WO2021172290A1 - Analysis method, light emission analysis device, diffuse optical tomography, imaging device, reflectivity measurement device, analysis device, and program - Google Patents

Analysis method, light emission analysis device, diffuse optical tomography, imaging device, reflectivity measurement device, analysis device, and program Download PDF

Info

Publication number
WO2021172290A1
WO2021172290A1 PCT/JP2021/006681 JP2021006681W WO2021172290A1 WO 2021172290 A1 WO2021172290 A1 WO 2021172290A1 JP 2021006681 W JP2021006681 W JP 2021006681W WO 2021172290 A1 WO2021172290 A1 WO 2021172290A1
Authority
WO
WIPO (PCT)
Prior art keywords
photon
photons
detection
analyzer
analysis
Prior art date
Application number
PCT/JP2021/006681
Other languages
French (fr)
Japanese (ja)
Inventor
維信 松▲崎▼
太平 田原
石井 邦彦
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2022503618A priority Critical patent/JPWO2021172290A1/ja
Publication of WO2021172290A1 publication Critical patent/WO2021172290A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves

Definitions

  • the present invention relates to an analysis method, a light emission analyzer, a diffuse tomography apparatus, an imaging apparatus, a reflectance measuring apparatus, an analyzer, and a program.
  • Patent Documents 1 and 2 Although the fields and application targets are different, research on the generation and utilization of quantum entangled photons is also progressing (for example, Patent Documents 1 and 2).
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2008-216369 (published on September 18, 2008)
  • Japanese Patent Publication Japanese Patent Publication "Special Table 2012-522883 (published on September 27, 2012)”
  • the scale of the analyzer tends to be large, and the object may be damaged by irradiating the pulsed light. There is a problem. Further, in order to reduce damage to the object, it is conceivable to irradiate the object with continuous light, but such a method has a problem that it is difficult to specify the temporal characteristics of the object.
  • One aspect of the present invention has been made to solve the above-mentioned problems, and realizes a technique capable of analyzing the characteristics of an object including temporal characteristics while reducing damage to the object.
  • the purpose is to do.
  • the analysis method includes a generation step of generating a plurality of photons in a quantum entangled state with each other and a first detection of a first photon among the plurality of photons.
  • a detection step of 1 a second detection step of detecting a third photon obtained by irradiating or incident a second photon of the plurality of photons on an object, and a detection in the first detection step. It includes an analysis step of analyzing the characteristics of the object with reference to the difference between the timing and the detection timing in the second detection step.
  • the analyzer includes a generation unit that generates a plurality of photons in a quantum entangled state with each other, a first detection unit that detects a first photon among the plurality of photons, and the plurality of photons.
  • a second detection unit that detects a third photon obtained by irradiating or incident a second photon on an object, a detection timing by the first detection unit, and the second detection unit. It is provided with an analysis unit that analyzes the characteristics of the object with reference to the difference from the detection timing according to the above.
  • FIG. 5 is a block diagram showing an analysis unit included in the analyzer according to the first embodiment of the present invention together with a first detection unit and a second detection unit. It is a figure which shows the photon pair generated by the analyzer which concerns on Embodiment 1 of this invention, and is generated by spontaneous parametric downward transformation. It is a figure which shows the photon pair generated by the analyzer which concerns on Embodiment 1 of this invention, and is generated by spontaneous parametric downward transformation. It is a flowchart which shows the flow of processing by the analyzer which concerns on Embodiment 1 of this invention.
  • the analyzer according to the present embodiment uses one photon as a reference (reference) and another photon for irradiating or incident on an object (sometimes referred to as measurement) among a plurality of photons. It is a device that analyzes the characteristics of an object.
  • the analyzer 1 can be regarded as an example of a device generally called a TCSPC (Time-Correlated Single Photon Counting) device.
  • the plurality of photons according to the present embodiment are a plurality of single photons in a quantum entangled state with each other.
  • a plurality of single photons in a quantum entangled state are temporally synchronized with each other.
  • the plurality of photons according to the present embodiment are two single photons in a quantum entangled state with each other.
  • the analyzer according to the present embodiment among a plurality of photons, one photon is used as a reference and another photon is used for irradiating or incident on the object to analyze the characteristics of the object.
  • a plurality of photons in a quantum entangled state are generated at random timings. Therefore, unlike the case of using a pulse wave, a large number of photons are not irradiated to the object at the same time, and as a result, the characteristics of the object are analyzed while minimizing the damage to the object. be able to.
  • the analyzer there is no need for an apparatus for generating a pulse wave as compared with the case where a pulse wave is used, so that there is an advantage that the configuration of the entire apparatus can be simplified. There is also.
  • the property that two paired photons are temporally synchronized it is possible to directly measure the temporal characteristics of an object as in the case of using a pulse wave. Even when a plurality of components are present with respect to the temporal characteristics of the object (for example, when a plurality of fluorescence lifetime components are present), the measurement can be performed with only one continuous light source. Therefore, there is an advantage that it is not necessary to modulate the intensity of the light source each time.
  • FIG. 1 is a block diagram showing a configuration example of the analyzer 1 according to the present embodiment.
  • the analyzer 1 includes a light source 10, a first mirror 21, a first lens 22, a first bandpass filter 23-1, and a second bandpass filter 23-2.
  • the light source 10 generates a plurality of photons in a quantum entangled state with each other in time synchronization.
  • the light source 10 includes a continuous light source 11, a light source lens 12, and a crystalline substance 13.
  • the continuous light source 11 is, for example, a laser light source that produces a laser that is continuous light having a specific wavelength, but this is not limited to this embodiment.
  • the continuous light generated by the continuous light source 11 may be referred to as pump light. Further, the light source 10 may be referred to as a generation unit.
  • the crystalline substance 13 generates a plurality of photons in a quantum entangled state with each other in response to the incident of continuous light from the continuous light source 11.
  • the crystalline substance 13 produces two photons (photon pairs) that are in a quantum entangled state with each other.
  • the crystalline substance 13 generates photon pairs at random timings.
  • Non-linear optical crystals can be mentioned as an example of the crystalline substance 13, but this does not limit the present embodiment. Specific examples of the crystalline substance 13 will be described later.
  • the first mirror 21 directs the first photon of the plurality of photons supplied from the light source 10 along the first path, and secondly directs a second photon different from the first photon. Orient along the path of.
  • the specific configuration of the first mirror 21 is not limited to this embodiment, but it is preferably a configuration that preferably reflects the first photon and the second photon.
  • the first lens 22 refracts the first photon and the second photon, and as an example, as shown in FIG. 1, the first photon and the second photon propagate in parallel with each other. Orient the 1st photon and the 2nd photon.
  • the first bandpass filter 23-1 transmits photons having a first angular frequency among the first photons and blocks photons other than those having the first angular frequency. Further, the second bandpass filter 23-2 transmits photons having a second angular frequency among the second photons, and blocks photons other than those having the second angular frequency.
  • the first and second angular frequencies are the light source 10, the object 40, and the first detection under the condition that the sum of the two matches the angular frequency of the continuous light source 11.
  • Appropriate values may be appropriately selected according to the characteristics of the unit 50, the second detection unit 60, and the like.
  • the first photon travels along the first path, passes through the fourth lens 29, is detected by the first detection unit 50, and the detection signal is supplied to the analysis unit 70.
  • the second photon is reflected by the second mirror 24 and the third mirror 25, and then passes through the second lens 26 arranged on the second path. Then, the second photon transmitted through the second lens 26 is irradiated or incident on the object 40.
  • the object 40 emits a third photon in response to being irradiated or incident with the second photon.
  • the third photon may be the same photon as the second photon, or may be a photon different from the second photon, and the matter does not limit the present embodiment. Further, the third photon may be a plurality of single photons.
  • the emitted third photon passes through the fifth lens 30 after passing through the third lens 27 and the long pass filter 28.
  • the long-pass filter 28 transmits photons having an angular frequency equal to or lower than a specific third angular frequency among the third photons, and blocks other photons.
  • the third photon that has passed through the fifth lens 30 is detected by the second detection unit 60, and the detection signal is supplied to the analysis unit 70.
  • a single photon detector can be used as an example. More specifically, a one-photon application type avalanche photodiode can be used, but this does not limit the present embodiment.
  • the first photon reaches the first detection unit 50 and is detected without being irradiated or incident on the object 40.
  • the second photon is irradiated or incident on the object 40, and the third photon obtained accordingly reaches the second detection unit 60 and is detected.
  • the timing at which the third photon is detected by the second detection unit 60 is delayed from the timing at which the first photon is detected by the first detection unit 50.
  • the analysis unit 70 analyzes the characteristics of the object 40 by identifying and referring to this delay time. In other words, the analyzer 1 uses the detection timing of the first photon as a reference for analyzing the characteristics of the object 40.
  • the analysis unit 70 refers to the difference between the detection timing of the first photon by the first detection unit 50 and the detection timing of the third photon by the second detection unit 60, and refers to the object. It is a configuration for analyzing the characteristics related to 40.
  • the analysis unit 70 includes a first acquisition unit 71, a second acquisition unit 72, a first conversion unit 73, a second conversion unit 74, and a calculation unit 75. ..
  • the first acquisition unit 71 acquires the detection signal by the first detection unit 50, performs signal processing, and then supplies the detection signal to the first conversion unit 73.
  • the first conversion unit 73 amplifies the detection signal by the first detection unit 50, and supplies the amplified signal to the first conversion unit 73.
  • the second acquisition unit 72 has the same configuration as the first conversion unit 73, except that the detection signal to be acquired is the detection signal by the first detection unit 50.
  • the first conversion unit 73 converts the signal supplied from the first acquisition unit 71, and supplies the converted signal to the calculation unit 75.
  • the first conversion unit 73 converts the analog signal supplied from the first acquisition unit 71 into a digital signal, and supplies the converted digital signal to the calculation unit 75.
  • the second conversion unit 74 has the same configuration as the first conversion unit 73, except that the signal to be acquired is a signal supplied from the second acquisition unit 72.
  • the calculation unit 75 analyzes the characteristics of the object 40 with reference to the difference between the detection timing of the first photon by the first detection unit 50 and the detection timing of the third photon by the second detection unit 60. do. As shown in FIG. 1, the calculation unit 75 specifies a time difference that specifies a time difference between the detection timing of the first photon by the first detection unit 50 and the detection timing of the third photon by the second detection unit 60. The part 751 is provided.
  • the analyzer 1 configured as described above, among a plurality of photons in a quantum entangled state with each other, the first photon is detected without passing through the object 40, and the second photon is the object 40.
  • the third photon obtained by irradiating or incident on the object is detected with a delay time depending on the object as an example. Then, the analyzer 1 analyzes the characteristics of the object 40 with reference to the difference between the detection timing of the first photon and the detection timing of the third photon, so that the damage to the object is minimized. At the same time, the characteristics of the object can be suitably analyzed.
  • a plurality of photons in a quantum entangled state with each other in the present embodiment will be described in more detail. It should be noted that the following description exemplifies a plurality of photons generated by spontaneous parametric downward conversion in the crystalline substance 13 which is a nonlinear optical crystal as an example, but this is for illustration purposes only. ..
  • the “plurality of photons in a quantum entangled state with each other” in the present embodiment is not limited to those generated by using the crystalline substance 13 which is a nonlinear optical crystal, and is not limited to those produced by various production methods as described later. It may be generated.
  • FIG. 3 is a schematic diagram for explaining an example of generation of photon pairs by the crystalline substance 13.
  • pump light is supplied from the continuous light source 11 to the crystalline substance 13, and a part of the pump light is spontaneously parametric down-conversion (SPDC: Spontaneous Parametric Down-Conversion) in the crystalline substance 13. Is converted into two temporally synchronized single photons (one is also called signal light and the other is sometimes called idler light).
  • FIG. 3 illustrates a Type II SPDC in which the two photons have different polarizations.
  • the (angular frequency, wave vector) of the pump light is expressed as ( ⁇ P , k p ), and the (angular frequency, wave vector) of the two generated photons are ( ⁇ 1 , k 1), respectively.
  • ⁇ P ⁇ 1 + ⁇ 2 ⁇ ⁇ ⁇ (Equation 1)
  • k p k 1 + k 2 ⁇ ⁇ ⁇ (Equation 2) Is satisfied.
  • Equation 1 expresses the law of conservation of energy
  • Equation 2 expresses the law of conservation of momentum.
  • the angular frequency may be simply referred to as a frequency.
  • the two photons generated by the SPDC are paths on two cones that are symmetrically located with respect to the pump light and propagate along the path symmetrical with respect to the pump light. do.
  • FIG. 3 shows a photon pair A as an example of a plurality of photons in a quantum entangled state with each other, and a photon pair B as another example.
  • ⁇ >
  • ⁇ >
  • V and H represent vertically polarized light and horizontally polarized light, respectively, and the subscripts 1 and 2 of Kett
  • the photons A1 and A2 contained in the photon pair A are not entangled with each other in terms of polarization state.
  • FIG. 4 is a schematic diagram for explaining another example of generation of a photon pair by the crystalline substance 13.
  • FIG. 4 illustrates a Type I SPDC in which the polarizations of the two photons are equal to each other.
  • the (angular frequency, wave vector) of the pump light is expressed as ( ⁇ P , k p ), and the (angular frequency, wave vector) of the two generated photons are ( ⁇ 1 , k p, respectively). 1 )
  • the above-mentioned equations 1 and 2 are satisfied as in the case of FIG.
  • the two photons generated by the SPDC are paths on one cone about the pump light and propagate along a path symmetrical to the pump light.
  • Photon C1 and photon C2 contained in the above-mentioned photon pair C may be used as a plurality of photons in a quantum entangled state with each other used in the present embodiment.
  • Equation 8 Is a Dirac delta function, and it can be seen that due to the existence of this delta function, as shown in Equation 9, only the case where the energy conservation law shown in Equation 1 is satisfied needs to be considered.
  • Equation 9 the two-photon state
  • Such a state is expressed in the present specification as "entangled with each other in terms of frequency (angular frequency)".
  • Equation 14 can be rewritten as follows. Furthermore, if the time integral is expressed in sum, ... (Equation 16) To get. As can be seen from Equations 15 and 16, the two-photon state
  • the "plurality of photons in a quantum entangled state" used in the present embodiment is, for example, a plurality of photons that are entangled with each other in terms of frequency (angular frequency) or time.
  • the light source 10 is not limited to the configuration including the crystalline substance 13, but the configuration of the analyzer 1 can be made simpler by configuring the light source 10 to include the crystalline substance 13. There is a merit that it can be done.
  • the crystalline substance 13 is a non-linear optical crystal in which the crystal responds non-linearly to incident light and birefringence exists.
  • this does not limit this embodiment.
  • the crystalline substance 13 examples include BBO ( ⁇ -BaB 2 O 4 ), KDP (KH 2 PO 4 ), ppKTP (Periodically Polled KTIOPO 4 ), ppLN (Periodically Collected LiNbo 3 ) and the like. However, these specific examples do not limit the present embodiment.
  • type I and type II SPDCs may be used.
  • a BBO may be used to generate a photon pair with a type II SPDC
  • a BBO may be used to generate a photon pair with a type I SPDC.
  • the frequency of photon pairs generated by the crystalline substance 13 is not limited to this embodiment, but it may be set to several to several million times per second as an example by adjusting the intensity of the pump light. Can be done.
  • a substance obtained by reversing the spontaneous polarization in the lithium niobate (LiNbO 3 ) crystal in two different cycles may be used.
  • a quantum entangled state in which the polarization and frequency of the photon pair that can be generated in each region are alternately correlated is directly generated. be able to.
  • the photon pair generated in this way can also be used as "a plurality of photons in a quantum entangled state with each other" according to the present embodiment.
  • the configuration example of the light source 10 is not limited to the above example.
  • the light source 10 includes one of a Mach-Zehnder interferometer, a Michaelson-type interferometer, and a Sanyak-type interferometer instead of the crystalline material 13, and is quantum to each other by any of these interferometers. It may be configured to generate a plurality of entangled photons.
  • the third photon according to the present embodiment is obtained by irradiating or incident on the object 40 with the second photon.
  • the object 40 transitions to an excited state by absorbing a second photon in the object 40. Then, a third photon is emitted with the transition from the excited state to the lower energy state. In such an example, it is preferable to interpret that the third photon is a photon different from the second photon.
  • the interpretation that the second photon and the third photon are the same photon is preferably valid.
  • the third photon travels in a different direction from the second photon, and the time width of the photon wave packet may become wider while propagating in the fiber.
  • the physical properties of the second and third photons are generally not exactly the same. Therefore, in that sense, the interpretation that the second photon and the third photon are different photons is also valid.
  • whether the second photon and the third photon are the same or different depends on how the object 40 and the analyzer 1 are applied. It is a matter that includes an interpretation theory as to whether or not to interpret it, and is not essential.
  • FIG. 5 is a flowchart showing the flow of processing by the analyzer 1.
  • Step S11 First, in step S11, the light source 10 generates a plurality of photons in a quantum entangled state with each other.
  • the method already described may be used for the generation of photons by the light source 10.
  • step S12 the first detection unit 50 detects the first photon propagating in the first path among the plurality of photons in the quantum entangled state with each other generated in step S11.
  • step S13 the second detection unit 60 is obtained by irradiating or incident the second photon on the object 40 among the plurality of photons in the quantum entangled state with each other generated in step S11. Detects a third photon.
  • step S14 the analysis unit 70 analyzes the characteristics of the object 40 with reference to the difference between the detection timing by the first detection unit 50 in step S12 and the detection timing by the second detection unit 60 in step S13. do.
  • the first photon is detected without passing through the object 40, and the second photon irradiates or irradiates the object 40.
  • the third photon obtained by incident is detected with a delay time depending on the object as an example.
  • the analyzer 1 analyzes the characteristics of the object 40 with reference to the difference between the detection timing of the first photon and the detection timing of the third photon, so that the damage to the object is minimized. At the same time, the characteristics of the object can be suitably analyzed.
  • the case where the first photon is detected in step S12 and then the second photon is detected in step S13 has been given as an example, but this does not limit the present embodiment. ..
  • the second photon may be detected in step S13 before the first photon is detected in step S12. Such an example is also included in this embodiment.
  • the wave function collapse of the other photon may occur by detecting one of the first photon and the second photon first.
  • the analysis method and analyzer described in the present specification generate a plurality of photons in a quantum entangled state with each other as an example, and utilize the generated photons for spectroscopy (for example, molecular spectroscopy). doing.
  • spectroscopy for example, molecular spectroscopy
  • the use of quantum optical objects such as a plurality of photons in a quantum entangled state has been limited to the use in the category of quantum optics, and has not been applied to spectroscopy.
  • the inventor of the present application can come up with the invention described in the present specification only after obtaining a new finding that a quantum optical object called a plurality of photons in a quantum entangled state is applied to spectroscopy. It is an invention.
  • the analysis method and the analysis device described in the present specification have a highly interdisciplinary aspect of fusing two fields that cannot be easily linked even by those skilled in the art.
  • FIG. 6 is a block diagram showing the configuration of the luminescence analyzer 100 according to the present embodiment.
  • the luminescence analyzer 100 includes an analyzer 1a.
  • the analyzer 1a includes a calculation unit 75a instead of the calculation unit 75 included in the analysis device 1 described in the first embodiment.
  • Other configurations of the analyzer 1a are the same as those of the analyzer 1 according to the first embodiment.
  • the luminescence analyzer 100 is a device that analyzes the characteristics of the object 40 having luminescence.
  • the light emission includes fluorescence and phosphorescence (phosphorescence).
  • the luminescence analyzer 100 specifies the luminescence lifetime (for example, fluorescence lifetime, phosphorescence lifetime) of the object 40 as an example.
  • FIG. 7 is a block diagram showing a configuration of a calculation unit 75a included in the analyzer 1a.
  • the calculation unit 75a includes a time difference specifying unit 751 and a light emitting life specifying unit 752.
  • the light emission lifetime specifying unit 752 specifies the light emission life of the object 40 by referring to the detection timing of the first photon and the detection timing of the third photon specified by the time difference specifying unit 751.
  • step S13 of FIG. 5 a photon associated with the light emission phenomenon of the object 40 is detected as a third photon.
  • FIG. 8 plots the difference between the detection timing of the first photon and the detection timing of the third photon detected by the luminescence analyzer 100 in a situation where the object 40 is not arranged on the second path for comparison. This is the result of the experiment.
  • the difference (detection error) between the detection timing of the first photon and the detection timing of the third photon is about 0.23 ns. It is suppressed, and it can be seen that a high degree of simultaneity between the two photons is realized.
  • the detection error shown in FIG. 7 is mainly due to the time resolution of the first detection unit 50 and the second detection unit 60, and the light source 10 has a higher simultaneity than the simultaneity shown in FIG. Has been realized.
  • FIG. 9 shows a fluorescence attenuation curve specified by the emission lifetime specifying unit 752 when a dye molecule (Rhodamine 6G), which is a fluorescent molecule, is used as the object 40.
  • the fluorescence attenuation curve shown in FIG. 9 is a graph obtained by plotting the time difference specified by the time difference specifying unit 751 for each photon pair for a large number of photon pairs by the emission lifetime specifying unit 752.
  • the emission lifetime specifying unit 752 specifies that the fluorescence lifetime of the object 40 is 4.8 ns.
  • the luminescence analyzer 100 it is possible to suitably analyze the characteristics related to the luminescence phenomenon of the object 40 while minimizing the damage to the object 40.
  • the molecule is taken as an example of the object 40, but this does not limit the present embodiment, and the object 40 includes at least one of an atom, a molecule, a solid, and a crystal.
  • Can include.
  • the luminescence analyzer 100 it is possible to suitably analyze the characteristics of the object 40 regarding the luminescence phenomenon while minimizing the damage to the object 40.
  • FIG. 10 shows a configuration example of the diffused light tomography apparatus 200.
  • the diffused light tomography apparatus 200 includes an analyzer 1b.
  • the analyzer 1b includes a calculation unit 75b instead of the calculation unit 75 included in the analysis device 1 described in the first embodiment.
  • Other configurations of the analyzer 1b are the same as those of the analyzer 1 according to the first embodiment.
  • the diffused light tomography device 200 is a device that generates a tomographic image of a transparent object 40.
  • the object 40 is a substance having transparency, but the object 40 is not limited to a substance that transmits visible light, and a substance that transmits far ultraviolet rays and far infrared regions is also the object 40. include.
  • the second photon is incident on the object and the first photon is used as a reference.
  • the third photon according to the present embodiment is a photon obtained as a result of the second photon being repeatedly scattered in the object. It can be said that the third photon is a photon that has undergone repeated scattering processes in the object.
  • FIG. 11 shows the configuration of the calculation unit 75b included in the analyzer 1b of the diffused light tomography apparatus 200.
  • the calculation unit 75b includes a time difference specifying unit 751 and a tomography analysis unit 753.
  • the tomography analysis unit 753 refers to the detection timing of the first photon and the detection timing of the third photon specified by the time difference identification unit 751 and acquires information on how the photons are scattered in the object 40. do. Then, the tomography analysis unit 753 identifies the spatial distribution of the substance in the object 40 by analyzing the acquired information. Then, as an example, a tomographic image of an object showing a specified spatial distribution is generated.
  • step S13 of FIG. 5 a photon associated with the transmission phenomenon of the object 40 is detected as a third photon.
  • the diffused light tomography apparatus 200 can suitably perform diffused light tomography while suppressing damage to an object.
  • a device that generates pulsed light since there is no need for a device that generates pulsed light as in the prior art, there is an advantage that the configuration of the diffused light tomography device is simplified.
  • FIG. 12 shows a configuration example of the imaging device 300.
  • the imaging device 300 includes an analyzer 1c.
  • the analyzer 1c includes a calculation unit 75c instead of the calculation unit 75 included in the analysis device 1 described in the first embodiment.
  • Other configurations of the analyzer 1c are the same as those of the analyzer 1 according to the first embodiment.
  • the imaging device 300 is a device that generates imaging information in an imaging range including an object 40 having reflexivity.
  • the second photon is emitted toward the object, and the first photon is used as a reference.
  • the third photon according to the present embodiment is a photon obtained by reflecting the second photon by an object.
  • FIG. 13 shows the configuration of the calculation unit 75c included in the analyzer 1c of the imaging device 300.
  • the calculation unit 75c includes a time difference specifying unit 751 and an image generation unit 754.
  • the image generation unit 754 refers to the detection timing of the first photon and the detection timing of the third photon specified by the time difference specifying unit 751, and specifies the distance to the object 40 as a characteristic of the object 40. .. Then, based on the characteristic distance, the imaging information including the distance information to the object 40, which is the imaging information of the imaging range including the object 40, is generated.
  • step S13 of FIG. 5 a photon associated with the reflection phenomenon of the object 40 is detected as a third photon.
  • Lidar Light Imaging Detection and Ringing
  • scattered light with respect to laser irradiation is measured using pulsed light to analyze the distance to a target, the properties of the target, and the like. Since imaging information including distance information is generated using multiple single photons that are in a quantum entangled state with each other, it is possible to analyze the distance to the target, the properties of the target, etc. while reducing damage to the target. can.
  • the imaging information generated by the image generation unit 754 can be, for example, distance information and a two-dimensional captured image, but this does not limit the present embodiment.
  • the image generation unit 754 may be configured to generate a left-eye image and a right-eye image for stereoscopic viewing by referring to the distance information and the two-dimensional captured image.
  • an image for stereoscopic viewing is preferably generated while reducing damage to an object. be able to.
  • there is no need for a device that generates pulsed light as in the prior art there is an advantage that the configuration of the imaging device is simplified.
  • FIG. 14 shows a configuration example of the reflectance measuring device 400.
  • the reflectance measuring device 400 includes an analyzer 1d.
  • the analyzer 1d includes a calculation unit 75d instead of the calculation unit 75 included in the analysis device 1 described in the first embodiment.
  • Other configurations of the analyzer 1d are the same as those of the analyzer 1 according to the first embodiment.
  • the reflectance measuring device 400 is a device that analyzes the characteristics of the object 40 having reflectivity.
  • the object 40 is, for example, an optical fiber.
  • the second photon is incident on the object and the first photon is used as a reference.
  • the third photon according to the present embodiment is a photon obtained by transmitting or reflecting the second photon through an object.
  • the third photon may also include backscattered light obtained by incident of the second photon on the object.
  • FIG. 15 shows the configuration of the calculation unit 75d included in the analyzer 1d of the reflectance measuring device 400.
  • the calculation unit 75d includes a time difference specifying unit 751 and a reflectance measuring unit 755.
  • the reflectance measuring unit 755 detects the reflectivity of the object 40 by referring to the detection timing of the first photon and the detection timing of the third photon specified by the time difference specifying unit 751.
  • step S13 of FIG. 5 a photon associated with the reflection phenomenon of the object 40 is detected as a third photon.
  • the quality of an optical fiber is controlled by backscattered light or the like using pulsed light, but in this embodiment, a plurality of photons in a quantum entangled state are used. Since quality control is performed, damage to the object can be reduced as compared with the case of using pulsed light. In addition, since there is no need for a device that generates pulsed light as in the prior art, there is an advantage that the configuration of the reflectance measuring device is simplified.
  • the application examples of the analyzer described above in the present specification are not limited to the above examples.
  • the analyzer described above may be applied to the pump-probe method. More specifically, the object 40 may be excited by using the first photon, and the object may be observed by using the second photon as the probe light.
  • the analyzer according to this example irradiates the object 40, which is a molecule, with a first photon to initiate a photochemical reaction. Then, after a minute delay time (about femto seconds, pico seconds), the object 40 is irradiated with the second photon as probe light.
  • the analyzer according to this example can measure molecular absorption (infrared light, visible light, ultraviolet light region) and Raman scattering. According to the analyzer according to this example, it is possible to track the progress of the chemical reaction with a time resolution of about femtoseconds and picoseconds in this way.
  • the above-mentioned analyzer may be applied to the pump-dump-probe method.
  • the three photons in a quantum entangled state with each other used in the pump-dump-probe method can be obtained, for example, by the following method. That is, the analyzer is configured to include two nonlinear optical crystals. First, two photons (photon 1 and photon 2) in a quantum entangled state are incident on the first nonlinear optical crystal by SPDC. Call). Then, one of these two photons (for example, photon 1) is irradiated to the second nonlinear optical crystal, and the SPDC in the second nonlinear optical crystal converts it into two photons (referred to as photon 3 and photon 4). do.
  • the three photons (photon 2, photon 3, and photon 4) thus obtained are in a quantum entangled state with each other and are synchronized in time.
  • the analyzer according to this example excites the object 40 by irradiating the object 40, which is a molecule, with the first photon of the three photons in a quantum entangled state with each other.
  • a molecule in a high electron excited state has an equilibrium internuclear distance different from that in the ground state, so that the nuclear wave packet is given momentum and starts to move.
  • the analyzer according to this example irradiates the object 40 with the second photon of the above three photons to dump the wave packet to the ground state.
  • the analyzer according to this example irradiates the object 40 with the third photon of the above three photons as the probe light.
  • the analyzer according to this example determines, for example, the deexcitation efficiency of the object 40, which is a molecule, and the dump light irradiation timing dependence of the deexcitation efficiency. Can be identified. It has been impossible to perform pump-dump-probe measurement using continuous light as a light source, but by using the above-mentioned analyzer, continuous light can be used as a light source by converting it into three entangled photons. Allows pump-dump-probe measurements.
  • the control block of the analyzer 1 (particularly the analyzer 70, the arithmetic unit 75, 75a, 75b, 75c, 75d) may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. , May be realized by software.
  • the analyzer 1 includes a computer that executes the instructions of a program that is software that realizes each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM RandomAccessMemory
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • a transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
  • the analysis method includes a generation step of generating a plurality of photons in a quantum entangled state with each other, a first detection step of detecting a first photon among the plurality of photons, and the plurality of photons.
  • the analysis step it is preferable to use the detection timing of the first photon as a reference for analyzing the characteristics of the object.
  • the detection timing of the first photon is used as a reference for the analysis of the characteristics related to the object, the characteristics of the object including the temporal characteristics can be analyzed more preferably.
  • the generation step it is preferable to generate the first photon and the second photon using a nonlinear optical crystal.
  • the characteristics of the object can be detected with a simple configuration.
  • the analysis method it is preferable to detect the first photon and the third photon using a single photon detector in the first detection step and the second detection step.
  • the characteristics of the object including the temporal characteristics can be suitably detected.
  • the luminescence analyzer is a luminescence analyzer that executes the above analysis method, and in the second detection step, a photon associated with a luminescence phenomenon of the object is detected as the third photon. It is preferable to do so.
  • the characteristics of the luminescence phenomenon of the object can be suitably analyzed.
  • the object contains at least one of an atom, a molecule, a solid, and a crystal.
  • the characteristics of the luminescence phenomenon of atoms, molecules, solids, and crystals can be suitably analyzed.
  • the diffused light tomography device is a diffused light tomography device that executes the above analysis method, and in the second detection step, the transmitted light transmitted through the object is used as the third photon. It is preferable to detect it.
  • the transmitted light transmitted through the object is detected as the third photon, so that the diffused light tomography can be preferably performed.
  • the imaging device is an imaging device that executes the above analysis method, and detects the reflected light reflected by the object as the third photon in the second detection step. Is preferable.
  • the image pickup apparatus since the reflected light reflected by the object is detected as the third photon, it is possible to suitably generate imaging information reflecting the temporal characteristics of the object.
  • the reflectance measuring device is a reflectance measuring device that executes the above analysis method, and in the second detection step, the light emitted from the optical fiber that is the object is emitted from the third. It is preferable to detect it as a photon.
  • the reflectance measuring device the light emitted from the optical fiber is detected as the third photon, so that the reflectance measurement can be suitably performed.
  • the analyzer includes a generation unit that generates a plurality of photons in a quantum entangled state with each other, a first detection unit that detects a first photon among the plurality of photons, and the plurality of photons.
  • a second detection unit that detects a third photon obtained by irradiating or incident a second photon on an object, a detection timing by the first detection unit, and the second detection unit. It is preferable to have an analysis unit that analyzes the characteristics of the object with reference to the difference from the detection timing according to the above.
  • the program according to one aspect of the present invention is a program for operating a computer as the analysis device, and it is preferable that the computer functions as the analysis unit. According to the above program, the same effect as that of the above method and apparatus is obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

According to the present invention, the characteristics of an object that includes temporal characteristics are analyzed while reducing damage to the object. An analysis method including a generation step for generating a plurality of photons, a first detection step for detecting a first photon among the plurality of photons, a second detection step for detecting a second photon among the plurality of photons, and an analysis step for analyzing characteristics pertaining to an object with reference to the difference in timing of detection performed in the first detection step and the second detection step.

