WO2021172086A2 - Transparent conductive film - Google Patents

Transparent conductive film Download PDF

Info

Publication number
WO2021172086A2
WO2021172086A2 PCT/JP2021/005624 JP2021005624W WO2021172086A2 WO 2021172086 A2 WO2021172086 A2 WO 2021172086A2 JP 2021005624 W JP2021005624 W JP 2021005624W WO 2021172086 A2 WO2021172086 A2 WO 2021172086A2
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive layer
conductive film
metal
base material
Prior art date
Application number
PCT/JP2021/005624
Other languages
French (fr)
Japanese (ja)
Inventor
純一 長瀬
佑輔 茂手木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020227028751A priority Critical patent/KR20220146457A/en
Priority to CN202180016742.1A priority patent/CN115175812A/en
Publication of WO2021172086A2 publication Critical patent/WO2021172086A2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a transparent conductive film.
  • a transparent conductive film obtained by forming a metal oxide layer such as ITO (indium tin composite oxide) on a transparent resin film is often used as an electrode of the touch sensor.
  • the transparent conductive film provided with this metal oxide layer tends to lose its conductivity due to bending, and has a problem that it is difficult to use in applications requiring flexibility such as a flexible display.
  • a transparent conductive film having high flexibility a transparent conductive film containing a metal filler such as metal nanowires is known.
  • a transparent conductive film has an advantage that it has predetermined transparency and conductivity and is excellent in flexibility, but further improvement in conductivity (resistivity suppression) is required.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a transparent conductive film provided with a transparent conductive layer containing a metal filler and having low resistance. To do.
  • the transparent conductive film of the present invention includes a base material and a transparent conductive layer arranged on at least one side of the base material, and the transparent conductive layer contains a metal filler, and the metal filler in the thickness direction of the transparent conductive layer.
  • the half-price range of the existence distribution of is 5 nm to 75 nm.
  • the metal filler is a metal nanowire.
  • the transparent conductive film of the present invention has a surface resistance value of 10 ⁇ / ⁇ or more and less than 300 ⁇ / ⁇ . In one embodiment, the transparent conductive film of the present invention has a haze value of 20% or less.
  • the present invention it is possible to provide a transparent conductive film provided with a transparent conductive layer containing a metal filler and having low resistance.
  • the transparent conductive film of the present invention is useful in that the resistance is lowered while suppressing the decrease in transparency as compared with the conventional transparent conductive film.
  • FIG. 1 is a schematic cross-sectional view of a transparent conductive film according to one embodiment of the present invention.
  • the transparent conductive film 100 of the present invention includes a base material 10 and a transparent conductive layer 20 arranged on at least one side of the base material 10.
  • the transparent conductive layer 20 contains a metal filler (not shown).
  • the half width of the presence distribution of the metal filler in the thickness direction of the transparent conductive layer is 5 nm to 75 nm.
  • "Full width at half maximum of the presence distribution of the metal filler in the thickness direction of the transparent conductive layer” refers to the horizontal width of the presence distribution of the metal filler clarified by binarizing the image obtained by TEM imaging of the cross section of the transparent conductive layer. Plot the axis as the thickness (distance from the substrate, unit: nm) and the vertical axis as the frequency (absence of metal filler (area reference in the image)), and the half width at the peak with the highest frequency (at the peak position). It means the distribution width at half the height of the distribution).
  • the full width at half maximum is the average of the full width at half maximum at 10 randomly selected locations (photographing width: 1 ⁇ m).
  • the contact between the metal fillers increases and the transparent conductive layer having low resistance can be formed. ..
  • the transparent conductive film of the present invention provided with such a transparent conductive layer can reduce the resistance without increasing the content of the metal filler, and can exhibit excellent transparency and excellent conductivity.
  • Conventionally, in a transparent conductive film containing a metal filler it is necessary to increase the amount of the metal filler added in order to improve the conductivity. Therefore, there is a trade-off between transparency and conductivity. As mentioned above, it has become possible to achieve both transparency and conductivity. This is one of the great achievements of the present invention.
  • the half width of the presence distribution of the metal filler in the thickness direction of the transparent conductive layer is preferably 10 nm to 70 nm, more preferably 10 nm to 60 nm, further preferably 20 nm to 55 nm, and particularly preferably 35 nm to 55 nm. Is. Within such a range, the above effect becomes more remarkable.
  • the presence distribution of the metal filler depends on the conditions (for example, wind direction) at the time of drying the coating layer (for example, air blowing drying) at the time of forming the transparent conductive layer, the composition / characteristics (for example, viscosity) of the composition for forming the transparent conductive layer, and the like. Can be controlled. Further, the metal filler can be unevenly distributed by pressing the transparent conductive layer.
  • the metal filler is unevenly distributed on the base material side of the transparent conductive layer.
  • the abundance ratio of the metal filler present in the base material side 50% range in the thickness direction of the transparent conductive layer is preferably 70% or more, more preferably 80% or more, and particularly preferably 90. % Or more.
  • the upper limit of the abundance ratio of the metal filler present in the range of 50% on the substrate side in the thickness direction of the transparent conductive layer is, for example, 95% (preferably 98%, more preferably 100%).
  • the abundance ratio of the metal filler existing in the range of 50% on the substrate side in the thickness direction of the transparent conductive layer is measured by binarizing the image obtained by TEM imaging of the cross section of the transparent conductive layer, and measuring the image. It is defined as the ratio of the area standard in.
  • the metal filler may be unevenly distributed in the center of the transparent conductive layer in the thickness direction, or may be unevenly distributed in the vicinity of the surface of the transparent conductive layer on the opposite side of the base material.
  • the surface resistance value of the transparent conductive film is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 300 ⁇ / ⁇ , and further preferably 10 ⁇ / ⁇ or more and less than 300 ⁇ / ⁇ . It is particularly preferably 10 ⁇ / ⁇ to 150 ⁇ / ⁇ , and most preferably 10 ⁇ / ⁇ or more and less than 100 ⁇ / ⁇ .
  • the surface resistance value can be measured by "Automatic resistivity measurement system MCP-S620 type / MCP-S521 type" manufactured by Mitsubishi Chemical Analytech.
  • the haze value of the transparent conductive film is preferably 20% or less, more preferably 10% or less, still more preferably 0.1% to 5%, and particularly preferably 0.1% to 1%. Is.
  • the total light transmittance of the transparent conductive film is preferably 30% or more, more preferably 35% or more, and particularly preferably 40% or more.
  • the transparent conductive layer contains a metal filler.
  • the transparent conductive layer contains metal nanowires as a metal filler.
  • the transparent conductive layer further comprises a binder resin.
  • a metal filler eg, metal nanowires
  • the metal filler is protected by the binder resin. As a result, corrosion of the metal filler (for example, metal nanowires) is prevented, and a conductive film having better durability can be obtained.
  • the thickness of the transparent conductive layer is preferably 10 nm to 1000 nm, more preferably 20 nm to 500 nm, and particularly preferably 20 nm to 100 nm. Within such a range, a transparent conductive film having excellent durability and excellent surface contact conductivity can be obtained.
  • the transparent conductive layer is patterned.
  • any suitable method can be adopted depending on the form of the transparent conductive layer.
  • the shape of the pattern of the transparent conductive layer can be any suitable shape depending on the application. For example, the patterns described in Japanese Patent Application Laid-Open No. 2011-511357, Japanese Patent Application Laid-Open No. 2010-164938, Japanese Patent Application Laid-Open No. 2008-310550, Japanese Patent Application Laid-Open No. 2003-511799, and Japanese Patent Application Laid-Open No. 2010-541109 can be mentioned.
  • the transparent conductive layer After the transparent conductive layer is formed on the substrate, it can be patterned by any suitable method depending on the form of the transparent conductive layer.
  • the total light transmittance of the transparent conductive layer is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
  • the metal nanowire is a conductive substance whose material is metal, whose shape is needle-like or thread-like, and whose diameter is nanometer size.
  • the metal nanowires may be linear or curved. If a transparent conductive layer made of metal nanowires is used, the metal nanowires have a mesh shape, so that a good electric conduction path can be formed even with a small amount of metal nanowires, and conductivity with low electric resistance can be formed. A sex film can be obtained. Further, since the metal nanowires have a mesh shape, an opening can be formed in the gap between the meshes to obtain a conductive film having high light transmittance.
  • the ratio (aspect ratio: L / d) of the thickness d to the length L of the metal nanowire is preferably 100 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100. It is 10,000.
  • the metal nanowires having such a large aspect ratio are used, the metal nanowires can intersect well and a small amount of metal nanowires can exhibit high conductivity. As a result, a conductive film having high light transmittance can be obtained.
  • the "thickness of the metal nanowire” means the diameter of the metal nanowire when the cross section is circular, and the minor diameter when the cross section of the metal nanowire is elliptical, and is polygonal. In some cases it means the longest diagonal.
  • the thickness and length of the metal nanowires can be confirmed by a scanning electron microscope or a transmission electron microscope.
  • the thickness of the metal nanowires is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably 10 nm to 100 nm, and most preferably 10 nm to 60 nm. Within such a range, a transparent conductive layer having high light transmittance can be formed.
  • the length of the metal nanowires is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 1 ⁇ m to 500 ⁇ m, and particularly preferably 1 ⁇ m to 100 ⁇ m. Within such a range, a conductive film having high conductivity can be obtained.
  • any suitable metal can be used as long as it is a highly conductive metal.
  • the metal constituting the metal nanowire include silver, gold, copper, nickel and the like. Further, a material obtained by plating (for example, gold plating) these metals may be used.
  • the metal nanowires are preferably composed of one or more metals selected from the group consisting of gold, platinum, silver and copper.
  • any appropriate method can be adopted as the method for producing the metal nanowires.
  • Examples thereof include a method of reducing silver nitrate in a solution, a method of applying an applied voltage or a current to the surface of the precursor from the tip of the probe, pulling out a metal nanowire at the tip of the probe, and continuously forming the metal nanowire. ..
  • silver nanowires can be synthesized by liquid phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone. Uniform size silver nanowires are available, for example, from Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, can be mass-produced according to the method described.
