ヤシ油脂肪酸アシル-L-グルタミン酸ナトリウム及びラウロイルメチル-β-アラニンナトリウム等]が挙げられる。
Examples of the anionic surfactant (g2) include ether carboxylic acid having a hydrocarbon group having 8 to 24 carbon atoms or a salt thereof [lauryl ether sodium acetate and (poly) oxyethylene (additional molars 1 to 100) lauryl ether. Sodium acetate, etc.]; Sulfate or ether sulfate having a hydrocarbon group having 8 to 24 carbon atoms and salts thereof [sodium lauryl sulfate, (poly) oxyethylene (additional moles 1 to 100) sodium lauryl sulfate, (poly) ) Oxyethylene (additional moles 1 to 100) triethanolamine lauryl sulfate and (poly) oxyethylene (additional moles 1 to 100) coconut oil fatty acid monoethanolamide sodium sulfate, etc.]; Hydrocarbon groups having 8 to 24 carbon atoms Sulfate having (sodium dodecylbenzene sulfonate, etc.); sulfosuccinate having one or two hydrocarbon groups having 8 to 24 carbon atoms; phosphate ester or ether having a hydrocarbon group having 8 to 24 carbon atoms. Phosphate esters and their salts [sodium lauryl phosphate and (poly) oxyethylene (additional moles 1 to 100) sodium lauryl ether phosphate, etc.]; fatty acid salts having hydrocarbon groups with 8 to 24 carbon atoms [lauric acid] Sodium and triethanolamine laurate, etc.]; and acylated amino acid salts having a hydrocarbon group having 8 to 24 carbon atoms [sodium coconut oil fatty acid methyl taurine, sodium coconut oil fatty acid sarcosin sodium, coconut oil fatty acid sarcosin triethanolamine, N- Palm oil fatty acid acyl-L-glutamate triethanolamine, N-coconut oil fatty acid acyl-L-sodium glutamate, sodium lauroylmethyl-β-alanine, etc.] can be mentioned.
カチオン性界面活性剤(g3)としては、例えば第4級アンモニウム塩型[塩化ステアリルトリメチルアンモニウム、塩化ベヘニルトリメチルアンモニウム、塩化ジステアリルジメチルアンモニウム及びエチル硫酸ラノリン脂肪酸アミノプロピルエチルジメチルアンモニウム等]並びにアミン塩型[ステアリン酸ジエチルアミノエチルアミド乳酸塩、ジラウリルアミン塩酸塩及びオレイルアミン乳酸塩等]が挙げられる。
Examples of the cationic surfactant (g3) include quaternary ammonium salt type [stearyltrimethylammonium chloride, behenyltrimethylammonium chloride, distearyldimethylammonium chloride and lanolin fatty acid ethyl sulfate aminopropylethyldimethylammonium, etc.] and amine salt type. [Diethylaminoethylamide stearate, dilaurylamine hydrochloride, oleylamine hydrochloride, etc.] can be mentioned.
両性界面活性剤(g4)としては、例えばベタイン型両性界面活性剤[ヤシ油脂肪酸アミドプロピルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミノ酢酸ベタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウリルヒドロキシスルホベタイン及びラウロイルアミドエチルヒドロキシエチルカルボキシメチルベタインヒドロキシプロピルリン酸ナトリウム等]並びにアミノ酸型両性界面活性剤[β-ラウリルアミノプロピオン酸ナトリウム等]が挙げられる。
Examples of the amphoteric tenside agent (g4) include betaine-type amphoteric tenside agents [coconut oil fatty acid amidopropyldimethylaminoacetate betaine, lauryldimethylaminoacetate betaine, 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium. Betaine, laurylhydroxysulfobetaine, lauroylamide ethylhydroxyethylcarboxymethylbetaine sodium hydroxypropyl phosphate, etc.] and amino acid amphoteric tenside [β-laurylaminopropionate, etc.] can be mentioned.
その他の乳化分散剤(g5)としては、例えばポリビニルアルコール、デンプン及びその誘導体、カルボキシメチルセルロース、メチルセルロース及びヒドロキシエチルセルロース等のセルロース誘導体並びにポリアクリル酸ソーダ等のカルボキシル基含有(共)重合体及び米国特許第5906704号明細書に記載のウレタン基又はエステル基を有する乳化分散剤[例えばポリカプロラクトンポリオールとポリエーテルジオールをポリイソシアネートで連結させたもの]等が挙げられる。
Other emulsifying dispersants (g5) include, for example, polyvinyl alcohol, starch and derivatives thereof, cellulose derivatives such as carboxymethyl cellulose, methyl cellulose and hydroxyethyl cellulose, carboxyl group-containing (co) polymers such as sodium polyacrylate, and US Patent No. Examples thereof include the emulsion dispersant having a urethane group or an ester group described in 5906704 (for example, a polycaprolactone polyol and a polyether diol linked with a polyisocyanate).
分散剤(g)は、ポリウレタン樹脂(U)のウレタン化反応前、ウレタン化反応中、ウレタン化反応後、ポリウレタン樹脂(U)の水分散工程前、水分散工程中又は水分散後のいずれの時期に添加しても良いが、ポリウレタン樹脂(U)の分散性及び水性分散体の安定性の観点から、水分散工程前又は水分散工程中に添加することが好ましい。
The dispersant (g) may be used before the urethanization reaction of the polyurethane resin (U), during the urethanization reaction, after the urethanization reaction, before the water dispersion step of the polyurethane resin (U), during the water dispersion step, or after the water dispersion. Although it may be added at the appropriate time, it is preferable to add it before the water dispersion step or during the water dispersion step from the viewpoint of the dispersibility of the polyurethane resin (U) and the stability of the aqueous dispersion.
分散剤(g)の含有量はポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量に基づいて、好ましくは0.01~20重量%、更に好ましくは0.01~10重量%、特に好ましくは0.1~5重量%である。
また、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)における化合物(A3)由来の構成単位と分散剤(g)との合計重量は、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量に基づいて、好ましくは0.01~20重量%、更に好ましくは0.1~15重量%、特に好ましくは0.6~10重量%である。 The content of the dispersant (g) is preferably 0.01 to 20% by weight, more preferably 0.01 to 10% by weight, particularly preferably 0.01 to 10% by weight, based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1). Is 0.1 to 5% by weight.
The total weight of the constituent unit derived from the compound (A3) and the dispersant (g) in the polyurethane resin (U) and the polyurethane resin (U1) is based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1). It is preferably 0.01 to 20% by weight, more preferably 0.1 to 15% by weight, and particularly preferably 0.6 to 10% by weight.
また、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)における化合物(A3)由来の構成単位と分散剤(g)との合計重量は、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量に基づいて、好ましくは0.01~20重量%、更に好ましくは0.1~15重量%、特に好ましくは0.6~10重量%である。 The content of the dispersant (g) is preferably 0.01 to 20% by weight, more preferably 0.01 to 10% by weight, particularly preferably 0.01 to 10% by weight, based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1). Is 0.1 to 5% by weight.
The total weight of the constituent unit derived from the compound (A3) and the dispersant (g) in the polyurethane resin (U) and the polyurethane resin (U1) is based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1). It is preferably 0.01 to 20% by weight, more preferably 0.1 to 15% by weight, and particularly preferably 0.6 to 10% by weight.
本発明におけるポリウレタン樹脂水性分散体(Q)は、有機溶剤[ケトン系溶剤(例えばアセトン及びメチルエチルケトン)、エステル系溶剤(例えば酢酸エチル)、エーテル系溶剤(例えばテトラヒドロフラン)、アミド系溶剤(例えばN,N-ジメチルホルムアミド及びN-メチルピロリドン)、アルコール系溶剤(例えばイソプロピルアルコール)及び芳香族炭化水素系溶剤(例えばトルエン)等]を含有してもよい。
The polyurethane resin aqueous dispersion (Q) in the present invention is an organic solvent [ketone solvent (eg acetone and methyl ethyl ketone), ester solvent (eg ethyl acetate), ether solvent (eg tetrahydrofuran), amide solvent (eg N, N-dimethylformamide and N-methylpyrrolidone), alcohol solvents (eg isopropyl alcohol) and aromatic hydrocarbon solvents (eg toluene)] may be included.
本発明において、ポリウレタン樹脂(U)及びウレタンプレポリマー(P)は、活性水素成分(A)及び有機ポリイソシアネート成分(B)を、加熱可能な設備で加熱して反応することで得られる。例えば、容器中にポリウレタン樹脂(U)又はウレタンプレポリマー(P)の原料を仕込んで均一撹拌後、加熱乾燥機や加熱炉で無撹拌下に加熱する方法や、簡易加圧反応装置(オートクレーブ)、コルベン、一軸若しくは二軸の混練機、プラストミル又は万能混練機等で、攪拌又は混練しながら加熱して反応する方法等が挙げられる。なかでも、攪拌又は混練しながら加熱して反応する方法は、得られるポリウレタン樹脂(U)の均質性が高くなり、得られる皮膜の機械的物性、耐久性、耐薬品性及び耐磨耗性等がより優れる傾向があるため好ましい。
In the present invention, the polyurethane resin (U) and the urethane prepolymer (P) are obtained by heating the active hydrogen component (A) and the organic polyisocyanate component (B) in a heatable facility and reacting them. For example, a method in which a raw material of polyurethane resin (U) or urethane prepolymer (P) is charged in a container, uniformly stirred, and then heated in a heating dryer or a heating furnace without stirring, or a simple pressurizing reaction device (autoclave). , Kolben, a uniaxial or biaxial kneader, a plastic mill, a universal kneader, or the like, and a method of heating and reacting while stirring or kneading can be mentioned. Among them, the method of heating and reacting while stirring or kneading increases the homogeneity of the obtained polyurethane resin (U), and the mechanical properties, durability, chemical resistance, abrasion resistance, etc. of the obtained film are increased. Is preferred because it tends to be better.
ポリウレタン樹脂(U)はイソシアネート基/活性水素原子の当量比が、0.6~0.95となる割合で反応させることが好ましい。
また、活性水素成分(A)及び有機ポリイソシアネート成分(B)を反応させて、ポリウレタン樹脂(U)を製造する際、反応系中の水の重量割合は、ウレア基含有量を前記の好ましい値に調整する観点から、ポリウレタン樹脂(U)の重量を基準として、1.45重量%以下であることが好ましい。 The polyurethane resin (U) is preferably reacted at a ratio of an isocyanate group / active hydrogen atom equivalent ratio of 0.6 to 0.95.
Further, when the polyurethane resin (U) is produced by reacting the active hydrogen component (A) and the organic polyisocyanate component (B), the weight ratio of water in the reaction system is such that the urea group content is the above-mentioned preferable value. From the viewpoint of adjusting to 1.45% by weight or less based on the weight of the polyurethane resin (U), it is preferable.
また、活性水素成分(A)及び有機ポリイソシアネート成分(B)を反応させて、ポリウレタン樹脂(U)を製造する際、反応系中の水の重量割合は、ウレア基含有量を前記の好ましい値に調整する観点から、ポリウレタン樹脂(U)の重量を基準として、1.45重量%以下であることが好ましい。 The polyurethane resin (U) is preferably reacted at a ratio of an isocyanate group / active hydrogen atom equivalent ratio of 0.6 to 0.95.
Further, when the polyurethane resin (U) is produced by reacting the active hydrogen component (A) and the organic polyisocyanate component (B), the weight ratio of water in the reaction system is such that the urea group content is the above-mentioned preferable value. From the viewpoint of adjusting to 1.45% by weight or less based on the weight of the polyurethane resin (U), it is preferable.
ポリウレタン樹脂(U)及びウレタンプレポリマー(P)を製造する際の反応温度は、ポリウレタン樹脂(U)のアロハネート基及びビューレット基の含有量の観点から、60~120℃又は180~250℃が好ましく、更に好ましくは60~110℃又は180~240℃であり、最も好ましくは60~100℃又は180~230℃である。
また、ポリウレタン樹脂(U)及びウレタンプレポリマー(P)を製造する際の時間は、使用する設備により適宜選択することができるが、1分~100時間が好ましく、更に好ましくは3分~30時間であり、特に好ましくは5分~20時間である。この範囲であれば、本発明の効果を十分に発揮できるポリウレタン樹脂(U)が得られる。 The reaction temperature at the time of producing the polyurethane resin (U) and the urethane prepolymer (P) is 60 to 120 ° C. or 180 to 250 ° C. from the viewpoint of the content of the alohanate group and the burette group of the polyurethane resin (U). It is preferable, more preferably 60 to 110 ° C. or 180 to 240 ° C., and most preferably 60 to 100 ° C. or 180 to 230 ° C.
The time for producing the polyurethane resin (U) and the urethane prepolymer (P) can be appropriately selected depending on the equipment used, but is preferably 1 minute to 100 hours, more preferably 3 minutes to 30 hours. It is particularly preferably 5 minutes to 20 hours. Within this range, a polyurethane resin (U) capable of fully exerting the effects of the present invention can be obtained.
また、ポリウレタン樹脂(U)及びウレタンプレポリマー(P)を製造する際の時間は、使用する設備により適宜選択することができるが、1分~100時間が好ましく、更に好ましくは3分~30時間であり、特に好ましくは5分~20時間である。この範囲であれば、本発明の効果を十分に発揮できるポリウレタン樹脂(U)が得られる。 The reaction temperature at the time of producing the polyurethane resin (U) and the urethane prepolymer (P) is 60 to 120 ° C. or 180 to 250 ° C. from the viewpoint of the content of the alohanate group and the burette group of the polyurethane resin (U). It is preferable, more preferably 60 to 110 ° C. or 180 to 240 ° C., and most preferably 60 to 100 ° C. or 180 to 230 ° C.
The time for producing the polyurethane resin (U) and the urethane prepolymer (P) can be appropriately selected depending on the equipment used, but is preferably 1 minute to 100 hours, more preferably 3 minutes to 30 hours. It is particularly preferably 5 minutes to 20 hours. Within this range, a polyurethane resin (U) capable of fully exerting the effects of the present invention can be obtained.
ウレタン化反応速度をコントロールするために、公知の反応触媒(オクチル酸錫及びビスマスオクチル酸塩等)及び反応遅延剤(リン酸等)等を使用することができる。これらの触媒又は反応遅延剤の添加量は、ポリウレタン樹脂(U)の重量に基づき、好ましくは0.001~3重量%、更に好ましくは0.005~2重量%、特に好ましくは0.01~1重量%である。
In order to control the urethanization reaction rate, known reaction catalysts (tin octylate, bismuth octylate, etc.), reaction retarders (phosphoric acid, etc.) and the like can be used. The amount of these catalysts or reaction retardants added is preferably 0.001 to 3% by weight, more preferably 0.005 to 2% by weight, and particularly preferably 0.01 to, based on the weight of the polyurethane resin (U). 1% by weight.
ポリウレタン樹脂(U)又はウレタンプレポリマー(P)を水中に分散する装置としては、分散能力のある装置であれば使用可能であるが、温度調整、粒状又はブロック状樹脂の供給及び分散能力等の観点から、回転式分散混合装置、超音波式分散機又は混練機を用いることが好ましく、なかでも分散能力が特に優れる回転式分散混合装置が更に好ましい。
As a device for dispersing the polyurethane resin (U) or the urethane prepolymer (P) in water, any device having a dispersing ability can be used, but temperature control, supply of granular or block-shaped resin, dispersion ability, etc. From the viewpoint, it is preferable to use a rotary dispersion / mixing device, an ultrasonic dispersion / kneader, and a rotary dispersion / mixing device having a particularly excellent dispersion ability is more preferable.
回転式分散混合装置の主たる分散原理は、駆動部の回転等によって処理物に外部から剪断力を与えて微粒子化し、分散させるというものである。また、回転式分散混合装置は、常圧、減圧又は加圧下で稼働させることができる。
The main dispersion principle of the rotary dispersion mixing device is that a shearing force is applied to the processed material from the outside by the rotation of the drive unit or the like to make the processed material into fine particles and disperse the particles. In addition, the rotary dispersion mixing device can be operated under normal pressure, reduced pressure or pressurization.
回転式分散混合装置としては、例えばマックスブレンドやヘリカル翼等の一般的な攪拌羽を有する混合装置、TKホモミキサー[プライミクス(株)製]、クレアミックス[エムテクニック(株)製]、フィルミックス[プライミクス(株)製]、ウルトラターラックス[IKA(株)製]、エバラマイルダー[荏原製作所(株)製]、キャビトロン(ユーロテック社製)及びバイオミキサー[日本精機(株)製]等が例示される。
Examples of the rotary dispersion mixer include a mixer having general stirring blades such as Max Blend and helical blades, TK homomixer [manufactured by Primix Corporation], Clairemix [manufactured by M-Technique Co., Ltd.], and fill mix. [Primix Corporation], Ultra Turlux [IKA Co., Ltd.], Ebara Milder [Ebara Corporation], Cavitron (Eurotech Co., Ltd.) and Biomixer [Nippon Seiki Co., Ltd.], etc. Is exemplified.
回転式分散混合装置を用いてポリウレタン樹脂(U)又はウレタンプレポリマー(P)を分散処理する際の回転数は、分散能力の観点から、好ましくは10~30000rpm、更に好ましくは20~20000rpm、特に好ましくは30~10000rpmである。
From the viewpoint of dispersion capacity, the number of rotations when the polyurethane resin (U) or urethane prepolymer (P) is dispersed using the rotary dispersion mixing device is preferably 10 to 30,000 rpm, more preferably 20,000 to 20,000 rpm, and particularly. It is preferably 30 to 10000 rpm.
超音波式分散装置の主たる分散原理は、駆動部の振動によって処理物に外部からエネルギーを与えて微粒子化し、分散させるというものである。また、超音波式分散装置は、常圧、減圧又は加圧下で稼働させることができる。
The main dispersion principle of the ultrasonic dispersion device is to apply energy from the outside to the processed material by the vibration of the drive unit to make it fine particles and disperse it. In addition, the ultrasonic disperser can be operated under normal pressure, reduced pressure or pressurization.
超音波式分散装置としては、池本理化工業(株)、コスモ・バイオ(株)及び(株)ギンセン等から市販されている超音波式分散装置等を使用できる。
As the ultrasonic disperser, an ultrasonic disperser commercially available from Ikemoto Rika Kogyo Co., Ltd., Cosmo Bio Co., Ltd., Ginsen Co., Ltd., etc. can be used.
超音波式分散装置を用いてポリウレタン樹脂(U)又はウレタンプレポリマー(P)を分散処理する際の振動数は、分散能力の観点から、好ましくは1~100kHz、更に好ましくは3~60kHz、特に好ましくは10~30kHzである。
The frequency at which the polyurethane resin (U) or urethane prepolymer (P) is dispersed using the ultrasonic disperser is preferably 1 to 100 kHz, more preferably 3 to 60 kHz, particularly from the viewpoint of dispersion ability. It is preferably 10 to 30 kHz.
混練機の主たる分散原理は、混練機の回転部で処理物を練ることでエネルギーを与えて微粒子化し、分散させるというものである。また混練機は、常圧、減圧又は加圧下で稼働させることができる。
The main dispersion principle of the kneader is to knead the processed material in the rotating part of the kneader to give energy to make it into fine particles and disperse it. Further, the kneader can be operated under normal pressure, reduced pressure or pressurization.
混練機としては、二軸押出機[池貝(株)製PCM-30等]、ニーダー[(株)栗本鐵工所製KRCニーダー等]、万能混合機[プライミクス(株)製ハイビスミックス等]及びプラストミル[(株)東洋精機製作所製ラボプラストミル等]等が例示される。
As the kneading machine, a twin-screw extruder [PCM-30 manufactured by Ikegai Corp.], a kneader [KRC kneader manufactured by Kurimoto, Ltd., etc.], a universal mixer [Hibismix manufactured by Primix Corporation, etc.] and Plast mills [Lab plast mills manufactured by Toyo Seiki Seisakusho Co., Ltd., etc.] are exemplified.
