WO2021171856A1 - Dust collector - Google Patents

Dust collector Download PDF

Info

Publication number
WO2021171856A1
WO2021171856A1 PCT/JP2021/002344 JP2021002344W WO2021171856A1 WO 2021171856 A1 WO2021171856 A1 WO 2021171856A1 JP 2021002344 W JP2021002344 W JP 2021002344W WO 2021171856 A1 WO2021171856 A1 WO 2021171856A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
intensity
unit
dust collecting
dust collector
Prior art date
Application number
PCT/JP2021/002344
Other languages
French (fr)
Japanese (ja)
Inventor
幸平 村上
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN202180004674.7A priority Critical patent/CN114144260A/en
Priority to EP21760283.8A priority patent/EP3991850A4/en
Priority to KR1020227002830A priority patent/KR20220020991A/en
Priority to JP2022503166A priority patent/JP7243915B2/en
Publication of WO2021171856A1 publication Critical patent/WO2021171856A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/68Control systems therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/12Cleaning the device by burning the trapped particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/32Checking the quality of the result or the well-functioning of the device

Definitions

  • the present invention relates to a dust collector.
  • Patent Document 1 PCT / JP2019 / 35325
  • Patent Document 2 Japanese Patent Application Laid-Open No. 5-172884
  • Patent Document 3 Japanese Patent Application Laid-Open No. 5-52889
  • a dust collector may include a dust collector that collects particles.
  • the dust collector may include a microwave generating unit that generates microwaves to be introduced into the dust collecting unit and burns the particles collected in the dust collecting unit by the microwaves.
  • the dust collector may include an intensity detector that detects the intensity of microwaves that have not been absorbed by the particles.
  • the microwave generating unit may control the intensity of the microwave introduced into the dust collecting unit based on the intensity of the microwave detected by the intensity detecting unit.
  • the intensity detection unit may have a derivation unit that derives at least a part of microwaves that have not been absorbed by the particles from the dust collection unit.
  • the intensity detecting unit may have a microwave absorber that absorbs microwaves derived from the dust collecting unit.
  • the intensity detection unit may have a temperature detection unit that detects the temperature of the microwave absorber.
  • the microwave generator is a microwave generator that is introduced into the dust collector when the temperature of the microwave absorber becomes higher than the first reference temperature while the first intensity microwave is introduced into the dust collector.
  • the strength may be switched to a second strength that is lower than the first strength.
  • the microwave generator is a microwave generator that is introduced into the dust collector when the temperature of the microwave absorber becomes lower than the second reference temperature while the second intensity microwave is introduced into the dust collector.
  • the strength may be switched to the first strength.
  • the dust collector may be provided with a flame detection unit that detects that a flame has been generated in the dust collection unit.
  • the microwave generating unit may reduce the intensity of the microwave introduced into the dust collecting unit, or may stop the introduction of the microwave into the dust collecting unit.
  • the dust collector is a calculation unit that calculates the amount of combustible particles accumulated in the dust collector based on the integrated time in which the microwave generator introduces the first-intensity microwave into the dust collector. May be equipped.
  • the dust collector may include a calculation unit that calculates the amount of particles introduced into the dust collection unit based on the slope of the rising waveform in the time waveform of the temperature detected by the temperature detection unit.
  • the intensity detection unit may store in advance the relationship between the temperature of the microwave absorber and the intensity of the microwave when the microwave is introduced into the dust collection unit in the state where no particles are present in the dust collection unit.
  • the intensity detecting unit may detect the intensity of the microwave not absorbed by the particles from the temperature of the microwave absorber when the microwave is introduced into the dust collecting unit in the state where the particles are present in the dust collecting unit. ..
  • the dust collector is a calculation unit that calculates the intensity of microwaves absorbed by particles from the difference between the intensity of microwaves detected by the intensity detector and the intensity of microwaves introduced into the dust collector by the microwave generator. May be equipped.
  • the calculation unit may calculate the amount of combustible particles remaining in the dust collection unit based on the time integral value of the intensity of the microwave absorbed by the particles.
  • Derivation units may be provided at a plurality of derivation positions of the dust collection unit.
  • the microwave absorber may absorb microwaves in which microwaves derived from a plurality of out-licensing units are combined.
  • the microwave generating unit may introduce microwaves into the dust collecting unit from a plurality of introduction positions of the dust collecting unit.
  • the microwave absorber may be provided at each derivation position.
  • the microwave generator may control the intensity of the microwave introduced from the corresponding introduction position based on the temperature of the microwave absorber at each lead-out position.
  • Exhaust gas emitted by the exhaust gas source may be introduced into the dust collector.
  • the microwave generating unit may control the intensity of the microwave introduced into the dust collecting unit based on the operating state of the exhaust gas source.
  • FIG. 1 is a block diagram showing a configuration example of a dust collector 100 according to an embodiment of the present invention.
  • the dust collector 100 collects particles contained in a target gas such as exhaust gas.
  • the target gas will be described as an exhaust gas.
  • Exhaust gas may be introduced into the dust collector 100 from the exhaust gas source 200.
  • the exhaust gas source 200 is, for example, an engine of a ship or the like. In this case, the dust collector 100 may be provided on the ship.
  • the exhaust gas introduced into the dust collector 100 includes particles such as nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM: Particulate Matter).
  • PM nitrogen oxides
  • SOx sulfur oxides
  • PM particulate matter
  • Particulate matter (PM) also known as black carbon, is generated by incomplete combustion of fossil fuels.
  • Particulate matter (PM) is fine particles containing carbon as a main component.
  • the dust collector 100 may collect the charged particles charged with the target particles. That is, the dust collector 100 may be an electrostatic precipitator. The dust collector 100 burns the collected charged particles by microwaves. As a result, it is possible to suppress excessive accumulation of the collected charged particles and continuously treat the exhaust gas.
  • the dust collector 100 of this example includes a charging unit 110, a dust collecting unit 120, a microwave generating unit 130, an intensity detecting unit 140, and a control unit 150.
  • Exhaust gas is introduced into the charged portion 110.
  • the charging unit 110 generates ions by corona discharge in a space through which exhaust gas passes to charge the target particles.
  • the exhaust gas containing the charged particles is sent to the dust collecting unit 120.
  • the dust collecting unit 120 collects charged particles.
  • the dust collecting unit 120 collects charged particles by Coulomb force by arranging a member to which a ground potential or the like is applied in a path through which the exhaust gas passes, for example.
  • the dust collecting unit 120 discharges the exhaust gas after collecting the charged particles.
  • the microwave generating unit 130 generates microwaves and introduces them into the dust collecting unit 120.
  • a microwave is an electromagnetic wave having a frequency of, for example, 300 MHz to 300 GHz.
  • the dust collector 100 of this example burns the charged particles collected by the dust collecting unit 120 by the microwave generated by the microwave generating unit 130.
  • the microwave introduced into the dust collecting unit 120 is absorbed by the charged particles, so that the charged particles are heated.
  • the charged particles can be burned by introducing microwaves to such an extent that the temperature of the charged particles becomes equal to or higher than the ignition point.
  • the heating rate Q of the object to be heated by the microwave is expressed by the following formula.
  • Q (1/2) ⁇
  • 2 indicates the heating rate due to Joule heating by an electric field.
  • is the conductivity of the fine particles contained in the object to be heated.
  • E is an electric field generated by microwaves. The application of an electric field to the object to be heated results in charge transfer in the object to be heated. This charge transfer, or current, results in Joule loss.
  • the first term represents heat generation due to this Joule loss.
  • 2 indicates the heating rate due to dielectric heating by an electric field.
  • is the angular frequency of the microwave
  • ⁇ '' is the imaginary part of the permittivity of the object to be heated.
  • 2 indicates the heating rate due to Joule heating by eddy current.
  • ⁇ '' is an imaginary part of the magnetic permeability of the object to be heated.
  • the dust collecting unit 120 may have an antenna that irradiates the internal collecting space with microwaves. By burning the charged particles using microwaves, the target particles can be removed with a simple and space-saving structure as compared with methods such as hammering, air cleaning, and water cleaning.
  • the intensity detecting unit 140 detects the intensity of the microwaves introduced into the dust collecting unit 120 that are not absorbed by the charged particles. This makes it possible to determine whether or not the microwave intensity is excessive.
  • the microwave generating unit 130 controls the intensity of the microwave introduced into the dust collecting unit 120 based on the intensity of the microwave detected by the intensity detecting unit 140.
  • the control unit 150 generates a control signal for controlling the intensity of the microwave in the microwave generation unit 130.
  • the control unit 150 may reduce the intensity of the microwave introduced by the microwave generating unit 130 into the dust collecting unit 120 as the intensity of the microwave detected by the intensity detecting unit 140 increases.
  • the control unit 150 may reduce the intensity of the microwave introduced by the microwave generating unit 130 into the dust collecting unit 120 when the intensity of the microwave detected by the intensity detecting unit 140 exceeds a predetermined threshold value. According to the dust collector 100 of this example, the intensity of the microwave introduced into the dust collector 120 can be appropriately controlled to suppress energy consumption.
  • the intensity detection unit 140 of this example has a lead-out unit 142, a microwave absorber 144, and a temperature detection unit 146.
  • the extraction unit 142 derives at least a part of the microwaves that have not been absorbed by the charged particles inside the dust collection unit 120 from the dust collection unit 120.
  • the lead-out unit 142 may have a circulator that allows microwaves in the direction exiting the dust collection unit 120 to pass through and shields the microwaves in the direction toward the dust collection unit 120.
  • the higher the intensity of the microwave remaining inside the dust collecting unit 120 the higher the intensity of the microwave derived by the out-licensing unit 142. Therefore, from the intensity of the microwave derived by the extraction unit 142, the intensity of the microwave not absorbed by the charged particles inside the dust collecting unit 120 can be detected.
  • the microwave absorber 144 absorbs the microwave derived from the dust collector 120.
  • the microwave absorber 144 contains a substance that generates heat by absorbing microwaves.
  • the microwave absorber 144 may contain water and may contain a ceramic such as silicon carbide or aluminum oxide.
  • the temperature detection unit 146 detects the temperature of the microwave absorber 144.
  • the temperature detection unit 146 includes, for example, a sensor such as a thermoelectric pair provided in contact with the microwave absorber 144.
  • the temperature detection unit 146 of this example notifies the control unit 150 of information indicating the temperature of the microwave absorber 144.
  • the control unit 150 controls the microwave generation unit 130 based on the information. It can be seen that the higher the temperature of the microwave absorber 144, the higher the intensity of the microwave that was not absorbed by the charged particles.
  • FIG. 2 is a schematic view showing an example of the dust collecting unit 120.
  • FIG. 2 schematically shows a perspective view of the dust collecting unit 120.
  • the shape of the dust collecting portion 120 in this example is cylindrical, but it may be another shape such as a box shape.
  • the dust collecting unit 120 of this example has an opening 42 for supplying exhaust gas, a gas flow path 44 for flowing exhaust gas, and an opening 46 for discharging exhaust gas.
  • the exhaust gas supplied to the opening 42 contains charged particles charged by the charging unit 110.
  • the gas flow path 44 has a partition wall 32 that surrounds a space through which gas flows.
  • the partition wall 32 may have a tubular shape. The charged particles are removed from the exhaust gas in the gas flow path 44.
  • the exhaust gas from which the charged particles have been removed is discharged from the opening 46.
  • the dust collecting unit 120 has a charged particle accumulating unit 36 for accumulating charged particles.
  • the charged particle accumulating portion 36 of this example has a partition wall 32, a space 41, and an outer wall 39 in the YZ plane.
  • the space 41 is arranged outside the partition wall 32.
  • the outer wall 39 is arranged outside the space 41 in the YZ plane.
  • the outer wall 39 may have a tubular shape.
  • the partition wall 32 is provided with an opening (described later) for passing charged particles.
  • the partition wall 32 and the outer wall 39 may be made of a metal material.
  • a potential capable of electrically attracting charged particles is applied to the outer wall 39.
  • the potential applied to the outer wall 39 may be the ground potential.
  • the charged particles contained in the exhaust gas passing through the gas flow path 44 pass through the opening (described later) of the partition wall 32 and adhere to the outer wall 39 or the like of the charged particle accumulating portion 36. By introducing microwaves into the space 41, charged particles adhering to the outer wall 39 and the like can be burned.
  • the outer wall 39 of this example has an opening 48 for introducing the microwave generated by the microwave generating unit 130 or deriving the microwave from the dust collecting unit 120.
  • the traveling direction of the exhaust gas in the dust collecting unit 120 is defined as the X-axis.
  • the two orthogonal axes on the plane perpendicular to the X axis be the Y axis and the Z axis.
  • a plurality of openings 48 may be arranged along the X-axis direction. Further, a plurality of openings 48 may be arranged along the outer periphery of the outer wall 39 on the YZ surface.
  • the opening 48 may be provided so as to penetrate the outer wall 39.
  • two openings 48 are arranged so as to sandwich the gas flow path 44 in the Y-axis direction.
  • the dust collecting unit 120 has reflecting units 34 for reflecting microwaves at both ends of the charged particle accumulating unit 36 in the X-axis direction. Reflecting portions 34 provided at one end and the other end in the X-axis direction may be provided so as to surround the space 41 in the YZ plane.
  • the microwave introduced from the opening 48 propagates through the charged particle accumulating portion 36 and is reflected by the reflecting portion 34 to form a traveling wave or a standing wave in the charged particle accumulating portion 36.
  • the traveling direction of the microwave is not limited to the direction parallel to the X-axis. Microwaves can form traveling or standing waves in various directions, such as the circumferential direction on the YZ plane of space 41.
  • the dust collecting unit 120 has a first electrode 30 and a second electrode.
  • the first electrode 30 may be arranged along the central axis of the dust collecting portion 120.
  • the first electrode 30 may have a rod shape having a length on the X-axis.
  • the first electrode 30 may be continuously provided along the X-axis direction from the opening 42 to the opening 46.
  • the second electrode may be arranged around the first electrode 30 in the YZ plane.
  • the partition wall 32 functions as a second electrode.
  • the partition wall 32 may have a tubular shape that accommodates the first electrode 30.
  • the first electrode 30 may be arranged at the center of the region surrounded by the partition wall 32 on the YZ surface. In the YZ plane, the gas flow path 44 may be sandwiched between the first electrode 30 and the partition wall 32.
  • the microwave generation unit 130 introduces microwaves into a plurality of openings 48.
  • the microwave generation unit 130 may introduce microwaves of the same intensity into the plurality of openings 48.
  • the microwave generator 130 may be able to control the intensity of the microwave for each opening 48.
  • the intensity detection unit 140 detects the intensity of microwaves derived from the plurality of openings 48.
  • the intensity detection unit 140 may detect the intensity by collecting microwaves derived from the plurality of openings 48. Microwaves derived from each aperture 48 may be introduced into a common waveguide.
  • the intensity detection unit 140 may detect the intensity of microwaves in the common waveguide.
  • the microwave generation unit 130 and the intensity detection unit 140 are provided in different openings 48.
  • the microwave generation unit 130 and the intensity detection unit 140 may be provided in the common opening 48. In this case, the intensity detection unit 140 detects the intensity of the microwave from the opening 48 toward the microwave generation unit 130.
