WO2021065828A1 - Method for producing transparent conductive film - Google Patents

Method for producing transparent conductive film Download PDF

Info

Publication number
WO2021065828A1
WO2021065828A1 PCT/JP2020/036698 JP2020036698W WO2021065828A1 WO 2021065828 A1 WO2021065828 A1 WO 2021065828A1 JP 2020036698 W JP2020036698 W JP 2020036698W WO 2021065828 A1 WO2021065828 A1 WO 2021065828A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
base material
conductive film
conductive layer
coating
Prior art date
Application number
PCT/JP2020/036698
Other languages
French (fr)
Japanese (ja)
Inventor
純一 長瀬
一平 長原
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020227010860A priority Critical patent/KR20220072837A/en
Priority to JP2021551266A priority patent/JPWO2021065828A1/ja
Priority to CN202080069186.XA priority patent/CN114467156A/en
Publication of WO2021065828A1 publication Critical patent/WO2021065828A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/30Drying; Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length

Definitions

  • the present invention relates to a method for producing a transparent conductive film.
  • a transparent conductive film obtained by forming a metal oxide layer such as ITO (indium-tin composite oxide) on a transparent resin film is often used as an electrode of the touch sensor.
  • the transparent conductive film provided with this metal oxide layer tends to lose its conductivity due to bending, and has a problem that it is difficult to use in applications requiring flexibility such as a flexible display.
  • a transparent conductive film having high flexibility a transparent conductive film containing metal nanowires is known.
  • Metal nanowires are wire-like conductive substances having a diameter of nanometers.
  • the metal nanowires form a mesh, so that a good electrical conduction path is formed with a small amount of metal nanowires, and an opening is formed in the gap between the meshes. Formed to achieve high light transmittance.
  • the metal nanowires are in the form of wires, they are likely to be arranged in an oriented state, and therefore, there is a problem that conductive anisotropy occurs in the transparent conductive film containing the metal nanowires.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a transparent conductive film having a small conductive anisotropy while containing metal nanowires. is there.
  • the method for producing a transparent conductive film of the present invention includes a coating step of applying a composition for forming a transparent conductive layer containing a metal nanowire to the base material while transporting a long base material to form a coating layer.
  • the coating layer is dried to form a transparent conductive layer on the base material, and the average inclination angle ⁇ a on the surface of the base material is 0.5 ° or more.
  • the average spacing Sm of the irregularities on the surface of the base material is 0.4 mm or less.
  • a transparent conductive film is provided.
  • This transparent conductive film includes a base material and a transparent conductive layer arranged on one side of the base material, and the average inclination angle ⁇ a of the surface of the base material is 0.6 ° or more.
  • a composition for forming a transparent conductive layer containing a metal nanowire is applied to the base material while transporting the long base material. It includes a coating step of forming a layer and a drying step of drying the coating layer to form a transparent conductive layer on the substrate. Typically, the coating step and the drying step are performed while feeding out the rolled base material and transporting the base material, and the base material 10 and the base material 10 are arranged on one side as shown in FIG. A long transparent conductive film 100 including the transparent conductive layer 20 is formed. In one embodiment, the transparent conductive film is wound up after the drying step.
  • the composition for forming a transparent conductive layer containing metal nanowires is applied to the substrate while transporting the elongated substrate to form the coating layer.
  • the average inclination angle ⁇ a on the surface of the base material is 0.5 ° or more.
  • the metal nanowires are well dispersed in the coating layer and the orientation of the metal nanowires is disturbed, resulting in conductive anisotropy.
  • a small transparent conductive film can be produced.
  • the surface of the base material is the surface on which the coating layer is planned to be formed.
  • the average inclination angle ⁇ a of the surface of the base material is preferably 0.8 ° or more, more preferably 1 ° or more, still more preferably 1.2 ° or more, and particularly preferably 1.4 ° or more. Is. Within such a range, the effect of the above basic invention becomes more remarkable.
  • the upper limit of the average inclination angle ⁇ a is, for example, 3 ° (preferably 2.5 °, more preferably 2 °). In the present specification, the average inclination angle ⁇ a is defined by the following equation (1).
  • ⁇ a tan -1 ⁇ a ⁇ ⁇ ⁇ (1)
  • ⁇ a is the peak and valley of the adjacent peaks in the reference length L of the roughness curve defined in JIS B 0601 (1994 version) as shown in the following equation (2). It is a value obtained by dividing the total (h1 + h2 + h3 ... + Hn) of the difference (height h) from the lowest point by the reference length L.
  • the roughness curve is a curve obtained by removing a surface waviness component longer than a predetermined wavelength from a cross-sectional curve with a phase difference compensation type high frequency filter.
  • the cross-sectional curve is a contour that appears at the cut end when the target surface is cut on a plane perpendicular to the target surface.
  • ⁇ a (h1 + h2 + h3 ... + hn) / L ... (2)
  • the average spacing Sm of the unevenness on the surface of the base material is preferably 0.4 mm or less, more preferably 0.3 mm or less, further preferably 0.25 mm or less, and particularly preferably 0.2 mm or less. Yes, most preferably 0.15 mm or less.
  • the larger the average spacing Sm of the irregularities the more the orientation of the metal nanowires can be reduced, and a transparent conductive film having a particularly small conductive anisotropy can be produced.
  • the lower limit of the average spacing Sm of the unevenness is, for example, 0.03 mm (preferably 0.04 mm).
  • the definition of the average inclination angle ⁇ a is based on JIS B 0601 (1994 version).
  • the arithmetic mean surface roughness Ra of the surface of the base material is preferably 0.05 ⁇ m to 3 ⁇ m, and more preferably 0.1 ⁇ m to 1.5 ⁇ m. Within such a range, a transparent conductive film having a particularly small conductive anisotropy can be produced.
  • the definition of arithmetic mean surface roughness Ra is based on JIS B 0601 (1994 edition).
  • the thickness of the base material is preferably 20 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 150 ⁇ m.
  • the total light transmittance of the base material is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more.
  • any suitable material can be used as the material constituting the above base material.
  • a polymer base material such as a film or a plastic base material is preferably used. This is because the smoothness of the base material and the wettability to the composition for forming the transparent conductive layer are excellent, and the productivity can be significantly improved by the continuous production by the roll.
  • the material constituting the above base material is typically a polymer film containing a thermoplastic resin as a main component.
  • the thermoplastic resin include polyester resins; cycloolefin resins such as polynorbornene; acrylic resins; polycarbonate resins; cellulose resins and the like. Of these, polyester-based resins, cycloolefin-based resins, and acrylic-based resins are preferable. These resins are excellent in transparency, mechanical strength, thermal stability, moisture shielding property and the like.
  • the above-mentioned thermoplastic resin may be used alone or in combination of two or more kinds. Further, it is also possible to use an optical film such as that used for a polarizing plate, for example, a low retardation base material, a high retardation base material, a retardation plate, a brightness improving film, or the like as a base material.
  • Any appropriate method can be adopted as the method for transporting the base material.
  • transport by a transport roll, transport by a transport belt, a combination thereof, and the like can be mentioned.
  • the transport speed is, for example, 5 m / min to 50 m / min.
  • Metal nanowires are conductive substances that are made of metal, have a needle-like or thread-like shape, and have a diameter of nanometers.
  • the metal nanowires may be linear or curved. If a transparent conductive layer made of metal nanowires is used, the metal nanowires have a mesh shape, so that a good electric conduction path can be formed even with a small amount of metal nanowires, and the transparent material has low electric resistance. A conductive film can be obtained. Further, since the metal nanowires have a mesh shape, an opening can be formed in the gap between the meshes to obtain a transparent conductive film having high light transmittance.
  • the ratio (aspect ratio: L / d) of the thickness d to the length L of the metal nanowire is preferably 100 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100. It is 10,000.
  • the metal nanowires having such a large aspect ratio are used, the metal nanowires can intersect well and a small amount of metal nanowires can exhibit high conductivity. As a result, a transparent conductive film having high light transmittance can be obtained.
  • the "thickness of the metal nanowire” means the diameter of the metal nanowire when it has a circular cross section, and means its minor diameter when it has an elliptical cross section, and is polygonal. In some cases it means the longest diagonal.
  • the thickness and length of the metal nanowires can be confirmed by a scanning electron microscope or a transmission electron microscope.
  • the thickness of the metal nanowires is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably 10 nm to 100 nm, and most preferably 10 nm to 50 nm. Within such a range, a transparent conductive layer having high light transmittance can be formed.
  • the length of the metal nanowires is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 10 ⁇ m to 500 ⁇ m, and particularly preferably 10 ⁇ m to 100 ⁇ m. Within such a range, a transparent conductive film having high conductivity can be obtained. Further, when the length of the metal nanowire is in the above range, the effect obtained by specifying the surface shape of the base material as described above becomes large.
  • any suitable metal can be used as long as it is a conductive metal.
  • the metal constituting the metal nanowire include silver, gold, copper, nickel and the like. Further, a material obtained by plating (for example, gold plating) these metals may be used. Of these, silver, copper or gold is preferable, and silver is more preferable, from the viewpoint of conductivity.
  • any appropriate method can be adopted as the method for producing the metal nanowires.
  • Examples thereof include a method of reducing silver nitrate in a solution, a method of applying an applied voltage or a current to the surface of the precursor from the tip of the probe, pulling out a metal nanowire at the tip of the probe, and continuously forming the metal nanowire. ..
  • silver nanowires can be synthesized by liquid-phase reducing a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone. Uniform size silver nanowires are available, for example, from Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, can be mass-produced according to the method described.
  • composition for forming a transparent conductive layer contains metal nanowires.
  • metal nanowires are dispersed in any suitable solvent to prepare a composition for forming a transparent conductive layer.
  • the solvent include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents and the like.
  • the composition for forming a transparent conductive layer may further contain additives such as a resin (binder resin), a conductive material other than metal nanowires (for example, conductive particles), and a leveling agent.
  • the composition for forming a transparent conductive layer includes a plasticizer, a heat stabilizer, a light stabilizer, a lubricant, an antioxidant, an ultraviolet absorber, a flame retardant, a colorant, an antistatic agent, a compatibilizer, a cross-linking agent, and an increase. It may contain additives such as thickeners, inorganic particles, surfactants, and dispersants.
  • the viscosity of the composition for forming the transparent conductive layer is preferably 5 mP ⁇ s / 25 ° C. to 300 mP ⁇ s / 25 ° C., more preferably 10 mP ⁇ s / 25 ° C. to 100 mP ⁇ s / 25 ° C. Within such a range, the effect obtained by specifying the surface shape of the base material as described above becomes large.
  • the viscosity of the composition for forming a transparent conductive layer can be measured with a rheometer (for example, MCR302 manufactured by Anton Pearl Co., Ltd.).
  • the dispersion concentration of the metal nanowires in the composition for forming the transparent conductive layer is preferably 0.01% by weight to 5% by weight. Within such a range, the effect of the present invention becomes remarkable.
  • any appropriate method can be adopted as the method for applying the composition for forming the transparent conductive layer.
  • the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing method, intaglio printing method, gravure printing method and the like.
  • the basis weight of the coating layer is preferably 0.3 g / m 2 to 30 g / m 2 , and more preferably 1.6 g / m 2 to 16 g / m 2 . Within such a range, the effect obtained by specifying the surface shape of the base material as described above becomes large.
  • the film thickness of the coating layer is preferably 1 ⁇ m to 50 ⁇ m, and more preferably 2 ⁇ m to 40 ⁇ m.
  • the coating layer is dried to form a transparent conductive layer on the base material.
  • any appropriate drying method for example, natural drying, blast drying, heat drying
  • the drying temperature is typically 80 ° C. to 150 ° C.
  • the drying time is typically 1 to 20 minutes.
  • any appropriate treatment may be performed.
  • a composition for forming a transparent conductive layer containing a binder resin it may be cured by irradiation with ultraviolet rays or the like.
  • FIG. 1 is a schematic cross-sectional view of a transparent conductive film according to one embodiment of the present invention.
  • the transparent conductive film 100 includes a base material 10 and a transparent conductive layer 20 arranged on one side of the base material 10.
  • the surface resistance value of the transparent conductive film is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 300 ⁇ / ⁇ , and particularly preferably 1 ⁇ / ⁇ to 200 ⁇ / ⁇ . is there.
  • the ratio (TD / MD) of the surface resistance value in TD (direction orthogonal to MD) to the surface resistance value in MD (conveyance direction) of the transparent conductive film is preferably 0.7 to 1.5, and more. It is preferably 0.8 to 1.2, and more preferably 0.9 to 1.1.
  • the surface resistance value can be measured by "Automatic resistivity measurement system MCP-S620 type / MCP-S521 type" manufactured by Mitsubishi Chemical Analytech.
  • the haze value of the transparent conductive film is preferably 20% or less, more preferably 10% or less, and further preferably 0.1% to 5%.
  • the total light transmittance of the transparent conductive film is preferably 30% or more, more preferably 35% or more, and particularly preferably 40% or more.
  • the average inclination angle ⁇ a of the surface of the base material is 0.6 ° or more, preferably 0.8 ° or more, more preferably 1 ° or more, still more preferably 1.2 ° or more. Particularly preferably, it is 1.4 ° or more. Within such a range, the effect of the above basic invention becomes more remarkable.
  • the upper limit of the average inclination angle ⁇ a is, for example, 3 ° (preferably 2.5 °, more preferably 2 °).
  • the average inclination angle ⁇ a on the surface of the base material is measured before the formation of the transparent conductive layer.
  • the average spacing Sm of the unevenness on the surface of the base material is preferably 0.4 mm or less, more preferably 0.3 mm or less, further preferably 0.25 mm or less, and particularly preferably 0.2 mm or less. Yes, most preferably 0.15 mm or less.
  • the average spacing Sm of the unevenness on the surface of the base material is measured before the formation of the transparent conductive layer.
  • the arithmetic mean surface roughness Ra of the surface of the base material is preferably 0.05 ⁇ m to 3 ⁇ m, and more preferably 0.1 ⁇ m to 1.5 ⁇ m.
  • the arithmetic mean surface roughness Ra of the surface of the base material is measured before the formation of the transparent conductive layer.
  • Basis weight of the transparent conductive layer is preferably 0.001g / m 2 ⁇ 0.09g / m 2, more preferably 0.005g / m 2 ⁇ 0.05g / m 2.
  • the content ratio of the metal nanowires in the transparent conductive layer is preferably 0.1 parts by weight to 50 parts by weight, more preferably 0.1 parts by weight or more, based on 100 parts by weight of the binder resin constituting the transparent conductive layer. It is 30 parts by weight. Within such a range, a transparent conductive film having excellent conductivity and light transmittance can be obtained.
  • the evaluation method in the examples is as follows.
  • the thickness was measured by using a scanning electron microscope "S-4800” manufactured by Hitachi High-Technologies Corporation after embedding it in epoxy resin and cutting it with an ultramicro tome to form a cross section.
  • the surface resistance value of the transparent conductive film (surface resistance value of MD and TD) is measured by the eddy current method using a non-contact surface resistance meter manufactured by Napson Corporation, trade name "EC-80". Measured by. The measurement temperature was 23 ° C.
  • PET film manufactured by Toray Co., Ltd., trade name “U40”, thickness: 23 ⁇ m
  • acrylic monomer manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", solid content 56% by weight
  • 100 parts by weight 100 parts by weight
  • particles A coating containing 30 parts by weight of Sekisui Kasei Co., Ltd., trade name "Techpolymer SSX-105"
  • an initiator BASF Co., Ltd., trade name "Irgacure 127”
  • butyl acetate 35 parts by weight of butyl acetate
  • the composition for forming a transparent conductive layer prepared in Production Example 1 is applied onto the base material A peeled off from the PET film using a bar coater (manufactured by Daiichi Rika Co., Ltd., product name "Bar Coater No. 16"). Then, it was dried in a blower dryer at 120 ° C. for 2 minutes to form a transparent conductive layer, and a transparent conductive film provided with a base material and a transparent conductive layer was obtained.
  • the average inclination angle ⁇ a of the surface of the base material A on which the transparent conductive layer was formed was 1.5 °, and the average spacing Sm of the irregularities was 0.05 mm.
  • the obtained transparent conductive film was subjected to the above evaluation (2). The results are shown in Table 1.
  • Example 2 Instead of 30 parts by weight of particles (manufactured by Sekisui Plastics, trade name "Techpolymer SSX-105"), 5 parts by weight of particles (manufactured by Soken Kagaku Co., Ltd., trade name "SX-350H”) are used, and a coating liquid is used.
  • Substrate B (thickness: 20 ⁇ m) was formed in the same manner as in Example 1 except that 0.2 parts by weight of a thixo agent (manufactured by Kunimine Kogyo Co., Ltd., trade name “SAN) was added to the mixture.
  • a transparent conductive layer was formed by the same method as in 1, and a transparent conductive film provided with the base material and the transparent conductive layer was obtained.
  • the average inclination angle ⁇ a of the surface of the base material D on which the transparent conductive layer was formed was 0. It was 9.9 °, and the average spacing Sm of the unevenness was 0.15 mm.
  • the obtained transparent conductive film was subjected to the above evaluation (2). The results are shown in Table 1.
  • Example 3 Substrate C (thickness: 20 ⁇ m) was formed in the same manner as in Example 2 except that the amount of particles (manufactured by Soken Kagaku Co., Ltd., trade name “SX-350H”) was 10 parts by weight. Then, a transparent conductive layer was formed by the same method as in Example 1 to obtain a transparent conductive film provided with a base material and a transparent conductive layer. The average inclination angle ⁇ a of the surface of the base material C on which the transparent conductive layer was formed was 1.5 °, and the average spacing Sm of the irregularities was 0.12 mm. The obtained transparent conductive film was subjected to the above evaluation (2). The results are shown in Table 1.
  • the average inclination angle ⁇ a of the surface of the base material D on which the transparent conductive layer was formed was 0.3 °, and the average spacing Sm of the irregularities was 0.19 mm.
  • the obtained transparent conductive film was subjected to the above evaluation (2). The results are shown in Table 1.
  • the composition for forming a transparent conductive layer prepared in Production Example 1 is applied onto the base material C peeled off from the PET film using a bar coater (manufactured by Daiichi Rika Co., Ltd., product name "Bar Coater No. 16"). Then, it was dried in a blower dryer at 120 ° C. for 2 minutes to form a transparent conductive layer, and a transparent conductive film provided with a base material and a transparent conductive layer was obtained.
  • the average inclination angle ⁇ a of the surface of the base material C on which the transparent conductive layer was formed was 0.1 °, and the average spacing Sm of the irregularities was 0.27 mm.
  • the surface resistance value of MD was 41 ⁇ and the surface resistance value of TD was 62 ⁇ .
  • Base material 20 Transparent conductive layer 100 Transparent conductive film