混練機を用いてポリウレタン樹脂(U)又はウレタンプレポリマー(P)を分散処理する際の回転数は、分散能力の観点から、好ましくは1~1000rpm、更に好ましくは3~500rpm、特に好ましくは10~200rpmである。
From the viewpoint of dispersion capacity, the number of rotations when the polyurethane resin (U) or urethane prepolymer (P) is dispersed using a kneader is preferably 1 to 1000 rpm, more preferably 3 to 500 rpm, and particularly preferably 10. ~ 200 rpm.
分散装置に供給されるポリウレタン樹脂(U)又はウレタンプレポリマー(P)と水の重量比は、目的とする水性分散体の樹脂成分含有量によって適宜選択されるが、好ましくは、[(U)又は(P)]/水=10/2~10/100であり、更に好ましくは10/5~10/50である。
The weight ratio of the polyurethane resin (U) or urethane prepolymer (P) supplied to the disperser to water is appropriately selected depending on the resin component content of the target aqueous dispersion, but is preferably [(U). Or (P)] / water = 10/2 to 10/100, more preferably 10/5 to 10/50.
また、ポリウレタン樹脂(U)又はウレタンプレポリマー(P)と水を分散装置で処理する時間は、分散性の観点から、好ましくは10秒~10時間、更に好ましくは1分~3時間、最も好ましくは10~60分である。
The time for treating the polyurethane resin (U) or urethane prepolymer (P) and water in the disperser is preferably 10 seconds to 10 hours, more preferably 1 minute to 3 hours, most preferably from the viewpoint of dispersibility. Is 10 to 60 minutes.
分散装置にて分散を行う際は、必要に応じて、pH調整剤、消泡剤、抑泡剤、酸化防止剤、着色防止剤、可塑剤及び離型剤等から選ばれる添加剤を1種以上添加することができる。また、必要に応じて、分散後に脱溶剤、濃縮及び希釈等を行ってもよい。
When dispersing with a disperser, one kind of additive selected from pH adjusters, defoamers, antifoaming agents, antioxidants, anticoloring agents, plasticizers, mold release agents, etc. is used as necessary. The above can be added. Further, if necessary, solvent removal, concentration, dilution and the like may be performed after dispersion.
前記の反応により生成したポリウレタン樹脂(U)又はウレタンプレポリマー(P)を、前記の中和剤により中和して、ポリウレタン樹脂(U1)又はポリウレタン樹脂(U1)の前駆体とする方法としては、ポリウレタン樹脂(U)又はウレタンプレポリマー(P)を含有する溶液に、前記の中和剤を添加し、10~50℃で10~180分間撹拌し、ポリウレタン樹脂(U)又はウレタンプレポリマー(P)が有する酸性基を中和する方法等が挙げられる。
As a method of neutralizing the polyurethane resin (U) or urethane prepolymer (P) produced by the above reaction with the above-mentioned neutralizing agent to obtain a precursor of the polyurethane resin (U1) or the polyurethane resin (U1). , The above-mentioned neutralizing agent is added to a solution containing the polyurethane resin (U) or the urethane prepolymer (P), and the mixture is stirred at 10 to 50 ° C. for 10 to 180 minutes to obtain the polyurethane resin (U) or the urethane prepolymer (P). Examples thereof include a method of neutralizing the acidic group of P).
ウレタンプレポリマー(P)を分散させた後に、鎖伸長剤(A4)及び必要に反応停止剤(A5)を反応させる装置としては特に限定されないが、前記分散装置又はスタティックミキサー等で混合しながら反応させることが好ましい。
The device for reacting the chain extender (A4) and the reaction terminator (A5) after dispersing the urethane prepolymer (P) is not particularly limited, but the reaction is carried out while mixing with the disperser or a static mixer or the like. It is preferable to let it.
本発明のポリウレタン樹脂水性分散体(Q)は、発明の効果を阻害しない範囲で、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)以外のポリウレタン樹脂(U’)であって、レオメーターを用いて0.1/sの剪断速度で測定される25℃での粘度が1,000,000Pa・sを超えるポリウレタン樹脂(U’1)を含有していても良い。
塗装ガン洗浄性の観点から、前記のポリウレタン樹脂(U’1)の重量割合は、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量に基づいて、40重量%以下であることが好ましく、10重量%以下であることが好ましく、5重量%以下であることが特に好ましく、1重量%以下であることが最も好ましい。 The polyurethane resin aqueous dispersion (Q) of the present invention is a polyurethane resin (U') other than the polyurethane resin (U) and the polyurethane resin (U1) as long as the effects of the present invention are not impaired, and a rheometer is used. It may contain a polyurethane resin (U'1) having a viscosity of more than 1,000,000 Pa · s at 25 ° C. measured at a shear rate of 0.1 / s.
From the viewpoint of paint gun cleaning property, the weight ratio of the polyurethane resin (U'1) is preferably 40% by weight or less based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1). It is preferably 10% by weight or less, particularly preferably 5% by weight or less, and most preferably 1% by weight or less.
塗装ガン洗浄性の観点から、前記のポリウレタン樹脂(U’1)の重量割合は、ポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量に基づいて、40重量%以下であることが好ましく、10重量%以下であることが好ましく、5重量%以下であることが特に好ましく、1重量%以下であることが最も好ましい。 The polyurethane resin aqueous dispersion (Q) of the present invention is a polyurethane resin (U') other than the polyurethane resin (U) and the polyurethane resin (U1) as long as the effects of the present invention are not impaired, and a rheometer is used. It may contain a polyurethane resin (U'1) having a viscosity of more than 1,000,000 Pa · s at 25 ° C. measured at a shear rate of 0.1 / s.
From the viewpoint of paint gun cleaning property, the weight ratio of the polyurethane resin (U'1) is preferably 40% by weight or less based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1). It is preferably 10% by weight or less, particularly preferably 5% by weight or less, and most preferably 1% by weight or less.
皮膜の耐薬品性及び機械的物性の観点から、本発明のポリウレタン樹脂水性分散体(Q)は、ポリウレタン樹脂(U)が有する活性水素含有基(水酸基等)と反応し得る反応性基を分子内に2個以上有する架橋剤(C)を含有することが好ましい。
本発明のポリウレタン樹脂水性分散体(Q)においては、ポリウレタン樹脂(U)と架橋剤(C)との混合物が一つの粒子を形成していてもよく、ポリウレタン樹脂(U)と架橋剤(C)が別々の粒子の状態で存在していてもよい。
尚、架橋剤(C)は、ポリウレタン樹脂(U)が有する酸性基と架橋反応させることもできる。 From the viewpoint of chemical resistance and mechanical properties of the film, the polyurethane resin aqueous dispersion (Q) of the present invention contains a reactive group capable of reacting with an active hydrogen-containing group (hydroxyl group or the like) contained in the polyurethane resin (U). It is preferable to contain a cross-linking agent (C) having two or more of them.
In the polyurethane resin aqueous dispersion (Q) of the present invention, the mixture of the polyurethane resin (U) and the cross-linking agent (C) may form one particle, and the polyurethane resin (U) and the cross-linking agent (C) may be formed. ) May exist in the state of separate particles.
The cross-linking agent (C) can also be cross-linked with the acidic group of the polyurethane resin (U).
本発明のポリウレタン樹脂水性分散体(Q)においては、ポリウレタン樹脂(U)と架橋剤(C)との混合物が一つの粒子を形成していてもよく、ポリウレタン樹脂(U)と架橋剤(C)が別々の粒子の状態で存在していてもよい。
尚、架橋剤(C)は、ポリウレタン樹脂(U)が有する酸性基と架橋反応させることもできる。 From the viewpoint of chemical resistance and mechanical properties of the film, the polyurethane resin aqueous dispersion (Q) of the present invention contains a reactive group capable of reacting with an active hydrogen-containing group (hydroxyl group or the like) contained in the polyurethane resin (U). It is preferable to contain a cross-linking agent (C) having two or more of them.
In the polyurethane resin aqueous dispersion (Q) of the present invention, the mixture of the polyurethane resin (U) and the cross-linking agent (C) may form one particle, and the polyurethane resin (U) and the cross-linking agent (C) may be formed. ) May exist in the state of separate particles.
The cross-linking agent (C) can also be cross-linked with the acidic group of the polyurethane resin (U).
架橋剤(C)としては、ブロックイソシアネート化合物(c1)、メラミン化合物(c2)、オキサゾリン化合物(c3)、カルボジイミド化合物(c4)、アジリジン化合物(c5)及びエポキシ化合物(c6)からなる群から選ばれる少なくとも1種の架橋剤が挙げられる。
The cross-linking agent (C) is selected from the group consisting of a blocked isocyanate compound (c1), a melamine compound (c2), an oxazoline compound (c3), a carbodiimide compound (c4), an aziridine compound (c5) and an epoxy compound (c6). At least one cross-linking agent can be mentioned.
ブロックイソシアネート化合物(c1)は、分子内にブロックイソシアネート基を2個以上有するものであれば特に限定されず、例えば前記有機ポリイソシアネート成分(B)として例示したポリイソシアネート化合物を公知のブロック化剤[フェノール類、第2級又は第3級のアルコール、オキシム類、脂肪族又は芳香族の第2級アミン類、フタル酸イミド類、ラクタム類、活性メチレン化合物(マロン酸ジアルキルエステル等)、ピラゾール系化合物(ピラゾール及び3,5-ジメチルピラゾール等)及び酸性亜硫酸ソーダ等]等でブロック化したものが挙げられる。
The blocked isocyanate compound (c1) is not particularly limited as long as it has two or more blocked isocyanate groups in the molecule, and for example, the polyisocyanate compound exemplified as the organic polyisocyanate component (B) is known as a blocking agent [ Phenols, secondary or tertiary alcohols, oximes, aliphatic or aromatic secondary amines, phthalate imides, lactams, active methylene compounds (malonic acid dialkyl esters, etc.), pyrazole compounds (Pyrazole and 3,5-dimethylpyrazole, etc.) and acidic sodium sulfite, etc.] and the like are blocked.
ブロックイソシアネート化合物(c1)の市販品としては、旭化成ケミカルズ(株)製のデュラネートシリーズ(デュラネート17B-60P、TPA-B80E、MF-B60B、MF-K60B、SBB-70P、SBN-70D、SBF-70E、E402-B80B及びWM44-L70G等)等が挙げられる。
Commercially available blocked isocyanate compounds (c1) include Duranate series (Duranate 17B-60P, TPA-B80E, MF-B60B, MF-K60B, SBB-70P, SBN-70D, SBF-" manufactured by Asahi Kasei Chemicals Co., Ltd. 70E, E402-B80B, WM44-L70G, etc.) and the like.
メラミン化合物(c2)は、分子内にメチロール基やメトキシメチロール基を2個以上有するメチロール化メラミン化合物及びメトキシメチロール化メラミン化合物であれば特に限定されず、例えば三井化学(株)製のユーバンシリーズ[ユーバン120、20HS、2021、2028、228、2860及び22R等]、日本サイテック(株)製のサイメルシリーズ(サイメル202、232、235、238、254、266、267、272、285、301、303、325、327、350、370、701、703、736、738、771、114、1156及び1158等)及び住友化学(株)製のスミマールシリーズ(スミマールM-30W、M-50W、M-55、M-66B及び50B等)が挙げられる。
The melamine compound (c2) is not particularly limited as long as it is a methylolated melamine compound or a methoxymethylolated melamine compound having two or more methylol groups or methoxymethylol groups in the molecule, and is, for example, the Uban series manufactured by Mitsui Chemicals Co., Ltd. [Uban 120, 20HS, 2021, 2028, 228, 2860, 22R, etc.], Cymel series manufactured by Nippon Cytec Co., Ltd. (Simel 202, 232, 235, 238, 254, 266, 267, 272, 285, 301, 303, 325, 327, 350, 370, 701, 703, 736, 738, 771, 114, 1156, 1158, etc.) and Sumitomo Chemical Co., Ltd.'s Sumimar series (Sumimar M-30W, M-50W, M- 55, M-66B, 50B, etc.).
オキサゾリン化合物(c3)は、分子内にオキサゾリン基(オキサゾリン骨格)を2個以上有する化合物であれば特に限定されず、例えば2,2’-イソプロピリデンビス(4-フェニル-2-オキサゾリン)等のオキサゾリン基を2個以上有する化合物;2-イソプロペニル-2-オキサゾリン、2-ビニル-2-オキサゾリン及び2-ビニル-4-メチル-2-オキサゾリン等の重合性オキサゾリン化合物の(共)重合体;前記重合性オキサゾリン化合物と、オキサゾリン基と反応しない共重合可能なモノマー[(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ヒドロキシエチル及び(メタ)アクリル酸ポリエチレングリコール等の(メタ)アクリルエステル類、(メタ)アクリル酸アミド酢酸ビニル、スチレン並びにα-メチルスチレンスチレンスルホン酸ナトリウム等]との共重合体等が挙げられる。オキサゾリン化合物(c3)の市販品としては、日本触媒(株)製「エポクロスK-2010E」、「エポクロスK-2020E」及び「エポクロスWS-500」等が挙げられる。
The oxazoline compound (c3) is not particularly limited as long as it is a compound having two or more oxazoline groups (oxazoline skeleton) in the molecule, and is, for example, 2,2'-isopropyrinebis (4-phenyl-2-oxazoline) or the like. Compounds with two or more oxazoline groups; (co) polymers of polymerizable oxazoline compounds such as 2-isopropenyl-2-oxazoline, 2-vinyl-2-oxazoline and 2-vinyl-4-methyl-2-oxazoline; The polymerizable oxazoline compound and a copolymerizable monomer that does not react with the oxazoline group [(meth) methyl acrylate, (meth) ethyl acrylate, (meth) hydroxyethyl acrylate, polyethylene glycol (meth) acrylate, etc. Examples thereof include copolymers with (meth) acrylic esters, (meth) acrylic acid amidovinyl acetate, styrene, and α-methylstyrene styrene sulfonate sodium, etc.]. Examples of commercially available products of the oxazoline compound (c3) include "Epocross K-2010E", "Epocross K-2020E" and "Epocross WS-500" manufactured by Nippon Shokubai Co., Ltd.
カルボジイミド化合物(c4)は、分子内にカルボジイミド基を2個以上有する化合物であれば特に限定されず、例えば前記炭素数4~22の脂肪族ポリイソシアネート(b1)、炭素数8~18の脂環式ポリイソシアネート(b2)、炭素数10~17の芳香脂肪族ポリイソシアネート(b3)又は炭素数8~22の芳香族ポリイソシアネート(b4)を重合して得られる脂肪族ポリカルボジイミド[ポリ(ヘキサメチレンカルボジイミド)等]、脂環式ポリカルボジイミド[ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)等]及び芳香族ポリカルボジイミド[ポリ(p-フェニレンカルボジイミド)、ポリ(4,4’-ジフェニルメタンカルボジイミド)及びポリ(ジイソプロピルフェニルカルボジイミド)等]が挙げられる。カルボジイミド化合物(c4)の市販品としては、日清紡績(株)製「カルボジライトV-01」、「カルボジライトV02」、「カルボジライトV-03」、「カルボジライトV-04」、「カルボジライトV-05」、「カルボジライトV-07」、「カルボジライトV-09」、「カルボジライトE-02」、「カルボジライトE-03A」及び「カルボジライトE-04」等が挙げられる。
The carbodiimide compound (c4) is not particularly limited as long as it is a compound having two or more carbodiimide groups in the molecule, for example, the aliphatic polyisocyanate (b1) having 4 to 22 carbon atoms and an alicyclic having 8 to 18 carbon atoms. An aliphatic polycarbodiimide [poly (hexamethylene) obtained by polymerizing a formula polyisocyanate (b2), an aromatic aliphatic polyisocyanate (b3) having 10 to 17 carbon atoms or an aromatic polycarbodiimide (b4) having 8 to 22 carbon atoms. Carbodiimide), etc.], alicyclic polycarbodiimide [poly (4,4'-dicyclohexylmethanecarbodiimide), etc.] and aromatic polycarbodiimide [poly (p-phenylene carbodiimide), poly (4,4'-diphenylmethanecarbodiimide) and poly (Diisopropylphenylcarbodiimide), etc.]. Commercially available products of the carbodiimide compound (c4) include "carbodilite V-01", "carbodilite V02", "carbodilite V-03", "carbodilite V-04", and "carbodilite V-05" manufactured by Nisshinbo Holdings. Examples thereof include "carbodilite V-07", "carbodilite V-09", "carbodilite E-02", "carbodilite E-03A" and "carbodilite E-04".
アジリジン化合物(c5)は、分子内にアジリジニル基を2個以上有する化合物であれば特に限定されず、例えばテトラメチロールメタントリス(β-アジリジニルプロピオナート)及びトリメチロールプロパントリス(β-アジリジニルプロピオナート)が挙げられる。
The aziridine compound (c5) is not particularly limited as long as it is a compound having two or more aziridinyl groups in the molecule, and is, for example, tetramethylolmethanetris (β-aziridinyl propionate) and trimethylolpropane tris (β-azili). Ridinyl propionate).
エポキシ化合物(c6)は、分子内にエポキシ基を2個以上有する化合物であれば特に限定されず、例えばレゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセロールポリグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル及びポリプロピレングリコールジグリシジルエーテルが挙げられる。
The epoxy compound (c6) is not particularly limited as long as it is a compound having two or more epoxy groups in the molecule, and is, for example, resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and glycerol. Examples thereof include polyglycidyl ether, hydrogenated bisphenol A diglycidyl ether, trimethyl propane polyglycidyl ether, pentaerythritol polyglycidyl ether and polypropylene glycol diglycidyl ether.
架橋剤(C)は、単独で使用しても2種以上を併用してもよい。
The cross-linking agent (C) may be used alone or in combination of two or more.
ポリウレタン樹脂水性分散体(Q)における架橋剤(C)の含有量はポリウレタン樹脂水性分散体(Q)の固形分重量を基準として、好ましくは30重量%以下、更に好ましくは0.1~25重量%である。
The content of the cross-linking agent (C) in the polyurethane resin aqueous dispersion (Q) is preferably 30% by weight or less, more preferably 0.1 to 25% by weight, based on the solid content weight of the polyurethane resin aqueous dispersion (Q). %.
本発明の製造方法で得られるポリウレタン樹脂水性分散体(Q)の固形分濃度[揮発性成分以外の成分(固形分)の重量割合]は、水性分散体の取り扱い易さの観点から、好ましくは20~65重量%、更に好ましくは25~55重量%である。固形分濃度は、水性分散体約1gをペトリ皿上にうすく伸ばし、精秤した後、循環式定温乾燥機を用いて130℃で、45分間加熱した後の重量を精秤し、加熱前の重量に対する加熱後の残存重量の割合(百分率)を計算することにより得ることができる。
また、ポリウレタン樹脂水性分散体(Q)が含有するポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の前駆体であるポリウレタン樹脂(U)の合計重量の割合は、ポリウレタン樹脂水性分散体(Q)の固形分の重量を基準として、15~100重量%であることが好ましく、25~100重量%であることが更に好ましく、40~100重量%であることが特に好ましく、55~100重量%であることが最も好ましい。
また、ポリウレタン樹脂水性分散体(Q)が含有するポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の前駆体であるポリウレタン樹脂(U)の合計重量の割合は、ポリウレタン樹脂水性分散体(Q)の固形分の重量から前記の架橋剤(C)の重量を除いた重量を基準として、20~100重量%であることが好ましく、30~100重量%であることが更に好ましく、45~100重量%であることが特に好ましく、60~100重量%であることが最も好ましい。 The solid content concentration [weight ratio of components (solid content) other than volatile components] of the polyurethane resin aqueous dispersion (Q) obtained by the production method of the present invention is preferably from the viewpoint of ease of handling of the aqueous dispersion. It is 20 to 65% by weight, more preferably 25 to 55% by weight. For the solid content concentration, about 1 g of the aqueous dispersion was thinly spread on a Petri dish, weighed precisely, and then heated at 130 ° C. for 45 minutes using a circulating constant temperature dryer, and then weighed and weighed before heating. It can be obtained by calculating the ratio (percentage) of the residual weight after heating to the weight.
