JP2017165884A - Polyurethane resin water dispersion - Google Patents

Polyurethane resin water dispersion Download PDF

Info

Publication number
JP2017165884A
JP2017165884A JP2016053280A JP2016053280A JP2017165884A JP 2017165884 A JP2017165884 A JP 2017165884A JP 2016053280 A JP2016053280 A JP 2016053280A JP 2016053280 A JP2016053280 A JP 2016053280A JP 2017165884 A JP2017165884 A JP 2017165884A
Authority
JP
Japan
Prior art keywords
polyurethane resin
aqueous dispersion
water
group
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016053280A
Other languages
Japanese (ja)
Inventor
増美 前原
Masumi Maehara
増美 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2016053280A priority Critical patent/JP2017165884A/en
Publication of JP2017165884A publication Critical patent/JP2017165884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyurethane resin water dispersion which has good dispersion stability and excellent water resistance.SOLUTION: There is provided a polyurethane resin water dispersion containing water and a polyurethane resin (U), where (U) is a polyurethane resin obtained by neutralizing or quaternizing (α) or (β) of the polyurethane resin containing diol (a), polyisocyanate (b) and a compound (c) having a group (γ) having an acid group (α) or an amino group (β) and an active hydrogen atom other than (α) and (β), as essential constituent monomers, where the total content of (α), neutralized acid group (α1) and (β), neutralized amino group (β1) and quaternized amino group (β2) is 0.1-0.8 mmol/g with respect to the weight of (U), a neutralization index represented by expression (1) or (2) is 30-90%, and a volume average particle size of the polyurethane resin particles in the polyurethane resin water dispersion is 50-600 nm.SELECTED DRAWING: None

Description

本発明は、ポリウレタン樹脂水分散体及びその製造方法に関する。   The present invention relates to an aqueous polyurethane resin dispersion and a method for producing the same.

ポリウレタン樹脂水分散体は、乾燥することにより得られる皮膜の機械的物性、耐久性、耐薬品性及び耐磨耗性等の性能が優れることから、高機能水分散体として、塗料、接着剤、繊維加工処理剤、紙処理剤及びインキ等に使用されており、今後も環境保全、省資源及び安全性等の観点から、ますます重要性を増していくと考えられる。従来、これらの用途では有機溶剤に溶解した溶剤系ウレタンが使用されていたが、有機溶剤の毒性、火災の危険性、環境汚染性等の欠点があるため、近年では溶剤系ウレタンからポリウレタン樹脂水分散体への切り替えに拍車がかかっている。   Since the polyurethane resin water dispersion has excellent performance such as mechanical properties, durability, chemical resistance and abrasion resistance of the film obtained by drying, as a highly functional water dispersion, paint, adhesive, It is used in textile processing agents, paper processing agents, inks, etc., and is expected to become increasingly important from the viewpoint of environmental conservation, resource saving and safety. Conventionally, solvent-based urethanes dissolved in organic solvents have been used in these applications. However, due to the disadvantages of organic solvent toxicity, fire hazard, environmental pollution, etc., in recent years, solvent-based urethanes have been replaced with polyurethane resin water. The switch to the dispersion is spurring.

ポリウレタン樹脂水分散体は溶剤系ウレタンとは異なり、樹脂に親水性を付与することで水中への乳化分散を可能にしている。このポリウレタン樹脂水分散体は単独で使用されることもあるが、多くの場合はその他の樹脂エマルションや添加剤、溶剤等と混合して使用される。その際、混合過程におけるpH変化や他成分との相互作用によりウレタン樹脂粒子の凝集が起こることがあり、混合物の安定性や性能が著しく低下するため、ポリウレタン樹脂水分散体と混合する材が限定される、又はポリウレタン樹脂水分散体自体を使用できない等、溶剤系ウレタンに比べ汎用性が低いといった課題があった。 Unlike the solvent-based urethane, the polyurethane resin aqueous dispersion enables emulsification and dispersion in water by imparting hydrophilicity to the resin. This polyurethane resin aqueous dispersion may be used alone, but in many cases, it is mixed with other resin emulsions, additives, solvents and the like. At that time, aggregation of urethane resin particles may occur due to pH change or interaction with other components in the mixing process, and the stability and performance of the mixture will be significantly reduced, so the materials to be mixed with the polyurethane resin aqueous dispersion are limited. There is a problem that versatility is low as compared with solvent-based urethane, such as that the polyurethane resin aqueous dispersion itself cannot be used.

このため、ウレタン樹脂の混合安定性を向上させたノニオン性ウレタン樹脂水分散体(特許文献1参照)が提案されているが、混合安定性には優れるものの皮膜の耐水性の悪化や、皮膜表面への活性剤のブリードアウトによる密着性の低下が起こるという問題点があった。 For this reason, a nonionic urethane resin aqueous dispersion with improved mixing stability of urethane resin (see Patent Document 1) has been proposed. There was a problem that the adhesiveness decreased due to bleeding out of the active agent.

特開2005−336405号公報JP 2005-336405 A

本発明の課題は、分散安定性が良好で耐水性に優れるポリウレタン樹脂水分散体を提供することにある。   An object of the present invention is to provide an aqueous polyurethane resin dispersion having good dispersion stability and excellent water resistance.

本発明者らは、鋭意検討を重ねた結果、上記の課題を解決できるポリウレタン樹脂水分散体を見出した。即ち、本発明は、水とポリウレタン樹脂(U)を含有するポリウレタン樹脂水分散体であって、上記ポリウレタン樹脂(U)が、ジオール(a)、ポリイソシアネート(b)、並びに酸基(α)又はアミノ基(β)と酸基(α)でもなくアミノ基(β)でもない活性水素原子を有する基(γ)を有する化合物(c)を必須構成単量体とするポリウレタン樹脂の酸基(α)又はアミノ基(β)を中和又は4級化されたポリウレタン樹脂であり、
酸基(α)、中和された酸基(α1)、アミノ基(β)、中和されたアミノ基(β1)及び4級化されたアミノ基(β2)の合計含有量が(U)の重量に対して0.1〜0.8mmol/gであり、
かつ下記式(1)で表される中和率が30〜90%であるか、又は下記式(2)で表される中和及び4級化率が30〜90%であり、かつ上記ポリウレタン樹脂水分散体中のポリウレタン樹脂粒子の体積平均粒子径が50〜600nmであるポリウレタン樹脂水分散体;該ポリウレタン樹脂水分散体を含有する水性塗料;該ポリウレタン樹脂水分散体を含有する水性接着剤;該ポリウレタン樹脂水分散体を含有する水性繊維加工処理剤;該ポリウレタン樹脂水分散体の製造方法である。
As a result of intensive studies, the present inventors have found an aqueous polyurethane resin dispersion that can solve the above-described problems. That is, the present invention is a polyurethane resin aqueous dispersion containing water and a polyurethane resin (U), wherein the polyurethane resin (U) comprises a diol (a), a polyisocyanate (b), and an acid group (α). Or an acid group (c) having an active hydrogen atom that is neither an amino group (β) nor an acid group (α) nor an amino group (β) (c) as an essential constituent monomer. α) or an amino group (β) is a neutralized or quaternized polyurethane resin,
The total content of acid group (α), neutralized acid group (α1), amino group (β), neutralized amino group (β1) and quaternized amino group (β2) is (U) 0.1 to 0.8 mmol / g based on the weight of
And the neutralization rate represented by the following formula (1) is 30 to 90%, or the neutralization and quaternization rate represented by the following formula (2) is 30 to 90%, and the polyurethane A polyurethane resin water dispersion in which the volume average particle diameter of polyurethane resin particles in the resin water dispersion is 50 to 600 nm; an aqueous paint containing the polyurethane resin water dispersion; an aqueous adhesive containing the polyurethane resin water dispersion An aqueous fiber processing agent containing the polyurethane resin aqueous dispersion; a method for producing the polyurethane resin aqueous dispersion.

本発明のポリウレタン樹脂水分散体は、以下の特徴を有する。
(1)水への分散安定性が良好。
(2)耐水性が非常に優れた皮膜を得ることができる。
The polyurethane resin aqueous dispersion of the present invention has the following characteristics.
(1) Good dispersion stability in water.
(2) A film having very excellent water resistance can be obtained.

<ポリウレタン樹脂(U)> <Polyurethane resin (U)>

本発明のポリウレタン樹脂水分散体が含有するポリウレタン樹脂(U)は、以下の(1)〜(3)の条件をすべて満足する。
(1)(U)が、(U)の有する酸基(α)、中和された酸基(α1)、アミノ基(β)、中和されたアミノ基(β1)及び4級化されたアミノ基(β2)の合計含有量(以下、含有量xと記載することがある。)を、(U)の重量に対して0.1〜0.8mmol/g、好ましくは0.12〜0.75mmol/g、さらに好ましくは0.14〜0.7mmol/gである。含有量xが0.1mmol/g未満の場合、ウレタン粒子の水中安定性が低下して粒子の凝集が起こる懸念があり、0.8mmol/gを超えると耐水性が悪化する可能性がある。
The polyurethane resin (U) contained in the polyurethane resin aqueous dispersion of the present invention satisfies all the following conditions (1) to (3).
(1) (U) was quaternized with (U) acid group (α), neutralized acid group (α1), amino group (β), neutralized amino group (β1) The total content of amino groups (β2) (hereinafter sometimes referred to as content x) is 0.1 to 0.8 mmol / g, preferably 0.12 to 0, based on the weight of (U). .75 mmol / g, more preferably 0.14 to 0.7 mmol / g. When the content x is less than 0.1 mmol / g, there is a concern that the stability of the urethane particles in water is reduced and the particles are aggregated. When the content x exceeds 0.8 mmol / g, the water resistance may be deteriorated.

ここで、ポリウレタン樹脂(U)は、ポリオール(a)、ポリイソシアネート(b)、及び酸基(α)もしくはアミノ基(β)と酸基(α)でもなくアミノ基(β)でもない活性水素原子を有する基(γ)を有する化合物(c)を必須構成単量体とするポリウレタン樹脂であり、(U)が有する酸基(α)又はアミノ基(β)は、中和もしくは4級化するための化合物(d)でその一部が中和もしくは4級化されている。
酸基(α)としてはカルボキシル基、スルホン酸基、スルファミン酸基が挙げられる。
アミノ基(β)としては、3級アミノ基が挙げられる。
基(γ)としては、水酸基等が挙げられる。
Here, the polyurethane resin (U) is polyol (a), polyisocyanate (b), and active hydrogen that is neither an acid group (α) or an amino group (β) nor an acid group (α) nor an amino group (β). It is a polyurethane resin comprising the compound (c) having an atom-containing group (γ) as an essential constituent monomer, and the acid group (α) or amino group (β) of (U) is neutralized or quaternized. A part of the compound (d) is neutralized or quaternized.
Examples of the acid group (α) include a carboxyl group, a sulfonic acid group, and a sulfamic acid group.
A tertiary amino group is mentioned as an amino group ((beta)).
Examples of the group (γ) include a hydroxyl group.

酸基(α)及び中和された酸基(α1)の合計の含有量は、以下の方法でポリウレタン樹脂の酸価を求めて、次式により酸基含量(mmol/g)を算出することができる。
酸基含量(mmol/g)=(酸価)/56.1
<酸価>
100mlのフラスコ中でジメチルホルムアミド(以下DMFとする)50mlにポリウレタン樹脂を所定量溶解後、フェノールフタレイン指示薬を用いて、0.1mol/l水酸化カリウム・メチルアルコール滴定用溶液で滴定を行い(終点は、指示薬の色が透明から微紅色になった点)滴定ml数を読み取り、次式により酸価を算出する。
酸価=5.61×a×f/S
a:0.1mol/l水酸化カリウム・メチルアルコール滴定用溶液の滴定ml数。
f:0.1mol/l水酸化カリウム・メチルアルコール滴定用溶液の力価。
S:ポリウレタン樹脂採取量(g)
以下の方法で中和剤(d1)由来のアミン価、及びエマルション中のポリウレタン樹脂(U)の含有量(%)を求めて、次式により中和された酸基(α1)の含有量を算出することができる。
中和された酸基(α1)含量(mmol/g)=(中和剤(d1)由来のアミン価)x100/{56.1x(ウレタンエマルションの固形分含量(%))}
The total content of acid groups (α) and neutralized acid groups (α1) is determined by calculating the acid value of the polyurethane resin by the following method and calculating the acid group content (mmol / g) by the following formula. Can do.
Acid group content (mmol / g) = (acid value) /56.1
<Acid value>
A predetermined amount of polyurethane resin is dissolved in 50 ml of dimethylformamide (hereinafter referred to as DMF) in a 100 ml flask, and titrated with a 0.1 mol / l potassium hydroxide / methyl alcohol titration solution using a phenolphthalein indicator ( The end point is the point where the color of the indicator has changed from transparent to slightly red) The number of titration ml is read, and the acid value is calculated by the following formula.
Acid value = 5.61 × a × f / S
a: 0.1 ml / l titration ml of potassium hydroxide / methyl alcohol titration solution
f: Potency of 0.1 mol / l potassium hydroxide / methyl alcohol titration solution.
S: Amount of polyurethane resin collected (g)
The amine value derived from the neutralizing agent (d1) and the content (%) of the polyurethane resin (U) in the emulsion were determined by the following method, and the content of the acid group (α1) neutralized by the following formula was determined. Can be calculated.
Neutralized acid group (α1) content (mmol / g) = (amine value derived from neutralizer (d1)) × 100 / {56.1 × (solid content of urethane emulsion (%))}

(2)上記式(1)で表される中和率が30〜90%であるか、又は上記式(2)で表される中和及び4級化率が30〜90%であり(以下、上記中和率、又は中和及び4級化率を、中和率等yと記載することがある。)が30〜90%であり、好ましくは40〜85%、さらに好ましくは45〜80%である。中和率等yが30%未満の場合、ウレタンエマルションの分散安定性が悪化し、中和率等yが90%を超えるとウレタンエマルションを乾燥して得られるウレタン樹脂皮膜の耐水性が悪化する。 (2) The neutralization rate represented by the above formula (1) is 30 to 90%, or the neutralization and quaternization rate represented by the above formula (2) is 30 to 90% (below) The neutralization rate, or the neutralization and quaternization rate may be described as the neutralization rate etc. y) is 30 to 90%, preferably 40 to 85%, more preferably 45 to 80. %. When the neutralization rate or the like is less than 30%, the dispersion stability of the urethane emulsion is deteriorated. When the neutralization rate or the like exceeds 90%, the water resistance of the urethane resin film obtained by drying the urethane emulsion is deteriorated. .

(3)本発明において、ポリウレタン樹脂水分散体中のポリウレタン樹脂(U)のポリウレタン樹脂粒子の体積平均粒子径(Dv)は、50〜600nmであり、ポリウレタン樹脂水分散体の分散安定性及び配合安定性の観点から、好ましくは60〜500nm、更に好ましくは70〜400nmである。(Dv)が50nm未満であるとポリウレタン樹脂(U)の配合安定性が悪化し、600nmを超えるとウレタンエマルションの分散安定性が低下する。 (3) In the present invention, the volume average particle diameter (Dv) of the polyurethane resin particles of the polyurethane resin (U) in the polyurethane resin aqueous dispersion is 50 to 600 nm, and the dispersion stability and blending of the polyurethane resin aqueous dispersion From the viewpoint of stability, the thickness is preferably 60 to 500 nm, more preferably 70 to 400 nm. When (Dv) is less than 50 nm, the blending stability of the polyurethane resin (U) is deteriorated, and when it exceeds 600 nm, the dispersion stability of the urethane emulsion is lowered.

上記ポリウレタン樹脂(U)は、ポリオール(a)、ポリイソシアネート(b)、及び酸基(α)もしくはアミノ基(β)と酸基(α)でもなくアミノ基(β)でもない活性水素原子を有する基を有する化合物(c)を必須構成単量体とするポリウレタン樹脂を酸基又はアミノ基を中和もしくは4級化するための化合物(d)で中和もしくは4級化することにより得られ、更に必要により、鎖伸長剤(e)及び反応停止剤(f)を反応させることにより得られる。   The polyurethane resin (U) comprises polyol (a), polyisocyanate (b), and active hydrogen atoms that are neither acid groups (α) or amino groups (β) nor acid groups (α) nor amino groups (β). It is obtained by neutralizing or quaternizing a polyurethane resin comprising a compound (c) having a group having an essential constituent monomer with a compound (d) for neutralizing or quaternizing an acid group or amino group. If necessary, it can be obtained by reacting a chain extender (e) and a reaction terminator (f).

ポリオール(a)、ポリイソシアネート(b)、化合物(c)、酸基又はアミノ基の中和もしくは4級化剤(d)、及び必要により使用する鎖伸長剤(e)及び反応停止剤(f)の量を適宜調整することにより、ポリウレタン樹脂(U)の中和もしくは4級化されていない親水基と中和もしくは4級化された親水基の含有量を所望の範囲とすることができる。   Polyol (a), polyisocyanate (b), compound (c), acid group or amino group neutralization or quaternizing agent (d), and optionally used chain extender (e) and reaction terminator (f) ) Is adjusted appropriately, the content of the neutralized or quaternized hydrophilic group of the polyurethane resin (U) and the content of the neutralized or quaternized hydrophilic group can be within a desired range. .