Abstract

Provided is a method for producing a transparent conductive film which includes a metal nanowire and which has low conductive anisotropy. The method for producing a transparent conductive film according to the present invention comprises: a coating step for forming a coating layer by coating a long substrate with a composition for forming a transparent conductive layer containing a metal nanowire while conveying the substrate; and a drying step for drying the coating layer and forming a transparent conductive layer on the substrate, wherein the average inclination angle θa of the surface of the substrate is at least 0.5°.

Description

透明導電性フィルムの製造方法Manufacturing method of transparent conductive film
 本発明は、透明導電性フィルムの製造方法に関する。 The present invention relates to a method for producing a transparent conductive film.
 従来、タッチセンサーを有する画像表示装置において、タッチセンサーの電極として、透明樹脂フィルム上にITO(インジウム・スズ複合酸化物)などの金属酸化物層を形成して得られる透明導電性フィルムが多用されている。しかし、この金属酸化物層を備える透明導電性フィルムは、屈曲により導電性が失われやすく、フレキシブルディスプレイなどの屈曲性が必要とされる用途には使用しがたいという問題がある。 Conventionally, in an image display device having a touch sensor, a transparent conductive film obtained by forming a metal oxide layer such as ITO (indium-tin composite oxide) on a transparent resin film is often used as an electrode of the touch sensor. ing. However, the transparent conductive film provided with this metal oxide layer tends to lose its conductivity due to bending, and has a problem that it is difficult to use in applications requiring flexibility such as a flexible display.
 一方、屈曲性の高い透明導電性フィルムとして、金属ナノワイヤを含む透明導電性フィルムが知られている。金属ナノワイヤは、径がナノメートルサイズであるワイヤ状導電性物質である。金属ナノワイヤで構成された透明導電性フィルムにおいては、金属ナノワイヤが網の目状となることにより、少量の金属ナノワイヤで良好な電気伝導経路が形成され、また、網の目の隙間に開口部を形成して、高い光透過率が実現される。その一方、金属ナノワイヤは、ワイヤ状であるために配向性を有した状態で配置されやすく、そのため、金属ナノワイヤを含む透明導電性フィルムに導電異方性が生じるという問題がある。 On the other hand, as a transparent conductive film having high flexibility, a transparent conductive film containing metal nanowires is known. Metal nanowires are wire-like conductive substances having a diameter of nanometers. In a transparent conductive film composed of metal nanowires, the metal nanowires form a mesh, so that a good electrical conduction path is formed with a small amount of metal nanowires, and an opening is formed in the gap between the meshes. Formed to achieve high light transmittance. On the other hand, since the metal nanowires are in the form of wires, they are likely to be arranged in an oriented state, and therefore, there is a problem that conductive anisotropy occurs in the transparent conductive film containing the metal nanowires.
特表2009-505358号公報Special Table 2009-505358 Gazette 特許第6199034号Patent No. 6199034
 本発明は上記の課題を解決するためになされたものであり、その目的とするところは、金属ナノワイヤを含みつつも、導電異方性の小さい透明導電性フィルムを製造する方法を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing a transparent conductive film having a small conductive anisotropy while containing metal nanowires. is there.
 本発明の透明導電性フィルムの製造方法は、長尺状の基材を搬送しながら、該基材に金属ナノワイヤを含む透明導電層形成用組成物を塗布して塗布層を形成する塗布工程と、該塗布層を乾燥させて該基材上に透明導電層を形成させる乾燥工程とを含み、該基材の表面の平均傾斜角θaが、0.5°以上である。
 1つの実施形態においては、上記基材の表面の凹凸の平均間隔Smが、0.4mm以下である。
 本発明の別の局面によれば、透明導電性フィルムが提供される。この透明導電性フィルムは、基材と、該基材の片側に配置される透明導電層とを備え、該基材の表面の平均傾斜角θaが、0.6°以上である。
The method for producing a transparent conductive film of the present invention includes a coating step of applying a composition for forming a transparent conductive layer containing a metal nanowire to the base material while transporting a long base material to form a coating layer. The coating layer is dried to form a transparent conductive layer on the base material, and the average inclination angle θa on the surface of the base material is 0.5 ° or more.
In one embodiment, the average spacing Sm of the irregularities on the surface of the base material is 0.4 mm or less.
According to another aspect of the present invention, a transparent conductive film is provided. This transparent conductive film includes a base material and a transparent conductive layer arranged on one side of the base material, and the average inclination angle θa of the surface of the base material is 0.6 ° or more.
 本発明によれば、導電異方性の小さい透明導電性フィルムを製造する方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a transparent conductive film having a small conductive anisotropy.
本発明の1つの実施形態による透明導電性フィルムの概略断面図である。It is the schematic sectional drawing of the transparent conductive film by one Embodiment of this invention.
A.透明導電性フィルムの製造方法
 本発明の透明導電性フィルムの製造方法は、長尺状の基材を搬送しながら、当該基材に金属ナノワイヤを含む透明導電層形成用組成物を塗布して塗布層を形成する塗布工程と、当該塗布層を乾燥させて当該基材上に透明導電層を形成させる乾燥工程とを含む。代表的には、ロール状態の基材を繰り出して当該基材を搬送しながら、上記塗布工程および乾燥工程を行って、図1に示すように基材10と基材10の片側に配置された透明導電層20とを備える長尺状の透明導電性フィルム100を形成する。1つの実施形態においては、当該透明導電性フィルムは、乾燥工程後に巻き取られる。
A. Method for Producing a Transparent Conductive Film In the method for producing a transparent conductive film of the present invention, a composition for forming a transparent conductive layer containing a metal nanowire is applied to the base material while transporting the long base material. It includes a coating step of forming a layer and a drying step of drying the coating layer to form a transparent conductive layer on the substrate. Typically, the coating step and the drying step are performed while feeding out the rolled base material and transporting the base material, and the base material 10 and the base material 10 are arranged on one side as shown in FIG. A long transparent conductive film 100 including the transparent conductive layer 20 is formed. In one embodiment, the transparent conductive film is wound up after the drying step.
A-1.塗布工程
 上記のとおり、塗布工程においては、長尺状の基材を搬送しながら、当該基材に金属ナノワイヤを含む透明導電層形成用組成物を塗布して塗布層を形成する。
A-1. Coating Step As described above, in the coating step, the composition for forming a transparent conductive layer containing metal nanowires is applied to the substrate while transporting the elongated substrate to form the coating layer.
(基材)
 上記基材の表面の平均傾斜角θaは、0.5°以上である。本発明においては、表面形状が上記のように特定された基材を用いることにより、塗布層中で金属ナノワイヤが良好に分散して当該金属ナノワイヤの配向が乱れ、その結果、導電異方性の小さい透明導電性フィルムを製造することができる。なお、本明細書において基材の表面とは、塗布層の形成が予定される面である。
(Base material)
The average inclination angle θa on the surface of the base material is 0.5 ° or more. In the present invention, by using the base material whose surface shape is specified as described above, the metal nanowires are well dispersed in the coating layer and the orientation of the metal nanowires is disturbed, resulting in conductive anisotropy. A small transparent conductive film can be produced. In the present specification, the surface of the base material is the surface on which the coating layer is planned to be formed.
 上記基材の表面の平均傾斜角θaは、好ましくは0.8°以上であり、より好ましくは1°以上であり、さらに好ましくは1.2°以上であり、特に好ましくは1.4°以上である。このような範囲であれば、上基本発明の効果はより顕著となる。平均傾斜角θaの上限は、例えば、3°(好ましくは2.5°、より好ましくは2°)である。本明細書において、平均傾斜角度θaは、下記式(1)により定義される。
 θa=tan-1Δa ・・・(1)
 上記式(1)において、Δaは、下記式(2)に示すように、JIS B 0601(1994年度版)に規定される粗さ曲線の基準長さLにおいて、隣り合う山の頂点と谷の最下点との差(高さh)の合計(h1+h2+h3・・・+hn)を上記基準長さLで割った値である。上記粗さ曲線は、断面曲線から、所定の波長より長い表面うねり成分を位相差補償形高域フィルタで除去した曲線である。また、上記断面曲線とは、対象面に直角な平面で対象面を切断したときに、その切り口に現れる輪郭である。
 Δa=(h1+h2+h3・・・+hn)/L ・・・(2)
The average inclination angle θa of the surface of the base material is preferably 0.8 ° or more, more preferably 1 ° or more, still more preferably 1.2 ° or more, and particularly preferably 1.4 ° or more. Is. Within such a range, the effect of the above basic invention becomes more remarkable. The upper limit of the average inclination angle θa is, for example, 3 ° (preferably 2.5 °, more preferably 2 °). In the present specification, the average inclination angle θa is defined by the following equation (1).