  • the content ratio of the metal nanowires in the transparent conductive layer is preferably 30% by weight to 100% by weight, more preferably 30% by weight to 90% by weight, still more preferably, based on the total weight of the transparent conductive layer. It is 45% by weight to 80% by weight. Within such a range, a conductive film having excellent conductivity and light transmittance can be obtained.
  • any suitable resin can be used as the binder resin.
  • the resin include acrylic resins; polyester resins such as polyethylene terephthalate; aromatic resins such as polystyrene, polyvinyl toluene, polyvinyl xylene, polyimide, polyamide and polyamideimide; polyurethane resins; epoxy resins; polyolefin resins. Resins; acrylonitrile-butadiene-styrene copolymer (ABS); cellulose; silicon-based resin; polyvinyl chloride; polyacetate; polynorbornene; synthetic rubber; fluorine-based resin and the like.
  • PETA pentaerythritol triacrylate
  • NPGDA neopentyl glycol diacrylate
  • DPHA dipentaerythritol hexaacrylate
  • DPPA dipentaerythritol pentaacrylate
  • TMPTA trimethylolpropane triacrylate
  • a curable resin composed of acrylate preferably an ultraviolet curable resin is used.
  • Basis weight of the transparent conductive layer is preferably 0.001g / m 2 ⁇ 0.09g / m 2, more preferably 0.005g / m 2 ⁇ 0.05g / m 2.
  • the content ratio of the metal nanowires in the transparent conductive layer is preferably 0.1 parts by weight to 50 parts by weight, more preferably 0.1 parts by weight or more, based on 100 parts by weight of the binder resin constituting the transparent conductive layer. It is 30 parts by weight. Within such a range, a transparent conductive film having excellent conductivity and light transmittance can be obtained.
  • the substrate may be any suitable material may be used. Specifically, for example, a polymer base material such as a film or a plastic base material is preferably used. This is because the smoothness of the base material and the wettability to the composition for forming the transparent conductive layer are excellent, and the productivity can be significantly improved by the continuous production by the roll.
  • a polymer base material such as a film or a plastic base material is preferably used. This is because the smoothness of the base material and the wettability to the composition for forming the transparent conductive layer are excellent, and the productivity can be significantly improved by the continuous production by the roll.
  • the material constituting the above base material is typically a polymer film containing a thermoplastic resin as a main component.
  • the thermoplastic resin include polyester resins; cycloolefin resins such as polynorbornene; acrylic resins; polycarbonate resins; cellulose resins and the like. Of these, polyester-based resins, cycloolefin-based resins, and acrylic-based resins are preferable. These resins are excellent in transparency, mechanical strength, thermal stability, moisture shielding property and the like.
  • the above thermoplastic resins may be used alone or in combination of two or more. Further, it is also possible to use an optical film such as that used for a polarizing plate, for example, a low retardation base material, a high retardation base material, a retardation plate, a brightness improving film, or the like as a base material.
  • the thickness of the base material is preferably 20 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 150 ⁇ m.
  • the total light transmittance of the base material is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more.
  • a composition for forming a transparent conductive layer containing metal nanowires is applied onto a base material, and then the coated layer is dried to form a transparent conductive layer. Can be obtained by doing.
  • the composition for forming a transparent conductive layer contains metal nanowires.
  • metal nanowires are dispersed in any suitable solvent to prepare a composition for forming a transparent conductive layer.
  • the solvent include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents and the like.
  • the composition for forming a transparent conductive layer may further contain additives such as a resin (binder resin), a conductive material other than metal nanowires (for example, conductive particles), and a leveling agent.
  • the composition for forming a transparent conductive layer includes a plasticizer, a heat stabilizer, a light stabilizer, a lubricant, an antioxidant, an ultraviolet absorber, a flame retardant, a colorant, an antistatic agent, a compatibilizer, a cross-linking agent, and an increase. It may contain additives such as thickeners, inorganic particles, surfactants, and dispersants.
  • the viscosity of the composition for forming the transparent conductive layer is preferably 5 mP ⁇ s / 25 ° C. to 300 mP ⁇ s / 25 ° C., more preferably 10 mP ⁇ s / 25 ° C. to 100 mP ⁇ s / 25 ° C. Within such a range, a transparent conductive layer in which the metal filler is well unevenly distributed can be obtained.
  • the viscosity of the composition for forming a transparent conductive layer can be measured with a rheometer (for example, MCR302 manufactured by Anton Pearl Co., Ltd.).
  • the dispersion concentration of the metal nanowires in the composition for forming the transparent conductive layer is preferably 0.01% by weight to 5% by weight. Within such a range, a transparent conductive layer in which the metal filler is well unevenly distributed can be obtained.
  • any suitable method can be adopted as the coating method of the composition for forming the transparent conductive layer.
  • the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing method, intaglio printing method, gravure printing method and the like.
  • a long base material is used as the base material, and the composition for forming a transparent conductive layer is applied while transporting the base material.
  • Any suitable method can be adopted as the method for transporting the base material.
  • transport by a transport roll, transport by a transport belt, a combination thereof, and the like can be mentioned.
  • the transport speed is, for example, 5 m / min to 50 m / min.
  • the basis weight of the coating layer is preferably 0.3 g / m 2 to 30 g / m 2 , and more preferably 1.6 g / m 2 to 16 g / m 2 . Within such a range, a transparent conductive layer in which the metal filler is well unevenly distributed can be obtained.
  • a typical method for drying the coating layer is drying by blowing air.
  • the air blown to the coating layer can be performed by any suitable method.
  • a blower located above the coating layer (opposite the substrate) can be used to blow air to the coating layer.
  • the blowing direction can be adjusted by, for example, providing a louver on the blower and adjusting the blowing direction according to the direction of the louver.
  • the wind to the coating layer may be a spirally blown wind.
  • the wind speed of the above wind is preferably 0.5 m / s to 10 m / s, and more preferably 1 m / s to 5 m / s. Within such a range, a transparent conductive layer in which the metal filler is well unevenly distributed can be obtained.
  • the wind speed can be appropriately set depending on the solvent and the like contained in the composition for forming the transparent conductive layer.
  • the wind speed is preferably 0.5 m / s to 10 m / s, more preferably 1 m / s to 5 m / s.
  • the wind speed means the wind speed at the time of reaching the coating layer.
  • the temperature of the wind is preferably 10 ° C to 50 ° C, more preferably 15 ° C to 30 ° C.
  • the wind speed can be appropriately set depending on the solvent and the like contained in the composition for forming the transparent conductive layer.
  • the temperature of the wind is preferably 10 ° C. to 50 ° C., more preferably 15 ° C. to 30 ° C.
  • the wind temperature means the temperature of the wind at the time of reaching the coating layer.
  • the blowing time is preferably 1 minute to 10 minutes, more preferably 2 minutes to 5 minutes.
  • the blowing may be divided into a plurality of stages.
  • the wind may be divided into zones so that the wind direction, the wind speed, the temperature, and the like are different, and the air is blown stepwise.
  • the thickness of the coating layer may be reduced by a method such as oven heating or natural drying before the blowing step.
  • Basis weight of the coating layer at the start of air blowing process is preferably 0.001g / m 2 ⁇ 0.09g / m 2, more preferably 0.005g / m 2 ⁇ 0.05g / m 2.
  • any appropriate treatment may be performed.
  • a composition for forming a transparent conductive layer containing a binder resin it may be cured by irradiation with ultraviolet rays or the like.
  • a drying step may be performed after the sending step. Examples of the drying method include oven heating, natural drying and the like.
  • the dried coating layer may be pressed to form a transparent conductive layer. By doing so, it is possible to obtain a transparent conductive layer in which the metal filler is well unevenly distributed.
  • the evaluation method in the examples is as follows.
  • the thickness was measured by using a scanning electron microscope "S-4800” manufactured by Hitachi High-Technologies Corporation after embedding it in epoxy resin and cutting it with an ultramicro tome to form a cross section.
  • the surface resistance value of the transparent conductive film (surface resistance value of MD and TD) is measured by the eddy current method using a non-contact surface resistance meter manufactured by Napson Corporation, trade name "EC-80". It was measured. The measurement temperature was 23 ° C.
  • Example 1 A PET film (manufactured by Mitsubishi Plastics, trade name "S100”) was used as a base material.
  • the layer-forming composition was applied to form a coating layer having a Wet film thickness (according to an optical interference film thickness meter) of 12 ⁇ m. Then, while transporting the base material on which the coating layer is formed, rectifying air is blown to the coating layer to dry the coating layer to form a transparent conductive layer, and the transparent conductive film provided with the base material and the transparent conductive layer.
  • Example 2 A transparent conductive film was obtained in the same manner as in Example 1 except that the Wet thickness of the coating layer was 15 ⁇ m. The amount of Ag (amount of metal nanowires) measured by ICP was 17.4 mg / m 2 . The obtained transparent conductive film was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
  • Example 3 A transparent conductive film was obtained in the same manner as in Example 1 except that the Wet thickness of the coating layer was 17 ⁇ m. The amount of Ag (amount of metal nanowires) measured by ICP was 18.7 mg / m 2 . The obtained transparent conductive film was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
  • Example 1 A coating layer was formed in the same manner as in Example 1. Then, the base material on which the coating layer was formed was put into an oven having a furnace temperature of 100 ° C. for 2 minutes to obtain a transparent conductive film. The amount of Ag (amount of metal nanowires) measured by ICP was 15.4 mg / m 2 . The obtained transparent conductive film was subjected to the above evaluations (1) to (4). The results are shown in Table 1. Further, FIG. 2B shows a cross-sectional TEM photograph of the transparent conductive layer.
  • Example 2 A transparent conductive film was obtained in the same manner as in Example 1 except that the Wet thickness of the coating layer was 15 ⁇ m. The amount of Ag (amount of metal nanowires) measured by ICP was 17.5 mg / m 2 . The obtained transparent conductive film was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
  • Example 3 A transparent conductive film was obtained in the same manner as in Example 1 except that the Wet thickness of the coating layer was 17 ⁇ m. The amount of Ag (amount of metal nanowires) measured by ICP was 18.5 mg / m 2 . The obtained transparent conductive film was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
  • Example 1 and Comparative Example 1 the comparison between Example 2 and Comparative Example 2, and the comparison between Example 3 and Comparative Example 3, the transparent conductive films of Examples are compared.
  • the haze value is the same as that of the transparent conductive film of the example, but the surface resistance value is small. That is, according to the present invention, it is possible to obtain a transparent conductive film having excellent transparency and excellent conductivity.
  • Base material 20 Transparent conductive layer 100 Transparent conductive film

