WO2010095546A1 - Transparent conductive film and transparent electrode - Google Patents

Transparent conductive film and transparent electrode Download PDF

Info

Publication number
WO2010095546A1
WO2010095546A1 PCT/JP2010/051942 JP2010051942W WO2010095546A1 WO 2010095546 A1 WO2010095546 A1 WO 2010095546A1 JP 2010051942 W JP2010051942 W JP 2010051942W WO 2010095546 A1 WO2010095546 A1 WO 2010095546A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
transparent
conductive film
metal oxide
film
Prior art date
Application number
PCT/JP2010/051942
Other languages
French (fr)
Japanese (ja)
Inventor
博和 小山
宏 高田
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2010095546A1 publication Critical patent/WO2010095546A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/38Paints containing free metal not provided for above in groups C09D5/00 - C09D5/36
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals

Definitions

  • the present invention can be suitably used for a liquid crystal display element, an organic light emitting element, an inorganic electroluminescent element, a solar cell, an electromagnetic wave shield, a touch panel, electronic paper, etc., and has a high conductivity and a good transparency.
  • the present invention relates to a film and a transparent electrode.
  • Transparent conductive films are used for liquid crystal displays, electroluminescence displays, plasma displays, electrochromic displays, solar cells, touch panels, transparent electrodes such as electronic paper, and electromagnetic shielding materials.
  • a metal oxide is used as the transparent conductive material.
  • the metal oxide transparent conductive film is produced by a vapor deposition method such as a vacuum deposition method, a sputtering method, or an ion plating method.
  • a vacuum deposition method such as a vacuum deposition method, a sputtering method, or an ion plating method.
  • Non-Patent Document 1 can be referred to as a method for producing Ag nanowires.
  • a transparent conductive material technique specifically used for a low-resistance high-transparent conductive film a method using metal nanowires as a conductor has been proposed (see Patent Document 1).
  • Patent Document 1 a transparent conductive material technique specifically used for a low-resistance high-transparent conductive film.
  • Patent Document 1 also describes the use of a transparent conductive resin as a binder resin, but the effect of solving these problems is small with a transparent conductive resin, and by including metal nanowires in the transparent conductive metal oxide layer.
  • the present invention that solves these problems does not give any suggestion of a solution.
  • Patent Document 2 describes a light-emitting device using a transparent electrode formed of a metal and a transparent conductive polymer.
  • This technology is a technology for arranging metal particles in a transparent conductive polymer.
  • the present invention is different from the present invention in which metal nanowires are dispersed and contained in a transparent conductive metal oxide layer, and the present invention is to solve the problem by reducing the diameter of metal nanowires. There is no suggestion about reducing the problems inherent to metal nanowires.
  • An object of the present invention is to provide a transparent conductive film and a transparent electrode having a conductive surface as a whole and having both high conductivity and good transparency.
  • a transparent conductive film comprising a transparent conductive metal oxide layer containing metal nanowires on a transparent substrate.
  • the present invention it is possible to provide a transparent conductive film and a transparent electrode having the entire surface conductive and having both high conductivity and good transparency.
  • the inventors of the present invention can suppress the decrease in conductivity even when the diameter of the metal nanowire is reduced by including the metal nanowire in the transparent conductive metal oxide layer. And found to be compatible with conductivity.
  • the mean free path of electrons in the metal is several tens of nm
  • the diameter of the metal nanowire becomes smaller than 100 nm
  • the conductivity is greatly reduced by scattering on the wire surface, but the transparent conductivity In a layer using a metal oxide, it is considered that scattering on the surface of the metal nanowire can be reduced to some extent, and conductivity is improved.
  • the basis weight is the mass per unit area of the material (wire) constituting the transparent conductive film.
  • the metal nanowire functions as a main conductor.
  • an element having a bulk conductivity of 1 ⁇ 10 6 S / m or more can be used as the metal element of the metal nanowire.
  • Specific examples of metal elements of the metal nanowire that can be preferably used in the present invention include Ag, Cu, Au, Al, Rh, Ir, Co, Zn, Ni, In, Fe, Pd, Pt, Sn, Ti, and the like. Can be mentioned.
  • two or more kinds of metal nanowires can be used in combination, but from the viewpoint of conductivity, it is preferable to use at least an element selected from Ag, Cu, Au, Al, and Co.
  • the means for producing the metal nanowire there are no particular limitations on the means for producing the metal nanowire, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction
  • the method for producing Ag nanowires reported in 1 can produce silver nanowires easily and in large quantities in an aqueous system, and the conductivity of silver is the largest among metals, so that the production of metal nanowires according to the present invention is possible. It can be preferably applied as a method.
  • the diameter of the metal nanowire is preferably 200 nm or less from the viewpoint of transparency. In particular, it is more effective that the effect of the present invention is 100 nm or less where the transparency is improved but the decrease in conductivity is large. More preferably, it is most preferably 70 nm or less.
  • the diameter of the metal nanowire is an average diameter, and for example, an electron micrograph can be taken for a sufficient number of nanowires using SEM or TEM, and can be obtained from the arithmetic average of the measured values of individual nanowire images. .
  • the number of nanowires to be measured is at least 100 or more. When the diameter of the metal nanowire is reduced to a region of 100 nm or less, the conductivity is greatly reduced.
  • the conductivity is lowered by dispersing the metal nanowire in the transparent conductive metal oxide layer. It can be suppressed to some extent. Even so, if the particle size is extremely small, the conductive deterioration is too large, so that it is preferably 10 nm or more, and more preferably 30 nm or more.
  • the diameter of the metal nanowire is, for example, the above-mentioned Adv. Mater. And Chem. Mater.
  • it can be controlled by the molecular weight of the added PVP, and the diameter of the wire can be made thinner as the molecular weight is higher.
  • the average length of the metal nanowire is preferably 1 ⁇ m or more from the viewpoint of conductivity, and is preferably 100 ⁇ m or less from the viewpoint of the effect on the transparency due to aggregation. More preferably, it is 1 to 50 ⁇ m, and further preferably 3 to 50 ⁇ m.
  • Transparent conductive metal oxide examples of the transparent conductive metal oxide used in the present invention include ZrO 2 , CeO 2 , ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , SiO 2 , MgO, BaO, MoO 2 and V 2.
  • Examples thereof include metal oxides such as O 5 , composite oxides thereof and composite metal oxides doped with different atoms, and in particular, indium oxide doped with tin or zinc (ITO) from the viewpoint of conductivity and transparency.
  • IZO zinc oxide doped with aluminum or gallium
  • Such a material may be formed by a sputtering method using a vacuum process or the like, but is preferably formed by a wet process that does not use a vacuum process that can simplify manufacturing equipment.
  • a method using a wet process a method of applying and drying a coating liquid containing a transparent conductive metal oxide, a so-called sol-gel method formed from a transparent conductive metal oxide of a metal alkoxide and a metal salt, Alternatively, a spray pyrolysis method or the like can be used.
  • a method of applying and drying a coating liquid containing a transparent conductive metal oxide that exhibits conductivity without performing high-temperature heat treatment can be preferably used.
  • coating methods roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method Etc.
  • printing method known methods such as letterpress (letter plate) printing, stencil (screen) printing, lithographic (offset) printing, intaglio (gravure) printing, spray printing, and inkjet printing can be used.
  • the average primary particle size is preferably 50 nm or less.
  • a method using a metal oxide sol in which ultrafine particles of several nm or less are colloidally dispersed can be preferably used.
  • the transparent conductive metal oxide having an average primary particle size of 50 nm or less known materials can be used.
  • commercially available materials include SN-100P and SN-100D manufactured by Ishihara Sangyo Co., Ltd. -1, EI, etc. can be used.
  • the metal oxide sol can be produced by a known method.
  • the method described in Japanese Patent Publication No. 35-6616 can be used.
  • the above metal oxide sol is commercially available from Taki Chemical Co., Ltd., and such metal oxide sol can also be used.
  • the transparent conductive metal oxide having an average primary particle diameter exceeding 50 nm is insufficient in contact with the metal nanowire, and the effect of the present invention is hardly obtained.
  • These transparent conductive materials may be used alone or in combination of two or more. Furthermore, it may be used in combination with other resin components as long as the conductivity is not impaired, or may be used in combination with a conductive polymer. In particular, it is preferable to use it together with an energy curable resin because patterning becomes easy.
  • the transparent conductive metal oxide layer according to the present invention preferably has a resistivity of 1 ⁇ 10 5 ⁇ cm or less excluding metal nanowires, and a higher effect is obtained 1 ⁇ . More preferably, it is 10 3 ⁇ cm or less. It should be noted that the resistivity is preferably 1 ⁇ 10 ⁇ 5 ⁇ cm or more because the transmittance decreases when the resistivity becomes a metal region.
  • the resistivity excluding the metal nanowire of the transparent conductive metal oxide layer can be measured by a known method.
  • the metal nanowire of the transparent conductive metal oxide layer is formed on a smooth substrate such as glass or PET film. It can be obtained by forming a uniform film by itself except for the material, measuring the sheet resistance by a four-probe method, and taking the product of the sheet resistance value and the film thickness.
  • the metal nanowires in the transparent conductive metal oxide layer are uniformly dispersed, and at least a part of the individual wires overlap to form a random network. Preferably it is.
  • the method for uniformly dispersing the metal nanowires in the transparent conductive metal oxide layer is not particularly limited.
  • a dispersion of metal nanowires is applied onto a transfer substrate or directly onto a transparent substrate.
  • a method of drying and forming a film in which metal nanowires are randomly arranged in a network, and applying and drying a coating liquid containing a transparent conductive metal oxide on the film, or a dispersion of metal nanowires and a transparent conductive metal oxide A method of mixing the coating liquid and applying and drying it directly on the substrate for transfer or directly on the transparent substrate is preferable.
  • the amount of metal nanowires varies depending on the material and shape of the wire, but when silver nanowires are used, it is preferably about 10 mg / m 2 or more. Moreover, it is preferable that it is 500 mg / m ⁇ 2 > or less from the point of transparency.
  • coating methods roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method Etc.
  • printing method known methods such as letterpress (letter plate) printing, stencil (screen) printing, lithographic (offset) printing, intaglio (gravure) printing, spray printing, and inkjet printing can be used.
  • FIG. 1 shows a dispersion state of metal nanowires in a transparent conductive metal oxide layer according to the present invention.
  • 1 is a metal nanowire
  • 2 is a transparent conductive metal oxide layer
  • 3 is a transparent adhesive resin
  • 4 is a transparent substrate.
  • the metal nanowires are dispersed in the transparent conductive metal oxide layer and may be regularly dispersed.
  • the metal nanowires may be randomly dispersed as shown in FIG. Good.
  • a part of the metal nanowire may be embedded in the transparent conductive metal oxide layer as shown in FIG. 1A, or all the metal nanowires may be transparent conductive metal oxide as shown in FIG. It may be buried in the material layer.
  • the transparent conductive film of the present invention preferably has a total light transmittance of 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the total light transmittance can be measured according to a known method using a spectrophotometer or the like.
  • the electrical resistance value of the transparent conductive film of the present invention is preferably 100 ⁇ / ⁇ or less, more preferably 50 ⁇ / ⁇ or less, and particularly preferably 10 ⁇ / ⁇ or less as the surface resistivity. preferable. If it exceeds 100 ⁇ / ⁇ , the surface uniformity of light emission may be inferior in an organic EL element having a wide light emission area.
  • the surface resistivity can be measured in accordance with, for example, JIS K 7194: 1994 (resistivity testing method using a conductive plastic four-probe method) or the like, and can be easily performed using a commercially available surface resistivity meter. Can be measured.
  • the thickness of the transparent conductive film of this invention there is no restriction
  • the transparent substrate used in the transparent conductive film of the present invention is not particularly limited as long as it has high light transmittance.
  • a glass substrate, a resin substrate, a resin film, and the like are preferable in terms of excellent hardness as a base material and ease of formation of a conductive layer on the surface. From the viewpoint, it is preferable to use a transparent resin film.
  • the transparent resin film that can be preferably used as the transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness and the like can be appropriately selected from known ones.
  • polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, polyolefin resin films such as cyclic olefin resins, Vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, polyamide resin Examples include films, polyimide resin films, acrylic resin films, triacetyl cellulose (TAC) resin films, and the like, but wavelengths in the visible range (380 to 78).
  • TAC triacetyl cellulose
  • the resin film transmittance of 80% or more in nm can be preferably applied to a transparent resin film according to the present invention.
  • a transparent resin film according to the present invention is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • a barrier coat layer may be formed in advance on the transparent substrate, or a functional layer such as a hard coat layer or an antireflection layer may be formed in advance on the side opposite to the conductive layer. .
  • the transparent conductive film of the present invention allows a current to flow without a voltage drop even at a relatively long distance by passing through a path of a metal nanowire having a low resistance. Since it is a very short distance through, current can flow without voltage drop. As a result, electricity can flow through the entire surface without voltage drop even in a large area, and it works effectively as a transparent electrode.
  • Example 1 Preparation of transparent conductive film TC-1
  • a biaxially stretched PET film was used as the transparent substrate. After the corona discharge treatment was applied to the surface of the PET film, the following silver nanowire dispersion W-1 was applied and dried using a wire bar so that the basis weight of the silver nanowire was 80 mg / m 2. The film which has is produced.
  • the film is cut into 3 cm ⁇ 3 cm, and the following fine particle ATO-containing liquid B-1 is overcoated and dried using a spin coater, to form a transparent conductive metal oxide layer having a dry film thickness of 500 nm.
  • a transparent conductive film TC-1 was produced.
  • silver nanowires were used as metal nanowires.
  • Silver nanowires are described in Adv. Mater. , 2002, 14, 833 to 837, silver nanowires having an average diameter of 75 nm and an average length of 35 ⁇ m are prepared using PVP having a molecular weight of 50,000, and silver nanowires are formed using an ultrafiltration membrane. After being filtered and washed with water, it was redispersed in ethanol to prepare a silver nanowire dispersion W-1 (silver nanowire content 5 mass%).
  • a transparent conductive film TC-8 In the production of the transparent conductive film TC-1, the step of overcoating the transparent conductive metal oxide layer was omitted, and a transparent conductive film TC-8 was produced. That is, a biaxially stretched PET film is used as the transparent substrate, and the surface of the PET film is subjected to a corona discharge treatment, and then the silver nanowire dispersion W-1 is adjusted so that the basis weight of the silver nanowire is 80 mg / m 2.
  • a transparent conductive film TC-8 having silver nanowires was prepared by coating and drying using a wire bar.
  • the surface resistivity and total light transmittance (hereinafter, simply referred to as transmittance) of each of the produced transparent conductive films were measured by methods according to JIS K 7194: 1994 and JIS K 7361-1: 1997, respectively.
  • the transparent conductive metal oxide layer coating solution used for each transparent conductive film is coated on a corona discharge-treated PET film to produce a uniform film, and the sheet resistance is measured by the same method.
  • the resistivity (conductive material resistivity) except the metal nanowire of the transparent conductive metal oxide layer was calculated from the film thickness.
  • the transparent conductive films TC-1 to TC-7 of the present invention have both high conductivity and good transparency compared with the comparative transparent conductive films TC-8 to TC-10.
  • Example 2 [Production of Display Element S-1] A solution prepared by adding polyacrylic spherical beads having an average particle diameter of 20 ⁇ m to a volume fraction of 4% by volume to the electrolyte solution 1 and stirring the mixture is applied onto the electrode 2 below, and transparent from above.
  • a display element S-1 was produced by combining the transparent conductive film TC-1 (produced in Example 1) cut into 1 cm ⁇ 3 cm as a surface electrode in the perpendicular direction. The overlapped 1 cm ⁇ 1 cm portion is a display portion (black / white solid), and the remaining portion is used as a lead portion. A sufficient amount of silver paste was applied to the lead portion.
  • Electrode 2 A Cu film was formed on the entire surface of a 1.5 cm thick 1 cm ⁇ 5 cm glass substrate by a known sputtering method, and then 10 ⁇ m of silver was deposited on the Cu film by electrolytic plating to form a silver electrode (electrode 2). Obtained.
  • the display elements S-2, 3, and 5 using the transparent electrode (transparent conductive film) of the present invention displayed a uniform black display both visually and with a magnifying glass.
  • the display elements S-8 to 10 using the comparative transparent electrode have no problem in the visual evaluation, but when observed with an optical microscope, the window portion of the wire was not blackened. It can be seen that the transparent conductive film of the present invention functions as an effective transparent electrode over the entire surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Disclosed is a transparent conductive film having both high conductivity and good transparency, wherein the entire surface is conductive. Also disclosed is a transparent electrode. The transparent conductive film is characterized by comprising, on a transparent base, a transparent conductive metal oxide layer that contains a metal nanowire.