  • FIG. 3 is a diagram showing an example of the configuration of the partition wall 32.
  • the partition wall 32 is shown by hatching. Further, in FIG. 3, the outer wall 39 is shown by a broken line.
  • the partition wall 32 has an opening 38 through which charged particles pass.
  • the opening 38 is a through hole connecting the space 41 and the gas flow path 44.
  • a plurality of openings 38 may be provided.
  • the openings 38 may be provided periodically in the X-axis direction and in the YZ plane.
  • the position of the opening 38 and the position of the opening 48 may be different in the X-axis direction.
  • the opening 48 and the partition wall 32 may overlap, and the opening 48 and the opening 38 do not have to overlap.
  • a part of the opening 48 may overlap with a part of the opening 38.
  • FIG. 4 is a diagram showing an example of a YZ cross section of the dust collecting portion 120 at the position X1 in the X-axis direction in FIG.
  • the cross section is a YZ plane passing through an opening 48, a first electrode 30, a gas flow path 44, a partition wall 32, an opening 38, a space 41 and an outer wall 39.
  • the partition wall 32 is provided so as to surround the gas flow path 44.
  • the first electrode 30 is provided at the center position of the cross section of the gas flow path 44.
  • the partition wall 32 is provided with an opening 38.
  • a space 41 is provided on the outside of the partition wall 32.
  • the space 41 is surrounded by an outer wall 39.
  • the outer wall 39 and the partition wall 32 may be provided concentrically around the first electrode 30.
  • the outer wall 39 is provided with an opening 48 for introducing or deriving microwaves.
  • the first electrode 30 may be set to a predetermined high potential of direct current with respect to the ground potential.
  • the predetermined high potential may be 10 kV or more.
  • the partition wall 32 (second electrode) and the outer wall 39 may be grounded.
  • a predetermined high voltage (for example, 10 kV or more) of direct current is applied between the first electrode 30 and the partition wall 32.
  • the microwave generation unit 130 introduces microwaves from the opening 48.
  • the microwave generation unit 130 and the opening 48 may be connected by a waveguide 131.
  • the microwave introduced from the opening 48 propagates mainly in the space 41 and is absorbed by the charged particles 28.
  • the microwaves absorbed by the charged particles 28 are small, so that the microwaves remaining in the space 41 are large.
  • the derivation unit 142 derives at least a part of the microwave remaining in the space 41 from the opening 48.
  • the opening 48 and the lead-out unit 142 may be connected by a waveguide 131.
  • the derivation unit 142 introduces the derived microwave into the microwave absorber 144.
  • the lead-out unit 142 and the microwave absorber 144 may be connected by a waveguide 131.
  • the lead-out unit 142 may have a circulator that shields microwaves from the waveguide 131 on the microwave absorber 144 side toward the opening 48.
  • the microwave absorber 144 absorbs the introduced microwave and generates heat. The higher the temperature of the microwave absorber 144, the higher the intensity of the microwave that was not absorbed by the charged particles. With such a configuration, the intensity of excess microwaves that are not absorbed by the charged particles 28 can be detected.
  • the microwave generation unit 130 and the lead-out unit 142 are connected to the two openings 48 arranged to face each other on the YZ surface.
  • the arrangement of the two openings 48 to which the microwave generation unit 130 and the lead-out unit 142 are connected is not limited to the example of FIG.
  • the two openings 48 to which the microwave generation unit 130 and the lead-out unit 142 are connected may be arranged at different positions in the X-axis direction.
  • the lead-out unit 142 and the microwave absorber 144 may be provided in common with respect to the plurality of openings 48. As a result, even when the microwaves remain unevenly in the space 41, the intensity of the microwaves in the space 41 can be averaged and detected.
  • FIG. 5 is a diagram showing an example of a time waveform of the temperature of the microwave absorber 144 and a time waveform of the intensity of the microwave introduced by the microwave generating unit 130 into the dust collecting unit 120.
  • the time when the microwave generating unit 130 is started is set to 0.
  • the microwave generation unit 130 generates microwaves of the first intensity P1. If the amount of the charged particles 28 in the space 41 is relatively small, the microwaves of the first intensity P1 cannot be completely absorbed by the charged particles 28, and the microwaves are introduced into the microwave absorber 144. As a result, the temperature of the microwave absorber 144 rises.
  • the microwave generating unit 130 When the temperature of the microwave absorber 144 becomes equal to or higher than the first reference temperature C1 (time t1) in a state where the microwave of the first intensity P1 is introduced into the dust collector 120, the microwave generating unit 130 is used. , The intensity (watt) of the microwave introduced into the dust collecting unit 120 is switched to the second intensity P2, which is lower than the first intensity P1.
  • the second intensity P2 may be 80% or less, 50% or less, or 0% of the first intensity P1.
  • the microwave generating unit 130 gradually reduces the intensity of the microwave until the temperature of the microwave absorber 144 begins to decrease. You may let me.
  • the first intensity P1 is in the range of 450W to 550W
  • the second intensity P2 is in the range of 350W to 450W.
  • the microwave introduced into the microwave absorber 144 becomes smaller or becomes smaller. Almost disappear. As a result, the temperature of the microwave absorber 144 is lowered.
  • the microwave generating unit 130 When the temperature of the microwave absorber 144 becomes equal to or lower than the second reference temperature C2 (time t2) in a state where the microwave of the second intensity P2 is introduced into the dust collector 120, the microwave generating unit 130 is used. , The intensity of the microwave introduced into the dust collecting unit 120 is switched to the first intensity P1. When the temperature of the microwave absorber 144 becomes equal to or lower than the second reference temperature C2, it can be determined that the intensity of the microwave introduced into the space 41 is less than the amount of the charged particles 28 in the space 41. Therefore, by switching the microwave intensity to the first intensity P1, the charged particles 28 in the space 41 can be easily burned. Further, the microwave generation unit 130 may gradually increase the intensity of the microwave until the temperature of the microwave absorber 144 starts to increase.
  • the microwave can be adjusted to the intensity according to the amount of charged particles 28 in the space 41. Therefore, it is possible to save microwave energy while preventing the charged particles 28 from remaining without burning.
  • FIG. 6 is a diagram showing another configuration example of the dust collector 100.
  • the dust collector 100 of this example includes a calculation unit 152 in addition to the configuration of the dust collector 100 described with reference to FIGS. 1 to 5.
  • Other configurations are the same as the dust collector 100 described with reference to FIGS. 1 to 5.
  • the calculation unit 152 the combustibles of the charged particles 28 are accumulated in the dust collection unit 120 based on the integrated time in which the microwave generation unit 130 introduces the microwave of the first intensity P1 into the dust collection unit 120.
  • the amount may be calculated. That is, the calculation unit 152 calculates the accumulated amount of combustibles based on the cumulative time of the period T2 shown in FIG. Since the charged particles 28 are mainly burned during the period T2 where the microwave intensity is high, the combustion amount of the charged particles 28 can be estimated by accumulating the period T2.
  • the calculation unit 152 may calculate the accumulated amount of combustibles based on the cumulative time of the period T1 shown in FIG.
  • the period T1 is a period from when the temperature of the microwave absorber 144 becomes equal to or lower than the second reference temperature C2 until the temperature reaches the first reference temperature C1.
  • the intensity detection unit 140 may calculate the intensity of the microwave remaining without being absorbed by the charged particles 28 from the temperature of the microwave absorber 144.
  • the temperature of the microwave absorber 144 varies depending on the intensity of the microwave.
  • the intensity detection unit 140 may acquire in advance the relationship between the temperature of the microwave absorber 144 and the intensity of the microwave when the microwave is introduced into the space 41 in the state where the charged particles 28 are not present in the space 41.
  • the temperature-intensity relationship with the intensity of the residual microwave in the space 41 can be acquired from the temperature of the microwave absorber 144 and stored in advance in the intensity detection unit 140.
  • the intensity detection unit 140 acquires the temperature of the microwave absorber 144 when the microwave is introduced into the space 41 in the state where the charged particles 28 are present in the space 41.
  • the intensity detection unit 140 may derive the intensity of the residual microwave corresponding to the temperature from the temperature-intensity relationship described above.
  • the calculation unit 152 may calculate the intensity of the microwave absorbed by the charged particles 28 from the difference between the intensity of the residual microwave and the intensity of the microwave introduced into the dust collecting unit 120. Further, the calculation unit 152 may calculate the amount of combustibles remaining in the space 41 based on the time integral value of the intensity of the microwave absorbed by the charged particles 28. The relationship between the time integral value of the intensity of the absorbed microwave and the amount of combustibles may be obtained experimentally in advance.
  • the calculation unit 152 may notify the user to that effect. This makes it easier to grasp the cleaning time of the dust collecting unit 120.
  • the calculation unit 152 may calculate the amount of particles introduced into the dust collecting unit 120 based on the slope of the rising waveform in the time waveform of the temperature detected by the temperature detecting unit 146.
  • the calculation unit 152 detects the slope of the rising waveform 147 shown in FIG. Since the difference between the first reference temperature C1 and the second reference temperature C2 is known, the calculation unit 152 may detect the period T1 shown in FIG. 5 as the slope of the rising waveform 147.
  • the smaller the amount of the charged particles 28 introduced into the dust collecting unit 120 the smaller the microwaves absorbed by the charged particles 28. Further, when the amount of the charged particles 28 is small, the heat insulating and heat retaining effect of the charged particles 28 itself becomes small.
  • the microwave generation unit 130 may control the first intensity P1 based on the slope of the rising waveform 147. For example, when the slope of the rising waveform 147 is small, it is estimated that the amount of charged particles 28 is small. In the microwave generation unit 130, the smaller the slope of the rising waveform 147, the larger the first intensity P1 may be. Thereby, the first intensity P1 of the microwave can be adjusted according to the amount of the charged particles 28.
  • FIG. 7 is a diagram showing another configuration example of the dust collector 100.
  • the dust collector 100 of this example includes a flame detection unit 160 in addition to the configuration of the dust collector 100 described with reference to FIGS. 1 to 6.
  • the other configuration is the same as the dust collector 100 of any aspect described with reference to FIGS. 1 to 6.
  • FIG. 7 illustrates a configuration in which a flame detection unit 160 is added to the configuration shown in FIG.
  • the flame detection unit 160 detects that a flame has occurred in the space 41 of the dust collection unit 120.
  • the charged particles 28 burn without generating a flame like charcoal by absorbing microwaves, but may generate a flame.
  • a flame may be generated in the space 41 due to reasons such as the intensity of microwaves being too strong, the amount of charged particles 28 being too small, or the exhaust gas containing a large amount of oil.
  • the exhaust gas may contain a large amount of oil.
  • the flame detection unit 160 may detect a flame by detecting a wavelength component of light generated when the flame is generated.
  • the flame detection unit 160 may detect the flame based on other parameters such as the amount of light and the temperature in the space 41.
  • the microwave generating unit 130 When a flame is generated in the space 41, the microwave generating unit 130 reduces the intensity of the microwave introduced into the dust collecting unit 120, or stops the introduction of the microwave into the dust collecting unit 120. When a flame is generated, the microwave generating unit 130 may reduce the intensity of the microwave introduced into the dust collecting unit 120 to the second intensity P2, or may decrease the intensity to less than the second intensity P2, and the intensity may be reduced. May be 0. As a result, the dust collecting unit 120 can be protected.
  • the microwave generating unit 130 may control the intensity of the microwave introduced into the dust collecting unit 120 based on the operating state of the exhaust gas source 200 when a flame is generated.
  • the cause of the flame may differ depending on the operating state of the exhaust gas source 200.
  • the exhaust gas source 200 is in a low load state, for example, and the exhaust gas contains a large amount of oil, there is a high possibility that a flame is generated due to the oil content. In this case, the amount of charged particles 28 introduced into the space 41 is likely to be normal.
  • the exhaust gas source 200 is in a normal load state, it is highly possible that the microwave intensity is too high compared to the amount of charged particles 28 introduced into the space 41.
  • the microwave generation unit 130 may reduce the intensity of microwaves when a flame is generated when the exhaust gas source 200 is in a normal load state, as compared with a case where a flame is generated when the exhaust gas source 200 is in a low load state. This makes it easier to control the intensity of microwaves according to the amount of charged particles 28.
  • the microwave generating unit 130 may restart the introduction of the microwave into the dust collecting unit 120 when the flame is extinguished.
  • the intensity of the microwave at the time of resuming the introduction may be set to the first intensity P1 or lower than the first intensity P1.
  • the dust collector 100 may include a plurality of dust collectors 120.
  • the dust collector 100 may stop the introduction of the exhaust gas and the introduction of the microwave into the dust collecting unit 120 in which the flame is detected.
  • the dust collector 100 may treat the exhaust gas by the dust collector 120 in which no flame is detected.
  • FIG. 8 is a diagram showing an arrangement example of the microwave generation unit 130 and the intensity detection unit 140.
  • the microwave generation unit 130 of this example is provided for each of the plurality of openings 48 with respect to the plurality of openings 48. As a result, the microwave generation unit 130 introduces the microwave into the dust collection unit 120 from the plurality of introduction positions of the dust collection unit 120.
  • the strength detection unit 140 is provided for each of the plurality of openings 48 with respect to the plurality of openings 48.
  • the intensity detection unit 140 derives microwaves from the plurality of extraction positions of the dust collection unit 120.
  • Each intensity detection unit 140 has the structure shown in FIG. That is, a lead-out unit 142, a microwave absorber 144, and a temperature detection unit 146 are provided for each opening 48.
  • Each microwave generation unit 130 controls the intensity of the microwave introduced into the corresponding opening 48 based on the intensity of the microwave detected by any of the intensity detection units 140.
  • Each microwave generation unit 130 may control the microwave intensity based on the detection result of the intensity detection unit 140 provided at the derivation position closest to the self-introduction position. Further, each microwave generation unit 130 may control the microwave intensity based on the detection result of the intensity detection unit 140 provided at the same derivation position as the self-introduction position and the position in the X-axis direction. good.
  • the charged particles 28 may be unevenly distributed in the space 41.
  • the intensity of the microwave derived from the extraction position in the vicinity of the region where the charged particles 28 are gathered may be relatively weak.
  • the microwave generation unit 130 and the intensity detection unit 140 are connected to different openings 48.
  • the microwave generation unit 130 and the intensity detection unit 140 may be connected to a common opening 48. In this case, since the introduction position and the derivation position of the microwave are the same, it becomes easy to control the intensity of the introduced microwave according to the distribution of the charged particles 28.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Provided is a dust collector comprising a dust collection part for collecting particles, a microwave generation part for generating microwaves to be introduced into the dust collection part and burning the particles collected in the dust collection part by the microwaves, and an intensity detection part for detecting the intensity of the microwaves unabsorbed by the particles, wherein the microwave generation part controls the intensity of the microwaves to be introduced into the dust collection part on the basis of the intensity of the microwaves detected by the intensity detection part. The intensity detection part may be provided with: a derivation part for deriving at least a portion of the microwaves unabsorbed by the particles from the dust collection part; a microwave absorber for absorbing the microwaves derived from the dust collection part; and a temperature detection part for detecting the temperature of the microwave absorber.