Description

透明導電性フィルムTransparent conductive film
 本発明は、透明導電性フィルムに関する。 The present invention relates to a transparent conductive film.
 従来、タッチセンサーを有する画像表示装置において、タッチセンサーの電極として、透明樹脂フィルム上にITO(インジウム・スズ複合酸化物)などの金属酸化物層を形成して得られる透明導電性フィルムが多用されている。しかし、この金属酸化物層を備える透明導電性フィルムは、屈曲により導電性が失われやすく、フレキシブルディスプレイなどの屈曲性が必要とされる用途には使用しがたいという問題がある。 Conventionally, in an image display device having a touch sensor, a transparent conductive film obtained by forming a metal oxide layer such as ITO (indium tin composite oxide) on a transparent resin film is often used as an electrode of the touch sensor. ing. However, the transparent conductive film provided with this metal oxide layer tends to lose its conductivity due to bending, and has a problem that it is difficult to use in applications requiring flexibility such as a flexible display.
 一方、屈曲性の高い透明導電性フィルムとして、金属ナノワイヤ等の金属フィラーを含む透明導電性フィルムが知られている。このような透明導電性フィルムは、所定の透明性および導電性を有し、かつ、屈曲性に優れるという利点を有する一方で、さらなる導電性向上(抵抗率抑制)が求められている。 On the other hand, as a transparent conductive film having high flexibility, a transparent conductive film containing a metal filler such as metal nanowires is known. Such a transparent conductive film has an advantage that it has predetermined transparency and conductivity and is excellent in flexibility, but further improvement in conductivity (resistivity suppression) is required.
特表2009-505358号公報Special Table 2009-505358 Gazette 特許第6199034号Patent No. 6199034
 本発明は上記の課題を解決するためになされたものであり、その目的とするところは、金属フィラーを含む透明導電層を備える透明導電性フィルムであって、低抵抗な透明導電性フィルムを提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a transparent conductive film provided with a transparent conductive layer containing a metal filler and having low resistance. To do.
 本発明の透明導電性フィルムは、基材と、該基材の少なくとも片側に配置された透明導電層を備え、該透明導電層が、金属フィラーを含み、透明導電層の厚み方向における上記金属フィラーの存在分布の半値幅が、5nm~75nmである。
 1つの実施形態においては、上記金属フィラーが、金属ナノワイヤである。
 1つの実施形態においては、本発明の透明導電性フィルムは、表面抵抗値が、10Ω/□以上300Ω/□未満である。
 1つの実施形態においては、本発明の透明導電性フィルムは、ヘイズ値が、20%以下である。
The transparent conductive film of the present invention includes a base material and a transparent conductive layer arranged on at least one side of the base material, and the transparent conductive layer contains a metal filler, and the metal filler in the thickness direction of the transparent conductive layer. The half-price range of the existence distribution of is 5 nm to 75 nm.
In one embodiment, the metal filler is a metal nanowire.
In one embodiment, the transparent conductive film of the present invention has a surface resistance value of 10 Ω / □ or more and less than 300 Ω / □.
In one embodiment, the transparent conductive film of the present invention has a haze value of 20% or less.
 本発明によれば、金属フィラーを含む透明導電層を備える透明導電性フィルムであって、低抵抗な透明導電性フィルムを提供することができる。本発明の透明導電性フィルムは、従来の透明導電性フィルムと比較して、透明性低下を抑制しつつ、低抵抗化されている点で有用である。 According to the present invention, it is possible to provide a transparent conductive film provided with a transparent conductive layer containing a metal filler and having low resistance. The transparent conductive film of the present invention is useful in that the resistance is lowered while suppressing the decrease in transparency as compared with the conventional transparent conductive film.
本発明の1つの実施形態による透明導電性フィルムの概略断面図である。It is the schematic sectional drawing of the transparent conductive film by one Embodiment of this invention. (a)は実施例1で得られた透明導電性フィルムの断面TEM写真である。(b)は、比較例1で得られた透明導電性フィルムの断面TEM写真である。(A) is a cross-sectional TEM photograph of the transparent conductive film obtained in Example 1. (B) is a cross-sectional TEM photograph of the transparent conductive film obtained in Comparative Example 1.
A.透明導電性フィルム
 図1は、本発明の1つの実施形態による透明導電性フィルムの概略断面図である。本発明の透明導電性フィルム100は、基材10と、基材10の少なくとも片側に配置された透明導電層20とを備える。
A. Transparent Conductive Film FIG. 1 is a schematic cross-sectional view of a transparent conductive film according to one embodiment of the present invention. The transparent conductive film 100 of the present invention includes a base material 10 and a transparent conductive layer 20 arranged on at least one side of the base material 10.
 透明導電性フィルム100において、透明導電層20は、金属フィラーを含む(図示せず)。 In the transparent conductive film 100, the transparent conductive layer 20 contains a metal filler (not shown).
 本発明においては、透明導電層の厚み方向における上記金属フィラーの存在分布の半値幅が、5nm~75nmである。「透明導電層の厚み方向における金属フィラーの存在分布の半値幅」とは、透明導電層の断面をTEM撮影して得られた画像を二値化して明らかとした金属フィラーの存在分布について、横軸を厚さ(基材からの距離、単位:nm)とし、縦軸を頻度(金属フィラーの存在量(画像における面積基準))としてプロットし、頻度が最も高いピークにおける半値幅(ピーク位置における分布の高さの半分の高さにおける分布幅)を意味する。本発明において上記半値幅は、不作為に抽出した10箇所(撮影幅:1μm)での半値幅の平均である。 In the present invention, the half width of the presence distribution of the metal filler in the thickness direction of the transparent conductive layer is 5 nm to 75 nm. "Full width at half maximum of the presence distribution of the metal filler in the thickness direction of the transparent conductive layer" refers to the horizontal width of the presence distribution of the metal filler clarified by binarizing the image obtained by TEM imaging of the cross section of the transparent conductive layer. Plot the axis as the thickness (distance from the substrate, unit: nm) and the vertical axis as the frequency (absence of metal filler (area reference in the image)), and the half width at the peak with the highest frequency (at the peak position). It means the distribution width at half the height of the distribution). In the present invention, the full width at half maximum is the average of the full width at half maximum at 10 randomly selected locations (photographing width: 1 μm).
 本発明においては、透明導電層の厚み方向における上記金属フィラーの存在分布の半値幅が上記範囲であることにより、金属フィラー同士の接触が多くなり、抵抗が低い透明導電層を形成することができる。このような透明導電層を備える本発明の透明導電性フィルムは、金属フィラーの含有量を増やすことなく低抵抗化が可能となり、透明性に優れ、かつ、優れた導電性を発現し得る。従来、金属フィラーを含む透明導電性フィルムにおいては、導電性向上のためには金属フィラー添加量を増やす必要があり、そのため、透明性と導電性はトレードオフの関係にあるが、本発明においては、上記のとおり、透明性と導電性を両立することが可能となった。これは、本発明の大きな成果のひとつである。透明導電層の厚み方向における上記金属フィラーの存在分布の半値幅は、好ましくは10nm~70nmであり、より好ましくは10nm~60nmであり、さらに好ましくは20nm~55nmであり、特に好ましくは35nm~55nmである。このような範囲であれば、上記の効果はより顕著となる。なお、金属フィラーの存在分布は、透明導電層形成の際の塗布層乾燥(送風乾燥)時の条件(例えば、風向き)、透明導電層形成用組成物の組成・特性(例えば、粘度)等により制御することができる。また、透明導電層をプレスすることにより、金属フィラーを偏在させることもできる。 In the present invention, when the half width of the presence distribution of the metal filler in the thickness direction of the transparent conductive layer is within the above range, the contact between the metal fillers increases and the transparent conductive layer having low resistance can be formed. .. The transparent conductive film of the present invention provided with such a transparent conductive layer can reduce the resistance without increasing the content of the metal filler, and can exhibit excellent transparency and excellent conductivity. Conventionally, in a transparent conductive film containing a metal filler, it is necessary to increase the amount of the metal filler added in order to improve the conductivity. Therefore, there is a trade-off between transparency and conductivity. As mentioned above, it has become possible to achieve both transparency and conductivity. This is one of the great achievements of the present invention. The half width of the presence distribution of the metal filler in the thickness direction of the transparent conductive layer is preferably 10 nm to 70 nm, more preferably 10 nm to 60 nm, further preferably 20 nm to 55 nm, and particularly preferably 35 nm to 55 nm. Is. Within such a range, the above effect becomes more remarkable. The presence distribution of the metal filler depends on the conditions (for example, wind direction) at the time of drying the coating layer (for example, air blowing drying) at the time of forming the transparent conductive layer, the composition / characteristics (for example, viscosity) of the composition for forming the transparent conductive layer, and the like. Can be controlled. Further, the metal filler can be unevenly distributed by pressing the transparent conductive layer.
 1つの実施形態においては、上記金属フィラーは、透明導電層の基材側に偏在してる。この実施形態において、透明導電層の厚み方向に基材側50%範囲内に存在する金属フィラーの存在割合は、好ましくは70%以上であり、より好ましくは80%以上であり、特に好ましくは90%以上である。透明導電層の厚み方向に基材側50%範囲内に存在する金属フィラーの存在割合の上限は、例えば、95%(好ましくは98%、より好ましくは100%)である。「透明導電層の厚み方向に基材側50%範囲内に存在する金属フィラーの存在割合」は、透明導電層の断面をTEM撮影して得られた画像を二値化して測定され、当該画像における面積基準の割合として規定される。 In one embodiment, the metal filler is unevenly distributed on the base material side of the transparent conductive layer. In this embodiment, the abundance ratio of the metal filler present in the base material side 50% range in the thickness direction of the transparent conductive layer is preferably 70% or more, more preferably 80% or more, and particularly preferably 90. % Or more. The upper limit of the abundance ratio of the metal filler present in the range of 50% on the substrate side in the thickness direction of the transparent conductive layer is, for example, 95% (preferably 98%, more preferably 100%). "The abundance ratio of the metal filler existing in the range of 50% on the substrate side in the thickness direction of the transparent conductive layer" is measured by binarizing the image obtained by TEM imaging of the cross section of the transparent conductive layer, and measuring the image. It is defined as the ratio of the area standard in.
 上記実施形態に限らず、上記金属フィラーは、透明導電層の厚み方向中央に偏在していてもよく、透明導電層の基材とは反対側の表面近傍に偏在していてもよい。 Not limited to the above embodiment, the metal filler may be unevenly distributed in the center of the transparent conductive layer in the thickness direction, or may be unevenly distributed in the vicinity of the surface of the transparent conductive layer on the opposite side of the base material.
 透明導電性フィルムの表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~300Ω/□であり、さらに好ましくは10Ω/□以上300Ω/□未満であり、特に好ましくは10Ω/□~150Ω/□であり、最も好ましくは10Ω/□以上100Ω/□未満である。表面抵抗値は、三菱ケミカルアナリテック社の「抵抗率自動測定システム MCP-S620型・MCP-S521型」により測定することができる。 The surface resistance value of the transparent conductive film is preferably 0.1Ω / □ to 1000Ω / □, more preferably 0.5Ω / □ to 300Ω / □, and further preferably 10Ω / □ or more and less than 300Ω / □. It is particularly preferably 10Ω / □ to 150Ω / □, and most preferably 10Ω / □ or more and less than 100Ω / □. The surface resistance value can be measured by "Automatic resistivity measurement system MCP-S620 type / MCP-S521 type" manufactured by Mitsubishi Chemical Analytech.