Description

分析方法、発光分析装置、拡散光トモグラフィー装置、撮像装置、反射率測定装置、分析装置、及びプログラムAnalytical method, luminescence analyzer, diffused light tomography device, imaging device, reflectance measuring device, analyzer, and program
 本発明は、分析方法、発光分析装置、拡散光トモグラフィー装置、撮像装置、反射率測定装置、分析装置、及びプログラムに関する。 The present invention relates to an analysis method, a light emission analyzer, a diffuse tomography apparatus, an imaging apparatus, a reflectance measuring apparatus, an analyzer, and a program.
 従来、光を用いて、分子や結晶等の対象物の特性を分析する手法が知られている。例えば、2つのパルス光の一方を対象物に照射し、もう一方をリファレンス用として用いることによって対象物の特性を分析する手法が知られている。 Conventionally, a method of analyzing the characteristics of an object such as a molecule or a crystal using light has been known. For example, there is known a method of analyzing the characteristics of an object by irradiating the object with one of two pulsed lights and using the other as a reference.
 また、分野や適用対象は異なるが、量子もつれ光子の生成や利用に関する研究も進展している(例えば特許文献1、2)。 Although the fields and application targets are different, research on the generation and utilization of quantum entangled photons is also progressing (for example, Patent Documents 1 and 2).
日本国公開特許公報「特開2008-216369(2008年9月18日公開)」Japanese Patent Publication "Japanese Patent Laid-Open No. 2008-216369 (published on September 18, 2008)" 日本国公開特許公報「特表2012-522983(2012年9月27日公表)」Japanese Patent Publication "Special Table 2012-522883 (published on September 27, 2012)"
 上述のように、パルス光を用いて対象物の特性を分析する手法では、分析装置の規模が大きくなる傾向があり、また、パルス光を照射することによって対象物にダメージを与える可能性があるという課題がある。また、対象物へのダメージを低減させるため、連続光を対象物に照射することも考えられるが、このような手法では、対象物の時間的な特性を特定しづらいという課題がある。 As described above, in the method of analyzing the characteristics of an object using pulsed light, the scale of the analyzer tends to be large, and the object may be damaged by irradiating the pulsed light. There is a problem. Further, in order to reduce damage to the object, it is conceivable to irradiate the object with continuous light, but such a method has a problem that it is difficult to specify the temporal characteristics of the object.
 本発明の一態様は、上記の課題を解決するためになされたものであり、対象物へのダメージを低減させつつ、時間的な特性を含む対象物の特性を分析することのできる技術を実現することを目的とする。 One aspect of the present invention has been made to solve the above-mentioned problems, and realizes a technique capable of analyzing the characteristics of an object including temporal characteristics while reducing damage to the object. The purpose is to do.
 上記の課題を解決するために、本発明の一態様に係る分析方法は、互いに量子もつれ状態にある複数の光子を生成する生成ステップと、前記複数の光子のうち第1の光子を検出する第1の検出ステップと、前記複数の光子のうち第2の光子を対象物に照射又は入射させることによって得られる第3の光子を検出する第2の検出ステップと、前記第1の検出ステップにおける検出タイミングと、前記第2の検出ステップにおける検出タイミングとの差を参照して、前記対象物に関する特性を分析する分析ステップとを含んでいる。 In order to solve the above problems, the analysis method according to one aspect of the present invention includes a generation step of generating a plurality of photons in a quantum entangled state with each other and a first detection of a first photon among the plurality of photons. A detection step of 1, a second detection step of detecting a third photon obtained by irradiating or incident a second photon of the plurality of photons on an object, and a detection in the first detection step. It includes an analysis step of analyzing the characteristics of the object with reference to the difference between the timing and the detection timing in the second detection step.
 本発明の一態様に係る分析装置は、互いに量子もつれ状態にある複数の光子を生成する生成部と、前記複数の光子のうち第1の光子を検出する第1の検出部と、前記複数の光子のうち第2の光子を対象物に照射又は入射させることによって得られる第3の光子を検出する第2の検出部と、前記第1の検出部による検出タイミングと、前記第2の検出部による検出タイミングとの差を参照して、前記対象物に関する特性を分析する分析部とを備えている。 The analyzer according to one aspect of the present invention includes a generation unit that generates a plurality of photons in a quantum entangled state with each other, a first detection unit that detects a first photon among the plurality of photons, and the plurality of photons. A second detection unit that detects a third photon obtained by irradiating or incident a second photon on an object, a detection timing by the first detection unit, and the second detection unit. It is provided with an analysis unit that analyzes the characteristics of the object with reference to the difference from the detection timing according to the above.
 本発明の一態様によれば、対象物へのダメージを低減させつつ、時間的な特性を含む対象物の特性を分析することのできる技術を実現することができる。 According to one aspect of the present invention, it is possible to realize a technique capable of analyzing the characteristics of an object including temporal characteristics while reducing damage to the object.
本発明の実施形態1に係る分析装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the analyzer which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る分析装置が備える分析部を第1の検出部及び第2の検出部と共に示すブロック図である。FIG. 5 is a block diagram showing an analysis unit included in the analyzer according to the first embodiment of the present invention together with a first detection unit and a second detection unit. 本発明の実施形態1に係る分析装置において生成される光子対であって、自発的パラメトリック下方変換により発生する光子対を示す図である。It is a figure which shows the photon pair generated by the analyzer which concerns on Embodiment 1 of this invention, and is generated by spontaneous parametric downward transformation. 本発明の実施形態1に係る分析装置において生成される光子対であって、自発的パラメトリック下方変換により発生する光子対を示す図である。It is a figure which shows the photon pair generated by the analyzer which concerns on Embodiment 1 of this invention, and is generated by spontaneous parametric downward transformation. 本発明の実施形態1に係る分析装置による処理の流れを示すフローチャートである。It is a flowchart which shows the flow of processing by the analyzer which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る発光分析装置の構成を示すブロック図である。It is a block diagram which shows the structure of the light emission analyzer which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る発光分析装置の演算部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic part of the light emission analyzer which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る発行分析装置の検出部による検出結果例を示すグラフである。It is a graph which shows the detection result example by the detection part of the issuing analyzer which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る発光分析装置による検出結果例を示すグラフである。It is a graph which shows the detection result example by the luminescence analyzer which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る拡散光トモグラフィー装置の構成を示すブロック図である。It is a block diagram which shows the structure of the diffused light tomography apparatus which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る拡散光トモグラフィー装置の演算部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic part of the diffused light tomography apparatus which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る撮像装置の構成を示すブロック図である。It is a block diagram which shows the structure of the image pickup apparatus which concerns on Embodiment 4 of this invention. 本発明の実施形態4に係る撮像装置の演算部の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic part of the image pickup apparatus which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る反射率測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the reflectance measuring apparatus which concerns on Embodiment 5 of this invention. 本発明の実施形態5に係る反射率測定装置の演算部の構成を示すブロック図である。It is a block diagram which shows the structure of the calculation part of the reflectance measuring apparatus which concerns on Embodiment 5 of this invention.
 〔実施形態1〕
 <概要>
 以下、本発明の一実施形態に係る分析装置について説明する。本実施形態に係る分析装置は、複数の光子のうち、ある光子を参照用(リファレンス)として用い、他の光子を対象物への照射又は入射用(測定用と呼ぶこともある)として用いることによって、対象物に関する特性を分析する装置である。分析装置1は、一般的にTCSPC(Time-Correlated Single Photon Counting)装置と呼ばれる装置の一例ともみなされ得る。
[Embodiment 1]
<Overview>
Hereinafter, the analyzer according to the embodiment of the present invention will be described. The analyzer according to the present embodiment uses one photon as a reference (reference) and another photon for irradiating or incident on an object (sometimes referred to as measurement) among a plurality of photons. It is a device that analyzes the characteristics of an object. The analyzer 1 can be regarded as an example of a device generally called a TCSPC (Time-Correlated Single Photon Counting) device.
 ここで、本実施形態に係る上記複数の光子は、互いに量子もつれ状態にある複数の単一光子である。ここで、互いに量子もつれ状態にある複数の単一光子は、互いに時間的に同期している。なお、本実施形態に係る上記複数の光子は、より具体的には、互いに量子もつれ状態にある2つの単一光子である。 Here, the plurality of photons according to the present embodiment are a plurality of single photons in a quantum entangled state with each other. Here, a plurality of single photons in a quantum entangled state are temporally synchronized with each other. More specifically, the plurality of photons according to the present embodiment are two single photons in a quantum entangled state with each other.
 従来、時間的に同期しているパルス波を用いて、対象物の特性を分析する技術が知られているが、パルス波を用いると対象物へのダメージが大きいという問題がある。また、対象物へのダメージを小さくするために連続光を用いることも考えられるが、このように連続光を用いる場合、対象物の時間的な特性を測定することが困難であるという問題があった。 Conventionally, a technique for analyzing the characteristics of an object using a pulse wave that is synchronized in time has been known, but there is a problem that the use of a pulse wave causes great damage to the object. It is also conceivable to use continuous light in order to reduce damage to the object, but when continuous light is used in this way, there is a problem that it is difficult to measure the temporal characteristics of the object. rice field.
 また、従来の手法では、パルス波を発生させる装置が必要であるため、装置の構成が複雑化するという問題があった。また、対象物の時間的な特性について複数の成分が存在する場合(例えば、複数の蛍光寿命成分が存在する場合)、様々な変調周波数で測定を行う必要があり、蛍光寿命決定のための測定及び解析が煩雑であるという問題があった。 Further, in the conventional method, since a device for generating a pulse wave is required, there is a problem that the configuration of the device becomes complicated. Further, when a plurality of components are present with respect to the temporal characteristics of the object (for example, when a plurality of fluorescence lifetime components are present), it is necessary to perform measurement at various modulation frequencies, and measurement for determining the fluorescence lifetime. And there was a problem that the analysis was complicated.
 本実施形態に係る分析装置では、複数の光子のうち、ある光子をリファレンスとして用い、他の光子を対象物への照射又は入射用として用いることによって、対象物に関する特性を分析する。本実施形態に係る分析装置では、後述するように、互いに量子もつれ状態にある複数の光子がランダムなタイミングで発生する。このため、パルス波を用いた場合と異なり、多数の光子が同時に対象物へと照射されることがなく、その結果、対象物へのダメージを最小限に抑えつつ、対象物の特性を分析することができる。 In the analyzer according to the present embodiment, among a plurality of photons, one photon is used as a reference and another photon is used for irradiating or incident on the object to analyze the characteristics of the object. In the analyzer according to the present embodiment, as will be described later, a plurality of photons in a quantum entangled state are generated at random timings. Therefore, unlike the case of using a pulse wave, a large number of photons are not irradiated to the object at the same time, and as a result, the characteristics of the object are analyzed while minimizing the damage to the object. be able to.
 また、本実施形態に係る分析装置の一構成例によれば、パルス波を用いる場合に比べて、パルス波を発生させる装置が必要ないため、装置全体の構成をシンプルにすることができるというメリットもある。その一方、対をなしている2つの光子が時間的に同期されているという性質を用いると、パルス波を用いた場合と同様に対象物の時間的な特性を直接的に計測することができ、対象物の時間的な特性について複数の成分が存在する場合(例えば、複数の蛍光寿命成分が存在する場合)にも、ただ一つの連続光の光源で計測することができる。このため、光源についての都度の強度変調が不要であるというメリットもある。 Further, according to one configuration example of the analyzer according to the present embodiment, there is no need for an apparatus for generating a pulse wave as compared with the case where a pulse wave is used, so that there is an advantage that the configuration of the entire apparatus can be simplified. There is also. On the other hand, by using the property that two paired photons are temporally synchronized, it is possible to directly measure the temporal characteristics of an object as in the case of using a pulse wave. Even when a plurality of components are present with respect to the temporal characteristics of the object (for example, when a plurality of fluorescence lifetime components are present), the measurement can be performed with only one continuous light source. Therefore, there is an advantage that it is not necessary to modulate the intensity of the light source each time.
 <構成例>
 以下では、図面を参照して、本実施形態に係る分析装置の構成例について説明する。図1は、本実施形態に係る分析装置1の構成例を示すブロック図である。図1に示すように、分析装置1は、一例として、光源10、第1のミラー21、第1のレンズ22、第1のバンドパスフィルタ23-1、第2のバンドパスフィルタ23-2、第2のミラー24、第3のミラー25、第2のレンズ26、第3のレンズ27、ロングパスフィルタ28、第4のレンズ29、第5のレンズ30、第1の検出部50、第2の検出部60、及び分析部70を備えて構成される。
<Configuration example>
Hereinafter, a configuration example of the analyzer according to the present embodiment will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of the analyzer 1 according to the present embodiment. As shown in FIG. 1, as an example, the analyzer 1 includes a light source 10, a first mirror 21, a first lens 22, a first bandpass filter 23-1, and a second bandpass filter 23-2. 2nd mirror 24, 3rd mirror 25, 2nd lens 26, 3rd lens 27, long pass filter 28, 4th lens 29, 5th lens 30, 1st detection unit 50, 2nd It is configured to include a detection unit 60 and an analysis unit 70.
 光源10は、互いに量子もつれ状態にある複数の光子を時間的に同期して生成する。光源10は、一例として、連続光源11、光源用レンズ12、及び結晶性物質13を備えている。連続光源11は、例えば、特定の波長を有する連続光であるレーザを生成するレーザ光源であるが、これは本実施形態を限定するものではない。なお、連続光源11が生成する連続光をポンプ光と呼ぶこともある。また、光源10を生成部と呼称することもある。 The light source 10 generates a plurality of photons in a quantum entangled state with each other in time synchronization. As an example, the light source 10 includes a continuous light source 11, a light source lens 12, and a crystalline substance 13. The continuous light source 11 is, for example, a laser light source that produces a laser that is continuous light having a specific wavelength, but this is not limited to this embodiment. The continuous light generated by the continuous light source 11 may be referred to as pump light. Further, the light source 10 may be referred to as a generation unit.
 結晶性物質13は、連続光源11からの連続光の入射に応じて、互いに量子もつれ状態にある複数の光子を生成する。一例として、結晶性物質13は、互いに量子もつれ状態にある2つの光子(光子対)を生成する。また、結晶性物質13は、ランダムなタイミングで光子対を生成する。結晶性物質13の一例として非線形光学結晶を挙げることができるが、これは本実施形態を限定するものではない。結晶性物質13の具体例については後述する。 The crystalline substance 13 generates a plurality of photons in a quantum entangled state with each other in response to the incident of continuous light from the continuous light source 11. As an example, the crystalline substance 13 produces two photons (photon pairs) that are in a quantum entangled state with each other. In addition, the crystalline substance 13 generates photon pairs at random timings. Non-linear optical crystals can be mentioned as an example of the crystalline substance 13, but this does not limit the present embodiment. Specific examples of the crystalline substance 13 will be described later.
 第1のミラー21は、光源10から供給される複数の光子のうち、第1の光子を第1の経路に沿って向き付けし、当該第1の光子とは異なる第2の光子を第2の経路に沿って向き付けする。第1のミラー21の具体的構成は本実施形態を限定するものではないが、第1の光子、及び第2の光子を好適に反射する構成であることが好ましい。 The first mirror 21 directs the first photon of the plurality of photons supplied from the light source 10 along the first path, and secondly directs a second photon different from the first photon. Orient along the path of. The specific configuration of the first mirror 21 is not limited to this embodiment, but it is preferably a configuration that preferably reflects the first photon and the second photon.
 第1のレンズ22は、第1の光子及び第2の光子を屈折させ、一例として、図1に示すように、第1の光子と第2の光子とが互いに平行に伝搬するように、第1の光子及び第2の光子を向き付けする。 The first lens 22 refracts the first photon and the second photon, and as an example, as shown in FIG. 1, the first photon and the second photon propagate in parallel with each other. Orient the 1st photon and the 2nd photon.