θa = tan -1 Δa ・ ・ ・ (1)
In the above equation (1), Δa is the peak and valley of the adjacent peaks in the reference length L of the roughness curve defined in JIS B 0601 (1994 version) as shown in the following equation (2). It is a value obtained by dividing the total (h1 + h2 + h3 ... + Hn) of the difference (height h) from the lowest point by the reference length L. The roughness curve is a curve obtained by removing a surface waviness component longer than a predetermined wavelength from a cross-sectional curve with a phase difference compensation type high frequency filter. The cross-sectional curve is a contour that appears at the cut end when the target surface is cut on a plane perpendicular to the target surface.
Δa = (h1 + h2 + h3 ... + hn) / L ... (2)
 上記基材の表面の凹凸の平均間隔Smは、好ましくは0.4mm以下であり、より好ましくは0.3mm以下であり、さらに好ましくは0.25mm以下であり、特に好ましくは0.2mm以下であり、最も好ましくは0.15mm以下である。凹凸の平均間隔Smが大きいほど、金属ナノワイヤの配向性を減ずることができ、導電異方性が特に小さい透明導電性フィルムを製造することができる。また、凹凸の平均間隔Smを大きくすれば、平均傾斜角θaが比較的小さくても(例えば、平均傾斜角θa=0.6°~1°)、顕著な導電異方性低下効果を得ることができる。上記凹凸の平均間隔Sm下限は、例えば、0.03mm(好ましくは0.04mm)である。平均傾斜角θaの定義は、JIS B 0601(1994年版)に基づく。 The average spacing Sm of the unevenness on the surface of the base material is preferably 0.4 mm or less, more preferably 0.3 mm or less, further preferably 0.25 mm or less, and particularly preferably 0.2 mm or less. Yes, most preferably 0.15 mm or less. The larger the average spacing Sm of the irregularities, the more the orientation of the metal nanowires can be reduced, and a transparent conductive film having a particularly small conductive anisotropy can be produced. Further, if the average interval Sm of the unevenness is increased, even if the average inclination angle θa is relatively small (for example, the average inclination angle θa = 0.6 ° to 1 °), a remarkable effect of reducing the conductive anisotropy can be obtained. Can be done. The lower limit of the average spacing Sm of the unevenness is, for example, 0.03 mm (preferably 0.04 mm). The definition of the average inclination angle θa is based on JIS B 0601 (1994 version).
 上記基材の表面の算術平均表面粗さRaは、好ましくは0.05μm~3μmであり、より好ましくは0.1μm~1.5μmである。このような範囲であれば、導電異方性が特に小さい透明導電性フィルムを製造することができる。算術平均表面粗さRaの定義は、JIS B 0601(1994年版)に基づく。 The arithmetic mean surface roughness Ra of the surface of the base material is preferably 0.05 μm to 3 μm, and more preferably 0.1 μm to 1.5 μm. Within such a range, a transparent conductive film having a particularly small conductive anisotropy can be produced. The definition of arithmetic mean surface roughness Ra is based on JIS B 0601 (1994 edition).
 上記基材の厚みは、好ましくは20μm~200μmであり、より好ましくは30μm~150μmである。 The thickness of the base material is preferably 20 μm to 200 μm, more preferably 30 μm to 150 μm.
 上記基材の全光線透過率は、好ましくは30%以上であり、より好ましくは35%以上であり、さらに好ましくは40%以上である。 The total light transmittance of the base material is preferably 30% or more, more preferably 35% or more, and further preferably 40% or more.
 上記基材を構成する材料は、任意の適切な材料が用いられ得る。具体的には、例えば、フィルムやプラスチックス基材などの高分子基材が好ましく用いられる。基材の平滑性および透明導電層形成用組成物に対する濡れ性に優れ、また、ロールによる連続生産により生産性を大幅に向上させ得るからである。 Any suitable material can be used as the material constituting the above base material. Specifically, for example, a polymer base material such as a film or a plastic base material is preferably used. This is because the smoothness of the base material and the wettability to the composition for forming the transparent conductive layer are excellent, and the productivity can be significantly improved by the continuous production by the roll.
 上記基材を構成する材料は、代表的には熱可塑性樹脂を主成分とする高分子フィルムである。熱可塑性樹脂としては、例えば、ポリエステル系樹脂;ポリノルボルネン等のシクロオレフィン系樹脂;アクリル系樹脂;ポリカーボネート樹脂;セルロース系樹脂等が挙げられる。なかでも好ましくは、ポリエステル系樹脂、シクロオレフィン系樹脂またはアクリル系樹脂である。これらの樹脂は、透明性、機械的強度、熱安定性、水分遮蔽性などに優れる。上記熱可塑性樹脂は、単独で、または2種以上組み合わせて用いてもよい。また、偏光板に用いられるような光学フィルム、例えば、低位相差基材、高位相差基材、位相差板、輝度向上フィルム等を基材として用いることも可能である。 The material constituting the above base material is typically a polymer film containing a thermoplastic resin as a main component. Examples of the thermoplastic resin include polyester resins; cycloolefin resins such as polynorbornene; acrylic resins; polycarbonate resins; cellulose resins and the like. Of these, polyester-based resins, cycloolefin-based resins, and acrylic-based resins are preferable. These resins are excellent in transparency, mechanical strength, thermal stability, moisture shielding property and the like. The above-mentioned thermoplastic resin may be used alone or in combination of two or more kinds. Further, it is also possible to use an optical film such as that used for a polarizing plate, for example, a low retardation base material, a high retardation base material, a retardation plate, a brightness improving film, or the like as a base material.
 基材の搬送方法としては、任意の適切な方法が採用され得る。例えば、搬送ロールによる搬送、搬送ベルトによる搬送、これらの組み合わせ等が挙げられる。搬送速度は、例えば、5m/min~50m/minである。 Any appropriate method can be adopted as the method for transporting the base material. For example, transport by a transport roll, transport by a transport belt, a combination thereof, and the like can be mentioned. The transport speed is, for example, 5 m / min to 50 m / min.
(金属ナノワイヤ)
 金属ナノワイヤとは、材質が金属であり、形状が針状または糸状であり、径がナノメートルサイズの導電性物質をいう。金属ナノワイヤは直線状であってもよく、曲線状であってもよい。金属ナノワイヤで構成された透明導電層を用いれば、金属ナノワイヤが網の目状となることにより、少量の金属ナノワイヤであっても良好な電気伝導経路を形成することができ、電気抵抗の小さい透明導電性フィルムを得ることができる。さらに、金属ナノワイヤが網の目状となることにより、網の目の隙間に開口部を形成して、光透過率の高い透明導電性フィルムを得ることができる。
(Metal nanowires)
Metal nanowires are conductive substances that are made of metal, have a needle-like or thread-like shape, and have a diameter of nanometers. The metal nanowires may be linear or curved. If a transparent conductive layer made of metal nanowires is used, the metal nanowires have a mesh shape, so that a good electric conduction path can be formed even with a small amount of metal nanowires, and the transparent material has low electric resistance. A conductive film can be obtained. Further, since the metal nanowires have a mesh shape, an opening can be formed in the gap between the meshes to obtain a transparent conductive film having high light transmittance.
 上記金属ナノワイヤの太さdと長さLとの比(アスペクト比:L/d)は、好ましくは10~100,000であり、より好ましくは50~100,000であり、特に好ましくは100~10,000である。このようにアスペクト比の大きい金属ナノワイヤを用いれば、金属ナノワイヤが良好に交差して、少量の金属ナノワイヤにより高い導電性を発現させることができる。その結果、光透過率の高い透明導電性フィルムを得ることができる。なお、本明細書において、「金属ナノワイヤの太さ」とは、金属ナノワイヤの断面が円状である場合はその直径を意味し、楕円状である場合はその短径を意味し、多角形である場合は最も長い対角線を意味する。金属ナノワイヤの太さおよび長さは、走査型電子顕微鏡または透過型電子顕微鏡によって確認することができる。 The ratio (aspect ratio: L / d) of the thickness d to the length L of the metal nanowire is preferably 100 to 100,000, more preferably 50 to 100,000, and particularly preferably 100 to 100. It is 10,000. When metal nanowires having such a large aspect ratio are used, the metal nanowires can intersect well and a small amount of metal nanowires can exhibit high conductivity. As a result, a transparent conductive film having high light transmittance can be obtained. In the present specification, the "thickness of the metal nanowire" means the diameter of the metal nanowire when it has a circular cross section, and means its minor diameter when it has an elliptical cross section, and is polygonal. In some cases it means the longest diagonal. The thickness and length of the metal nanowires can be confirmed by a scanning electron microscope or a transmission electron microscope.