 上記透明導電性フィルムのヘイズ値は、好ましくは20%以下であり、より好ましくは10%以下であり、さらに好ましくは0.1%~5%であり、特に好ましくは0.1%~1%である。 The haze value of the transparent conductive film is preferably 20% or less, more preferably 10% or less, still more preferably 0.1% to 5%, and particularly preferably 0.1% to 1%. Is.
 上記透明導電性フィルムの全光線透過率は、好ましくは30%以上であり、より好ましくは35%以上であり、特に好ましくは40%以上である。 The total light transmittance of the transparent conductive film is preferably 30% or more, more preferably 35% or more, and particularly preferably 40% or more.
B.透明導電層
 上記のとおり、上記透明導電層は、金属フィラーを含む。好ましくは、上記透明導電層は、金属フィラーとして、金属ナノワイヤを含む。金属ナノワイヤを含む透明導電層を形成すれば、屈曲性に優れ、かつ、光透過率に優れる導電性フィルムを得ることができる。
B. Transparent Conductive Layer As described above, the transparent conductive layer contains a metal filler. Preferably, the transparent conductive layer contains metal nanowires as a metal filler. By forming a transparent conductive layer containing metal nanowires, it is possible to obtain a conductive film having excellent flexibility and light transmittance.
 1つの実施形態においては、透明導電層は、バインダー樹脂をさらに含む。この実施形態においては、バインダー樹脂中に、金属フィラー(例えば、金属ナノワイヤ)が存在する。バインダー樹脂から構成される透明導電層においては、バインダー樹脂により金属フィラー(例えば、金属ナノワイヤ)が保護される。その結果、金属フィラー(例えば、金属ナノワイヤ)の腐食が防止され、耐久性により優れる導電性フィルムを得ることができる。 In one embodiment, the transparent conductive layer further comprises a binder resin. In this embodiment, a metal filler (eg, metal nanowires) is present in the binder resin. In the transparent conductive layer made of the binder resin, the metal filler (for example, metal nanowires) is protected by the binder resin. As a result, corrosion of the metal filler (for example, metal nanowires) is prevented, and a conductive film having better durability can be obtained.
 上記透明導電層の厚みは、好ましくは10nm~1000nmであり、より好ましくは20nm~500nmであり、特に好ましくは20nm~100nmである。このような範囲であれば、耐久性に優れ、かつ、表面の接触導通性に優れる透明導電性フィルムを得ることができる。 The thickness of the transparent conductive layer is preferably 10 nm to 1000 nm, more preferably 20 nm to 500 nm, and particularly preferably 20 nm to 100 nm. Within such a range, a transparent conductive film having excellent durability and excellent surface contact conductivity can be obtained.
 1つの実施形態においては、上記透明導電層はパターン化されている。パターン化の方法としては、透明導電層の形態に応じて、任意の適切な方法が採用され得る。透明導電層のパターンの形状は、用途に応じて任意の適切な形状であり得る。例えば、特表2011-511357号公報、特開2010-164938号公報、特開2008-310550号公報、特表2003-511799号公報、特表2010-541109号公報に記載のパターンが挙げられる。透明導電層は基材上に形成された後、透明導電層の形態に応じて、任意の適切な方法を用いてパターン化することができる。 In one embodiment, the transparent conductive layer is patterned. As the patterning method, any suitable method can be adopted depending on the form of the transparent conductive layer. The shape of the pattern of the transparent conductive layer can be any suitable shape depending on the application. For example, the patterns described in Japanese Patent Application Laid-Open No. 2011-511357, Japanese Patent Application Laid-Open No. 2010-164938, Japanese Patent Application Laid-Open No. 2008-310550, Japanese Patent Application Laid-Open No. 2003-511799, and Japanese Patent Application Laid-Open No. 2010-541109 can be mentioned. After the transparent conductive layer is formed on the substrate, it can be patterned by any suitable method depending on the form of the transparent conductive layer.
 上記透明導電層の全光線透過率は、好ましくは85%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。 The total light transmittance of the transparent conductive layer is preferably 85% or more, more preferably 90% or more, and further preferably 95% or more.
 上記金属ナノワイヤとは、材質が金属であり、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。金属ナノワイヤは直線状であってもよく、曲線状であってもよい。金属ナノワイヤで構成された透明導電層を用いれば、金属ナノワイヤが網の目状となることにより、少量の金属ナノワイヤであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい導電性フィルムを得ることができる。さらに、金属ナノワイヤが網の目状となることにより、網の目の隙間に開口部を形成して、光透過率の高い導電性フィルムを得ることができる。 The metal nanowire is a conductive substance whose material is metal, whose shape is needle-like or thread-like, and whose diameter is nanometer size. The metal nanowires may be linear or curved. If a transparent conductive layer made of metal nanowires is used, the metal nanowires have a mesh shape, so that a good electric conduction path can be formed even with a small amount of metal nanowires, and conductivity with low electric resistance can be formed. A sex film can be obtained. Further, since the metal nanowires have a mesh shape, an opening can be formed in the gap between the meshes to obtain a conductive film having high light transmittance.
 上記金属ナノワイヤの太さdと長さLとの比(アスペクト比:L/d)は、好ましくは10~100,000であり、より好ましくは50~100,000であり、特に好ましくは100~10,000である。このようにアスペクト比の大きい金属ナノワイヤを用いれば、金属ナノワイヤが良好に交差して、少量の金属ナノワイヤにより高い導電性を発現させることができる。その結果、光透過率の高い導電性フィルムを得ることができる。なお、本明細書において、「金属ナノワイヤの太さ」とは、金属ナノワイヤの断面が円状である場合はその直径を意味し、楕円状である場合はその短径を意味し、多角形である場合は最も長い対角線を意味する。金属ナノワイヤの太さおよび長さは、走査型電子顕微鏡または透過型電子顕微鏡によって確認することができる。 The ratio (aspect ratio: L / d) of the thickness d to the length L of the metal nanowire is preferably 100 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100. It is 10,000. When metal nanowires having such a large aspect ratio are used, the metal nanowires can intersect well and a small amount of metal nanowires can exhibit high conductivity. As a result, a conductive film having high light transmittance can be obtained. In the present specification, the "thickness of the metal nanowire" means the diameter of the metal nanowire when the cross section is circular, and the minor diameter when the cross section of the metal nanowire is elliptical, and is polygonal. In some cases it means the longest diagonal. The thickness and length of the metal nanowires can be confirmed by a scanning electron microscope or a transmission electron microscope.
 上記金属ナノワイヤの太さは、好ましくは500nm未満であり、より好ましくは200nm未満であり、特に好ましくは10nm~100nmであり、最も好ましくは10nm~60nmである。このような範囲であれば、光透過率の高い透明導電層を形成することができる。 The thickness of the metal nanowires is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably 10 nm to 100 nm, and most preferably 10 nm to 60 nm. Within such a range, a transparent conductive layer having high light transmittance can be formed.
 上記金属ナノワイヤの長さは、好ましくは1μm~1000μmであり、より好ましくは1μm~500μmであり、特に好ましくは1μm~100μmである。このような範囲であれば、導電性の高い導電性フィルムを得ることができる。 The length of the metal nanowires is preferably 1 μm to 1000 μm, more preferably 1 μm to 500 μm, and particularly preferably 1 μm to 100 μm. Within such a range, a conductive film having high conductivity can be obtained.
 上記金属ナノワイヤを構成する金属としては、導電性の高い金属である限り、任意の適切な金属が用いられ得る。上記金属ナノワイヤを構成する金属としては、例えば、銀、金、銅、ニッケル等が挙げられる。また、これらの金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。金属ナノワイヤは、金、白金、銀および銅からなる群より選ばれた1種以上の金属により構成されることが好ましい。 As the metal constituting the metal nanowire, any suitable metal can be used as long as it is a highly conductive metal. Examples of the metal constituting the metal nanowire include silver, gold, copper, nickel and the like. Further, a material obtained by plating (for example, gold plating) these metals may be used. The metal nanowires are preferably composed of one or more metals selected from the group consisting of gold, platinum, silver and copper.
 上記金属ナノワイヤの製造方法としては、任意の適切な方法が採用され得る。例えば溶液中で硝酸銀を還元する方法、前駆体表面にプローブの先端部から印可電圧又は電流を作用させ、プローブ先端部で金属ナノワイヤを引き出し、該金属ナノワイヤを連続的に形成する方法等が挙げられる。溶液中で硝酸銀を還元する方法においては、エチレングリコール等のポリオール、およびポリビニルピロリドンの存在下で、硝酸銀等の銀塩の液相還元することにより、銀ナノワイヤが合成され得る。均一サイズの銀ナノワイヤは、例えば、Xia,Y.etal.,Chem.Mater.(2002)、14、4736-4745 、Xia, Y.etal., Nano letters(2003)3(7)、955-960 に記載される方法に準じて、大量生産が可能である。 Any appropriate method can be adopted as the method for producing the metal nanowires. Examples thereof include a method of reducing silver nitrate in a solution, a method of applying an applied voltage or a current to the surface of the precursor from the tip of the probe, pulling out a metal nanowire at the tip of the probe, and continuously forming the metal nanowire. .. In the method of reducing silver nitrate in a solution, silver nanowires can be synthesized by liquid phase reduction of a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone. Uniform size silver nanowires are available, for example, from Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, can be mass-produced according to the method described.
 上記透明導電層における金属ナノワイヤの含有割合は、透明導電層の全重量に対して、好ましくは30重量%~100重量%であり、より好ましくは30重量%~90重量%であり、さらに好ましくは45重量%~80重量%である。このような範囲であれば、導電性および光透過性に優れる導電性フィルムを得ることができる。 The content ratio of the metal nanowires in the transparent conductive layer is preferably 30% by weight to 100% by weight, more preferably 30% by weight to 90% by weight, still more preferably, based on the total weight of the transparent conductive layer. It is 45% by weight to 80% by weight. Within such a range, a conductive film having excellent conductivity and light transmittance can be obtained.
 上記バインダー樹脂としては、任意の適切な樹脂が用いられ得る。該樹脂としては、例えば、アクリル系樹脂;ポリエチレンテレフタレート等のポリエステル系樹脂;ポリスチレン、ポリビニルトルエン、ポリビニルキシレン、ポリイミド、ポリアミド、ポリアミドイミド等の芳香族系樹脂;ポリウレタン系樹脂;エポキシ系樹脂;ポリオレフィン系樹脂;アクリロニトリル-ブタジエン-スチレン共重合体(ABS);セルロース;シリコン系樹脂;ポリ塩化ビニル;ポリアセテート;ポリノルボルネン;合成ゴム;フッ素系樹脂等が挙げられる。好ましくは、ペンタエリスリトールトリアクリレート(PETA)、ネオペンチルグリコールジアクリレート(NPGDA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリアクリレート(TMPTA)等の多官能アクリレートから構成される硬化型樹脂(好ましくは紫外線硬化型樹脂)が用いられる。 Any suitable resin can be used as the binder resin. Examples of the resin include acrylic resins; polyester resins such as polyethylene terephthalate; aromatic resins such as polystyrene, polyvinyl toluene, polyvinyl xylene, polyimide, polyamide and polyamideimide; polyurethane resins; epoxy resins; polyolefin resins. Resins; acrylonitrile-butadiene-styrene copolymer (ABS); cellulose; silicon-based resin; polyvinyl chloride; polyacetate; polynorbornene; synthetic rubber; fluorine-based resin and the like. Preferably, it is polyfunctional such as pentaerythritol triacrylate (PETA), neopentyl glycol diacrylate (NPGDA), dipentaerythritol hexaacrylate (DPHA), dipentaerythritol pentaacrylate (DPPA), trimethylolpropane triacrylate (TMPTA) and the like. A curable resin composed of acrylate (preferably an ultraviolet curable resin) is used.