 第1のバンドパスフィルタ23-1は、第1の光子のうち、第1の角振動数を有する光子を透過させ、当該第1の角振動数を有する光子以外を遮断する。また、第2のバンドパスフィルタ23-2は、第2の光子のうち、第2の角振動数を有する光子を透過させ、当該第2の角振動数を有する光子以外を遮断する。 The first bandpass filter 23-1 transmits photons having a first angular frequency among the first photons and blocks photons other than those having the first angular frequency. Further, the second bandpass filter 23-2 transmits photons having a second angular frequency among the second photons, and blocks photons other than those having the second angular frequency.
 なお、上記第1の角振動数及び第2の角振動数は、両者の和が連続光源11の角振動数に一致するという条件のもとで、光源10、対象物40、第1の検出部50、及び第2の検出部60等の特性に応じて適宜好適な値を選択すればよい。 The first and second angular frequencies are the light source 10, the object 40, and the first detection under the condition that the sum of the two matches the angular frequency of the continuous light source 11. Appropriate values may be appropriately selected according to the characteristics of the unit 50, the second detection unit 60, and the like.
 第1の光子は、第1の経路に沿って進み、第4のレンズ29を透過したうえで、第1の検出部50によって検出され、検出信号が分析部70に供給される。 The first photon travels along the first path, passes through the fourth lens 29, is detected by the first detection unit 50, and the detection signal is supplied to the analysis unit 70.
 一方で、第2の光子は、第2のミラー24及び第3のミラー25によって反射されたうえで、第2の経路上に配置された第2のレンズ26を透過する。そして、第2のレンズ26を透過した第2の光子は、対象物40に照射又は入射させられる。 On the other hand, the second photon is reflected by the second mirror 24 and the third mirror 25, and then passes through the second lens 26 arranged on the second path. Then, the second photon transmitted through the second lens 26 is irradiated or incident on the object 40.
 ここで、対象物40は、第2の光子を照射又は入射させられたことに応じて、第3の光子を放出する。第3の光子は、第2の光子と同一の光子であってもよいし、第2の光子とは異なる光子であってもよく、当該事項は本実施形態を限定するものではない。また第3の光子は複数の単一光子であってもよい。 Here, the object 40 emits a third photon in response to being irradiated or incident with the second photon. The third photon may be the same photon as the second photon, or may be a photon different from the second photon, and the matter does not limit the present embodiment. Further, the third photon may be a plurality of single photons.
 放出された第3の光子は、第3のレンズ27及びロングパスフィルタ28を経由したうえで、第5のレンズ30を透過する。ロングパスフィルタ28は、第3の光子のうち、特定の第3の角振動数以下の角振動数を有する光子を透過させ、それ以外の光子を遮断する。第5のレンズ30を透過した第3の光子は、第2の検出部60によって検出され、検出信号が分析部70に供給される。 The emitted third photon passes through the fifth lens 30 after passing through the third lens 27 and the long pass filter 28. The long-pass filter 28 transmits photons having an angular frequency equal to or lower than a specific third angular frequency among the third photons, and blocks other photons. The third photon that has passed through the fifth lens 30 is detected by the second detection unit 60, and the detection signal is supplied to the analysis unit 70.
 なお、第1の検出部50及び第2の検出部60としては、一例として単一光子検出器を用いることができる。より具体的には、1光子適用型のアバランシェフォトダイオードを用いることができるが、これは本実施形態を限定するものではない。 As the first detection unit 50 and the second detection unit 60, a single photon detector can be used as an example. More specifically, a one-photon application type avalanche photodiode can be used, but this does not limit the present embodiment.
 以上のように構成された分析装置1では、第1の光子は、対象物40に照射又は入射させられることなく、第1の検出部50に到達し検出される。一方で、第2の光子は、対象物40に照射又は入射され、それに応じて得られる第3の光子が、第2の検出部60に到達し検出される。 In the analyzer 1 configured as described above, the first photon reaches the first detection unit 50 and is detected without being irradiated or incident on the object 40. On the other hand, the second photon is irradiated or incident on the object 40, and the third photon obtained accordingly reaches the second detection unit 60 and is detected.
 一般に、対象物40に第2の光子が照射又は入射した後に、第3の光子が得られるまでには0でない応答時間を要する。このため、図1に示すように、第3の光子が第2の検出部60によって検出されるタイミングは、第1の光子が第1の検出部50によって検出されるタイミングよりも遅延する。分析部70は、この遅延時間を特定し参照することによって、対象物40に関する特性を分析する。換言すれば、分析装置1は、第1の光子の検出タイミングを、対象物40の特性の分析のリファレンスとして用いる。 Generally, after the second photon is irradiated or incident on the object 40, it takes a non-zero response time until the third photon is obtained. Therefore, as shown in FIG. 1, the timing at which the third photon is detected by the second detection unit 60 is delayed from the timing at which the first photon is detected by the first detection unit 50. The analysis unit 70 analyzes the characteristics of the object 40 by identifying and referring to this delay time. In other words, the analyzer 1 uses the detection timing of the first photon as a reference for analyzing the characteristics of the object 40.
 (分析部)
 続いて図2を参照して分析部70の構成例について説明する。分析部70は、上述のように、第1の検出部50による第1の光子の検出タイミングと、第2の検出部60による第3の光子の検出タイミングとの差を参照して、対象物40に関する特性を分析する構成である。
(Analysis Department)
Subsequently, a configuration example of the analysis unit 70 will be described with reference to FIG. As described above, the analysis unit 70 refers to the difference between the detection timing of the first photon by the first detection unit 50 and the detection timing of the third photon by the second detection unit 60, and refers to the object. It is a configuration for analyzing the characteristics related to 40.
 図2に示すように、分析部70は、第1の取得部71、第2の取得部72、第1の変換部73、第2の変換部74、及び演算部75を備えて構成される。 As shown in FIG. 2, the analysis unit 70 includes a first acquisition unit 71, a second acquisition unit 72, a first conversion unit 73, a second conversion unit 74, and a calculation unit 75. ..
 第1の取得部71は、第1の検出部50による検出信号を取得し、信号処理を行ったうえで第1の変換部73に供給する。第1の変換部73は、一例として、第1の検出部50による検出信号を増幅し、増幅後の信号を第1の変換部73に供給する。 The first acquisition unit 71 acquires the detection signal by the first detection unit 50, performs signal processing, and then supplies the detection signal to the first conversion unit 73. As an example, the first conversion unit 73 amplifies the detection signal by the first detection unit 50, and supplies the amplified signal to the first conversion unit 73.
 第2の取得部72は、第1の変換部73と同様の構成であるが、取得する検出信号が第1の検出部50による検出信号である点が異なる。 The second acquisition unit 72 has the same configuration as the first conversion unit 73, except that the detection signal to be acquired is the detection signal by the first detection unit 50.
 第1の変換部73は、第1の取得部71から供給される信号を変換し、変換後の信号を演算部75に供給する。第1の変換部73は、一例として、第1の取得部71から供給されるアナログ信号をデジタル信号に変換し、変換後のデジタル信号を演算部75に供給する。 The first conversion unit 73 converts the signal supplied from the first acquisition unit 71, and supplies the converted signal to the calculation unit 75. As an example, the first conversion unit 73 converts the analog signal supplied from the first acquisition unit 71 into a digital signal, and supplies the converted digital signal to the calculation unit 75.
 第2の変換部74は、第1の変換部73と同様の構成であるが、取得する信号が第2の取得部72から供給される信号である点が異なる。 The second conversion unit 74 has the same configuration as the first conversion unit 73, except that the signal to be acquired is a signal supplied from the second acquisition unit 72.
 演算部75は、第1の検出部50による第1の光子の検出タイミングと、第2の検出部60による第3の光子の検出タイミングとの差を参照して、対象物40に関する特性を分析する。図1に示すように、演算部75は、第1の検出部50による第1の光子の検出タイミングと、第2の検出部60による第3の光子の検出タイミングとの時間差を特定する時間差特定部751を備えている。 The calculation unit 75 analyzes the characteristics of the object 40 with reference to the difference between the detection timing of the first photon by the first detection unit 50 and the detection timing of the third photon by the second detection unit 60. do. As shown in FIG. 1, the calculation unit 75 specifies a time difference that specifies a time difference between the detection timing of the first photon by the first detection unit 50 and the detection timing of the third photon by the second detection unit 60. The part 751 is provided.
 以上のように構成された分析装置1によれば、互いに量子もつれ状態にある複数の光子のうち、第1の光子は対象物40を経由せずに検出され、第2の光子が対象物40に照射又は入射することによって得られる第3の光子は、一例として対象物に応じた遅延時間を有して検出される。そして、分析装置1は、第1の光子の検出タイミングと、第3の光子の検出タイミングとの差を参照して対象物40に関する特性を分析するので、対象物へのダメージを最小限に抑えつつ、対象物の特性を好適に分析することができる。 According to the analyzer 1 configured as described above, among a plurality of photons in a quantum entangled state with each other, the first photon is detected without passing through the object 40, and the second photon is the object 40. The third photon obtained by irradiating or incident on the object is detected with a delay time depending on the object as an example. Then, the analyzer 1 analyzes the characteristics of the object 40 with reference to the difference between the detection timing of the first photon and the detection timing of the third photon, so that the damage to the object is minimized. At the same time, the characteristics of the object can be suitably analyzed.
 <互いに量子もつれ状態にある光子の生成について>
 以下では、本実施形態における「互いに量子もつれ状態にある複数の光子」についてより詳細に説明する。なお、以下の説明は、例示的に、非線形光学結晶である結晶性物質13中の自発的パラメトリック下方変換によって生成された複数の光子を例に挙げ説明するが、これはあくまで説明のためである。本実施形態における「互いに量子もつれ状態にある複数の光子」は、非線形光学結晶である結晶性物質13を用いて生成されたものに限られるものではなく、後述するように様々な生成な方法によって生成されたものでもよい。
<About the generation of photons that are in a quantum entangled state with each other>
Hereinafter, "a plurality of photons in a quantum entangled state with each other" in the present embodiment will be described in more detail. It should be noted that the following description exemplifies a plurality of photons generated by spontaneous parametric downward conversion in the crystalline substance 13 which is a nonlinear optical crystal as an example, but this is for illustration purposes only. .. The “plurality of photons in a quantum entangled state with each other” in the present embodiment is not limited to those generated by using the crystalline substance 13 which is a nonlinear optical crystal, and is not limited to those produced by various production methods as described later. It may be generated.
 図3は、結晶性物質13による光子対の生成例について説明するための模式図である。上述したように、連続光源11から結晶性物質13に対してポンプ光が供給され、当該ポンプ光の一部が、結晶性物質13内における自発的パラメトリック下方変換(SPDC: Spontaneous Parametric Down-Conversion)によって、時間的に同期した2つの単一光子(一方をシグナル光とも呼び、もう一方をアイドラー光とも呼ぶこともある)に変換される。図3では、2つの光子の偏光が互いに異なるタイプIIのSPDCを例示している。 FIG. 3 is a schematic diagram for explaining an example of generation of photon pairs by the crystalline substance 13. As described above, pump light is supplied from the continuous light source 11 to the crystalline substance 13, and a part of the pump light is spontaneously parametric down-conversion (SPDC: Spontaneous Parametric Down-Conversion) in the crystalline substance 13. Is converted into two temporally synchronized single photons (one is also called signal light and the other is sometimes called idler light). FIG. 3 illustrates a Type II SPDC in which the two photons have different polarizations.
 ここで、ポンプ光の(角振動数、波数ベクトル)を(ωP、kp)と表記し、生成される2つの光子の(角振動数、波数ベクトル)をそれぞれ、(ω1、k1)(ω2、k2)と表記すると、
  ω= ω1 + ω2  ・・・(式1)
  kp = k1 + k2 ・・・(式2)
が満たされる。式1はエネルギー保存則を表しており、式2は運動量保存則を表している。なお、本明細書では、角振動数のことを単に周波数と呼ぶこともある。
Here, the (angular frequency, wave vector) of the pump light is expressed as (ω P , k p ), and the (angular frequency, wave vector) of the two generated photons are (ω 1 , k 1), respectively. ) (Ω 2 , k 2 )
ω P = ω 1 + ω 2・ ・ ・ (Equation 1)
k p = k 1 + k 2・ ・ ・ (Equation 2)
Is satisfied. Equation 1 expresses the law of conservation of energy, and Equation 2 expresses the law of conservation of momentum. In this specification, the angular frequency may be simply referred to as a frequency.
 図3に示すように、SPDCによって生成された2つの光子は、ポンプ光に対して対称的に位置する2つの円錐上の経路であって、ポンプ光に対して対称的な経路に沿って伝搬する。 As shown in FIG. 3, the two photons generated by the SPDC are paths on two cones that are symmetrically located with respect to the pump light and propagate along the path symmetrical with respect to the pump light. do.
 図3には、互いに量子もつれ状態にある複数の光子の一例として、光子対Aを示し、他の例として光子対Bを示している。図3に示すタイプIIのSPDCの場合、互いに異なる円錐上を経路とする光子A1、及び光子A2を含む光子対Aの状態は、一例として、
 |Ψ> = |V>1|H>2 ・・・(式3)
又は、
 |Ψ> = |H>1|V>2 ・・・(式4)
のように表される。ここで、V,Hは、それぞれ、垂直偏光及び水平偏光を表しており、ケット|>の下付き添え字1、2は、2つの光子を区別するためのインデックスである。式3及び式4に示すように、光子対Aに含まれる光子A1及び光子A2は、偏光状態に関して、互いにもつれていない。
FIG. 3 shows a photon pair A as an example of a plurality of photons in a quantum entangled state with each other, and a photon pair B as another example. In the case of the type II SPDC shown in FIG. 3, the state of photon pair A containing photon A1 and photon A2 having paths on different cones is an example.
| Ψ> = | V> 1 | H> 2・ ・ ・ (Equation 3)
Or
| Ψ> = | H> 1 | V> 2・ ・ ・ (Equation 4)
It is expressed as. Here, V and H represent vertically polarized light and horizontally polarized light, respectively, and the subscripts 1 and 2 of Kett |> are indexes for distinguishing two photons. As shown in Equations 3 and 4, the photons A1 and A2 contained in the photon pair A are not entangled with each other in terms of polarization state.
 一方で、タイプIIのSPDCの場合、2つの円錐の交線を経路とする光子B1、及び光子B2を含む光子対Bの状態は、一例として、
 |Ψ> = (1/√2)|V>1|H>2 + (1/√2)|H>1|V>2・・・(式5)
のように表される。このように、光子対Bに含まれる光子B1及び光子B2は、偏光状態に関して、互いにもつれた状態にある。
On the other hand, in the case of type II SPDC, the state of photon vs. B containing photon B1 and photon B2 with the line of intersection of two cones as an example is an example.
| Ψ> = (1 / √2) | V> 1 | H> 2 + (1 / √2) | H> 1 | V> 2・ ・ ・ (Equation 5)
It is expressed as. As described above, the photon B1 and the photon B2 contained in the photon pair B are in an entangled state with respect to the polarization state.
 本実施形態において用いられる、互いに量子もつれ状態にある複数の光子として、上述した光子対Aに含まれる光子A1及び光子A2を用いてもよいし、光子対Bに含まれる光子B1及び光子B2を用いてもよい。換言すれば、本実施形態における「互いに量子もつれ状態にある複数の光子」は、時間的に同期していれば、互いに偏光もつれの関係にあってもよいし、そうでなくてもよい。
 図4は、結晶性物質13による光子対の他の生成例について説明するための模式図である。図4では、2つの光子の偏光が互いに等しいタイプIのSPDCを例示している。本例でも、ポンプ光の(角振動数、波数ベクトル)を(ωP、kp)と表記し、生成される2つの光子の(角振動数、波数ベクトル)をそれぞれ、(ω1、k1)(ω2、k2)と表記すると、図3の場合と同様に、上述した式1及び式2が満たされる。
 図4に示すように、SPDCによって生成された2つの光子は、ポンプ光を軸とする1つの円錐上の経路であって、ポンプ光に対して対称的な経路に沿って伝搬する。
 図4には、互いに量子もつれ状態にある複数の光子の一例として、光子対Cを示している。図4に示すタイプIのSPDCの場合、円錐上を経路とする光子C1、及び光子C2を含む光子対Cの状態は、一例として、
 |Ψ> = |V>1|V>2 ・・・(式3’)
又は、
 |Ψ> = |H>1|H>2 ・・・(式4’)
のように表される。ここで、式3’及び式4’に示すように、光子対Cに含まれる光子C1及び光子C2は、偏光状態に関しては、互いにもつれていない。
 本実施形態において用いられる、互いに量子もつれ状態にある複数の光子として、上述した光子対Cに含まれる光子C1及び光子C2を用いてもよい。
As a plurality of photons in a quantum entangled state with each other used in the present embodiment, the photon A1 and the photon A2 contained in the above-mentioned photon pair A may be used, or the photon B1 and the photon B2 contained in the photon pair B may be used. You may use it. In other words, the "plurality of photons in a quantum entangled state with each other" in the present embodiment may or may not have a polarization entangled relationship with each other as long as they are temporally synchronized.
FIG. 4 is a schematic diagram for explaining another example of generation of a photon pair by the crystalline substance 13. FIG. 4 illustrates a Type I SPDC in which the polarizations of the two photons are equal to each other. In this example as well, the (angular frequency, wave vector) of the pump light is expressed as (ω P , k p ), and the (angular frequency, wave vector) of the two generated photons are (ω 1 , k p, respectively). 1 ) When expressed as (ω 2 , k 2 ), the above-mentioned equations 1 and 2 are satisfied as in the case of FIG.
As shown in FIG. 4, the two photons generated by the SPDC are paths on one cone about the pump light and propagate along a path symmetrical to the pump light.
FIG. 4 shows a photon pair C as an example of a plurality of photons in a quantum entangled state with each other. In the case of the type I SPDC shown in FIG. 4, the state of photon vs. C containing photon C1 and photon C2 with the path on the cone is an example.
| Ψ> = | V> 1 | V> 2・ ・ ・ (Equation 3')
Or
| Ψ> = | H> 1 | H> 2・ ・ ・ (Equation 4')