(U)の体積平均粒子径(Dv)は、(U)中の親水性基量、中和もしくは4級化された親水基量、及び分散剤量によって決まる。従って、(U)の体積平均粒子径(Dv)を所望の範囲とするためには、(U)中に導入される親水性基の含有量と、その中和率もしくは4級化率、及び必要により添加する分散剤(h)の量を適宜調整すればよい。
体積平均粒子径(Dv)は光散乱粒度分布測定装置で測定される。
以下各成分について説明する。
The volume average particle diameter (Dv) of (U) is determined by the amount of hydrophilic groups in (U), the amount of neutralized or quaternized hydrophilic groups, and the amount of dispersant. Therefore, in order to bring the volume average particle diameter (Dv) of (U) into a desired range, the content of the hydrophilic group introduced into (U), its neutralization rate or quaternization rate, and What is necessary is just to adjust suitably the quantity of the dispersing agent (h) added as needed.
The volume average particle diameter (Dv) is measured with a light scattering particle size distribution measuring apparatus.
Each component will be described below.

ポリオール(a)としては、数平均分子量(以下、Mnと略記)300以上の高分子ポリオール(a1)及びMn300未満の低分子ポリオール(a2)が挙げられる。
尚、本発明におけるポリオールのMnはポリエチレングリコールを標準としてゲルパーミュエーションクロマトグラフィー(GPC)によって測定されるものである。但し、低分子ポリオールのMnは化学式からの計算値である。
Examples of the polyol (a) include a polymer polyol (a1) having a number average molecular weight (hereinafter abbreviated as Mn) of 300 or more and a low molecular polyol (a2) having a Mn of less than 300.
In the present invention, the Mn of the polyol is measured by gel permeation chromatography (GPC) using polyethylene glycol as a standard. However, Mn of the low molecular polyol is a calculated value from the chemical formula.

ポリオール(a)は以下に記載のものの内、1種のみを使用してもよいし、2種以上を併用してもよい。   Of the polyols described below, only one kind of polyol (a) may be used, or two or more kinds may be used in combination.

Mn300以上の高分子ポリオール(a1)としては、ポリエーテルポリオール(a11)及びポリエステルポリオール(a12)等が挙げられる。   Examples of the polymer polyol (a1) having Mn of 300 or more include polyether polyol (a11) and polyester polyol (a12).

ポリエーテルポリオール(a11)としては、脂肪族ポリエーテルポリオール及び芳香族環含有ポリエーテルポリオールが挙げられる。   Examples of the polyether polyol (a11) include aliphatic polyether polyols and aromatic ring-containing polyether polyols.

脂肪族ポリエーテルポリオールとしては、例えばポリオキシエチレンポリオール[ポリエチレングリコール(以下、PEGと略記)等]、ポリオキシプロピレンポリオール[ポリプロピレングリコール等]、ポリオキシエチレン/プロピレンポリオール及びポリテトラメチレンエーテルグリコール等が挙げられる。   Examples of the aliphatic polyether polyol include polyoxyethylene polyol [polyethylene glycol (hereinafter abbreviated as PEG), etc.], polyoxypropylene polyol [polypropylene glycol, etc.], polyoxyethylene / propylene polyol, and polytetramethylene ether glycol. Can be mentioned.

脂肪族ポリエーテルポリオールの市販品としては、PTMG1000[Mn=1,000のポリテトラメチレンエーテルグリコール、三菱化学(株)製]、PTMG2000[Mn=2,000のポリテトラメチレンエーテルグリコール、三菱化学(株)製]、PTMG3000[Mn=3,000のポリテトラメチレンエーテルグリコール、三菱化学(株)製]、PTGL3000[Mn=3,000の変性PTMG、保土谷化学工業(株)製]、及びサンニックスジオールGP−3000[Mn=3,000のポリプロピレンエーテルトリオール、三洋化成工業(株)製]等が挙げられる。   Commercially available products of aliphatic polyether polyols include PTMG1000 [polytetramethylene ether glycol with Mn = 1,000, manufactured by Mitsubishi Chemical Corporation], PTMG2000 [polytetramethylene ether glycol with Mn = 2,000, Mitsubishi Chemical ( Co., Ltd.], PTMG3000 [polytetramethylene ether glycol of Mn = 3,000, manufactured by Mitsubishi Chemical Co., Ltd.], PTGL3000 [modified PTMG of Mn = 3,000, manufactured by Hodogaya Chemical Co., Ltd.], and Sun Nickxdiol GP-3000 [polypropylene ether triol with Mn = 3,000, manufactured by Sanyo Chemical Industries, Ltd.] and the like.

芳香族ポリエーテルポリオールとしては、例えばビスフェノールAのエチレンオキサイド(以下、EOと略記)付加物[ビスフェノールAのEO2モル付加物、ビスフェノールAのEO4モル付加物、ビスフェノールAのEO6モル付加物、ビスフェノールAのEO8モル付加物、ビスフェノールAのEO10モル付加物及びビスフェノールAのEO20モル付加物等]及びビスフェノールAのプロピレンオキサイド(以下、POと略記)付加物[ビスフェノールAのPO2モル付加物、ビスフェノールAのPO3モル付加物、ビスフェノールAのPO5モル付加物等]等のビスフェノール骨格を有するポリオール並びにレゾルシンのEO又はPO付加物等が挙げられる。   Examples of aromatic polyether polyols include ethylene oxide (hereinafter abbreviated as EO) adducts of bisphenol A [EO 2 mol adduct of bisphenol A, EO 4 mol adduct of bisphenol A, EO 6 mol adduct of bisphenol A, and bisphenol A. EO 8 mol adduct, bisphenol A EO 10 mol adduct and bisphenol A EO 20 mol adduct, etc.] and bisphenol A propylene oxide (hereinafter abbreviated as PO) adduct [bisphenol A PO 2 mol adduct, bisphenol A PO3 molar adducts, PO5 molar adducts of bisphenol A, etc.], and EO or PO adducts of resorcin, and the like.

(a11)のMnは、ポリウレタン樹脂(U)の機械物性の観点から、通常300以上、好ましくは300〜10,000、更に好ましくは300〜6,000である。   Mn in (a11) is usually 300 or more, preferably 300 to 10,000, more preferably 300 to 6,000, from the viewpoint of mechanical properties of the polyurethane resin (U).

ポリエステルポリオール(a12)としては、縮合型ポリエステルポリオール、ポリラクトンポリオール、ポリカーボネートポリオール及びヒマシ油系ポリオールが挙げられる。   Examples of the polyester polyol (a12) include condensed polyester polyols, polylactone polyols, polycarbonate polyols, and castor oil-based polyols.

縮合型ポリエステルポリオールは、低分子量(Mn300未満)多価アルコールと炭素数2〜10の多価カルボン酸又はそのエステル形成性誘導体とのポリエステルポリオールである。
低分子量多価アルコールとしては、Mn300未満の2価〜8価又はそれ以上の脂肪族多価アルコール及びMn300未満の2価〜8価又はそれ以上のフェノールのアルキレンオキサイド(EO、PO、1,2−、1,3−、2,3−又は1,4−ブチレンオキサイド等を表し、以下AOと略記)低モル付加物が使用できる。
縮合型ポリエステルポリオールに使用できる低分子量多価アルコールの内好ましいのは、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール、1,6−ヘキサングリコール、ビスフェノールAのEO又はPO低モル付加物及びこれらの併用である。
The condensed polyester polyol is a polyester polyol of a low molecular weight (less than Mn300) polyhydric alcohol and a polyvalent carboxylic acid having 2 to 10 carbon atoms or an ester-forming derivative thereof.
Low molecular weight polyhydric alcohols include dihydric to octahydric or higher aliphatic polyhydric alcohols less than Mn300 and alkylene oxides of dihydric to octavalent or higher phenols less than Mn300 (EO, PO, 1, 2). -, 1,3-, 2,3- or 1,4-butylene oxide and the like, hereinafter abbreviated as AO) and low molar adducts can be used.
Among the low molecular weight polyhydric alcohols that can be used in the condensed polyester polyol, ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexane glycol, bisphenol A EO or PO low mole Adducts and combinations thereof.

縮合型ポリエステルポリオールに使用できる炭素数2〜10の多価カルボン酸又はそのエステル形成性誘導体としては、脂肪族ジカルボン酸(コハク酸、アジピン酸、アゼライン酸、セバチン酸、フマル酸及びマレイン酸等)、脂環式ジカルボン酸(ダイマー酸等)、芳香族ジカルボン酸(テレフタル酸、イソフタル酸及びフタル酸等)、3価又はそれ以上のポリカルボン酸(トリメリット酸及びピロメリット酸等)、これらの無水物(無水コハク酸、無水マレイン酸、無水フタル酸及び無水トリメリット酸等)、これらの酸ハロゲン化物(アジピン酸ジクロライド等)、これらの低分子量アルキルエステル(コハク酸ジメチル及びフタル酸ジメチル等)並びこれらの併用が挙げられる。   Examples of the polyvalent carboxylic acid having 2 to 10 carbon atoms or ester-forming derivatives thereof that can be used in the condensed polyester polyol include aliphatic dicarboxylic acids (succinic acid, adipic acid, azelaic acid, sebacic acid, fumaric acid, maleic acid, etc.) , Alicyclic dicarboxylic acids (such as dimer acid), aromatic dicarboxylic acids (such as terephthalic acid, isophthalic acid and phthalic acid), trivalent or higher polycarboxylic acids (such as trimellitic acid and pyromellitic acid), these Anhydrides (succinic anhydride, maleic anhydride, phthalic anhydride, trimellitic anhydride, etc.), acid halides thereof (adipic acid dichloride, etc.), low molecular weight alkyl esters thereof (dimethyl succinate, dimethyl phthalate, etc.) These combinations are listed.

縮合型ポリエステルポリオールの具体例としては、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリヘキサメチレンアジペートジオール、ポリヘキサメチレンイソフタレートジオール、ポリネオペンチルアジペートジオール、ポリエチレンプロピレンアジペートジオール、ポリエチレンブチレンアジペートジオール、ポリブチレンヘキサメチレンアジペートジオール、ポリジエチレンアジペートジオール、ポリ(ポリテトラメチレンエーテル)アジペートジオール、ポリ(3−メチルペンチレンアジペート)ジオール、ポリエチレンアゼレートジオール、ポリエチレンセバケートジオール、ポリブチレンアゼレートジオール、ポリブチレンセバケートジオール及びポリネオペンチルテレフタレートジオール等が挙げられる。   Specific examples of the condensed polyester polyol include polyethylene adipate diol, polybutylene adipate diol, polyhexamethylene adipate diol, polyhexamethylene isophthalate diol, polyneopentyl adipate diol, polyethylene propylene adipate diol, polyethylene butylene adipate diol, polybutylene Hexamethylene adipate diol, polydiethylene adipate diol, poly (polytetramethylene ether) adipate diol, poly (3-methylpentylene adipate) diol, polyethylene azelate diol, polyethylene sebacate diol, polybutylene azelate diol, polybutylene seba Kate diol and polyneopentyl terephthalate diol It is.

縮合型ポリエステルポリオールの市販品としては、サンエスター2610[Mn=1,000のポリエチレンアジペートジオール、三洋化成工業(株)製]、サンエスター4620[Mn=2,000のポリテトラメチレンアジペートジオール]、及びサンエスター2620[Mn=2,000のポリエチレンアジペートジオール、三洋化成工業(株)製]等が挙げられる。   As a commercially available product of condensed polyester polyol, Sanester 2610 [polyethylene adipate diol with Mn = 1,000, manufactured by Sanyo Chemical Industries, Ltd.], Sanester 4620 [polytetramethylene adipate diol with Mn = 2,000], And Sanester 2620 [polyethylene adipate diol with Mn = 2,000, manufactured by Sanyo Chemical Industries, Ltd.].

ポリラクトンポリオールは、上記低分子量多価アルコールへのラクトンの重付加物であり、ラクトンとしては、炭素数4〜12のラクトン(例えばγ−ブチロラクトン、γ−バレロラクトン及びε−カプロラクトン)等が挙げられる。
ポリラクトンポリオールの具体例としては、例えばポリカプロラクトンジオール、ポリバレロラクトンジオール及びポリカプロラクトントリオール等が挙げられる。
The polylactone polyol is a polyaddition product of a lactone to the low molecular weight polyhydric alcohol. Examples of the lactone include lactones having 4 to 12 carbon atoms (for example, γ-butyrolactone, γ-valerolactone, and ε-caprolactone). It is done.
Specific examples of the polylactone polyol include polycaprolactone diol, polyvalerolactone diol, and polycaprolactone triol.

ポリカーボネートポリオールとしては、上記低分子量多価アルコールと、低分子カーボネート化合物(例えば、アルキル基の炭素数1〜6のジアルキルカーボネート、炭素数2〜6のアルキレン基を有するアルキレンカーボネート及び炭素数6〜9のアリール基を有するジアリールカーボネート)とを、脱アルコール反応させながら縮合させることによって製造されるポリカーボネートポリオール等が挙げられる。低分子量多価アルコール及びアルキレンカーボネートはそれぞれ2種以上併用してもよい。   Examples of the polycarbonate polyol include the low molecular weight polyhydric alcohol, a low molecular carbonate compound (for example, an alkyl group having 1 to 6 carbon atoms, an alkylene carbonate having an alkylene group having 2 to 6 carbon atoms, and 6 to 9 carbon atoms). And a polycarbonate polyol produced by condensation with a dealcoholization reaction. Two or more low molecular weight polyhydric alcohols and alkylene carbonates may be used in combination.

ポリカーボネートポリオールの具体例としては、ポリヘキサメチレンカーボネートジオール、ポリペンタメチレンカーボネートジオール、ポリテトラメチレンカーボネートジオール及びポリ(テトラメチレン/ヘキサメチレン)カーボネートジオール(例えば1,4−ブタンジオールと1,6−ヘキサンジオールをジアルキルカーボネートと脱アルコール反応させながら縮合させて得られるジオール)等が挙げられる。   Specific examples of the polycarbonate polyol include polyhexamethylene carbonate diol, polypentamethylene carbonate diol, polytetramethylene carbonate diol, and poly (tetramethylene / hexamethylene) carbonate diol (for example, 1,4-butanediol and 1,6-hexane). And a diol obtained by condensing a diol with a dialkyl carbonate while causing a dealcoholization reaction).

ポリカーボネートポリオールの市販品としては、ニッポラン980R[Mn=2,000のポリヘキサメチレンカーボネートジオール、日本ポリウレタン工業(株)製]、クラレポリオールC−3090[Mn=3,000のポリ(3−メチル−5−ペンタンジオール/ヘキサメチレン)カーボネートジオール]、及びT4672[Mn=2,000のポリ(テトラメチレン/ヘキサメチレン)カーボネートジオール、旭化成ケミカルズ(株)製]等が挙げられる。   Examples of commercially available polycarbonate polyols include NIPPOLAN 980R [polyhexamethylene carbonate diol with Mn = 2,000, manufactured by Nippon Polyurethane Industry Co., Ltd.], and Kuraray polyol C-3090 [poly (3-methyl- with Mn = 3,000). 5-pentanediol / hexamethylene) carbonate diol], T4672 [poly (tetramethylene / hexamethylene) carbonate diol of Mn = 2,000, manufactured by Asahi Kasei Chemicals Corporation], and the like.

ヒマシ油系ポリオールには、ヒマシ油、及びポリオール又はAOで変性された変性ヒマシ油が含まれる。変性ヒマシ油はヒマシ油とポリオールとのエステル交換及び/又はAO付加により製造できる。ヒマシ油系ポリオールとしては、ヒマシ油、トリメチロールプロパン変性ヒマシ油、ペンタエリスリトール変性ヒマシ油、ヒマシ油のEO(4〜30モル)付加物等が挙げられる。   The castor oil-based polyol includes castor oil and modified castor oil modified with polyol or AO. Modified castor oil can be produced by transesterification of castor oil and polyol and / or AO addition. Castor oil-based polyols include castor oil, trimethylolpropane-modified castor oil, pentaerythritol-modified castor oil, and EO (4 to 30 mol) adduct of castor oil.

ポリエステルポリオール(a12)の内好ましいのは、縮合型ポリエステルポリオール及びポリカーボネートポリオールである。   Of the polyester polyols (a12), preferred are condensed polyester polyols and polycarbonate polyols.

Mn300未満の低分子ポリオール(a2)としては、脂肪族2価アルコール、脂肪族3価アルコール及び4価以上の脂肪族アルコールが挙げられる。(a2)の内、耐水性、耐熱黄変性の観点から好ましいのは、2〜3価の脂肪族アルコールであり、脂肪族2価アルコールとしては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、ネオペンチルグリコール及び1,6−ヘキサンジオールが特に好ましく、脂肪族3価アルコールとしては、トリメチロールプロパンが特に好ましい。   Examples of the low molecular polyol (a2) having a Mn of less than 300 include aliphatic dihydric alcohols, aliphatic trihydric alcohols and tetrahydric or higher aliphatic alcohols. Among (a2), from the viewpoint of water resistance and heat-resistant yellowing, a divalent or trivalent aliphatic alcohol is preferable. Examples of the aliphatic dihydric alcohol include ethylene glycol, propylene glycol, and 1,4-butanediol. Neopentyl glycol and 1,6-hexanediol are particularly preferable, and trimethylolpropane is particularly preferable as the aliphatic trihydric alcohol.