 透明導電層の目付けは、好ましくは0.001g/m~0.09g/mであり、より好ましくは0.005g/m~0.05g/mである。 Basis weight of the transparent conductive layer is preferably 0.001g / m 2 ~ 0.09g / m 2, more preferably 0.005g / m 2 ~ 0.05g / m 2.
 上記透明導電層における金属ナノワイヤの含有割合は、透明導電層を構成するバインダー樹脂100重量部に対して、好ましくは0.1重量部~50重量部であり、より好ましくは0.1重量部~30重量部である。このような範囲であれば、導電性および光透過性に優れる透明導電性フィルムを得ることができる。 The content ratio of the metal nanowires in the transparent conductive layer is preferably 0.1 parts by weight to 50 parts by weight, more preferably 0.1 parts by weight or more, based on 100 parts by weight of the binder resin constituting the transparent conductive layer. It is 30 parts by weight. Within such a range, a transparent conductive film having excellent conductivity and light transmittance can be obtained.
C.基材
 上記基材を構成する材料は、任意の適切な材料が用いられ得る。具体的には、例えば、フィルムやプラスチックス基材などの高分子基材が好ましく用いられる。基材の平滑性および透明導電層形成用組成物に対する濡れ性に優れ、また、ロールによる連続生産により生産性を大幅に向上させ得るからである。
C. Materials constituting the substrate the substrate may be any suitable material may be used. Specifically, for example, a polymer base material such as a film or a plastic base material is preferably used. This is because the smoothness of the base material and the wettability to the composition for forming the transparent conductive layer are excellent, and the productivity can be significantly improved by the continuous production by the roll.
 上記基材を構成する材料は、代表的には熱可塑性樹脂を主成分とする高分子フィルムである。熱可塑性樹脂としては、例えば、ポリエステル系樹脂;ポリノルボルネン等のシクロオレフィン系樹脂;アクリル系樹脂;ポリカーボネート樹脂;セルロース系樹脂等が挙げられる。なかでも好ましくは、ポリエステル系樹脂、シクロオレフィン系樹脂またはアクリル系樹脂である。これらの樹脂は、透明性、機械的強度、熱安定性、水分遮蔽性などに優れる。上記熱可塑性樹脂は、単独で、または2種以上組み合わせて用いてもよい。また、偏光板に用いられるような光学フィルム、例えば、低位相差基材、高位相差基材、位相差板、輝度向上フィルム等を基材として用いることも可能である。 The material constituting the above base material is typically a polymer film containing a thermoplastic resin as a main component. Examples of the thermoplastic resin include polyester resins; cycloolefin resins such as polynorbornene; acrylic resins; polycarbonate resins; cellulose resins and the like. Of these, polyester-based resins, cycloolefin-based resins, and acrylic-based resins are preferable. These resins are excellent in transparency, mechanical strength, thermal stability, moisture shielding property and the like. The above thermoplastic resins may be used alone or in combination of two or more. Further, it is also possible to use an optical film such as that used for a polarizing plate, for example, a low retardation base material, a high retardation base material, a retardation plate, a brightness improving film, or the like as a base material.
 上記基材の厚みは、好ましくは20μm~200μmであり、より好ましくは30μm~150μmである。 The thickness of the base material is preferably 20 μm to 200 μm, more preferably 30 μm to 150 μm.
 上記基材の全光線透過率は、好ましくは30%以上であり、より好ましくは35%以上であり、さらに好ましくは40%以上である。 The total light transmittance of the base material is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more.
D.導電性フィルムの製造方法
 本発明の導電性フィルムは、例えば、基材上に、金属ナノワイヤを含む透明導電層形成用組成物を塗布し、その後、塗布層を乾燥させて、透明導電層を形成することにより得られ得る。
D. Method for Producing Conductive Film In the conductive film of the present invention, for example, a composition for forming a transparent conductive layer containing metal nanowires is applied onto a base material, and then the coated layer is dried to form a transparent conductive layer. Can be obtained by doing.
 透明導電層形成用組成物は、金属ナノワイヤを含む。1つの実施形態においては、金属ナノワイヤを任意の適切な溶媒に分散させて透明導電層形成用組成物が調製される。当該溶媒としては、水、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、炭化水素系溶媒、芳香族系溶媒等が挙げられる。また、透明導電層形成用組成物は、樹脂(バインダー樹脂)、金属ナノワイヤ以外の導電性材料(例えば、導電性粒子)、レベリング剤等の添加剤をさらに含んでいてもよい。また、透明導電層形成用組成物は、可塑剤、熱安定剤、光安定剤、滑剤、抗酸化剤、紫外線吸収剤、難燃剤、着色剤、帯電防止剤、相溶化剤、架橋剤、増粘剤、無機粒子、界面活性剤、および分散剤等の添加剤を含み得る。 The composition for forming a transparent conductive layer contains metal nanowires. In one embodiment, metal nanowires are dispersed in any suitable solvent to prepare a composition for forming a transparent conductive layer. Examples of the solvent include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents and the like. Further, the composition for forming a transparent conductive layer may further contain additives such as a resin (binder resin), a conductive material other than metal nanowires (for example, conductive particles), and a leveling agent. In addition, the composition for forming a transparent conductive layer includes a plasticizer, a heat stabilizer, a light stabilizer, a lubricant, an antioxidant, an ultraviolet absorber, a flame retardant, a colorant, an antistatic agent, a compatibilizer, a cross-linking agent, and an increase. It may contain additives such as thickeners, inorganic particles, surfactants, and dispersants.
 透明導電層形成用組成物の粘度は、好ましくは5mP・s/25℃~300mP・s/25℃であり、より好ましくは10mP・s/25℃~100mP・s/25℃である。このような範囲であれば、金属フィラーが良好に偏在した透明導電層を得ることができる。透明導電層形成用組成物の粘度は、レオメータ(例えば、アントンパール社のMCR302)により測定することができる。 The viscosity of the composition for forming the transparent conductive layer is preferably 5 mP · s / 25 ° C. to 300 mP · s / 25 ° C., more preferably 10 mP · s / 25 ° C. to 100 mP · s / 25 ° C. Within such a range, a transparent conductive layer in which the metal filler is well unevenly distributed can be obtained. The viscosity of the composition for forming a transparent conductive layer can be measured with a rheometer (for example, MCR302 manufactured by Anton Pearl Co., Ltd.).
 透明導電層形成用組成物中の金属ナノワイヤの分散濃度は、好ましくは0.01重量%~5重量%である。このような範囲であれば、金属フィラーが良好に偏在した透明導電層を得ることができる。 The dispersion concentration of the metal nanowires in the composition for forming the transparent conductive layer is preferably 0.01% by weight to 5% by weight. Within such a range, a transparent conductive layer in which the metal filler is well unevenly distributed can be obtained.
 上記透明導電層形成用組成物の塗布方法としては、任意の適切な方法が採用され得る。塗布方法としては、例えば、スプレーコート、バーコート、ロールコート、ダイコート、インクジェットコート、スクリーンコート、ディップコート、凸版印刷法、凹版印刷法、グラビア印刷法等が挙げられる。1つの実施形態においては、上記基材として長尺状の基材を用い、当該基材を搬送しながら、上記透明導電層形成用組成物を塗布する。基材の搬送方法としては、任意の適切な方法が採用され得る。例えば、搬送ロールによる搬送、搬送ベルトによる搬送、これらの組み合わせ等が挙げられる。搬送速度は、例えば、5m/min~50m/minである。 Any suitable method can be adopted as the coating method of the composition for forming the transparent conductive layer. Examples of the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing method, intaglio printing method, gravure printing method and the like. In one embodiment, a long base material is used as the base material, and the composition for forming a transparent conductive layer is applied while transporting the base material. Any suitable method can be adopted as the method for transporting the base material. For example, transport by a transport roll, transport by a transport belt, a combination thereof, and the like can be mentioned. The transport speed is, for example, 5 m / min to 50 m / min.
 上記塗布層の目付けは、好ましくは0.3g/m~30g/mであり、より好ましくは1.6g/m~16g/mである。このような範囲であれば、金属フィラーが良好に偏在した透明導電層を得ることができる。 The basis weight of the coating layer is preferably 0.3 g / m 2 to 30 g / m 2 , and more preferably 1.6 g / m 2 to 16 g / m 2 . Within such a range, a transparent conductive layer in which the metal filler is well unevenly distributed can be obtained.
 塗布層の乾燥方法として、代表的には、送風による乾燥が挙げられる。塗布層への送風は、任意の適切な方法により行うことができる。1つの実施形態においては、塗布層の上方(基材とは反対側)に配置された送風機を用いて、塗布層への送風が行われ得る。送風方向は、例えば、送風機にルーバーを設け、当該ルーバーの方向により調整することができる。塗布層への風は、らせん状に吹かせた風であってもよい。 A typical method for drying the coating layer is drying by blowing air. The air blown to the coating layer can be performed by any suitable method. In one embodiment, a blower located above the coating layer (opposite the substrate) can be used to blow air to the coating layer. The blowing direction can be adjusted by, for example, providing a louver on the blower and adjusting the blowing direction according to the direction of the louver. The wind to the coating layer may be a spirally blown wind.
 上記風の風速は、好ましくは0.5m/s~10m/sであり、より好ましくは1m/s~5m/sである。このような範囲であれば、金属フィラーが良好に偏在した透明導電層を得ることができる。風速は、透明導電層形成用組成物に含まれる溶媒等に応じて、適切に設定され得る。水により調製された透明導電層形成用組成物を用いる場合、上記風速は、好ましくは0.5m/s~10m/sであり、より好ましくは1m/s~5m/sである。なお、本明細書において風速とは、塗布層に到達する時点での風速を意味する。 The wind speed of the above wind is preferably 0.5 m / s to 10 m / s, and more preferably 1 m / s to 5 m / s. Within such a range, a transparent conductive layer in which the metal filler is well unevenly distributed can be obtained. The wind speed can be appropriately set depending on the solvent and the like contained in the composition for forming the transparent conductive layer. When a composition for forming a transparent conductive layer prepared with water is used, the wind speed is preferably 0.5 m / s to 10 m / s, more preferably 1 m / s to 5 m / s. In the present specification, the wind speed means the wind speed at the time of reaching the coating layer.
 上記風の温度は、好ましくは10℃~50℃であり、より好ましくは15℃~30℃である。風速は、透明導電層形成用組成物に含まれる溶媒等に応じて、適切に設定され得る。水により調製された透明導電層形成用組成物を用いる場合、上記風の温度は、好ましくは10℃~50℃であり、より好ましくは15℃~30℃である。なお、本明細書において風の温度とは、塗布層に到達する時点での風の温度を意味する。 The temperature of the wind is preferably 10 ° C to 50 ° C, more preferably 15 ° C to 30 ° C. The wind speed can be appropriately set depending on the solvent and the like contained in the composition for forming the transparent conductive layer. When a composition for forming a transparent conductive layer prepared with water is used, the temperature of the wind is preferably 10 ° C. to 50 ° C., more preferably 15 ° C. to 30 ° C. In addition, in this specification, the wind temperature means the temperature of the wind at the time of reaching the coating layer.
 送風時間は、好ましくは1分~10分であり、より好ましくは2分~5分である。 The blowing time is preferably 1 minute to 10 minutes, more preferably 2 minutes to 5 minutes.