Description

透明導電性フィルム及び透明電極Transparent conductive film and transparent electrode
 本発明は、液晶表示素子、有機発光素子、無機電界発光素子、太陽電池、電磁波シールド、タッチパネル、電子ペーパー等に好適に用いることができる、高い導電性と良好な透明性とを併せ持つ透明導電性フィルム及び透明電極に関する。 The present invention can be suitably used for a liquid crystal display element, an organic light emitting element, an inorganic electroluminescent element, a solar cell, an electromagnetic wave shield, a touch panel, electronic paper, etc., and has a high conductivity and a good transparency. The present invention relates to a film and a transparent electrode.
 透明導電性フィルムは、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ、エレクトロクロミックディスプレイ、太陽電池、タッチパネル、電子ペーパー等の透明電極、ならびに電磁波シールド材等に用いられている。 Transparent conductive films are used for liquid crystal displays, electroluminescence displays, plasma displays, electrochromic displays, solar cells, touch panels, transparent electrodes such as electronic paper, and electromagnetic shielding materials.
 一般に透明導電材料としては、例えば金属酸化物が用いられており、具体的には、錫や亜鉛をドープした酸化インジウム(ITO、IZO)、アルミニウムやガリウムをドープした酸化亜鉛(AZO、GZO)、フッ素やアンチモンをドープした酸化錫(FTO、ATO)等が挙げられる。一般に、金属酸化物透明導電膜の作製には、真空蒸着法、スパッタリング法、イオンプレーティング法等の気相製膜法が用いられる。しかしながら、これらの製膜方法は真空環境を必要とするため装置が大掛かりかつ複雑なものとなり、また製膜に大量のエネルギーを消費するため、製造コストや環境負荷を軽減できる技術の開発が求められていた。また、一方で、液晶ディスプレイやタッチディスプレイに代表されるように、透明導電材料の大面積化が指向されており、それに伴い透明導電材料の軽量化や柔軟性に対する要請が高まっていた。さらに、大面積の透明電極においては、透明電極の電圧降下の影響が大きくなることから、さらなる低抵抗化が求められてきた。 In general, for example, a metal oxide is used as the transparent conductive material. Specifically, indium oxide doped with tin or zinc (ITO, IZO), zinc oxide doped with aluminum or gallium (AZO, GZO), Examples thereof include tin oxide (FTO, ATO) doped with fluorine or antimony. In general, the metal oxide transparent conductive film is produced by a vapor deposition method such as a vacuum deposition method, a sputtering method, or an ion plating method. However, since these film forming methods require a vacuum environment, the apparatus is large and complicated, and since a large amount of energy is consumed for film forming, it is necessary to develop a technology that can reduce the manufacturing cost and environmental load. It was. On the other hand, as represented by a liquid crystal display and a touch display, an increase in the area of the transparent conductive material is aimed at, and accordingly, demands for weight reduction and flexibility of the transparent conductive material have increased. Furthermore, since the influence of the voltage drop of a transparent electrode becomes large in a large-area transparent electrode, further reduction in resistance has been demanded.
 これに対して、バルク状態での導電率が1×10S/m以上の金属元素のナノワイヤを、液相法や気相法等の色々な方法で作製できることが報告されている。例えば、Agナノワイヤの製造方法としては非特許文献1を参考にできる。さらに、具体的に低抵抗高透明導電性フィルムに用いられる透明導電材料技術として、金属ナノワイヤを導電体として用いる方法が提案されている(特許文献1参照)。しかしながら、金属ナノワイヤにおいては、その直径を小さくすると透明性は向上するが、導電性が低下するという背反する課題があるために、高い導電性を維持しながら透明性を確保することは難しいといった問題がある。 On the other hand, it has been reported that nanowires of metal elements having a bulk conductivity of 1 × 10 7 S / m or more can be produced by various methods such as a liquid phase method and a gas phase method. For example, Non-Patent Document 1 can be referred to as a method for producing Ag nanowires. Furthermore, as a transparent conductive material technique specifically used for a low-resistance high-transparent conductive film, a method using metal nanowires as a conductor has been proposed (see Patent Document 1). However, in metal nanowires, when the diameter is reduced, the transparency is improved, but there is a contradictory problem that the conductivity is lowered, so it is difficult to ensure transparency while maintaining high conductivity. There is.
 特許文献1にはバインダー樹脂として透明導電性樹脂を利用する記載もあるが、透明導電性樹脂ではこうした課題を解決する効果は小さく、透明導電性金属酸化物層中に金属ナノワイヤを含有することで、こうした課題を解決する本発明に対しては、なんら解決の示唆を与えるものではない。 Patent Document 1 also describes the use of a transparent conductive resin as a binder resin, but the effect of solving these problems is small with a transparent conductive resin, and by including metal nanowires in the transparent conductive metal oxide layer. The present invention that solves these problems does not give any suggestion of a solution.
 また、特許文献2には、金属と透明導電性高分子とで形成された透明電極を用いた発光装置について記載されているが、この技術は金属粒子を透明導電性高分子中に配列させる技術であり、金属ナノワイヤを透明導電性金属酸化物層中に分散して含有させる本発明とは異なるものであり、本発明が解決しようとする、金属ナノワイヤの直径を小さくすることで導電性が低下するという金属ナノワイヤ固有の課題を低減することについては全く示唆されていない。 Patent Document 2 describes a light-emitting device using a transparent electrode formed of a metal and a transparent conductive polymer. This technology is a technology for arranging metal particles in a transparent conductive polymer. The present invention is different from the present invention in which metal nanowires are dispersed and contained in a transparent conductive metal oxide layer, and the present invention is to solve the problem by reducing the diameter of metal nanowires. There is no suggestion about reducing the problems inherent to metal nanowires.
米国特許第2007/0074316A1号明細書US2007 / 0074316A1 Specification 特開2008-130449号公報JP 2008-130449 A
 本発明の目的は、面全体が導電性を有し、高い導電性と良好な透明性を併せ持つ透明導電性フィルム及び透明電極を提供することにある。 An object of the present invention is to provide a transparent conductive film and a transparent electrode having a conductive surface as a whole and having both high conductivity and good transparency.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.透明基材上に、金属ナノワイヤを含有する透明導電性金属酸化物層を有することを特徴とする透明導電性フィルム。 1. A transparent conductive film comprising a transparent conductive metal oxide layer containing metal nanowires on a transparent substrate.
 2.前記透明導電性金属酸化物層の金属ナノワイヤを除いた抵抗率が1×10Ωcm以下であることを特徴とする前記1に記載の透明導電性フィルム。 2. 2. The transparent conductive film according to 1 above, wherein the resistivity of the transparent conductive metal oxide layer excluding metal nanowires is 1 × 10 5 Ωcm or less.
 3.前記透明導電性金属酸化物層に含まれる透明導電性金属酸化物の平均一次粒子径が50nm以下であることを特徴とする前記1または2に記載の透明導電性フィルム。 3. 3. The transparent conductive film as described in 1 or 2 above, wherein an average primary particle diameter of the transparent conductive metal oxide contained in the transparent conductive metal oxide layer is 50 nm or less.
 4.前記透明導電性金属酸化物が透明導電性金属酸化物ゾルから形成されることを特徴とする前記3に記載の透明導電性フィルム。 4. 4. The transparent conductive film as described in 3 above, wherein the transparent conductive metal oxide is formed from a transparent conductive metal oxide sol.
 5.前記金属ナノワイヤの平均直径が100nm以下であることを特徴とする前記1~4のいずれか1項に記載の透明導電性フィルム。 5. 5. The transparent conductive film according to any one of 1 to 4, wherein the metal nanowire has an average diameter of 100 nm or less.
 6.前記1~5のいずれか1項に記載の透明導電性フィルムを用いることを特徴とする透明電極。 6. 6. A transparent electrode using the transparent conductive film described in any one of 1 to 5 above.
 本発明によれば、面全体が導電性を有し、高い導電性と良好な透明性を併せ持つ透明導電性フィルム及び透明電極を提供することができる。 According to the present invention, it is possible to provide a transparent conductive film and a transparent electrode having the entire surface conductive and having both high conductivity and good transparency.
本発明に係る透明導電性金属酸化物層中の金属ナノワイヤの分散状態を示す模式図である。It is a schematic diagram which shows the dispersion state of the metal nanowire in the transparent conductive metal oxide layer which concerns on this invention.
 一般に金属ナノワイヤの直径を小さくすると透明性は向上するが、導電性が低下する。 Generally, when the diameter of the metal nanowire is reduced, the transparency is improved, but the conductivity is lowered.
 本発明者らは、鋭意検討の結果、透明導電性金属酸化物層に金属ナノワイヤを含有させることで、金属ナノワイヤの直径を小さくしても導電性の低下を抑えることが可能となり、高い透明性と導電性を両立できることを見出した。 As a result of intensive studies, the inventors of the present invention can suppress the decrease in conductivity even when the diameter of the metal nanowire is reduced by including the metal nanowire in the transparent conductive metal oxide layer. And found to be compatible with conductivity.
 金属ナノワイヤの直径を小さくしても導電性の低下を抑えることが可能な理由についてはよく分かっていないが、以下の2つの効果が相乗して現れているのではないかと考えている。 Although the reason why it is possible to suppress the decrease in conductivity even if the diameter of the metal nanowire is reduced is not well understood, I think that the following two effects are synergistic.
 一つは、金属内電子の平均自由行程は数十nmであることから、金属ナノワイヤの直径が100nmよりも小さくなってくるとワイヤ表面での散乱により導電性が大きく低下するが、透明導電性金属酸化物を用いた層中では、金属ナノワイヤ表面での散乱をある程度低減できることができ、導電性が向上するのではないかと考えている。 First, since the mean free path of electrons in the metal is several tens of nm, when the diameter of the metal nanowire becomes smaller than 100 nm, the conductivity is greatly reduced by scattering on the wire surface, but the transparent conductivity In a layer using a metal oxide, it is considered that scattering on the surface of the metal nanowire can be reduced to some extent, and conductivity is improved.