上記ポリオール(a)の内、PEGを必須成分として使用することで、ポリウレタン樹脂(U)にオキシエチレン基を導入することができる。ポリウレタン樹脂(U)に導入されるオキシエチレン基含量としては、ポリウレタン樹脂(U)の耐水性及び配合安定性の観点から0.8mmol/g〜10.0mmol/gが好ましく、更に好ましくは、1.0〜9.0mmol/g、特に好ましくは、1.5〜8.0mmol/gである。ポリオキシエチレン基含量が0.8mmol/g未満の場合は配合安定性が悪化する可能性があり、10.0mmol.gより多くなると耐水性が悪化する。   An oxyethylene group can be introduce | transduced into a polyurethane resin (U) by using PEG as an essential component among the said polyol (a). The oxyethylene group content introduced into the polyurethane resin (U) is preferably 0.8 mmol / g to 10.0 mmol / g, more preferably 1 from the viewpoint of water resistance and blending stability of the polyurethane resin (U). 0.0 to 9.0 mmol / g, particularly preferably 1.5 to 8.0 mmol / g. When the polyoxyethylene group content is less than 0.8 mmol / g, the blending stability may deteriorate, and 10.0 mmol. If it exceeds g, the water resistance deteriorates.

本発明において、ポリウレタン樹脂(U)がさらに、水酸基を3個以上有するポリオール(k)を必須構成単量体とし、ポリオール(a)の重量に対してポリオール(k)の重量を0.1〜4.0重量%とすることが出来る。
ポリオール(k)はポリウレタン樹脂粒子中に架橋構造を形成させることが出来、ウレタン皮膜の耐水性、及び耐薬品性向上という効果を得ることが出来るので好ましい。
In the present invention, the polyurethane resin (U) further contains a polyol (k) having three or more hydroxyl groups as an essential constituent monomer, and the weight of the polyol (k) is 0.1 to 0.1% by weight of the polyol (a). It can be 4.0 wt%.
Polyol (k) is preferable because it can form a crosslinked structure in the polyurethane resin particles, and can obtain the effects of improving the water resistance and chemical resistance of the urethane film.

ポリウレタン樹脂(U)の必須構成成分であるポリイソシアネート(b)としては、従来ポリウレタン樹脂製造に使用されているものが使用できる。ポリイソシアネート(b)としては、2〜3個又はそれ以上のイソシアネート基を有する炭素数6〜20(イソシアネート基中の炭素を除く、以下同様)の芳香族ポリイソシアネート(b1)、炭素数2〜18の脂肪族ポリイソシアネート(b2)、炭素数4〜15の脂環式ポリイソシアネート(b3)、炭素数8〜15の芳香脂肪族ポリイソシアネート(b4)及び(b1)〜(b4)の誘導体(例えばイソシアヌレート化物)が挙げられる。   As the polyisocyanate (b), which is an essential component of the polyurethane resin (U), those conventionally used for the production of polyurethane resins can be used. The polyisocyanate (b) is an aromatic polyisocyanate (b1) having 2 to 3 or more isocyanate groups and having 6 to 20 carbon atoms (excluding carbon in the isocyanate group, the same shall apply hereinafter), and 2 to 2 carbon atoms. 18 aliphatic polyisocyanate (b2), alicyclic polyisocyanate (b3) having 4 to 15 carbon atoms, araliphatic polyisocyanate (b4) having 8 to 15 carbon atoms and derivatives of (b1) to (b4) ( For example, isocyanurate product).

炭素数6〜20の芳香族ポリイソシアネート(b1)としては、例えば1,3−又は1,4−フェニレンジイソシアネート、2,4−又は2,6−トリレンジイソシアネート(TDI)、4,4’−又は2,4’−ジフェニルメタンジイソシアネート(MDI)、1,5−ナフチレンジイソシアネート、4,4’,4’’−トリフェニルメタントリイソシアネート、m−又はp−イソシアナトフェニルスルホニルイソシアネート、クルードMDI等が挙げられる。   Examples of the aromatic polyisocyanate having 6 to 20 carbon atoms (b1) include 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate (TDI), 4,4′-. Or 2,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate, 4,4 ′, 4 ″ -triphenylmethane triisocyanate, m- or p-isocyanatophenylsulfonyl isocyanate, crude MDI, etc. Can be mentioned.

炭素数2〜18の脂肪族ポリイソシアネート(b2)としては、例えばエチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2−イソシアナトエチル−2,6−ジイソシアナトヘキサノエート等が挙げられる。   Examples of the aliphatic polyisocyanate (b2) having 2 to 18 carbon atoms include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2 -Isocyanatoethyl-2,6-diisocyanatohexanoate and the like.

炭素数4〜15の脂環式ポリイソシアネート(b3)としては、例えばイソホロンジイソシアネート(IPDI)、4,4−ジシクロヘキシルメタンジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水添TDI)、ビス(2−イソシアナトエチル)−4−シクロヘキセン−1,2−ジカルボキシレート、2,5−又は2,6−ノルボルナンジイソシアネート等が挙げられる。   Examples of the alicyclic polyisocyanate (b3) having 4 to 15 carbon atoms include isophorone diisocyanate (IPDI), 4,4-dicyclohexylmethane diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, and methylcyclohexylene diisocyanate (hydrogenated TDI). Bis (2-isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate, 2,5- or 2,6-norbornane diisocyanate, and the like.

炭素数8〜15の芳香脂肪族ポリイソシアネート(b4)としては、例えばm−及び/又はp−キシリレンジイソシアネート(XDI)、α,α,α’,α’−テトラメチルキシリレンジイソシアネート(TMXDI)等が挙げられる。   Examples of the aromatic aliphatic polyisocyanate (b4) having 8 to 15 carbon atoms include m- and / or p-xylylene diisocyanate (XDI), α, α, α ′, α′-tetramethylxylylene diisocyanate (TMXDI). Etc.

ポリイソシアネート(b)の内、得られる皮膜の機械的物性、耐候性の観点から好ましいのは(b2)及び(b3)、更に好ましいのは(b3)、特に好ましいのはIPDI、水添MDI及びHDIである。   Of the polyisocyanates (b), (b2) and (b3) are preferred from the viewpoint of mechanical properties and weather resistance of the resulting film, (b3) is more preferred, IPDI, hydrogenated MDI and particularly preferred. HDI.

酸基(α)及び/もしくはアミノ基(β)と酸基(α)でもなくアミノ基(β)でもない活性水素原子を有する基(γ)を有する化合物(c)としては、酸基と基(γ)を含有する化合物(c1)及びアミノ基と基(γ)を含有する化合物(c2)が挙げられる。
(c1)としては、例えば酸基としてカルボキシル基を含有し、炭素数が2〜10の化合物[ジアルキロールアルカン酸(例えば2,2−ジメチロールプロピオン酸、2,2−ジメチロールブタン酸、2,2−ジメチロールヘプタン酸及び2,2−ジメチロールオクタン酸)、酒石酸及びアミノ酸(例えばグリシン、アラニン及びバリン)等]、酸基としてスルホン酸基を含有し、炭素数が2〜16の化合物[3−(2,3−ジヒドロキシプロポキシ)−1−プロパンスルホン酸及びスルホイソフタル酸ジ(エチレングリコール)エステル等]、酸基としてスルファミン酸基を含有し、炭素数が2〜10の化合物[N,N−ビス(2−ヒドロキシルエチル)スルファミン酸等]等が挙げられる。
The compound (c) having an acid group (α) and / or an amino group (β) and a group (γ) having an active hydrogen atom which is neither an acid group (α) nor an amino group (β) includes an acid group and a group. And a compound (c1) containing (γ) and a compound (c2) containing an amino group and a group (γ).
(C1) includes, for example, a carboxyl group as an acid group and a compound having 2 to 10 carbon atoms [dialkylol alkanoic acid (for example, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolheptanoic acid and 2,2-dimethyloloctanoic acid), tartaric acid and amino acids (for example, glycine, alanine and valine)], containing a sulfonic acid group as an acid group, and having 2 to 16 carbon atoms Compound [3- (2,3-dihydroxypropoxy) -1-propanesulfonic acid and sulfoisophthalic acid di (ethylene glycol) ester and the like], a compound having a sulfamic acid group as an acid group and having 2 to 10 carbon atoms [ N, N-bis (2-hydroxylethyl) sulfamic acid and the like].

(c1)の内、得られる皮膜の樹脂物性及びポリウレタン樹脂水分散体の分散安定性の観点から好ましいのは、2,2−ジメチロールプロピオン酸及び2,2−ジメチロールブタン酸である。   Among (c1), 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are preferred from the viewpoint of the resin physical properties of the resulting film and the dispersion stability of the polyurethane resin aqueous dispersion.

アミノ基と活性水素原子を含有する化合物(c2)としては、例えば炭素数1〜20の3級アミノ基含有ジオール[N−アルキルジアルカノールアミン(例えばN−メチルジエタノールアミン、N−プロピルジエタノールアミン、N−ブチルジエタノールアミン及びN−メチルジプロパノールアミン)及びN,N−ジアルキルモノアルカノールアミン(例えばN,N−ジメチルエタノールアミン)等]等が挙げられる。   As the compound (c2) containing an amino group and an active hydrogen atom, for example, a tertiary amino group-containing diol having 1 to 20 carbon atoms [N-alkyl dialkanolamine (for example, N-methyldiethanolamine, N-propyldiethanolamine, N- Butyldiethanolamine and N-methyldipropanolamine) and N, N-dialkylmonoalkanolamine (for example, N, N-dimethylethanolamine) and the like.

化合物(c)を中和もしくは4級化する化合物(d)としては、化合物(c1)の中和剤(d1)及びアミノ基と活性水素原子を含有する化合物(c2)の中和もしくは4級化剤(d2)が挙げられる。 The compound (d) that neutralizes or quaternizes the compound (c) includes a neutralizer (d1) of the compound (c1) and a neutralization or quaternary of the compound (c2) containing an amino group and an active hydrogen atom. An agent (d2) may be mentioned.

(d1)としては、例えばアンモニア、炭素数1〜20のアミン化合物又はアルカリ金属水酸化物(水酸化ナトリウム、水酸化カリウム及び水酸化リチウム等)が挙げられる。
炭素数1〜20のアミン化合物としては、モノメチルアミン、モノエチルアミン、モノブチルアミン及びモノエタノールアミン等の1級アミン、ジメチルアミン、ジエチルアミン、ジブチルアミン、ジエタノールアミン及びジイソプロパノールアミン、メチルプロパノールアミン等の2級アミン並びにトリメチルアミン、トリエチルアミン、ジメチルエチルアミン、ジメチルモノエタノールアミン及びトリエタノールアミン等の3級アミンが挙げられる。
Examples of (d1) include ammonia, an amine compound having 1 to 20 carbon atoms, or an alkali metal hydroxide (such as sodium hydroxide, potassium hydroxide, and lithium hydroxide).
Examples of the amine compound having 1 to 20 carbon atoms include primary amines such as monomethylamine, monoethylamine, monobutylamine and monoethanolamine, secondary amines such as dimethylamine, diethylamine, dibutylamine, diethanolamine, diisopropanolamine and methylpropanolamine. Examples include amines and tertiary amines such as trimethylamine, triethylamine, dimethylethylamine, dimethylmonoethanolamine and triethanolamine.

(d1)としては、生成するポリウレタン樹脂水分散体の乾燥性及び得られる皮膜の耐水性の観点から、25℃における蒸気圧が高い化合物が好適である。このような観点から、(d1)としては、アンモニア又は炭素数1〜20のアミン化合物が好ましく、特にアンモニア、モノメチルアミン、モノエチルアミン、ジメチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン及びジメチルエチルアミンが好ましい。   (D1) is preferably a compound having a high vapor pressure at 25 ° C. from the viewpoint of the drying property of the resulting polyurethane resin aqueous dispersion and the water resistance of the resulting film. From such a viewpoint, as (d1), ammonia or an amine compound having 1 to 20 carbon atoms is preferable, and ammonia, monomethylamine, monoethylamine, dimethylamine, diethylamine, trimethylamine, triethylamine and dimethylethylamine are particularly preferable.

(d2)としては、例えば炭素数1〜10のモノカルボン酸(例えばギ酸、酢酸、プロパン酸等)、炭酸、炭酸ジメチル、硫酸ジメチル、メチルクロライド及びベンジルクロライド等が挙げられる。   Examples of (d2) include C1-C10 monocarboxylic acids (for example, formic acid, acetic acid, propanoic acid, etc.), carbonic acid, dimethyl carbonate, dimethyl sulfate, methyl chloride, benzyl chloride, and the like.

(d1)及び(d2)は、ウレタン化反応前、ウレタン化反応中、ウレタン化反応後、水分散工程前、水分散工程中又は水分散後のいずれの時期に添加しても良いが、ウレタン樹脂の安定性及び水分散体の安定性の観点から、水分散工程前又は水分散工程中に添加することが好ましい。   (D1) and (d2) may be added before the urethanization reaction, during the urethanization reaction, after the urethanization reaction, before the water dispersion step, during the water dispersion step, or after the water dispersion. From the viewpoint of the stability of the resin and the stability of the aqueous dispersion, it is preferably added before or during the aqueous dispersion process.

(c)の使用量は、(U)中の親水基の含有量が、(U)の重量に基づいて、通常0.1〜0.8mmol/g、好ましくは0.12〜0.75mmol/g、更に好ましくは0.15〜0.7mmol/gとなるよう調節する。   The amount of (c) used is such that the content of the hydrophilic group in (U) is usually 0.1 to 0.8 mmol / g, preferably 0.12 to 0.75 mmol / g, based on the weight of (U). g, more preferably 0.15 to 0.7 mmol / g.

(d)の使用量は、上記式(1)又は(2)で表される中和率又は4級化率が30〜90%となるよう調節する。   The amount of (d) used is adjusted so that the neutralization rate or quaternization rate represented by the above formula (1) or (2) is 30 to 90%.

鎖伸長剤(e)としては、水、炭素数2〜10のジアミン類(例えばエチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、トルエンジアミン及びピペラジン)、炭素数2〜10のポリアルキレンポリアミン類(例えばジエチレントリアミン及びトリエチレンテトラミン)、ヒドラジン又はその誘導体(二塩基酸ジヒドラジド例えばアジピン酸ジヒドラジド等)、炭素数2〜30のポリエポキシ化合物(例えば、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル等)及び炭素数2〜10のアミノアルコール類(例えばエタノールアミン、ジエタノールアミン、2−アミノ−2−メチルプロパノール及びトリエタノールアミン)等が挙げられる。
本発明において、ポリウレタン樹脂粒子の水分散体にイソシアネート基と反応可能な官能基を3個以上有する化合物を使用することにより、ポリウレタン樹脂粒子中に架橋構造を形成させることが出来、ウレタン皮膜の耐水性、及び耐薬品性向上という効果を得ることが出来る。
上記の内好ましいものは、エチレンジアミン、ジエチレントリアミンである。
Examples of the chain extender (e) include water, diamines having 2 to 10 carbon atoms (for example, ethylene diamine, propylene diamine, hexamethylene diamine, isophorone diamine, toluene diamine and piperazine), and polyalkylene polyamines having 2 to 10 carbon atoms ( For example, diethylenetriamine and triethylenetetramine), hydrazine or a derivative thereof (dibasic acid dihydrazide such as adipic acid dihydrazide), polyepoxy compound having 2 to 30 carbon atoms (for example, 1,6-hexanediol diglycidyl ether, trimethylolpropane poly) Glycidyl ether and the like) and amino alcohols having 2 to 10 carbon atoms (for example, ethanolamine, diethanolamine, 2-amino-2-methylpropanol, and triethanolamine).
In the present invention, by using a compound having three or more functional groups capable of reacting with isocyanate groups in the aqueous dispersion of polyurethane resin particles, a crosslinked structure can be formed in the polyurethane resin particles, and the water resistance of the urethane film is increased. The effect of improving the chemical resistance and chemical resistance can be obtained.
Of these, ethylenediamine and diethylenetriamine are preferred.

反応停止剤(f)としては、炭素数1〜8のモノアルコール類(メタノール、エタノール、イソプロパノール、セロソルブ類及びカルビトール類等)、炭素数1〜10のモノアミン類(モノメチルアミン、モノエチルアミン、モノブチルアミン、ジブチルアミン及びモノオクチルアミン等のモノ又はジアルキルアミン;モノエタノールアミン、ジエタノールアミン及びジイソプロパノールアミン等のモノ又はジアルカノールアミン等)が挙げられる。   As the reaction terminator (f), C1-C8 monoalcohols (methanol, ethanol, isopropanol, cellosolves, carbitols, etc.), C1-C10 monoamines (monomethylamine, monoethylamine, mono Mono- or dialkylamines such as butylamine, dibutylamine and monooctylamine; mono- or dialkanolamines such as monoethanolamine, diethanolamine and diisopropanolamine).

(e)及び(f)は、単独で用いても、2種類以上を併用してもかまわない。   (E) and (f) may be used alone or in combination of two or more.