 送風工程においては、送風を多段階に分けて行ってもよい。例えば、風向、風速、温度等が異なるようにゾーン分けして、送風を段階的に行ってもよい。また、送風工程の前にオーブン加熱、自然乾燥等の方法により、塗布層の厚みを減じてもよい。送風工程を開始する際の塗布層の目付けは、好ましくは0.001g/m~0.09g/mであり、より好ましくは0.005g/m~0.05g/mである。 In the blowing process, the blowing may be divided into a plurality of stages. For example, the wind may be divided into zones so that the wind direction, the wind speed, the temperature, and the like are different, and the air is blown stepwise. Further, the thickness of the coating layer may be reduced by a method such as oven heating or natural drying before the blowing step. Basis weight of the coating layer at the start of air blowing process is preferably 0.001g / m 2 ~ 0.09g / m 2, more preferably 0.005g / m 2 ~ 0.05g / m 2.
 送風工程の後、任意の適切な処理を行ってもよい。例えば、バインダー樹脂を含む透明導電層形成用組成物を用いた場合、紫外線照射等による硬化処理を行ってもよい。また、送付工程の後に、乾燥工程を行ってもよい。乾燥方法としては、例えば、オーブン加熱、自然乾燥等が挙げられる。また、乾燥後の塗布層をプレスして、透明導電層を形成してもよい。このようにすれば、金属フィラーが良好に偏在した透明導電層を得ることができる。 After the ventilation process, any appropriate treatment may be performed. For example, when a composition for forming a transparent conductive layer containing a binder resin is used, it may be cured by irradiation with ultraviolet rays or the like. Further, a drying step may be performed after the sending step. Examples of the drying method include oven heating, natural drying and the like. Alternatively, the dried coating layer may be pressed to form a transparent conductive layer. By doing so, it is possible to obtain a transparent conductive layer in which the metal filler is well unevenly distributed.
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。実施例における評価方法は以下のとおりである。なお、厚みは、エポキシ樹脂にて包埋処理後ウルトラマイクロトームで切削することで断面を形成し、日立ハイテクノロジーズ社製の走査型電子顕微鏡「S-4800」を使用して測定した。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The evaluation method in the examples is as follows. The thickness was measured by using a scanning electron microscope "S-4800" manufactured by Hitachi High-Technologies Corporation after embedding it in epoxy resin and cutting it with an ultramicro tome to form a cross section.
(1)表面抵抗値
 透明導電性フィルムの表面抵抗値(MDおよびTDの表面抵抗値)を、ナプソン株式会社製の非接触表面抵抗計 商品名「EC-80」を用いて、渦電流法により測定した。測定温度は23℃とした。
(1) Surface resistance value The surface resistance value of the transparent conductive film (surface resistance value of MD and TD) is measured by the eddy current method using a non-contact surface resistance meter manufactured by Napson Corporation, trade name "EC-80". It was measured. The measurement temperature was 23 ° C.
(2)ヘイズ値
 透明導電性フィルムのヘイズ値を、JIS 7136で定める方法により、ヘイズメーター(村上色彩科学研究所社製、商品名「HN-150」)を用いて測定した。
(2) Haze value The haze value of the transparent conductive film was measured using a haze meter (manufactured by Murakami Color Science Laboratory Co., Ltd., trade name "HN-150") by the method specified by JIS 7136.
(3)透明導電層の厚み方向における金属ナノワイヤの存在分布の半値幅
 透明導電層の断面をTEM撮影して得られた画像を二値化して明らかとした金属ナノワイヤの存在分布について、横軸を厚さ(基材からの距離、単位:nm)とし、縦軸を頻度(金属フィラーの存在量(画像における面積基準))としてプロットし、頻度が最も高いピークにおける半値幅(ピーク位置における分布の高さの半分の高さにおける分布幅)を求めた。
 不作為に抽出した10箇所について、上記のように半値幅を求め、その平均値により、金属ナノワイヤの偏在度合いを評価した。
(3) Half-value width of the presence distribution of metal nanowires in the thickness direction of the transparent conductive layer Regarding the presence distribution of metal nanowires clarified by binarizing the image obtained by TEM imaging of the cross section of the transparent conductive layer, the horizontal axis is Plot the thickness (distance from the substrate, unit: nm) and the vertical axis as the frequency (absence of metal filler (area reference in the image)), and the half-price width (distribution at the peak position) at the peak with the highest frequency. The distribution width at half the height) was calculated.
The full width at half maximum was obtained for 10 randomly selected sites as described above, and the degree of uneven distribution of metal nanowires was evaluated based on the average value.
(4)透明導電層の厚み方向に基材側50%範囲内に存在する金属ナノワイヤの存在割合
 上記(3)と同様にして金属ナノワイヤの存在分布をプロットし、透明導電層の厚み方向に基材側50%範囲内に存在する金属ナノワイヤの存在割合を求めた。
 不作為に抽出した10箇所について、上記のように存在割合を求め、その平均値により、金属ナノワイヤの偏在度合いを評価した。
(4) Abundance ratio of metal nanowires existing within 50% of the base material side in the thickness direction of the transparent conductive layer The existence distribution of metal nanowires is plotted in the same manner as in (3) above, and is based on the thickness direction of the transparent conductive layer. The abundance ratio of metal nanowires existing within the 50% range on the material side was determined.
The abundance ratio of 10 randomly selected sites was determined as described above, and the degree of uneven distribution of metal nanowires was evaluated based on the average value.
[製造例1]透明導電層形成用組成物の調製
 Chem.Mater.2002,14,4736-4745に記載の方法に基づいて、銀ナノワイヤを合成した。
 純水に、上記で得られた銀ナノワイヤを0.2重量%、および、ドデシル-ペンタエチレングリコールを0.1重量%の濃度となるように分散し、透明導電層形成用組成物を得た。
[Production Example 1] Preparation of composition for forming a transparent conductive layer Chem. Mater. Silver nanowires were synthesized according to the method described in 2002, 14, 4736-4745.
The silver nanowires obtained above were dispersed in pure water to a concentration of 0.2% by weight and dodecyl-pentaethylene glycol at a concentration of 0.1% by weight to obtain a composition for forming a transparent conductive layer. ..
[実施例1]
 基材としてPETフィルム(三菱樹脂製、商品名「S100」)を用いた。この基材を搬送ロールを用いて搬送しながら、当該基材上に、バーコーター(第一理科株式会社製、製品名「バーコーター No.16」)を用いて製造例1で調製した透明導電層形成用組成物を塗布してWet膜厚(光干渉膜厚計による)12μmの塗布層を形成した。その後、塗布層が形成された基材を搬送しながら、塗布層に整流風を送風して塗布層を乾燥させて、透明導電層を形成し、基材および透明導電層を備える透明導電性フィルムを得た。
 得られた透明導電性フィルムの透明導電層においては、図2(a)の断面TEM写真図に示すように、金属ナノワイヤが偏在していた。また、ICP測定により、Ag量(金属ナノワイヤ量)を測定したところ、15.3mg/mであった。
 得られた透明導電性フィルムを上記評価(1)~(4)に供した。結果を表1に示す。
[Example 1]
A PET film (manufactured by Mitsubishi Plastics, trade name "S100") was used as a base material. The transparent conductivity prepared in Production Example 1 using a bar coater (manufactured by Daiichi Rika Co., Ltd., product name "Bar Coater No. 16") while transporting this base material using a transport roll. The layer-forming composition was applied to form a coating layer having a Wet film thickness (according to an optical interference film thickness meter) of 12 μm. Then, while transporting the base material on which the coating layer is formed, rectifying air is blown to the coating layer to dry the coating layer to form a transparent conductive layer, and the transparent conductive film provided with the base material and the transparent conductive layer. Got
In the transparent conductive layer of the obtained transparent conductive film, metal nanowires were unevenly distributed as shown in the cross-sectional TEM photograph of FIG. 2 (a). Moreover, when the amount of Ag (the amount of metal nanowires) was measured by ICP measurement, it was 15.3 mg / m 2.
The obtained transparent conductive film was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[実施例2]
 塗布層のWet厚みを15μmとしたこと以外は、実施例1と同様にして透明導電性フィルムを得た。ICP測定によるAg量(金属ナノワイヤ量)は、17.4mg/mであった。得られた透明導電性フィルムを上記評価(1)~(4)に供した。結果を表1に示す。
[Example 2]
A transparent conductive film was obtained in the same manner as in Example 1 except that the Wet thickness of the coating layer was 15 μm. The amount of Ag (amount of metal nanowires) measured by ICP was 17.4 mg / m 2 . The obtained transparent conductive film was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[実施例3]
 塗布層のWet厚みを17μmとしたこと以外は、実施例1と同様にして透明導電性フィルムを得た。ICP測定によるAg量(金属ナノワイヤ量)は、18.7mg/mであった。得られた透明導電性フィルムを上記評価(1)~(4)に供した。結果を表1に示す。
[Example 3]
A transparent conductive film was obtained in the same manner as in Example 1 except that the Wet thickness of the coating layer was 17 μm. The amount of Ag (amount of metal nanowires) measured by ICP was 18.7 mg / m 2 . The obtained transparent conductive film was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[比較例1]
 実施例1と同様にして、塗布層を形成した。その後、塗布層が形成された基材を炉内温度100℃のオーブンに2分間投入して、透明導電性フィルムを得た。ICP測定によるAg量(金属ナノワイヤ量)は、15.4mg/mであった。得られた透明導電性フィルムを上記評価(1)~(4)に供した。結果を表1に示す。また、図2(b)に、透明導電層の断面TEM写真を示す。
[Comparative Example 1]
A coating layer was formed in the same manner as in Example 1. Then, the base material on which the coating layer was formed was put into an oven having a furnace temperature of 100 ° C. for 2 minutes to obtain a transparent conductive film. The amount of Ag (amount of metal nanowires) measured by ICP was 15.4 mg / m 2 . The obtained transparent conductive film was subjected to the above evaluations (1) to (4). The results are shown in Table 1. Further, FIG. 2B shows a cross-sectional TEM photograph of the transparent conductive layer.
[比較例2]
 塗布層のWet厚みを15μmとしたこと以外は、実施例1と同様にして透明導電性フィルムを得た。ICP測定によるAg量(金属ナノワイヤ量)は、17.5mg/mであった。得られた透明導電性フィルムを上記評価(1)~(4)に供した。結果を表1に示す。
[Comparative Example 2]
A transparent conductive film was obtained in the same manner as in Example 1 except that the Wet thickness of the coating layer was 15 μm. The amount of Ag (amount of metal nanowires) measured by ICP was 17.5 mg / m 2 . The obtained transparent conductive film was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
[比較例3]
 塗布層のWet厚みを17μmとしたこと以外は、実施例1と同様にして透明導電性フィルムを得た。ICP測定によるAg量(金属ナノワイヤ量)は、18.5mg/mであった。得られた透明導電性フィルムを上記評価(1)~(4)に供した。結果を表1に示す。
[Comparative Example 3]
A transparent conductive film was obtained in the same manner as in Example 1 except that the Wet thickness of the coating layer was 17 μm. The amount of Ag (amount of metal nanowires) measured by ICP was 18.5 mg / m 2 . The obtained transparent conductive film was subjected to the above evaluations (1) to (4). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1と比較例1との比較、実施例2と比較例2との比較、および実施例3と比較例3との比較から明らかなように、実施例の透明導電性フィルムにおいては、比較例の透明導電性フィルムと同等のヘイズ値でありつつも、表面抵抗値が小さい。すなわち、本発明によれば、透明性に優れ、かつ、優れた導電性を有する透明導電性フィルムを得ることができる。 As is clear from the comparison between Example 1 and Comparative Example 1, the comparison between Example 2 and Comparative Example 2, and the comparison between Example 3 and Comparative Example 3, the transparent conductive films of Examples are compared. The haze value is the same as that of the transparent conductive film of the example, but the surface resistance value is small. That is, according to the present invention, it is possible to obtain a transparent conductive film having excellent transparency and excellent conductivity.
 10     基材
 20     透明導電層
 100    透明導電性フィルム
10 Base material 20 Transparent conductive layer 100 Transparent conductive film