 上記金属ナノワイヤの太さは、好ましくは500nm未満であり、より好ましくは200nm未満であり、特に好ましくは10nm~100nmであり、最も好ましくは10nm~50nmである。このような範囲であれば、光透過率の高い透明導電層を形成することができる。 The thickness of the metal nanowires is preferably less than 500 nm, more preferably less than 200 nm, particularly preferably 10 nm to 100 nm, and most preferably 10 nm to 50 nm. Within such a range, a transparent conductive layer having high light transmittance can be formed.
 上記金属ナノワイヤの長さは、好ましくは1μm~1000μmであり、より好ましくは10μm~500μmであり、特に好ましくは10μm~100μmである。このような範囲であれば、導電性の高い透明導電性フィルムを得ることができる。また、金属ナノワイヤの長さが上記範囲であれば、基材の表面形状を上記のように特定することにより得られる効果が大きくなる。 The length of the metal nanowires is preferably 1 μm to 1000 μm, more preferably 10 μm to 500 μm, and particularly preferably 10 μm to 100 μm. Within such a range, a transparent conductive film having high conductivity can be obtained. Further, when the length of the metal nanowire is in the above range, the effect obtained by specifying the surface shape of the base material as described above becomes large.
 上記金属ナノワイヤを構成する金属としては、導電性金属である限り、任意の適切な金属が用いられ得る。上記金属ナノワイヤを構成する金属としては、例えば、銀、金、銅、ニッケル等が挙げられる。また、これらの金属にメッキ処理(例えば、金メッキ処理)を行った材料を用いてもよい。なかでも好ましくは、導電性の観点から、銀、銅または金であり、より好ましくは銀である。 As the metal constituting the metal nanowire, any suitable metal can be used as long as it is a conductive metal. Examples of the metal constituting the metal nanowire include silver, gold, copper, nickel and the like. Further, a material obtained by plating (for example, gold plating) these metals may be used. Of these, silver, copper or gold is preferable, and silver is more preferable, from the viewpoint of conductivity.
 上記金属ナノワイヤの製造方法としては、任意の適切な方法が採用され得る。例えば溶液中で硝酸銀を還元する方法、前駆体表面にプローブの先端部から印可電圧又は電流を作用させ、プローブ先端部で金属ナノワイヤを引き出し、該金属ナノワイヤを連続的に形成する方法等が挙げられる。溶液中で硝酸銀を還元する方法においては、エチレングリコール等のポリオール、およびポリビニルピロリドンの存在下で、硝酸銀等の銀塩を液相還元することにより、銀ナノワイヤが合成され得る。均一サイズの銀ナノワイヤは、例えば、Xia, Y.etal., Chem.Mater.(2002)、14、4736-4745、Xia, Y.etal., Nano letters(2003)3(7)、955-960に記載される方法に準じて、大量生産が可能である。 Any appropriate method can be adopted as the method for producing the metal nanowires. Examples thereof include a method of reducing silver nitrate in a solution, a method of applying an applied voltage or a current to the surface of the precursor from the tip of the probe, pulling out a metal nanowire at the tip of the probe, and continuously forming the metal nanowire. .. In the method of reducing silver nitrate in a solution, silver nanowires can be synthesized by liquid-phase reducing a silver salt such as silver nitrate in the presence of a polyol such as ethylene glycol and polyvinylpyrrolidone. Uniform size silver nanowires are available, for example, from Xia, Y. et al. etal. , Chem. Mater. (2002), 14, 4736-4745, Xia, Y. et al. etal. , Nano letters (2003) 3 (7), 955-960, can be mass-produced according to the method described.
(透明導電層形成用組成物)
 透明導電層形成用組成物は、金属ナノワイヤを含む。1つの実施形態においては、金属ナノワイヤを任意の適切な溶媒に分散させて透明導電層形成用組成物が調製される。当該溶媒としては、水、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、炭化水素系溶媒、芳香族系溶媒等が挙げられる。また、透明導電層形成用組成物は、樹脂(バインダー樹脂)、金属ナノワイヤ以外の導電性材料(例えば、導電性粒子)、レベリング剤等の添加剤をさらに含んでいてもよい。また、透明導電層形成用組成物は、可塑剤、熱安定剤、光安定剤、滑剤、抗酸化剤、紫外線吸収剤、難燃剤、着色剤、帯電防止剤、相溶化剤、架橋剤、増粘剤、無機粒子、界面活性剤、および分散剤等の添加剤を含み得る。
(Composition for forming a transparent conductive layer)
The composition for forming a transparent conductive layer contains metal nanowires. In one embodiment, metal nanowires are dispersed in any suitable solvent to prepare a composition for forming a transparent conductive layer. Examples of the solvent include water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents and the like. Further, the composition for forming a transparent conductive layer may further contain additives such as a resin (binder resin), a conductive material other than metal nanowires (for example, conductive particles), and a leveling agent. In addition, the composition for forming a transparent conductive layer includes a plasticizer, a heat stabilizer, a light stabilizer, a lubricant, an antioxidant, an ultraviolet absorber, a flame retardant, a colorant, an antistatic agent, a compatibilizer, a cross-linking agent, and an increase. It may contain additives such as thickeners, inorganic particles, surfactants, and dispersants.
 透明導電層形成用組成物の粘度は、好ましくは5mP・s/25℃~300mP・s/25℃であり、より好ましくは10mP・s/25℃~100mP・s/25℃である。このような範囲であれば、基材の表面形状を上記のように特定することにより得られる効果が大きくなる。透明導電層形成用組成物の粘度は、レオメータ(例えば、アントンパール社のMCR302)により測定することができる。 The viscosity of the composition for forming the transparent conductive layer is preferably 5 mP · s / 25 ° C. to 300 mP · s / 25 ° C., more preferably 10 mP · s / 25 ° C. to 100 mP · s / 25 ° C. Within such a range, the effect obtained by specifying the surface shape of the base material as described above becomes large. The viscosity of the composition for forming a transparent conductive layer can be measured with a rheometer (for example, MCR302 manufactured by Anton Pearl Co., Ltd.).
 透明導電層形成用組成物中の金属ナノワイヤの分散濃度は、好ましくは0.01重量%~5重量%である。このような範囲であれば、本発明の効果は顕著となる。 The dispersion concentration of the metal nanowires in the composition for forming the transparent conductive layer is preferably 0.01% by weight to 5% by weight. Within such a range, the effect of the present invention becomes remarkable.
 上記透明導電層形成用組成物の塗布方法としては、任意の適切な方法が採用され得る。塗布方法としては、例えば、スプレーコート、バーコート、ロールコート、ダイコート、インクジェットコート、スクリーンコート、ディップコート、凸版印刷法、凹版印刷法、グラビア印刷法等が挙げられる。 Any appropriate method can be adopted as the method for applying the composition for forming the transparent conductive layer. Examples of the coating method include spray coating, bar coating, roll coating, die coating, inkjet coating, screen coating, dip coating, letterpress printing method, intaglio printing method, gravure printing method and the like.
 上記塗布層の目付けは、好ましくは0.3g/m~30g/mであり、より好ましくは1.6g/m~16g/mである。このような範囲であれば、基材の表面形状を上記のように特定することにより得られる効果が大きくなる。 The basis weight of the coating layer is preferably 0.3 g / m 2 to 30 g / m 2 , and more preferably 1.6 g / m 2 to 16 g / m 2 . Within such a range, the effect obtained by specifying the surface shape of the base material as described above becomes large.
 上記塗布層の膜厚は、好ましくは1μm~50μmであり、より好ましくは2μm~40μmである。 The film thickness of the coating layer is preferably 1 μm to 50 μm, and more preferably 2 μm to 40 μm.
A-2.乾燥工程
 上記のとおり、乾燥工程においては、上記塗布層を乾燥させて当該基材上に透明導電層を形成させる。
A-2. Drying Step As described above, in the drying step, the coating layer is dried to form a transparent conductive layer on the base material.
 塗布層の乾燥方法としては、任意の適切な乾燥方法(例えば、自然乾燥、送風乾燥、加熱乾燥)が採用され得る。例えば、加熱乾燥の場合には、乾燥温度は代表的には80℃~150℃であり、乾燥時間は代表的には1~20分である。 As a method for drying the coating layer, any appropriate drying method (for example, natural drying, blast drying, heat drying) can be adopted. For example, in the case of heat drying, the drying temperature is typically 80 ° C. to 150 ° C., and the drying time is typically 1 to 20 minutes.
 乾燥工程の後、任意の適切な処理を行ってもよい。例えば、バインダー樹脂を含む透明導電層形成用組成物を用いた場合、紫外線照射等による硬化処理を行ってもよい。 After the drying step, any appropriate treatment may be performed. For example, when a composition for forming a transparent conductive layer containing a binder resin is used, it may be cured by irradiation with ultraviolet rays or the like.
B.透明導電性フィルム
 上記の製造方法により、透明導電性フィルムが形成される。図1は、本発明の1つの実施形態による透明導電性フィルムの概略断面図である。透明導電性フィルム100は、基材10と、該基材10の片側に配置される透明導電層20とを含む。
B. Transparent conductive film A transparent conductive film is formed by the above manufacturing method. FIG. 1 is a schematic cross-sectional view of a transparent conductive film according to one embodiment of the present invention. The transparent conductive film 100 includes a base material 10 and a transparent conductive layer 20 arranged on one side of the base material 10.