Description

集塵装置Dust collector
 本発明は、集塵装置に関する。 The present invention relates to a dust collector.
 従来、「集塵部に捕集された帯電粒子をマイクロ波によって燃焼させる」電気集塵装置が知られている(例えば、特許文献1参照)。また、マイクロ波を吸収する電波吸収体の温度から、マイクロ波のエネルギー量を検出する装置が知られている(例えば、特許文献2、3参照)。
 特許文献1 PCT/JP2019/35325
 特許文献2 特開平5-172884号公報
 特許文献3 特開平5-52889号公報
Conventionally, an electrostatic precipitator that "burns charged particles collected in a dust collecting portion by microwaves" is known (see, for example, Patent Document 1). Further, there are known devices that detect the amount of microwave energy from the temperature of a radio wave absorber that absorbs microwaves (see, for example, Patent Documents 2 and 3).
Patent Document 1 PCT / JP2019 / 35325
Patent Document 2 Japanese Patent Application Laid-Open No. 5-172884 Patent Document 3 Japanese Patent Application Laid-Open No. 5-52889
解決しようとする課題The problem to be solved
 集塵装置においては、エネルギー消費を低減することが好ましい。 In the dust collector, it is preferable to reduce energy consumption.
一般的開示General disclosure
 上記課題を解決するために、本発明の一つの態様においては、集塵装置を提供する。集塵装置は、粒子を捕集する集塵部を備えてよい。集塵装置は、集塵部に導入するマイクロ波を発生し、集塵部に捕集された粒子をマイクロ波により燃焼させるマイクロ波発生部を備えてよい。集塵装置は、粒子に吸収されなかったマイクロ波の強度を検出する強度検出部を備えてよい。マイクロ波発生部は、強度検出部が検出したマイクロ波の強度に基づいて、集塵部に導入するマイクロ波の強度を制御してよい。 In order to solve the above problems, in one aspect of the present invention, a dust collector is provided. The dust collector may include a dust collector that collects particles. The dust collector may include a microwave generating unit that generates microwaves to be introduced into the dust collecting unit and burns the particles collected in the dust collecting unit by the microwaves. The dust collector may include an intensity detector that detects the intensity of microwaves that have not been absorbed by the particles. The microwave generating unit may control the intensity of the microwave introduced into the dust collecting unit based on the intensity of the microwave detected by the intensity detecting unit.
 強度検出部は、粒子に吸収されなかったマイクロ波の少なくとも一部を集塵部から導出する導出部を有してよい。強度検出部は、集塵部から導出されたマイクロ波を吸収するマイクロ波吸収体を有してよい。強度検出部は、マイクロ波吸収体の温度を検出する温度検出部を有してよい。 The intensity detection unit may have a derivation unit that derives at least a part of microwaves that have not been absorbed by the particles from the dust collection unit. The intensity detecting unit may have a microwave absorber that absorbs microwaves derived from the dust collecting unit. The intensity detection unit may have a temperature detection unit that detects the temperature of the microwave absorber.
 マイクロ波発生部は、第1強度のマイクロ波を集塵部に導入している状態でマイクロ波吸収体の温度が第1基準温度以上になった場合に、集塵部に導入するマイクロ波の強度を第1強度よりも低い第2強度に切り替えてよい。 The microwave generator is a microwave generator that is introduced into the dust collector when the temperature of the microwave absorber becomes higher than the first reference temperature while the first intensity microwave is introduced into the dust collector. The strength may be switched to a second strength that is lower than the first strength.
 マイクロ波発生部は、第2強度のマイクロ波を集塵部に導入している状態でマイクロ波吸収体の温度が第2基準温度以下になった場合に、集塵部に導入するマイクロ波の強度を第1強度に切り替えてよい。 The microwave generator is a microwave generator that is introduced into the dust collector when the temperature of the microwave absorber becomes lower than the second reference temperature while the second intensity microwave is introduced into the dust collector. The strength may be switched to the first strength.
 集塵装置は、集塵部に火炎が発生したことを検出する火炎検出部を備えてよい。マイクロ波発生部は、火炎が発生した場合に、集塵部に導入するマイクロ波の強度を低下させ、または、マイクロ波の集塵部への導入を停止してよい。 The dust collector may be provided with a flame detection unit that detects that a flame has been generated in the dust collection unit. When a flame is generated, the microwave generating unit may reduce the intensity of the microwave introduced into the dust collecting unit, or may stop the introduction of the microwave into the dust collecting unit.
 集塵装置は、マイクロ波発生部が第1強度のマイクロ波を集塵部に導入している積算時間に基づいて、粒子の燃焼物が集塵部に堆積している量を算出する算出部を備えてよい。 The dust collector is a calculation unit that calculates the amount of combustible particles accumulated in the dust collector based on the integrated time in which the microwave generator introduces the first-intensity microwave into the dust collector. May be equipped.
 集塵装置は、温度検出部が検出する温度の時間波形における、立ち上がり波形の傾きに基づいて、集塵部に導入される粒子の量を算出する算出部を備えてよい。 The dust collector may include a calculation unit that calculates the amount of particles introduced into the dust collection unit based on the slope of the rising waveform in the time waveform of the temperature detected by the temperature detection unit.
 強度検出部は、集塵部に粒子が存在しない状態で集塵部にマイクロ波を導入した場合の、マイクロ波吸収体の温度とマイクロ波の強度との関係を予め記憶してよい。強度検出部は、集塵部に粒子が存在する状態で集塵部に前記マイクロ波を導入した場合のマイクロ波吸収体の温度から、粒子に吸収されなかったマイクロ波の強度を検出してよい。 The intensity detection unit may store in advance the relationship between the temperature of the microwave absorber and the intensity of the microwave when the microwave is introduced into the dust collection unit in the state where no particles are present in the dust collection unit. The intensity detecting unit may detect the intensity of the microwave not absorbed by the particles from the temperature of the microwave absorber when the microwave is introduced into the dust collecting unit in the state where the particles are present in the dust collecting unit. ..
 集塵装置は、強度検出部が検出したマイクロ波の強度と、マイクロ波発生部が集塵部に導入したマイクロ波の強度の差分から、粒子に吸収されたマイクロ波の強度を算出する算出部を備えてよい。 The dust collector is a calculation unit that calculates the intensity of microwaves absorbed by particles from the difference between the intensity of microwaves detected by the intensity detector and the intensity of microwaves introduced into the dust collector by the microwave generator. May be equipped.
 算出部は、粒子に吸収されたマイクロ波の強度の時間積分値に基づいて、集塵部に残留している粒子の燃焼物の量を算出してよい。 The calculation unit may calculate the amount of combustible particles remaining in the dust collection unit based on the time integral value of the intensity of the microwave absorbed by the particles.
 集塵部の複数の導出位置に導出部が設けられてよい。マイクロ波吸収体は、複数の導出部が導出したマイクロ波がまとめられたマイクロ波を吸収してよい。 Derivation units may be provided at a plurality of derivation positions of the dust collection unit. The microwave absorber may absorb microwaves in which microwaves derived from a plurality of out-licensing units are combined.
 マイクロ波発生部は、集塵部の複数の導入位置から、マイクロ波を集塵部に導入してよい。マイクロ波吸収体は、導出位置毎に設けられてよい。マイクロ波発生部は、それぞれの導出位置のマイクロ波吸収体の温度に基づいて、対応する導入位置から導入するマイクロ波の強度を制御してよい。 The microwave generating unit may introduce microwaves into the dust collecting unit from a plurality of introduction positions of the dust collecting unit. The microwave absorber may be provided at each derivation position. The microwave generator may control the intensity of the microwave introduced from the corresponding introduction position based on the temperature of the microwave absorber at each lead-out position.
 集塵部には、排ガス源が排出する排ガスが導入されてよい。マイクロ波発生部は、火炎が発生した場合に、排ガス源の動作状態に基づいて、集塵部に導入するマイクロ波の強度を制御してよい。 Exhaust gas emitted by the exhaust gas source may be introduced into the dust collector. When a flame is generated, the microwave generating unit may control the intensity of the microwave introduced into the dust collecting unit based on the operating state of the exhaust gas source.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 The outline of the above invention does not list all the necessary features of the present invention. Sub-combinations of these feature groups can also be inventions.
本発明の一つの実施形態に係る集塵装置100の構成例を示すブロック図である。It is a block diagram which shows the structural example of the dust collector 100 which concerns on one Embodiment of this invention. 集塵部120の一例を示す模式図である。It is a schematic diagram which shows an example of the dust collecting part 120. 隔壁32の構成の一例を示す図である。It is a figure which shows an example of the structure of a partition wall 32. 図3におけるX軸方向の位置X1における、集塵部120のYZ断面の一例を示す図である。It is a figure which shows an example of the YZ cross section of the dust collecting part 120 at the position X1 in the X-axis direction in FIG. マイクロ波吸収体144の温度の時間波形と、マイクロ波発生部130が集塵部120に導入するマイクロ波の強度の時間波形の一例を示す図である。It is a figure which shows an example of the time waveform of the temperature of the microwave absorber 144, and the time waveform of the intensity of the microwave introduced by the microwave generation part 130 into the dust collecting part 120. 集塵装置100の他の構成例を示す図である。It is a figure which shows the other structural example of the dust collector 100. 集塵装置100の他の構成例を示す図である。It is a figure which shows the other structural example of the dust collector 100. マイクロ波発生部130および強度検出部140の配置例を示す図である。It is a figure which shows the arrangement example of the microwave generation part 130 and the intensity detection part 140.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the inventions claimed. Also, not all combinations of features described in the embodiments are essential to the means of solving the invention.
 図1は、本発明の一つの実施形態に係る集塵装置100の構成例を示すブロック図である。集塵装置100は、排ガス等の対象気体に含まれる粒子を捕集する。本明細書では、対象気体を排ガスとして説明する。集塵装置100には、排ガス源200から排ガスが導入されてよい。排ガス源200は、例えば船舶等のエンジンである。この場合、集塵装置100は、船舶に設けられてよい。 FIG. 1 is a block diagram showing a configuration example of a dust collector 100 according to an embodiment of the present invention. The dust collector 100 collects particles contained in a target gas such as exhaust gas. In this specification, the target gas will be described as an exhaust gas. Exhaust gas may be introduced into the dust collector 100 from the exhaust gas source 200. The exhaust gas source 200 is, for example, an engine of a ship or the like. In this case, the dust collector 100 may be provided on the ship.
 集塵装置100に導入される排ガスには、窒素酸化物(NOx)、硫黄酸化物(SOx)および粒子状物質(PM:Particle Matter)等の粒子が含まれる。粒子状物質(PM)はブラックカーボンとも称され、化石燃料の不完全燃焼により発生する。粒子状物質(PM)は、炭素を主成分とする微粒子である。 The exhaust gas introduced into the dust collector 100 includes particles such as nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM: Particulate Matter). Particulate matter (PM), also known as black carbon, is generated by incomplete combustion of fossil fuels. Particulate matter (PM) is fine particles containing carbon as a main component.
 集塵装置100は、対象粒子を帯電させた帯電粒子を捕集してよい。つまり集塵装置100は電気集塵装置であってよい。集塵装置100は、捕集した帯電粒子をマイクロ波により燃焼させる。これにより、捕集した帯電粒子が過剰に堆積することを抑制し、継続的に排ガスを処理できる。 The dust collector 100 may collect the charged particles charged with the target particles. That is, the dust collector 100 may be an electrostatic precipitator. The dust collector 100 burns the collected charged particles by microwaves. As a result, it is possible to suppress excessive accumulation of the collected charged particles and continuously treat the exhaust gas.
 本例の集塵装置100は、帯電部110、集塵部120、マイクロ波発生部130、強度検出部140および制御部150を備える。帯電部110には、排ガスが導入される。帯電部110は、例えば排ガスが通過する空間にコロナ放電によりイオンを発生させ、対象粒子を帯電させる。帯電粒子を含む排ガスは、集塵部120に送られる。 The dust collector 100 of this example includes a charging unit 110, a dust collecting unit 120, a microwave generating unit 130, an intensity detecting unit 140, and a control unit 150. Exhaust gas is introduced into the charged portion 110. For example, the charging unit 110 generates ions by corona discharge in a space through which exhaust gas passes to charge the target particles. The exhaust gas containing the charged particles is sent to the dust collecting unit 120.
 集塵部120は、帯電粒子を捕集する。集塵部120は、例えば排ガスが通過する経路に接地電位等を印加した部材を配置することで、帯電粒子をクーロン力によって捕集する。集塵部120は、帯電粒子を捕集した後の排ガスを排出する。 The dust collecting unit 120 collects charged particles. The dust collecting unit 120 collects charged particles by Coulomb force by arranging a member to which a ground potential or the like is applied in a path through which the exhaust gas passes, for example. The dust collecting unit 120 discharges the exhaust gas after collecting the charged particles.
 マイクロ波発生部130は、マイクロ波を発生して、集塵部120の内部に導入する。マイクロ波とは、例えば300MHzから300GHzの周波数を有する電磁波である。 The microwave generating unit 130 generates microwaves and introduces them into the dust collecting unit 120. A microwave is an electromagnetic wave having a frequency of, for example, 300 MHz to 300 GHz.
 本例の集塵装置100は、集塵部120に捕集された帯電粒子を、マイクロ波発生部130が発生したマイクロ波により燃焼させる。集塵部120に導入されたマイクロ波が、帯電粒子に吸収されることで、帯電粒子が加熱する。帯電粒子の温度が発火点以上となる程度にマイクロ波を導入することで、帯電粒子を燃焼させることができる。一般に、マイクロ波による被加熱物の加熱率Qは、以下の式により表される。
 Q=(1/2)σ|E|+(1/2)ωε''|E|+(1/2)ωμ''|B|
The dust collector 100 of this example burns the charged particles collected by the dust collecting unit 120 by the microwave generated by the microwave generating unit 130. The microwave introduced into the dust collecting unit 120 is absorbed by the charged particles, so that the charged particles are heated. The charged particles can be burned by introducing microwaves to such an extent that the temperature of the charged particles becomes equal to or higher than the ignition point. Generally, the heating rate Q of the object to be heated by the microwave is expressed by the following formula.
Q = (1/2) σ | E | 2 + (1/2) ωε'' | E | 2 + (1/2) ωμ'' | B | 2
 第1項である(1/2)σ|E|は、電界によるジュール加熱による加熱率を示す。ここで、σは被加熱物に含まれる微粒子の導電率である。また、Eはマイクロ波による電界である。被加熱物への電界の印加は、被加熱物中において電荷移動をもたらす。この電荷移動、即ち電流は、ジュール損失をもたらす。第1項は、このジュール損失による発熱を表す。 The first term (1/2) σ | E | 2 indicates the heating rate due to Joule heating by an electric field. Here, σ is the conductivity of the fine particles contained in the object to be heated. Further, E is an electric field generated by microwaves. The application of an electric field to the object to be heated results in charge transfer in the object to be heated. This charge transfer, or current, results in Joule loss. The first term represents heat generation due to this Joule loss.