It is expressed as. Here, as shown in the formulas 3'and 4', the photon C1 and the photon C2 contained in the photon pair C are not entangled with each other in terms of the polarization state.
Photon C1 and photon C2 contained in the above-mentioned photon pair C may be used as a plurality of photons in a quantum entangled state with each other used in the present embodiment.
 以下では、周波数ωp の光をポンプ光として用いたSPDCにより、周波数がω1 、ω2 の2つの光子を含む2光子状態|Ψ>が生成される状況を、より詳細に説明することにより、本明細書における「互いに量子もつれ状態にある複数の光子」についてより詳細に説明する。 In the following, we will explain in more detail the situation in which a two-photon state | Ψ> containing two photons with frequencies ω 1 and ω 2 is generated by SPDC using light with frequency ω p as pump light. , "A plurality of photons in a quantum entangled state with each other" in the present specification will be described in more detail.
 まず、2つの光子を生成する生成演算子を、それぞれ、
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
と表記し、光子の存在しない真空状態を|0>と表記すると、2光子状態|Ψ>は以下のように表される。
Figure JPOXMLDOC01-appb-M000003
ここで、式8における
Figure JPOXMLDOC01-appb-M000004
はディラックのデルタ関数であり、このデルタ関数の存在により、式9に示すように、式1に示したエネルギー保存則を満たす場合のみを考慮すればよいことが分かる。
First, the creation operators that generate two photons, respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
When the vacuum state without photons is written as | 0>, the two-photon state | Ψ> is expressed as follows.
Figure JPOXMLDOC01-appb-M000003
Here, in Equation 8
Figure JPOXMLDOC01-appb-M000004
Is a Dirac delta function, and it can be seen that due to the existence of this delta function, as shown in Equation 9, only the case where the energy conservation law shown in Equation 1 is satisfied needs to be considered.
 式9から分かるように、2光子状態|Ψ>は、周波数ω1を有する1光子状態と周波数ω2を有する1光子状態との積によって表すことはできない。このような状態を、本明細書では、「周波数(角振動数)に関して互いにもつれている」と表現する。 As can be seen from Equation 9, the two-photon state | Ψ> cannot be expressed by the product of the one-photon state with frequency ω 1 and the one-photon state with frequency ω 2. Such a state is expressed in the present specification as "entangled with each other in terms of frequency (angular frequency)".
 上記の説明は周波数領域での表記であるが、以下では2つの光子間の時間的な相関について調べるために、時間領域での表記に書き直す。まず、フーリエ変換
Figure JPOXMLDOC01-appb-M000005
を式9に代入し、デルタ関数の関係式
Figure JPOXMLDOC01-appb-M000006
を用いてω1の積分を先に計算することによって、
Figure JPOXMLDOC01-appb-M000007
を得る。式14から分かるように、2つの光子は時間的に同期されている。
The above description is in the frequency domain, but in the following, it will be rewritten in the time domain in order to investigate the temporal correlation between two photons. First, the Fourier transform
Figure JPOXMLDOC01-appb-M000005
Is assigned to Equation 9 and the relational expression of the delta function
Figure JPOXMLDOC01-appb-M000006
By calculating the integral of ω 1 first using
Figure JPOXMLDOC01-appb-M000007
To get. As can be seen from Equation 14, the two photons are temporally synchronized.
 より具体的に表現するため、一方の光子が経路a、もう片方の光子が経路b に存在するとする。時刻tに光子1つが経路aに存在する状態を、|1>a(t)のように表記することにすると、式14は次のように書き直すことができる。
Figure JPOXMLDOC01-appb-M000008
更に、時間積分を和で表現したとすると、
Figure JPOXMLDOC01-appb-M000009
・・・(式16)
を得る。式15及び式16から分かるように、2光子状態|Ψ>は、2つの光子の状態の積として表記することはできない。このような状態を、本明細書では、「時間に関して互いにもつれている」と表現する。
To express it more concretely, it is assumed that one photon exists in the path a and the other photon exists in the path b. If the state in which one photon exists in the path a at time t is expressed as | 1> a (t), Equation 14 can be rewritten as follows.
Figure JPOXMLDOC01-appb-M000008
Furthermore, if the time integral is expressed in sum,
Figure JPOXMLDOC01-appb-M000009
... (Equation 16)
To get. As can be seen from Equations 15 and 16, the two-photon state | Ψ> cannot be expressed as the product of the two photon states. Such a state is referred to herein as "tangled with each other in terms of time."
 以上説明したように、本実施形態において用いられる「互いに量子もつれ状態にある複数の光子」は、一例として、周波数(角振動数)又は時間に関して互いにもつれている複数の光子のことである。 As described above, the "plurality of photons in a quantum entangled state" used in the present embodiment is, for example, a plurality of photons that are entangled with each other in terms of frequency (angular frequency) or time.
 <結晶性物質について>
 本実施形態に係る結晶性物質13についてより具体的に説明すれば以下の通りである。上述したように、光源10は結晶性物質13を備える構成に限定されるものではないが、光源10は結晶性物質13を備える構成とすることによって、分析装置1の構成をよりシンプルにすることができるというメリットがある。
<About crystalline substances>
A more specific description of the crystalline substance 13 according to the present embodiment is as follows. As described above, the light source 10 is not limited to the configuration including the crystalline substance 13, but the configuration of the analyzer 1 can be made simpler by configuring the light source 10 to include the crystalline substance 13. There is a merit that it can be done.
 結晶性物質13は、一例として、入射光に対して結晶が非線形的に応答し、かつ複屈折が存在する非線形光学結晶である。ただし、これは本実施形態を限定するものではない。 As an example, the crystalline substance 13 is a non-linear optical crystal in which the crystal responds non-linearly to incident light and birefringence exists. However, this does not limit this embodiment.
 結晶性物質13の具体例として、BBO(β-BaB)、KDP(KHPO)、ppKTP(Periodically Polled KTiOPO)、ppLN(Periodically Polled LiNbO)などを挙げることができる。ただし、これらの具体例は、本実施形態を限定するものではない。 Specific examples of the crystalline substance 13 include BBO (β-BaB 2 O 4 ), KDP (KH 2 PO 4 ), ppKTP (Periodically Polled KTIOPO 4 ), ppLN (Periodically Collected LiNbo 3 ) and the like. However, these specific examples do not limit the present embodiment.
 また、非線形光学結晶を用いたSPDCには、上述したように、互いに偏光方向が同じ2つの光子を生成するタイプIと、互いに偏光方向が異なる2つの光子を生成するタイプIIとが存在する。本実施形態では、タイプI及びタイプIIのSPDCを用いてもよい。例えば、BBOを用いてタイプIIのSPDCにより光子対を生成してもよいし、BBOを用いてタイプIのSPDCにより光子対を生成してもよい。 Further, in the SPDC using the nonlinear optical crystal, as described above, there are a type I that generates two photons having the same polarization direction and a type II that generates two photons having different polarization directions. In this embodiment, type I and type II SPDCs may be used. For example, a BBO may be used to generate a photon pair with a type II SPDC, or a BBO may be used to generate a photon pair with a type I SPDC.
 なお、結晶性物質13による光子対の発生頻度は本実施形態を限定するものではないが、ポンプ光の強度を調整することにより、一例として1秒あたり数回~数百万回程度とすることができる。 The frequency of photon pairs generated by the crystalline substance 13 is not limited to this embodiment, but it may be set to several to several million times per second as an example by adjusting the intensity of the pump light. Can be done.
 また、結晶性物質13の他の例として、ニオブ酸リチウム(LiNbO3)結晶内の自発分極を、異なる2つの周期で反転させて得られる物質を用いてもよい。このように構成された物質において、2つの異なる位相整合条件を制御することによって、それぞれの領域で発生しうる光子のペアがもつ偏光と周波数が互い違いに相関している量子もつれ状態を直接発生させることができる。 Further, as another example of the crystalline substance 13, a substance obtained by reversing the spontaneous polarization in the lithium niobate (LiNbO 3 ) crystal in two different cycles may be used. In the material constructed in this way, by controlling two different phase matching conditions, a quantum entangled state in which the polarization and frequency of the photon pair that can be generated in each region are alternately correlated is directly generated. be able to.
 このようにして生成された光子対も、本実施形態に係る「互いに量子もつれ状態にある複数の光子」として用いることができる。 The photon pair generated in this way can also be used as "a plurality of photons in a quantum entangled state with each other" according to the present embodiment.
 <その他の光源構成例>
 光源10の構成例は、上述の例に限定されるものではない。例えば、光源10は、結晶性物質13を備える代わりに、マッハ・ツェンダー干渉計、マイケルソン型干渉計、及び、サニャック型干渉計の何れかを備え、これらの干渉計の何れかによって、互いに量子もつれ状態にある複数の光子を生成する構成としてもよい。
<Other light source configuration examples>
The configuration example of the light source 10 is not limited to the above example. For example, the light source 10 includes one of a Mach-Zehnder interferometer, a Michaelson-type interferometer, and a Sanyak-type interferometer instead of the crystalline material 13, and is quantum to each other by any of these interferometers. It may be configured to generate a plurality of entangled photons.
 <第2の光子及び第3の光子について>
 上述したように、本実施形態に係る第3の光子は、第2の光子が対象物40に照射又は入射することによって得られる。第2の光子及び第3の光子は、対象物40や分析装置1の適用の仕方によって、互いに同じ光子であるとの解釈がより好適な場合もあるし、互いに異なる光子であるとの解釈がより好適な場合もある。
<About the second photon and the third photon>
As described above, the third photon according to the present embodiment is obtained by irradiating or incident on the object 40 with the second photon. Depending on how the object 40 and the analyzer 1 are applied, it may be more preferable to interpret the second photon and the third photon as the same photon, or they may be interpreted as different photons. It may be more preferable.
 例えば、対象物40の一例として、発光性(蛍光性、燐光性)の物質を用いた場合、対象物40に第2の光子が吸収されることにより対象物40が励起状態に遷移する。そして、当該励起状態から、よりエネルギーの低い状態への遷移に伴い、第3の光子が放出される。このような例では、第3の光子は、第2の光子とは異なる光子であるとの解釈が好適である。 For example, when a luminescent (fluorescent, phosphorescent) substance is used as an example of the object 40, the object 40 transitions to an excited state by absorbing a second photon in the object 40. Then, a third photon is emitted with the transition from the excited state to the lower energy state. In such an example, it is preferable to interpret that the third photon is a photon different from the second photon.
 他の例として、第2の光子が、ミラーで反射されたり対象物40としてのファイバー中を伝播する場合を考えると、これらの過程で第2の光子は、反射されたり透過するだけであるので、第2の光子と第3の光子は同じ光子であるとの解釈が好適に成り立つ。 As another example, consider the case where the second photon is reflected by the mirror or propagates through the fiber as the object 40, because in these processes the second photon is only reflected or transmitted. , The interpretation that the second photon and the third photon are the same photon is preferably valid.
 その一方で、第3の光子は第2の光子とは進行方向が異なっており、ファイバー中を伝播中に光子の波束の時間幅が広くなる可能性もある。このように、第2の光子と第3の光子の物理的な性質は一般に、完全に同一ではない。したがって、そのような意味で、第2の光子と第3の光子は互いに異なる光子であるとの解釈も成り立つ。 On the other hand, the third photon travels in a different direction from the second photon, and the time width of the photon wave packet may become wider while propagating in the fiber. Thus, the physical properties of the second and third photons are generally not exactly the same. Therefore, in that sense, the interpretation that the second photon and the third photon are different photons is also valid.
 本実施形態に記載の発明を特定するにあたり、第2の光子と第3の光子とが同一であるのか異なるものであるのかは、対象物40や分析装置1の適用の仕方に応じてどのように解釈するのかという解釈論を含む事項であり、本質的ではない。 In specifying the invention described in the present embodiment, whether the second photon and the third photon are the same or different depends on how the object 40 and the analyzer 1 are applied. It is a matter that includes an interpretation theory as to whether or not to interpret it, and is not essential.
 <分析装置1による処理の流れ>
 続いて、図5を参照して、本実施形態に係る分析装置1による処理の流れについて説明する。図5は、分析装置1による処理の流れを示すフローチャートである。
<Processing flow by analyzer 1>
Subsequently, the flow of processing by the analyzer 1 according to the present embodiment will be described with reference to FIG. FIG. 5 is a flowchart showing the flow of processing by the analyzer 1.
 (ステップS11)
 まず、ステップS11において、光源10は、互いに量子もつれ状態にある複数の光子を生成する。ここで、光源10による光子の生成については、すでに説明した方法を用いればよい。
(Step S11)
First, in step S11, the light source 10 generates a plurality of photons in a quantum entangled state with each other. Here, for the generation of photons by the light source 10, the method already described may be used.
 (ステップS12)
 続いて、ステップS12において、第1の検出部50は、ステップS11において生成された互いに量子もつれ状態にある複数の光子のうち、第1の経路を伝搬した第1の光子を検出する。
(Step S12)
Subsequently, in step S12, the first detection unit 50 detects the first photon propagating in the first path among the plurality of photons in the quantum entangled state with each other generated in step S11.
 (ステップS13)
 続いて、ステップS13において、第2の検出部60は、ステップS11において生成された互いに量子もつれ状態にある複数の光子のうち、第2の光子を対象物40に照射又は入射させることによって得られる第3の光子を検出する。
(Step S13)
Subsequently, in step S13, the second detection unit 60 is obtained by irradiating or incident the second photon on the object 40 among the plurality of photons in the quantum entangled state with each other generated in step S11. Detects a third photon.
 (ステップS14)
 ステップS14において、分析部70は、ステップS12における第1の検出部50による検出タイミングと、ステップS13における第2の検出部60による検出タイミングとの差を参照して、対象物40に関する特性を分析する。
(Step S14)
In step S14, the analysis unit 70 analyzes the characteristics of the object 40 with reference to the difference between the detection timing by the first detection unit 50 in step S12 and the detection timing by the second detection unit 60 in step S13. do.
 以上のステップを含む分析方法によれば、互いに量子もつれ状態にある複数の光子のうち、第1の光子は対象物40を経由せずに検出され、第2の光子が対象物40に照射又は入射することによって得られる第3の光子は、一例として対象物に応じた遅延時間を有して検出される。そして、分析装置1は、第1の光子の検出タイミングと、第3の光子の検出タイミングとの差を参照して対象物40に関する特性を分析するので、対象物へのダメージを最小限に抑えつつ、対象物の特性を好適に分析することができる。 According to the analysis method including the above steps, among a plurality of photons in a quantum entangled state with each other, the first photon is detected without passing through the object 40, and the second photon irradiates or irradiates the object 40. The third photon obtained by incident is detected with a delay time depending on the object as an example. Then, the analyzer 1 analyzes the characteristics of the object 40 with reference to the difference between the detection timing of the first photon and the detection timing of the third photon, so that the damage to the object is minimized. At the same time, the characteristics of the object can be suitably analyzed.
 なお、上記の説明では、ステップS12において第1の光子が検出された後に、ステップS13において第2の光子が検出される場合を例に挙げたが、これは本実施形態を限定するものではない。第1経路、及び第2の経路の構成の仕方によっては、ステップS12において第1の光子が検出される前に、ステップS13において第2の光子が検出される場合もあり得る。このような例も本実施形態に含まれる。 In the above description, the case where the first photon is detected in step S12 and then the second photon is detected in step S13 has been given as an example, but this does not limit the present embodiment. .. Depending on how the first path and the second path are configured, the second photon may be detected in step S13 before the first photon is detected in step S12. Such an example is also included in this embodiment.
 また、何れの場合であっても、第1の光子及び第2の光子のうち、一方の光子が先に検出されることによって、もう一方の光子の波束の収縮が発生し得る。 Further, in any case, the wave function collapse of the other photon may occur by detecting one of the first photon and the second photon first.
 (本明細書に記載の発明の学際的側面)
 本明細書に記載の分析方法及び分析装置は、上述のように、一例として、互いに量子もつれ状態にある複数の光子を発生させ、発生させた光子を分光学(一例として分子分光学)に利用している。ここで、量子もつれ状態にある複数の光子という量子光学的なオブジェクトの利用は、従来量子光学という範疇の中での利用に留まっており、分光学に適用されることはなかった。本願の発明者は、量子もつれ状態にある複数の光子という量子光学的なオブジェクトを、分光学に適用するという新たな知見を得たことによって初めて本明細書に記載の発明に想到することができたものである。このように、本明細書に記載の分析方法及び分析装置は、当業者であっても容易には結び付けることのできない2つの分野を融合させたという高度な学際的側面を有する。
(Interdisciplinary aspects of the invention described herein)
As described above, the analysis method and analyzer described in the present specification generate a plurality of photons in a quantum entangled state with each other as an example, and utilize the generated photons for spectroscopy (for example, molecular spectroscopy). doing. Here, the use of quantum optical objects such as a plurality of photons in a quantum entangled state has been limited to the use in the category of quantum optics, and has not been applied to spectroscopy. The inventor of the present application can come up with the invention described in the present specification only after obtaining a new finding that a quantum optical object called a plurality of photons in a quantum entangled state is applied to spectroscopy. It is an invention. As described above, the analysis method and the analysis device described in the present specification have a highly interdisciplinary aspect of fusing two fields that cannot be easily linked even by those skilled in the art.