Further, the ratio of the total weight of the polyurethane resin (U) contained in the polyurethane resin aqueous dispersion (Q) and the polyurethane resin (U) which is a precursor of the polyurethane resin (U1) is the ratio of the polyurethane resin aqueous dispersion (Q). Based on the weight of the solid content, it is preferably 15 to 100% by weight, more preferably 25 to 100% by weight, particularly preferably 40 to 100% by weight, and 55 to 100% by weight. Is most preferable.
Further, the ratio of the total weight of the polyurethane resin (U) contained in the polyurethane resin aqueous dispersion (Q) and the polyurethane resin (U) which is a precursor of the polyurethane resin (U1) is the ratio of the polyurethane resin aqueous dispersion (Q). Based on the weight obtained by subtracting the weight of the cross-linking agent (C) from the weight of the solid content, it is preferably 20 to 100% by weight, more preferably 30 to 100% by weight, and 45 to 100% by weight. Is particularly preferable, and 60 to 100% by weight is most preferable.
また、ポリウレタン樹脂水性分散体(Q)が含有するポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の前駆体であるポリウレタン樹脂(U)の合計重量の割合は、ポリウレタン樹脂水性分散体(Q)の固形分の重量を基準として、15~100重量%であることが好ましく、25~100重量%であることが更に好ましく、40~100重量%であることが特に好ましく、55~100重量%であることが最も好ましい。
また、ポリウレタン樹脂水性分散体(Q)が含有するポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の前駆体であるポリウレタン樹脂(U)の合計重量の割合は、ポリウレタン樹脂水性分散体(Q)の固形分の重量から前記の架橋剤(C)の重量を除いた重量を基準として、20~100重量%であることが好ましく、30~100重量%であることが更に好ましく、45~100重量%であることが特に好ましく、60~100重量%であることが最も好ましい。 The solid content concentration [weight ratio of components (solid content) other than volatile components] of the polyurethane resin aqueous dispersion (Q) obtained by the production method of the present invention is preferably from the viewpoint of ease of handling of the aqueous dispersion. It is 20 to 65% by weight, more preferably 25 to 55% by weight. For the solid content concentration, about 1 g of the aqueous dispersion was thinly spread on a Petri dish, weighed precisely, and then heated at 130 ° C. for 45 minutes using a circulating constant temperature dryer, and then weighed and weighed before heating. It can be obtained by calculating the ratio (percentage) of the residual weight after heating to the weight.
Further, the ratio of the total weight of the polyurethane resin (U) contained in the polyurethane resin aqueous dispersion (Q) and the polyurethane resin (U) which is a precursor of the polyurethane resin (U1) is the ratio of the polyurethane resin aqueous dispersion (Q). Based on the weight of the solid content, it is preferably 15 to 100% by weight, more preferably 25 to 100% by weight, particularly preferably 40 to 100% by weight, and 55 to 100% by weight. Is most preferable.
Further, the ratio of the total weight of the polyurethane resin (U) contained in the polyurethane resin aqueous dispersion (Q) and the polyurethane resin (U) which is a precursor of the polyurethane resin (U1) is the ratio of the polyurethane resin aqueous dispersion (Q). Based on the weight obtained by subtracting the weight of the cross-linking agent (C) from the weight of the solid content, it is preferably 20 to 100% by weight, more preferably 30 to 100% by weight, and 45 to 100% by weight. Is particularly preferable, and 60 to 100% by weight is most preferable.
本発明の製造方法で得られるポリウレタン樹脂水性分散体(Q)の粘度は、好ましくは10~100,000mPa・s、更に好ましくは10~5,000mPa・sである。粘度はBL型粘度計を用いて、25℃の定温下で測定した値である。
The viscosity of the polyurethane resin aqueous dispersion (Q) obtained by the production method of the present invention is preferably 10 to 100,000 mPa · s, more preferably 10 to 5,000 mPa · s. The viscosity is a value measured at a constant temperature of 25 ° C. using a BL type viscometer.
本発明の製造方法で得られるポリウレタン樹脂水性分散体(Q)のpHは、好ましくは2~12、更に好ましくは4~10である。pHは、pH Meter M-12[堀場製作所(株)製]で25℃で測定した値である。
The pH of the polyurethane resin aqueous dispersion (Q) obtained by the production method of the present invention is preferably 2 to 12, more preferably 4 to 10. The pH is a value measured at 25 ° C. with pH Meter M-12 [manufactured by HORIBA, Ltd.].
<用途>
本発明のポリウレタン樹脂水性分散体(Q)は、水性塗料組成物、水性接着剤組成物、水性繊維加工処理剤組成物(顔料捺染用バインダー組成物、不織布用バインダー組成物、補強繊維用集束剤組成物、抗菌剤用バインダー組成物及び人工皮革・合成皮革用原料組成物等)、水性コーティング組成物(防水コーティング組成物、撥水コーティング組成物及び防汚コーティング組成物等)、水性紙処理剤組成物や水性インキ組成物等に使用することができるが、その優れた造膜性及び耐水性から、特に水性塗料組成物、水性接着剤組成物及び水性繊維加工処理剤組成物として好適に使用することができる。 <Use>
The polyurethane resin aqueous dispersion (Q) of the present invention is an aqueous coating composition, an aqueous adhesive composition, an aqueous fiber processing agent composition (binder composition for pigment printing, a binder composition for non-woven fabric, a bundling agent for reinforcing fibers). Compositions, binder compositions for antibacterial agents, raw material compositions for artificial leather / synthetic leather, etc.), water-based coating compositions (waterproof coating composition, water-repellent coating composition, antifouling coating composition, etc.), water-based paper treatment agents Although it can be used in compositions, water-based ink compositions, etc., it is particularly preferably used as a water-based paint composition, a water-based adhesive composition, and a water-based fiber processing agent composition because of its excellent film-forming property and water resistance. can do.
本発明のポリウレタン樹脂水性分散体(Q)は、水性塗料組成物、水性接着剤組成物、水性繊維加工処理剤組成物(顔料捺染用バインダー組成物、不織布用バインダー組成物、補強繊維用集束剤組成物、抗菌剤用バインダー組成物及び人工皮革・合成皮革用原料組成物等)、水性コーティング組成物(防水コーティング組成物、撥水コーティング組成物及び防汚コーティング組成物等)、水性紙処理剤組成物や水性インキ組成物等に使用することができるが、その優れた造膜性及び耐水性から、特に水性塗料組成物、水性接着剤組成物及び水性繊維加工処理剤組成物として好適に使用することができる。 <Use>
The polyurethane resin aqueous dispersion (Q) of the present invention is an aqueous coating composition, an aqueous adhesive composition, an aqueous fiber processing agent composition (binder composition for pigment printing, a binder composition for non-woven fabric, a bundling agent for reinforcing fibers). Compositions, binder compositions for antibacterial agents, raw material compositions for artificial leather / synthetic leather, etc.), water-based coating compositions (waterproof coating composition, water-repellent coating composition, antifouling coating composition, etc.), water-based paper treatment agents Although it can be used in compositions, water-based ink compositions, etc., it is particularly preferably used as a water-based paint composition, a water-based adhesive composition, and a water-based fiber processing agent composition because of its excellent film-forming property and water resistance. can do.
これらの用途に用いる場合には、必要によりその他の添加剤、例えば塗膜形成補助樹脂、架橋剤、触媒、顔料、顔料分散剤、粘度調整剤、消泡剤、レベリング剤、防腐剤、劣化防止剤、安定化剤及び凍結防止剤等を1種又は2種以上添加することができる。
When used in these applications, if necessary, other additives such as coating resin, cross-linking agent, catalyst, pigment, pigment dispersant, viscosity modifier, defoamer, leveling agent, preservative, deterioration prevention One or more kinds of agents, stabilizers, antifreeze agents and the like can be added.
以下において本発明のポリウレタン樹脂水性分散体(Q)を用いた、水性塗料の調製について説明する。
水性塗料には、塗膜形成補助やバインダー機能の向上等を目的として、必要により本発明のポリウレタン樹脂水性分散体(Q)におけるウレタン樹脂(U)以外に、他の水分散性樹脂又は水溶性樹脂を併用していてもよい。
また、水性塗料に用いるポリウレタン樹脂水性分散体(Q)は、前記の架橋剤(C)を含有していることが好ましい。 The preparation of the water-based paint using the polyurethane resin aqueous dispersion (Q) of the present invention will be described below.
In addition to the urethane resin (U) in the polyurethane resin aqueous dispersion (Q) of the present invention, other water-dispersible resins or water-soluble paints are used in the water-based paint, if necessary, for the purpose of assisting the formation of a coating film and improving the binder function. A resin may be used in combination.
Further, the polyurethane resin aqueous dispersion (Q) used for the aqueous coating material preferably contains the above-mentioned cross-linking agent (C).
水性塗料には、塗膜形成補助やバインダー機能の向上等を目的として、必要により本発明のポリウレタン樹脂水性分散体(Q)におけるウレタン樹脂(U)以外に、他の水分散性樹脂又は水溶性樹脂を併用していてもよい。
また、水性塗料に用いるポリウレタン樹脂水性分散体(Q)は、前記の架橋剤(C)を含有していることが好ましい。 The preparation of the water-based paint using the polyurethane resin aqueous dispersion (Q) of the present invention will be described below.
In addition to the urethane resin (U) in the polyurethane resin aqueous dispersion (Q) of the present invention, other water-dispersible resins or water-soluble paints are used in the water-based paint, if necessary, for the purpose of assisting the formation of a coating film and improving the binder function. A resin may be used in combination.
Further, the polyurethane resin aqueous dispersion (Q) used for the aqueous coating material preferably contains the above-mentioned cross-linking agent (C).
水性塗料に併用される他の水分散性樹脂又は水溶性樹脂としては、例えば本発明におけるポリウレタン樹脂以外の水分散性又は水溶性のポリウレタン樹脂、ポリアクリル樹脂及びポリエステル樹脂等が挙げられる。これらの他の樹脂は、水性塗料の用途毎に、各用途で常用されるもの等から適宜選択することができる。
Examples of other water-dispersible resins or water-soluble resins used in combination with water-based paints include water-dispersible or water-soluble polyurethane resins, polyacrylic resins, polyester resins, etc. other than the polyurethane resin in the present invention. These other resins can be appropriately selected from those commonly used in each application for each application of the water-based coating material.
水性塗料における本発明のポリウレタン樹脂水性分散体(Q)の固形分の含有量は、水性塗料の重量に基づいて好ましくは0.1~60重量%、更に好ましくは1~50重量%である。
また、水性塗料における他の樹脂の含有量は、水性塗料の重量に基づいて好ましくは60重量%以下、更に好ましくは50重量%以下である。 The solid content of the polyurethane resin aqueous dispersion (Q) of the present invention in the aqueous coating material is preferably 0.1 to 60% by weight, more preferably 1 to 50% by weight, based on the weight of the aqueous coating material.
The content of the other resin in the water-based paint is preferably 60% by weight or less, more preferably 50% by weight or less, based on the weight of the water-based paint.
また、水性塗料における他の樹脂の含有量は、水性塗料の重量に基づいて好ましくは60重量%以下、更に好ましくは50重量%以下である。 The solid content of the polyurethane resin aqueous dispersion (Q) of the present invention in the aqueous coating material is preferably 0.1 to 60% by weight, more preferably 1 to 50% by weight, based on the weight of the aqueous coating material.
The content of the other resin in the water-based paint is preferably 60% by weight or less, more preferably 50% by weight or less, based on the weight of the water-based paint.
水性塗料が含有する架橋剤(C)の添加量は水性塗料の固形分重量を基準として、好ましくは30重量%以下、更に好ましくは0.1~20重量%である。
The amount of the cross-linking agent (C) added to the water-based paint is preferably 30% by weight or less, more preferably 0.1 to 20% by weight, based on the solid content weight of the water-based paint.
水性塗料は、更に、顔料、顔料分散剤、粘度調整剤、消泡剤、防腐剤、劣化防止剤、安定化剤、凍結防止剤及び水等を1種又は2種以上含有することができる。
The water-based paint can further contain one or more kinds of pigments, pigment dispersants, viscosity modifiers, antifoaming agents, preservatives, deterioration inhibitors, stabilizers, antifreeze agents, water and the like.
顔料としては、水への溶解度が1以下の無機顔料(例えば白色顔料、黒色顔料、灰色顔料、赤色顔料、茶色顔料、黄色顔料、緑色顔料、青色顔料、紫色顔料及びメタリック顔料)並びに有機顔料(例えば天然有機顔料合成系有機顔料、ニトロソ顔料、ニトロ顔料、顔料色素型アゾ顔料、水溶性染料からつくるアゾレーキ、難溶性染料からつくるアゾレーキ、塩基性染料からつくるレーキ、酸性染料からつくるレーキ、キサンタンレーキ、アントラキノンレーキ、バット染料からの顔料及びフタロシアニン顔料)等が挙げられる。顔料の含有量は、水性塗料の重量に基づいて好ましくは50重量%以下、更に好ましくは30重量%以下である。
顔料分散剤としては、上述の分散剤(g)が挙げられ、顔料分散剤の含有量は、顔料の重量に基づいて好ましくは20重量%以下、更に好ましくは15重量%以下である。 Pigments include inorganic pigments having a solubility in water of 1 or less (for example, white pigments, black pigments, gray pigments, red pigments, brown pigments, yellow pigments, green pigments, blue pigments, purple pigments and metallic pigments) and organic pigments (for example, purple pigments and metallic pigments). For example, natural organic pigments, synthetic organic pigments, nitroso pigments, nitro pigments, pigment pigment type azo pigments, azo lakes made from water-soluble dyes, azo lakes made from sparingly soluble dyes, rakes made from basic dyes, rakes made from acidic dyes, and xanthan lakes. , Anthraquinone lake, pigments from bat dyes and phthalocyanine pigments) and the like. The content of the pigment is preferably 50% by weight or less, more preferably 30% by weight or less, based on the weight of the aqueous paint.
Examples of the pigment dispersant include the above-mentioned dispersant (g), and the content of the pigment dispersant is preferably 20% by weight or less, more preferably 15% by weight or less, based on the weight of the pigment.
顔料分散剤としては、上述の分散剤(g)が挙げられ、顔料分散剤の含有量は、顔料の重量に基づいて好ましくは20重量%以下、更に好ましくは15重量%以下である。 Pigments include inorganic pigments having a solubility in water of 1 or less (for example, white pigments, black pigments, gray pigments, red pigments, brown pigments, yellow pigments, green pigments, blue pigments, purple pigments and metallic pigments) and organic pigments (for example, purple pigments and metallic pigments). For example, natural organic pigments, synthetic organic pigments, nitroso pigments, nitro pigments, pigment pigment type azo pigments, azo lakes made from water-soluble dyes, azo lakes made from sparingly soluble dyes, rakes made from basic dyes, rakes made from acidic dyes, and xanthan lakes. , Anthraquinone lake, pigments from bat dyes and phthalocyanine pigments) and the like. The content of the pigment is preferably 50% by weight or less, more preferably 30% by weight or less, based on the weight of the aqueous paint.
Examples of the pigment dispersant include the above-mentioned dispersant (g), and the content of the pigment dispersant is preferably 20% by weight or less, more preferably 15% by weight or less, based on the weight of the pigment.
粘度調整剤としては増粘剤、例えば無機系粘度調整剤(ケイ酸ソーダやベントナイト等)、セルロース系粘度調整剤(Mnが20,000以上のメチルセルロース、カルボキシメチルセルロース及びヒドロキシメチルセルロース等)、タンパク質系粘度調整剤(カゼイン、カゼインソーダ及びカゼインアンモニウム等)、アクリル系(Mnが20,000以上のポリアクリル酸ナトリウム及びポリアクリル酸アンモニウム等)及びビニル系粘度調整剤(Mnが20,000以上のポリビニルアルコール等)が挙げられる。
消泡剤としては、長鎖アルコール(オクチルアルコール等)、ソルビタン誘導体(ソルビタンモノオレート等)、シリコーンオイル(ポリメチルシロキサン及びポリエーテル変性シリコーン等)等が挙げられる。 Viscosity adjusting agents include thickeners such as inorganic viscosity adjusting agents (sodium silicate, bentonite, etc.), cellulose-based viscosity adjusting agents (methyl cellulose having Mn of 20,000 or more, carboxymethyl cellulose, hydroxymethyl cellulose, etc.), and protein-based viscosity. Adjusters (casein, casein soda, ammonium casein, etc.), acrylics (sodium polyacrylate with Mn of 20,000 or more, ammonium polyacrylate, etc.) and vinyl viscosity adjusters (polyvinyl alcohol with Mn of 20,000 or more) Etc.).
Examples of the defoaming agent include long-chain alcohols (octyl alcohol and the like), sorbitan derivatives (sorbitan monooleate and the like), silicone oils (polymethylsiloxane and polyether-modified silicones and the like) and the like.
消泡剤としては、長鎖アルコール(オクチルアルコール等)、ソルビタン誘導体(ソルビタンモノオレート等)、シリコーンオイル(ポリメチルシロキサン及びポリエーテル変性シリコーン等)等が挙げられる。 Viscosity adjusting agents include thickeners such as inorganic viscosity adjusting agents (sodium silicate, bentonite, etc.), cellulose-based viscosity adjusting agents (methyl cellulose having Mn of 20,000 or more, carboxymethyl cellulose, hydroxymethyl cellulose, etc.), and protein-based viscosity. Adjusters (casein, casein soda, ammonium casein, etc.), acrylics (sodium polyacrylate with Mn of 20,000 or more, ammonium polyacrylate, etc.) and vinyl viscosity adjusters (polyvinyl alcohol with Mn of 20,000 or more) Etc.).
Examples of the defoaming agent include long-chain alcohols (octyl alcohol and the like), sorbitan derivatives (sorbitan monooleate and the like), silicone oils (polymethylsiloxane and polyether-modified silicones and the like) and the like.
防腐剤としては、有機窒素硫黄化合物系防腐剤及び有機硫黄ハロゲン化物系防腐剤等が挙げられる。
劣化防止剤及び安定化剤(紫外線吸収剤及び酸化防止剤等)としてはヒンダードフェノール系、ヒンダードアミン系、ヒドラジン系、リン系、ベンゾフェノン系及びベンゾトリアゾール系劣化防止剤及び安定化剤等が挙げられる。
凍結防止剤としては、エチレングリコール及びプロピレングリコール等が挙げられる。
粘度調整剤、消泡剤、防腐剤、劣化防止剤、安定化剤及び凍結防止剤の含有量は、水性塗料の重量に基づいてそれぞれ好ましくは5重量%以下、更に好ましくは3重量%以下である。 Examples of the preservative include an organic nitrogen-sulfur compound-based preservative and an organic sulfur halide-based preservative.
Examples of the deterioration inhibitor and stabilizer (ultraviolet absorber, antioxidant, etc.) include hindered phenol-based, hindered amine-based, hydrazine-based, phosphorus-based, benzophenone-based and benzotriazole-based deterioration inhibitor and stabilizer. ..
Examples of the antifreeze agent include ethylene glycol and propylene glycol.
The contents of the viscosity regulator, antifoaming agent, preservative, deterioration inhibitor, stabilizer and antifreeze agent are preferably 5% by weight or less, more preferably 3% by weight or less, respectively, based on the weight of the water-based paint. be.
劣化防止剤及び安定化剤(紫外線吸収剤及び酸化防止剤等)としてはヒンダードフェノール系、ヒンダードアミン系、ヒドラジン系、リン系、ベンゾフェノン系及びベンゾトリアゾール系劣化防止剤及び安定化剤等が挙げられる。
凍結防止剤としては、エチレングリコール及びプロピレングリコール等が挙げられる。
粘度調整剤、消泡剤、防腐剤、劣化防止剤、安定化剤及び凍結防止剤の含有量は、水性塗料の重量に基づいてそれぞれ好ましくは5重量%以下、更に好ましくは3重量%以下である。 Examples of the preservative include an organic nitrogen-sulfur compound-based preservative and an organic sulfur halide-based preservative.