 第2項である(1/2)ωε''|E|は、電界による誘電加熱による加熱率を示す。ここで、ωはマイクロ波の角周波数、ε''は被加熱物の誘電率の虚数部である。被加熱物へ電界が印加されると、電界の変化に対して、被加熱物に含まれる電気双極子が時間遅れを伴って追従する。この電気双極子の時間遅れを伴う追従は、損失をもたらす。第2項は、この損失による発熱を表す。 The second term (1/2) ωε'' | E | 2 indicates the heating rate due to dielectric heating by an electric field. Here, ω is the angular frequency of the microwave, and ε'' is the imaginary part of the permittivity of the object to be heated. When an electric field is applied to the object to be heated, the electric dipole contained in the object to be heated follows the change in the electric field with a time delay. The time-lagging follow-up of this electric dipole results in loss. The second term represents heat generation due to this loss.
 第3項である(1/2)ωμ''|B|は、渦電流によるジュール加熱による加熱率を示す。ここで、μ''は被加熱物の透磁率の虚数部である。被加熱物へ磁界が印加されると、磁界の変化を妨げる向きに渦電流が発生する。この渦電流は、ジュール損失をもたらす。第3項は、このジュール損失による発熱を表す。 The third term (1/2) ωμ'' | B | 2 indicates the heating rate due to Joule heating by eddy current. Here, μ'' is an imaginary part of the magnetic permeability of the object to be heated. When a magnetic field is applied to the object to be heated, an eddy current is generated in a direction that hinders the change in the magnetic field. This eddy current results in Joule loss. The third term represents heat generation due to this Joule loss.
 集塵部120は、内部の捕集空間にマイクロ波を照射するアンテナを有してよい。マイクロ波を用いて帯電粒子を燃焼させることで、槌打、空気洗浄、水洗浄等の方法と比較して、対象粒子を簡易、且つ、省スペースな構造で除去できる。 The dust collecting unit 120 may have an antenna that irradiates the internal collecting space with microwaves. By burning the charged particles using microwaves, the target particles can be removed with a simple and space-saving structure as compared with methods such as hammering, air cleaning, and water cleaning.
 集塵部120に導入されたマイクロ波のうち、一部の成分は帯電粒子に吸収され、残りの成分は帯電粒子に吸収されずに残留する。集塵部120に捕集された帯電粒子の量に比べて過剰な強度のマイクロ波を導入すると、帯電粒子で吸収しきれないマイクロ波が残留する。強度検出部140は、集塵部120に導入されたマイクロ波のうち、帯電粒子に吸収されなかったマイクロ波の強度を検出する。これにより、マイクロ波の強度が過剰であるか否かを判別できる。 Of the microwaves introduced into the dust collector 120, some components are absorbed by the charged particles, and the remaining components remain without being absorbed by the charged particles. When microwaves having an excessive intensity compared to the amount of charged particles collected in the dust collecting unit 120 are introduced, microwaves that cannot be completely absorbed by the charged particles remain. The intensity detecting unit 140 detects the intensity of the microwaves introduced into the dust collecting unit 120 that are not absorbed by the charged particles. This makes it possible to determine whether or not the microwave intensity is excessive.
 マイクロ波発生部130は、強度検出部140が検出したマイクロ波の強度に基づいて、集塵部120に導入するマイクロ波の強度を制御する。本例においては、制御部150が、マイクロ波発生部130におけるマイクロ波の強度を制御するための制御信号を生成する。制御部150は、強度検出部140が検出したマイクロ波の強度が大きいほど、マイクロ波発生部130が集塵部120に導入するマイクロ波の強度を小さくしてよい。制御部150は、強度検出部140が検出したマイクロ波の強度が所定の閾値を超えた場合に、マイクロ波発生部130が集塵部120に導入するマイクロ波の強度を小さくしてもよい。本例の集塵装置100によれば、集塵部120に導入するマイクロ波の強度を適切に制御して、エネルギー消費を抑制できる。 The microwave generating unit 130 controls the intensity of the microwave introduced into the dust collecting unit 120 based on the intensity of the microwave detected by the intensity detecting unit 140. In this example, the control unit 150 generates a control signal for controlling the intensity of the microwave in the microwave generation unit 130. The control unit 150 may reduce the intensity of the microwave introduced by the microwave generating unit 130 into the dust collecting unit 120 as the intensity of the microwave detected by the intensity detecting unit 140 increases. The control unit 150 may reduce the intensity of the microwave introduced by the microwave generating unit 130 into the dust collecting unit 120 when the intensity of the microwave detected by the intensity detecting unit 140 exceeds a predetermined threshold value. According to the dust collector 100 of this example, the intensity of the microwave introduced into the dust collector 120 can be appropriately controlled to suppress energy consumption.
 本例の強度検出部140は、導出部142、マイクロ波吸収体144および温度検出部146を有する。導出部142は、集塵部120の内部において帯電粒子に吸収されなかったマイクロ波の少なくとも一部を、集塵部120から導出する。導出部142は、集塵部120から出ていく方向のマイクロ波を通過させ、集塵部120に向かう方向のマイクロ波を遮蔽するサーキュレーターを有してよい。集塵部120の内部に残留するマイクロ波の強度が高いほど、導出部142が導出するマイクロ波の強度は高くなる。このため、導出部142が導出するマイクロ波の強度から、集塵部120の内部において帯電粒子に吸収されなかったマイクロ波の強度を検出できる。 The intensity detection unit 140 of this example has a lead-out unit 142, a microwave absorber 144, and a temperature detection unit 146. The extraction unit 142 derives at least a part of the microwaves that have not been absorbed by the charged particles inside the dust collection unit 120 from the dust collection unit 120. The lead-out unit 142 may have a circulator that allows microwaves in the direction exiting the dust collection unit 120 to pass through and shields the microwaves in the direction toward the dust collection unit 120. The higher the intensity of the microwave remaining inside the dust collecting unit 120, the higher the intensity of the microwave derived by the out-licensing unit 142. Therefore, from the intensity of the microwave derived by the extraction unit 142, the intensity of the microwave not absorbed by the charged particles inside the dust collecting unit 120 can be detected.
 マイクロ波吸収体144は、集塵部120から導出されたマイクロ波を吸収する。マイクロ波吸収体144は、マイクロ波を吸収することで発熱する物質を含む。マイクロ波吸収体144は、水を含んでよく、炭化珪素または酸化アルミニウム等のセラミックを含んでもよい。 The microwave absorber 144 absorbs the microwave derived from the dust collector 120. The microwave absorber 144 contains a substance that generates heat by absorbing microwaves. The microwave absorber 144 may contain water and may contain a ceramic such as silicon carbide or aluminum oxide.
 温度検出部146は、マイクロ波吸収体144の温度を検出する。温度検出部146は、例えばマイクロ波吸収体144と接して設けられた熱電対等のセンサを含む。本例の温度検出部146は、マイクロ波吸収体144の温度を示す情報を、制御部150に通知する。上述したように制御部150は、当該情報に基づいてマイクロ波発生部130を制御する。マイクロ波吸収体144の温度が高いほど、帯電粒子に吸収されなかったマイクロ波の強度が高いことがわかる。 The temperature detection unit 146 detects the temperature of the microwave absorber 144. The temperature detection unit 146 includes, for example, a sensor such as a thermoelectric pair provided in contact with the microwave absorber 144. The temperature detection unit 146 of this example notifies the control unit 150 of information indicating the temperature of the microwave absorber 144. As described above, the control unit 150 controls the microwave generation unit 130 based on the information. It can be seen that the higher the temperature of the microwave absorber 144, the higher the intensity of the microwave that was not absorbed by the charged particles.
 図2は、集塵部120の一例を示す模式図である。図2においては、集塵部120の斜視図を模式的に示している。本例の集塵部120の形状は円筒型であるが、箱型等、他の形状であってもよい。 FIG. 2 is a schematic view showing an example of the dust collecting unit 120. FIG. 2 schematically shows a perspective view of the dust collecting unit 120. The shape of the dust collecting portion 120 in this example is cylindrical, but it may be another shape such as a box shape.
 本例の集塵部120は、排ガスが供給される開口42、排ガスが流れるガス流路44、および、排ガスが排出される開口46を有する。開口42に供給される排ガスは、帯電部110により帯電させられた帯電粒子を含む。ガス流路44は、ガスが流れる空間を囲む隔壁32を有する。隔壁32は筒形状を有してよい。帯電粒子は、ガス流路44において排ガスから除去される。帯電粒子が除去された排ガスは、開口46から排出される。 The dust collecting unit 120 of this example has an opening 42 for supplying exhaust gas, a gas flow path 44 for flowing exhaust gas, and an opening 46 for discharging exhaust gas. The exhaust gas supplied to the opening 42 contains charged particles charged by the charging unit 110. The gas flow path 44 has a partition wall 32 that surrounds a space through which gas flows. The partition wall 32 may have a tubular shape. The charged particles are removed from the exhaust gas in the gas flow path 44. The exhaust gas from which the charged particles have been removed is discharged from the opening 46.
 集塵部120は、帯電粒子を集積する帯電粒子集積部36を有する。本例の帯電粒子集積部36は、YZ面内において隔壁32、空間41および外壁39を有する。空間41は、隔壁32の外側に配置される。外壁39は、YZ面内において空間41の外側に配置される。外壁39は筒形状を有してよい。また、隔壁32には、帯電粒子を通過させるための開口(後述)が設けられる。隔壁32および外壁39は、金属材料で形成されてよい。 The dust collecting unit 120 has a charged particle accumulating unit 36 for accumulating charged particles. The charged particle accumulating portion 36 of this example has a partition wall 32, a space 41, and an outer wall 39 in the YZ plane. The space 41 is arranged outside the partition wall 32. The outer wall 39 is arranged outside the space 41 in the YZ plane. The outer wall 39 may have a tubular shape. Further, the partition wall 32 is provided with an opening (described later) for passing charged particles. The partition wall 32 and the outer wall 39 may be made of a metal material.
 外壁39には、帯電粒子を電気的に吸引できる電位が印加される。外壁39に印加される電位は、接地電位であってよい。ガス流路44を通過する排ガスに含まれる帯電粒子は、隔壁32の開口(後述)を通って、帯電粒子集積部36の外壁39等に付着する。空間41にマイクロ波を導入することで、外壁39等に付着した帯電粒子を燃焼させることができる。 A potential capable of electrically attracting charged particles is applied to the outer wall 39. The potential applied to the outer wall 39 may be the ground potential. The charged particles contained in the exhaust gas passing through the gas flow path 44 pass through the opening (described later) of the partition wall 32 and adhere to the outer wall 39 or the like of the charged particle accumulating portion 36. By introducing microwaves into the space 41, charged particles adhering to the outer wall 39 and the like can be burned.
 本例の外壁39は、マイクロ波発生部130により発生されたマイクロ波を導入し、または、マイクロ波を集塵部120から導出するための開口48を有する。本例において、集塵部120における排ガスの進行方向をX軸とする。X軸と垂直な面における2つの直交軸をY軸およびZ軸とする。開口48は、X軸方向に沿って複数配置されていてよい。また開口48は、外壁39のYZ面における外周に沿って複数配置されていてもよい。開口48は、外壁39を貫通して設けられてよい。図2の例では、2つの開口48が、Y軸方向においてガス流路44を挟んで配置されている。 The outer wall 39 of this example has an opening 48 for introducing the microwave generated by the microwave generating unit 130 or deriving the microwave from the dust collecting unit 120. In this example, the traveling direction of the exhaust gas in the dust collecting unit 120 is defined as the X-axis. Let the two orthogonal axes on the plane perpendicular to the X axis be the Y axis and the Z axis. A plurality of openings 48 may be arranged along the X-axis direction. Further, a plurality of openings 48 may be arranged along the outer periphery of the outer wall 39 on the YZ surface. The opening 48 may be provided so as to penetrate the outer wall 39. In the example of FIG. 2, two openings 48 are arranged so as to sandwich the gas flow path 44 in the Y-axis direction.
 集塵部120は、帯電粒子集積部36のX軸方向における両端に、マイクロ波を反射させるための反射部34を有する。X軸方向における一端および他端に設けられる反射部34は、YZ面内において空間41を囲うように設けられてよい。開口48から導入されたマイクロ波は、帯電粒子集積部36を伝搬して反射部34により反射し、帯電粒子集積部36において進行波または定在波を形成する。なおマイクロ波の進行方向は、X軸と平行な方向に限定されない。マイクロ波は、空間41のYZ面における周方向等、多様な方向に進行波または定在波を形成し得る。 The dust collecting unit 120 has reflecting units 34 for reflecting microwaves at both ends of the charged particle accumulating unit 36 in the X-axis direction. Reflecting portions 34 provided at one end and the other end in the X-axis direction may be provided so as to surround the space 41 in the YZ plane. The microwave introduced from the opening 48 propagates through the charged particle accumulating portion 36 and is reflected by the reflecting portion 34 to form a traveling wave or a standing wave in the charged particle accumulating portion 36. The traveling direction of the microwave is not limited to the direction parallel to the X-axis. Microwaves can form traveling or standing waves in various directions, such as the circumferential direction on the YZ plane of space 41.
 集塵部120は、第1電極30および第2電極を有する。第1電極30は、集塵部120の中心軸に沿って配置されてよい。第1電極30は、X軸に長手を有する棒形状を有してよい。第1電極30は、開口42から開口46まで、X軸方向に沿って連続的に設けられてよい。第2電極は、YZ面内において第1電極30の周囲に配置されてよい。本例では、隔壁32が第2電極として機能する。隔壁32は、第1電極30を収容する筒形状を有してよい。第1電極30は、YZ面において隔壁32が囲む領域の中心に配置されていてよい。YZ面内において、ガス流路44は第1電極30と隔壁32とに挟まれてよい。 The dust collecting unit 120 has a first electrode 30 and a second electrode. The first electrode 30 may be arranged along the central axis of the dust collecting portion 120. The first electrode 30 may have a rod shape having a length on the X-axis. The first electrode 30 may be continuously provided along the X-axis direction from the opening 42 to the opening 46. The second electrode may be arranged around the first electrode 30 in the YZ plane. In this example, the partition wall 32 functions as a second electrode. The partition wall 32 may have a tubular shape that accommodates the first electrode 30. The first electrode 30 may be arranged at the center of the region surrounded by the partition wall 32 on the YZ surface. In the YZ plane, the gas flow path 44 may be sandwiched between the first electrode 30 and the partition wall 32.
 本例において、マイクロ波発生部130は、複数の開口48にマイクロ波を導入する。マイクロ波発生部130は、複数の開口48に同一強度のマイクロ波を導入してよい。他の例では、マイクロ波発生部130は、開口48毎に、マイクロ波の強度を制御可能であってもよい。 In this example, the microwave generation unit 130 introduces microwaves into a plurality of openings 48. The microwave generation unit 130 may introduce microwaves of the same intensity into the plurality of openings 48. In another example, the microwave generator 130 may be able to control the intensity of the microwave for each opening 48.
 強度検出部140は、複数の開口48から導出されるマイクロ波の強度を検出する。強度検出部140は、複数の開口48から導出されるマイクロ波をまとめて、強度を検出してよい。それぞれの開口48から導出されたマイクロ波は、共通の導波路に導入されてよい。強度検出部140は、当該共通の導波路におけるマイクロ波の強度を検出してよい。 The intensity detection unit 140 detects the intensity of microwaves derived from the plurality of openings 48. The intensity detection unit 140 may detect the intensity by collecting microwaves derived from the plurality of openings 48. Microwaves derived from each aperture 48 may be introduced into a common waveguide. The intensity detection unit 140 may detect the intensity of microwaves in the common waveguide.
 図2の例では、マイクロ波発生部130と強度検出部140は、異なる開口48に設けられている。他の例では、マイクロ波発生部130と、強度検出部140は、共通の開口48に設けられていてもよい。この場合、強度検出部140は、開口48からマイクロ波発生部130に向かうマイクロ波の強度を検出する。 In the example of FIG. 2, the microwave generation unit 130 and the intensity detection unit 140 are provided in different openings 48. In another example, the microwave generation unit 130 and the intensity detection unit 140 may be provided in the common opening 48. In this case, the intensity detection unit 140 detects the intensity of the microwave from the opening 48 toward the microwave generation unit 130.