本発明におけるポリウレタン樹脂(U)は、必要により酸化防止剤、着色防止剤、耐候安定剤、可塑剤及び離型剤等の添加剤を含有することができる。これらの添加剤の使用量は(U)の重量に基づいて通常10重量%以下、更に好ましくは3重量%以下、特に好ましくは1重量%以下である。   The polyurethane resin (U) in the present invention can contain additives such as antioxidants, anti-coloring agents, weathering stabilizers, plasticizers, and mold release agents as necessary. The amount of these additives used is usually 10% by weight or less, more preferably 3% by weight or less, and particularly preferably 1% by weight or less based on the weight of (U).

<ポリウレタン樹脂水分散体、その製造方法>
本発明におけるポリウレタン樹脂(U)の水分散体は、酸基(α)又はアミノ基(β)を0.1〜0.8mmol/g有するポリウレタン樹脂(U)を、上記式(1)又は(2)で表される中和率又は4級化率が30〜90%となるように中和又は4級化して得られた中和又は4級化ポリウレタン樹脂(U1)を水中に分散させ、ポリウレタン樹脂水分散体中の粒子の体積平均粒子径が50〜600nmであるポリウレタン樹脂水分散体を得ることを特徴とする。
<Polyurethane resin aqueous dispersion, production method thereof>
The aqueous dispersion of the polyurethane resin (U) in the present invention comprises a polyurethane resin (U) having an acid group (α) or amino group (β) of 0.1 to 0.8 mmol / g, represented by the above formula (1) or ( 2) The neutralized or quaternized polyurethane resin (U1) obtained by neutralization or quaternization so that the neutralization rate or quaternization rate represented by 2) is 30 to 90% is dispersed in water, A polyurethane resin aqueous dispersion in which the volume average particle diameter of particles in the polyurethane resin aqueous dispersion is 50 to 600 nm is obtained.

本発明において、ポリウレタン樹脂(U)の水分散体は、ポリオール(a)、ポリイソシアネート(b)、化合物(c)、及び酸基又はアミノ基を中和もしくは4級化するための化合物(d)を必須成分とし、更に必要により、鎖伸長剤(e)及び反応停止剤(f)を以下に記載の工程を経て反応させることにより得ることができる。
(1)ポリオール(a)、ポリイソシアネート(b)並びに酸基(α)及び/もしくはアミノ基(β)と酸基(α)及びアミノ基(β)以外の活性水素原子を含有する化合物(c)を、必要により有機溶剤の存在下反応させイソシアネート基を分子末端に有するプレポリマーを合成する工程。
(2)工程(1)で得られたプレポリマーに化合物(d)を添加し、中和もしくは4級化を行う工程。
(3)工程(2)で得られた化合物を水に分散させると共に、必要により鎖伸長剤(e)及び反応停止剤(f)を添加する工程。
(4)工程(3)で得られた水分散体から必要により有機溶剤を留去する工程。
In the present invention, the aqueous dispersion of the polyurethane resin (U) includes the polyol (a), the polyisocyanate (b), the compound (c), and the compound (d for neutralizing or quaternizing the acid group or amino group). ) As an essential component, and if necessary, it can be obtained by reacting the chain extender (e) and the reaction terminator (f) through the steps described below.
(1) Polyol (a), polyisocyanate (b), and an acid group (α) and / or an amino group (β) and an active hydrogen atom other than the acid group (α) and amino group (β) (c ) As necessary in the presence of an organic solvent to synthesize a prepolymer having an isocyanate group at the molecular end.
(2) A step of adding the compound (d) to the prepolymer obtained in the step (1) to neutralize or quaternize it.
(3) A step of dispersing the compound obtained in the step (2) in water and, if necessary, adding a chain extender (e) and a reaction terminator (f).
(4) A step of distilling off the organic solvent from the aqueous dispersion obtained in the step (3) if necessary.

また、(U)は分子中に架橋構造を有してもよく、(U)へ架橋構造を導入するためには、ポリオール(a)、ポリイソシアネート(b)及び/又は鎖伸長剤(e)に3官能以上の多官能モノマーを使用することにより、(U)中に架橋構造を導入することが可能である。
また、(U)は水への分散安定性の観点から、ノニオン性の親水性基を有してもよく、(U)へノニオン性の親水基を導入するためには、ポリオール(a)の内ポリオキシエチレン基を有する化合物を少なくとも1種以上使用することにより、(U)中にノニオン性の親水性基を導入することが可能である。
本発明におけるポリウレタン樹脂水分散体は、(U)の分散性及び水分散体の安定性の観点から、必要により(U)を分散剤(g)の存在下で水に分散させることができる。
In addition, (U) may have a crosslinked structure in the molecule. In order to introduce a crosslinked structure into (U), polyol (a), polyisocyanate (b) and / or chain extender (e) It is possible to introduce a crosslinked structure in (U) by using a trifunctional or higher polyfunctional monomer.
In addition, (U) may have a nonionic hydrophilic group from the viewpoint of dispersion stability in water. In order to introduce a nonionic hydrophilic group into (U), the polyol (a) By using at least one compound having an internal polyoxyethylene group, it is possible to introduce a nonionic hydrophilic group into (U).
From the viewpoint of the dispersibility of (U) and the stability of the aqueous dispersion, the polyurethane resin aqueous dispersion in the present invention can be dispersed in water in the presence of a dispersant (g) as necessary.

分散剤(g)としては、ノニオン性界面活性剤(g1)、アニオン性界面活性剤(g2)、カチオン性界面活性剤(g3)、両性界面活性剤(g4)及びその他の乳化分散剤(g5)が挙げられる。(g)は単独で使用してもよいし、2種以上を併用することもできる。   As the dispersing agent (g), nonionic surfactant (g1), anionic surfactant (g2), cationic surfactant (g3), amphoteric surfactant (g4) and other emulsifying dispersant (g5) ). (G) may be used alone or in combination of two or more.

(g1)としては、例えばAO付加型ノニオン性界面活性剤及び多価アルコール型ノニオン性界面活性剤が挙げられる。AO付加型としては、炭素数10〜20の脂肪族アルコールのEO付加物、フェノールのEO付加物、ノニルフェノールのEO付加物、炭素数8〜22のアルキルアミンのEO付加物及びポリプロピレングリコールのEO付加物等が挙げられ、多価アルコール型としては、多価(3〜8価又はそれ以上)アルコール(炭素数2〜30)の脂肪酸(炭素数8〜24)エステル(例えばグリセリンモノステアレート、グリセリンモノオレエート、ソルビタンモノラウレート及びソルビタンモノオレエート等)及びアルキル(炭素数4〜24)ポリ(重合度1〜10)グリコシド等が挙げられる。   Examples of (g1) include AO addition type nonionic surfactants and polyhydric alcohol type nonionic surfactants. As the AO addition type, EO addition product of aliphatic alcohol having 10 to 20 carbon atoms, EO addition product of phenol, EO addition product of nonylphenol, EO addition product of alkylamine having 8 to 22 carbon atoms, and EO addition of polypropylene glycol. Examples of the polyhydric alcohol type include fatty acid (carbon number 8-24) esters (for example, glycerin monostearate, glycerin) of polyhydric (3 to 8 valence or higher) alcohol (2 to 30 carbon atoms). Monooleate, sorbitan monolaurate, sorbitan monooleate and the like) and alkyl (carbon number 4 to 24) poly (degree of polymerization 1 to 10) glycosides.

(g2)としては、例えば炭素数8〜24の炭化水素基を有するエーテルカルボン酸又はその塩[ラウリルエーテル酢酸ナトリウム及び(ポリ)オキシエチレン(付加モル数1〜100)ラウリルエーテル酢酸ナトリウム等];炭素数8〜24の炭化水素基を有する硫酸エステル又はエーテル硫酸エステル及びそれらの塩[ラウリル硫酸ナトリウム、(ポリ)オキシエチレン(付加モル数1〜100)ラウリル硫酸ナトリウム、(ポリ)オキシエチレン(付加モル数1〜100)ラウリル硫酸トリエタノールアミン及び(ポリ)オキシエチレン(付加モル数1〜100)ヤシ油脂肪酸モノエタノールアミド硫酸ナトリウム等];炭素数8〜24の炭化水素基を有するスルホン酸塩[ドデシルベンゼンスルホン酸ナトリウム等];炭素数8〜24の炭化水素基を1個又は2個有するスルホコハク酸塩;炭素数8〜24の炭化水素基を有するリン酸エステル又はエーテルリン酸エステル及びそれらの塩[ラウリルリン酸ナトリウム及び(ポリ)オキシエチレン(付加モル数1〜100)ラウリルエーテルリン酸ナトリウム等];炭素数8〜24の炭化水素基を有する脂肪酸塩[ラウリン酸ナトリウム及びラウリン酸トリエタノールアミン等];並びに炭素数8〜24の炭化水素基を有するアシル化アミノ酸塩[ヤシ油脂肪酸メチルタウリンナトリウム、ヤシ油脂肪酸サルコシンナトリウム、ヤシ油脂肪酸サルコシントリエタノールアミン、N−ヤシ油脂肪酸アシル−L−グルタミン酸トリエタノールアミン、N−ヤシ油脂肪酸アシル−L−グルタミン酸ナトリウム及びラウロイルメチル−β−アラニンナトリウム等]が挙げられる。   Examples of (g2) include ether carboxylic acids having a hydrocarbon group having 8 to 24 carbon atoms or salts thereof [sodium lauryl ether acetate and (poly) oxyethylene (addition mole number 1 to 100) sodium lauryl ether acetate and the like]; Sulfate ester or ether sulfate ester having a hydrocarbon group having 8 to 24 carbon atoms and salts thereof [sodium lauryl sulfate, (poly) oxyethylene (addition mole number 1 to 100) sodium lauryl sulfate, (poly) oxyethylene (addition) Mole number 1 to 100) lauryl sulfate triethanolamine and (poly) oxyethylene (addition mole number 1 to 100) coconut oil fatty acid monoethanolamide sodium sulfate, etc.]; sulfonate having a hydrocarbon group having 8 to 24 carbon atoms [Sodium dodecylbenzenesulfonate, etc.]; carbon number 8-2 Sulfosuccinates having 1 or 2 hydrocarbon groups; phosphate esters or ether phosphate esters having 8 to 24 carbon atoms and their salts [sodium lauryl phosphate and (poly) oxyethylene ( Addition mole number 1-100) sodium lauryl ether phosphate, etc.]; fatty acid salt having a hydrocarbon group having 8-24 carbon atoms [sodium laurate, triethanolamine laurate, etc.]; and hydrocarbon having 8-24 carbon atoms Acylated amino acid salts having a group [coconut oil fatty acid methyl taurine sodium, coconut oil fatty acid sarcosine sodium, coconut oil fatty acid sarcosine triethanolamine, N-coconut oil fatty acid acyl-L-glutamic acid triethanolamine, N-coconut oil fatty acid acyl- Sodium L-glutamate and lauroylmethyl β- alanine sodium, etc.] and the like.

(g3)としては、例えば第4級アンモニウム塩型[塩化ステアリルトリメチルアンモニウム、塩化ベヘニルトリメチルアンモニウム、塩化ジステアリルジメチルアンモニウム及びエチル硫酸ラノリン脂肪酸アミノプロピルエチルジメチルアンモニウム等]並びにアミン塩型[ステアリン酸ジエチルアミノエチルアミド乳酸塩、ジラウリルアミン塩酸塩及びオレイルアミン乳酸塩等]が挙げられる。   Examples of (g3) include quaternary ammonium salt type [stearyl trimethyl ammonium chloride, behenyl trimethyl ammonium chloride, distearyl dimethyl ammonium chloride, ethyl lanolin sulfate fatty acid aminopropylethyl dimethyl ammonium, etc.] and amine salt type [diethylaminoethyl stearate. Amide lactate, dilaurylamine hydrochloride, oleylamine lactate, etc.].

(g4)としては、例えばベタイン型両性界面活性剤[ヤシ油脂肪酸アミドプロピルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミノ酢酸ベタイン、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン、ラウリルヒドロキシスルホベタイン及びラウロイルアミドエチルヒドロキシエチルカルボキシメチルベタインヒドロキシプロピルリン酸ナトリウム等]並びにアミノ酸型両性界面活性剤[β−ラウリルアミノプロピオン酸ナトリウム等]が挙げられる。   Examples of (g4) include betaine-type amphoteric surfactants [coconut oil fatty acid amidopropyldimethylaminoacetic acid betaine, lauryldimethylaminoacetic acid betaine, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, laurylhydroxy Sulfobetaine and lauroylamidoethylhydroxyethylcarboxymethylbetaine hydroxypropyl phosphate sodium etc.] and amino acid type amphoteric surfactants [sodium β-laurylaminopropionate etc.].

(g5)としては、例えばポリビニルアルコール、デンプン及びその誘導体、カルボキシメチルセルロース、メチルセルロース及びヒドロキシエチルセルロース等のセルロース誘導体並びにポリアクリル酸ソーダ等のカルボキシル基含有(共)重合体及び米国特許第5906704号明細書に記載のウレタン基又はエステル基を有する乳化分散剤[例えばポリカプロラクトンポリオールとポリエーテルジオールをポリイソシアネートで連結させたもの]等が挙げられる。   Examples of (g5) include polyvinyl alcohol, starch and derivatives thereof, cellulose derivatives such as carboxymethylcellulose, methylcellulose and hydroxyethylcellulose, and carboxyl group-containing (co) polymers such as sodium polyacrylate and US Pat. No. 5,906,704. And emulsifying dispersants having the urethane group or ester group described above [for example, polycaprolactone polyol and polyether diol linked with polyisocyanate] and the like.

分散剤(g)は、ウレタン樹脂(U)のウレタン化反応前、ウレタン化反応中、ウレタン化反応後、(U)の水分散工程前、水分散工程中又は水分散後のいずれの時期に添加しても良いが、(U)の分散性及び水分散体の安定性の観点から、水分散工程前又は水分散工程中に添加することが好ましい。   The dispersant (g) is used before the urethanization reaction of the urethane resin (U), during the urethanization reaction, after the urethanization reaction, before the water dispersion step of (U), during the water dispersion step, or after water dispersion. Although it may be added, it is preferably added before or during the water dispersion step from the viewpoint of the dispersibility of (U) and the stability of the water dispersion.

(g)の含有量はポリウレタン樹脂(U)の重量に基づいて通常0.01〜20重量%、好ましくは0.01〜10重量%、更に好ましくは0.1〜5重量%である。
(U)は親水性基を有したポリウレタン樹脂である場合は、(U)の重量に基づく(c)の含有量と(g)の含有量の合計量は、通常0.01〜20重量%、好ましくは0.1〜15重量%、更に好ましくは0.6〜10重量%である。
The content of (g) is usually 0.01 to 20% by weight, preferably 0.01 to 10% by weight, more preferably 0.1 to 5% by weight, based on the weight of the polyurethane resin (U).
When (U) is a polyurethane resin having a hydrophilic group, the total content of (c) and (g) based on the weight of (U) is usually 0.01 to 20% by weight. The content is preferably 0.1 to 15% by weight, more preferably 0.6 to 10% by weight.

本発明におけるポリウレタン樹脂水分散体は、有機溶剤[ケトン系溶剤(例えばアセトン及びメチルエチルケトン)、エステル系溶剤(例えば酢酸エチル)、エーテル系溶剤(例えばテトラヒドロフラン)、アミド系溶剤(例えばN,N−ジメチルホルムアミド及びN−メチルピロリドン)、アルコール系溶剤(例えばイソプロピルアルコール)及び芳香族炭化水素系溶剤(例えばトルエン)等]を含有してもよい。   The polyurethane resin aqueous dispersion in the present invention contains an organic solvent [a ketone solvent (for example, acetone and methyl ethyl ketone), an ester solvent (for example, ethyl acetate), an ether solvent (for example, tetrahydrofuran), an amide solvent (for example, N, N-dimethyl). Formamide and N-methylpyrrolidone), alcohol solvents (for example, isopropyl alcohol), aromatic hydrocarbon solvents (for example, toluene), and the like.

ウレタン化反応速度をコントロールするために、公知の反応触媒(オクチル酸錫及びビスマスオクチル酸塩等)及び反応遅延剤(リン酸等)等を使用することができる。これらの触媒又は反応遅延剤の添加量は、(U)の重量に基づき、好ましくは0.001〜3重量%、更に好ましくは0.005〜2重量%、特に好ましくは0.01〜1重量%である。   In order to control the urethanization reaction rate, known reaction catalysts (such as tin octylate and bismuth octylate) and reaction retarders (such as phosphoric acid) can be used. The addition amount of these catalysts or reaction retarders is preferably 0.001 to 3% by weight, more preferably 0.005 to 2% by weight, and particularly preferably 0.01 to 1% by weight based on the weight of (U). %.

ポリウレタン樹脂(U)の水への分散を行う際は、必要に応じて、pH調整剤、消泡剤、抑泡剤、酸化防止剤、着色防止剤、可塑剤及び離型剤等から選ばれる添加剤を1種以上を添加することができる。また、必要に応じて、分散後に脱溶剤、濃縮、希釈等を行ってもよい。   When the polyurethane resin (U) is dispersed in water, it is selected from pH adjusters, antifoaming agents, antifoaming agents, antioxidants, anti-coloring agents, plasticizers, mold release agents, and the like as necessary. One or more additives can be added. Moreover, you may perform solvent removal, concentration, dilution, etc. after dispersion | distribution as needed.