 〔実施形態2〕
 以下では、本発明の第2の実施形態について説明する。上述の実施形態において既に説明した構成については同じ符号を付し、その説明を省略する。
[Embodiment 2]
The second embodiment of the present invention will be described below. The same reference numerals are given to the configurations already described in the above-described embodiment, and the description thereof will be omitted.
 図6は本実施形態に係る発光分析装置100の構成を示すブロック図である。図6に示すように、発光分析装置100は、分析装置1aを備えている。分析装置1aは、実施形態1において説明した分析装置1が備える演算部75に代えて、演算部75aを備えている。分析装置1aのその他の構成は、実施形態1に係る分析装置1と同様である。 FIG. 6 is a block diagram showing the configuration of the luminescence analyzer 100 according to the present embodiment. As shown in FIG. 6, the luminescence analyzer 100 includes an analyzer 1a. The analyzer 1a includes a calculation unit 75a instead of the calculation unit 75 included in the analysis device 1 described in the first embodiment. Other configurations of the analyzer 1a are the same as those of the analyzer 1 according to the first embodiment.
 発光分析装置100は、発光性を有する対象物40の特性を分析する装置である。ここで、発光には、蛍光及び燐光(蓄光)が含まれる。発光分析装置100は、一例として対象物40の発光寿命(例えば、蛍光寿命、燐光寿命)を特定する。 The luminescence analyzer 100 is a device that analyzes the characteristics of the object 40 having luminescence. Here, the light emission includes fluorescence and phosphorescence (phosphorescence). The luminescence analyzer 100 specifies the luminescence lifetime (for example, fluorescence lifetime, phosphorescence lifetime) of the object 40 as an example.
 図7は分析装置1aが備える演算部75aの構成を示すブロック図である。図7に示すように、演算部75aは、時間差特定部751、及び発光寿命特定部752を備えている。発光寿命特定部752は、時間差特定部751が特定した第1の光子の検出タイミングと第3の光子の検出タイミングとを参照し、対象物40の発光寿命を特定する。 FIG. 7 is a block diagram showing a configuration of a calculation unit 75a included in the analyzer 1a. As shown in FIG. 7, the calculation unit 75a includes a time difference specifying unit 751 and a light emitting life specifying unit 752. The light emission lifetime specifying unit 752 specifies the light emission life of the object 40 by referring to the detection timing of the first photon and the detection timing of the third photon specified by the time difference specifying unit 751.
 実施形態1において説明した図5との関連で言えば、本実施形態では、図5のステップS13において、対象物40の発光現象に伴う光子を第3の光子として検出する。 In relation to FIG. 5 described in the first embodiment, in the present embodiment, in step S13 of FIG. 5, a photon associated with the light emission phenomenon of the object 40 is detected as a third photon.
 図8は、比較用として第2の経路上に対象物40を配置しない状況において、発光分析装置100において検出された第1の光子の検出タイミングと第3の光子の検出タイミングとの差をプロットした実験結果である。 FIG. 8 plots the difference between the detection timing of the first photon and the detection timing of the third photon detected by the luminescence analyzer 100 in a situation where the object 40 is not arranged on the second path for comparison. This is the result of the experiment.
 図8に示すように、第2の経路上に対象物40を配置しない状況において、第1の光子の検出タイミングと第3の光子の検出タイミングの差(検出誤差)は、0.23ns程度に抑えられており、2つの光子の高い同時性が実現していることが分かる。なお、図7に示した検出誤差は、主として第1の検出部50及び第2の検出部60の時間分解能に起因しており、光源10では、図8に示した同時性よりも高い同時性が実現されている。 As shown in FIG. 8, in the situation where the object 40 is not arranged on the second path, the difference (detection error) between the detection timing of the first photon and the detection timing of the third photon is about 0.23 ns. It is suppressed, and it can be seen that a high degree of simultaneity between the two photons is realized. The detection error shown in FIG. 7 is mainly due to the time resolution of the first detection unit 50 and the second detection unit 60, and the light source 10 has a higher simultaneity than the simultaneity shown in FIG. Has been realized.
 図9は、対象物40として、蛍光分子である色素分子(Rhodamine 6G)を用いた場合に、発光寿命特定部752が特定する蛍光減衰曲線を示している。図9に示す蛍光減衰曲線は、光子対毎に時間差特定部751が特定した時間差を、発光寿命特定部752が多数の光子対に対してプロットして得られたグラフである。図9に示す例では、発光寿命特定部752は、対象物40の蛍光寿命が4.8nsであると特定する。 FIG. 9 shows a fluorescence attenuation curve specified by the emission lifetime specifying unit 752 when a dye molecule (Rhodamine 6G), which is a fluorescent molecule, is used as the object 40. The fluorescence attenuation curve shown in FIG. 9 is a graph obtained by plotting the time difference specified by the time difference specifying unit 751 for each photon pair for a large number of photon pairs by the emission lifetime specifying unit 752. In the example shown in FIG. 9, the emission lifetime specifying unit 752 specifies that the fluorescence lifetime of the object 40 is 4.8 ns.
 本実施形態に係る発光分析装置100によれば、対象物40へのダメージを最小限に抑えつつ、対象物40の発光現象に関する特性を好適に分析することができる。 According to the luminescence analyzer 100 according to the present embodiment, it is possible to suitably analyze the characteristics related to the luminescence phenomenon of the object 40 while minimizing the damage to the object 40.
 なお、上述の例では、対象物40として、分子を例に挙げたが、これは本実施形態を限定するものではなく、対象物40は、原子、分子、固体、及び結晶の少なくとも何れかを含み得る。 In the above example, the molecule is taken as an example of the object 40, but this does not limit the present embodiment, and the object 40 includes at least one of an atom, a molecule, a solid, and a crystal. Can include.
 このような対象物に対しても、発光分析装置100によれば、対象物40へのダメージを最小限に抑えつつ、対象物40の発光現象に関する特性を好適に分析することができる。 Even for such an object, according to the luminescence analyzer 100, it is possible to suitably analyze the characteristics of the object 40 regarding the luminescence phenomenon while minimizing the damage to the object 40.
 〔実施形態3〕
 以下では、本発明の第3の実施形態について説明する。上述の実施形態において既に説明した構成については同じ符号を付し、その説明を省略する。
[Embodiment 3]
Hereinafter, a third embodiment of the present invention will be described. The same reference numerals are given to the configurations already described in the above-described embodiment, and the description thereof will be omitted.
 図10は、拡散光トモグラフィー装置200の構成例を示したものである。図10に示すように、拡散光トモグラフィー装置200は、分析装置1bを備えている。分析装置1bは、実施形態1において説明した分析装置1が備える演算部75に代えて、演算部75bを備えている。分析装置1bのその他の構成は、実施形態1に係る分析装置1と同様である。 FIG. 10 shows a configuration example of the diffused light tomography apparatus 200. As shown in FIG. 10, the diffused light tomography apparatus 200 includes an analyzer 1b. The analyzer 1b includes a calculation unit 75b instead of the calculation unit 75 included in the analysis device 1 described in the first embodiment. Other configurations of the analyzer 1b are the same as those of the analyzer 1 according to the first embodiment.
 拡散光トモグラフィー装置200は、透過性を有する対象物40の断層画像を生成する装置である。本実施形態において対象物40は、透過性を有する物質であるが、対象物40は可視光を透過する物質に限られるものではなく、遠紫外線及び遠赤外線領域を透過する物質も、対象物40に含まれる。 The diffused light tomography device 200 is a device that generates a tomographic image of a transparent object 40. In the present embodiment, the object 40 is a substance having transparency, but the object 40 is not limited to a substance that transmits visible light, and a substance that transmits far ultraviolet rays and far infrared regions is also the object 40. include.
 本実施形態では、第2の光子を対象物に入射させ、第1の光子をリファレンスとして用いる。本実施形態に係る第3の光子は、第2の光子が対象物中で繰り返し散乱した結果得られた光子である。第3の光子は、対象物中で繰り返しの散乱過程を経た光子であるとも言える。 In this embodiment, the second photon is incident on the object and the first photon is used as a reference. The third photon according to the present embodiment is a photon obtained as a result of the second photon being repeatedly scattered in the object. It can be said that the third photon is a photon that has undergone repeated scattering processes in the object.
 図11は、拡散光トモグラフィー装置200の分析装置1bが備える演算部75bの構成を示したものである。演算部75bは、時間差特定部751及びトモグラフィー分析部753を備えている。トモグラフィー分析部753は、時間差特定部751が特定した第1の光子の検出タイミングと第3の光子の検出タイミングとを参照し、光子が対象物40中でどのように散乱されたかに関する情報を取得する。そして、トモグラフィー分析部753は、取得した情報を解析することにより、対象物40中の物質の空間分布を特定する。そして、一例として、特定した空間分布を示す対象物の断層画像を生成する。 FIG. 11 shows the configuration of the calculation unit 75b included in the analyzer 1b of the diffused light tomography apparatus 200. The calculation unit 75b includes a time difference specifying unit 751 and a tomography analysis unit 753. The tomography analysis unit 753 refers to the detection timing of the first photon and the detection timing of the third photon specified by the time difference identification unit 751 and acquires information on how the photons are scattered in the object 40. do. Then, the tomography analysis unit 753 identifies the spatial distribution of the substance in the object 40 by analyzing the acquired information. Then, as an example, a tomographic image of an object showing a specified spatial distribution is generated.
 実施形態1において説明した図5との関連で言えば、本実施形態では、図5のステップS13において、対象物40の透過現象に伴う光子を第3の光子として検出する。 Speaking in relation to FIG. 5 described in the first embodiment, in the present embodiment, in step S13 of FIG. 5, a photon associated with the transmission phenomenon of the object 40 is detected as a third photon.
 拡散光トモグラフィー装置200は、対象物へのダメージを押さえつつ、好適に拡散光トモグラフィーを実行することができる。また、従来技術のようにパルス光を発生させる装置が必要ないため、拡散光トモグラフィー装置の構成がシンプルになるというメリットもある。 The diffused light tomography apparatus 200 can suitably perform diffused light tomography while suppressing damage to an object. In addition, since there is no need for a device that generates pulsed light as in the prior art, there is an advantage that the configuration of the diffused light tomography device is simplified.
 〔実施形態4〕
 以下では、本発明の第4の実施形態について説明する。上述の実施形態において既に説明した構成については同じ符号を付し、その説明を省略する。
[Embodiment 4]
Hereinafter, a fourth embodiment of the present invention will be described. The same reference numerals are given to the configurations already described in the above-described embodiment, and the description thereof will be omitted.
 図12は、撮像装置300の構成例を示したものである。図12に示すように、撮像装置300は、分析装置1cを備えている。分析装置1cは、実施形態1において説明した分析装置1が備える演算部75に代えて、演算部75cを備えている。分析装置1cのその他の構成は、実施形態1に係る分析装置1と同様である。 FIG. 12 shows a configuration example of the imaging device 300. As shown in FIG. 12, the imaging device 300 includes an analyzer 1c. The analyzer 1c includes a calculation unit 75c instead of the calculation unit 75 included in the analysis device 1 described in the first embodiment. Other configurations of the analyzer 1c are the same as those of the analyzer 1 according to the first embodiment.
 撮像装置300は、反射性を有する対象物40を含む撮像範囲の撮像情報を生成する装置である。 The imaging device 300 is a device that generates imaging information in an imaging range including an object 40 having reflexivity.
 本実施形態では、第2の光子を対象物に向かって出射し、第1の光子をリファレンスとして用いる。本実施形態に係る第3の光子は、第2の光子が対象物によって反射されることによって得られた光子である。 In this embodiment, the second photon is emitted toward the object, and the first photon is used as a reference. The third photon according to the present embodiment is a photon obtained by reflecting the second photon by an object.
 図13は、撮像装置300の分析装置1cが備える演算部75cの構成を示したものである。演算部75cは、時間差特定部751及び画像生成部754を備えている。画像生成部754は、時間差特定部751が特定した第1の光子の検出タイミングと第3の光子の検出タイミングとを参照し、対象物40の特性として、当該対象物40までの距離を特定する。そして、特性した距離に基づき、対象物40を含む撮像範囲の撮像情報であって、対象物40までの距離情報を含む撮像情報を生成する。 FIG. 13 shows the configuration of the calculation unit 75c included in the analyzer 1c of the imaging device 300. The calculation unit 75c includes a time difference specifying unit 751 and an image generation unit 754. The image generation unit 754 refers to the detection timing of the first photon and the detection timing of the third photon specified by the time difference specifying unit 751, and specifies the distance to the object 40 as a characteristic of the object 40. .. Then, based on the characteristic distance, the imaging information including the distance information to the object 40, which is the imaging information of the imaging range including the object 40, is generated.
 実施形態1において説明した図5との関連で言えば、本実施形態では、図5のステップS13において、対象物40の反射現象に伴う光子を第3の光子として検出する。 In relation to FIG. 5 described in the first embodiment, in the present embodiment, in step S13 of FIG. 5, a photon associated with the reflection phenomenon of the object 40 is detected as a third photon.
 従来、Lidar(Light Imaging Detection and Ranging)と呼ばれる技術では、パルス光を用いてレーザー照射に対する散乱光を測定し、対象までの距離、対象の性質などを分析していたが、本実施形態では、互いに量子もつれ状態にある複数の単一光子を用いて、距離情報を含む撮像情報を生成するので、対象物へのダメージを低減しつつ、対象までの距離、対象の性質などを分析することができる。 Conventionally, in a technique called Lidar (Light Imaging Detection and Ringing), scattered light with respect to laser irradiation is measured using pulsed light to analyze the distance to a target, the properties of the target, and the like. Since imaging information including distance information is generated using multiple single photons that are in a quantum entangled state with each other, it is possible to analyze the distance to the target, the properties of the target, etc. while reducing damage to the target. can.
 なお、画像生成部754が生成する撮像情報は、一例として、距離情報と2次元の撮像画像とすることができるが、これは本実施形態を限定するものではない。画像生成部754は、距離情報と2次元の撮像画像とを参照して、立体視用の左目用画像及び右目用画像を生成する構成としてもよい。 The imaging information generated by the image generation unit 754 can be, for example, distance information and a two-dimensional captured image, but this does not limit the present embodiment. The image generation unit 754 may be configured to generate a left-eye image and a right-eye image for stereoscopic viewing by referring to the distance information and the two-dimensional captured image.
 本実施形態では、互いに量子もつれ状態にある複数の単一光子を用いて、立体視用の画像を生成するので、対象物へのダメージを低減しつつ、好適に立体視用の画像を生成することができる。また、従来技術のようにパルス光を発生させる装置が必要ないため、撮像装置の構成がシンプルになるというメリットもある。 In the present embodiment, since a plurality of single photons in a quantum entangled state are used to generate an image for stereoscopic viewing, an image for stereoscopic viewing is preferably generated while reducing damage to an object. be able to. In addition, since there is no need for a device that generates pulsed light as in the prior art, there is an advantage that the configuration of the imaging device is simplified.
 〔実施形態5〕
 以下では、本発明の第5の実施形態について説明する。上述の実施形態において既に説明した構成については同じ符号を付し、その説明を省略する。
[Embodiment 5]
Hereinafter, a fifth embodiment of the present invention will be described. The same reference numerals are given to the configurations already described in the above-described embodiment, and the description thereof will be omitted.
 図14は、反射率測定装置400の構成例を示したものである。図14に示すように、反射率測定装置400は、分析装置1dを備えている。分析装置1dは、実施形態1において説明した分析装置1が備える演算部75に代えて、演算部75dを備えている。分析装置1dのその他の構成は、実施形態1に係る分析装置1と同様である。 FIG. 14 shows a configuration example of the reflectance measuring device 400. As shown in FIG. 14, the reflectance measuring device 400 includes an analyzer 1d. The analyzer 1d includes a calculation unit 75d instead of the calculation unit 75 included in the analysis device 1 described in the first embodiment. Other configurations of the analyzer 1d are the same as those of the analyzer 1 according to the first embodiment.
 反射率測定装置400は、反射性を有する対象物40の特性を分析する装置である。
ここで、対象物40は、一例として光ファイバーである。
The reflectance measuring device 400 is a device that analyzes the characteristics of the object 40 having reflectivity.
Here, the object 40 is, for example, an optical fiber.
  本実施形態では、第2の光子を対象物に入射させ、第1の光子をリファレンスとして用いる。本実施形態に係る第3の光子は、第2の光子が対象物を透過又は反射することによって得られた光子である。第3の光子には、第2の光子が対象物に入射することによって得られた後方散乱光も含まれ得る。 In this embodiment, the second photon is incident on the object and the first photon is used as a reference. The third photon according to the present embodiment is a photon obtained by transmitting or reflecting the second photon through an object. The third photon may also include backscattered light obtained by incident of the second photon on the object.