 透明導電性フィルムの表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~300Ω/□であり、特に好ましくは1Ω/□~200Ω/□である。透明導電性フィルムのMD(搬送方向)における表面抵抗値に対する、TD(MDに直交する方向)における表面抵抗値の比(TD/MD)は、好ましくは0.7~1.5であり、より好ましくは0.8~1.2であり、さらに好ましくは0.9~1.1である。表面抵抗値は、三菱ケミカルアナリテック社の「抵抗率自動測定システム MCP-S620型・MCP-S521型」により測定することができる。 The surface resistance value of the transparent conductive film is preferably 0.1Ω / □ to 1000Ω / □, more preferably 0.5Ω / □ to 300Ω / □, and particularly preferably 1Ω / □ to 200Ω / □. is there. The ratio (TD / MD) of the surface resistance value in TD (direction orthogonal to MD) to the surface resistance value in MD (conveyance direction) of the transparent conductive film is preferably 0.7 to 1.5, and more. It is preferably 0.8 to 1.2, and more preferably 0.9 to 1.1. The surface resistance value can be measured by "Automatic resistivity measurement system MCP-S620 type / MCP-S521 type" manufactured by Mitsubishi Chemical Analytech.
 上記透明導電性フィルムのヘイズ値は、好ましくは20%以下であり、より好ましくは10%以下であり、さらに好ましくは0.1%~5%である。 The haze value of the transparent conductive film is preferably 20% or less, more preferably 10% or less, and further preferably 0.1% to 5%.
 上記透明導電性フィルムの全光線透過率は、好ましくは30%以上であり、より好ましくは35%以上であり、特に好ましくは40%以上である。 The total light transmittance of the transparent conductive film is preferably 30% or more, more preferably 35% or more, and particularly preferably 40% or more.
 上記基材の表面の平均傾斜角θaは、0.6°以上であり、好ましくは0.8°以上であり、より好ましくは1°以上であり、さらに好ましくは1.2°以上であり、特に好ましくは1.4°以上である。このような範囲であれば、上基本発明の効果はより顕著となる。平均傾斜角θaの上限は、例えば、3°(好ましくは2.5°、より好ましくは2°)である。なお、基材の表面の上記平均傾斜角θaは、透明導電層形成前に測定されるものである。 The average inclination angle θa of the surface of the base material is 0.6 ° or more, preferably 0.8 ° or more, more preferably 1 ° or more, still more preferably 1.2 ° or more. Particularly preferably, it is 1.4 ° or more. Within such a range, the effect of the above basic invention becomes more remarkable. The upper limit of the average inclination angle θa is, for example, 3 ° (preferably 2.5 °, more preferably 2 °). The average inclination angle θa on the surface of the base material is measured before the formation of the transparent conductive layer.
 上記基材の表面の凹凸の平均間隔Smは、好ましくは0.4mm以下であり、より好ましくは0.3mm以下であり、さらに好ましくは0.25mm以下であり、特に好ましくは0.2mm以下であり、最も好ましくは0.15mm以下である。なお、基材の表面の上記凹凸の平均間隔Smは、透明導電層形成前に測定されるものである。 The average spacing Sm of the unevenness on the surface of the base material is preferably 0.4 mm or less, more preferably 0.3 mm or less, further preferably 0.25 mm or less, and particularly preferably 0.2 mm or less. Yes, most preferably 0.15 mm or less. The average spacing Sm of the unevenness on the surface of the base material is measured before the formation of the transparent conductive layer.
 上記基材の表面の算術平均表面粗さRaは、好ましくは0.05μm~3μmであり、より好ましくは0.1μm~1.5μmである。なお、基材の表面の上記算術平均表面粗さRaは、透明導電層形成前に測定されるものである。 The arithmetic mean surface roughness Ra of the surface of the base material is preferably 0.05 μm to 3 μm, and more preferably 0.1 μm to 1.5 μm. The arithmetic mean surface roughness Ra of the surface of the base material is measured before the formation of the transparent conductive layer.
 透明導電層の目付けは、好ましくは0.001g/m~0.09g/mであり、より好ましくは0.005g/m~0.05g/mである。 Basis weight of the transparent conductive layer is preferably 0.001g / m 2 ~ 0.09g / m 2, more preferably 0.005g / m 2 ~ 0.05g / m 2.
 上記透明導電層における金属ナノワイヤの含有割合は、透明導電層を構成するバインダー樹脂100重量部に対して、好ましくは0.1重量部~50重量部であり、より好ましくは0.1重量部~30重量部である。このような範囲であれば、導電性および光透過性に優れる透明導電性フィルムを得ることができる。 The content ratio of the metal nanowires in the transparent conductive layer is preferably 0.1 parts by weight to 50 parts by weight, more preferably 0.1 parts by weight or more, based on 100 parts by weight of the binder resin constituting the transparent conductive layer. It is 30 parts by weight. Within such a range, a transparent conductive film having excellent conductivity and light transmittance can be obtained.
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。実施例における評価方法は以下のとおりである。なお、厚みは、エポキシ樹脂にて包埋処理後ウルトラマイクロトームで切削することで断面を形成し、日立ハイテクノロジーズ社製の走査型電子顕微鏡「S-4800」を使用して測定した。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The evaluation method in the examples is as follows. The thickness was measured by using a scanning electron microscope "S-4800" manufactured by Hitachi High-Technologies Corporation after embedding it in epoxy resin and cutting it with an ultramicro tome to form a cross section.
(1)基材表面の形状
 JIS B0601(1994年度版)に従って、平均凹凸間距離Sm(mm)および算術平均表面粗さRa(μm)を測定した。具体的には、測定面とは反対側の面に、ガラス板(MATSUNAMI社製、MICRO SLIDE GLASS、品番S、厚み1.3mm、45×50mm)を粘着剤で貼り合わせ、試料を作製した。先端部(ダイヤモンド)の曲率半径R=2μmの測定針を有する触針式表面粗さ測定器((株)小阪研究所製、高精度微細形状測定器、商品名「サーフコーダET4000」)を用い、走査速度0.1mm/秒、カットオフ値0.8mm、測定長4mmの条件で、前記試料おける防眩層の表面形状を一定方向に測定し、凹凸の平均間隔Smを求め、また、得られた表面粗さ曲線から平均傾斜角度θa(°)を求めた。
(1) Shape of the surface of the base material According to JIS B0601 (1994 edition), the average distance between irregularities Sm (mm) and the arithmetic mean surface roughness Ra (μm) were measured. Specifically, a glass plate (manufactured by MATSUNAMI, MICRO SLIDE GLASS, product number S, thickness 1.3 mm, 45 × 50 mm) was attached to the surface opposite to the measurement surface with an adhesive to prepare a sample. Using a stylus type surface roughness measuring instrument (manufactured by Kosaka Laboratory Co., Ltd., high-precision fine shape measuring instrument, trade name "Surfcoder ET4000") having a measuring needle with a radius of curvature R = 2 μm at the tip (diamond) The surface shape of the antiglare layer in the sample was measured in a certain direction under the conditions of a scanning speed of 0.1 mm / sec, a cutoff value of 0.8 mm, and a measurement length of 4 mm, and the average spacing Sm of the unevenness was obtained. The average inclination angle θa (°) was obtained from the obtained surface roughness curve.
(2)表面抵抗値
 透明導電性フィルムの表面抵抗値(MDおよびTDの表面抵抗値)を、ナプソン株式会社製の非接触表面抵抗計、商品名「EC-80」を用いて、渦電流法により測定した。測定温度は23℃とした。
(2) Surface resistance value The surface resistance value of the transparent conductive film (surface resistance value of MD and TD) is measured by the eddy current method using a non-contact surface resistance meter manufactured by Napson Corporation, trade name "EC-80". Measured by. The measurement temperature was 23 ° C.
[製造例1]透明導電層形成用組成物の調製
 Chem.Mater.2002,14,4736-4745に記載の方法に基づいて、銀ナノワイヤを合成した。
 純水に、上記で得られた銀ナノワイヤを0.2重量%、および、ドデシル-ペンタエチレングリコールを0.1重量%の濃度となるように分散し、透明導電層形成用組成物を得た。
[Production Example 1] Preparation of composition for forming a transparent conductive layer Chem. Mater. Silver nanowires were synthesized according to the method described in 2002, 14, 4736-4745.
The silver nanowires obtained above were dispersed in pure water to a concentration of 0.2% by weight and dodecyl-pentaethylene glycol at a concentration of 0.1% by weight to obtain a composition for forming a transparent conductive layer. ..
[実施例1]
 PETフィルム(東レ社製、商品名「U40」、厚み:23μm)に、アクリルモノマー(大阪有機化学工業社製、商品名「ビスコート#300」、固形分56重量%)100重量部と、粒子(積水化成社製、商品名「テクポリマーSSX-105」)30重量部と、開始剤(BASF社製、商品名「イルガキュア 127」)0.5重量部と、酢酸ブチル35重量部とを含む塗工液を塗工し、100℃で2分間乾燥させ、その後300mJの紫外線を照射して、PETフィルム上に基材A(厚み:20μm)を形成した。
 PETフィルムから剥離した上記基材A上に、バーコーター(第一理科株式会社製、製品名「バーコーター No.16」)を用いて製造例1で調製した透明導電層形成用組成物を塗布し、120℃の送風乾燥機内で2分間乾燥させて透明導電層を形成し、基材および透明導電層を備える透明導電性フィルムを得た。なお、基材Aの透明導電層を形成した面の平均傾斜角θaは1.5°であり、凹凸の平均間隔Smは0.05mmであった。
 得られた透明導電性フィルムを上記評価(2)に供した。結果を表1に示す。
[Example 1]