 もう一つは、直径を小さくすると同じ目付け量ではワイヤの数が増加してワイヤの接点が増加する。そのため、金属ナノワイヤ間の接触抵抗が大きくなり導電性が低下する。このとき、透明導電性金属酸化物層中に金属ナノワイヤを分散することで、透明導電性金属酸化物を通して金属ナノワイヤ間に通電できるので、金属ナノワイヤ間の接触抵抗の影響が小さくなり導電性が向上するのではないかと考えている。ここで目付け量とは透明導電性フィルムを構成している材料(ワイヤ)の単位面積当たりの質量である。 The other is that when the diameter is reduced, the number of wires increases and the number of wire contacts increases with the same weight per unit area. As a result, the contact resistance between the metal nanowires increases and the conductivity decreases. At this time, by dispersing the metal nanowires in the transparent conductive metal oxide layer, electricity can be passed between the metal nanowires through the transparent conductive metal oxide, thereby reducing the influence of the contact resistance between the metal nanowires and improving the conductivity. I think that I will do it. Here, the basis weight is the mass per unit area of the material (wire) constituting the transparent conductive film.
 以下、本発明とその構成要素、及び本発明を実施するための最良の形態等について詳細な説明をする。 Hereinafter, the present invention, its components, and the best mode for carrying out the present invention will be described in detail.
 〔金属ナノワイヤ〕
 本発明の透明導電材料において、金属ナノワイヤは主要な導電体として機能する。本発明では、金属ナノワイヤの金属元素として、バルク状態での導電率が1×10S/m以上の元素を用いることができる。本発明で好ましく用いることができる金属ナノワイヤの金属元素として具体例としては、Ag、Cu、Au、Al、Rh、Ir、Co、Zn、Ni、In、Fe、Pd、Pt、Sn、Ti等を挙げることができる。本発明においては2種類以上の金属ナノワイヤを組み合わせて用いることもできるが、導電性の観点から、少なくともAg、Cu、Au、Al、Coより選択される元素を用いることが好ましい。
[Metal nanowires]
In the transparent conductive material of the present invention, the metal nanowire functions as a main conductor. In the present invention, an element having a bulk conductivity of 1 × 10 6 S / m or more can be used as the metal element of the metal nanowire. Specific examples of metal elements of the metal nanowire that can be preferably used in the present invention include Ag, Cu, Au, Al, Rh, Ir, Co, Zn, Ni, In, Fe, Pd, Pt, Sn, Ti, and the like. Can be mentioned. In the present invention, two or more kinds of metal nanowires can be used in combination, but from the viewpoint of conductivity, it is preferable to use at least an element selected from Ag, Cu, Au, Al, and Co.
 本発明において金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、Agナノワイヤの製造方法としては、Adv.Mater.,2002,14,833~837;Chem.Mater.,2002,14,4736~4745等、Auナノワイヤの製造方法としては特開2006-233252号公報等、Cuナノワイヤの製造方法としては特開2002-266007号公報等、Coナノワイヤの製造方法としては特開2004-149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にかつ大量に銀ナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に関わる金属ナノワイヤの製造方法として好ましく適用することができる。 In the present invention, there are no particular limitations on the means for producing the metal nanowire, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used. For example, as a method for producing Ag nanowires, Adv. Mater. , 2002, 14, 833-837; Chem. Mater. 2002, 14, 4736-4745, etc., as a method for producing Co nanowires, such as JP 2006-233252, etc. as a method for producing Au nanowires, and JP 2002-266007, etc., as a method for producing Cu nanowires. Reference can be made to Japanese Unexamined Patent Publication No. 2004-149871. In particular, Adv. Mater. And Chem. Mater. The method for producing Ag nanowires reported in 1 can produce silver nanowires easily and in large quantities in an aqueous system, and the conductivity of silver is the largest among metals, so that the production of metal nanowires according to the present invention is possible. It can be preferably applied as a method.
 本発明において金属ナノワイヤの直径は、透明性の観点から200nm以下であることが好ましく、特に、透明性は向上するが導電性の低下が大きくなる100nm以下であることが本発明の効果をより有効に発現できることからより好ましく、70nm以下であることが最も好ましい。ここで、金属ナノワイヤの直径は平均の直径であり、例えば、SEMやTEMを用いて十分な数のナノワイヤについて電子顕微鏡写真を撮影し、個々のナノワイヤ像の計測値の算術平均から求めることができる。計測対象のナノワイヤ数は、少なくとも100個以上である。金属ナノワイヤはその直径を100nm以下の領域まで小さくするとその導電性が大きく低下してくるが、本発明においては、透明導電性金属酸化物層中に金属ナノワイヤを分散することで導電性の低下をある程度抑えることができる。それでも、著しく小粒子径では導電性の劣化が大き過ぎることから10nm以上であることが好ましく、30nm以上であることがより好ましい。 In the present invention, the diameter of the metal nanowire is preferably 200 nm or less from the viewpoint of transparency. In particular, it is more effective that the effect of the present invention is 100 nm or less where the transparency is improved but the decrease in conductivity is large. More preferably, it is most preferably 70 nm or less. Here, the diameter of the metal nanowire is an average diameter, and for example, an electron micrograph can be taken for a sufficient number of nanowires using SEM or TEM, and can be obtained from the arithmetic average of the measured values of individual nanowire images. . The number of nanowires to be measured is at least 100 or more. When the diameter of the metal nanowire is reduced to a region of 100 nm or less, the conductivity is greatly reduced. In the present invention, the conductivity is lowered by dispersing the metal nanowire in the transparent conductive metal oxide layer. It can be suppressed to some extent. Even so, if the particle size is extremely small, the conductive deterioration is too large, so that it is preferably 10 nm or more, and more preferably 30 nm or more.
 なお、金属ナノワイヤの直径は、例えば、上述した、Adv.Mater.及びChem.Mater.で報告された銀ナノワイヤの場合は、例えば、添加するPVPの分子量で制御が可能であり、高分子量ほどワイヤの径を細くすることができる。 The diameter of the metal nanowire is, for example, the above-mentioned Adv. Mater. And Chem. Mater. In the case of the silver nanowire reported in (1), for example, it can be controlled by the molecular weight of the added PVP, and the diameter of the wire can be made thinner as the molecular weight is higher.
 本発明において金属ナノワイヤの平均長さは、導電性の観点から1μm以上であることが好ましく、凝集による透明性への影響から100μm以下であることが好ましい。より好ましくは1~50μmであり、3~50μmであることがさらに好ましい。 In the present invention, the average length of the metal nanowire is preferably 1 μm or more from the viewpoint of conductivity, and is preferably 100 μm or less from the viewpoint of the effect on the transparency due to aggregation. More preferably, it is 1 to 50 μm, and further preferably 3 to 50 μm.
 〔透明導電性金属酸化物〕
 本発明に用いられる透明導電性金属酸化物としては、ZrO、CeO、ZnO、TiO、SnO、Al、In、SiO、MgO、BaO、MoO、V等の金属酸化物やこれらの複合酸化物や異種原子をドーピングした複合金属酸化物を挙げることができ、中でも、導電性や透明性の点から、錫や亜鉛をドープした酸化インジウム(ITO、IZO)、アルミニウムやガリウムをドープした酸化亜鉛(AZO、GZO)、フッ素やアンチモンをドープした酸化錫(FTO、ATO)等を好ましく用いることができる。
[Transparent conductive metal oxide]
Examples of the transparent conductive metal oxide used in the present invention include ZrO 2 , CeO 2 , ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , SiO 2 , MgO, BaO, MoO 2 and V 2. Examples thereof include metal oxides such as O 5 , composite oxides thereof and composite metal oxides doped with different atoms, and in particular, indium oxide doped with tin or zinc (ITO) from the viewpoint of conductivity and transparency. , IZO), zinc oxide doped with aluminum or gallium (AZO, GZO), tin oxide doped with fluorine or antimony (FTO, ATO), or the like can be preferably used.
 こうした材料は真空プロセスを利用するスパッタ法等により形成されてもよいが、製造設備がより簡素化できる真空プロセスを利用しないウエットプロセスで形成することが好ましい。ウエットプロセスを利用する方法としては、透明導電性金属酸化物を含有する塗布液を塗布して乾燥する方法や、金属アルコキシド及び金属塩の透明導電性金属酸化物から形成するいわゆるゾル-ゲル法、あるいは、スプレー熱分解法等を用いることができる。中でも、高温の熱処理をしなくても導電性が発現する透明導電性金属酸化物を含有する塗布液を塗布して乾燥する方法を好ましく利用できる。 Such a material may be formed by a sputtering method using a vacuum process or the like, but is preferably formed by a wet process that does not use a vacuum process that can simplify manufacturing equipment. As a method using a wet process, a method of applying and drying a coating liquid containing a transparent conductive metal oxide, a so-called sol-gel method formed from a transparent conductive metal oxide of a metal alkoxide and a metal salt, Alternatively, a spray pyrolysis method or the like can be used. Among these, a method of applying and drying a coating liquid containing a transparent conductive metal oxide that exhibits conductivity without performing high-temperature heat treatment can be preferably used.
 塗布法としては、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法等を用いることができる。印刷法としては、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法等公知の方法を用いることができる。 As coating methods, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method Etc. can be used. As the printing method, known methods such as letterpress (letter plate) printing, stencil (screen) printing, lithographic (offset) printing, intaglio (gravure) printing, spray printing, and inkjet printing can be used.
 こうした透明導電性金属酸化物を用いる場合は、その平均一次粒子径が50nm以下であることが好ましい。中でも数nm以下の超微粒子をコロイド状に分散した金属酸化物ゾルを用いる方法を好ましく利用できる。 When such a transparent conductive metal oxide is used, the average primary particle size is preferably 50 nm or less. Among them, a method using a metal oxide sol in which ultrafine particles of several nm or less are colloidally dispersed can be preferably used.
 平均一次粒子径が50nm以下の透明導電性金属酸化物としては公知の材料を使用できるが、例えば、市販の材料としては、石原産業社製のSN-100P、SN-100Dやジェムコ社製のTWU-1、EI等を利用することができる。 As the transparent conductive metal oxide having an average primary particle size of 50 nm or less, known materials can be used. For example, commercially available materials include SN-100P and SN-100D manufactured by Ishihara Sangyo Co., Ltd. -1, EI, etc. can be used.
 金属酸化物ゾルとしては公知の方法で製造できるが、例えば、SnOゾルについては特公昭35-6616号公報に記載された方法を用いることができる。 The metal oxide sol can be produced by a known method. For example, for the SnO 2 sol, the method described in Japanese Patent Publication No. 35-6616 can be used.