本発明で得られるポリウレタン樹脂水分散体の固形分濃度(揮発性成分以外の成分の含有量)は、水分散体の取り扱い易さの観点から、好ましくは20〜65重量%、更に好ましくは25〜55重量%である。固形分濃度は、水分散体約1gをペトリ皿上にうすく伸ばし、精秤した後、循環式定温乾燥機を用いて130℃で、45分間加熱した後の重量を精秤し、加熱前の重量に対する加熱後の残存重量の割合(百分率)を計算することにより得ることができる。   The solid content concentration (content of components other than volatile components) of the polyurethane resin aqueous dispersion obtained in the present invention is preferably 20 to 65% by weight, more preferably 25, from the viewpoint of ease of handling the aqueous dispersion. ~ 55% by weight. The solid concentration was about 1 g of the aqueous dispersion thinly spread on a Petri dish, weighed accurately, then weighed the weight after heating at 130 ° C for 45 minutes using a circulating constant temperature drier, before heating. It can be obtained by calculating the ratio (percentage) of the remaining weight after heating to the weight.

本発明の製造方法で得られるポリウレタン樹脂水分散体の粘度は、好ましくは1〜100,000mPa・s、更に好ましくは5〜5,000mPa・sである。粘度はBL型粘度計を用いて、25℃の定温下で測定することができる。
本発明の製造方法で得られるポリウレタン樹脂水分散体のpHは、好ましくは2〜12、更に好ましくは4〜10である。pHは、pH Meter M−12[堀場製作所(株)製]で25℃で測定することができる。
The viscosity of the polyurethane resin aqueous dispersion obtained by the production method of the present invention is preferably 1 to 100,000 mPa · s, more preferably 5 to 5,000 mPa · s. The viscosity can be measured at a constant temperature of 25 ° C. using a BL type viscometer.
The pH of the polyurethane resin aqueous dispersion obtained by the production method of the present invention is preferably 2 to 12, more preferably 4 to 10. The pH can be measured at 25 ° C. with pH Meter M-12 [manufactured by Horiba, Ltd.].

本発明のポリウレタン樹脂水分散体は、水性塗料組成物、水性接着剤組成物、水性繊維加工処理剤組成物(顔料捺染用バインダー組成物、不織布用バインダー組成物、補強繊維用集束剤組成物、抗菌剤用バインダー組成物及び人工皮革・合成皮革用原料組成物等)、水性コーティング組成物(防水コーティング組成物、撥水コーティング組成物及び防汚コーティング組成物等)、水性紙処理剤組成物や水性インキ組成物等に使用することができるが、その優れた造膜性及び耐水性から、特に水性塗料組成物、水性接着剤組成物及び水性繊維加工処理剤組成物として好適に使用することができる。   The polyurethane resin aqueous dispersion of the present invention comprises an aqueous coating composition, an aqueous adhesive composition, an aqueous fiber processing agent composition (a binder composition for pigment printing, a binder composition for nonwoven fabric, a sizing agent composition for reinforcing fibers, Antibacterial agent binder composition and artificial leather / synthetic leather raw material composition, etc.), aqueous coating composition (waterproof coating composition, water repellent coating composition, antifouling coating composition, etc.), aqueous paper treatment composition, It can be used for water-based ink compositions and the like, but because of its excellent film-forming properties and water resistance, it can be suitably used especially as a water-based coating composition, water-based adhesive composition and water-based fiber processing agent composition. it can.

これらの用途に用いる場合には、必要によりその他の添加剤、例えば塗膜形成補助樹脂、架橋剤、触媒、顔料、顔料分散剤、粘度調整剤、消泡剤、レベリング剤、防腐剤、劣化防止剤、安定化剤及び凍結防止剤等を1種又は2種以上添加することができる。   When used in these applications, other additives such as coating forming auxiliary resins, crosslinking agents, catalysts, pigments, pigment dispersants, viscosity modifiers, antifoaming agents, leveling agents, preservatives, anti-degradation are necessary. One, two or more agents, stabilizers, antifreezing agents and the like can be added.

以下において本発明のポリウレタン樹脂水分散体を用いた、水性塗料の調製について説明する。
水性塗料には、塗膜形成補助やバインダー機能の向上等を目的として、必要により本発明のポリウレタン樹脂水分散体におけるウレタン樹脂(U)以外に、他の水分散性樹脂又は水溶性樹脂を併用していてもよい。
Hereinafter, preparation of an aqueous paint using the polyurethane resin aqueous dispersion of the present invention will be described.
In addition to the urethane resin (U) in the polyurethane resin aqueous dispersion of the present invention, other water-dispersible resins or water-soluble resins are used in combination with the water-based paint, if necessary, for the purpose of coating film formation and improvement of the binder function. You may do it.

水性塗料に併用される他の水分散性樹脂又は水溶性樹脂としては、例えば本発明におけるポリウレタン樹脂以外の水分散性又は水溶性のポリウレタン樹脂、ポリアクリル樹脂及びポリエステル樹脂等が挙げられる。これらの他の樹脂は、水性塗料の用途毎に、各用途で常用されるもの等から適宜選択することができる。   Examples of other water-dispersible resins or water-soluble resins used in combination with water-based paints include water-dispersible or water-soluble polyurethane resins other than the polyurethane resin in the present invention, polyacrylic resins, and polyester resins. These other resins can be appropriately selected from those commonly used in each application for each application of the water-based paint.

水性塗料における本発明のポリウレタン樹脂水分散体の固形分の含有量は、水性塗料の重量に基づいて通常0.1〜60重量%、好ましくは1〜50重量%である。
また、水性塗料における他の樹脂の含有量は、水性塗料の重量に基づいて通常60重量%以下、好ましくは50重量%以下である。
The solid content of the aqueous polyurethane resin dispersion of the present invention in the aqueous coating is usually 0.1 to 60% by weight, preferably 1 to 50% by weight, based on the weight of the aqueous coating.
The content of the other resin in the water-based paint is usually 60% by weight or less, preferably 50% by weight or less based on the weight of the water-based paint.

水性塗料は、更に架橋剤、顔料、顔料分散剤、粘度調整剤、消泡剤、防腐剤、劣化防止剤、安定化剤、凍結防止剤及び水等を1種又は2種以上含有することができる。   The water-based paint may further contain one or more of a crosslinking agent, a pigment, a pigment dispersant, a viscosity modifier, an antifoaming agent, an antiseptic, a deterioration preventing agent, a stabilizer, an antifreezing agent, water, and the like. it can.

架橋剤としては水溶性又は水分散性のアミノ樹脂、水溶性又は水分散性のポリエポキシド、水溶性又は水分散性のブロックドポリイソシアネート化合物及びポリエチレン尿素等が挙げられる。
架橋剤の添加量はポリウレタン樹脂水分散体の固形分重量を基準として、通常30重量%以下、好ましくは0.1〜20重量%である。
Examples of the crosslinking agent include water-soluble or water-dispersible amino resins, water-soluble or water-dispersible polyepoxides, water-soluble or water-dispersible blocked polyisocyanate compounds, and polyethylene urea.
The addition amount of the crosslinking agent is usually 30% by weight or less, preferably 0.1 to 20% by weight, based on the solid content weight of the polyurethane resin aqueous dispersion.

顔料としては、水への溶解度が1以下の無機顔料(例えば白色顔料、黒色顔料、灰色顔料、赤色顔料、茶色顔料、黄色顔料、緑色顔料、青色顔料、紫色顔料及びメタリック顔料)並びに有機顔料(例えば天然有機顔料合成系有機顔料、ニトロソ顔料、ニトロ顔料、顔料色素型アゾ顔料、水溶性染料からつくるアゾレーキ、難溶性染料からつくるアゾレーキ、塩基性染料からつくるレーキ、酸性染料からつくるレーキ、キサンタンレーキ、アントラキノンレーキ、バット染料からの顔料及びフタロシアニン顔料)等が挙げられる。顔料の含有量は、水性塗料の重量に基づいて通常50重量%以下、好ましくは30重量%以下である。   Examples of the pigment include inorganic pigments having a solubility in water of 1 or less (for example, white pigment, black pigment, gray pigment, red pigment, brown pigment, yellow pigment, green pigment, blue pigment, purple pigment and metallic pigment) and organic pigments ( For example, natural organic pigment synthetic organic pigments, nitroso pigments, nitro pigments, pigment dye-type azo pigments, azo lakes made from water-soluble dyes, azo lakes made from poorly soluble dyes, lakes made from basic dyes, lakes made from acid dyes, xanthan lakes , Anthraquinone lake, pigments from vat dyes and phthalocyanine pigments). The content of the pigment is usually 50% by weight or less, preferably 30% by weight or less, based on the weight of the aqueous paint.

顔料分散剤としては、上述の分散剤(h)が挙げられ、顔料分散剤の含有量は、顔料の重量に基づいて通常20重量%以下、好ましくは15重量%以下である。   Examples of the pigment dispersant include the above-described dispersant (h), and the content of the pigment dispersant is usually 20% by weight or less, preferably 15% by weight or less based on the weight of the pigment.

粘度調整剤としては増粘剤、例えば無機系粘度調整剤(ケイ酸ソーダやベントナイト等)、セルロース系粘度調整剤(Mnが20,000以上のメチルセルロール、カルボキシメチルセルロース及びヒドロキシメチルセルロース等)、タンパク質系粘度調整剤(カゼイン、カゼインソーダ及びカゼインアンモニウム等)、アクリル系(Mnが20,000以上のポリアクリル酸ナトリウム及びポリアクリル酸アンモニウム等)及びビニル系粘度調整剤(Mnが20,000以上のポリビニルアルコール等)が挙げられる。
消泡剤としては、長鎖アルコール(オクチルアルコール等)、ソルビタン誘導体(ソルビタンモノオレート等)、シリコーンオイル(ポリメチルシロキサン及びポリエーテル変性シリコーン等)等が挙げられる。
Viscosity modifiers include thickeners such as inorganic viscosity modifiers (such as sodium silicate and bentonite), cellulose viscosity modifiers (such as methylcellulose, carboxymethylcellulose, and hydroxymethylcellulose with Mn of 20,000 or more), proteins System viscosity modifiers (casein, casein soda, casein ammonium, etc.), acrylics (sodium polyacrylate and ammonium polyacrylate with Mn of 20,000 or more) and vinyl viscosity modifiers (Mn of 20,000 or more) Polyvinyl alcohol).
Examples of antifoaming agents include long-chain alcohols (such as octyl alcohol), sorbitan derivatives (such as sorbitan monooleate), and silicone oils (such as polymethylsiloxane and polyether-modified silicone).

防腐剤としては、有機窒素硫黄化合物系防腐剤及び有機硫黄ハロゲン化物系防腐剤等が挙げられる。
劣化防止剤及び安定化剤(紫外線吸収剤及び酸化防止剤等)としてはヒンダードフェノール系、ヒンダードアミン系、ヒドラジン系、リン系、ベンゾフェノン系及びベンゾトリアゾール系劣化防止剤及び安定化剤等が挙げられる。
凍結防止剤としては、エチレングリコール及びプロピレングリコール等が挙げられる。
粘度調整剤、消泡剤、防腐剤、劣化防止剤、安定化剤及び凍結防止剤の含有量は、水性塗料の重量に基づいてそれぞれ通常5重量%以下、好ましくは3重量%以下である。
Examples of the preservative include organic nitrogen sulfur compound preservatives and organic sulfur halide preservatives.
Deterioration inhibitors and stabilizers (such as UV absorbers and antioxidants) include hindered phenol-based, hindered amine-based, hydrazine-based, phosphorus-based, benzophenone-based and benzotriazole-based deterioration inhibitors and stabilizers. .
Examples of the antifreezing agent include ethylene glycol and propylene glycol.
The contents of the viscosity modifier, antifoaming agent, antiseptic, deterioration preventing agent, stabilizer and antifreezing agent are each usually 5% by weight or less, preferably 3% by weight or less, based on the weight of the aqueous paint.

水性塗料には、乾燥後の塗膜外観を向上させる目的で更に溶剤を添加してもよい。添加する溶剤としては例えば炭素数1〜20の1価アルコール(メタノール、エタノール及びプロパノール等)、炭素数1〜20のグリコール類(エチレングリコール、プロピレングリコール及びジエチレングリコール等)、炭素数1〜20の3価以上のアルコール(グリセリン等)及び炭素数1〜20のセロソルブ類(メチル及びエチルセロソルブ等)等が使用できる。添加する溶剤の含有量は、水性塗料の重量基づいて、好ましくは20重量%以下、更に好ましくは15重量%以下である。   A solvent may be further added to the water-based paint for the purpose of improving the appearance of the coating film after drying. Examples of the solvent to be added include monohydric alcohols having 1 to 20 carbon atoms (such as methanol, ethanol and propanol), glycols having 1 to 20 carbon atoms (such as ethylene glycol, propylene glycol and diethylene glycol), and 3 having 1 to 20 carbon atoms. Alcohols having higher valences (such as glycerin) and cellosolves having 1 to 20 carbon atoms (such as methyl and ethyl cellosolve) can be used. The content of the solvent to be added is preferably 20% by weight or less, more preferably 15% by weight or less, based on the weight of the aqueous paint.

本発明のポリウレタン樹脂水分散体を用いた水性塗料は、本発明のポリウレタン樹脂水分散体と上記記載の各成分を混合、撹拌することで製造される。混合の際は全ての成分を同時に混合しても、各成分を段階的に投入して混合してもよい。
水性塗料の固形分濃度は、好ましくは10〜70重量%、更に好ましくは15〜60重量%である。
The water-based paint using the polyurethane resin aqueous dispersion of the present invention is produced by mixing and stirring the polyurethane resin aqueous dispersion of the present invention and each of the components described above. When mixing, all the components may be mixed at the same time, or each component may be added stepwise and mixed.
The solid content concentration of the water-based paint is preferably 10 to 70% by weight, more preferably 15 to 60% by weight.

以下において本発明のポリウレタン樹脂水分散体を用いた水性接着剤について説明する。
水性接着剤に使用する樹脂として、本発明のポリウレタン樹脂水性分散体におけるウレタン樹脂(U)を単独で用いても構わないが、SBRラテックス樹脂やアクリル樹脂に代表されるウレタン樹脂以外の水分散性又は水溶性樹脂を併用することができる。併用する場合、樹脂全重量におけるポリウレタン樹脂(U)の割合は、好ましくは1重量%以上、更に好ましくは10重量%以上である。
Hereinafter, an aqueous adhesive using the aqueous polyurethane resin dispersion of the present invention will be described.
As the resin used for the water-based adhesive, the urethane resin (U) in the polyurethane resin aqueous dispersion of the present invention may be used alone, but water dispersibility other than urethane resin represented by SBR latex resin and acrylic resin. Or water-soluble resin can be used together. When used in combination, the ratio of the polyurethane resin (U) to the total weight of the resin is preferably 1% by weight or more, more preferably 10% by weight or more.

更に、本発明のポリウレタン樹脂水性分散体を含有する接着剤の凝集性を阻害しない範囲で通常の接着剤に使用される副資材及び添加剤、例えば、架橋剤、可塑剤、粘着付与剤、充填剤、顔料、増粘剤、酸化防止剤、紫外線吸収剤、界面活性剤及び難燃剤等を使用することも可能である。   Furthermore, auxiliary materials and additives used in ordinary adhesives, such as cross-linking agents, plasticizers, tackifiers, and fillers, as long as they do not impair the cohesiveness of the adhesive containing the aqueous polyurethane resin dispersion of the present invention. It is also possible to use agents, pigments, thickeners, antioxidants, ultraviolet absorbers, surfactants, flame retardants, and the like.

以下本発明のポリウレタン樹脂水分散体を用いた水性繊維加工処理剤の調製について説明する。本発明のポリウレタン樹脂水性分散体を含有する繊維加工処理剤には、必要により公知の消泡剤、湿潤剤、各種樹脂水分散体(本発明以外のポリウレタン水分散体、アクリル水分散体、SBRラテックス等)及び柔軟剤等を配合することができる。これらの配合量は樹脂水分散体の場合は固形分換算でポリウレタン樹脂(U)の重量に基づいて30重量%以下、特に20重量%以下であることが好ましく、その他の添加剤の場合はそれぞれ1重量%以下、特に0.1〜0.5重量%であることが好ましい。また、必要により、pH調整剤を添加することもできる。pH調整剤としては、アルカリ性物質、例えば強塩基(アルカリ金属等)と弱酸(pKaが2.0を越える酸、例えば炭酸及び燐酸)の塩(重炭酸ナトリウム等)、又は酸性物質(酢酸等)が挙げられる。pH調整剤の量は通常ポリウレタン樹脂(U)の重量に基づいて0.01〜0.3重量%である。   Hereinafter, the preparation of the aqueous fiber processing agent using the polyurethane resin aqueous dispersion of the present invention will be described. The fiber processing agent containing the polyurethane resin aqueous dispersion of the present invention may include known antifoaming agents, wetting agents, various resin water dispersions (polyurethane water dispersions other than the present invention, acrylic water dispersions, SBR if necessary). Latex etc.) and softeners can be blended. In the case of a resin water dispersion, these blending amounts are preferably 30% by weight or less, particularly preferably 20% by weight or less based on the weight of the polyurethane resin (U) in terms of solid content, and in the case of other additives, respectively. It is preferably 1% by weight or less, particularly preferably 0.1 to 0.5% by weight. Moreover, a pH adjuster can also be added as needed. Examples of pH adjusters include alkaline substances such as salts of strong bases (alkali metals, etc.) and weak acids (acids with pKa exceeding 2.0, such as carbonic acid and phosphoric acid) (sodium bicarbonate, etc.), or acidic substances (acetic acid, etc.). Is mentioned. The amount of the pH adjusting agent is usually 0.01 to 0.3% by weight based on the weight of the polyurethane resin (U).