 図15は、反射率測定装置400の分析装置1dが備える演算部75dの構成を示したものである。演算部75dは、時間差特定部751及び反射率測定部755を備えている。反射率測定部755は、時間差特定部751が特定した第1の光子の検出タイミングと第3の光子の検出タイミングとを参照し、対象物40の反射性を検出する。 FIG. 15 shows the configuration of the calculation unit 75d included in the analyzer 1d of the reflectance measuring device 400. The calculation unit 75d includes a time difference specifying unit 751 and a reflectance measuring unit 755. The reflectance measuring unit 755 detects the reflectivity of the object 40 by referring to the detection timing of the first photon and the detection timing of the third photon specified by the time difference specifying unit 751.
 実施形態1において説明した図5との関連で言えば、本実施形態では、図5のステップS13において、対象物40の反射現象に伴う光子を第3の光子として検出する。 In relation to FIG. 5 described in the first embodiment, in the present embodiment, in step S13 of FIG. 5, a photon associated with the reflection phenomenon of the object 40 is detected as a third photon.
 従来、OTDR(Optical Time Domain Reflectometer)と呼ばれる技術では、パルス光を用いて、後方散乱光などにより光ファイバーを品質管理していたが、本実施形態では、互いに量子もつれ状態にある複数の光子を用いて、品質管理するので、対象物へのダメージを、パルス光を用いるよりも、低減することができる。また、従来技術のようにパルス光を発生させる装置が必要ないため、反射率測定装置の構成がシンプルになるというメリットもある。 Conventionally, in a technique called OTDR (Optical Time Domain Reflectometer), the quality of an optical fiber is controlled by backscattered light or the like using pulsed light, but in this embodiment, a plurality of photons in a quantum entangled state are used. Since quality control is performed, damage to the object can be reduced as compared with the case of using pulsed light. In addition, since there is no need for a device that generates pulsed light as in the prior art, there is an advantage that the configuration of the reflectance measuring device is simplified.
 <他の適用例>
 本明細書において上述した分析装置の適用例は、上記の例に限られるものではない。一例として、上述した分析装置をポンプ-プローブ法に適用してもよい。より具体的には、第1の光子を用いて対象物40を励起させ、第2の光子をプローブ光として用いて対象物を観測する構成としてもよい。
<Other application examples>
The application examples of the analyzer described above in the present specification are not limited to the above examples. As an example, the analyzer described above may be applied to the pump-probe method. More specifically, the object 40 may be excited by using the first photon, and the object may be observed by using the second photon as the probe light.
 連続光を光源としてポンプ‐プローブ測定を行うことは、従来不可能であったが、上述した分析装置を用いれば、連続光を、もつれ状態にある光子対に変換することにより、連続光を光源としたポンプ‐プローブ測定が可能になる。 It has been impossible to perform pump-probe measurement using continuous light as a light source in the past, but by using the above-mentioned analyzer, continuous light is converted into a photon pair in an entangled state, thereby converting continuous light into a light source. Pump-probe measurement is possible.
 より具体的な例として、本例に係る分析装置は、第1の光子を、分子である対象物40に照射し、光化学反応を開始させる。そして、微小な遅延時間(フェムト秒、ピコ秒程度)を経た後に、第2の光子をプローブ光として当該対象物40に照射する。これにより、本例に係る分析装置は、分子吸収(赤外光、可視光、紫外光領域)やラマン散乱を測定することができる。本例に係る分析装置によれば、このようにして、化学反応が進行する様子をフェムト秒、ピコ秒程度の時間分解能で追跡することができる。 As a more specific example, the analyzer according to this example irradiates the object 40, which is a molecule, with a first photon to initiate a photochemical reaction. Then, after a minute delay time (about femto seconds, pico seconds), the object 40 is irradiated with the second photon as probe light. As a result, the analyzer according to this example can measure molecular absorption (infrared light, visible light, ultraviolet light region) and Raman scattering. According to the analyzer according to this example, it is possible to track the progress of the chemical reaction with a time resolution of about femtoseconds and picoseconds in this way.
 また、他の例として、上述した分析装置をポンプ-ダンプ-プローブ法に適用してもよい。
ここで、ポンプ-ダンプ-プローブ法に用いる互いに量子もつれ状態にある3つの光子は、例えば、以下の方法により得ることができる。
 すなわち、分析装置が2つの非線形光学結晶を備える構成とし、まず、第1の非線形光学結晶に対して連続光を入射させSPDCにより、互いに量子もつれ状態にある2つの光子(光子1、光子2と呼ぶ)を発生させる。そして、これら2つの光子のうち一方(例えば光子1)を第2の非線形光学結晶に照射し、当該第2の非線形光学結晶におけるSPDCにより2つの光子(光子3、光子4と呼ぶ)へと変換する。
 このようにして得られた3つの光子(光子2、光子3、光子4)は互いに量子もつれ状態にあり、時間的に同期されている。
 本例に係る分析装置は、一例として、まず、互いに量子もつれ状態にある3つの光子のうち第1の光子を、分子である対象物40に照射することにより、対象物40を励起させる。一般に、高い電子励起状態にある分子は、基底状態とは異なる平衡核間距離を有するので、核波束が運動量を付与され移動を開始する。その後、本例に係る分析装置は、上記3つの光子のうち第2の光子を対象物40に照射することによって、波束を基底状態にダンプさせる。その後、本例に係る分析装置は、上記3つの光子のうち第3の光子をプローブ光として対象物40に照射する。
 本例に係る分析装置は、上記のようにポンプ-ダンプ-プローブ法を実行することによって、例えば、分子である対象物40の脱励起効率や、当該脱励起効率のダンプ光照射タイミング依存性を特定することができる。
 連続光を光源としてポンプ‐ダンプ-プローブ測定を行うことは、従来不可能であったが、上述した分析装置を用いれば、もつれ状態にある3つの光子に変換することにより、連続光を光源としたポンプ‐ダンプ-プローブ測定が可能になる。
Further, as another example, the above-mentioned analyzer may be applied to the pump-dump-probe method.
Here, the three photons in a quantum entangled state with each other used in the pump-dump-probe method can be obtained, for example, by the following method.
That is, the analyzer is configured to include two nonlinear optical crystals. First, two photons (photon 1 and photon 2) in a quantum entangled state are incident on the first nonlinear optical crystal by SPDC. Call). Then, one of these two photons (for example, photon 1) is irradiated to the second nonlinear optical crystal, and the SPDC in the second nonlinear optical crystal converts it into two photons (referred to as photon 3 and photon 4). do.
The three photons (photon 2, photon 3, and photon 4) thus obtained are in a quantum entangled state with each other and are synchronized in time.
As an example, the analyzer according to this example excites the object 40 by irradiating the object 40, which is a molecule, with the first photon of the three photons in a quantum entangled state with each other. In general, a molecule in a high electron excited state has an equilibrium internuclear distance different from that in the ground state, so that the nuclear wave packet is given momentum and starts to move. After that, the analyzer according to this example irradiates the object 40 with the second photon of the above three photons to dump the wave packet to the ground state. After that, the analyzer according to this example irradiates the object 40 with the third photon of the above three photons as the probe light.
By executing the pump-dump-probe method as described above, the analyzer according to this example determines, for example, the deexcitation efficiency of the object 40, which is a molecule, and the dump light irradiation timing dependence of the deexcitation efficiency. Can be identified.
It has been impossible to perform pump-dump-probe measurement using continuous light as a light source, but by using the above-mentioned analyzer, continuous light can be used as a light source by converting it into three entangled photons. Allows pump-dump-probe measurements.
 〔ソフトウェアによる実現例〕
 分析装置1の制御ブロック(特に分析部70、演算部75、75a、75b、75c、75d)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of realization by software]
The control block of the analyzer 1 (particularly the analyzer 70, the arithmetic unit 75, 75a, 75b, 75c, 75d) may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. , May be realized by software.
 後者の場合、分析装置1は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、当該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the analyzer 1 includes a computer that executes the instructions of a program that is software that realizes each function. The computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (RandomAccessMemory) or the like for expanding the above program may be further provided. Further, the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
 〔まとめ〕
本発明の一態様に係る分析方法は、互いに量子もつれ状態にある複数の光子を生成する生成ステップと、前記複数の光子のうち第1の光子を検出する第1の検出ステップと、前記複数の光子のうち第2の光子を対象物に照射又は入射させることによって得られる第3の光子を検出する第2の検出ステップと、前記第1の検出ステップにおける検出タイミングと、前記第2の検出ステップにおける検出タイミングとの差を参照して、前記対象物に関する特性を分析する分析ステップとを含んでいる。
〔summary〕
The analysis method according to one aspect of the present invention includes a generation step of generating a plurality of photons in a quantum entangled state with each other, a first detection step of detecting a first photon among the plurality of photons, and the plurality of photons. A second detection step for detecting a third photon obtained by irradiating or incident a second photon on an object, a detection timing in the first detection step, and the second detection step. It includes an analysis step of analyzing the characteristics of the object with reference to the difference from the detection timing in.
 上記分析方法によれば、対象物へのダメージを低減させつつ、時間的な特性を含む対象物の特性を分析することができる。 According to the above analysis method, it is possible to analyze the characteristics of the object including the temporal characteristics while reducing the damage to the object.
 上記分析方法において、前記分析ステップでは、前記第1の光子の検出タイミングを、前記対象物に関する特性の分析のレファレンスとして用いることが好ましい。 In the analysis method, in the analysis step, it is preferable to use the detection timing of the first photon as a reference for analyzing the characteristics of the object.
 上記分析方法によれば、第1の光子の検出タイミングを、前記対象物に関する特性の分析のレファレンスとして用いるので、時間的な特性を含む対象物の特性をより好適に分析することができる。 According to the above analysis method, since the detection timing of the first photon is used as a reference for the analysis of the characteristics related to the object, the characteristics of the object including the temporal characteristics can be analyzed more preferably.
 上記分析方法において、前記生成ステップでは、非線形光学結晶を用いて前記第1の光子及び前記第2の光子を生成することが好ましい。 In the above analysis method, in the generation step, it is preferable to generate the first photon and the second photon using a nonlinear optical crystal.
 上記分析方法によれば、シンプルな構成により、対象物の特性を検出することができる。 According to the above analysis method, the characteristics of the object can be detected with a simple configuration.
 上記分析方法は、前記第1の検出ステップ及び前記第2の検出ステップでは、単一光子検出器を用いて前記第1の光子及び前記第3の光子を検出することが好ましい。 In the analysis method, it is preferable to detect the first photon and the third photon using a single photon detector in the first detection step and the second detection step.
 上記分析方法によれば、単一光子検出器を用いて前記第1の光子及び前記第3の光子を検出するので、時間的な特性を含む対象物の特性を好適に検出することができる。 According to the above analysis method, since the first photon and the third photon are detected using the single photon detector, the characteristics of the object including the temporal characteristics can be suitably detected.
 本発明の一態様に係る発光分析装置は、上記分析方法を実行する発光分析装置であって、前記第2の検出ステップにおいて、前記対象物の発光現象に伴う光子を前記第3の光子として検出することが好ましい。 The luminescence analyzer according to one aspect of the present invention is a luminescence analyzer that executes the above analysis method, and in the second detection step, a photon associated with a luminescence phenomenon of the object is detected as the third photon. It is preferable to do so.
 上記発光分析装置によれば、対象物の発光現象の特性を好適に分析することができる。 According to the above-mentioned luminescence analyzer, the characteristics of the luminescence phenomenon of the object can be suitably analyzed.
 上記分析方法を実行する発光分析装置において、前記対象物は原子、分子、固体、及び結晶の少なくとも何れかを含むことが好ましい。 In the luminescence analyzer that executes the above analysis method, it is preferable that the object contains at least one of an atom, a molecule, a solid, and a crystal.
 上記発光分析装置によれば、原子、分子、固体、及び結晶の発光現象の特性を好適に分析することができる。 According to the above-mentioned luminescence analyzer, the characteristics of the luminescence phenomenon of atoms, molecules, solids, and crystals can be suitably analyzed.
 本発明の一態様に係る拡散光トモグラフィー装置は、上記分析方法を実行する拡散光トモグラフィー装置であって、前記第2の検出ステップにおいて、前記対象物を透過した透過光を前記第3の光子として検出することが好ましい。 The diffused light tomography device according to one aspect of the present invention is a diffused light tomography device that executes the above analysis method, and in the second detection step, the transmitted light transmitted through the object is used as the third photon. It is preferable to detect it.
 上記拡散光トモグラフィー装置によれば、前記対象物を透過した透過光を前記第3の光子として検出するので、拡散光トモグラフィーを好適に実行することができる。 According to the diffused light tomography apparatus, the transmitted light transmitted through the object is detected as the third photon, so that the diffused light tomography can be preferably performed.
 本発明の一態様に係る撮像装置は、上記分析方法を実行する撮像装置であって、前記第2の検出ステップにおいて、前記対象物によって反射された反射光を前記第3の光子として検出することが好ましい。 The imaging device according to one aspect of the present invention is an imaging device that executes the above analysis method, and detects the reflected light reflected by the object as the third photon in the second detection step. Is preferable.
 上記撮像装置によれば、対象物によって反射された反射光を前記第3の光子として検出するので、対象物の時間的な特性が反映された撮像情報を好適に生成することができる。 According to the image pickup apparatus, since the reflected light reflected by the object is detected as the third photon, it is possible to suitably generate imaging information reflecting the temporal characteristics of the object.
 本発明の一態様に係る反射率測定装置は、上記分析方法を実行する反射率測定装置であって、前記第2の検出ステップにおいて、前記対象物である光ファイバーからの出射光を前記第3の光子として検出することが好ましい。 The reflectance measuring device according to one aspect of the present invention is a reflectance measuring device that executes the above analysis method, and in the second detection step, the light emitted from the optical fiber that is the object is emitted from the third. It is preferable to detect it as a photon.
 上記反射率測定装置によれば、光ファイバーからの出射光を前記第3の光子として検出するので、反射率測定を好適に実行することができる。 According to the reflectance measuring device, the light emitted from the optical fiber is detected as the third photon, so that the reflectance measurement can be suitably performed.
 本発明の一態様に係る分析装置は、互いに量子もつれ状態にある複数の光子を生成する生成部と、前記複数の光子のうち第1の光子を検出する第1の検出部と、前記複数の光子のうち第2の光子を対象物に照射又は入射させることによって得られる第3の光子を検出する第2の検出部と、前記第1の検出部による検出タイミングと、前記第2の検出部による検出タイミングとの差を参照して、前記対象物に関する特性を分析する分析部とを備えている、ことが好ましい。 The analyzer according to one aspect of the present invention includes a generation unit that generates a plurality of photons in a quantum entangled state with each other, a first detection unit that detects a first photon among the plurality of photons, and the plurality of photons. A second detection unit that detects a third photon obtained by irradiating or incident a second photon on an object, a detection timing by the first detection unit, and the second detection unit. It is preferable to have an analysis unit that analyzes the characteristics of the object with reference to the difference from the detection timing according to the above.
 上記分析装置によれば、対象物へのダメージを低減させつつ、時間的な特性を含む対象物の特性を分析することができる。 According to the above analyzer, it is possible to analyze the characteristics of the object including the temporal characteristics while reducing the damage to the object.
 本発明の一態様に係るプログラムは、上記分析装置としてコンピュータを機能させるためのプログラムであって、上記分析部としてコンピュータを機能させる、ことが好ましい。上記プログラムによれば、上記方法及び装置と同様の効果を奏する。 The program according to one aspect of the present invention is a program for operating a computer as the analysis device, and it is preferable that the computer functions as the analysis unit. According to the above program, the same effect as that of the above method and apparatus is obtained.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional notes]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
1、1a、1b、1c、1d 分析装置
10 光源
11 連続光源
12 光源用レンズ
13 結晶性物質
40 対象物
50 第1の検出部
60 第2の検出部
70 分析部
75、75a、75b、75c、75d 演算部
100 発光分析装置
200 拡散光トモグラフィー装置
300 撮像装置
400 反射率測定装置
751 時間差特定部
752 発光寿命特定部
753 トモグラフィー分析部
754 画像生成部
755 反射率測定部
1, 1a, 1b, 1c, 1d Analyzer 10 Light source 11 Continuous light source 12 Light source lens 13 Crystalline substance 40 Object 50 First detection unit 60 Second detection unit 70 Analysis unit 75, 75a, 75b, 75c, 75d Calculation unit 100 Light emission analyzer 200 Diffuse light tomography device 300 Imaging device 400 Reflectance measurement device 751 Time difference specification unit 752 Light emission life specification unit 753 Tomography analysis unit 754 Image generation unit 755 Reflectance measurement unit