 また、前述の金属酸化物ゾルについては例えば、多木化学社より市販されており、こうした金属酸化物ゾルも使用することができる。 The above metal oxide sol is commercially available from Taki Chemical Co., Ltd., and such metal oxide sol can also be used.
 なお、平均一次粒子径が50nmを超える透明導電性金属酸化物では金属ナノワイヤとの接触が不十分となり、本発明の効果が得られにくくなる。 It should be noted that the transparent conductive metal oxide having an average primary particle diameter exceeding 50 nm is insufficient in contact with the metal nanowire, and the effect of the present invention is hardly obtained.
 これらの透明導電材は単独で用いてもよいし、2種以上を併用してもよい。さらに、導電性を阻害しない範囲で他の樹脂成分と併用してもよいし導電性ポリマーと併用してもよい。特に、エネルギー硬化性樹脂と併用するとパターニングが容易になり好ましい。 These transparent conductive materials may be used alone or in combination of two or more. Furthermore, it may be used in combination with other resin components as long as the conductivity is not impaired, or may be used in combination with a conductive polymer. In particular, it is preferable to use it together with an energy curable resin because patterning becomes easy.
 本発明に係る透明導電性金属酸化物層は、本発明の効果を得るためには金属ナノワイヤを除いた抵抗率が1×10Ωcm以下であることが好ましく、より高い効果が得られる1×10Ωcm以下であることがより好ましい。なお、抵抗率が金属領域になると透過率が低下することから1×10-5Ωcm以上であることが好ましい。 In order to obtain the effects of the present invention, the transparent conductive metal oxide layer according to the present invention preferably has a resistivity of 1 × 10 5 Ωcm or less excluding metal nanowires, and a higher effect is obtained 1 ×. More preferably, it is 10 3 Ωcm or less. It should be noted that the resistivity is preferably 1 × 10 −5 Ωcm or more because the transmittance decreases when the resistivity becomes a metal region.
 透明導電性金属酸化物層の金属ナノワイヤを除いた抵抗率は公知の方法で測定が可能であり、例えば、ガラスやPETフィルム等の平滑な基板上に、透明導電性金属酸化物層の金属ナノワイヤを除く材料を単独で均一膜を形成してそのシート抵抗を4探針法によって測定し、シート抵抗値と膜厚との積をとることで求めることができる。 The resistivity excluding the metal nanowire of the transparent conductive metal oxide layer can be measured by a known method. For example, the metal nanowire of the transparent conductive metal oxide layer is formed on a smooth substrate such as glass or PET film. It can be obtained by forming a uniform film by itself except for the material, measuring the sheet resistance by a four-probe method, and taking the product of the sheet resistance value and the film thickness.
 本発明において金属ナノワイヤのパスに有効に電流を流すためには、透明導電性金属酸化物層中の金属ナノワイヤは均一に分散し、個々のワイヤの少なくとも一部が重なりランダムな網目状になっていることが好ましい。 In the present invention, in order to effectively pass a current through the metal nanowire path, the metal nanowires in the transparent conductive metal oxide layer are uniformly dispersed, and at least a part of the individual wires overlap to form a random network. Preferably it is.
 透明導電性金属酸化物層中に金属ナノワイヤを均一に分散させる方法としては、特に制限はないが、例えば、金属ナノワイヤの分散液を転写用の基材、あるいは、直接透明基材上に塗布、乾燥して金属ナノワイヤがランダムに網目状に配置した膜を形成し、その上に透明導電性金属酸化物含有塗布液を塗布、乾燥する方法や、金属ナノワイヤの分散液と透明導電性金属酸化物塗布液を混合して転写用の基材、あるいは、直接透明基材上に塗布、乾燥する方法が容易であり好ましい。 The method for uniformly dispersing the metal nanowires in the transparent conductive metal oxide layer is not particularly limited. For example, a dispersion of metal nanowires is applied onto a transfer substrate or directly onto a transparent substrate. A method of drying and forming a film in which metal nanowires are randomly arranged in a network, and applying and drying a coating liquid containing a transparent conductive metal oxide on the film, or a dispersion of metal nanowires and a transparent conductive metal oxide A method of mixing the coating liquid and applying and drying it directly on the substrate for transfer or directly on the transparent substrate is preferable.
 また、このように網目状に配置するためには金属ナノワイヤの目付け量としては、ワイヤの材や形状によっても異なるが、銀ナノワイヤを用いる場合は、大よそ10mg/m以上であることが好ましく、また、透明性の点からは500mg/m以下であることが好ましい。 Further, in order to arrange in a mesh shape in this way, the amount of metal nanowires varies depending on the material and shape of the wire, but when silver nanowires are used, it is preferably about 10 mg / m 2 or more. Moreover, it is preferable that it is 500 mg / m < 2 > or less from the point of transparency.
 塗布法としては、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法等を用いることができる。印刷法としては、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法等公知の方法を用いることができる。 As coating methods, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method Etc. can be used. As the printing method, known methods such as letterpress (letter plate) printing, stencil (screen) printing, lithographic (offset) printing, intaglio (gravure) printing, spray printing, and inkjet printing can be used.
 図1に、本発明に係る透明導電性金属酸化物層中の金属ナノワイヤの分散状態を示す。図1において、1は金属ナノワイヤ、2は透明導電性金属酸化物層、3は透明接着樹脂、4は透明基材である。本発明においては、金属ナノワイヤは透明導電性金属酸化物層中に分散しており、規則的に分散していてもよいが、例えば、図1(C)のようにランダムに分散していてもよい。また、図1(A)のように金属ナノワイヤの一部が透明導電性金属酸化物層中に埋まっている状態でもよいし、図1(B)のように金属ナノワイヤ全てが透明導電性金属酸化物層中に埋まっていてもよい。 FIG. 1 shows a dispersion state of metal nanowires in a transparent conductive metal oxide layer according to the present invention. In FIG. 1, 1 is a metal nanowire, 2 is a transparent conductive metal oxide layer, 3 is a transparent adhesive resin, and 4 is a transparent substrate. In the present invention, the metal nanowires are dispersed in the transparent conductive metal oxide layer and may be regularly dispersed. For example, the metal nanowires may be randomly dispersed as shown in FIG. Good. Further, a part of the metal nanowire may be embedded in the transparent conductive metal oxide layer as shown in FIG. 1A, or all the metal nanowires may be transparent conductive metal oxide as shown in FIG. It may be buried in the material layer.
 本発明の透明導電性フィルムは、全光線透過率が60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが特に好ましい。 The transparent conductive film of the present invention preferably has a total light transmittance of 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
 全光透過率は、分光光度計等を用いた公知の方法に従って測定することができる。また、本発明の透明導電性フィルムの電気抵抗値としては、表面抵抗率として100Ω/□以下であることが好ましく、50Ω/□以下であることがより好ましく、10Ω/□以下であることが特に好ましい。100Ω/□を越えると発光面積の広い有機EL素子では発光の面均一性が劣る場合がある。前記表面抵抗率は、例えば、JIS K 7194:1994(導電性プラスチックの4探針法による抵抗率試験方法)等に準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。 The total light transmittance can be measured according to a known method using a spectrophotometer or the like. The electrical resistance value of the transparent conductive film of the present invention is preferably 100 Ω / □ or less, more preferably 50 Ω / □ or less, and particularly preferably 10 Ω / □ or less as the surface resistivity. preferable. If it exceeds 100Ω / □, the surface uniformity of light emission may be inferior in an organic EL element having a wide light emission area. The surface resistivity can be measured in accordance with, for example, JIS K 7194: 1994 (resistivity testing method using a conductive plastic four-probe method) or the like, and can be easily performed using a commercially available surface resistivity meter. Can be measured.
 本発明の透明導電性フィルムの厚みには特に制限はなく、目的に応じて適宜選択することができるが、一般的に10μm以下であることが好ましく、厚みが薄くなるほど透明性や柔軟性が向上するためより好ましい。 There is no restriction | limiting in particular in the thickness of the transparent conductive film of this invention, Although it can select suitably according to the objective, Generally it is preferable that it is 10 micrometers or less, and transparency and a softness | flexibility improve, so that thickness becomes thin. Therefore, it is more preferable.
 〔透明基材〕
 本発明の透明導電性フィルムに用いられる透明基材としては、高い光透過性を有していればそれ以外に特に制限はない。例えば、基材としての硬度に優れ、またその表面への導電層の形成のし易さ等の点で、ガラス基板、樹脂基板、樹脂フィルム等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが好ましい。
(Transparent substrate)
The transparent substrate used in the transparent conductive film of the present invention is not particularly limited as long as it has high light transmittance. For example, a glass substrate, a resin substrate, a resin film, and the like are preferable in terms of excellent hardness as a base material and ease of formation of a conductive layer on the surface. From the viewpoint, it is preferable to use a transparent resin film.
 本発明で透明基材として好ましく用いることができる透明樹脂フィルムには特に制限はなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~780nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 The transparent resin film that can be preferably used as the transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness and the like can be appropriately selected from known ones. For example, polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, polyolefin resin films such as cyclic olefin resins, Vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, polyamide resin Examples include films, polyimide resin films, acrylic resin films, triacetyl cellulose (TAC) resin films, and the like, but wavelengths in the visible range (380 to 78). If the resin film transmittance of 80% or more in nm), can be preferably applied to a transparent resin film according to the present invention. Among these, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched. More preferred are polyethylene terephthalate films and biaxially stretched polyethylene naphthalate films.