 図3は、隔壁32の構成の一例を示す図である。図3において、隔壁32をハッチングにて示している。また、図3においては外壁39を破線で示している。隔壁32は、帯電粒子が通る開口38を有する。開口38は、空間41とガス流路44とを接続する貫通孔である。開口38は、複数設けられてよい。開口38は、X軸方向およびYZ面内において周期的に設けられてよい。 FIG. 3 is a diagram showing an example of the configuration of the partition wall 32. In FIG. 3, the partition wall 32 is shown by hatching. Further, in FIG. 3, the outer wall 39 is shown by a broken line. The partition wall 32 has an opening 38 through which charged particles pass. The opening 38 is a through hole connecting the space 41 and the gas flow path 44. A plurality of openings 38 may be provided. The openings 38 may be provided periodically in the X-axis direction and in the YZ plane.
 X軸方向において、開口38の位置と開口48の位置は、異なっていてよい。集塵部120を+Y軸方向から-Y軸方向に見た場合に、開口48と隔壁32とは重なってよく、開口48と開口38は重ならなくてよい。集塵部120を+Y軸方向から-Y軸方向に見た場合に、開口48の一部は開口38の一部と重なっていてもよい。 The position of the opening 38 and the position of the opening 48 may be different in the X-axis direction. When the dust collecting portion 120 is viewed from the + Y-axis direction to the −Y-axis direction, the opening 48 and the partition wall 32 may overlap, and the opening 48 and the opening 38 do not have to overlap. When the dust collector 120 is viewed from the + Y-axis direction to the −Y-axis direction, a part of the opening 48 may overlap with a part of the opening 38.
 図4は、図3におけるX軸方向の位置X1における、集塵部120のYZ断面の一例を示す図である。当該断面は、開口48、第1電極30、ガス流路44、隔壁32、開口38、空間41および外壁39を通るYZ面である。 FIG. 4 is a diagram showing an example of a YZ cross section of the dust collecting portion 120 at the position X1 in the X-axis direction in FIG. The cross section is a YZ plane passing through an opening 48, a first electrode 30, a gas flow path 44, a partition wall 32, an opening 38, a space 41 and an outer wall 39.
 隔壁32は、ガス流路44を囲んで設けられている。ガス流路44の当該断面の中心位置には第1電極30が設けられる。隔壁32には、開口38が設けられている。隔壁32の外側には、空間41が設けられる。空間41は、外壁39で囲まれている。外壁39および隔壁32は、第1電極30を中心とした同心円状に設けられてよい。外壁39には、マイクロ波を導入または導出するための開口48が設けられる。 The partition wall 32 is provided so as to surround the gas flow path 44. The first electrode 30 is provided at the center position of the cross section of the gas flow path 44. The partition wall 32 is provided with an opening 38. A space 41 is provided on the outside of the partition wall 32. The space 41 is surrounded by an outer wall 39. The outer wall 39 and the partition wall 32 may be provided concentrically around the first electrode 30. The outer wall 39 is provided with an opening 48 for introducing or deriving microwaves.
 第1電極30は、接地電位に対して直流の所定の高電位に設定されてよい。所定の高電位とは、10kV以上であってよい。隔壁32(第2電極)および外壁39は、接地されてよい。第1電極30と隔壁32との間には、直流の所定の高電圧(例えば10kV以上)が印加される。 The first electrode 30 may be set to a predetermined high potential of direct current with respect to the ground potential. The predetermined high potential may be 10 kV or more. The partition wall 32 (second electrode) and the outer wall 39 may be grounded. A predetermined high voltage (for example, 10 kV or more) of direct current is applied between the first electrode 30 and the partition wall 32.
 第1電極30と隔壁32(第2電極)との間に直流の所定の高電圧が印加されると、第1電極30と隔壁32との間のガス流路44にコロナ放電が生じる。これにより、ガス流路44を流れるガスに含まれる粒子が帯電する。帯電粒子28は、隔壁32および外壁39に引き付けられ、開口38を通り空間41内に移動する。 When a predetermined high voltage of direct current is applied between the first electrode 30 and the partition wall 32 (second electrode), a corona discharge occurs in the gas flow path 44 between the first electrode 30 and the partition wall 32. As a result, the particles contained in the gas flowing through the gas flow path 44 are charged. The charged particles 28 are attracted to the partition wall 32 and the outer wall 39, pass through the opening 38, and move into the space 41.
 マイクロ波発生部130は、開口48からマイクロ波を導入する。マイクロ波発生部130と開口48とは導波路131で接続されてよい。開口48から導入されたマイクロ波は、主に空間41内を伝搬し、帯電粒子28に吸収される。空間41の帯電粒子28の量が少ないと、帯電粒子28に吸収されるマイクロ波が少なくなるので、空間41に残留するマイクロ波が多くなる。 The microwave generation unit 130 introduces microwaves from the opening 48. The microwave generation unit 130 and the opening 48 may be connected by a waveguide 131. The microwave introduced from the opening 48 propagates mainly in the space 41 and is absorbed by the charged particles 28. When the amount of the charged particles 28 in the space 41 is small, the microwaves absorbed by the charged particles 28 are small, so that the microwaves remaining in the space 41 are large.
 導出部142は、空間41に残留しているマイクロ波の少なくとも一部を、開口48から導出する。開口48と導出部142は、導波路131で接続されてよい。導出部142は、導出したマイクロ波をマイクロ波吸収体144に導入する。導出部142とマイクロ波吸収体144は導波路131により接続されてよい。導出部142は、マイクロ波吸収体144側の導波路131から開口48に向かうマイクロ波を遮蔽するサーキュレーターを有してよい。マイクロ波吸収体144は、導入されたマイクロ波を吸収して発熱する。マイクロ波吸収体144の温度が高いほど、帯電粒子に吸収されなかったマイクロ波の強度が高い。このような構成より、帯電粒子28に吸収されない余剰なマイクロ波の強度を検出できる。 The derivation unit 142 derives at least a part of the microwave remaining in the space 41 from the opening 48. The opening 48 and the lead-out unit 142 may be connected by a waveguide 131. The derivation unit 142 introduces the derived microwave into the microwave absorber 144. The lead-out unit 142 and the microwave absorber 144 may be connected by a waveguide 131. The lead-out unit 142 may have a circulator that shields microwaves from the waveguide 131 on the microwave absorber 144 side toward the opening 48. The microwave absorber 144 absorbs the introduced microwave and generates heat. The higher the temperature of the microwave absorber 144, the higher the intensity of the microwave that was not absorbed by the charged particles. With such a configuration, the intensity of excess microwaves that are not absorbed by the charged particles 28 can be detected.
 図4の例においては、YZ面において対向して配置された2つの開口48に、マイクロ波発生部130と、導出部142が接続されている。マイクロ波発生部130と導出部142が接続される2つの開口48の配置は、図4の例に限定されない。マイクロ波発生部130と導出部142が接続される2つの開口48は、X軸方向において異なる位置に配置されてもよい。 In the example of FIG. 4, the microwave generation unit 130 and the lead-out unit 142 are connected to the two openings 48 arranged to face each other on the YZ surface. The arrangement of the two openings 48 to which the microwave generation unit 130 and the lead-out unit 142 are connected is not limited to the example of FIG. The two openings 48 to which the microwave generation unit 130 and the lead-out unit 142 are connected may be arranged at different positions in the X-axis direction.
 また、導出部142およびマイクロ波吸収体144は、図2に示したように、複数の開口48に対して共通に設けられてもよい。これにより、空間41内にマイクロ波が偏って残留している場合であっても、空間41内のマイクロ波の強度を平均化して検出できる。 Further, as shown in FIG. 2, the lead-out unit 142 and the microwave absorber 144 may be provided in common with respect to the plurality of openings 48. As a result, even when the microwaves remain unevenly in the space 41, the intensity of the microwaves in the space 41 can be averaged and detected.
 図5は、マイクロ波吸収体144の温度の時間波形と、マイクロ波発生部130が集塵部120に導入するマイクロ波の強度の時間波形の一例を示す図である。図5の例では、マイクロ波発生部130の起動時を時刻0としている。 FIG. 5 is a diagram showing an example of a time waveform of the temperature of the microwave absorber 144 and a time waveform of the intensity of the microwave introduced by the microwave generating unit 130 into the dust collecting unit 120. In the example of FIG. 5, the time when the microwave generating unit 130 is started is set to 0.
 起動時において、マイクロ波発生部130は第1強度P1のマイクロ波を発生する。空間41内の帯電粒子28の量が比較的に少ないと、第1強度P1のマイクロ波が帯電粒子28で吸収しきれずに、マイクロ波吸収体144にマイクロ波が導入される。これにより、マイクロ波吸収体144の温度が上昇する。 At startup, the microwave generation unit 130 generates microwaves of the first intensity P1. If the amount of the charged particles 28 in the space 41 is relatively small, the microwaves of the first intensity P1 cannot be completely absorbed by the charged particles 28, and the microwaves are introduced into the microwave absorber 144. As a result, the temperature of the microwave absorber 144 rises.
 マイクロ波発生部130は、第1強度P1のマイクロ波を集塵部120に導入している状態で、マイクロ波吸収体144の温度が第1基準温度C1以上になった場合(時刻t1)に、集塵部120に導入するマイクロ波の強度(ワット)を第1強度P1よりも低い第2強度P2に切り替える。第2強度P2は、第1強度P1の80%以下であってよく、50%以下であってよく、0%であってもよい。また、マイクロ波発生部130は、マイクロ波吸収体144の温度が第1基準温度C1以上になった場合に、マイクロ波吸収体144の温度が下がり始めるまで、マイクロ波の強度を段階的に低下させてもよい。一例として第1強度P1は450Wから550Wの範囲内であり、第2強度P2は350Wから450Wの範囲内である。 When the temperature of the microwave absorber 144 becomes equal to or higher than the first reference temperature C1 (time t1) in a state where the microwave of the first intensity P1 is introduced into the dust collector 120, the microwave generating unit 130 is used. , The intensity (watt) of the microwave introduced into the dust collecting unit 120 is switched to the second intensity P2, which is lower than the first intensity P1. The second intensity P2 may be 80% or less, 50% or less, or 0% of the first intensity P1. Further, when the temperature of the microwave absorber 144 becomes equal to or higher than the first reference temperature C1, the microwave generating unit 130 gradually reduces the intensity of the microwave until the temperature of the microwave absorber 144 begins to decrease. You may let me. As an example, the first intensity P1 is in the range of 450W to 550W, and the second intensity P2 is in the range of 350W to 450W.
 マイクロ波の強度が第2強度P2になり、空間41に導入されるマイクロ波のほとんどが帯電粒子28に吸収されると、マイクロ波吸収体144に導入されるマイクロ波が小さくなるか、または、ほぼ無くなる。これにより、マイクロ波吸収体144の温度が低下する。 When the intensity of the microwave becomes the second intensity P2 and most of the microwave introduced into the space 41 is absorbed by the charged particles 28, the microwave introduced into the microwave absorber 144 becomes smaller or becomes smaller. Almost disappear. As a result, the temperature of the microwave absorber 144 is lowered.
 マイクロ波発生部130は、第2強度P2のマイクロ波を集塵部120に導入している状態で、マイクロ波吸収体144の温度が第2基準温度C2以下になった場合(時刻t2)に、集塵部120に導入するマイクロ波の強度を第1強度P1に切り替える。マイクロ波吸収体144の温度が第2基準温度C2以下になった場合、空間41内の帯電粒子28の量に比べて、空間41に導入するマイクロ波の強度が過少と判断できる。このため、マイクロ波の強度を第1強度P1に切り替えることで、空間41内の帯電粒子28を燃焼させやすくなる。また、マイクロ波発生部130は、マイクロ波吸収体144の温度が上がり始めるまで、マイクロ波の強度を段階的に上昇させてもよい。 When the temperature of the microwave absorber 144 becomes equal to or lower than the second reference temperature C2 (time t2) in a state where the microwave of the second intensity P2 is introduced into the dust collector 120, the microwave generating unit 130 is used. , The intensity of the microwave introduced into the dust collecting unit 120 is switched to the first intensity P1. When the temperature of the microwave absorber 144 becomes equal to or lower than the second reference temperature C2, it can be determined that the intensity of the microwave introduced into the space 41 is less than the amount of the charged particles 28 in the space 41. Therefore, by switching the microwave intensity to the first intensity P1, the charged particles 28 in the space 41 can be easily burned. Further, the microwave generation unit 130 may gradually increase the intensity of the microwave until the temperature of the microwave absorber 144 starts to increase.
 このような処理を繰り返すことで、マイクロ波を、空間41内の帯電粒子28の量に応じた強度に調整できる。このため、帯電粒子28が燃焼せずに残留することを防ぎつつ、マイクロ波のエネルギーを節約できる。 By repeating such processing, the microwave can be adjusted to the intensity according to the amount of charged particles 28 in the space 41. Therefore, it is possible to save microwave energy while preventing the charged particles 28 from remaining without burning.
 図6は、集塵装置100の他の構成例を示す図である。本例の集塵装置100は、図1から図5において説明した集塵装置100の構成に加えて、算出部152を備える。他の構成は、図1から図5において説明した集塵装置100と同一である。 FIG. 6 is a diagram showing another configuration example of the dust collector 100. The dust collector 100 of this example includes a calculation unit 152 in addition to the configuration of the dust collector 100 described with reference to FIGS. 1 to 5. Other configurations are the same as the dust collector 100 described with reference to FIGS. 1 to 5.
 算出部152は、マイクロ波発生部130が第1強度P1のマイクロ波を集塵部120に導入している積算時間に基づいて、帯電粒子28の燃焼物が集塵部120に堆積している量を算出してよい。つまり算出部152は、図5に示した期間T2の累積時間に基づいて、燃焼物の堆積量を算出する。マイクロ波の強度が高い期間T2において、主に帯電粒子28を燃焼させているので、期間T2を累積することで、帯電粒子28の燃焼量を推定できる。算出部152は、図5に示した期間T1の累積時間に基づいて、燃焼物の堆積量を算出してもよい。期間T1は、マイクロ波吸収体144の温度が第2基準温度C2以下になってから、第1基準温度C1になるまでの期間である。 In the calculation unit 152, the combustibles of the charged particles 28 are accumulated in the dust collection unit 120 based on the integrated time in which the microwave generation unit 130 introduces the microwave of the first intensity P1 into the dust collection unit 120. The amount may be calculated. That is, the calculation unit 152 calculates the accumulated amount of combustibles based on the cumulative time of the period T2 shown in FIG. Since the charged particles 28 are mainly burned during the period T2 where the microwave intensity is high, the combustion amount of the charged particles 28 can be estimated by accumulating the period T2. The calculation unit 152 may calculate the accumulated amount of combustibles based on the cumulative time of the period T1 shown in FIG. The period T1 is a period from when the temperature of the microwave absorber 144 becomes equal to or lower than the second reference temperature C2 until the temperature reaches the first reference temperature C1.
 強度検出部140は、マイクロ波吸収体144の温度から、帯電粒子28に吸収されずに残留したマイクロ波の強度を算出してもよい。マイクロ波吸収体144の温度は、マイクロ波の強度に応じて変動する。強度検出部140は、空間41に帯電粒子28が存在しない状態で空間41にマイクロ波を導入した場合の、マイクロ波吸収体144の温度とマイクロ波の強度との関係を予め取得してよい。これにより、マイクロ波吸収体144の温度から、空間41の残留マイクロ波の強度との温度-強度関係を取得して、強度検出部140に予め記憶できる。強度検出部140は、空間41に帯電粒子28が存在する状態で空間41にマイクロ波を導入した場合のマイクロ波吸収体144の温度を取得する。強度検出部140は、当該温度に対応する残留マイクロ波の強度を、上述した温度-強度関係から導出してよい。 The intensity detection unit 140 may calculate the intensity of the microwave remaining without being absorbed by the charged particles 28 from the temperature of the microwave absorber 144. The temperature of the microwave absorber 144 varies depending on the intensity of the microwave. The intensity detection unit 140 may acquire in advance the relationship between the temperature of the microwave absorber 144 and the intensity of the microwave when the microwave is introduced into the space 41 in the state where the charged particles 28 are not present in the space 41. As a result, the temperature-intensity relationship with the intensity of the residual microwave in the space 41 can be acquired from the temperature of the microwave absorber 144 and stored in advance in the intensity detection unit 140. The intensity detection unit 140 acquires the temperature of the microwave absorber 144 when the microwave is introduced into the space 41 in the state where the charged particles 28 are present in the space 41. The intensity detection unit 140 may derive the intensity of the residual microwave corresponding to the temperature from the temperature-intensity relationship described above.