Claims (4)

  1.  基材と、該基材の少なくとも片側に配置された透明導電層を備え、
     該透明導電層が、金属フィラーを含み、
     透明導電層の厚み方向における上記金属フィラーの存在分布の半値幅が、5nm~75nmである、
     透明導電性フィルム。
    A base material and a transparent conductive layer arranged on at least one side of the base material are provided.
    The transparent conductive layer contains a metal filler and contains
    The half width of the presence distribution of the metal filler in the thickness direction of the transparent conductive layer is 5 nm to 75 nm.
    Transparent conductive film.
  2.  前記金属フィラーが、金属ナノワイヤである、請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the metal filler is a metal nanowire.
  3.  表面抵抗値が、10Ω/□以上300Ω/□未満である、請求項1または2に記載の透明導電性フィルム。 The transparent conductive film according to claim 1 or 2, wherein the surface resistance value is 10 Ω / □ or more and less than 300 Ω / □.
  4.  ヘイズ値が、20%以下である、請求項1から3のいずれかに記載の透明導電性フィルム。 The transparent conductive film according to any one of claims 1 to 3, wherein the haze value is 20% or less.
PCT/JP2021/005624 2020-02-25 2021-02-16 Transparent conductive film WO2021172086A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227028751A KR20220146457A (en) 2020-02-25 2021-02-16 transparent conductive film
CN202180016742.1A CN115175812A (en) 2020-02-25 2021-02-16 Transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-029371 2020-02-25
JP2020029371A JP2021136085A (en) 2020-02-25 2020-02-25 Transparent conductive film