Examples of the deterioration inhibitor and stabilizer (ultraviolet absorber, antioxidant, etc.) include hindered phenol-based, hindered amine-based, hydrazine-based, phosphorus-based, benzophenone-based and benzotriazole-based deterioration inhibitor and stabilizer. ..
Examples of the antifreeze agent include ethylene glycol and propylene glycol.
The contents of the viscosity regulator, antifoaming agent, preservative, deterioration inhibitor, stabilizer and antifreeze agent are preferably 5% by weight or less, more preferably 3% by weight or less, respectively, based on the weight of the water-based paint. be.
水性塗料には、乾燥後の塗膜外観を向上させる目的で更に溶剤を添加してもよい。添加する溶剤としては例えば炭素数1~20の1価アルコール(メタノール、エタノール及びプロパノール等)、炭素数1~20のグリコール類(エチレングリコール、プロピレングリコール及びジエチレングリコール等)、炭素数1~20の3価以上のアルコール(グリセリン等)及び炭素数1~20のセロソルブ類(メチル及びエチルセロソルブ等)等が使用できる。添加する溶剤の含有量は、水性塗料の重量基づいて、好ましくは20重量%以下、更に好ましくは15重量%以下である。
A solvent may be further added to the water-based paint for the purpose of improving the appearance of the coating film after drying. Examples of the solvent to be added include monohydric alcohols having 1 to 20 carbon atoms (methanol, ethanol, propanol, etc.), glycols having 1 to 20 carbon atoms (ethylene glycol, propylene glycol, diethylene glycol, etc.), and 3 having 1 to 20 carbon atoms. Alcohols having a value higher than the value (glycerin, etc.) and cellosolves having 1 to 20 carbon atoms (methyl, ethyl cellosolves, etc.) and the like can be used. The content of the solvent to be added is preferably 20% by weight or less, more preferably 15% by weight or less, based on the weight of the aqueous coating material.
本発明のポリウレタン樹脂水性分散体(Q)を用いた水性塗料は、本発明のポリウレタン樹脂水性分散体(Q)と前記記載の各成分を混合、撹拌することで製造される。混合の際は全ての成分を同時に混合しても、各成分を段階的に投入して混合してもよい。
水性塗料の固形分濃度は、好ましくは10~70重量%、更に好ましくは15~60重量%である。 The aqueous coating material using the polyurethane resin aqueous dispersion (Q) of the present invention is produced by mixing and stirring the polyurethane resin aqueous dispersion (Q) of the present invention and each of the above-mentioned components. At the time of mixing, all the components may be mixed at the same time, or each component may be added stepwise and mixed.
The solid content concentration of the water-based paint is preferably 10 to 70% by weight, more preferably 15 to 60% by weight.
水性塗料の固形分濃度は、好ましくは10~70重量%、更に好ましくは15~60重量%である。 The aqueous coating material using the polyurethane resin aqueous dispersion (Q) of the present invention is produced by mixing and stirring the polyurethane resin aqueous dispersion (Q) of the present invention and each of the above-mentioned components. At the time of mixing, all the components may be mixed at the same time, or each component may be added stepwise and mixed.
The solid content concentration of the water-based paint is preferably 10 to 70% by weight, more preferably 15 to 60% by weight.
以下において本発明のポリウレタン樹脂水性分散体(Q)を用いた水性接着剤について説明する。
水性接着剤に使用する樹脂として、本発明のポリウレタン樹脂水性分散体(Q)におけるポリウレタン樹脂(U)及び/又はポリウレタン樹脂(U1)をそのまま用いても構わないが、SBRラテックス樹脂やアクリル樹脂に代表されるポリウレタン樹脂以外の水分散性又は水溶性樹脂を併用することができる。併用する場合、樹脂全重量におけるポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量の割合は、好ましくは1重量%以上、更に好ましくは10重量%以上である。 The aqueous adhesive using the polyurethane resin aqueous dispersion (Q) of the present invention will be described below.
As the resin used for the water-based adhesive, the polyurethane resin (U) and / or the polyurethane resin (U1) in the polyurethane resin aqueous dispersion (Q) of the present invention may be used as it is, but the SBR latex resin or acrylic resin may be used. A water-dispersible or water-soluble resin other than the typical polyurethane resin can be used in combination. When used in combination, the ratio of the total weight of the polyurethane resin (U) and the polyurethane resin (U1) to the total weight of the resin is preferably 1% by weight or more, more preferably 10% by weight or more.
水性接着剤に使用する樹脂として、本発明のポリウレタン樹脂水性分散体(Q)におけるポリウレタン樹脂(U)及び/又はポリウレタン樹脂(U1)をそのまま用いても構わないが、SBRラテックス樹脂やアクリル樹脂に代表されるポリウレタン樹脂以外の水分散性又は水溶性樹脂を併用することができる。併用する場合、樹脂全重量におけるポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量の割合は、好ましくは1重量%以上、更に好ましくは10重量%以上である。 The aqueous adhesive using the polyurethane resin aqueous dispersion (Q) of the present invention will be described below.
As the resin used for the water-based adhesive, the polyurethane resin (U) and / or the polyurethane resin (U1) in the polyurethane resin aqueous dispersion (Q) of the present invention may be used as it is, but the SBR latex resin or acrylic resin may be used. A water-dispersible or water-soluble resin other than the typical polyurethane resin can be used in combination. When used in combination, the ratio of the total weight of the polyurethane resin (U) and the polyurethane resin (U1) to the total weight of the resin is preferably 1% by weight or more, more preferably 10% by weight or more.
更に、本発明のポリウレタン樹脂水性分散体(Q)を含有する接着剤の凝集性を阻害しない範囲で、接着剤に使用される副資材及び添加剤、例えば、架橋剤、可塑剤、粘着付与剤、充填剤、顔料、増粘剤、酸化防止剤、紫外線吸収剤、界面活性剤及び難燃剤等を使用することも可能である。
Further, auxiliary materials and additives used in the adhesive, for example, a cross-linking agent, a plasticizer, and a tackifier, as long as the cohesiveness of the adhesive containing the polyurethane resin aqueous dispersion (Q) of the present invention is not impaired. , Fillers, pigments, thickeners, antioxidants, UV absorbers, surfactants, flame retardants and the like can also be used.
接着剤を使用する基材(被着体)としては、特に限定されない。
接着剤を使用して得られる被着体の積層体も本発明に含まれる。 The base material (adhesive body) on which the adhesive is used is not particularly limited.
A laminate of adherends obtained using an adhesive is also included in the present invention.
接着剤を使用して得られる被着体の積層体も本発明に含まれる。 The base material (adhesive body) on which the adhesive is used is not particularly limited.
A laminate of adherends obtained using an adhesive is also included in the present invention.
以下本発明のポリウレタン樹脂水性分散体(Q)を用いた水性繊維加工処理剤の調製について説明する。
本発明のポリウレタン樹脂水性分散体(Q)を含有する繊維加工処理剤には、必要により公知の消泡剤、湿潤剤、各種樹脂水性分散体(本発明以外のポリウレタン水性分散体、アクリル水性分散体、SBRラテックス等)及び柔軟剤等を配合することができる。これらの配合量は、樹脂水性分散体の場合は固形分換算でポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量に基づいて、好ましくは30重量%以下(更に好ましくは20重量%以下)であり、その他の添加剤の場合はそれぞれ好ましくは1重量%以下(更に好ましくは0.1~0.5重量%)である。
また、必要により、pH調整剤を添加することもできる。pH調整剤としては、アルカリ性物質、例えば強塩基(アルカリ金属等)と弱酸(pKaが2.0を超える酸、例えば炭酸及び燐酸)の塩(重炭酸ナトリウム等)、又は酸性物質(酢酸等)が挙げられる。pH調整剤の量はポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量に基づいて好ましくは0.01~0.3重量%である。 Hereinafter, preparation of an aqueous fiber processing agent using the polyurethane resin aqueous dispersion (Q) of the present invention will be described.
The fiber processing agent containing the polyurethane resin aqueous dispersion (Q) of the present invention includes, if necessary, known defoaming agents, wetting agents, and various resin aqueous dispersions (polyurethane aqueous dispersions other than the present invention, acrylic aqueous dispersions). Body, SBR latex, etc.) and softeners, etc. can be blended. In the case of the aqueous resin dispersion, these blending amounts are preferably 30% by weight or less (more preferably 20% by weight or less) based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1) in terms of solid content. In the case of other additives, the content is preferably 1% by weight or less (more preferably 0.1 to 0.5% by weight).
Further, if necessary, a pH adjuster can be added. Examples of the pH adjuster include salts of alkaline substances such as strong bases (alkali metals and the like) and weak acids (acids having a pKa of more than 2.0, such as carbonic acid and phosphoric acid) (sodium bicarbonate and the like), or acidic substances (acetic acid and the like). Can be mentioned. The amount of the pH adjuster is preferably 0.01 to 0.3% by weight based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1).
本発明のポリウレタン樹脂水性分散体(Q)を含有する繊維加工処理剤には、必要により公知の消泡剤、湿潤剤、各種樹脂水性分散体(本発明以外のポリウレタン水性分散体、アクリル水性分散体、SBRラテックス等)及び柔軟剤等を配合することができる。これらの配合量は、樹脂水性分散体の場合は固形分換算でポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量に基づいて、好ましくは30重量%以下(更に好ましくは20重量%以下)であり、その他の添加剤の場合はそれぞれ好ましくは1重量%以下(更に好ましくは0.1~0.5重量%)である。
また、必要により、pH調整剤を添加することもできる。pH調整剤としては、アルカリ性物質、例えば強塩基(アルカリ金属等)と弱酸(pKaが2.0を超える酸、例えば炭酸及び燐酸)の塩(重炭酸ナトリウム等)、又は酸性物質(酢酸等)が挙げられる。pH調整剤の量はポリウレタン樹脂(U)及びポリウレタン樹脂(U1)の合計重量に基づいて好ましくは0.01~0.3重量%である。 Hereinafter, preparation of an aqueous fiber processing agent using the polyurethane resin aqueous dispersion (Q) of the present invention will be described.
The fiber processing agent containing the polyurethane resin aqueous dispersion (Q) of the present invention includes, if necessary, known defoaming agents, wetting agents, and various resin aqueous dispersions (polyurethane aqueous dispersions other than the present invention, acrylic aqueous dispersions). Body, SBR latex, etc.) and softeners, etc. can be blended. In the case of the aqueous resin dispersion, these blending amounts are preferably 30% by weight or less (more preferably 20% by weight or less) based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1) in terms of solid content. In the case of other additives, the content is preferably 1% by weight or less (more preferably 0.1 to 0.5% by weight).
Further, if necessary, a pH adjuster can be added. Examples of the pH adjuster include salts of alkaline substances such as strong bases (alkali metals and the like) and weak acids (acids having a pKa of more than 2.0, such as carbonic acid and phosphoric acid) (sodium bicarbonate and the like), or acidic substances (acetic acid and the like). Can be mentioned. The amount of the pH adjuster is preferably 0.01 to 0.3% by weight based on the total weight of the polyurethane resin (U) and the polyurethane resin (U1).
前記の水性繊維加工処理剤の固形分(不揮発分)濃度は特に限定されないが、好ましくは10~50重量%、更に好ましくは15~45重量%である。また、粘度(25℃)は好ましくは10~100,000mPa・sである。
The solid content (nonvolatile content) concentration of the aqueous fiber processing agent is not particularly limited, but is preferably 10 to 50% by weight, more preferably 15 to 45% by weight. The viscosity (25 ° C.) is preferably 10 to 100,000 mPa · s.
以下、実施例を以て本発明を具体的に説明するが、本発明はこれらに限定されない。以下、部は重量部を意味する。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Hereinafter, the part means a weight part.
<実施例1>
撹拌機及び加熱装置を備えた簡易加圧反応装置に、表1に記載した活性水素成分(A)としての高分子ポリオール(A1)、低分子ポリオール(A2)、化合物(A3)、有機ポリイソシアネート成分(B)及び有機溶剤を、表1に記載の重量で仕込んで95℃で15時間攪拌してウレタン化反応を行い、ポリウレタン樹脂のアセトン溶液を製造した。
得られたポリウレタン樹脂のアセトン溶液500部を30℃で撹拌しながら、中和剤としてトリエチルアミン5.09部を加え、60rpmで30分間均一化した後、温度を30℃に保ち、500rpmで攪拌下、イオン交換水651.56部を徐々に加えることで乳化操作を実施した。
次いで、減圧下に65℃で12時間かけてアセトンの留去操作を実施したのち、必要によりイオン交換水を加えて、最終的に得られるポリウレタン樹脂水性分散体(Q)の固形分濃度が35重量%となるように調整し、目開き100μmのSUS製メッシュでろ過するろ過操作を実施して、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-1)を得た。 <Example 1>
A simple pressurizing reaction device equipped with a stirrer and a heating device is provided with a high molecular weight polyol (A1), a low molecular weight polyol (A2), a compound (A3), and an organic polyisocyanate as the active hydrogen component (A) shown in Table 1. The component (B) and the organic solvent were charged in the weights shown in Table 1 and stirred at 95 ° C. for 15 hours to carry out a urethanization reaction to produce an acetone solution of a polyurethane resin.
While stirring 500 parts of the obtained polyurethane resin acetone solution at 30 ° C., 5.09 parts of triethylamine was added as a neutralizing agent, homogenized at 60 rpm for 30 minutes, kept at 30 ° C., and stirred at 500 rpm. , The emulsification operation was carried out by gradually adding 651.56 parts of ion-exchanged water.
Next, after distilling off acetone at 65 ° C. for 12 hours under reduced pressure, ion-exchanged water was added as necessary, and the solid content concentration of the finally obtained polyurethane resin aqueous dispersion (Q) was 35. A polyurethane resin aqueous dispersion (Q-1) containing a polyurethane resin (U1) was obtained by performing a filtration operation in which the content was adjusted to be% by weight and filtered through a SUS mesh having a mesh size of 100 μm.
撹拌機及び加熱装置を備えた簡易加圧反応装置に、表1に記載した活性水素成分(A)としての高分子ポリオール(A1)、低分子ポリオール(A2)、化合物(A3)、有機ポリイソシアネート成分(B)及び有機溶剤を、表1に記載の重量で仕込んで95℃で15時間攪拌してウレタン化反応を行い、ポリウレタン樹脂のアセトン溶液を製造した。
得られたポリウレタン樹脂のアセトン溶液500部を30℃で撹拌しながら、中和剤としてトリエチルアミン5.09部を加え、60rpmで30分間均一化した後、温度を30℃に保ち、500rpmで攪拌下、イオン交換水651.56部を徐々に加えることで乳化操作を実施した。
次いで、減圧下に65℃で12時間かけてアセトンの留去操作を実施したのち、必要によりイオン交換水を加えて、最終的に得られるポリウレタン樹脂水性分散体(Q)の固形分濃度が35重量%となるように調整し、目開き100μmのSUS製メッシュでろ過するろ過操作を実施して、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-1)を得た。 <Example 1>
A simple pressurizing reaction device equipped with a stirrer and a heating device is provided with a high molecular weight polyol (A1), a low molecular weight polyol (A2), a compound (A3), and an organic polyisocyanate as the active hydrogen component (A) shown in Table 1. The component (B) and the organic solvent were charged in the weights shown in Table 1 and stirred at 95 ° C. for 15 hours to carry out a urethanization reaction to produce an acetone solution of a polyurethane resin.
While stirring 500 parts of the obtained polyurethane resin acetone solution at 30 ° C., 5.09 parts of triethylamine was added as a neutralizing agent, homogenized at 60 rpm for 30 minutes, kept at 30 ° C., and stirred at 500 rpm. , The emulsification operation was carried out by gradually adding 651.56 parts of ion-exchanged water.
Next, after distilling off acetone at 65 ° C. for 12 hours under reduced pressure, ion-exchanged water was added as necessary, and the solid content concentration of the finally obtained polyurethane resin aqueous dispersion (Q) was 35. A polyurethane resin aqueous dispersion (Q-1) containing a polyurethane resin (U1) was obtained by performing a filtration operation in which the content was adjusted to be% by weight and filtered through a SUS mesh having a mesh size of 100 μm.
<実施例2~11>
実施例1において、活性水素成分(A)、有機ポリイソシアネート成分(B)、有機溶剤、中和剤及びイオン交換水の種類及び重量を表1に記載の内容に変更した以外は実施例1と同様に実施し、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-2)~(Q-11)を得た。
実施例6では活性水素成分(A)としての鎖伸長剤(A4)を加えた。 <Examples 2 to 11>
In Example 1, the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent, and the ion-exchanged water were changed to the contents shown in Table 1, but the same as in Example 1. The same procedure was carried out to obtain polyurethane resin aqueous dispersions (Q-2) to (Q-11) containing a polyurethane resin (U1).
In Example 6, a chain extender (A4) as an active hydrogen component (A) was added.
実施例1において、活性水素成分(A)、有機ポリイソシアネート成分(B)、有機溶剤、中和剤及びイオン交換水の種類及び重量を表1に記載の内容に変更した以外は実施例1と同様に実施し、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-2)~(Q-11)を得た。
実施例6では活性水素成分(A)としての鎖伸長剤(A4)を加えた。 <Examples 2 to 11>
In Example 1, the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent, and the ion-exchanged water were changed to the contents shown in Table 1, but the same as in Example 1. The same procedure was carried out to obtain polyurethane resin aqueous dispersions (Q-2) to (Q-11) containing a polyurethane resin (U1).
In Example 6, a chain extender (A4) as an active hydrogen component (A) was added.
<実施例12>
撹拌機及び加熱装置を備えた簡易加圧反応装置に、表1に記載した活性水素成分(A)としての高分子ポリオール(A1)、低分子ポリオール(A2)、化合物(A3)、有機ポリイソシアネート成分(B)及び有機溶剤を、表1に記載の重量で仕込んで95℃で15時間攪拌してウレタン化反応を行い、ウレタンプレポリマーのアセトン溶液(溶液のイソシアネート基含有量:1.8重量%)を製造した。上記のイソシアネート基含有量は、JISK7301-1995、6.3イソシアネート基含有率に準拠して測定した。
得られたウレタンプレポリマーのアセトン溶液に表1に記載した活性水素成分(A)としての反応停止剤(A5)を30℃で攪拌しながら加え、60rpmで60分間均一化し、ポリウレタン樹脂のアセトン溶液を製造した。
得られたポリウレタン樹脂のアセトン溶液を30℃で撹拌しながら、中和剤としてトリエチルアミン4.49部を加え、60rpmで30分間均一化した後、温度を30℃に保ち、500rpmで攪拌下、イオン交換水628.83部を徐々に加えることで乳化操作を実施した。
次いで、減圧下に65℃で12時間かけてアセトンの留去操作を実施したのち、必要によりイオン交換水を加えて、最終的に得られるポリウレタン樹脂水性分散体(Q)の固形分濃度が35重量%となるように調整し、目開き100μmのSUS製メッシュでろ過するろ過操作を実施して、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-12)を得た。 <Example 12>
A simple pressurizing reaction device equipped with a stirrer and a heating device is provided with a high molecular weight polyol (A1), a low molecular weight polyol (A2), a compound (A3), and an organic polyisocyanate as the active hydrogen component (A) shown in Table 1. The component (B) and the organic solvent were charged in the weights shown in Table 1 and stirred at 95 ° C. for 15 hours to carry out a urethanization reaction, and the urethanization reaction was carried out. %) Was manufactured. The above isocyanate group content was measured in accordance with JIS K7301-1995, 6.3 Isocyanate group content.