 算出部152は、残留マイクロ波の強度と、集塵部120に導入されたマイクロ波の強度の差分から、帯電粒子28に吸収されたマイクロ波の強度を算出してもよい。また、算出部152は、帯電粒子28に吸収されたマイクロ波の強度の時間積分値に基づいて、空間41に残留している燃焼物の量を算出してもよい。吸収されたマイクロ波の強度の時間積分値と、燃焼物の量との関係は、予め実験的に取得してよい。 The calculation unit 152 may calculate the intensity of the microwave absorbed by the charged particles 28 from the difference between the intensity of the residual microwave and the intensity of the microwave introduced into the dust collecting unit 120. Further, the calculation unit 152 may calculate the amount of combustibles remaining in the space 41 based on the time integral value of the intensity of the microwave absorbed by the charged particles 28. The relationship between the time integral value of the intensity of the absorbed microwave and the amount of combustibles may be obtained experimentally in advance.
 算出部152は、空間41に残留している燃焼物の量が、所定の基準値を超えた場合に、その旨を使用者に通知してよい。これにより、集塵部120のクリーニング時期を把握しやすくなる。 When the amount of combustibles remaining in the space 41 exceeds a predetermined reference value, the calculation unit 152 may notify the user to that effect. This makes it easier to grasp the cleaning time of the dust collecting unit 120.
 算出部152は、温度検出部146が検出する温度の時間波形における、立ち上がり波形の傾きに基づいて、集塵部120に導入される粒子の量を算出してよい。算出部152は、図5に示した立ち上がり波形147の傾きを検出する。第1基準温度C1および第2基準温度C2の差分は既知なので、算出部152は、立ち上がり波形147の傾きとして、図5に示す期間T1を検出してもよい。集塵部120に導入される帯電粒子28の量が少ないほど、帯電粒子28に吸収されるマイクロ波は少なくなる。また、帯電粒子28の量が少ない場合、帯電粒子28自体の断熱保温効果が小さくなる。このため、マイクロ波吸収による帯電粒子28への入熱に対して、帯電粒子28からの放熱が支配的になる。この結果、立ち上がり波形147の傾きは小さくなる。立ち上がり波形147の傾きと、帯電粒子28の量との関係は、予め実験的に取得できる。 The calculation unit 152 may calculate the amount of particles introduced into the dust collecting unit 120 based on the slope of the rising waveform in the time waveform of the temperature detected by the temperature detecting unit 146. The calculation unit 152 detects the slope of the rising waveform 147 shown in FIG. Since the difference between the first reference temperature C1 and the second reference temperature C2 is known, the calculation unit 152 may detect the period T1 shown in FIG. 5 as the slope of the rising waveform 147. The smaller the amount of the charged particles 28 introduced into the dust collecting unit 120, the smaller the microwaves absorbed by the charged particles 28. Further, when the amount of the charged particles 28 is small, the heat insulating and heat retaining effect of the charged particles 28 itself becomes small. Therefore, heat dissipation from the charged particles 28 becomes dominant with respect to heat input to the charged particles 28 due to microwave absorption. As a result, the slope of the rising waveform 147 becomes small. The relationship between the slope of the rising waveform 147 and the amount of charged particles 28 can be obtained experimentally in advance.
 マイクロ波発生部130は、立ち上がり波形147の傾きに基づいて、第1強度P1を制御してもよい。例えば、立ち上がり波形147の傾きが小さい場合、帯電粒子28の量が少ないと推定される。マイクロ波発生部130は、立ち上がり波形147の傾きが小さいほど、第1強度P1を大きくしてよい。これにより、帯電粒子28の量に応じて、マイクロ波の第1強度P1を調整できる。 The microwave generation unit 130 may control the first intensity P1 based on the slope of the rising waveform 147. For example, when the slope of the rising waveform 147 is small, it is estimated that the amount of charged particles 28 is small. In the microwave generation unit 130, the smaller the slope of the rising waveform 147, the larger the first intensity P1 may be. Thereby, the first intensity P1 of the microwave can be adjusted according to the amount of the charged particles 28.
 図7は、集塵装置100の他の構成例を示す図である。本例の集塵装置100は、図1から図6において説明した集塵装置100の構成に加えて、火炎検出部160を備える。他の構成は、図1から図6において説明したいずれかの態様の集塵装置100と同一である。図7においては、図1に示した構成に、火炎検出部160を追加した構成を例示している。 FIG. 7 is a diagram showing another configuration example of the dust collector 100. The dust collector 100 of this example includes a flame detection unit 160 in addition to the configuration of the dust collector 100 described with reference to FIGS. 1 to 6. The other configuration is the same as the dust collector 100 of any aspect described with reference to FIGS. 1 to 6. FIG. 7 illustrates a configuration in which a flame detection unit 160 is added to the configuration shown in FIG.
 火炎検出部160は、集塵部120の空間41に火炎が発生したことを検出する。帯電粒子28は、マイクロ波を吸収することで炭のように火炎を発生させずに燃焼するが、火炎が発生する場合がある。例えば、マイクロ波の強度が強すぎるか、帯電粒子28の量が少なすぎるか、または、排ガス中に油分が多く含まれているか等の原因で、空間41に火炎が発生する場合がある。例えば、低負荷でガソリンエンジンが駆動していると、排ガス中に油分が多く含まれる場合がある。火炎検出部160は、火炎が発生したときに生じる光の波長成分を検出することで、火炎を検出してよい。火炎検出部160は、空間41における光量、温度等、他のパラメータに基づいて火炎を検出してもよい。 The flame detection unit 160 detects that a flame has occurred in the space 41 of the dust collection unit 120. The charged particles 28 burn without generating a flame like charcoal by absorbing microwaves, but may generate a flame. For example, a flame may be generated in the space 41 due to reasons such as the intensity of microwaves being too strong, the amount of charged particles 28 being too small, or the exhaust gas containing a large amount of oil. For example, when a gasoline engine is driven with a low load, the exhaust gas may contain a large amount of oil. The flame detection unit 160 may detect a flame by detecting a wavelength component of light generated when the flame is generated. The flame detection unit 160 may detect the flame based on other parameters such as the amount of light and the temperature in the space 41.
 マイクロ波発生部130は、空間41で火炎が発生した場合に、集塵部120に導入するマイクロ波の強度を低下させ、または、マイクロ波の集塵部120への導入を停止する。マイクロ波発生部130は、火炎が発生した場合に、集塵部120に導入するマイクロ波の強度を第2強度P2まで低下させてよく、第2強度P2より小さい強度まで低下させてよく、強度を0にしてもよい。これにより、集塵部120を保護できる。 When a flame is generated in the space 41, the microwave generating unit 130 reduces the intensity of the microwave introduced into the dust collecting unit 120, or stops the introduction of the microwave into the dust collecting unit 120. When a flame is generated, the microwave generating unit 130 may reduce the intensity of the microwave introduced into the dust collecting unit 120 to the second intensity P2, or may decrease the intensity to less than the second intensity P2, and the intensity may be reduced. May be 0. As a result, the dust collecting unit 120 can be protected.
 マイクロ波発生部130は、火炎が発生した場合に、排ガス源200の動作状態に基づいて、集塵部120に導入するマイクロ波の強度を制御してもよい。例えば排ガス源200の動作状態によって、火炎が発生した原因が異なる場合がある。排ガス源200が例えば低負荷状態であり、排ガスに油分が多く含まれる場合、油分により火炎が発生した可能性が高くなる。この場合、空間41に導入される帯電粒子28の量は通常である可能性が高い。一方で、排ガス源200が通常負荷状態の場合、空間41に導入される帯電粒子28の量に比べてマイクロ波の強度が高すぎる可能性が高い。マイクロ波発生部130は、排ガス源200が通常負荷状態で火炎が生じた場合、低負荷状態で火炎が生じた場合に比べて、マイクロ波の強度をより小さくしてよい。これにより、帯電粒子28の量に応じたマイクロ波の強度に制御しやすくなる。 The microwave generating unit 130 may control the intensity of the microwave introduced into the dust collecting unit 120 based on the operating state of the exhaust gas source 200 when a flame is generated. For example, the cause of the flame may differ depending on the operating state of the exhaust gas source 200. When the exhaust gas source 200 is in a low load state, for example, and the exhaust gas contains a large amount of oil, there is a high possibility that a flame is generated due to the oil content. In this case, the amount of charged particles 28 introduced into the space 41 is likely to be normal. On the other hand, when the exhaust gas source 200 is in a normal load state, it is highly possible that the microwave intensity is too high compared to the amount of charged particles 28 introduced into the space 41. The microwave generation unit 130 may reduce the intensity of microwaves when a flame is generated when the exhaust gas source 200 is in a normal load state, as compared with a case where a flame is generated when the exhaust gas source 200 is in a low load state. This makes it easier to control the intensity of microwaves according to the amount of charged particles 28.
 マイクロ波発生部130は、火炎が消えた場合に、集塵部120へのマイクロ波の導入を再開してよい。マイクロ波発生部130は、導入再開時のマイクロ波の強度を第1強度P1としてよく、第1強度P1より低い強度としてもよい。 The microwave generating unit 130 may restart the introduction of the microwave into the dust collecting unit 120 when the flame is extinguished. In the microwave generation unit 130, the intensity of the microwave at the time of resuming the introduction may be set to the first intensity P1 or lower than the first intensity P1.
 また、集塵装置100は、集塵部120を複数備えていてもよい。この場合、集塵装置100は、火炎が検出された集塵部120への排ガス導入と、マイクロ波導入を停止してよい。集塵装置100は、火炎が検出されていない集塵部120により、排ガスを処理してよい。 Further, the dust collector 100 may include a plurality of dust collectors 120. In this case, the dust collector 100 may stop the introduction of the exhaust gas and the introduction of the microwave into the dust collecting unit 120 in which the flame is detected. The dust collector 100 may treat the exhaust gas by the dust collector 120 in which no flame is detected.
 図8は、マイクロ波発生部130および強度検出部140の配置例を示す図である。本例のマイクロ波発生部130は、複数の開口48に対して、開口48毎に設けられている。これによりマイクロ波発生部130は、集塵部120の複数の導入位置から、マイクロ波を集塵部120に導入する。 FIG. 8 is a diagram showing an arrangement example of the microwave generation unit 130 and the intensity detection unit 140. The microwave generation unit 130 of this example is provided for each of the plurality of openings 48 with respect to the plurality of openings 48. As a result, the microwave generation unit 130 introduces the microwave into the dust collection unit 120 from the plurality of introduction positions of the dust collection unit 120.
 また、強度検出部140は、複数の開口48に対して、開口48毎に設けられている。これにより強度検出部140は、集塵部120の複数の導出位置からマイクロ波を導出する。それぞれの強度検出部140は、図1に示した構造を有する。つまり、開口48毎に、導出部142、マイクロ波吸収体144および温度検出部146が設けられている。 Further, the strength detection unit 140 is provided for each of the plurality of openings 48 with respect to the plurality of openings 48. As a result, the intensity detection unit 140 derives microwaves from the plurality of extraction positions of the dust collection unit 120. Each intensity detection unit 140 has the structure shown in FIG. That is, a lead-out unit 142, a microwave absorber 144, and a temperature detection unit 146 are provided for each opening 48.
 それぞれのマイクロ波発生部130は、いずれかの強度検出部140が検出したマイクロ波の強度に基づいて、対応する開口48に導入するマイクロ波の強度を制御する。それぞれのマイクロ波発生部130は、自己の導入位置に対する位置が最も近い導出位置に設けられた強度検出部140の検出結果に基づいて、マイクロ波の強度を制御してよい。また、それぞれのマイクロ波発生部130は、自己の導入位置とX軸方向の位置が同一の導出位置に設けられた強度検出部140の検出結果に基づいて、マイクロ波の強度を制御してもよい。 Each microwave generation unit 130 controls the intensity of the microwave introduced into the corresponding opening 48 based on the intensity of the microwave detected by any of the intensity detection units 140. Each microwave generation unit 130 may control the microwave intensity based on the detection result of the intensity detection unit 140 provided at the derivation position closest to the self-introduction position. Further, each microwave generation unit 130 may control the microwave intensity based on the detection result of the intensity detection unit 140 provided at the same derivation position as the self-introduction position and the position in the X-axis direction. good.
 帯電粒子28は、空間41において偏って分布する場合がある。この場合、帯電粒子28が集まった領域の近傍における導出位置から導出するマイクロ波の強度は、比較的に弱くなる場合がある。当該導出位置の近傍の導入位置から導入するマイクロ波の強度を、比較的に強くすることで、帯電粒子28が集まった領域に対してマイクロ波を照射しやすくなる。このため、効率よく帯電粒子28を燃焼できる。 The charged particles 28 may be unevenly distributed in the space 41. In this case, the intensity of the microwave derived from the extraction position in the vicinity of the region where the charged particles 28 are gathered may be relatively weak. By making the intensity of the microwave introduced from the introduction position near the derivation position relatively strong, it becomes easy to irradiate the region where the charged particles 28 are gathered with the microwave. Therefore, the charged particles 28 can be burned efficiently.
 図8の例では、マイクロ波発生部130と、強度検出部140とが異なる開口48に接続されている。他の例では、マイクロ波発生部130と、強度検出部140とが共通の開口48に接続されていてもよい。この場合、マイクロ波の導入位置と導出位置とが同一になるので、導入するマイクロ波の強度を、帯電粒子28の分布に合わせて制御しやすくなる。 In the example of FIG. 8, the microwave generation unit 130 and the intensity detection unit 140 are connected to different openings 48. In another example, the microwave generation unit 130 and the intensity detection unit 140 may be connected to a common opening 48. In this case, since the introduction position and the derivation position of the microwave are the same, it becomes easy to control the intensity of the introduced microwave according to the distribution of the charged particles 28.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments. It will be apparent to those skilled in the art that various changes or improvements can be made to the above embodiments. It is clear from the claims that the form with such modifications or improvements may also be included in the technical scope of the invention.
28・・・帯電粒子、30・・・第1電極、32・・・隔壁、34・・・反射部、36・・・帯電粒子集積部、38・・・開口、39・・・外壁、41・・・空間、42・・・開口、44・・・ガス流路、46・・・開口、48・・・開口、100・・・集塵装置、110・・・帯電部、120・・・集塵部、130・・・マイクロ波発生部、131・・・導波路、140・・・強度検出部、142・・・導出部、144・・・マイクロ波吸収体、146・・・温度検出部、147・・・立ち上がり波形、150・・・制御部、152・・・算出部、160・・・火炎検出部、200・・・排ガス源 28 ... charged particles, 30 ... first electrode, 32 ... partition wall, 34 ... reflective part, 36 ... charged particle accumulating part, 38 ... opening, 39 ... outer wall, 41 ... space, 42 ... opening, 44 ... gas flow path, 46 ... opening, 48 ... opening, 100 ... dust collector, 110 ... charging part, 120 ... Dust collector, 130 ... Microwave generator, 131 ... Waveguide, 140 ... Strength detection unit, 142 ... Derivation unit, 144 ... Microwave absorber, 146 ... Temperature detection Unit, 147 ... Rising waveform, 150 ... Control unit, 152 ... Calculation unit, 160 ... Flame detection unit, 200 ... Exhaust gas source