本発明の水性繊維加工処理剤の固形分(不揮発分)濃度は特に限定されないが、通常10〜50重量%、好ましくは15〜45重量%である。また、粘度(25℃)は通常10〜100000mPa・sである。   The solid content (nonvolatile content) concentration of the aqueous fiber processing agent of the present invention is not particularly limited, but is usually 10 to 50% by weight, preferably 15 to 45% by weight. Moreover, a viscosity (25 degreeC) is 10-100,000 mPa * s normally.

以下、実施例を以て本発明を具体的に説明するが、本発明はこれらに限定されない。以下、部は重量部を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these. Hereinafter, the part means part by weight.

<実施例1>
撹拌機及び加熱装置を備えた簡易加圧反応装置に表1に記載の各原料を仕込んで85℃で10時間攪拌してウレタン化反応を行い、ウレタンプレポリマーのアセトン溶液(P−1)を製造した。ウレタンプレポリマーのアセトン溶液の固形分あたりのイソシアネート含量は0.77mmol/gであった。攪拌機及び加熱反応装置を備えた簡易加圧反応装置に得られたウレタンプレポリマーのアセトン溶液460.69部を入れ、40℃で撹拌しながらトリエチルアミン(中和剤)2.45部を加え、60rpmで30分間均一化した後、温度を30℃に保ち、100rpmで攪拌下、水346.98部を徐々に添加することで乳化した後、鎖伸長剤であるジエチレントリアミン4.55部を加え、減圧下に65℃で12時間かけてアセトンを留去し、ポリウレタン樹脂水分散体(Q−1)を得た。
<Example 1>
The raw materials listed in Table 1 were charged into a simple pressure reactor equipped with a stirrer and a heating device and stirred at 85 ° C. for 10 hours to carry out a urethanization reaction. An acetone solution of urethane prepolymer (P-1) was prepared. Manufactured. The isocyanate content per solid in the acetone solution of the urethane prepolymer was 0.77 mmol / g. 460.69 parts of an acetone solution of the urethane prepolymer obtained in a simple pressure reactor equipped with a stirrer and a heating reaction apparatus was added, and 2.45 parts of triethylamine (neutralizing agent) was added while stirring at 40 ° C., and 60 rpm For 30 minutes, and after emulsification by gradually adding 346.98 parts of water while maintaining the temperature at 30 ° C. and stirring at 100 rpm, add 4.55 parts of diethylenetriamine which is a chain extender, and reduce the pressure. Acetone was distilled off at 65 ° C. for 12 hours to obtain an aqueous polyurethane resin dispersion (Q-1).

<実施例2〜8>
ポリウレタン樹脂水分散体の各原料を、表1実施例1記載の各原料の代わりに、表1実施例2〜8記載の各原料を使用する以外は実施例1記載の方法と同様にして、ポリウレタン樹脂水分散体(Q−2)〜(Q−8)を得た。
<Examples 2 to 8>
Each raw material of the polyurethane resin aqueous dispersion is the same as the method described in Example 1 except that each raw material described in Table 1 Examples 2 to 8 is used instead of each raw material described in Table 1 Example 1. Polyurethane resin water dispersions (Q-2) to (Q-8) were obtained.

<実施例9>
撹拌機及び加熱装置を備えた簡易加圧反応装置に表1に記載の各原料を仕込んで85℃で10時間攪拌してウレタン化反応を行い、ウレタンプレポリマーのアセトン溶液(P−9)を製造した。ウレタンプレポリマーのアセトン溶液の固形分あたりのイソシアネート含量は0.77mmol/gであった。攪拌機及び加熱反応装置を備えた簡易加圧反応装置に得られたウレタンプレポリマーのアセトン溶液460.22部を入れ、40℃で撹拌しながら硫酸ジメチル(4級化剤)2.21部を加え、40℃3時間4級化反応を行った。その後、温度を30℃に保ち、100rpmで攪拌下、水234.02部を徐々に添加することで乳化した後、鎖伸長剤であるジエチレントリアミン4.55部を加え、減圧下に65℃で12時間かけてアセトンを留去し、ポリウレタン樹脂水分散体(Q−9)を得た。
<Example 9>
Each raw material shown in Table 1 was charged into a simple pressure reactor equipped with a stirrer and a heating device, and stirred at 85 ° C. for 10 hours to carry out a urethanization reaction. An acetone solution of urethane prepolymer (P-9) was obtained. Manufactured. The isocyanate content per solid in the acetone solution of the urethane prepolymer was 0.77 mmol / g. Put 460.22 parts of acetone solution of urethane prepolymer obtained in a simple pressure reactor equipped with a stirrer and a heating reactor, and add 2.21 parts of dimethyl sulfate (quaternizing agent) while stirring at 40 ° C. The quaternization reaction was carried out at 40 ° C. for 3 hours. Thereafter, the mixture was emulsified by gradually adding 234.02 parts of water while stirring at 100 rpm while maintaining the temperature at 30 ° C., and then 4.55 parts of diethylenetriamine, which is a chain extender, was added, and the mixture was added at 65 ° C. under reduced pressure at 12 ° C. Acetone was distilled off over time to obtain an aqueous polyurethane resin dispersion (Q-9).

<実施例10〜12>
ポリウレタン樹脂水分散体の各原料を、表1実施例9に記載の各原料の代わりに、表1実施例10〜12に記載の各原料を使用する以外は実施例9記載の方法と同様にして、ポリウレタン樹脂水分散体(Q−10)〜(Q−12)を得た。
<Examples 10 to 12>
Each raw material of the polyurethane resin aqueous dispersion is the same as the method described in Example 9, except that each raw material described in Table 1 Examples 10 to 12 is used instead of each raw material described in Table 1 Example 9. Thus, polyurethane resin aqueous dispersions (Q-10) to (Q-12) were obtained.

<実施例13>
撹拌機及び加熱装置を備えた簡易加圧反応装置に表1に記載の各原料を仕込んで85℃で10時間攪拌してウレタン化反応を行い、ウレタンプレポリマーのアセトン溶液(P−1)を製造した。ウレタンプレポリマーのアセトン溶液の固形分あたりのイソシアネート含量は0.45mmol/gであった。攪拌機及び加熱反応装置を備えた簡易加圧反応装置に得られたウレタンプレポリマーのアセトン溶液460.25部を入れ、40℃で撹拌しながらギ酸(中和剤)1.31部を加え、60rpmで30分間均一化した後、温度を30℃に保ち、100rpmで攪拌下、水346.98部を徐々に添加することで乳化した後、減圧下に65℃で12時間かけてアセトンを留去し、ポリウレタン樹脂水分散体(Q−13)を得た。
<比較例1>
撹拌機及び加熱装置を備えた簡易加圧反応装置に表1に記載の各原料を仕込んで85℃で10時間攪拌してウレタン化反応を行い、ウレタンプレポリマーのアセトン溶液(P’−1)を製造した。ウレタンプレポリマーのアセトン溶液の固形分あたりのイソシアネート含量は0.87mmol/gであった。攪拌機及び加熱反応装置を備えた簡易加圧反応装置に得られたウレタンプレポリマーのアセトン溶液458.36部を入れ、40℃で撹拌しながらトリエチルアミン(中和剤)0.35部を加え、60rpmで30分間均一化した後、温度を30℃に保ち、100rpmで攪拌下、水340.00部を徐々に添加することで乳化した後、鎖伸長剤であるジエチレントリアミン4.55部を加え、減圧下に65℃で12時間かけてアセトンを留去し、ポリウレタン樹脂水分散体(Q’−1)を得た。
<Example 13>
The raw materials listed in Table 1 were charged into a simple pressure reactor equipped with a stirrer and a heating device and stirred at 85 ° C. for 10 hours to carry out a urethanization reaction. An acetone solution of urethane prepolymer (P-1) was prepared. Manufactured. The isocyanate content per solid content of the acetone solution of the urethane prepolymer was 0.45 mmol / g. 460.25 parts of an acetone solution of urethane prepolymer obtained in a simple pressure reactor equipped with a stirrer and a heating reactor was added, and 1.31 parts of formic acid (neutralizing agent) was added while stirring at 40 ° C., and 60 rpm After stirring for 30 minutes, the mixture was emulsified by gradually adding 346.98 parts of water while maintaining the temperature at 30 ° C. and stirring at 100 rpm, and then acetone was distilled off at 65 ° C. under reduced pressure for 12 hours. As a result, an aqueous polyurethane resin dispersion (Q-13) was obtained.
<Comparative Example 1>
Each raw material shown in Table 1 was charged into a simple pressure reactor equipped with a stirrer and a heating device, and stirred at 85 ° C. for 10 hours to carry out a urethanization reaction. An acetone solution of urethane prepolymer (P′-1) Manufactured. The isocyanate content per solid content of the acetone solution of the urethane prepolymer was 0.87 mmol / g. 458.36 parts of an acetone solution of urethane prepolymer obtained in a simple pressure reactor equipped with a stirrer and a heating reactor was added, and 0.35 part of triethylamine (neutralizing agent) was added while stirring at 40 ° C., and 60 rpm And then emulsifying by gradually adding 340.00 parts of water while stirring at 100 rpm, adding 4.55 parts of diethylenetriamine, which is a chain extender, and reducing the pressure. Acetone was distilled off at 65 ° C. for 12 hours to obtain an aqueous polyurethane resin dispersion (Q′-1).

<比較例2>
ポリウレタン樹脂水分散体の各原料を、表1比較例1記載の各原料の代わりに、表1比較例2記載の各原料を使用する以外は比較例1記載の方法と同様にして、ポリウレタン樹脂水分散体(Q’−2)を得た。
<Comparative example 2>
In the same manner as in the method described in Comparative Example 1, except that each raw material of the polyurethane resin aqueous dispersion was used instead of the raw materials described in Table 1 Comparative Example 1, the polyurethane resin An aqueous dispersion (Q′-2) was obtained.

<比較例3>
撹拌機及び加熱装置を備えた簡易加圧反応装置に表1に記載の各原料を仕込んで85℃で10時間攪拌してウレタン化反応を行い、ウレタンプレポリマーのアセトン溶液(P’−3)を製造した。ウレタンプレポリマーのアセトン溶液の固形分あたりのイソシアネート含量は0.26mmol/gであった。攪拌機及び加熱反応装置を備えた簡易加圧反応装置に得られたウレタンプレポリマーのアセトン溶液492.65部を入れ、40℃で撹拌しながら硫酸ジメチル(4級化剤)2.21部を加え、40℃3時間4級化反応を行った。その後、温度を30℃に保ち、100rpmで攪拌下、水497.15部を徐々に添加することで乳化した後、鎖伸長剤であるジエチレントリアミン1.68部を加え、減圧下に65℃で12時間かけてアセトンを留去し、ポリウレタン樹脂水分散体(Q’−3)を得た。
<Comparative Example 3>
Each raw material shown in Table 1 was charged into a simple pressure reactor equipped with a stirrer and a heating device, and stirred at 85 ° C. for 10 hours to carry out a urethanization reaction. An acetone solution of urethane prepolymer (P′-3) Manufactured. The isocyanate content per solid in the acetone solution of the urethane prepolymer was 0.26 mmol / g. Put 492.65 parts of acetone solution of urethane prepolymer obtained in a simple pressure reactor equipped with stirrer and heating reactor, and add 2.21 parts of dimethyl sulfate (quaternizing agent) while stirring at 40 ° C. The quaternization reaction was carried out at 40 ° C. for 3 hours. Thereafter, the mixture was emulsified by gradually adding 497.15 parts of water while stirring at 100 rpm while maintaining the temperature at 30 ° C., and then 1.68 parts of diethylenetriamine, which is a chain extender, was added, and 12 ° C. at 65 ° C. under reduced pressure. Acetone was distilled off over time to obtain an aqueous polyurethane resin dispersion (Q′-3).

<比較例4>
ポリウレタン樹脂水分散体の各原料を、表1比較例3に記載の各原料の代わりに、表1比較例4に記載の各原料を使用する以外は比較例3記載の方法と同様にして、ポリウレタン樹脂水分散体(Q’−4)を得た。
<Comparative Example 4>
Each raw material of the polyurethane resin aqueous dispersion is the same as the method described in Comparative Example 3 except that each raw material described in Table 1 Comparative Example 4 is used instead of each raw material described in Table 1 Comparative Example 3. A polyurethane resin aqueous dispersion (Q′-4) was obtained.

実施例1〜13及び比較例1〜4で得られたポリウレタン樹脂水分散体(Q−1)〜(Q−13)及び(Q’−1)〜(Q’−4)の各種物性値及び評価結果を表4に示す。尚、本発明における各種物性値の測定方法及び評価方法は以下の通りである。   Various physical property values of polyurethane resin aqueous dispersions (Q-1) to (Q-13) and (Q′-1) to (Q′-4) obtained in Examples 1 to 13 and Comparative Examples 1 to 4 The evaluation results are shown in Table 4. In addition, the measuring method and evaluation method of various physical property values in the present invention are as follows.

各ポリウレタン樹脂の親水基含量は、中和又は4級化前の樹脂の酸価又はアミン価を測定することにより求めることができる。測定が困難な場合は、親水性基と活性水素原子を含有する化合物(c)の含有量から、以下の計算式により求めることができる。
・アニオンの場合
親水基含量(mmol/g)=((c)の含有量(g))x((c)の一分子中に有する酸基個数)x1000/{((c)の分子量)x(ポリウレタン樹脂の重量(g))}
・カチオンの場合
親水基含量(mmol/g)=((c)の含有量(g))x((c)の一分子中に有するアミノ基個数)x1000/{((c)の分子量)x(ポリウレタン樹脂の重量(g))}
The hydrophilic group content of each polyurethane resin can be determined by measuring the acid value or amine value of the resin before neutralization or quaternization. When measurement is difficult, it can obtain | require with the following formula from content of the compound (c) containing a hydrophilic group and an active hydrogen atom.
In the case of an anion hydrophilic group content (mmol / g) = (content of (c) (g)) x (number of acid groups in one molecule of (c)) x1000 / {(molecular weight of (c)) x (Weight of polyurethane resin (g))}
In the case of a cation hydrophilic group content (mmol / g) = (content of (c) (g)) × (number of amino groups in one molecule of (c)) × 1000 / {(molecular weight of (c)) x (Weight of polyurethane resin (g))}

<酸基含量>
以下の方法でポリウレタン樹脂の酸価を求めて、次式により酸基含量(mmol/g)を算出する。
酸基含量(mmol/g)=(酸価)/56.1
<酸価>
100mlのフラスコ中でジメチルホルムアミド(以下DMFとする)50mlに未中和又は4級化前のポリウレタン樹脂を溶解後、フェノールフタレイン指示薬を用いて、0.1mol/l水酸化カリウム・メチルアルコール滴定用溶液で滴定を行い(終点は、指示薬の色が無色から微紅色になった点)滴定ml数を読み取り、次式により酸価を算出する。
酸価=0.561xa ×f/ S
a:0.1mol/l塩酸・メチルアルコール滴定用溶液の滴定ml数。
f:0.1mol/l塩酸・メチルアルコール滴定用溶液の力価。
S:ポリウレタン樹脂採取量(g)
<Acid group content>
The acid value of the polyurethane resin is determined by the following method, and the acid group content (mmol / g) is calculated by the following formula.
Acid group content (mmol / g) = (acid value) /56.1
<Acid value>
After dissolving unneutralized or quaternized polyurethane resin in 50 ml of dimethylformamide (hereinafter referred to as DMF) in a 100 ml flask, 0.1 mol / l potassium hydroxide / methyl alcohol titration with phenolphthalein indicator Titration is carried out with the solution (the end point is the point where the color of the indicator has changed from colorless to slightly reddish).
Acid value = 0.561xa × f / S
a: The number of ml of titration of a 0.1 mol / l hydrochloric acid / methyl alcohol titration solution.
f: Potency of 0.1 mol / l hydrochloric acid / methyl alcohol titration solution.
S: Amount of polyurethane resin collected (g)

<アミノ基含量>
以下の方法でポリウレタン樹脂のアミン価を求めて、次式によりアミノ基含量(mmol/g)を算出する。
末端アミノ基含量(mmol/g)=アミン価/56.1
(1)アミン価
100mlのフラスコ中でトルエン50mlに未中和もしくは4級化前のポリウレタン樹脂を溶解後、キシレンシアノールFF・メチルオレンジ混合指示薬を用いて、0.5mol/l塩酸・メチルアルコール滴定用溶液で滴定を行い(終点は、指示薬の色が緑色から赤褐色になった点)滴定ml数を読み取り、次式により全アミン価を算出する。
全アミン価=a ×f/ (S×28.05)
a:0.5mol/l塩酸・メチルアルコール滴定用溶液の滴定ml数。
f:0.5mol/l塩酸・メチルアルコール滴定用溶液の力価。
S:ポリウレタン樹脂採取量(g)
<Amino group content>
The amine value of the polyurethane resin is determined by the following method, and the amino group content (mmol / g) is calculated by the following formula.
Terminal amino group content (mmol / g) = Amine value / 56.1
(1) Amine number After dissolving unneutralized or unquaternized polyurethane resin in 50 ml of toluene in a 100 ml flask, 0.5 mol / l hydrochloric acid / methyl alcohol using xylene cyanol FF / methyl orange mixed indicator Titrate with the titration solution (the end point is the point where the indicator color changed from green to reddish brown).
Total amine number = a × f / (S × 28.05)
a: Titration ml number of 0.5 mol / l hydrochloric acid / methyl alcohol titration solution.
f: titer of 0.5 mol / l hydrochloric acid / methyl alcohol titration solution.
S: Amount of polyurethane resin collected (g)