Claims (11)

  1.  互いに量子もつれ状態にある複数の光子を生成する生成ステップと、
     前記複数の光子のうち第1の光子を検出する第1の検出ステップと、
     前記複数の光子のうち第2の光子を対象物に照射又は入射させることによって得られる第3の光子を検出する第2の検出ステップと、
     前記第1の検出ステップにおける検出タイミングと、前記第2の検出ステップにおける検出タイミングとの差を参照して、前記対象物に関する特性を分析する分析ステップと
    を含んでいる分析方法。
    A generation step to generate multiple photons in entangled state with each other,
    The first detection step of detecting the first photon among the plurality of photons, and
    A second detection step of detecting a third photon obtained by irradiating or incident a second photon on an object among the plurality of photons, and a second detection step.
    An analysis method including an analysis step of analyzing the characteristics of the object with reference to the difference between the detection timing in the first detection step and the detection timing in the second detection step.
  2.  前記分析ステップでは、前記第1の光子の検出タイミングを、前記対象物に関する特性の分析のレファレンスとして用いる
    ことを特徴とする請求項1の記載の分析方法。
    The analysis method according to claim 1, wherein in the analysis step, the detection timing of the first photon is used as a reference for analyzing the characteristics of the object.
  3.  前記生成ステップでは、非線形光学結晶を用いて前記第1の光子及び前記第2の光子を生成する
    ことを特徴とする請求項1又は2に記載の分析方法。
    The analysis method according to claim 1 or 2, wherein in the generation step, a nonlinear optical crystal is used to generate the first photon and the second photon.
  4. 前記第1の検出ステップ及び前記第2の検出ステップでは、単一光子検出器を用いて前記第1の光子及び前記第3の光子を検出する
    ことを特徴とする請求項1から3の何れか1項に記載の分析方法。
    Any of claims 1 to 3, wherein in the first detection step and the second detection step, a single photon detector is used to detect the first photon and the third photon. The analysis method according to item 1.
  5.  請求項1から4の何れか1項に記載の分析方法を実行する発光分析装置であって、
     前記第2の検出ステップにおいて、前記対象物の発光現象に伴う光子を前記第3の光子として検出する
    ことを特徴とする発光分析装置。
    An luminescence analyzer that executes the analysis method according to any one of claims 1 to 4.
    A luminescence analyzer characterized in that, in the second detection step, a photon associated with a luminescence phenomenon of the object is detected as the third photon.
  6.  前記対象物は原子、分子、固体、及び結晶の少なくとも何れかを含む
    ことを特徴とする請求項5に記載の発光分析装置。
    The luminescence analyzer according to claim 5, wherein the object contains at least one of an atom, a molecule, a solid, and a crystal.
  7.  請求項1から4の何れか1項に記載の分析方法を実行する拡散光トモグラフィー装置であって、
     前記第2の検出ステップにおいて、前記対象物を透過した透過光を前記第3の光子として検出する
    ことを特徴とする拡散光トモグラフィー装置。
    A diffuse tomography apparatus for performing the analysis method according to any one of claims 1 to 4.
    A diffused light tomography apparatus according to the second detection step, in which transmitted light transmitted through the object is detected as the third photon.
  8.  請求項1から4の何れか1項に記載の分析方法を実行する撮像装置であって、
     前記第2の検出ステップにおいて、前記対象物によって反射された反射光を前記第3の光子として検出する
    ことを特徴とする撮像装置。
    An imaging device that executes the analysis method according to any one of claims 1 to 4.
    An imaging device characterized in that, in the second detection step, the reflected light reflected by the object is detected as the third photon.
  9.  請求項1から4の何れか1項に記載の分析方法を実行する反射率測定装置であって、
     前記第2の検出ステップにおいて、前記対象物である光ファイバーからの出射光を前記第3の光子として検出する
    ことを特徴とする反射率測定装置。
    A reflectance measuring device that executes the analysis method according to any one of claims 1 to 4.
    A reflectance measuring device, characterized in that, in the second detection step, light emitted from an optical fiber, which is the object, is detected as the third photon.
  10.  互いに量子もつれ状態にある複数の光子を生成する生成部と、
     前記複数の光子のうち第1の光子を検出する第1の検出部と、
     前記複数の光子のうち第2の光子を対象物に照射又は入射させることによって得られる第3の光子を検出する第2の検出部と、
     前記第1の検出部による検出タイミングと、前記第2の検出部による検出タイミングとの差を参照して、前記対象物に関する特性を分析する分析部と
    を備えている分析装置。
    A generator that generates multiple photons in a quantum entangled state with each other,
    A first detection unit that detects the first photon among the plurality of photons,
    A second detection unit that detects a third photon obtained by irradiating or incident a second photon on an object among the plurality of photons, and a second detection unit.
    An analyzer including an analysis unit that analyzes the characteristics of the object by referring to the difference between the detection timing by the first detection unit and the detection timing by the second detection unit.
  11.  請求項10に記載の分析装置としてコンピュータを機能させるためのプログラムであって、上記第1の検出部、上記第2の検出部、および上記分析部としてコンピュータを機能させるためのプログラム。 The program for operating a computer as the analyzer according to claim 10, wherein the computer functions as the first detection unit, the second detection unit, and the analysis unit.
PCT/JP2021/006681 2020-02-26 2021-02-22 Analysis method, light emission analysis device, diffuse optical tomography, imaging device, reflectivity measurement device, analysis device, and program WO2021172290A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022503618A JPWO2021172290A1 (en) 2020-02-26 2021-02-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-030796 2020-02-26
JP2020030796 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021172290A1 true WO2021172290A1 (en) 2021-09-02