Claims (13)

  1.  粒子を捕集する集塵部と、
     前記集塵部に導入するマイクロ波を発生し、前記集塵部に捕集された前記粒子を前記マイクロ波により燃焼させるマイクロ波発生部と、
     前記粒子に吸収されなかった前記マイクロ波の強度を検出する強度検出部と
     を備え、
     前記マイクロ波発生部は、前記強度検出部が検出した前記マイクロ波の強度に基づいて、前記集塵部に導入する前記マイクロ波の強度を制御する
     集塵装置。
    A dust collector that collects particles,
    A microwave generating unit that generates microwaves to be introduced into the dust collecting unit and burns the particles collected in the dust collecting unit by the microwaves.
    It is provided with an intensity detection unit that detects the intensity of the microwave that was not absorbed by the particles.
    The microwave generating unit is a dust collector that controls the intensity of the microwave introduced into the dust collecting unit based on the intensity of the microwave detected by the intensity detecting unit.
  2.  前記強度検出部は、
     前記粒子に吸収されなかった前記マイクロ波の少なくとも一部を前記集塵部から導出する導出部と、
     前記集塵部から導出された前記マイクロ波を吸収するマイクロ波吸収体と、
     前記マイクロ波吸収体の温度を検出する温度検出部と
     を備える請求項1に記載の集塵装置。
    The strength detector
    A derivation unit that derives at least a part of the microwaves that were not absorbed by the particles from the dust collecting unit, and a derivation unit.
    A microwave absorber that absorbs the microwave derived from the dust collector, and
    The dust collector according to claim 1, further comprising a temperature detection unit that detects the temperature of the microwave absorber.
  3.  前記マイクロ波発生部は、第1強度の前記マイクロ波を前記集塵部に導入している状態で前記マイクロ波吸収体の温度が第1基準温度以上になった場合に、前記集塵部に導入する前記マイクロ波の強度を前記第1強度よりも低い第2強度に切り替える
     請求項2に記載の集塵装置。
    When the temperature of the microwave absorber becomes equal to or higher than the first reference temperature in a state where the microwave of the first intensity is introduced into the dust collecting portion, the microwave generating portion is connected to the dust collecting portion. The dust collector according to claim 2, wherein the intensity of the microwave to be introduced is switched to a second intensity lower than the first intensity.
  4.  前記マイクロ波発生部は、前記第2強度の前記マイクロ波を前記集塵部に導入している状態で前記マイクロ波吸収体の温度が第2基準温度以下になった場合に、前記集塵部に導入する前記マイクロ波の強度を前記第1強度に切り替える
     請求項3に記載の集塵装置。
    The microwave generating unit is the dust collecting unit when the temperature of the microwave absorber becomes equal to or lower than the second reference temperature in a state where the microwave of the second intensity is introduced into the dust collecting unit. The dust collector according to claim 3, wherein the intensity of the microwave introduced in the above is switched to the first intensity.
  5.  前記マイクロ波発生部が前記第1強度の前記マイクロ波を前記集塵部に導入している積算時間に基づいて、前記粒子の燃焼物が前記集塵部に堆積している量を算出する算出部を更に備える
     請求項3に記載の集塵装置。
    Calculation to calculate the amount of combustibles of the particles accumulated in the dust collecting portion based on the integrated time in which the microwave generating portion introduces the microwave of the first intensity into the dust collecting portion. The dust collector according to claim 3, further comprising a unit.
  6.  前記温度検出部が検出する温度の時間波形における、立ち上がり波形の傾きに基づいて、前記集塵部に導入される前記粒子の量を算出する算出部を更に備える
     請求項2から4のいずれか一項に記載の集塵装置。
    Any one of claims 2 to 4, further comprising a calculation unit that calculates the amount of the particles introduced into the dust collector based on the slope of the rising waveform in the time waveform of the temperature detected by the temperature detection unit. The dust collector described in the section.
  7.  前記集塵部の複数の導出位置に前記導出部が設けられ、
     前記マイクロ波吸収体は、複数の前記導出部が導出した前記マイクロ波がまとめられた前記マイクロ波を吸収する
     請求項2から6のいずれか一項に記載の集塵装置。
    The lead-out unit is provided at a plurality of lead-out positions of the dust collector, and the lead-out unit is provided.
    The dust collector according to any one of claims 2 to 6, wherein the microwave absorber absorbs the microwave in which the microwaves derived by the plurality of derivation units are combined.
  8.  前記集塵部の複数の導出位置に前記導出部が設けられ、
     前記マイクロ波発生部は、前記集塵部の複数の導入位置から、前記マイクロ波を前記集塵部に導入し、
     前記マイクロ波吸収体は、前記導出位置毎に設けられ、
     前記マイクロ波発生部は、それぞれの前記導出位置の前記マイクロ波吸収体の温度に基づいて、対応する前記導入位置から導入する前記マイクロ波の強度を制御する
     請求項2から6のいずれか一項に記載の集塵装置。
    The lead-out unit is provided at a plurality of lead-out positions of the dust collector, and the lead-out unit is provided.
    The microwave generating unit introduces the microwave into the dust collecting unit from a plurality of introduction positions of the dust collecting unit.
    The microwave absorber is provided at each of the lead-out positions.
    Any one of claims 2 to 6, wherein the microwave generating unit controls the intensity of the microwave introduced from the corresponding introduction position based on the temperature of the microwave absorber at each of the derivation positions. The dust collector described in.
  9.  前記強度検出部は、前記集塵部に前記粒子が存在しない状態で前記集塵部に前記マイクロ波を導入した場合の、前記マイクロ波吸収体の温度と前記マイクロ波の強度との関係を予め記憶し、前記集塵部に前記粒子が存在する状態で前記集塵部に前記マイクロ波を導入した場合の前記マイクロ波吸収体の温度から、前記粒子に吸収されなかった前記マイクロ波の強度を検出する
     請求項2から8のいずれか一項に記載の集塵装置。
    The intensity detecting unit determines in advance the relationship between the temperature of the microwave absorber and the intensity of the microwave when the microwave is introduced into the dust collecting unit in a state where the particles are not present in the dust collecting unit. The intensity of the microwave that was not absorbed by the particles is calculated from the temperature of the microwave absorber when the microwave is introduced into the dust collector in a state where the particles are present in the dust collector. The dust collector according to any one of claims 2 to 8 to be detected.
  10.  前記強度検出部が検出した前記マイクロ波の強度と、前記マイクロ波発生部が前記集塵部に導入した前記マイクロ波の強度の差分から、前記粒子に吸収された前記マイクロ波の強度を算出する算出部を更に備える
     請求項2から8のいずれか一項に記載の集塵装置。
    The intensity of the microwave absorbed by the particles is calculated from the difference between the intensity of the microwave detected by the intensity detecting unit and the intensity of the microwave introduced by the microwave generating unit into the dust collecting unit. The dust collector according to any one of claims 2 to 8, further comprising a calculation unit.
  11.  前記算出部は、前記粒子に吸収された前記マイクロ波の強度の時間積分値に基づいて、前記集塵部に残留している前記粒子の燃焼物の量を算出する
     請求項10に記載の集塵装置。
    The collection according to claim 10, wherein the calculation unit calculates the amount of combustibles of the particles remaining in the dust collection unit based on the time integral value of the intensity of the microwave absorbed by the particles. Dust device.
  12.  前記集塵部に火炎が発生したことを検出する火炎検出部を更に備え、
     前記マイクロ波発生部は、前記火炎が発生した場合に、前記集塵部に導入する前記マイクロ波の強度を低下させ、または、前記マイクロ波の前記集塵部への導入を停止する
     請求項1から11のいずれか一項に記載の集塵装置。
    A flame detection unit for detecting the occurrence of a flame in the dust collecting unit is further provided.
    The microwave generating unit reduces the intensity of the microwave introduced into the dust collecting unit or stops the introduction of the microwave into the dust collecting unit when the flame is generated. The dust collector according to any one of 1 to 11.
  13.  前記集塵部には、排ガス源が排出する排ガスが導入され、
     前記マイクロ波発生部は、前記火炎が発生した場合に、前記排ガス源の動作状態に基づいて、前記集塵部に導入する前記マイクロ波の強度を制御する
     請求項12に記載の集塵装置。
    Exhaust gas discharged from the exhaust gas source is introduced into the dust collector, and the exhaust gas is introduced.
    The dust collecting device according to claim 12, wherein the microwave generating unit controls the intensity of the microwave introduced into the dust collecting unit based on the operating state of the exhaust gas source when the flame is generated.
PCT/JP2021/002344 2020-02-25 2021-01-22 Dust collector WO2021171856A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180004674.7A CN114144260A (en) 2020-02-25 2021-01-22 Dust collecting device
EP21760283.8A EP3991850A4 (en) 2020-02-25 2021-01-22 Dust collector
KR1020227002830A KR20220020991A (en) 2020-02-25 2021-01-22 cyclone
JP2022503166A JP7243915B2 (en) 2020-02-25 2021-01-22 dust collector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-029347 2020-02-25
JP2020029347 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021171856A1 true WO2021171856A1 (en) 2021-09-02