<中和率または4級化率>
ポリウレタン樹脂(U)の水性分散体の原料として使用される、親水性基と活性水素原子を含有する化合物(c)と中和剤もしくは4級化剤(d)のモル比を計算することにより、ポリウレタン樹脂(U)の中和率もしくは4級化率を算出することができる。
・中和率又は4級化率(%)=((d)のモル数)/((c)のモル数)x100
また、ポリウレタン樹脂(U)が酸基を有し、中和剤(d)としてアミン類を使用した場合は、上記に記載の方法により得られるポリウレタン樹脂水分散体の酸価(A)、ポリウレタン樹脂水分散体のアミン価(B)の値から、以下の式により求めることができる。
・ポリウレタン樹脂(U)が酸基を有し、中和剤(d)としてアミン類を使用した場合の中和率(%)
=(B)/(A)x100
<Neutralization rate or quaternization rate>
By calculating the molar ratio of the compound (c) containing a hydrophilic group and an active hydrogen atom and the neutralizing agent or quaternizing agent (d) used as a raw material for the aqueous dispersion of the polyurethane resin (U) The neutralization rate or quaternization rate of the polyurethane resin (U) can be calculated.
Neutralization rate or quaternization rate (%) = (number of moles of (d)) / (number of moles of (c)) × 100
When the polyurethane resin (U) has an acid group and an amine is used as the neutralizing agent (d), the acid value (A) of the polyurethane resin aqueous dispersion obtained by the method described above, polyurethane From the value of the amine value (B) of the resin water dispersion, it can be determined by the following formula.
・ Neutralization rate (%) when polyurethane resin (U) has acid groups and amines are used as neutralizing agent (d)
= (B) / (A) x 100

<体積平均粒子径(Dv)>
ポリウレタン樹脂水分散体を、イオン交換水でポリウレタン樹脂の固形分が0.01重量%となるよう希釈した後、光散乱粒度分布測定装置[ELS−8000{大塚電子(株)製}]を用いて測定した。
<Volume average particle diameter (Dv)>
After diluting the polyurethane resin aqueous dispersion with ion-exchanged water so that the solid content of the polyurethane resin is 0.01% by weight, a light scattering particle size distribution analyzer [ELS-8000 {manufactured by Otsuka Electronics Co., Ltd.}] is used. Measured.

評価方法 Evaluation method

<ポリウレタン樹脂水分散体の分散安定性>
25℃に温調したポリウレタン樹脂水分散体を12時間静置しておき、沈降物の発生を目視にて評価した。沈降物が発生しない場合を○、沈降物が発生した場合を×とした。
<Dispersion stability of polyurethane resin aqueous dispersion>
The polyurethane resin aqueous dispersion whose temperature was adjusted to 25 ° C. was allowed to stand for 12 hours, and the occurrence of sediment was visually evaluated. The case where no sediment was generated was marked as ◯, and the case where sediment was generated was marked as x.

<乾燥皮膜の耐水性>
(1)外観
ポリウレタン樹脂水分散体10部を、縦10cm×横20cm×深さ1cmのポリプロピレン製モールドに、乾燥後のフィルム膜厚が200μmになる量を流し込み、室温で12時間乾燥後、循風乾燥機で105℃で3時間加熱乾燥することによって得られるフィルムを、60℃のイオン交換水に14日間浸漬した後、目視にて皮膜の表面状態を観察した。変化が無い場合を◎、白化した部分が全面積の50%未満の場合を○、全体的に白化した場合を×とした。
(2)破断伸びの維持率
取り出したフィルムを乾燥して、JIS K7311に記載の5.引張試験に基づいて測定を行ない、浸漬前の破断伸びに対する浸漬後の破断伸びの比、破断伸びの維持率を求めた。
<Water resistance of dry film>
(1) Appearance 10 parts of a polyurethane resin aqueous dispersion was poured into a polypropylene mold having a length of 10 cm, a width of 20 cm, and a depth of 1 cm, and after drying for 12 hours at room temperature, the film thickness after drying was poured into a 200 μm film. A film obtained by heating and drying at 105 ° C. for 3 hours with an air dryer was immersed in ion exchange water at 60 ° C. for 14 days, and then the surface state of the film was visually observed. The case where there was no change was marked with ◎, the case where the whitened portion was less than 50% of the total area was marked with ◯, and the case where the whole was whitened was marked with ×.
(2) Maintenance rate of breaking elongation The film taken out is dried and described in JIS K7311. The measurement was performed based on a tensile test, and the ratio of the breaking elongation after immersion to the breaking elongation before immersion and the maintenance ratio of the elongation at break were determined.

評価例1(水性塗料としての評価)
イオン交換水90部、増粘剤[「ビスライザーAP−2」、三洋化成工業(株)製]70部、顔料分散剤[「キャリボンL−400」、三洋化成工業(株)製]10部、酸化チタン[「CR−93」、石原産業(株)製]140部、カーボンブラック[「FW200P」、デグサ(株)製]及び炭酸カルシウム160部をペイントコンディショナーにより30分間混合分散した。ここに1−ノナノール20部、アクリル水分散体[「ポリトロンZ330」、旭化成(株)製]200部及び実施例1で得たポリウレタン樹脂水分散体(Q−1)200部を仕込み、10分間混合分散した。更にイオン交換水を用いて25℃での粘度が150mPa・sとなるよう調整し、水性塗料(W−1)を得た。尚、粘度はTOKIMEC(株)製回転式粘度計を用いて、回転数60rpmで測定した。
Evaluation Example 1 (Evaluation as water-based paint)
90 parts of ion-exchanged water, 70 parts of thickener [“Biseriser AP-2”, manufactured by Sanyo Chemical Industries, Ltd.], 10 parts of pigment dispersant [“Calibon L-400”, manufactured by Sanyo Chemical Industries, Ltd.] Then, 140 parts of titanium oxide [“CR-93”, manufactured by Ishihara Sangyo Co., Ltd.], carbon black [“FW200P”, manufactured by Degussa Co., Ltd.] and 160 parts of calcium carbonate were mixed and dispersed for 30 minutes using a paint conditioner. Here, 20 parts of 1-nonanol, 200 parts of an acrylic water dispersion [“Polytron Z330”, manufactured by Asahi Kasei Co., Ltd.] and 200 parts of the polyurethane resin water dispersion (Q-1) obtained in Example 1 were charged for 10 minutes. Mixed and dispersed. Furthermore, it adjusted so that the viscosity in 25 degreeC might be set to 150 mPa * s using ion-exchange water, and the water-based coating material (W-1) was obtained. The viscosity was measured at a rotational speed of 60 rpm using a rotary viscometer manufactured by TOKIMEC.

評価例2〜5(水性塗料としての評価)
ポリウレタン樹脂水分散体(Q−1)の代わりに、ポリウレタン樹脂水分散体(Q−2)〜(Q−5)を、評価例1で使用した(Q−1)と固形分含量が同等となるように添加する以外は、評価例1と同様にして、評価例2〜5用の水性塗料(W−2)〜(W−5)を得た。
水性塗料(W−1)〜(W−5)について、下記試験方法に基づいて塗膜の耐水性及び塗料の配合安定性を評価した結果を表4に示す。
Evaluation Examples 2 to 5 (Evaluation as water-based paint)
Instead of the polyurethane resin water dispersion (Q-1), the polyurethane resin water dispersions (Q-2) to (Q-5) are equivalent in solid content to (Q-1) used in Evaluation Example 1. Aqueous paints (W-2) to (W-5) for Evaluation Examples 2 to 5 were obtained in the same manner as in Evaluation Example 1 except that they were added.
Table 4 shows the results of evaluating the water resistance of the coating and the blending stability of the coating based on the following test methods for the water-based coatings (W-1) to (W-5).

比較評価例1〜2
ポリウレタン樹脂水分散体(Q−1)の代わりにポリウレタン樹脂水分散体(Q’−1)及び(Q‘−2)を、評価例1で使用した(Q−1)と固形分含量が同等となるように添加する以外は、評価例1と同様にして比較用の水性塗料(W’−1)及び(W’−2)を得た。
水性塗料(W’−1)及び(W’−2)について、下記試験方法に基づいて塗膜の耐水性及び塗料の配合安定性を評価した結果を表4に示す。
Comparative evaluation examples 1-2
Instead of polyurethane resin water dispersion (Q-1), polyurethane resin water dispersions (Q′-1) and (Q′-2) are equivalent in solid content to (Q-1) used in Evaluation Example 1. Comparative water-based paints (W′-1) and (W′-2) were obtained in the same manner as in Evaluation Example 1 except that the addition was performed.
Table 4 shows the results of evaluating the water resistance of the coating and the blending stability of the coating based on the following test methods for the water-based coatings (W′-1) and (W′-2).

<塗膜の耐水性評価方法>
得られた水性塗料を10cm×20cmの鋼板にスプレー塗布し、120℃で10分加熱して厚さ20μmの塗膜を作製した。この塗装した鋼板を80℃のイオン交換水中に14日間浸漬した後、取り出して表面を軽く拭き、塗膜表面を目視により以下の評価基準で評価した。
○:浸漬前後で塗膜表面の変化がない。
×:浸漬後、塗料が一部剥げ落ちている。
<Water resistance evaluation method of coating film>
The obtained water-based paint was spray-coated on a 10 cm × 20 cm steel plate and heated at 120 ° C. for 10 minutes to prepare a coating film having a thickness of 20 μm. The coated steel sheet was immersed in ion exchange water at 80 ° C. for 14 days, and then taken out and the surface was lightly wiped. The surface of the coating film was visually evaluated according to the following evaluation criteria.
○: There is no change in the coating film surface before and after immersion.
X: After immersion, a part of the paint is peeled off.

<塗料の配合安定性評価方法>
(1)ゲル物発生の有無
得られた水性塗料を30℃に温調し、5日静置しておき、ゲル物の発生を粒ゲージを使用し目視にて評価すると共に、粘度をB型粘度計で測定し、静置前後での粘度変化を評価した。ゲル物が発生しない場合を○、ゲル物が発生した場合を×とした。
(2)粘度変化
得られた水性塗料を30℃に温調し、5日間静置しておき、静置前後での粘度変化をB型粘度計で測定した。以下の式により、粘度変化率を算出し、変化率が50%未満の場合を○、50〜150%未満の場合を△、150%以上の場合を×とした。
粘度変化率(%)={(静置後の粘度)−(静置前の粘度)}/(静置前の粘度)x100
<Method of evaluating the stability of paint blending>
(1) Presence or absence of gel product generation The temperature of the obtained water-based paint was adjusted to 30 ° C. and allowed to stand for 5 days. The generation of the gel product was visually evaluated using a particle gauge, and the viscosity was B type. It was measured with a viscometer and the change in viscosity before and after standing was evaluated. The case where the gel material was not generated was marked with ◯, and the case where the gel material was generated was marked with x.
(2) Viscosity change The obtained water-based coating material was temperature-controlled at 30 degreeC, left still for 5 days, and the viscosity change before and behind stillness was measured with the B-type viscometer. The viscosity change rate was calculated according to the following formula, and the case where the rate of change was less than 50% was evaluated as “◯”, the case where it was 50 to less than 150% as “Δ”, and the case where it was 150% or more as “X”.
Viscosity change rate (%) = {(viscosity after standing) − (viscosity before standing)} / (viscosity before standing) × 100

評価例6(水性接着剤としての評価)
実施例6で得たポリウレタン樹脂水分散体(Q−6)100部に対して、硬化剤として、1,6−ヘキサメチレンジイソシアネートのイソシアヌレート3量体を6部混合して、25℃での粘度が4,000〜5,000mPa・sになるように増粘剤(サンノプコ製「SNシックナーA−803」)で調整し、水性接着剤(X−1)を得た。
Evaluation Example 6 (Evaluation as water-based adhesive)
6 parts of an isocyanurate trimer of 1,6-hexamethylene diisocyanate as a curing agent was mixed with 100 parts of the polyurethane resin aqueous dispersion (Q-6) obtained in Example 6 at 25 ° C. The viscosity was adjusted to 4,000 to 5,000 mPa · s with a thickener (“SN thickener A-803” manufactured by San Nopco) to obtain an aqueous adhesive (X-1).

評価例7〜8(水性接着剤としての評価)
ポリウレタン樹脂水分散体(Q−6)の代わりにポリウレタン樹脂水分散体(Q−7)〜(Q−8)を、評価例6で使用した(Q−6)と固形分含量が同等となるように添加する用いる以外は、評価例6と同様にして、評価例7〜8用の水性接着剤(X−2)〜(X−3)を得た。
水性接着剤(X−1)〜(X−3)について、下記試験方法に基づいての耐水性及び接着剤の配合安定性を評価した結果を表5に示す。
Evaluation Examples 7 to 8 (Evaluation as aqueous adhesive)
Instead of the polyurethane resin water dispersion (Q-6), the polyurethane resin water dispersions (Q-7) to (Q-8) are equivalent in solid content to (Q-6) used in Evaluation Example 6. Except for using such addition, aqueous adhesives (X-2) to (X-3) for Evaluation Examples 7 to 8 were obtained in the same manner as in Evaluation Example 6.
Table 5 shows the results of evaluating water resistance and adhesive blending stability based on the following test methods for the water-based adhesives (X-1) to (X-3).

比較評価例3〜4
ポリウレタン樹脂水分散体(Q−6)の代わりにポリウレタン樹脂水分散体(Q’−1)及び(Q’−2)を、評価例6で使用した(Q−6)と固形分含量が同等となるように添加するる以外は、評価例6と同様にして比較用の水性接着剤(X’−1)及び(X’−2)を得た。
水性接着剤(X’−1)及び(X’−2)について、下記試験方法に基づいて耐水性及び接着剤の配合安定性を評価した結果を表5に示す。
Comparative evaluation examples 3 to 4
Instead of the polyurethane resin water dispersion (Q-6), the polyurethane resin water dispersions (Q′-1) and (Q′-2) are equivalent in solid content to (Q-6) used in Evaluation Example 6. Comparative water-based adhesives (X′-1) and (X′-2) were obtained in the same manner as in Evaluation Example 6 except that they were added so as to be.
Table 5 shows the results of evaluating the water resistance and the blending stability of the adhesive based on the following test methods for the aqueous adhesives (X′-1) and (X′-2).

<水性接着剤の耐水接着性評価方法>
上記接着強度の評価方法と同様に作製した試験片を、沸騰水に1時間浸漬後直ちに剥離強度を測定した。剥離強度が、25mm幅で100g以上を耐水接着性○、100g未満を耐水接着性×とした。
<Water-resistant adhesive evaluation method of water-based adhesive>
The peel strength was measured immediately after immersing a test piece prepared in the same manner as the above-described method for evaluating the adhesive strength in boiling water for 1 hour. When the peel strength was 25 mm, 100 g or more was regarded as water-resistant adhesion ○, and less than 100 g was regarded as water-resistant adhesion x.

<水性接着剤の配合安定性評価方法>
(1)ゲル物発生の有無
得られた水性接着剤を30℃に温調し、5日間静置しておき、ゲル物の発生を粒ゲージを使用し目視にて評価すると共に、粘度をB型粘度計で測定し、静置前後での粘度変化を評価した。ゲル物が発生しない場合を○、ゲル物が発生した場合を×とした。
(2)粘度変化
得られた水性接着剤を30℃に温調し、5日間静置しておき、静置前後での粘度変化をB型粘度計で測定した。以下の式により、粘度変化率を算出し、変化率が50%未満の場合を○、50〜150%未満の場合を△、150%以上の場合を×とした。
粘度変化率(%)={(静置後の粘度)−(静置前の粘度)}/(静置前の粘度)x100
<Method for evaluating blending stability of water-based adhesive>
(1) Presence or absence of gel product generation The temperature of the obtained aqueous adhesive was adjusted to 30 ° C. and allowed to stand for 5 days. The generation of the gel product was visually evaluated using a grain gauge, and the viscosity was B It was measured with a viscometer and the viscosity change before and after standing was evaluated. The case where the gel material was not generated was marked with ◯, and the case where the gel material was generated was marked with x.
(2) Viscosity change The obtained water-based adhesive was temperature-controlled at 30 ° C. and allowed to stand for 5 days, and the viscosity change before and after standing was measured with a B-type viscometer. The viscosity change rate was calculated according to the following formula, and the case where the rate of change was less than 50% was evaluated as “◯”, the case where it was 50 to less than 150% as “Δ”, and the case where it was 150% or more as “X”.
Viscosity change rate (%) = {(viscosity after standing) − (viscosity before standing)} / (viscosity before standing) × 100

評価例9(水性繊維加工処理剤としての評価)
ポリウレタン樹脂水性分散体を用いて以下のように顔料捺染糊を作製した。
実施例9で得たポリウレタン樹脂水分散体(Q−9)100部に対して、粘弾性調整剤[「SNシックナー618」サンノプコ(株)製]8.9部、シリコン系消泡剤[「SNデフォーマー777」サンノプコ(株)製]0.9部、水35部、酸化チタン44.6部及び顔料[「NL レッド FR3R−D」山宋実業(株)社製]18.9部を混合して、顔料捺染糊(Y−1)を得た。顔料捺染糊(Y−1)について、下記試験方法に基づいて顔料捺染された繊維布の耐水性及び顔料捺染糊の造膜性を試験した結果を表6に示す。
Evaluation Example 9 (Evaluation as aqueous fiber processing agent)
A pigment printing paste was prepared using an aqueous polyurethane resin dispersion as follows.
For 100 parts of the polyurethane resin aqueous dispersion (Q-9) obtained in Example 9, 8.9 parts of a viscoelasticity modifier [“SN thickener 618” manufactured by San Nopco Co., Ltd.], a silicon-based antifoaming agent [“ SN deformer 777 “San Nopco Co., Ltd.” 0.9 parts, water 35 parts, titanium oxide 44.6 parts, and pigment [“NL Red FR3R-D” manufactured by Yamagata Kogyo Co., Ltd.] 18.9 parts Thus, a pigment printing paste (Y-1) was obtained. Table 6 shows the results of testing the water resistance of the pigment-printed fiber cloth and the film-forming property of the pigment-printing paste based on the following test method for the pigment-printing paste (Y-1).