PET film (manufactured by Toray Co., Ltd., trade name "U40", thickness: 23 μm), acrylic monomer (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", solid content 56% by weight), 100 parts by weight, and particles ( A coating containing 30 parts by weight of Sekisui Kasei Co., Ltd., trade name "Techpolymer SSX-105"), 0.5 parts by weight of an initiator (BASF Co., Ltd., trade name "Irgacure 127"), and 35 parts by weight of butyl acetate. The working solution was applied, dried at 100 ° C. for 2 minutes, and then irradiated with 300 mJ of ultraviolet rays to form a base material A (thickness: 20 μm) on the PET film.
The composition for forming a transparent conductive layer prepared in Production Example 1 is applied onto the base material A peeled off from the PET film using a bar coater (manufactured by Daiichi Rika Co., Ltd., product name "Bar Coater No. 16"). Then, it was dried in a blower dryer at 120 ° C. for 2 minutes to form a transparent conductive layer, and a transparent conductive film provided with a base material and a transparent conductive layer was obtained. The average inclination angle θa of the surface of the base material A on which the transparent conductive layer was formed was 1.5 °, and the average spacing Sm of the irregularities was 0.05 mm.
The obtained transparent conductive film was subjected to the above evaluation (2). The results are shown in Table 1.
[実施例2]
 粒子(積水化成社製、商品名「テクポリマーSSX-105」)30重量部に代えて、粒子(総研化学社製、商品名「SX-350H」)5重量部を用い、かつ、塗工液にチキソ剤(クニミネ工業社製、商品名「SAN)0.2重量部を添加したこと以外は、実施例1と同様にして、基材B(厚み:20μm)を形成した。その後、実施例1と同様の方法により、透明導電層を形成し、基材および透明導電層を備える透明導電性フィルムを得た。なお、基材Dの透明導電層を形成した面の平均傾斜角θaは0.9°であり、凹凸の平均間隔Smは0.15mmであった。
 得られた透明導電性フィルムを上記評価(2)に供した。結果を表1に示す。
[Example 2]
Instead of 30 parts by weight of particles (manufactured by Sekisui Plastics, trade name "Techpolymer SSX-105"), 5 parts by weight of particles (manufactured by Soken Kagaku Co., Ltd., trade name "SX-350H") are used, and a coating liquid is used. Substrate B (thickness: 20 μm) was formed in the same manner as in Example 1 except that 0.2 parts by weight of a thixo agent (manufactured by Kunimine Kogyo Co., Ltd., trade name “SAN) was added to the mixture. A transparent conductive layer was formed by the same method as in 1, and a transparent conductive film provided with the base material and the transparent conductive layer was obtained. The average inclination angle θa of the surface of the base material D on which the transparent conductive layer was formed was 0. It was 9.9 °, and the average spacing Sm of the unevenness was 0.15 mm.
The obtained transparent conductive film was subjected to the above evaluation (2). The results are shown in Table 1.
[実施例3]
 粒子(総研化学社製、商品名「SX-350H」)の添加量を10重量部としたこと以外は、実施例2と同様にして、基材C(厚み:20μm)を形成した。その後、実施例1と同様の方法により、透明導電層を形成し、基材および透明導電層を備える透明導電性フィルムを得た。なお、基材Cの透明導電層を形成した面の平均傾斜角θaは1.5°であり、凹凸の平均間隔Smは0.12mmであった。
 得られた透明導電性フィルムを上記評価(2)に供した。結果を表1に示す。
[Example 3]
Substrate C (thickness: 20 μm) was formed in the same manner as in Example 2 except that the amount of particles (manufactured by Soken Kagaku Co., Ltd., trade name “SX-350H”) was 10 parts by weight. Then, a transparent conductive layer was formed by the same method as in Example 1 to obtain a transparent conductive film provided with a base material and a transparent conductive layer. The average inclination angle θa of the surface of the base material C on which the transparent conductive layer was formed was 1.5 °, and the average spacing Sm of the irregularities was 0.12 mm.
The obtained transparent conductive film was subjected to the above evaluation (2). The results are shown in Table 1.
[比較例1]
 基材Aに代えて、PETフィルム(東レ社製、商品名「U40」、厚み:23μm、平均傾斜角:0.1°、凹凸の平均間隔Sm:0.04mm)を基材Bとして用いたこと以外は、実施例1と同様にして、透明導電性フィルムを得た。得られた透明導電性フィルムを上記評価(2)に供した。結果を表1に示す。
[Comparative Example 1]
Instead of the base material A, a PET film (manufactured by Toray Industries, Inc., trade name "U40", thickness: 23 μm, average inclination angle: 0.1 °, average interval Sm of unevenness Sm: 0.04 mm) was used as the base material B. A transparent conductive film was obtained in the same manner as in Example 1 except for the above. The obtained transparent conductive film was subjected to the above evaluation (2). The results are shown in Table 1.
[比較例2]
 粒子(積水化成社製、商品名「テクポリマーSSX-105」)30重量部に代えて、粒子(積水化成社製、商品名「テクノポリマーSSX-101」)15重量部を用いたこと以外は、実施例1と同様にして、基材D(厚み:20μm)を形成した。その後、実施例1と同様の方法により、透明導電層を形成し、基材および透明導電層を備える透明導電性フィルムを得た。なお、基材Dの透明導電層を形成した面の平均傾斜角θaは0.3°であり、凹凸の平均間隔Smは0.19mmであった。
 得られた透明導電性フィルムを上記評価(2)に供した。結果を表1に示す。
[Comparative Example 2]
Except that 15 parts by weight of particles (manufactured by Sekisui Plastics, trade name "Technopolymer SSX-101") were used instead of 30 parts by weight of particles (manufactured by Sekisui Plastics, trade name "Technopolymer SSX-105"). , Substrate D (thickness: 20 μm) was formed in the same manner as in Example 1. Then, a transparent conductive layer was formed by the same method as in Example 1 to obtain a transparent conductive film provided with a base material and a transparent conductive layer. The average inclination angle θa of the surface of the base material D on which the transparent conductive layer was formed was 0.3 °, and the average spacing Sm of the irregularities was 0.19 mm.
The obtained transparent conductive film was subjected to the above evaluation (2). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[参考例1]
 PETフィルムに、アクリルモノマー(大阪有機化学工業社製、商品名「ビスコート#300」、固形分56重量%)100重量部と、粒子(積水化成社製、商品名「テクポリマーSSX-101」)10重量部と、開始剤(BASF社製、商品名「イルガキュア 127」)0.5重量部と、酢酸ブチル35重量部とを含む塗工液を塗工し、100℃で2分間乾燥させ、その後300mJの紫外線を照射して、PETフィルム上に基材C(厚み:20μm)を形成した。
 PETフィルムから剥離した上記基材C上に、バーコーター(第一理科株式会社製、製品名「バーコーター No.16」)を用いて製造例1で調製した透明導電層形成用組成物を塗布し、120℃の送風乾燥機内で2分間乾燥させて透明導電層を形成し、基材および透明導電層を備える透明導電性フィルムを得た。なお、基材Cの透明導電層を形成した面の平均傾斜角θaは0.1°であり、凹凸の平均間隔Smは0.27mmであった。
 得られた透明導電性フィルムを上記評価(2)に供したところ、MDの表面抵抗値は41Ωであり、TDの表面抵抗値62Ωであった。
[Reference example 1]
100 parts by weight of acrylic monomer (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", solid content 56% by weight) and particles (manufactured by Sekisui Kasei Co., Ltd., trade name "Techpolymer SSX-101") on PET film. A coating solution containing 10 parts by weight, 0.5 parts by weight of the initiator (manufactured by BASF, trade name "Irgacure 127") and 35 parts by weight of butyl acetate was applied, and dried at 100 ° C. for 2 minutes. Then, 300 mJ of ultraviolet rays was irradiated to form a base material C (thickness: 20 μm) on the PET film.
The composition for forming a transparent conductive layer prepared in Production Example 1 is applied onto the base material C peeled off from the PET film using a bar coater (manufactured by Daiichi Rika Co., Ltd., product name "Bar Coater No. 16"). Then, it was dried in a blower dryer at 120 ° C. for 2 minutes to form a transparent conductive layer, and a transparent conductive film provided with a base material and a transparent conductive layer was obtained. The average inclination angle θa of the surface of the base material C on which the transparent conductive layer was formed was 0.1 °, and the average spacing Sm of the irregularities was 0.27 mm.
When the obtained transparent conductive film was subjected to the above evaluation (2), the surface resistance value of MD was 41Ω and the surface resistance value of TD was 62Ω.
 10     基材
 20     透明導電層
 100    透明導電性フィルム
10 Base material 20 Transparent conductive layer 100 Transparent conductive film