 本発明に用いられる透明基材には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。また、透明基材にはバリアコート層が予め形成されていてもよいし、導電層を設けるのとは反対側にはハードコート層や反射防止層等の機能層が予め形成されていてもよい。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion. In addition, a barrier coat layer may be formed in advance on the transparent substrate, or a functional layer such as a hard coat layer or an antireflection layer may be formed in advance on the side opposite to the conductive layer. .
 〔透明電極〕
 本発明の透明導電性フィルムは、低抵抗である金属ナノワイヤのパスを通ることで比較的遠い距離においても電圧降下なく電流を流し、金属ナノワイヤが存在しない窓部へも、透明導電性金属酸化物を通して極短い距離なので電圧降下なく電流を流すことが可能となる。これにより広い面積においても電圧降下なく、面全体に電気を流すことが可能となり、透明電極として有効に働く。
[Transparent electrode]
The transparent conductive film of the present invention allows a current to flow without a voltage drop even at a relatively long distance by passing through a path of a metal nanowire having a low resistance. Since it is a very short distance through, current can flow without voltage drop. As a result, electricity can flow through the entire surface without voltage drop even in a large area, and it works effectively as a transparent electrode.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 実施例1
 〔透明導電性フィルムTC-1の作製〕
 透明基材として、二軸延伸PETフィルムを用いた。該PETフィルム表面にコロナ放電処理を施した後、下記銀ナノワイヤ分散液W-1を銀ナノワイヤの目付け量が80mg/mとなるようにワイヤーバーを用いて塗布、乾燥して、銀ナノワイヤを有するフィルムを作製した。
Example 1
[Preparation of transparent conductive film TC-1]
A biaxially stretched PET film was used as the transparent substrate. After the corona discharge treatment was applied to the surface of the PET film, the following silver nanowire dispersion W-1 was applied and dried using a wire bar so that the basis weight of the silver nanowire was 80 mg / m 2. The film which has is produced.
 次に、上記フィルムを3cm×3cmに切り出し、この上にスピンコーターを用いて下記微粒子ATO含有液B-1をオーバーコート、乾燥して、乾燥膜厚が500nmの透明導電性金属酸化物層を形成し、透明導電性フィルムTC-1を作製した。 Next, the film is cut into 3 cm × 3 cm, and the following fine particle ATO-containing liquid B-1 is overcoated and dried using a spin coater, to form a transparent conductive metal oxide layer having a dry film thickness of 500 nm. Thus, a transparent conductive film TC-1 was produced.
 (銀ナノワイヤ分散液W-1の調製)
 本実施例では、金属ナノワイヤとして銀ナノワイヤを用いた。銀ナノワイヤは、Adv.Mater.,2002,14,833~837に記載の方法を参考に、分子量5万のPVPを利用して、平均直径75nm、平均長さ35μmの銀ナノワイヤを作製し、限外濾過膜を用いて銀ナノワイヤを濾別、水洗処理した後、エタノール中に再分散して銀ナノワイヤ分散液W-1(銀ナノワイヤ含有量5質量%)を調製した。
(Preparation of silver nanowire dispersion W-1)
In this example, silver nanowires were used as metal nanowires. Silver nanowires are described in Adv. Mater. , 2002, 14, 833 to 837, silver nanowires having an average diameter of 75 nm and an average length of 35 μm are prepared using PVP having a molecular weight of 50,000, and silver nanowires are formed using an ultrafiltration membrane. After being filtered and washed with water, it was redispersed in ethanol to prepare a silver nanowire dispersion W-1 (silver nanowire content 5 mass%).
 〈微粒子ATO含有液B-1〉
 SbドープSnO微粒子((株)石原産業製SN100D、固形分30%)                             16g
 化合物(UL-1)                   0.02g
 変性水性ポリエステルA(固形分18%)            3g
 水で100mlに仕上げる。
<Fine particle ATO-containing liquid B-1>
Sb-doped SnO 2 fine particles (SN100D manufactured by Ishihara Sangyo Co., Ltd., solid content 30%) 16 g
Compound (UL-1) 0.02g
Modified aqueous polyester A (solid content 18%) 3g
Finish to 100 ml with water.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 (変性水性ポリエステルAの合成)
 重縮合用反応容器に、テレフタル酸ジメチル35.4部、イソフタル酸ジメチル33.63部、5-スルホ-イソフタル酸ジメチルナトリウム塩17.92部、エチレングリコール62部、酢酸カルシウム一水塩0.065部、酢酸マンガン四水塩0.022部を投入し、窒素気流下において、170~220℃でメタノールを留去しながらエステル交換反応を行った後、リン酸トリメチル0.04部、重縮合触媒とし三酸化アンチモン0.04部及び1,4-シクロヘキサンジカルボン酸6.8部を加え、220~235℃の反応温度で、ほぼ理論量の水を留去しエステル化を行った。その後、さらに反応系内を約1時間かけて減圧、昇温し、最終的に280℃、133Pa以下で約1時間重縮合を行い、変性水性ポリエステルAの前駆体を得た。前駆体の固有粘度は0.33であった。
(Synthesis of modified aqueous polyester A)
In a polycondensation reaction vessel, 35.4 parts of dimethyl terephthalate, 33.63 parts of dimethyl isophthalate, 17.92 parts of 5-sulfo-isophthalic acid dimethyl sodium salt, 62 parts of ethylene glycol, 0.065 calcium acetate monohydrate And 0.022 parts of manganese acetate tetrahydrate were added and subjected to a transesterification reaction while distilling off methanol at 170 to 220 ° C. in a nitrogen stream, and then 0.04 part of trimethyl phosphate, a polycondensation catalyst. Then, 0.04 parts of antimony trioxide and 6.8 parts of 1,4-cyclohexanedicarboxylic acid were added, and the esterification was carried out by distilling off a theoretical amount of water at a reaction temperature of 220 to 235 ° C. Thereafter, the reaction system was further depressurized and heated for about 1 hour, and finally subjected to polycondensation at 280 ° C. and 133 Pa or less for about 1 hour to obtain a modified aqueous polyester A precursor. The intrinsic viscosity of the precursor was 0.33.
 攪拌翼、環流冷却管、温度計を付した2Lの三つ口フラスコに、純水850mlを入れ、攪拌翼を回転させながら、150gの上記前駆体を徐々に添加した。室温でこのまま30分間攪拌した後、1.5時間かけて内温が98℃になるように加熱し、この温度で3時間加熱溶解した。加熱終了後、1時間かけて室温まで冷却し、一夜放置して、固形分濃度が15質量%の溶液を調製した。 850 ml of pure water was put into a 2 L three-necked flask equipped with a stirring blade, a reflux condenser, and a thermometer, and 150 g of the above precursor was gradually added while rotating the stirring blade. After stirring for 30 minutes at room temperature, the mixture was heated to an internal temperature of 98 ° C. over 1.5 hours, and heated and dissolved at this temperature for 3 hours. After completion of the heating, the mixture was cooled to room temperature over 1 hour and left overnight to prepare a solution having a solid content concentration of 15% by mass.
 攪拌翼、環流冷却管、温度計、滴下ロートを付した3Lの四つ口フラスコに、上記前駆体溶液1900mlを入れ、攪拌翼を回転させながら、内温度を80℃まで加熱した。この中に、過硫酸アンモニウムの24%水溶液を6.52ml加え、単量体混合液(メタクリル酸グリシジル28.5g、アクリル酸エチル21.4g、メタクリル酸メチル21.4g)を30分間かけて滴下し、さらに3時間反応を続けた。その後、30℃以下まで冷却し、濾過して、固形分濃度が18質量%の変性水性ポリエステルAの溶液(ポリエステル成分/アクリル成分=80/20)を調製した。 1900 ml of the precursor solution was placed in a 3 L four-necked flask equipped with a stirring blade, a reflux condenser, a thermometer, and a dropping funnel, and the internal temperature was heated to 80 ° C. while rotating the stirring blade. To this, 6.52 ml of a 24% aqueous solution of ammonium persulfate was added, and a monomer mixture (28.5 g of glycidyl methacrylate, 21.4 g of ethyl acrylate, 21.4 g of methyl methacrylate) was dropped over 30 minutes. The reaction was continued for another 3 hours. Then, it cooled to 30 degrees C or less, and filtered, and prepared the solution (polyester component / acrylic component = 80/20) of the modified aqueous polyester A whose solid content concentration is 18 mass%.
 〔透明導電性フィルムTC-2の作製〕
 透明導電性フィルムTC-1の作製において、銀ナノワイヤ分散液W-1の調製に用いたPVPの分子量を12万に変更して、平均直径50nm、平均長さ40μmの銀ナノワイヤを作製した以外は同様にして透明導電性フィルムTC-2を作製した。
[Preparation of transparent conductive film TC-2]
In the production of the transparent conductive film TC-1, except that the molecular weight of PVP used for the preparation of the silver nanowire dispersion W-1 was changed to 120,000 to produce silver nanowires having an average diameter of 50 nm and an average length of 40 μm. Similarly, a transparent conductive film TC-2 was produced.
 〔透明導電性フィルムTC-3の作製〕
 透明導電性フィルムTC-1の作製において、銀ナノワイヤ分散液W-1の調製に用いたPVPの分子量を3万に変更して、平均直径120nm、平均長さ25μmの銀ナノワイヤを作製した以外は同様にして透明導電性フィルムTC-3を作製した。
[Preparation of transparent conductive film TC-3]
In the production of the transparent conductive film TC-1, except that the molecular weight of PVP used for the preparation of the silver nanowire dispersion W-1 was changed to 30,000 to produce silver nanowires having an average diameter of 120 nm and an average length of 25 μm. Similarly, a transparent conductive film TC-3 was produced.
 〔透明導電性フィルムTC-4の作製〕
 透明導電性フィルムTC-1の作製において、微粒子ATO含有液B-1を下記酸化スズゾル含有液B-2に変更して、透明導電性金属酸化物層の乾燥膜厚を500nmとした以外は同様にして透光性電極TC-13を作製した。
[Preparation of transparent conductive film TC-4]
In producing the transparent conductive film TC-1, except that the fine particle ATO-containing liquid B-1 was changed to the following tin oxide sol-containing liquid B-2 and the dry film thickness of the transparent conductive metal oxide layer was changed to 500 nm. Thus, a translucent electrode TC-13 was produced.
 〈酸化スズゾル含有液B-2〉
 SnOゾル((株)多木化学社製セラメースS-8、固形分8%)
                               60g
 化合物(UL-1)                   0.02g
 変性水性ポリエステルA(固形分18%)            2g
 水で100mlに仕上げる。
<Tin oxide sol-containing liquid B-2>
SnO 2 sol (Cerames S-8, Taki Chemical Co., Ltd., solid content 8%)
60g
Compound (UL-1) 0.02g
Modified aqueous polyester A (solid content 18%) 2g
Finish to 100 ml with water.
 〔透明導電性フィルムTC-5の作製〕
 透明導電性フィルムTC-1の作製において、微粒子ATO含有液B-1を下記微粒子ITO含有液B-3に変更して、透明導電性金属酸化物層の乾燥膜厚を500nmとした以外は同様にして透光性電極TC-5を作製した。
[Preparation of transparent conductive film TC-5]
In producing the transparent conductive film TC-1, except that the fine particle ATO-containing liquid B-1 was changed to the following fine particle ITO-containing liquid B-3, and the dry film thickness of the transparent conductive metal oxide layer was changed to 500 nm. Thus, a translucent electrode TC-5 was produced.