The reaction terminator (A5) as the active hydrogen component (A) shown in Table 1 was added to the obtained urethane prepolymer acetone solution with stirring at 30 ° C., homogenized at 60 rpm for 60 minutes, and the polyurethane resin acetone solution was added. Manufactured.
While stirring the acetone solution of the obtained polyurethane resin at 30 ° C., 4.49 parts of triethylamine was added as a neutralizing agent, homogenized at 60 rpm for 30 minutes, kept at 30 ° C., and ionized under stirring at 500 rpm. The emulsification operation was carried out by gradually adding 628.83 parts of exchanged water.
Next, after distilling off acetone at 65 ° C. for 12 hours under reduced pressure, ion-exchanged water was added as necessary, and the solid content concentration of the finally obtained polyurethane resin aqueous dispersion (Q) was 35. A polyurethane resin aqueous dispersion (Q-12) containing a polyurethane resin (U1) was obtained by performing a filtration operation in which the content was adjusted to be% by weight and filtered through a SUS mesh having a mesh size of 100 μm.
撹拌機及び加熱装置を備えた簡易加圧反応装置に、表1に記載した活性水素成分(A)としての高分子ポリオール(A1)、低分子ポリオール(A2)、化合物(A3)、有機ポリイソシアネート成分(B)及び有機溶剤を、表1に記載の重量で仕込んで95℃で15時間攪拌してウレタン化反応を行い、ウレタンプレポリマーのアセトン溶液(溶液のイソシアネート基含有量:1.8重量%)を製造した。上記のイソシアネート基含有量は、JISK7301-1995、6.3イソシアネート基含有率に準拠して測定した。
得られたウレタンプレポリマーのアセトン溶液に表1に記載した活性水素成分(A)としての反応停止剤(A5)を30℃で攪拌しながら加え、60rpmで60分間均一化し、ポリウレタン樹脂のアセトン溶液を製造した。
得られたポリウレタン樹脂のアセトン溶液を30℃で撹拌しながら、中和剤としてトリエチルアミン4.49部を加え、60rpmで30分間均一化した後、温度を30℃に保ち、500rpmで攪拌下、イオン交換水628.83部を徐々に加えることで乳化操作を実施した。
次いで、減圧下に65℃で12時間かけてアセトンの留去操作を実施したのち、必要によりイオン交換水を加えて、最終的に得られるポリウレタン樹脂水性分散体(Q)の固形分濃度が35重量%となるように調整し、目開き100μmのSUS製メッシュでろ過するろ過操作を実施して、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-12)を得た。 <Example 12>
A simple pressurizing reaction device equipped with a stirrer and a heating device is provided with a high molecular weight polyol (A1), a low molecular weight polyol (A2), a compound (A3), and an organic polyisocyanate as the active hydrogen component (A) shown in Table 1. The component (B) and the organic solvent were charged in the weights shown in Table 1 and stirred at 95 ° C. for 15 hours to carry out a urethanization reaction, and the urethanization reaction was carried out. %) Was manufactured. The above isocyanate group content was measured in accordance with JIS K7301-1995, 6.3 Isocyanate group content.
The reaction terminator (A5) as the active hydrogen component (A) shown in Table 1 was added to the obtained urethane prepolymer acetone solution with stirring at 30 ° C., homogenized at 60 rpm for 60 minutes, and the polyurethane resin acetone solution was added. Manufactured.
While stirring the acetone solution of the obtained polyurethane resin at 30 ° C., 4.49 parts of triethylamine was added as a neutralizing agent, homogenized at 60 rpm for 30 minutes, kept at 30 ° C., and ionized under stirring at 500 rpm. The emulsification operation was carried out by gradually adding 628.83 parts of exchanged water.
Next, after distilling off acetone at 65 ° C. for 12 hours under reduced pressure, ion-exchanged water was added as necessary, and the solid content concentration of the finally obtained polyurethane resin aqueous dispersion (Q) was 35. A polyurethane resin aqueous dispersion (Q-12) containing a polyurethane resin (U1) was obtained by performing a filtration operation in which the content was adjusted to be% by weight and filtered through a SUS mesh having a mesh size of 100 μm.
<実施例13~14及び16>
実施例12において、活性水素成分(A)、有機ポリイソシアネート成分(B)、有機溶剤、中和剤及びイオン交換水の種類及び重量を表1に記載の内容に変更した以外は実施例12と同様に実施し、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-13)~(Q-14)及び(Q-16)を得た。 <Examples 13 to 14 and 16>
In Example 12, except that the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent and the ion-exchanged water were changed to the contents shown in Table 1, the same as in Example 12. The same procedure was carried out to obtain polyurethane resin aqueous dispersions (Q-13) to (Q-14) and (Q-16) containing a polyurethane resin (U1).
実施例12において、活性水素成分(A)、有機ポリイソシアネート成分(B)、有機溶剤、中和剤及びイオン交換水の種類及び重量を表1に記載の内容に変更した以外は実施例12と同様に実施し、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-13)~(Q-14)及び(Q-16)を得た。 <Examples 13 to 14 and 16>
In Example 12, except that the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent and the ion-exchanged water were changed to the contents shown in Table 1, the same as in Example 12. The same procedure was carried out to obtain polyurethane resin aqueous dispersions (Q-13) to (Q-14) and (Q-16) containing a polyurethane resin (U1).
<実施例15>
実施例12において、活性水素成分(A)としての高分子ポリオール(A1)、低分子ポリオール(A2)、化合物(A3)、有機ポリイソシアネート成分(B)、有機溶剤の重量を表1に記載の内容に変更した以外は実施例12と同様に実施し、ウレタンプレポリマーのアセトン溶液(溶液のイソシアネート基含有量:1.25重量%)を製造した。
活性水素成分(A5)、中和剤及びイオン交換水の重量を表1に記載の内容に変更した以外は実施例12と同様に実施し、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-15)を得た。 <Example 15>
In Example 12, the weights of the high molecular weight polyol (A1), the low molecular weight polyol (A2), the compound (A3), the organic polyisocyanate component (B), and the organic solvent as the active hydrogen component (A) are shown in Table 1. The same procedure as in Example 12 was carried out except that the contents were changed to produce an acetone solution of urethane prepolymer (isocyanate group content of the solution: 1.25% by weight).
A polyurethane resin aqueous dispersion containing a polyurethane resin (U1) was carried out in the same manner as in Example 12 except that the weights of the active hydrogen component (A5), the neutralizing agent and the ion-exchanged water were changed to the contents shown in Table 1. (Q-15) was obtained.
実施例12において、活性水素成分(A)としての高分子ポリオール(A1)、低分子ポリオール(A2)、化合物(A3)、有機ポリイソシアネート成分(B)、有機溶剤の重量を表1に記載の内容に変更した以外は実施例12と同様に実施し、ウレタンプレポリマーのアセトン溶液(溶液のイソシアネート基含有量:1.25重量%)を製造した。
活性水素成分(A5)、中和剤及びイオン交換水の重量を表1に記載の内容に変更した以外は実施例12と同様に実施し、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-15)を得た。 <Example 15>
In Example 12, the weights of the high molecular weight polyol (A1), the low molecular weight polyol (A2), the compound (A3), the organic polyisocyanate component (B), and the organic solvent as the active hydrogen component (A) are shown in Table 1. The same procedure as in Example 12 was carried out except that the contents were changed to produce an acetone solution of urethane prepolymer (isocyanate group content of the solution: 1.25% by weight).
A polyurethane resin aqueous dispersion containing a polyurethane resin (U1) was carried out in the same manner as in Example 12 except that the weights of the active hydrogen component (A5), the neutralizing agent and the ion-exchanged water were changed to the contents shown in Table 1. (Q-15) was obtained.
<実施例17>
撹拌機及び加熱装置を備えた簡易加圧反応装置に、表1に記載した活性水素成分(A)としての高分子ポリオール(A1)、低分子ポリオール(A2)、化合物(A3)、有機ポリイソシアネート成分(B)及び有機溶剤を、表1に記載の重量で仕込んで95℃で15時間攪拌してウレタン化反応を行い、ウレタンプレポリマーのアセトン溶液(溶液のイソシアネート基含有量:1.8重量%)を製造した。
得られたウレタンプレポリマーのアセトン溶液を30℃で撹拌しながら、中和剤としてトリエチルアミン4.72部を加え、60rpmで30分間均一化した後、温度を30℃に保ち、500rpmで攪拌下、活性水素成分(A)としての鎖伸長剤(A4)1.19部、活性水素成分(A)としての反応停止剤(A5)8.06部及びイオン交換水622.55部を予め混合した水溶液を徐々に前記ウレタンプレポリマー溶液に加えることで乳化操作を実施した。
次いで、減圧下に65℃で12時間かけてアセトンの留去操作を実施したのち、必要によりイオン交換水を加えて、最終的に得られるポリウレタン樹脂水性分散体(Q)の固形分濃度が35重量%となるように調整し、目開き100μmのSUS製メッシュでろ過するろ過操作を実施して、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-17)を得た。 <Example 17>
A simple pressurizing reaction device equipped with a stirrer and a heating device is provided with a high molecular weight polyol (A1), a low molecular weight polyol (A2), a compound (A3), and an organic polyisocyanate as the active hydrogen component (A) shown in Table 1. The component (B) and the organic solvent were charged in the weights shown in Table 1 and stirred at 95 ° C. for 15 hours to carry out a urethanization reaction, and the urethanization reaction was carried out. %) Was manufactured.
While stirring the obtained urethane prepolymer acetone solution at 30 ° C., 4.72 parts of triethylamine was added as a neutralizing agent, homogenized at 60 rpm for 30 minutes, kept at 30 ° C., and stirred at 500 rpm. An aqueous solution in which 1.19 parts of a chain extender (A4) as an active hydrogen component (A), 8.06 parts of a reaction terminator (A5) as an active hydrogen component (A), and 622.55 parts of ion-exchanged water are mixed in advance. Was gradually added to the urethane prepolymer solution to carry out an emulsification operation.
Next, after distilling off acetone at 65 ° C. for 12 hours under reduced pressure, ion-exchanged water was added as necessary, and the solid content concentration of the finally obtained polyurethane resin aqueous dispersion (Q) was 35. A polyurethane resin aqueous dispersion (Q-17) containing a polyurethane resin (U1) was obtained by performing a filtration operation in which the content was adjusted to be% by weight and filtered through a SUS mesh having a mesh size of 100 μm.
撹拌機及び加熱装置を備えた簡易加圧反応装置に、表1に記載した活性水素成分(A)としての高分子ポリオール(A1)、低分子ポリオール(A2)、化合物(A3)、有機ポリイソシアネート成分(B)及び有機溶剤を、表1に記載の重量で仕込んで95℃で15時間攪拌してウレタン化反応を行い、ウレタンプレポリマーのアセトン溶液(溶液のイソシアネート基含有量:1.8重量%)を製造した。
得られたウレタンプレポリマーのアセトン溶液を30℃で撹拌しながら、中和剤としてトリエチルアミン4.72部を加え、60rpmで30分間均一化した後、温度を30℃に保ち、500rpmで攪拌下、活性水素成分(A)としての鎖伸長剤(A4)1.19部、活性水素成分(A)としての反応停止剤(A5)8.06部及びイオン交換水622.55部を予め混合した水溶液を徐々に前記ウレタンプレポリマー溶液に加えることで乳化操作を実施した。
次いで、減圧下に65℃で12時間かけてアセトンの留去操作を実施したのち、必要によりイオン交換水を加えて、最終的に得られるポリウレタン樹脂水性分散体(Q)の固形分濃度が35重量%となるように調整し、目開き100μmのSUS製メッシュでろ過するろ過操作を実施して、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-17)を得た。 <Example 17>
A simple pressurizing reaction device equipped with a stirrer and a heating device is provided with a high molecular weight polyol (A1), a low molecular weight polyol (A2), a compound (A3), and an organic polyisocyanate as the active hydrogen component (A) shown in Table 1. The component (B) and the organic solvent were charged in the weights shown in Table 1 and stirred at 95 ° C. for 15 hours to carry out a urethanization reaction, and the urethanization reaction was carried out. %) Was manufactured.
While stirring the obtained urethane prepolymer acetone solution at 30 ° C., 4.72 parts of triethylamine was added as a neutralizing agent, homogenized at 60 rpm for 30 minutes, kept at 30 ° C., and stirred at 500 rpm. An aqueous solution in which 1.19 parts of a chain extender (A4) as an active hydrogen component (A), 8.06 parts of a reaction terminator (A5) as an active hydrogen component (A), and 622.55 parts of ion-exchanged water are mixed in advance. Was gradually added to the urethane prepolymer solution to carry out an emulsification operation.
Next, after distilling off acetone at 65 ° C. for 12 hours under reduced pressure, ion-exchanged water was added as necessary, and the solid content concentration of the finally obtained polyurethane resin aqueous dispersion (Q) was 35. A polyurethane resin aqueous dispersion (Q-17) containing a polyurethane resin (U1) was obtained by performing a filtration operation in which the content was adjusted to be% by weight and filtered through a SUS mesh having a mesh size of 100 μm.
<実施例18>
実施例17において、活性水素成分(A)、有機ポリイソシアネート成分(B)、有機溶剤、中和剤及びイオン交換水の種類及び重量を表1に記載の内容に変更した以外は実施例17と同様に実施し、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-18)を得た。 <Example 18>
In Example 17, except that the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent, and the ion-exchanged water were changed to the contents shown in Table 1, the same as in Example 17. The same procedure was carried out to obtain a polyurethane resin aqueous dispersion (Q-18) containing a polyurethane resin (U1).
実施例17において、活性水素成分(A)、有機ポリイソシアネート成分(B)、有機溶剤、中和剤及びイオン交換水の種類及び重量を表1に記載の内容に変更した以外は実施例17と同様に実施し、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-18)を得た。 <Example 18>
In Example 17, except that the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent, and the ion-exchanged water were changed to the contents shown in Table 1, the same as in Example 17. The same procedure was carried out to obtain a polyurethane resin aqueous dispersion (Q-18) containing a polyurethane resin (U1).
<実施例19>
実施例12で製造したポリウレタン樹脂水性分散体(Q-12)90重量部と、以下の比較例1で製造したポリウレタン樹脂水性分散体(Q’-1)10重量部とを混合し、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-19)を得た。 <Example 19>
90 parts by weight of the polyurethane resin aqueous dispersion (Q-12) produced in Example 12 and 10 parts by weight of the polyurethane resin aqueous dispersion (Q'-1) produced in Comparative Example 1 below are mixed to obtain a polyurethane resin. A polyurethane resin aqueous dispersion (Q-19) containing (U1) was obtained.
実施例12で製造したポリウレタン樹脂水性分散体(Q-12)90重量部と、以下の比較例1で製造したポリウレタン樹脂水性分散体(Q’-1)10重量部とを混合し、ポリウレタン樹脂(U1)を含有するポリウレタン樹脂水性分散体(Q-19)を得た。 <Example 19>
90 parts by weight of the polyurethane resin aqueous dispersion (Q-12) produced in Example 12 and 10 parts by weight of the polyurethane resin aqueous dispersion (Q'-1) produced in Comparative Example 1 below are mixed to obtain a polyurethane resin. A polyurethane resin aqueous dispersion (Q-19) containing (U1) was obtained.
<比較例1>
撹拌機及び加熱装置を備えた簡易加圧反応装置に、表2に記載した活性水素成分(A)、有機ポリイソシアネート成分(B)及び有機溶剤を、表2に記載の重量で仕込んで95℃で15時間攪拌してウレタン化反応を行い、ウレタンプレポリマー(末端にイソシアネート基を有する樹脂)のアセトン溶液を製造した。
得られたウレタンプレポリマーのアセトン溶液について、トリエチルアミン及びイオン交換水の重量を表2に記載した重量に変更した以外は、実施例1と同様の方法で乳化操作を実施した。
得られた乳化物を60℃10時間攪拌することで鎖伸長反応(ウレタンプレポリマーが有するイソシアネート基と水との反応を介した伸長反応)を行ったのち、実施例1と同様の方法で、アセトンの留去操作からろ過操作までを実施し、比較用のポリウレタン樹脂(U1’)を含有する比較用のポリウレタン樹脂水性分散体(Q’-1)を得た。 <Comparative example 1>
The active hydrogen component (A), the organic polyisocyanate component (B) and the organic solvent shown in Table 2 were charged into a simple pressurizing reaction device equipped with a stirrer and a heating device at the weights shown in Table 2 at 95 ° C. The urethanization reaction was carried out with stirring for 15 hours to produce an acetone solution of a urethane prepolymer (resin having an isocyanate group at the terminal).
The obtained urethane prepolymer acetone solution was emulsified in the same manner as in Example 1 except that the weights of triethylamine and ion-exchanged water were changed to the weights shown in Table 2.
The obtained emulsion is stirred at 60 ° C. for 10 hours to carry out a chain extension reaction (extension reaction via a reaction between the isocyanate group of the urethane prepolymer and water), and then in the same manner as in Example 1. From the distillation operation of acetone to the filtration operation, a comparative polyurethane resin aqueous dispersion (Q'-1) containing a comparative polyurethane resin (U1') was obtained.
撹拌機及び加熱装置を備えた簡易加圧反応装置に、表2に記載した活性水素成分(A)、有機ポリイソシアネート成分(B)及び有機溶剤を、表2に記載の重量で仕込んで95℃で15時間攪拌してウレタン化反応を行い、ウレタンプレポリマー(末端にイソシアネート基を有する樹脂)のアセトン溶液を製造した。
得られたウレタンプレポリマーのアセトン溶液について、トリエチルアミン及びイオン交換水の重量を表2に記載した重量に変更した以外は、実施例1と同様の方法で乳化操作を実施した。
得られた乳化物を60℃10時間攪拌することで鎖伸長反応(ウレタンプレポリマーが有するイソシアネート基と水との反応を介した伸長反応)を行ったのち、実施例1と同様の方法で、アセトンの留去操作からろ過操作までを実施し、比較用のポリウレタン樹脂(U1’)を含有する比較用のポリウレタン樹脂水性分散体(Q’-1)を得た。 <Comparative example 1>
The active hydrogen component (A), the organic polyisocyanate component (B) and the organic solvent shown in Table 2 were charged into a simple pressurizing reaction device equipped with a stirrer and a heating device at the weights shown in Table 2 at 95 ° C. The urethanization reaction was carried out with stirring for 15 hours to produce an acetone solution of a urethane prepolymer (resin having an isocyanate group at the terminal).
The obtained urethane prepolymer acetone solution was emulsified in the same manner as in Example 1 except that the weights of triethylamine and ion-exchanged water were changed to the weights shown in Table 2.
The obtained emulsion is stirred at 60 ° C. for 10 hours to carry out a chain extension reaction (extension reaction via a reaction between the isocyanate group of the urethane prepolymer and water), and then in the same manner as in Example 1. From the distillation operation of acetone to the filtration operation, a comparative polyurethane resin aqueous dispersion (Q'-1) containing a comparative polyurethane resin (U1') was obtained.
<比較例2~3>
実施例1において、活性水素成分(A)、有機ポリイソシアネート成分(B)、有機溶剤、中和剤及びイオン交換水の種類並びに重量を表2に記載の内容に変更した以外は実施例1と同様に実施し、比較用のポリウレタン樹脂(U1’)を含有する比較用のポリウレタン樹脂水性分散体(Q’-2)~(Q’-3)を得た。 <Comparative Examples 2-3>
In Example 1, the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent, and the ion-exchanged water were changed to the contents shown in Table 2, except that the contents were changed to those shown in Example 1. The same procedure was carried out to obtain comparative polyurethane resin aqueous dispersions (Q'-2) to (Q'-3) containing a comparative polyurethane resin (U1').