評価例10〜13(水性繊維加工処理剤としての評価)
ポリウレタン樹脂水分散体(Q−9)の代わりにポリウレタン樹脂水分散体(Q−10)〜(Q−13)を、評価例9で使用した(Q−9)と固形分含量が同等となるように添加する用いる以外は、評価例9と同様にして、評価例10〜13用の水性繊維加工処理剤(X−2)〜(X−5)を得た。
水性繊維加工処理剤(X−1)〜(X−5)について、下記試験方法に基づいての耐水性及び繊維加工処理剤の配合安定性を評価した結果を表6に示す。
Evaluation Examples 10 to 13 (Evaluation as aqueous fiber processing agent)
Instead of the polyurethane resin water dispersion (Q-9), the polyurethane resin water dispersions (Q-10) to (Q-13) have the same solid content as (Q-9) used in Evaluation Example 9. Except for using such addition, aqueous fiber processing agents (X-2) to (X-5) for Evaluation Examples 10 to 13 were obtained in the same manner as in Evaluation Example 9.
Table 6 shows the results of evaluating the water resistance and the blending stability of the fiber processing agents based on the following test methods for the aqueous fiber processing agents (X-1) to (X-5).

比較評価例5〜6
ポリウレタン樹脂水分散体(Q−9)の代わりにポリウレタン樹脂水分散体(Q’−3)及び(Q’−4)を、評価例9で使用した(Q−9)と固形分含量が同等となるように添加する以外は、評価例9と同様にして比較用の顔料捺染糊(Y’−1)及び(Y’−2)を得た。顔料捺染糊(Y’−1)及び(Y’−2)について、下記試験方法に基づいて顔料捺染された繊維布の耐水性及び顔料捺染糊の配合安定性を試験した結果を表6に示す。
Comparative Evaluation Examples 5-6
Instead of the polyurethane resin water dispersion (Q-9), the polyurethane resin water dispersions (Q′-3) and (Q′-4) are equivalent in solid content to (Q-9) used in Evaluation Example 9. Comparative pigment printing pastes (Y′-1) and (Y′-2) were obtained in the same manner as in Evaluation Example 9 except that the addition was performed in the same manner as in Evaluation Example 9. Table 6 shows the results of testing the water resistance of the pigment-printed fiber cloth and the blending stability of the pigment-printing paste for the pigment-printing pastes (Y′-1) and (Y′-2) based on the following test methods. .

<顔料捺染された繊維布の耐水性評価方法>
顔料捺染糊を綿金巾の型の上に縦2cm×横10cmで膜厚が0.2mmとなるようにバーコーターを用いて塗布した。これを140℃に温調されたテンターで5分乾燥することにより顔料捺染された繊維布を得た。この顔料捺染された繊維布を、60℃のイオン交換水中に1日間浸漬した後、取り出して表面を捺染処理していない繊維布で軽く拭き、目視により以下の評価基準で評価した。
○:捺染処理していない繊維布に色移りしない。
×:捺染処理していない繊維布に色移りがみられる。
<Method for evaluating water resistance of textile fabric printed with pigment>
The pigment printing paste was applied onto a cotton-plated mold using a bar coater so that the film thickness was 2 cm × 10 cm and the film thickness was 0.2 mm. This was dried for 5 minutes with a tenter temperature-controlled at 140 ° C. to obtain a textile fabric printed with pigment. This pigment-printed fiber cloth was immersed in ion-exchanged water at 60 ° C. for 1 day, then taken out, and the surface was lightly wiped with a non-printed fiber cloth, and visually evaluated according to the following evaluation criteria.
○: No color transfer to a textile fabric that has not been printed.
X: Color transfer is observed in the fiber cloth not subjected to the printing process.

<顔料捺染糊の配合安定性評価方法>
(1)ゲル物発生の有無
得られた顔料捺染糊を30℃に温調し、5日間静置しておき、ゲル物の発生を粒ゲージを使用し目視にて評価すると共に、粘度をB型粘度計で測定し、静置前後での粘度変化を評価した。ゲル物が発生しない場合を○、ゲル物が発生した場合を×とした。
(2)粘度変化
得られた顔料捺染糊を30℃に温調し、5日間静置しておき、静置前後での粘度変化をB型粘度計で測定した。以下の式により、粘度変化率を算出し、変化率が50%未満の場合を○、50〜150%未満の場合を△、150%以上の場合を×とした。
粘度変化率(%)={(静置後の粘度)−(静置前の粘度)}/(静置前の粘度)x100
<Method of evaluating blending stability of pigment printing paste>
(1) Presence / absence of gel product generation The temperature of the obtained pigment printing paste was adjusted to 30 ° C. and allowed to stand for 5 days. The generation of the gel product was visually evaluated using a grain gauge, and the viscosity was B It was measured with a viscometer and the viscosity change before and after standing was evaluated. The case where the gel material was not generated was marked with ◯, and the case where the gel material was generated was marked with x.
(2) Viscosity change The obtained pigment printing paste was temperature-controlled at 30 ° C. and allowed to stand for 5 days, and the viscosity change before and after standing was measured with a B-type viscometer. The viscosity change rate was calculated according to the following formula, and the case where the rate of change was less than 50% was evaluated as “◯”, the case where it was 50 to less than 150% as “Δ”, and the case where it was 150% or more as “X”.
Viscosity change rate (%) = {(viscosity after standing) − (viscosity before standing)} / (viscosity before standing) × 100

本発明のポリウレタン樹脂水分散体は、塗料組成物、接着剤組成物、繊維加工処理剤組成物等に好適に使用できる。



The aqueous polyurethane resin dispersion of the present invention can be suitably used for a coating composition, an adhesive composition, a fiber processing agent composition, and the like.



Claims (9)

水とポリウレタン樹脂(U)を含有するポリウレタン樹脂水分散体であって、上記ポリウレタン樹脂(U)が、ジオール(a)、ポリイソシアネート(b)、並びに酸基(α)又はアミノ基(β)と酸基(α)でもなくアミノ基(β)でもない活性水素原子を有する基(γ)を有する化合物(c)を必須構成単量体とするポリウレタン樹脂の酸基(α)又はアミノ基(β)を中和又は4級化されたポリウレタン樹脂であり、
酸基(α)、中和された酸基(α1)、アミノ基(β)、中和されたアミノ基(β1)及び4級化されたアミノ基(β2)の合計含有量が(U)の重量に対して0.1〜0.8mmol/gであり、
かつ下記式(1)で表される中和率が30〜90%であるか、又は下記式(2)で表される中和及び4級化率が30〜90%であり、かつ上記ポリウレタン樹脂水分散体中のポリウレタン樹脂粒子の体積平均粒子径が50〜600nmであるポリウレタン樹脂水分散体。
A polyurethane resin aqueous dispersion containing water and a polyurethane resin (U), wherein the polyurethane resin (U) is a diol (a), a polyisocyanate (b), and an acid group (α) or amino group (β). And an acid group (α) or amino group () of a polyurethane resin comprising the compound (c) having an active hydrogen atom group (γ) that is neither an acid group (α) nor an amino group (β) as an essential constituent monomer. β) is a neutralized or quaternized polyurethane resin,
The total content of acid group (α), neutralized acid group (α1), amino group (β), neutralized amino group (β1) and quaternized amino group (β2) is (U) 0.1 to 0.8 mmol / g based on the weight of
And the neutralization rate represented by the following formula (1) is 30 to 90%, or the neutralization and quaternization rate represented by the following formula (2) is 30 to 90%, and the polyurethane A polyurethane resin aqueous dispersion in which the volume average particle diameter of polyurethane resin particles in the resin aqueous dispersion is 50 to 600 nm.
上記酸基(α)がカルボキシル基である請求項1に記載のポリウレタン樹脂水分散体。 The polyurethane resin aqueous dispersion according to claim 1, wherein the acid group (α) is a carboxyl group. 上記ポリウレタン樹脂(U)がポリオキシエチレン基を有する請求項1又は2に記載のポリウレタン樹脂水分散体。   The polyurethane resin aqueous dispersion according to claim 1 or 2, wherein the polyurethane resin (U) has a polyoxyethylene group. ポリウレタン樹脂(U)がさらに鎖伸長剤(e)を必須構成単量体とし、鎖伸長剤(e)が1級アミノ基及び2級アミノ基を合計2個以上有する化合物である、請求項1〜3のいずれか1項に記載のポリウレタン樹脂水分散体。 The polyurethane resin (U) is a compound further comprising a chain extender (e) as an essential constituent monomer and the chain extender (e) having a total of two or more primary amino groups and secondary amino groups. The polyurethane resin aqueous dispersion of any one of -3. ポリウレタン樹脂(U)がさらに、水酸基を3個以上有するポリオール(k)を必須構成単量体とし、ポリオール(a)の重量に対してポリオール(k)の重量が0.1〜4.0重量%である請求項1〜4のいずれか1項に記載のポリウレタン樹脂水分散体。   The polyurethane resin (U) further comprises a polyol (k) having 3 or more hydroxyl groups as an essential constituent monomer, and the weight of the polyol (k) is 0.1 to 4.0 weight with respect to the weight of the polyol (a). %. The polyurethane resin aqueous dispersion according to any one of claims 1 to 4. 請求項1〜5のいずれか1項に記載のポリウレタン樹脂水分散体を含有する水性塗料。   An aqueous paint containing the polyurethane resin aqueous dispersion according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載のポリウレタン樹脂水分散体を含有する水性接着剤。   An aqueous adhesive containing the polyurethane resin aqueous dispersion according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載のポリウレタン樹脂水分散体を含有する水性繊維加工処理剤。   The aqueous fiber processing agent containing the polyurethane resin aqueous dispersion of any one of Claims 1-5. 酸基(α)又はアミノ基(β)を0.1〜0.8mmol/g有するポリウレタン樹脂(U0)を、下記式(1)で表される中和率が30〜90%であるか、又は下記式(2)で表される中和及び4級化率が30〜90%となるように中和又は4級化して得られた中和又は4級化ポリウレタン樹脂(U1)を水中に分散させ、ポリウレタン樹脂水分散体中のポリウレタン樹脂粒子の体積平均粒子径が50〜600nmであるポリウレタン樹脂水分散体を得ることを特徴とする、請求項1〜5のいずれか1項に記載のポリウレタン樹脂水分散体の製造方法。
Whether the polyurethane resin (U0) having an acid group (α) or amino group (β) of 0.1 to 0.8 mmol / g has a neutralization rate of 30 to 90% represented by the following formula (1), Alternatively, the neutralized or quaternized polyurethane resin (U1) obtained by neutralization or quaternization so that the neutralization and quaternization ratio represented by the following formula (2) is 30 to 90% is submerged in water. The polyurethane resin aqueous dispersion is obtained by dispersing to obtain a polyurethane resin aqueous dispersion in which the volume average particle diameter of the polyurethane resin particles in the polyurethane resin aqueous dispersion is 50 to 600 nm. A method for producing a polyurethane resin aqueous dispersion.
JP2016053280A 2016-03-17 2016-03-17 Polyurethane resin water dispersion Pending JP2017165884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053280A JP2017165884A (en) 2016-03-17 2016-03-17 Polyurethane resin water dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053280A JP2017165884A (en) 2016-03-17 2016-03-17 Polyurethane resin water dispersion

Publications (1)

Publication Number Publication Date
JP2017165884A true JP2017165884A (en) 2017-09-21

Family

ID=59912602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053280A Pending JP2017165884A (en) 2016-03-17 2016-03-17 Polyurethane resin water dispersion

Country Status (1)

Country Link
JP (1) JP2017165884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121932A1 (en) * 2018-12-11 2020-06-18 三井化学株式会社 Polyurethane dispersion and layered product
KR102362114B1 (en) * 2021-09-06 2022-02-14 (주)에코숨 Textile treatment composition for antivirus and treatment method of textile fabrics using this

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259884A (en) * 1995-03-22 1996-10-08 Mitsubishi Chem Corp Aqueous polyurethane resin coating material
JPH11335437A (en) * 1998-05-27 1999-12-07 Mitsubishi Chemical Corp Aqueous urethane resin having excellent gloss and removability
JP2003055431A (en) * 2001-08-17 2003-02-26 Nippon Polyurethane Ind Co Ltd Aqueous polyurethane emulsion, and water-based adhesive and water-based coating material made by using it
JP2007002248A (en) * 2005-06-23 2007-01-11 Bayer Materialscience Ag Aqueous coating material containing polycarbonate polyol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259884A (en) * 1995-03-22 1996-10-08 Mitsubishi Chem Corp Aqueous polyurethane resin coating material
JPH11335437A (en) * 1998-05-27 1999-12-07 Mitsubishi Chemical Corp Aqueous urethane resin having excellent gloss and removability
JP2003055431A (en) * 2001-08-17 2003-02-26 Nippon Polyurethane Ind Co Ltd Aqueous polyurethane emulsion, and water-based adhesive and water-based coating material made by using it
JP2007002248A (en) * 2005-06-23 2007-01-11 Bayer Materialscience Ag Aqueous coating material containing polycarbonate polyol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AJAYA K.NANDA ET AL.: "Effect of Ionic Content, Solid Content, Degree of Neutralization, and Chain Extension on Aqueous Pol", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 98, JPN6020004183, 29 August 2015 (2015-08-29), pages 2514 - 2520, ISSN: 0004323759 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121932A1 (en) * 2018-12-11 2020-06-18 三井化学株式会社 Polyurethane dispersion and layered product
JPWO2020121932A1 (en) * 2018-12-11 2021-10-07 三井化学株式会社 Polyurethane dispersion and laminate
KR102362114B1 (en) * 2021-09-06 2022-02-14 (주)에코숨 Textile treatment composition for antivirus and treatment method of textile fabrics using this

Similar Documents

Publication Publication Date Title
WO2010122599A1 (en) Aqueous polyurethane resin dispersion
JP5940409B2 (en) Polyurethane resin water dispersion
JP6940317B2 (en) Polyurethane resin aqueous dispersion
JP4964916B2 (en) Polyurethane resin water dispersion
JP2013227528A (en) Polyurethane-based resin aqueous dispersion
JP2016188362A (en) Polyurethane resin water dispersion
JP2010254977A (en) Polyurethane resin emulsion for water-based coating
BR112013001627B1 (en) VISCOSITY REGULATORY COMPOSITION, WATER THICKENING COMPOSITION, AND METHOD FOR CONFIRMING A PAINT VISCOSITY RECOVERY PERIOD AFTER THE APPLICATION OF A HIGH SHEEP TENSION
JP5133178B2 (en) Method for producing polyurethane resin aqueous dispersion
JP6900295B2 (en) Polyurethane resin aqueous dispersion
JP6965329B2 (en) Polyurethane resin aqueous dispersion and printing ink using it
JP2007270036A (en) Polyurethane resin aqueous dispersion
JP2010222554A (en) Polyurethane resin emulsion for water-based coating
WO2021172485A1 (en) Polyurethane resin aqueous dispersion
JP2017165884A (en) Polyurethane resin water dispersion
JP3984596B2 (en) Polyurethane resin aqueous dispersion and sheet material using the same
JP2010195982A (en) Polyurethane resin emulsion for water-based paint
JP6342924B2 (en) Polyurethane resin aqueous dispersion
WO2020004228A1 (en) Ink, ink cartridge, ink set, inkjet printer, and inkjet textile printing method
JP2011122034A (en) Polyurethane resin emulsion
JP6557269B2 (en) Polyurethane resin water dispersion
JP2015028159A (en) Binder for printing ink, and printing ink using the same
JP2011068870A (en) Polyurethane resin emulsion
JP2011178963A (en) Aqueous dispersion of polyurethane resin
JP2021165353A (en) Polyurethane resin aqueous dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200818