Claims (3)

  1.  長尺状の基材を搬送しながら、該基材に金属ナノワイヤを含む透明導電層形成用組成物を塗布して塗布層を形成する塗布工程と、
     該塗布層を乾燥させて該基材上に透明導電層を形成させる乾燥工程とを含み、
     該基材の表面の平均傾斜角θaが、0.5°以上である、
     透明導電性フィルムの製造方法。
    A coating step of applying a composition for forming a transparent conductive layer containing metal nanowires to the substrate while transporting a long substrate to form a coating layer.
    It includes a drying step of drying the coating layer to form a transparent conductive layer on the substrate.
    The average inclination angle θa on the surface of the base material is 0.5 ° or more.
    A method for producing a transparent conductive film.
  2.  前記基材の表面の凹凸の平均間隔Smが、0.4mm以下である、請求項1に記載の透明導電性フィルムの製造方法。 The method for producing a transparent conductive film according to claim 1, wherein the average spacing Sm of the irregularities on the surface of the base material is 0.4 mm or less.
  3.  基材と、該基材の片側に配置される透明導電層とを備え、
     該基材の表面の平均傾斜角θaが、0.5°以上である、
     透明導電性フィルム。
    A base material and a transparent conductive layer arranged on one side of the base material are provided.
    The average inclination angle θa on the surface of the base material is 0.5 ° or more.
    Transparent conductive film.
PCT/JP2020/036698 2019-10-02 2020-09-28 Method for producing transparent conductive film WO2021065828A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227010860A KR20220072837A (en) 2019-10-02 2020-09-28 Method for manufacturing transparent conductive film
JP2021551266A JPWO2021065828A1 (en) 2019-10-02 2020-09-28
CN202080069186.XA CN114467156A (en) 2019-10-02 2020-09-28 Method for producing transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-182283 2019-10-02
JP2019182283 2019-10-02