実施例1において、活性水素成分(A)、有機ポリイソシアネート成分(B)、有機溶剤、中和剤及びイオン交換水の種類並びに重量を表2に記載の内容に変更した以外は実施例1と同様に実施し、比較用のポリウレタン樹脂(U1’)を含有する比較用のポリウレタン樹脂水性分散体(Q’-2)~(Q’-3)を得た。 <Comparative Examples 2-3>
In Example 1, the types and weights of the active hydrogen component (A), the organic polyisocyanate component (B), the organic solvent, the neutralizing agent, and the ion-exchanged water were changed to the contents shown in Table 2, except that the contents were changed to those shown in Example 1. The same procedure was carried out to obtain comparative polyurethane resin aqueous dispersions (Q'-2) to (Q'-3) containing a comparative polyurethane resin (U1').
<比較例4>
撹拌機及び加熱装置を備えた簡易加圧反応装置に、表2に記載した活性水素成分(A)を、表2に記載した重量で仕込み、減圧(1.3kPa)下、120℃で3時間加熱撹拌した。25℃まで冷却後に、表2に記載した有機ポリイソシアネート成分(B)を、表2に記載した重量で仕込み、95℃で15時間攪拌してウレタン化反応を行った。25℃まで冷却したのち、表2に記載の重量のアセトンを加えて攪拌し、ポリウレタン樹脂のアセトン溶液を製造した。
次いで、トリエチルアミンを加えなかったこと及びイオン交換水の重量を表2に記載した重量に変更した以外は、実施例1と同様の方法で乳化操作を実施した。
その後、実施例1と同様の方法で、アセトンの留去操作からろ過操作までを実施し、比較用のポリウレタン樹脂(U1’)を含有する比較用のポリウレタン樹脂水性分散体(Q’-4)を得た。 <Comparative example 4>
The active hydrogen component (A) shown in Table 2 was charged into a simple pressurizing reaction device equipped with a stirrer and a heating device at the weight shown in Table 2, and the pressure was reduced (1.3 kPa) at 120 ° C. for 3 hours. It was heated and stirred. After cooling to 25 ° C., the organic polyisocyanate component (B) shown in Table 2 was charged by the weight shown in Table 2 and stirred at 95 ° C. for 15 hours to carry out a urethanization reaction. After cooling to 25 ° C., the weights of acetone shown in Table 2 were added and stirred to prepare an acetone solution of a polyurethane resin.
Then, the emulsification operation was carried out in the same manner as in Example 1 except that triethylamine was not added and the weight of the ion-exchanged water was changed to the weight shown in Table 2.
After that, the steps from the distillation operation of acetone to the filtration operation were carried out in the same manner as in Example 1, and the polyurethane resin aqueous dispersion for comparison (Q'-4) containing the polyurethane resin for comparison (U1') was carried out. Got
撹拌機及び加熱装置を備えた簡易加圧反応装置に、表2に記載した活性水素成分(A)を、表2に記載した重量で仕込み、減圧(1.3kPa)下、120℃で3時間加熱撹拌した。25℃まで冷却後に、表2に記載した有機ポリイソシアネート成分(B)を、表2に記載した重量で仕込み、95℃で15時間攪拌してウレタン化反応を行った。25℃まで冷却したのち、表2に記載の重量のアセトンを加えて攪拌し、ポリウレタン樹脂のアセトン溶液を製造した。
次いで、トリエチルアミンを加えなかったこと及びイオン交換水の重量を表2に記載した重量に変更した以外は、実施例1と同様の方法で乳化操作を実施した。
その後、実施例1と同様の方法で、アセトンの留去操作からろ過操作までを実施し、比較用のポリウレタン樹脂(U1’)を含有する比較用のポリウレタン樹脂水性分散体(Q’-4)を得た。 <Comparative example 4>
The active hydrogen component (A) shown in Table 2 was charged into a simple pressurizing reaction device equipped with a stirrer and a heating device at the weight shown in Table 2, and the pressure was reduced (1.3 kPa) at 120 ° C. for 3 hours. It was heated and stirred. After cooling to 25 ° C., the organic polyisocyanate component (B) shown in Table 2 was charged by the weight shown in Table 2 and stirred at 95 ° C. for 15 hours to carry out a urethanization reaction. After cooling to 25 ° C., the weights of acetone shown in Table 2 were added and stirred to prepare an acetone solution of a polyurethane resin.
Then, the emulsification operation was carried out in the same manner as in Example 1 except that triethylamine was not added and the weight of the ion-exchanged water was changed to the weight shown in Table 2.
After that, the steps from the distillation operation of acetone to the filtration operation were carried out in the same manner as in Example 1, and the polyurethane resin aqueous dispersion for comparison (Q'-4) containing the polyurethane resin for comparison (U1') was carried out. Got
実施例1~19及び比較例1~4で使用した高分子ポリオール(A1)は以下の通りである。
PTMG650:[Mn=650、Mw/Mn=1.1のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]
PTMG1000:[Mn=1,000、Mw/Mn=1.1のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]、
PTMG2000:[Mn=2,000、Mw/Mn=1.1のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]
ニューポールBPE-20T:[Mn=321、水酸基価が349mgKOH/gのビスフェノールAのエチレンオキサイド付加物、三洋化成工業(株)製]
サンニックスPP-2000:[Mn=2,000のポリオキシプロピレングリコール、三洋化成工業(株)製]
PEG-1000:[Mn=1,000のポリエチレングリコール、三洋化成工業(株)製] The polymer polyols (A1) used in Examples 1 to 19 and Comparative Examples 1 to 4 are as follows.
PTMG650: [Mn = 650, Mw / Mn = 1.1 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Corporation]
PTMG1000: [Mn = 1,000, Mw / Mn = 1.1 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Corporation],
PTMG2000: [Mn = 2,000, Mw / Mn = 1.1 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Corporation]
Nieuport BPE-20T: [Mn = 321 and ethylene oxide adduct of bisphenol A having a hydroxyl value of 349 mgKOH / g, manufactured by Sanyo Chemical Industries, Ltd.]
Sanniks PP-2000: [Mn = 2,000 polyoxypropylene glycol, manufactured by Sanyo Chemical Industries, Ltd.]
PEG-1000: [Mn = 1,000 polyethylene glycol, manufactured by Sanyo Chemical Industries, Ltd.]
PTMG650:[Mn=650、Mw/Mn=1.1のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]
PTMG1000:[Mn=1,000、Mw/Mn=1.1のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]、
PTMG2000:[Mn=2,000、Mw/Mn=1.1のポリテトラメチレンエーテルグリコール、三菱ケミカル(株)製]
ニューポールBPE-20T:[Mn=321、水酸基価が349mgKOH/gのビスフェノールAのエチレンオキサイド付加物、三洋化成工業(株)製]
サンニックスPP-2000:[Mn=2,000のポリオキシプロピレングリコール、三洋化成工業(株)製]
PEG-1000:[Mn=1,000のポリエチレングリコール、三洋化成工業(株)製] The polymer polyols (A1) used in Examples 1 to 19 and Comparative Examples 1 to 4 are as follows.
PTMG650: [Mn = 650, Mw / Mn = 1.1 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Corporation]
PTMG1000: [Mn = 1,000, Mw / Mn = 1.1 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Corporation],
PTMG2000: [Mn = 2,000, Mw / Mn = 1.1 polytetramethylene ether glycol, manufactured by Mitsubishi Chemical Corporation]
Nieuport BPE-20T: [Mn = 321 and ethylene oxide adduct of bisphenol A having a hydroxyl value of 349 mgKOH / g, manufactured by Sanyo Chemical Industries, Ltd.]
Sanniks PP-2000: [Mn = 2,000 polyoxypropylene glycol, manufactured by Sanyo Chemical Industries, Ltd.]
PEG-1000: [Mn = 1,000 polyethylene glycol, manufactured by Sanyo Chemical Industries, Ltd.]
実施例1~19及び比較例1~4で得られたポリウレタン樹脂水性分散体(Q-1)~(Q-19)及び(Q’-1)~(Q’-4)の各種物性値及び評価結果を表1~表4に示す。尚、各種物性値の測定方法及び評価方法は以下の通りである。
Various physical property values of the polyurethane resin aqueous dispersions (Q-1) to (Q-19) and (Q'-1) to (Q'-4) obtained in Examples 1 to 19 and Comparative Examples 1 to 4 and The evaluation results are shown in Tables 1 to 4. The methods for measuring and evaluating various physical property values are as follows.
<ポリウレタン樹脂(U)及び(U’)のウレタン基含有量及びウレア基含有量>
ポリウレタン樹脂水性分散体(Q)又は(Q’)を縦10cm×横20cm×深さ1cmのポリプロピレン製モールドに流し込み、25℃で12時間乾燥後、循風乾燥機で、105℃で3時間加熱乾燥することによって、測定用のポリウレタン樹脂(U)又は(U’)を得た。
ポリウレタン樹脂(U)及び(U’)のウレタン基含有量及びウレア基含有量は、窒素分析計[ANTEK7000(アンテック社製)]によって定量されるN原子含有量と1H-NMRによって定量されるウレタン基とウレア基の比率及び後述のアロハネート基及びビューレット基含有量から算出した。
1H-NMR測定については、「NMRによるポリウレタン樹脂の構造研究:武田研究所報34(2)、224-323(1975)」に記載の方法で行った。すなわち1H-NMRを測定して、脂肪族イソシアネートを使用した場合、化学シフト6ppm付近のウレア基由来の水素の積分量と化学シフト7ppm付近のウレタン基由来の水素の積分量の比率からウレア基とウレタン基の重量比を測定し、該重量比と前記のN原子含有量及びアロハネート基及びビューレット基含有量からウレタン基及びウレア基含有量を算出した。芳香族イソシアネートを使用した場合、化学シフト8ppm付近のウレア基由来の水素の積分量と化学シフト9ppm付近のウレタン基由来の水素の積分量の比率からウレア基とウレタン基の重量比を算出し、該重量比と前記のN原子含有量及びアロハネート基及びビューレット基含有量からウレタン基及びウレア基含有量を算出した。 <Urea group content and urea group content of polyurethane resins (U) and (U')>
The polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained.
The urethane group content and urea group content of the polyurethane resins (U) and (U') are quantified by the N atom content quantified by a nitrogen analyzer [ANTEK7000 (manufactured by Antec)] and 1 H-NMR. It was calculated from the ratio of urethane group to urea group and the content of alohanate group and burette group described later.
1 1 H-NMR measurement was carried out by the method described in "Structural Study of Polyurethane Resin by NMR: Takeda Research Institute Bulletin 34 (2), 224-323 (1975)". That is, when 1 H-NMR is measured and an aliphatic isocyanate is used, the urea group is derived from the ratio of the integrated amount of hydrogen derived from the urea group near the chemical shift of 6 ppm and the integrated amount of hydrogen derived from the urethane group near the chemical shift of 7 ppm. The weight ratio of the urethane group to the urethane group was measured, and the urethane group and urea group contents were calculated from the weight ratio, the N atom content, and the alohanate group and burette group contents. When aromatic isocyanate is used, the weight ratio of urea group to urethane group is calculated from the ratio of the integrated amount of hydrogen derived from the urea group near the chemical shift of 8 ppm and the integrated amount of hydrogen derived from the urethane group near the chemical shift of 9 ppm. The urethane group and urea group contents were calculated from the weight ratio, the N atom content, and the alohanate group and burette group contents.
ポリウレタン樹脂水性分散体(Q)又は(Q’)を縦10cm×横20cm×深さ1cmのポリプロピレン製モールドに流し込み、25℃で12時間乾燥後、循風乾燥機で、105℃で3時間加熱乾燥することによって、測定用のポリウレタン樹脂(U)又は(U’)を得た。
ポリウレタン樹脂(U)及び(U’)のウレタン基含有量及びウレア基含有量は、窒素分析計[ANTEK7000(アンテック社製)]によって定量されるN原子含有量と1H-NMRによって定量されるウレタン基とウレア基の比率及び後述のアロハネート基及びビューレット基含有量から算出した。
1H-NMR測定については、「NMRによるポリウレタン樹脂の構造研究:武田研究所報34(2)、224-323(1975)」に記載の方法で行った。すなわち1H-NMRを測定して、脂肪族イソシアネートを使用した場合、化学シフト6ppm付近のウレア基由来の水素の積分量と化学シフト7ppm付近のウレタン基由来の水素の積分量の比率からウレア基とウレタン基の重量比を測定し、該重量比と前記のN原子含有量及びアロハネート基及びビューレット基含有量からウレタン基及びウレア基含有量を算出した。芳香族イソシアネートを使用した場合、化学シフト8ppm付近のウレア基由来の水素の積分量と化学シフト9ppm付近のウレタン基由来の水素の積分量の比率からウレア基とウレタン基の重量比を算出し、該重量比と前記のN原子含有量及びアロハネート基及びビューレット基含有量からウレタン基及びウレア基含有量を算出した。 <Urea group content and urea group content of polyurethane resins (U) and (U')>
The polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained.
The urethane group content and urea group content of the polyurethane resins (U) and (U') are quantified by the N atom content quantified by a nitrogen analyzer [ANTEK7000 (manufactured by Antec)] and 1 H-NMR. It was calculated from the ratio of urethane group to urea group and the content of alohanate group and burette group described later.
1 1 H-NMR measurement was carried out by the method described in "Structural Study of Polyurethane Resin by NMR: Takeda Research Institute Bulletin 34 (2), 224-323 (1975)". That is, when 1 H-NMR is measured and an aliphatic isocyanate is used, the urea group is derived from the ratio of the integrated amount of hydrogen derived from the urea group near the chemical shift of 6 ppm and the integrated amount of hydrogen derived from the urethane group near the chemical shift of 7 ppm. The weight ratio of the urethane group to the urethane group was measured, and the urethane group and urea group contents were calculated from the weight ratio, the N atom content, and the alohanate group and burette group contents. When aromatic isocyanate is used, the weight ratio of urea group to urethane group is calculated from the ratio of the integrated amount of hydrogen derived from the urea group near the chemical shift of 8 ppm and the integrated amount of hydrogen derived from the urethane group near the chemical shift of 9 ppm. The urethane group and urea group contents were calculated from the weight ratio, the N atom content, and the alohanate group and burette group contents.
<アロハネート基及びビューレット基の含有量>
ポリウレタン樹脂(U)及び(U’)のアロハネート基及びビューレット基の含有量の合計は、ガスクロマトグラフ[Shimadzu GC-9A{島津製作所(株)製}]によって算出した。0.01重量%のジ-n-ブチルアミンと0.01重量%のナフタレン(内部標準)とを含む50gのDMF溶液を調製した。サンプルを共栓付き試験管に測り取り、前記のDMF溶液を2g加え、試験管を90℃の恒温水槽で2時間加熱した。常温に冷却後、10μlの無水酢酸を加え10分間振とう攪拌し、更に50μlのジ-n-プロピルアミンを添加し、10分間振とう後、ガスクロマトグラフ測定を行った。並行してブランク測定を行い、試験値との差よりアミンの消費量を求め、アロハネート基及びビューレット基の含有量の合計を測定した。
(ガスクロマトグラフ条件)
装置:Shimadzu GC-9A
カラム:10%PEG-20M on Chromosorb WAW DMLS 60/80meshガラスカラム 3mmφ×2m
カラム温度:160℃、試料導入部温度:200℃、キャリアガス:窒素 40ml/分
検出器:FID、試料注入量:2μl
(アロハネート基及びビューレット基の含有量の合計の算出式)
アロハネート基及びビューレット基の含有量の合計={(B-A)/B}×0.00155/S
A:試料の(ジ-n-ブチルアセトアミドのピーク面積/ナフタレンのピーク面積)
B:ブランクの(ジ-n-ブチルアセトアミドのピーク面積/ナフタレンのピーク面積)
S:ポリウレタン樹脂採取量(g) <Contents of alohanate group and burette group>
The total content of the alohanate group and the burette group of the polyurethane resins (U) and (U') was calculated by a gas chromatograph [Shimadzu GC-9A {manufactured by Shimadzu Corporation}]. A 50 g DMF solution containing 0.01% by weight di-n-butylamine and 0.01% by weight naphthalene (internal standard) was prepared. The sample was measured in a test tube with a stopper, 2 g of the above DMF solution was added, and the test tube was heated in a constant temperature water tank at 90 ° C. for 2 hours. After cooling to room temperature, 10 μl of acetic anhydride was added, and the mixture was shaken and stirred for 10 minutes. Further, 50 μl of di-n-propylamine was added, and the mixture was shaken for 10 minutes, and then gas chromatograph measurement was performed. In parallel, blank measurement was performed, the consumption of amine was determined from the difference from the test value, and the total content of alohanate group and burette group was measured.
(Gas chromatograph conditions)
Equipment: Shimadzu GC-9A
Column: 10% PEG-20M on Chromosorb WAW DMLS 60/80 mesh glass column 3mmφ x 2m
Column temperature: 160 ° C, sample introduction temperature: 200 ° C, carrier gas: nitrogen 40 ml / min Detector: FID, sample injection amount: 2 μl
(Calculation formula for the total content of alohanate group and burette group)
Total content of alohanate group and burette group = {(BA) / B} × 0.00155 / S
A: (Peak area of di-n-butylacetamide / Peak area of naphthalene) of sample
B: Blank (peak area of di-n-butylacetamide / peak area of naphthalene)
S: Polyurethane resin collection amount (g)
ポリウレタン樹脂(U)及び(U’)のアロハネート基及びビューレット基の含有量の合計は、ガスクロマトグラフ[Shimadzu GC-9A{島津製作所(株)製}]によって算出した。0.01重量%のジ-n-ブチルアミンと0.01重量%のナフタレン(内部標準)とを含む50gのDMF溶液を調製した。サンプルを共栓付き試験管に測り取り、前記のDMF溶液を2g加え、試験管を90℃の恒温水槽で2時間加熱した。常温に冷却後、10μlの無水酢酸を加え10分間振とう攪拌し、更に50μlのジ-n-プロピルアミンを添加し、10分間振とう後、ガスクロマトグラフ測定を行った。並行してブランク測定を行い、試験値との差よりアミンの消費量を求め、アロハネート基及びビューレット基の含有量の合計を測定した。
(ガスクロマトグラフ条件)
装置:Shimadzu GC-9A
カラム:10%PEG-20M on Chromosorb WAW DMLS 60/80meshガラスカラム 3mmφ×2m
カラム温度:160℃、試料導入部温度:200℃、キャリアガス:窒素 40ml/分
検出器:FID、試料注入量:2μl
(アロハネート基及びビューレット基の含有量の合計の算出式)
アロハネート基及びビューレット基の含有量の合計={(B-A)/B}×0.00155/S
A:試料の(ジ-n-ブチルアセトアミドのピーク面積/ナフタレンのピーク面積)
B:ブランクの(ジ-n-ブチルアセトアミドのピーク面積/ナフタレンのピーク面積)
S:ポリウレタン樹脂採取量(g) <Contents of alohanate group and burette group>
The total content of the alohanate group and the burette group of the polyurethane resins (U) and (U') was calculated by a gas chromatograph [Shimadzu GC-9A {manufactured by Shimadzu Corporation}]. A 50 g DMF solution containing 0.01% by weight di-n-butylamine and 0.01% by weight naphthalene (internal standard) was prepared. The sample was measured in a test tube with a stopper, 2 g of the above DMF solution was added, and the test tube was heated in a constant temperature water tank at 90 ° C. for 2 hours. After cooling to room temperature, 10 μl of acetic anhydride was added, and the mixture was shaken and stirred for 10 minutes. Further, 50 μl of di-n-propylamine was added, and the mixture was shaken for 10 minutes, and then gas chromatograph measurement was performed. In parallel, blank measurement was performed, the consumption of amine was determined from the difference from the test value, and the total content of alohanate group and burette group was measured.