 〈微粒子ITO含有液B-3〉
 ITO微粒子分散液((株)ジェムコ社製EI、溶剤IPA、固形分20%)                             24g
 IPA(イソプロピルアルコール)              73g
 変性水性ポリエステルA(固形分18%)            3g
 〔透明導電性フィルムTC-6の作製〕
 透明導電性フィルムTC-2の作製において、微粒子ATO含有液B-1を下記微粒子ATO含有液B-4に変更して、透明導電性金属酸化物層の乾燥膜厚を500nmとした以外は同様にして透光性電極TC-6を作製した。
<Particle ITO-containing liquid B-3>
ITO fine particle dispersion (EI manufactured by Gemco Co., Ltd., solvent IPA, solid content 20%) 24 g
IPA (isopropyl alcohol) 73g
Modified aqueous polyester A (solid content 18%) 3g
[Preparation of transparent conductive film TC-6]
In producing the transparent conductive film TC-2, except that the fine particle ATO-containing liquid B-1 was changed to the following fine particle ATO-containing liquid B-4, and the dry film thickness of the transparent conductive metal oxide layer was changed to 500 nm. Thus, a translucent electrode TC-6 was produced.
 〈微粒子ATO含有液B-4〉
 SbドープSnO微粒子((株)石原産業製SN100D、固形分30%)                             16g
 化合物(UL-1)                   0.02g
 変性水性ポリエステルA(固形分18%)            6g
 水で100mlに仕上げる。
<Fine particle ATO-containing liquid B-4>
Sb-doped SnO 2 fine particles (SN100D manufactured by Ishihara Sangyo Co., Ltd., solid content 30%) 16 g
Compound (UL-1) 0.02g
Modified aqueous polyester A (solid content 18%) 6g
Finish to 100 ml with water.
 〔透明導電性フィルムTC-7の作製〕
 透明導電性フィルムTC-2の作製において、微粒子ATO含有液B-1を下記微粒子ATO含有液B-5に変更して、透明導電性金属酸化物層の乾燥膜厚を500nmとした以外は同様にして透光性電極TC-7を作製した。
[Preparation of transparent conductive film TC-7]
In producing the transparent conductive film TC-2, except that the fine particle ATO-containing liquid B-1 was changed to the following fine particle ATO-containing liquid B-5, and the dry film thickness of the transparent conductive metal oxide layer was changed to 500 nm. Thus, a translucent electrode TC-7 was produced.
 〈微粒子ATO含有液B-5〉
 SbドープSnO微粒子((株)石原産業製SN100D、固形分30%)                             16g
 化合物(UL-1)                   0.02g
 変性水性ポリエステルA(固形分18%)            9g
 水で100mlに仕上げる。
<Fine particle ATO-containing liquid B-5>
Sb-doped SnO 2 fine particles (SN100D manufactured by Ishihara Sangyo Co., Ltd., solid content 30%) 16 g
Compound (UL-1) 0.02g
Modified aqueous polyester A (solid content 18%) 9g
Finish to 100 ml with water.
 〔透明導電性フィルムTC-8の作製〕
 透明導電性フィルムTC-1の作製において、透明導電性金属酸化物層をオーバーコートする工程を削除して、透明導電性フィルムTC-8を作製した。即ち、透明基材として、二軸延伸PETフィルムを用い、該PETフィルム表面にコロナ放電処理を施した後、上記銀ナノワイヤ分散液W-1を銀ナノワイヤの目付け量が80mg/mとなるようにワイヤーバーを用いて塗布、乾燥して、銀ナノワイヤを有する透明導電性フィルムTC-8を作製した。
[Preparation of transparent conductive film TC-8]
In the production of the transparent conductive film TC-1, the step of overcoating the transparent conductive metal oxide layer was omitted, and a transparent conductive film TC-8 was produced. That is, a biaxially stretched PET film is used as the transparent substrate, and the surface of the PET film is subjected to a corona discharge treatment, and then the silver nanowire dispersion W-1 is adjusted so that the basis weight of the silver nanowire is 80 mg / m 2. A transparent conductive film TC-8 having silver nanowires was prepared by coating and drying using a wire bar.
 〔透明導電性フィルムTC-9の作製〕
 透明導電性フィルムTC-2の作製において、透明導電性金属酸化物層をオーバーコートする工程を削除して、透明導電性フィルムTC-9を作製した。
[Preparation of transparent conductive film TC-9]
In the production of the transparent conductive film TC-2, the step of overcoating the transparent conductive metal oxide layer was omitted, and a transparent conductive film TC-9 was produced.
 〔透明導電性フィルムTC-10の作製〕
 透明導電性フィルムTC-3の作製において、透明導電性金属酸化物層をオーバーコートする工程を削除して、透明導電性フィルムTC-10を作製した。
[Preparation of transparent conductive film TC-10]
In the production of the transparent conductive film TC-3, the step of overcoating the transparent conductive metal oxide layer was omitted, and a transparent conductive film TC-10 was produced.
 〔透明導電性フィルムの評価〕
 作製した各透明導電性フィルムの表面抵抗率及び全光線透過率(以下、単に透過率という。)を、各々JIS K 7194:1994及びJIS K 7361-1:1997に準拠した方法で測定した。また、各透明導電性フィルムに用いた透明導電性金属酸化物層の塗布液を、単独でコロナ放電処理をしたPETフィルム上に塗布して均一膜を作製し、同様の方法でシート抵抗を測定して、その膜厚とから透明導電性金属酸化物層の金属ナノワイヤを除く抵抗率(導電材料抵抗率)を算出した。
[Evaluation of transparent conductive film]
The surface resistivity and total light transmittance (hereinafter, simply referred to as transmittance) of each of the produced transparent conductive films were measured by methods according to JIS K 7194: 1994 and JIS K 7361-1: 1997, respectively. In addition, the transparent conductive metal oxide layer coating solution used for each transparent conductive film is coated on a corona discharge-treated PET film to produce a uniform film, and the sheet resistance is measured by the same method. And the resistivity (conductive material resistivity) except the metal nanowire of the transparent conductive metal oxide layer was calculated from the film thickness.
 得られた結果を表1に示す。 Table 1 shows the obtained results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1より、本発明の透明導電性フィルムTC-1~7は、比較の透明導電性フィルムTC-8~10に比べ、高い導電性と良好な透明性を併せ持つことが分かる。 From Table 1, it can be seen that the transparent conductive films TC-1 to TC-7 of the present invention have both high conductivity and good transparency compared with the comparative transparent conductive films TC-8 to TC-10.
 実施例2
 〔表示素子S-1の作製〕
 下記電解質溶液1に、平均粒子径が20μmのポリアクリル製の球形ビーズを体積分率として4体積%になるように加えて攪拌した溶液を、下記電極2の上に塗布し、その上から透明面電極として1cm×3cmに切り出した透明導電性フィルムTC-1(実施例1で作製)を直角方向に組み合わせて表示素子S-1を作製した。重ね合わされた1cm×1cmの部分が表示部(黒/白ベタ)であり、残りの部分がリード部として用いられる。リード部には十分な量の銀ペーストを塗布した。
Example 2
[Production of Display Element S-1]
A solution prepared by adding polyacrylic spherical beads having an average particle diameter of 20 μm to a volume fraction of 4% by volume to the electrolyte solution 1 and stirring the mixture is applied onto the electrode 2 below, and transparent from above. A display element S-1 was produced by combining the transparent conductive film TC-1 (produced in Example 1) cut into 1 cm × 3 cm as a surface electrode in the perpendicular direction. The overlapped 1 cm × 1 cm portion is a display portion (black / white solid), and the remaining portion is used as a lead portion. A sufficient amount of silver paste was applied to the lead portion.
 (電解質溶液1の調製)
 ジメチルスルホキシド2.5g中に、ヨウ化ナトリウム90mg、ヨウ化銀75mgを加えて完全に溶解した後、酸化チタン0.5gを加えて超音波分散機にて酸化チタンを分散した。この溶液にポリビニルアルコール(ケン化度約87~89%、重合度4500)を150mg加えて120℃に加熱しながら1時間攪拌し、電解質溶液1を得た。
(Preparation of electrolyte solution 1)
In 2.5 g of dimethyl sulfoxide, 90 mg of sodium iodide and 75 mg of silver iodide were added and completely dissolved, then 0.5 g of titanium oxide was added, and the titanium oxide was dispersed with an ultrasonic disperser. 150 mg of polyvinyl alcohol (saponification degree: about 87-89%, polymerization degree: 4500) was added to this solution and stirred for 1 hour while heating at 120 ° C. to obtain an electrolyte solution 1.
 (電極2の作製)
 厚さ1.5mmで1cm×5cmのガラス基板上に、公知のスパッタリング法でCu膜を全面に形成した後、電解メッキによりCu膜上に銀を10μm堆積させて、銀電極(電極2)を得た。
(Preparation of electrode 2)
A Cu film was formed on the entire surface of a 1.5 cm thick 1 cm × 5 cm glass substrate by a known sputtering method, and then 10 μm of silver was deposited on the Cu film by electrolytic plating to form a silver electrode (electrode 2). Obtained.
 〔表示素子S-2、3、5、8~10の作製〕
 表示素子S-1の作製において、透明導電性フィルムTC-1(実施例1で作製)を透明導電性フィルムTC-2、3、5、8~10(実施例1で作製)に変更した以外は同様にして、それぞれ表示素子S-2、3、5、8~10を作製した。
[Production of Display Elements S-2, 3, 5, 8 to 10]
In the production of the display element S-1, the transparent conductive film TC-1 (produced in Example 1) was changed to the transparent conductive film TC-2, 3, 5, 8 to 10 (produced in Example 1). In the same manner, display elements S-2, 3, 5, 8 to 10 were produced.
 〔表示素子の評価〕
 作製した各表示素子について、単一乾電池を2個直列に接続した電源を用いて、透明電極側に-、電極2側に+を接続し、全体の表示状態を目視観察で、微小領域の表示状態をルーペ観察でした。
[Evaluation of display element]
For each manufactured display element, using a power source in which two single dry batteries are connected in series, connect-to the transparent electrode side and + to the electrode 2 side, and visually display the entire display state to display a minute area. The state was loupe observation.
 その結果、本発明の透明電極(透明導電性フィルム)を用いた表示素子S-2、3、5は目視、ルーペ観察とも均一な黒表示となった。これに対し、比較の透明電極を用いた表示素子S-8~10は目視評価では問題ないが、光学顕微鏡で観察するとワイヤの窓部が黒化していなかった。本発明の透明導電性フィルムは面全体が有効な透明電極として働いていることが分かる。 As a result, the display elements S-2, 3, and 5 using the transparent electrode (transparent conductive film) of the present invention displayed a uniform black display both visually and with a magnifying glass. On the other hand, the display elements S-8 to 10 using the comparative transparent electrode have no problem in the visual evaluation, but when observed with an optical microscope, the window portion of the wire was not blackened. It can be seen that the transparent conductive film of the present invention functions as an effective transparent electrode over the entire surface.
 1 金属ナノワイヤ
 2 透明導電性金属酸化物層
 3 透明接着樹脂
 4 透明基材
DESCRIPTION OF SYMBOLS 1 Metal nanowire 2 Transparent electroconductive metal oxide layer 3 Transparent adhesive resin 4 Transparent base material