Publications (1)

Publication Number Publication Date
WO2021065828A1 true WO2021065828A1 (en) 2021-04-08

Family

ID=75338252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036698 WO2021065828A1 (en) 2019-10-02 2020-09-28 Method for producing transparent conductive film

Country Status (5)

Country Link
JP (1) JPWO2021065828A1 (en)
KR (1) KR20220072837A (en)
CN (1) CN114467156A (en)
TW (1) TW202129663A (en)
WO (1) WO2021065828A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095546A1 (en) * 2009-02-17 2010-08-26 コニカミノルタホールディングス株式会社 Transparent conductive film and transparent electrode
JP2014075416A (en) * 2012-10-03 2014-04-24 Tokyo Institute Of Technology Thin film solar battery and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG150517A1 (en) 2005-08-12 2009-03-30 Cambrios Technologies Corp Nanowires-based transparent conductors
CN104094365B (en) 2012-02-16 2016-09-07 大仓工业株式会社 The manufacture method of transparent conductive substrate and transparent conductive substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095546A1 (en) * 2009-02-17 2010-08-26 コニカミノルタホールディングス株式会社 Transparent conductive film and transparent electrode
JP2014075416A (en) * 2012-10-03 2014-04-24 Tokyo Institute Of Technology Thin film solar battery and method for manufacturing the same

Also Published As

Publication number Publication date
KR20220072837A (en) 2022-06-02
TW202129663A (en) 2021-08-01
CN114467156A (en) 2022-05-10
JPWO2021065828A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
KR102025580B1 (en) Method for producing a transparent conductive film and a transparent conductive pattern
TWI508104B (en) A method for producing a transparent conductive film and a transparent conductive film
WO2015033882A1 (en) Transparent conductive film
KR101485858B1 (en) Method of patterning a transparent electrode metal nanowires and a transparent electrode patterned metal nanowires thereby
JP6580432B2 (en) Transparent conductive film
JP6580431B2 (en) Transparent conductive film
KR102393615B1 (en) Method for manufacturing conductive film, conductive film, and metal nanowire ink
WO2021065828A1 (en) Method for producing transparent conductive film
WO2022050243A1 (en) Method for manufacturing transparent electroconductive film
WO2021065829A1 (en) Method for producing a transparent electroconductive film
WO2021065827A1 (en) Method for manufacturing transparent electroconductive film
WO2021172086A2 (en) Transparent conductive film
WO2022153959A1 (en) Production method for transparent conductive film
WO2022153958A1 (en) Transparent conductive film
JP6744104B2 (en) Transparent conductive film
WO2022196348A1 (en) Transparent electroconductive film
CN117954147A (en) Transparent conductive film
WO2016121662A1 (en) Transparent electroconductive film
TW202244946A (en) transparent conductive film
JP2014035849A (en) Method for manufacturing electroconductive laminate, electroconductive laminate, and display object using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871249

Country of ref document: EP

Kind code of ref document: A1