Publications (1)

Publication Number Publication Date
WO2021172086A2 true WO2021172086A2 (en) 2021-09-02

Family

ID=77492158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005624 WO2021172086A2 (en) 2020-02-25 2021-02-16 Transparent conductive film

Country Status (5)

Country Link
JP (1) JP2021136085A (en)
KR (1) KR20220146457A (en)
CN (1) CN115175812A (en)
TW (1) TW202141533A (en)
WO (1) WO2021172086A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006279590A1 (en) 2005-08-12 2007-02-22 Cambrios Technologies Corporation Nanowires-based transparent conductors
JP2011119142A (en) * 2009-12-04 2011-06-16 Konica Minolta Holdings Inc Method for manufacturing transparent conductive base material
JP6199034B2 (en) 2012-02-16 2017-09-20 大倉工業株式会社 Method for producing transparent conductive substrate and transparent conductive substrate
KR102510824B1 (en) * 2016-09-30 2023-03-17 다이니폰 인사츠 가부시키가이샤 Electroconductive film, touch panel, and image display device

Also Published As

Publication number Publication date
KR20220146457A (en) 2022-11-01
CN115175812A (en) 2022-10-11
TW202141533A (en) 2021-11-01
JP2021136085A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
JP3665969B2 (en) Method for producing carbon nanotube-containing film and carbon nanotube-containing coating
JPWO2017188175A1 (en) Carbon nanotube dispersion, method for producing the same, and conductive molded body
KR102025580B1 (en) Method for producing a transparent conductive film and a transparent conductive pattern
KR102119432B1 (en) Metal nanowire ink, transparent conductive substrate and transparent anti-static substrate
KR102393615B1 (en) Method for manufacturing conductive film, conductive film, and metal nanowire ink
WO2021172086A2 (en) Transparent conductive film
TW201716517A (en) Conductive transparent coating for rigid and flexible substrates
JP6712910B2 (en) Transparent conductive film
WO2021065829A1 (en) Method for producing a transparent electroconductive film
WO2022050243A1 (en) Method for manufacturing transparent electroconductive film
WO2021065827A1 (en) Method for manufacturing transparent electroconductive film
WO2022153958A1 (en) Transparent conductive film
WO2022153959A1 (en) Production method for transparent conductive film
WO2021065828A1 (en) Method for producing transparent conductive film
JPH11353947A (en) Antistatic resin molding and secondary molding thereof
JP2024040293A (en) transparent conductive film
JP6712860B2 (en) Transparent conductive film
WO2016121662A1 (en) Transparent electroconductive film
JP2008103354A (en) Antistatic resin molding, and secondary molding thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761851

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761851

Country of ref document: EP

Kind code of ref document: A2