Family

ID=77490480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006681 WO2021172290A1 (en) 2020-02-26 2021-02-22 Analysis method, light emission analysis device, diffuse optical tomography, imaging device, reflectivity measurement device, analysis device, and program

Country Status (2)

Country Link
JP (1) JPWO2021172290A1 (en)
WO (1) WO2021172290A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116593138A (en) * 2023-07-19 2023-08-15 广州市虹烨光电有限公司 Optical diffusion sheet detection equipment and detection method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055698A (en) * 1990-08-15 1993-01-14 Hitachi Ltd Light measuring instrument and optically measuring method
US20160356917A1 (en) * 2015-06-08 2016-12-08 Halliburton Energy Services, Inc. Chemical sensing using quantum entanglement between photons
US20170153435A1 (en) * 2009-03-13 2017-06-01 Robert Alfano Supercontinuum microscope for resonance and non-resonance enhanced linear and nonlinear images and time resolved microscope for tissues and materials
US20170371105A1 (en) * 2016-06-27 2017-12-28 The Governing Council Of The University Of Toronto System and method for dispersion-enabled quantum state control of photons

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055698A (en) * 1990-08-15 1993-01-14 Hitachi Ltd Light measuring instrument and optically measuring method
US20170153435A1 (en) * 2009-03-13 2017-06-01 Robert Alfano Supercontinuum microscope for resonance and non-resonance enhanced linear and nonlinear images and time resolved microscope for tissues and materials
US20160356917A1 (en) * 2015-06-08 2016-12-08 Halliburton Energy Services, Inc. Chemical sensing using quantum entanglement between photons
US20170371105A1 (en) * 2016-06-27 2017-12-28 The Governing Council Of The University Of Toronto System and method for dispersion-enabled quantum state control of photons

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116593138A (en) * 2023-07-19 2023-08-15 广州市虹烨光电有限公司 Optical diffusion sheet detection equipment and detection method thereof
CN116593138B (en) * 2023-07-19 2023-09-19 广州市虹烨光电有限公司 Optical diffusion sheet detection equipment and detection method thereof

Also Published As

Publication number Publication date
JPWO2021172290A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
Parzuchowski et al. Setting bounds on entangled two-photon absorption cross sections in common fluorophores
JP5329449B2 (en) How to perform microscopic imaging
JP4280654B2 (en) Multi-channel terahertz spectrum measuring method and measuring apparatus
JP6692103B2 (en) System and method for high contrast / near real time acquisition of terahertz images
JP5736325B2 (en) Optical device
US20120287428A1 (en) Nonlinear raman spectroscopic apparatus, microspectroscopic apparatus, and microspectroscopic imaging apparatus
US9494522B2 (en) Device and method for stimulated Raman detection
US8207501B2 (en) Apparatus and method for measuring terahertz wave
US10267739B2 (en) Laser system for standoff detection
JP6073484B2 (en) CARS microscope
KR102414411B1 (en) System and method for generating dual entanglements of frequency bin entanglement and polarization entanglement in atomic ensemble
US20090213370A1 (en) Apparatus and method for obtaining images using coherent anti-stokes raman scattering
WO2021172290A1 (en) Analysis method, light emission analysis device, diffuse optical tomography, imaging device, reflectivity measurement device, analysis device, and program
Ito et al. Invited article: Spectral focusing with asymmetric pulses for high-contrast pump–probe stimulated raman scattering microscopy
Masters et al. On the simultaneous scattering of two photons by a single two-level atom
NL2021205B1 (en) Method and system for performing terahertz near-field measurements
JP4838111B2 (en) Electromagnetic wave detector and electromagnetic wave detection system
US9829379B2 (en) Two-dimensional spectroscopy system and two-dimensional spectroscopic analysis method
US9897536B2 (en) Differential infra red nanoscopy system and method
Sparapassi et al. Transient measurement of phononic states with covariance-based stochastic spectroscopy
JP2006317325A (en) Apparatus for measuring photothermal conversion
Gomidze et al. To the problems of fluorescence excitation spectrums
Martin Coherent Spectroscopy at the Diffraction Limit
Khajisvili et al. 3D fluorescence spectroscopy of liquid media via internal reference method
JP2013174513A (en) Method and apparatus for detecting electromagnetic waves

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503618

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759896

Country of ref document: EP

Kind code of ref document: A1