Claims (6)

  1.  透明基材上に、金属ナノワイヤを含有する透明導電性金属酸化物層を有することを特徴とする透明導電性フィルム。 A transparent conductive film comprising a transparent conductive metal oxide layer containing metal nanowires on a transparent substrate.
  2.  前記透明導電性金属酸化物層の金属ナノワイヤを除いた抵抗率が1×10Ωcm以下であることを特徴とする請求項1に記載の透明導電性フィルム。 2. The transparent conductive film according to claim 1, wherein a resistivity of the transparent conductive metal oxide layer excluding metal nanowires is 1 × 10 5 Ωcm or less.
  3.  前記透明導電性金属酸化物層に含まれる透明導電性金属酸化物の平均一次粒子径が50nm以下であることを特徴とする請求項1または2に記載の透明導電性フィルム。 The transparent conductive film according to claim 1 or 2, wherein an average primary particle size of the transparent conductive metal oxide contained in the transparent conductive metal oxide layer is 50 nm or less.
  4.  前記透明導電性金属酸化物が透明導電性金属酸化物ゾルから形成されることを特徴とする請求項3に記載の透明導電性フィルム。 4. The transparent conductive film according to claim 3, wherein the transparent conductive metal oxide is formed from a transparent conductive metal oxide sol.
  5.  前記金属ナノワイヤの平均直径が100nm以下であることを特徴とする請求項1~4のいずれか1項に記載の透明導電性フィルム。 The transparent conductive film according to any one of claims 1 to 4, wherein the metal nanowire has an average diameter of 100 nm or less.
  6.  請求項1~5のいずれか1項に記載の透明導電性フィルムを用いることを特徴とする透明電極。 A transparent electrode comprising the transparent conductive film according to any one of claims 1 to 5.
PCT/JP2010/051942 2009-02-17 2010-02-10 Transparent conductive film and transparent electrode WO2010095546A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009033726 2009-02-17
JP2009-033726 2009-02-17