(Gas chromatograph conditions)
Equipment: Shimadzu GC-9A
Column: 10% PEG-20M on Chromosorb WAW DMLS 60/80 mesh glass column 3mmφ x 2m
Column temperature: 160 ° C, sample introduction temperature: 200 ° C, carrier gas: nitrogen 40 ml / min Detector: FID, sample injection amount: 2 μl
(Calculation formula for the total content of alohanate group and burette group)
Total content of alohanate group and burette group = {(BA) / B} × 0.00155 / S
A: (Peak area of di-n-butylacetamide / Peak area of naphthalene) of sample
B: Blank (peak area of di-n-butylacetamide / peak area of naphthalene)
S: Polyurethane resin collection amount (g)
<Mw及びMn測定方法>
ポリウレタン樹脂(U)若しくは(U’)又は高分子ポリオールを、DMF中に固形分が0.125重量%となるように加えて、常温で1時間撹拌溶解後、0.3μmの孔径のフィルターでろ過して、得られたろ液に含まれている成分のMwとMnを、DMFを溶媒として、また、ポリスチレンを分子量標準として用いて、GPCにより測定した。
測定に用いられる溶剤に対する試料の溶解度が90重量%未満[0.125重量%の固形分濃度となるようにDMFに溶解させる際、実際に溶解する試料が0.1125重量%(=0.125×0.90)未満]の場合はGPCの測定精度が低下する。その場合、分子量の正確な測定が困難なため、当該ポリウレタン樹脂の分子量は無限大「∞」と定義した。
(GPC測定条件)
装置:「HLC-8220GPC」[東ソー(株)製]
カラム:「Guardcolumn α」+「TSKgel α-M」[いずれも東ソー(株)製]
試料溶液:0.125重量%のジメチルホルムアミド溶液
溶離液:ジメチルホルムアミド
溶液注入量:100μL
流量:1ml/分
測定温度:40℃
検出装置:屈折率検出器
基準物質:標準ポリスチレン(TSKstandard POLYSTYRENE)[東ソー(株)製] <Mw and Mn measurement method>
Polyurethane resin (U) or (U') or high molecular weight polyol is added to DMF so that the solid content is 0.125% by weight, and after stirring and dissolving at room temperature for 1 hour, a filter having a pore size of 0.3 μm is used. After filtration, the components Mw and Mn contained in the obtained filtrate were measured by GPC using DMF as a solvent and polystyrene as a molecular weight standard.
When the sample is dissolved in DMF so that the solubility of the sample in the solvent used for measurement is less than 90% by weight [0.125% by weight of solid content concentration], the sample actually dissolved is 0.1125% by weight (= 0.125% by weight). If it is less than × 0.90)], the measurement accuracy of GPC is lowered. In that case, since it is difficult to accurately measure the molecular weight, the molecular weight of the polyurethane resin is defined as infinite "∞".
(GPC measurement conditions)
Equipment: "HLC-8220GPC" [manufactured by Tosoh Corporation]
Column: "Guardcolumn α" + "TSKgel α-M" [both manufactured by Tosoh Corporation]
Sample solution: 0.125 wt% dimethylformamide solution Eluent: Dimethylformamide solution Injection volume: 100 μL
Flow rate: 1 ml / min Measurement temperature: 40 ° C
Detector: Refractive index detector Reference material: Standard polystyrene (TSK standard POLYSTYRENE) [manufactured by Tosoh Corporation]
ポリウレタン樹脂(U)若しくは(U’)又は高分子ポリオールを、DMF中に固形分が0.125重量%となるように加えて、常温で1時間撹拌溶解後、0.3μmの孔径のフィルターでろ過して、得られたろ液に含まれている成分のMwとMnを、DMFを溶媒として、また、ポリスチレンを分子量標準として用いて、GPCにより測定した。
測定に用いられる溶剤に対する試料の溶解度が90重量%未満[0.125重量%の固形分濃度となるようにDMFに溶解させる際、実際に溶解する試料が0.1125重量%(=0.125×0.90)未満]の場合はGPCの測定精度が低下する。その場合、分子量の正確な測定が困難なため、当該ポリウレタン樹脂の分子量は無限大「∞」と定義した。
(GPC測定条件)
装置:「HLC-8220GPC」[東ソー(株)製]
カラム:「Guardcolumn α」+「TSKgel α-M」[いずれも東ソー(株)製]
試料溶液:0.125重量%のジメチルホルムアミド溶液
溶離液:ジメチルホルムアミド
溶液注入量:100μL
流量:1ml/分
測定温度:40℃
検出装置:屈折率検出器
基準物質:標準ポリスチレン(TSKstandard POLYSTYRENE)[東ソー(株)製] <Mw and Mn measurement method>
Polyurethane resin (U) or (U') or high molecular weight polyol is added to DMF so that the solid content is 0.125% by weight, and after stirring and dissolving at room temperature for 1 hour, a filter having a pore size of 0.3 μm is used. After filtration, the components Mw and Mn contained in the obtained filtrate were measured by GPC using DMF as a solvent and polystyrene as a molecular weight standard.
When the sample is dissolved in DMF so that the solubility of the sample in the solvent used for measurement is less than 90% by weight [0.125% by weight of solid content concentration], the sample actually dissolved is 0.1125% by weight (= 0.125% by weight). If it is less than × 0.90)], the measurement accuracy of GPC is lowered. In that case, since it is difficult to accurately measure the molecular weight, the molecular weight of the polyurethane resin is defined as infinite "∞".
(GPC measurement conditions)
Equipment: "HLC-8220GPC" [manufactured by Tosoh Corporation]
Column: "Guardcolumn α" + "TSKgel α-M" [both manufactured by Tosoh Corporation]
Sample solution: 0.125 wt% dimethylformamide solution Eluent: Dimethylformamide solution Injection volume: 100 μL
Flow rate: 1 ml / min Measurement temperature: 40 ° C
Detector: Refractive index detector Reference material: Standard polystyrene (TSK standard POLYSTYRENE) [manufactured by Tosoh Corporation]
<ポリウレタン樹脂(U)及び(U’)の不溶解成分の重量割合の測定方法>
ポリウレタン樹脂水性分散体(Q)又は(Q’)を縦10cm×横20cm×深さ1cmのポリプロピレン製モールドに流し込み、25℃で12時間乾燥後、循風乾燥機で、105℃で3時間加熱乾燥することによって、測定用のポリウレタン樹脂(U)又は(U’)を得た。得られたポリウレタン樹脂1g(この重量をWとする)を内径6cm、深さ12cmの耐圧密閉容器に長さ3cmのスターラーチップと共に仕込み、ポリウレタン樹脂の10倍の重量(10g)の25℃のアセトンを加えて、80℃で180分間撹拌し混合液を得た。
得られた混合液を予め重量(W1)を測定したSUS製メッシュ(目開き75μm)でろ過したのち、25℃のアセトン(耐圧密閉容器に仕込んだアセトンと同じ重量:10g)でろ過残さを洗浄した。ろ過残さとSUS製メッシュを105℃で30分間乾燥させたのち合計重量(W2)を測定した。不溶解分量は下記式により算出した。
不溶解成分の重量割合(%)={(W2-W1)/W}×100 <Measuring method of weight ratio of insoluble components of polyurethane resin (U) and (U')>
The polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained. 1 g of the obtained polyurethane resin (referring to this weight as W) is placed in a pressure-resistant airtight container having an inner diameter of 6 cm and a depth of 12 cm together with a stirrer chip having a length of 3 cm. Was added, and the mixture was stirred at 80 ° C. for 180 minutes to obtain a mixed solution.
The obtained mixed solution is filtered through a SUS mesh (opening 75 μm) whose weight (W1) has been measured in advance, and then the filtration residue is washed with acetone at 25 ° C. (same weight as acetone charged in a pressure-resistant airtight container: 10 g). bottom. The filtration residue and the SUS mesh were dried at 105 ° C. for 30 minutes, and then the total weight (W2) was measured. The amount of insoluble matter was calculated by the following formula.
Weight ratio of insoluble component (%) = {(W2-W1) / W} x 100
ポリウレタン樹脂水性分散体(Q)又は(Q’)を縦10cm×横20cm×深さ1cmのポリプロピレン製モールドに流し込み、25℃で12時間乾燥後、循風乾燥機で、105℃で3時間加熱乾燥することによって、測定用のポリウレタン樹脂(U)又は(U’)を得た。得られたポリウレタン樹脂1g(この重量をWとする)を内径6cm、深さ12cmの耐圧密閉容器に長さ3cmのスターラーチップと共に仕込み、ポリウレタン樹脂の10倍の重量(10g)の25℃のアセトンを加えて、80℃で180分間撹拌し混合液を得た。
得られた混合液を予め重量(W1)を測定したSUS製メッシュ(目開き75μm)でろ過したのち、25℃のアセトン(耐圧密閉容器に仕込んだアセトンと同じ重量:10g)でろ過残さを洗浄した。ろ過残さとSUS製メッシュを105℃で30分間乾燥させたのち合計重量(W2)を測定した。不溶解分量は下記式により算出した。
不溶解成分の重量割合(%)={(W2-W1)/W}×100 <Measuring method of weight ratio of insoluble components of polyurethane resin (U) and (U')>
The polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained. 1 g of the obtained polyurethane resin (referring to this weight as W) is placed in a pressure-resistant airtight container having an inner diameter of 6 cm and a depth of 12 cm together with a stirrer chip having a length of 3 cm. Was added, and the mixture was stirred at 80 ° C. for 180 minutes to obtain a mixed solution.
The obtained mixed solution is filtered through a SUS mesh (opening 75 μm) whose weight (W1) has been measured in advance, and then the filtration residue is washed with acetone at 25 ° C. (same weight as acetone charged in a pressure-resistant airtight container: 10 g). bottom. The filtration residue and the SUS mesh were dried at 105 ° C. for 30 minutes, and then the total weight (W2) was measured. The amount of insoluble matter was calculated by the following formula.
Weight ratio of insoluble component (%) = {(W2-W1) / W} x 100
<ポリウレタン樹脂(U)及び(U’)の粘度の測定方法>
ポリウレタン樹脂水性分散体(Q)又は(Q’)を縦10cm×横20cm×深さ1cmのポリプロピレン製モールドに流し込み、25℃で12時間乾燥後、循風乾燥機で、105℃で3時間加熱乾燥することによって、測定用のポリウレタン樹脂(U)又は(U’)を得た。
得られたポリウレタン樹脂の樹脂粘度をレオメーター(AntonPaar社製「MCR-302」)を使用して測定した。
(測定条件)
測定治具:パラレルプレート「PP-08」(直径8mm)
プレート間距離:0.5mm
測定温度:25℃
測定モード:回転
せん断速度:0.1/秒
得られたポリウレタン樹脂が皮膜化して前記条件での粘度測定が不可能な場合は、樹脂粘度を「∞」と表記した。 <Measuring method of viscosity of polyurethane resin (U) and (U')>
The polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained.
The resin viscosity of the obtained polyurethane resin was measured using a rheometer (“MCR-302” manufactured by AntonioPaar).
(Measurement condition)
Measuring jig: Parallel plate "PP-08" (diameter 8 mm)
Distance between plates: 0.5 mm
Measurement temperature: 25 ° C
Measurement mode: Rotational shear rate: 0.1 / sec When the obtained polyurethane resin was filmed and the viscosity could not be measured under the above conditions, the resin viscosity was indicated as "∞".
ポリウレタン樹脂水性分散体(Q)又は(Q’)を縦10cm×横20cm×深さ1cmのポリプロピレン製モールドに流し込み、25℃で12時間乾燥後、循風乾燥機で、105℃で3時間加熱乾燥することによって、測定用のポリウレタン樹脂(U)又は(U’)を得た。
得られたポリウレタン樹脂の樹脂粘度をレオメーター(AntonPaar社製「MCR-302」)を使用して測定した。
(測定条件)
測定治具:パラレルプレート「PP-08」(直径8mm)
プレート間距離:0.5mm
測定温度:25℃
測定モード:回転
せん断速度:0.1/秒
得られたポリウレタン樹脂が皮膜化して前記条件での粘度測定が不可能な場合は、樹脂粘度を「∞」と表記した。 <Measuring method of viscosity of polyurethane resin (U) and (U')>
The polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained.
The resin viscosity of the obtained polyurethane resin was measured using a rheometer (“MCR-302” manufactured by AntonioPaar).
(Measurement condition)
Measuring jig: Parallel plate "PP-08" (diameter 8 mm)
Distance between plates: 0.5 mm
Measurement temperature: 25 ° C
Measurement mode: Rotational shear rate: 0.1 / sec When the obtained polyurethane resin was filmed and the viscosity could not be measured under the above conditions, the resin viscosity was indicated as "∞".
<ポリウレタン樹脂の酸価及び水酸基価>
ポリウレタン樹脂水性分散体(Q)又は(Q’)を縦10cm×横20cm×深さ1cmのポリプロピレン製モールドに流し込み、25℃で12時間乾燥後、循風乾燥機で、105℃で3時間加熱乾燥することによって、測定用のポリウレタン樹脂(U)又は(U’)を得た。
ポリウレタン樹脂(U)及び(U’)の酸価及び水酸基価は、JIS K0070(1992)に準じて測定した。 <Acid value and hydroxyl value of polyurethane resin>
The polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained.
The acid value and hydroxyl value of the polyurethane resins (U) and (U') were measured according to JIS K0070 (1992).
ポリウレタン樹脂水性分散体(Q)又は(Q’)を縦10cm×横20cm×深さ1cmのポリプロピレン製モールドに流し込み、25℃で12時間乾燥後、循風乾燥機で、105℃で3時間加熱乾燥することによって、測定用のポリウレタン樹脂(U)又は(U’)を得た。
ポリウレタン樹脂(U)及び(U’)の酸価及び水酸基価は、JIS K0070(1992)に準じて測定した。 <Acid value and hydroxyl value of polyurethane resin>
The polyurethane resin aqueous dispersion (Q) or (Q') is poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, dried at 25 ° C. for 12 hours, and then heated at 105 ° C. for 3 hours in a circulation dryer. By drying, a polyurethane resin (U) or (U') for measurement was obtained.
The acid value and hydroxyl value of the polyurethane resins (U) and (U') were measured according to JIS K0070 (1992).
<貯蔵安定性の評価方法>
「Cymel202」(ALLNEX社製)3.5部とポリウレタン樹脂水性分散体72部を25℃、2000rpmの攪拌下混合して混合物を得た。該混合物の粘度を測定した(V1)。該混合物を40℃10日間貯蔵したのち、粘度を測定した(V2)。下記式により増粘率を算出し、貯蔵安定性の評価を下記基準で行った。
増粘率(%)=(V2-V1)/V1×100
○:-50%≦増粘率≦+50%
△:-100%≦増粘率<-50%又は+50%<増粘率≦+100%
×:増粘率<-100%又は+100%<増粘率 <Evaluation method of storage stability>
A mixture was obtained by mixing 3.5 parts of "Cymel202" (manufactured by ALLNEX) and 72 parts of a polyurethane resin aqueous dispersion under stirring at 25 ° C. and 2000 rpm. The viscosity of the mixture was measured (V1). The mixture was stored at 40 ° C. for 10 days and then the viscosity was measured (V2). The thickening rate was calculated by the following formula, and the storage stability was evaluated according to the following criteria.
Thickening rate (%) = (V2-V1) / V1 × 100
◯: -50% ≤ thickening rate ≤ + 50%
Δ: -100% ≤ thickening rate <-50% or + 50% <thickening rate ≤ + 100%
X: thickening rate <-100% or + 100% <thickening rate
「Cymel202」(ALLNEX社製)3.5部とポリウレタン樹脂水性分散体72部を25℃、2000rpmの攪拌下混合して混合物を得た。該混合物の粘度を測定した(V1)。該混合物を40℃10日間貯蔵したのち、粘度を測定した(V2)。下記式により増粘率を算出し、貯蔵安定性の評価を下記基準で行った。
増粘率(%)=(V2-V1)/V1×100
○:-50%≦増粘率≦+50%
△:-100%≦増粘率<-50%又は+50%<増粘率≦+100%
×:増粘率<-100%又は+100%<増粘率 <Evaluation method of storage stability>
A mixture was obtained by mixing 3.5 parts of "Cymel202" (manufactured by ALLNEX) and 72 parts of a polyurethane resin aqueous dispersion under stirring at 25 ° C. and 2000 rpm. The viscosity of the mixture was measured (V1). The mixture was stored at 40 ° C. for 10 days and then the viscosity was measured (V2). The thickening rate was calculated by the following formula, and the storage stability was evaluated according to the following criteria.
Thickening rate (%) = (V2-V1) / V1 × 100
◯: -50% ≤ thickening rate ≤ + 50%
Δ: -100% ≤ thickening rate <-50% or + 50% <thickening rate ≤ + 100%
X: thickening rate <-100% or + 100% <thickening rate
<粘度測定条件>
測定機器:B型粘度計
回転数:60rpm <Viscosity measurement conditions>
Measuring equipment: B-type viscometer Rotation speed: 60 rpm
測定機器:B型粘度計
回転数:60rpm <Viscosity measurement conditions>
Measuring equipment: B-type viscometer Rotation speed: 60 rpm
<塗装ガン洗浄性の評価方法>
ルチル型二酸化チタン70部、「Disperbyk 190」(ビッグケミージャパン社製)10部及びイオン交換水34.3部を予備混合したのち、ペイントシェーカーで30分間分散させて、顔料分散ペーストを得た。得られた顔料ペーストにウレタン樹脂水性分散体205.71部及び「Cymel202」10部を加え、均一に混合して塗装ガン洗浄性評価用塗料を得た。
メタリックベル(ABB社製)を用い、印加電圧-90kV、回転数30000rpm、吐出量200cc/分の条件で10秒間前記塗料を吐出、60秒間放置の工程を10回繰り返した後、洗浄シンナー(水/ブチルセロソルブ/N,N-ジメチルエタノールアミン=85/14/1(重量比))を10秒間吐出、洗浄したときの塗料の除去状態を下記基準で評価した。
◎:ベルの内側に塗料残りがなく、吐出穴にも全く塗料残りが無い。
○:ベルの内側に塗料残りがなく、吐出穴の塗料残りも塗装に問題ないレベル。
△:ベルの内側に塗料が少し残っており、吐出穴にも少し塗料が残っている。
×:ベルの内側および吐出穴にかなり塗料が残っている。 <Evaluation method of paint gun cleaning property>
70 parts of rutile-type titanium dioxide, 10 parts of "Disperbyk 190" (manufactured by Big Chemie Japan) and 34.3 parts of ion-exchanged water were premixed and then dispersed with a paint shaker for 30 minutes to obtain a pigment-dispersed paste. 205.71 parts of urethane resin aqueous dispersion and 10 parts of "Cymel202" were added to the obtained pigment paste and mixed uniformly to obtain a paint for evaluating paint gun detergency.
Using a metallic bell (manufactured by ABB), the paint is discharged for 10 seconds under the conditions of an applied voltage of -90 kV, a rotation speed of 30,000 rpm, and a discharge rate of 200 cc / min. / Butyl cellosolve / N, N-dimethylethanolamine = 85/14/1 (weight ratio)) was discharged for 10 seconds, and the state of removal of the paint when washed was evaluated according to the following criteria.
⊚: There is no paint residue inside the bell, and there is no paint residue in the discharge hole.
◯: There is no paint residue on the inside of the bell, and the paint residue on the discharge hole is at a level where there is no problem with painting.
Δ: A little paint remains on the inside of the bell, and a little paint remains on the discharge hole.
X: A considerable amount of paint remains on the inside of the bell and in the discharge hole.