Family

ID=77490936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002344 WO2021171856A1 (en) 2020-02-25 2021-01-22 Dust collector

Country Status (5)

Country Link
EP (1) EP3991850A4 (en)
JP (1) JP7243915B2 (en)
KR (1) KR20220020991A (en)
CN (1) CN114144260A (en)
WO (1) WO2021171856A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552889A (en) 1991-08-29 1993-03-02 Mitsubishi Materials Corp Microwave sensor and microwave heater using same
JPH05172884A (en) 1991-12-25 1993-07-13 Mitsubishi Materials Corp Microwave detector
JPH0610654A (en) * 1992-06-25 1994-01-18 Zexel Corp Exhaust emission control system
JPH10238335A (en) * 1997-02-28 1998-09-08 Matsushita Electric Ind Co Ltd Filter regenerator
JP2009250062A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Method for detecting collection amount of particulate substance and collection amount detecting apparatus and exhaust-emission purifying apparatus
JP2018003825A (en) * 2016-07-08 2018-01-11 富士通株式会社 Particulate detection unit and exhaust emission control device
JP2018150854A (en) * 2017-03-10 2018-09-27 富士通株式会社 Microwave irradiation device, exhaust emission control device, automobile and management system
JP2018178756A (en) * 2017-04-04 2018-11-15 富士通株式会社 Exhaust emission control device, internal combustion engine, power generator, and automobile

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111416A (en) * 1984-06-27 1986-01-18 Mitsubishi Electric Corp On-vehicle combustion device
JP2780507B2 (en) * 1991-03-29 1998-07-30 松下電器産業株式会社 Filter regeneration device for internal combustion engine
JPH05231129A (en) * 1992-02-18 1993-09-07 Matsushita Electric Ind Co Ltd Regeneration of filter for internal combustion engine and device therefor
JP2909677B2 (en) * 1992-02-18 1999-06-23 松下電器産業株式会社 Method and apparatus for regenerating filter for internal combustion engine
JP2738251B2 (en) * 1993-01-20 1998-04-08 松下電器産業株式会社 Filter regeneration device for internal combustion engine
JPH10212928A (en) * 1997-01-30 1998-08-11 Matsushita Electric Ind Co Ltd Filter recovering device
EP1510669A1 (en) * 2003-08-29 2005-03-02 Ching Hui Chang Microwave added filter core for engine exhaust
US7138615B1 (en) * 2005-07-29 2006-11-21 Gm Global Technology Operations, Inc. Control system for microwave regeneration for a diesel particulate filter
JP2009002276A (en) * 2007-06-22 2009-01-08 Nippon Soken Inc Collection quantity detecting method of particulate matter, collection quantity detecting device and exhaust emission control device
JP5163695B2 (en) 2010-05-31 2013-03-13 株式会社デンソー Exhaust gas purification device for internal combustion engine
CN205370692U (en) * 2015-12-28 2016-07-06 浙江交通职业技术学院 Microwave heating regeneration type diesel engine particle trap
US20190381455A1 (en) * 2017-01-13 2019-12-19 Panasonic Corporation Catalyst heating device and heating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552889A (en) 1991-08-29 1993-03-02 Mitsubishi Materials Corp Microwave sensor and microwave heater using same
JPH05172884A (en) 1991-12-25 1993-07-13 Mitsubishi Materials Corp Microwave detector
JPH0610654A (en) * 1992-06-25 1994-01-18 Zexel Corp Exhaust emission control system
JPH10238335A (en) * 1997-02-28 1998-09-08 Matsushita Electric Ind Co Ltd Filter regenerator
JP2009250062A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Method for detecting collection amount of particulate substance and collection amount detecting apparatus and exhaust-emission purifying apparatus
JP2018003825A (en) * 2016-07-08 2018-01-11 富士通株式会社 Particulate detection unit and exhaust emission control device
JP2018150854A (en) * 2017-03-10 2018-09-27 富士通株式会社 Microwave irradiation device, exhaust emission control device, automobile and management system
JP2018178756A (en) * 2017-04-04 2018-11-15 富士通株式会社 Exhaust emission control device, internal combustion engine, power generator, and automobile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3991850A4

Also Published As

Publication number Publication date
CN114144260A (en) 2022-03-04
EP3991850A4 (en) 2022-11-02
KR20220020991A (en) 2022-02-21
EP3991850A1 (en) 2022-05-04
JP7243915B2 (en) 2023-03-22
JPWO2021171856A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
US4209306A (en) Pulsed electrostatic precipitator
KR101920669B1 (en) System and method for detecting arc formation in a corona discharge ignition system
US20120103057A1 (en) Particulate matter detection sensor
JP5163695B2 (en) Exhaust gas purification device for internal combustion engine
US8628606B2 (en) Exhaust gas treatment device having two honeycomb bodies for generating an electric potential, method for treating exhaust gas and motor vehicle having the device
EP1890014B1 (en) Exhaust emission control method and exhaust emission control system
CN204827767U (en) Ignition and ignition system
CA2529636A1 (en) A method and a sensor device for measuring particle emissions from the exhaust gases of a combustion engine
Huang et al. Recent progress of dry electrostatic precipitation for PM2. 5 emission control from coal-fired boilers
EP3129640A1 (en) Dual signal coaxial cavity resonator plasma generation
WO2021171856A1 (en) Dust collector
US8900520B2 (en) Apparatus for treating exhaust particulate matter
Gouri et al. Collection efficiency of submicrometre particles using single and double DBD in a wire-to-square tube ESP
KR102543513B1 (en) electrostatic precipitator
JP7205135B2 (en) electric dust collector
JP2017160879A (en) High-frequency discharge ignition device
Gelen et al. A prototype electrofilter design and fabrication for electricity generation and emission reduction from flues
WO2022038894A1 (en) Electric dust collector
JPH01242158A (en) Electric precipitator
Zouaghi et al. Submicrometer Particle Penetration in a Miniature Dielectric Barrier Discharge type Electrostatic Precipitator
Zouaghi et al. Electrostatic filtration of submicron particles using nanosecond pulsed dielectric barrier discharge in planar configuration
Farnoosh et al. 3D numerical study of wire-cylinder precipitator for collecting ultrafine particles from Diesel exhaust
JP2016196845A (en) Exhaust emission control device
JPH04179816A (en) Filter reproducer device for internal combustion engine
JPH0350878A (en) Laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503166

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227002830

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021760283

Country of ref document: EP

Effective date: 20220126

NENP Non-entry into the national phase

Ref country code: DE