Publications (1)

Publication Number Publication Date
WO2010095546A1 true WO2010095546A1 (en) 2010-08-26

Family

ID=42633829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051942 WO2010095546A1 (en) 2009-02-17 2010-02-10 Transparent conductive film and transparent electrode

Country Status (1)

Country Link
WO (1) WO2010095546A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146430A (en) * 2011-01-11 2012-08-02 Innovation & Infinity Global Corp Transparent conductive structure utilizing mixed nanoparticle and method for producing the same
WO2013008826A1 (en) * 2011-07-11 2013-01-17 富士フイルム株式会社 Conductive sheet, touch panel, display device, method for producing said conductive sheet, and recording medium
JP2013054619A (en) * 2011-09-06 2013-03-21 Fujifilm Corp Conductive sheet, touch panel, and display device
WO2013051548A1 (en) * 2011-10-05 2013-04-11 富士フイルム株式会社 Conductive sheet, touch panel, display device, and method and program for producing conductive sheet
WO2021065828A1 (en) * 2019-10-02 2021-04-08 日東電工株式会社 Method for producing transparent conductive film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046058A2 (en) * 2006-10-12 2008-04-17 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
JP2009146576A (en) * 2007-12-11 2009-07-02 Konica Minolta Holdings Inc Transparent conductive coating, transparent conductive film, and flexible transparent plane electrode
JP2009224183A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Metal oxide microparticles, transparent conductive film, dispersion, and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046058A2 (en) * 2006-10-12 2008-04-17 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
JP2009146576A (en) * 2007-12-11 2009-07-02 Konica Minolta Holdings Inc Transparent conductive coating, transparent conductive film, and flexible transparent plane electrode
JP2009224183A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Metal oxide microparticles, transparent conductive film, dispersion, and device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146430A (en) * 2011-01-11 2012-08-02 Innovation & Infinity Global Corp Transparent conductive structure utilizing mixed nanoparticle and method for producing the same
WO2013008826A1 (en) * 2011-07-11 2013-01-17 富士フイルム株式会社 Conductive sheet, touch panel, display device, method for producing said conductive sheet, and recording medium
JP2013054619A (en) * 2011-09-06 2013-03-21 Fujifilm Corp Conductive sheet, touch panel, and display device
WO2013051548A1 (en) * 2011-10-05 2013-04-11 富士フイルム株式会社 Conductive sheet, touch panel, display device, and method and program for producing conductive sheet
JP2013084639A (en) * 2011-10-05 2013-05-09 Fujifilm Corp Conductive sheet, touch panel, display device, conductive sheet manufacturing method, and program
TWI550448B (en) * 2011-10-05 2016-09-21 富士軟片股份有限公司 Electrically conductive sheet, touch panel, display device, and recording medium
WO2021065828A1 (en) * 2019-10-02 2021-04-08 日東電工株式会社 Method for producing transparent conductive film

Similar Documents

Publication Publication Date Title
JP5245112B2 (en) Transparent conductive film, transparent conductive film, and flexible transparent electrode
JP2009129882A (en) Transparent conductive coat, transparent conductive film, and flexible transparent plane electrode
KR102687588B1 (en) Electrical conductors, electrically conductive structures, electronic devices including the same
JP5569607B2 (en) Transparent conductive film, transparent conductive film, and flexible transparent electrode
KR102522012B1 (en) Conductive element and electronic devices comprising the same
TW201435927A (en) Transparent conductive film coating composition, transparent conductive film, and method for manufacturing transparent conductive film
WO2010095546A1 (en) Transparent conductive film and transparent electrode
JP2015508556A (en) Laminated transparent electrode containing metal nanowires and carbon nanotubes
JP2009252437A (en) Transparent conductive film
JP2005108467A (en) Transparent conductive sheet, and photosensitive solar cell
KR102694861B1 (en) Electrical conductors, production methods thereof, electronic devices including the same
JP2015182334A (en) Metal dot substrate, and method of manufacturing the same
KR102591112B1 (en) Population of metal oxide nanosheets, preparation method thereof, and elelctrical conductor and elecronic device including the same
US10395845B2 (en) Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
Sun et al. Synchronously improved reliability, figure of merit and adhesion of flexible copper nanowire networks by chitosan transition
US20170040089A1 (en) Methods of preparing conductors, conductors prepared therefrom, and electronic devices including the same
KR100989409B1 (en) Multi-layered flexible transparent electrode and its manufacturing method
JP5639463B2 (en) Conductive composition, and transparent conductor, touch panel and solar cell using the same
Song et al. Highly reliable MoOx/Ag NW bilayer transparent conductive thin films fabricated by all solution process and transparent heater application
KR20150075173A (en) Transparent electrode comprising transparent conductive oxide and Ag nanowire and the fabrication method thereof
Kiruthiga et al. Indium-free MgSnO3 transparent conductive oxide layer: investigation on structural, optical and electrical properties and photovoltaic performance analysis
Zhang et al. A robust and flexible silver nanowire/silica sol/poly (3, 4-ethylene dioxythiophene)/poly (styrene sulfonate) transparent conductive film for film heater
JP5422960B2 (en) Oxide semiconductor electrode for photoelectric conversion, method for producing the same, and dye-sensitized solar cell including the same
Muniramaiah et al. Sputter-deposited highly flexible noble metal multi-layer electrode viable for energy and luminescent devices
CN108682479A (en) A kind of flexible transparent electrode with UV filters function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10743673

Country of ref document: EP

Kind code of ref document: A1