ルチル型二酸化チタン70部、「Disperbyk 190」(ビッグケミージャパン社製)10部及びイオン交換水34.3部を予備混合したのち、ペイントシェーカーで30分間分散させて、顔料分散ペーストを得た。得られた顔料ペーストにウレタン樹脂水性分散体205.71部及び「Cymel202」10部を加え、均一に混合して塗装ガン洗浄性評価用塗料を得た。
メタリックベル(ABB社製)を用い、印加電圧-90kV、回転数30000rpm、吐出量200cc/分の条件で10秒間前記塗料を吐出、60秒間放置の工程を10回繰り返した後、洗浄シンナー(水/ブチルセロソルブ/N,N-ジメチルエタノールアミン=85/14/1(重量比))を10秒間吐出、洗浄したときの塗料の除去状態を下記基準で評価した。
◎:ベルの内側に塗料残りがなく、吐出穴にも全く塗料残りが無い。
○:ベルの内側に塗料残りがなく、吐出穴の塗料残りも塗装に問題ないレベル。
△:ベルの内側に塗料が少し残っており、吐出穴にも少し塗料が残っている。
×:ベルの内側および吐出穴にかなり塗料が残っている。 <Evaluation method of paint gun cleaning property>
70 parts of rutile-type titanium dioxide, 10 parts of "Disperbyk 190" (manufactured by Big Chemie Japan) and 34.3 parts of ion-exchanged water were premixed and then dispersed with a paint shaker for 30 minutes to obtain a pigment-dispersed paste. 205.71 parts of urethane resin aqueous dispersion and 10 parts of "Cymel202" were added to the obtained pigment paste and mixed uniformly to obtain a paint for evaluating paint gun detergency.
Using a metallic bell (manufactured by ABB), the paint is discharged for 10 seconds under the conditions of an applied voltage of -90 kV, a rotation speed of 30,000 rpm, and a discharge rate of 200 cc / min. / Butyl cellosolve / N, N-dimethylethanolamine = 85/14/1 (weight ratio)) was discharged for 10 seconds, and the state of removal of the paint when washed was evaluated according to the following criteria.
⊚: There is no paint residue inside the bell, and there is no paint residue in the discharge hole.
◯: There is no paint residue on the inside of the bell, and the paint residue on the discharge hole is at a level where there is no problem with painting.
Δ: A little paint remains on the inside of the bell, and a little paint remains on the discharge hole.
X: A considerable amount of paint remains on the inside of the bell and in the discharge hole.
<塗膜外観の評価方法>
市販のカチオン電着塗装テストピースに前記の塗装ガン洗浄性評価用塗料をエアスプレー塗装にて膜厚が20μmとなるように塗装し、80℃で5分間プレヒートを行った後、140℃で30分間の加熱硬化を行い、塗膜の形成された試験片を得た。目視により前記試験片の塗膜外観の良否(○又は×)を評価した。 <Evaluation method of coating film appearance>
A commercially available cationic electrodeposition coating test piece is coated with the above-mentioned coating gun detergency evaluation paint by air spray coating so that the film thickness is 20 μm, preheated at 80 ° C. for 5 minutes, and then 30 at 140 ° C. The test piece was heat-cured for 1 minute to obtain a test piece on which a coating film was formed. The quality (◯ or ×) of the appearance of the coating film on the test piece was visually evaluated.
市販のカチオン電着塗装テストピースに前記の塗装ガン洗浄性評価用塗料をエアスプレー塗装にて膜厚が20μmとなるように塗装し、80℃で5分間プレヒートを行った後、140℃で30分間の加熱硬化を行い、塗膜の形成された試験片を得た。目視により前記試験片の塗膜外観の良否(○又は×)を評価した。 <Evaluation method of coating film appearance>
A commercially available cationic electrodeposition coating test piece is coated with the above-mentioned coating gun detergency evaluation paint by air spray coating so that the film thickness is 20 μm, preheated at 80 ° C. for 5 minutes, and then 30 at 140 ° C. The test piece was heat-cured for 1 minute to obtain a test piece on which a coating film was formed. The quality (◯ or ×) of the appearance of the coating film on the test piece was visually evaluated.
<耐水密着性の評価方法>
「Cymel327」3.3部とポリウレタン樹脂水性分散体20部を25℃2000rpmの攪拌下混合して混合物を得た。
市販のカチオン電着塗装テストピースに、エアスプレー塗装にて前記混合物を20μmの厚みで塗布し、80℃で5分間プレヒートを行った後、140℃で30分間の加熱硬化を行い、塗膜を得た。得られた塗膜を40℃の温水に240時間浸漬したのち引き上げて、表面の水分を乾いた布で除いた後、25℃で2時間乾燥した。
続いて塗膜面に1mm間隔で縦、横それぞれ6本の直交する切込みを入れ、次いでセロテープ(登録商標)にて剥離テストを行い、残留する1mm角塗膜の数を調べた。下記の基準で密着性を評価した。
◎:残留数24以上
○:残留数20以上24未満
△:残留数15以上20未満
×:残留数15未満 <Evaluation method of water resistance>
3.3 parts of "Cymel 327" and 20 parts of the polyurethane resin aqueous dispersion were mixed under stirring at 25 ° C. and 2000 rpm to obtain a mixture.
The mixture is applied to a commercially available cationic electrodeposition coating test piece by air spray coating to a thickness of 20 μm, preheated at 80 ° C. for 5 minutes, and then heat-cured at 140 ° C. for 30 minutes to obtain a coating film. Obtained. The obtained coating film was immersed in warm water at 40 ° C. for 240 hours, pulled up, and the surface moisture was removed with a dry cloth, and then dried at 25 ° C. for 2 hours.
Subsequently, six orthogonal cuts were made in each of the vertical and horizontal directions at 1 mm intervals on the coating film surface, and then a peeling test was performed with cellophane tape (registered trademark) to check the number of remaining 1 mm square coating films. Adhesion was evaluated according to the following criteria.
⊚: Residual number 24 or more ○: Residual number 20 or more and less than 24 Δ: Residual number 15 or more and less than 20 ×: Residual number less than 15
「Cymel327」3.3部とポリウレタン樹脂水性分散体20部を25℃2000rpmの攪拌下混合して混合物を得た。
市販のカチオン電着塗装テストピースに、エアスプレー塗装にて前記混合物を20μmの厚みで塗布し、80℃で5分間プレヒートを行った後、140℃で30分間の加熱硬化を行い、塗膜を得た。得られた塗膜を40℃の温水に240時間浸漬したのち引き上げて、表面の水分を乾いた布で除いた後、25℃で2時間乾燥した。
続いて塗膜面に1mm間隔で縦、横それぞれ6本の直交する切込みを入れ、次いでセロテープ(登録商標)にて剥離テストを行い、残留する1mm角塗膜の数を調べた。下記の基準で密着性を評価した。
◎:残留数24以上
○:残留数20以上24未満
△:残留数15以上20未満
×:残留数15未満 <Evaluation method of water resistance>
3.3 parts of "Cymel 327" and 20 parts of the polyurethane resin aqueous dispersion were mixed under stirring at 25 ° C. and 2000 rpm to obtain a mixture.
The mixture is applied to a commercially available cationic electrodeposition coating test piece by air spray coating to a thickness of 20 μm, preheated at 80 ° C. for 5 minutes, and then heat-cured at 140 ° C. for 30 minutes to obtain a coating film. Obtained. The obtained coating film was immersed in warm water at 40 ° C. for 240 hours, pulled up, and the surface moisture was removed with a dry cloth, and then dried at 25 ° C. for 2 hours.
Subsequently, six orthogonal cuts were made in each of the vertical and horizontal directions at 1 mm intervals on the coating film surface, and then a peeling test was performed with cellophane tape (registered trademark) to check the number of remaining 1 mm square coating films. Adhesion was evaluated according to the following criteria.
⊚: Residual number 24 or more ○: Residual number 20 or more and less than 24 Δ: Residual number 15 or more and less than 20 ×: Residual number less than 15
<耐熱水密着性の評価方法>
前記耐水密着性評価用の塗膜を80℃の温水に168時間浸漬したのち引き上げて、表面の水分を乾いた布で除いた後、25℃で2時間乾燥した。
続いて塗膜面に1mm間隔で縦、横それぞれ6本の直交する切込みを入れ、次いでセロテープ(登録商標)にて剥離テストを行い、残留する1mm角塗膜の数を調べた。下記の基準で密着性を評価した。
◎:残留数24以上
○:残留数20以上24未満
△:残留数15以上20未満
×:残留数15未満 <Evaluation method for heat-resistant water adhesion>
The coating film for evaluation of water resistance and adhesion was immersed in warm water at 80 ° C. for 168 hours, pulled up, and the surface moisture was removed with a dry cloth, and then dried at 25 ° C. for 2 hours.
Subsequently, six orthogonal cuts were made in each of the vertical and horizontal directions at 1 mm intervals on the coating film surface, and then a peeling test was performed with cellophane tape (registered trademark) to check the number of remaining 1 mm square coating films. Adhesion was evaluated according to the following criteria.
⊚: Residual number 24 or more ○: Residual number 20 or more and less than 24 Δ: Residual number 15 or more and less than 20 ×: Residual number less than 15
前記耐水密着性評価用の塗膜を80℃の温水に168時間浸漬したのち引き上げて、表面の水分を乾いた布で除いた後、25℃で2時間乾燥した。
続いて塗膜面に1mm間隔で縦、横それぞれ6本の直交する切込みを入れ、次いでセロテープ(登録商標)にて剥離テストを行い、残留する1mm角塗膜の数を調べた。下記の基準で密着性を評価した。
◎:残留数24以上
○:残留数20以上24未満
△:残留数15以上20未満
×:残留数15未満 <Evaluation method for heat-resistant water adhesion>
The coating film for evaluation of water resistance and adhesion was immersed in warm water at 80 ° C. for 168 hours, pulled up, and the surface moisture was removed with a dry cloth, and then dried at 25 ° C. for 2 hours.
Subsequently, six orthogonal cuts were made in each of the vertical and horizontal directions at 1 mm intervals on the coating film surface, and then a peeling test was performed with cellophane tape (registered trademark) to check the number of remaining 1 mm square coating films. Adhesion was evaluated according to the following criteria.
⊚: Residual number 24 or more ○: Residual number 20 or more and less than 24 Δ: Residual number 15 or more and less than 20 ×: Residual number less than 15
本発明のポリウレタン樹脂水性分散体は、貯蔵安定性、塗装ガン使用後の洗浄性に優れ、塗装後の外観、耐水密着性及び耐熱水密着性に優れた皮膜を得ることができるため、塗料組成物、接着剤組成物、繊維加工処理剤組成物等に好適に使用できる。
The polyurethane resin aqueous dispersion of the present invention is excellent in storage stability and detergency after using a coating gun, and can obtain a film having excellent appearance after coating, water resistance and water resistance, and thus has a coating composition. It can be suitably used for products, adhesive compositions, fiber processing agent compositions and the like.
Claims (8)
- 活性水素成分(A)及び有機ポリイソシアネート成分(B)を必須構成単量体とする酸性基を有するポリウレタン樹脂(U)並びに/又は前記ポリウレタン樹脂(U)が有する酸性基を中和してなるポリウレタン樹脂(U1)と、水性媒体とを含有するポリウレタン樹脂水性分散体であって、
前記ポリウレタン樹脂(U)が水酸基を有し、
前記ポリウレタン樹脂(U)の酸価が5~18mgKOH/gであり、
レオメーターを用いて0.1/sの剪断速度で測定される25℃での前記ポリウレタン樹脂(U)の粘度が100~1,000,000Pa・sであるポリウレタン樹脂水性分散体(Q)。 The polyurethane resin (U) having an acidic group containing the active hydrogen component (A) and the organic polyisocyanate component (B) as essential constituent monomers and / or the acidic group of the polyurethane resin (U) is neutralized. A polyurethane resin aqueous dispersion containing a polyurethane resin (U1) and an aqueous medium.
The polyurethane resin (U) has a hydroxyl group and has
The polyurethane resin (U) has an acid value of 5 to 18 mgKOH / g.
A polyurethane resin aqueous dispersion (Q) having a viscosity of the polyurethane resin (U) of 100 to 1,000,000 Pa · s at 25 ° C. measured at a shear rate of 0.1 / s using a rheometer. - 前記ポリウレタン樹脂(U)と、その10倍の重量のアセトンとを、80℃で180分間、密閉下で撹拌した際に生じる不溶解成分の重量割合が、添加したポリウレタン樹脂(U)の重量を基準として5重量%以下である請求項1に記載のポリウレタン樹脂水性分散体。 The weight ratio of the insoluble component generated when the polyurethane resin (U) and acetone having a weight 10 times that of the polyurethane resin (U) are stirred at 80 ° C. for 180 minutes in a hermetically sealed manner is the weight of the added polyurethane resin (U). The polyurethane resin aqueous dispersion according to claim 1, which is 5% by weight or less as a reference.
- 前記ポリウレタン樹脂(U)のウレタン基含有量が、(U)の重量を基準として1.0~3.5mmol/gである請求項1又は2に記載のポリウレタン樹脂水性分散体。 The polyurethane resin aqueous dispersion according to claim 1 or 2, wherein the urethane group content of the polyurethane resin (U) is 1.0 to 3.5 mmol / g based on the weight of (U).
- 前記ポリウレタン樹脂(U)のウレア基含有量が、(U)の重量を基準として0.8mmol/g以下である請求項1~3のいずれか1項に記載のポリウレタン樹脂水性分散体。 The polyurethane resin aqueous dispersion according to any one of claims 1 to 3, wherein the polyurethane resin (U) has a urea group content of 0.8 mmol / g or less based on the weight of (U).
- 前記ポリウレタン樹脂(U)の水酸基価が、15~100mgKOH/gである請求項1~4のいずれか1項に記載のポリウレタン樹脂水性分散体。 The polyurethane resin aqueous dispersion according to any one of claims 1 to 4, wherein the polyurethane resin (U) has a hydroxyl value of 15 to 100 mgKOH / g.
- 前記活性水素成分(A)が、数平均分子量が500以上のポリエーテルポリオールを含有する請求項1~5のいずれか1項に記載のポリウレタン樹脂水性分散体。 The polyurethane resin aqueous dispersion according to any one of claims 1 to 5, wherein the active hydrogen component (A) contains a polyether polyol having a number average molecular weight of 500 or more.
- 前記有機ポリイソシアネート成分(B)が、炭素数4~22の鎖状脂肪族ポリイソシアネート(b1)及び/又は炭素数8~18の脂環式ポリイソシアネート(b2)を含有する請求項1~6のいずれか1項に記載のポリウレタン樹脂水性分散体。 Claims 1 to 6 in which the organic polyisocyanate component (B) contains a chain aliphatic polyisocyanate (b1) having 4 to 22 carbon atoms and / or an alicyclic polyisocyanate (b2) having 8 to 18 carbon atoms. The polyurethane resin aqueous dispersion according to any one of the above items.
- 更に、ブロックイソシアネート化合物(c1)、メラミン化合物(c2)、オキサゾリン化合物(c3)、カルボジイミド化合物(c4)、アジリジン化合物(c5)及びエポキシ化合物(c6)からなる群から選ばれる少なくとも1種の架橋剤(C)を含有する請求項1~7のいずれか1項に記載のポリウレタン樹脂水性分散体。
Further, at least one cross-linking agent selected from the group consisting of a blocked isocyanate compound (c1), a melamine compound (c2), an oxazoline compound (c3), a carbodiimide compound (c4), an aziridine compound (c5) and an epoxy compound (c6). The polyurethane resin aqueous dispersion according to any one of claims 1 to 7, which contains (C).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022503733A JPWO2021172485A1 (en) | 2020-02-28 | 2021-02-26 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020033051 | 2020-02-28 | ||
JP2020-033051 | 2020-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021172485A1 true WO2021172485A1 (en) | 2021-09-02 |
Family
ID=77491687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/007240 WO2021172485A1 (en) | 2020-02-28 | 2021-02-26 | Polyurethane resin aqueous dispersion |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021172485A1 (en) |
WO (1) | WO2021172485A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7196349B1 (en) | 2022-04-28 | 2022-12-26 | 大日精化工業株式会社 | Polyurethane water dispersion, adhesive, synthetic leather, and paint |
JP7198380B1 (en) | 2022-04-28 | 2022-12-28 | 大日精化工業株式会社 | Polyurethane water dispersion, adhesive, synthetic leather, and paint |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013060577A (en) * | 2011-08-22 | 2013-04-04 | Basf Japan Ltd | Aqueous base coating material composition and method for forming multi-layer coating film using the same |
JP2013193058A (en) * | 2012-03-22 | 2013-09-30 | Honda Motor Co Ltd | Method for forming multi-layer coating film |
JP2014210225A (en) * | 2013-04-17 | 2014-11-13 | Basfジャパン株式会社 | Multilayer coating film formation method |
-
2021
- 2021-02-26 WO PCT/JP2021/007240 patent/WO2021172485A1/en active Application Filing
- 2021-02-26 JP JP2022503733A patent/JPWO2021172485A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013060577A (en) * | 2011-08-22 | 2013-04-04 | Basf Japan Ltd | Aqueous base coating material composition and method for forming multi-layer coating film using the same |
JP2013193058A (en) * | 2012-03-22 | 2013-09-30 | Honda Motor Co Ltd | Method for forming multi-layer coating film |
JP2014210225A (en) * | 2013-04-17 | 2014-11-13 | Basfジャパン株式会社 | Multilayer coating film formation method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7196349B1 (en) | 2022-04-28 | 2022-12-26 | 大日精化工業株式会社 | Polyurethane water dispersion, adhesive, synthetic leather, and paint |
JP7198380B1 (en) | 2022-04-28 | 2022-12-28 | 大日精化工業株式会社 | Polyurethane water dispersion, adhesive, synthetic leather, and paint |
WO2023210300A1 (en) * | 2022-04-28 | 2023-11-02 | 大日精化工業株式会社 | Polyurethane aqueous dispersion, adhesive, synthetic leather and paint |
WO2023210299A1 (en) * | 2022-04-28 | 2023-11-02 | 大日精化工業株式会社 | Polyurethane aqueous dispersion, adhesive, synthetic leather and paint |
JP2023163803A (en) * | 2022-04-28 | 2023-11-10 | 大日精化工業株式会社 | Polyurethane aqueous dispersion, adhesive, synthetic imitation leather and paint |
JP2023163802A (en) * | 2022-04-28 | 2023-11-10 | 大日精化工業株式会社 | Polyurethane aqueous dispersion, adhesive, synthetic imitation leather and paint |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021172485A1 (en) | 2021-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010122599A1 (en) | Aqueous polyurethane resin dispersion | |
JP5940409B2 (en) | Polyurethane resin water dispersion | |
WO2021172485A1 (en) | Polyurethane resin aqueous dispersion | |
JP2013227528A (en) | Polyurethane-based resin aqueous dispersion | |
JP2016188362A (en) | Polyurethane resin water dispersion | |
JP4964916B2 (en) | Polyurethane resin water dispersion | |
JP7168317B2 (en) | Aqueous dispersion of polyurethane resin composition | |
JP5918323B2 (en) | Binder for printing ink and printing ink using the same | |
JP2009096998A (en) | Method for producing polyurethane resin aqueous dispersion | |
JP2018178090A (en) | Polyurethane resin composition aqueous dispersion | |
JP2018070878A (en) | Polyurethane resin aqueous dispersion | |
JP2010222554A (en) | Polyurethane resin emulsion for water-based coating | |
JP6665198B2 (en) | Solvent-based printing ink binder and solvent-based printing ink using the same | |
JP2017178976A (en) | Binder for printing ink and printing ink using the same | |
JP6989424B2 (en) | Polyurethane resin coated pigment aqueous dispersion | |
JP6342924B2 (en) | Polyurethane resin aqueous dispersion | |
JP2015028159A (en) | Binder for printing ink, and printing ink using the same | |
JP2020183489A (en) | Binder for printing ink and printing ink using the same | |
JP6557269B2 (en) | Polyurethane resin water dispersion | |
JP2017165884A (en) | Polyurethane resin water dispersion | |
JP2021165353A (en) | Polyurethane resin aqueous dispersion | |
JP2011068870A (en) | Polyurethane resin emulsion | |
JPH08188635A (en) | Polyurea oligomer and water-base ink containing the same | |
JP2013151653A (en) | Binder for printing ink, and printing ink using the same | |
JP2014084449A (en) | Binder for printing ink and printing ink using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21760300 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022503733 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21760300 Country of ref document: EP Kind code of ref document: A1 |