JPH10212928A - Filter recovering device - Google Patents
Filter recovering deviceInfo
- Publication number
- JPH10212928A JPH10212928A JP9016107A JP1610797A JPH10212928A JP H10212928 A JPH10212928 A JP H10212928A JP 9016107 A JP9016107 A JP 9016107A JP 1610797 A JP1610797 A JP 1610797A JP H10212928 A JPH10212928 A JP H10212928A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- microwave
- amount
- air supply
- supply means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 claims abstract description 57
- 238000011069 regeneration method Methods 0.000 claims description 69
- 230000008929 regeneration Effects 0.000 claims description 68
- 238000010438 heat treatment Methods 0.000 claims description 27
- 230000007423 decrease Effects 0.000 claims description 9
- 230000001172 regenerating effect Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 abstract description 9
- 230000000452 restraining effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 27
- 238000010586 diagram Methods 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 3
- 239000013618 particulate matter Substances 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/027—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
- F01N3/028—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using microwaves
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明はディーゼルエンジン
等の排出する排気ガス中に含まれるパティキュレート
(粒子状物質)をフィルタにて捕集するとともに、フィ
ルタに捕集されたパティキュレートを加熱して燃焼除去
し、フィルタの捕集性能を再生するフィルタ再生装置に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for collecting particulates (particulate matter) contained in exhaust gas discharged from a diesel engine or the like with a filter and heating the particulates collected by the filter. The present invention relates to a filter regenerating apparatus that burns off and regenerates the trapping performance of a filter.
【0002】[0002]
【従来の技術】この種のフィルタ再生装置はフィルタ再
生時のパティキュレート燃焼熱に起因するフィルタの溶
損とクラックあるいはパティキュレート燃え残りによる
フィルタの目詰まりを抑制し、フィルタの耐久性を確保
することが実用上の大きな課題である。2. Description of the Related Art A filter regeneration apparatus of this type suppresses filter erosion caused by particulate combustion heat during filter regeneration and clogging of the filter due to cracks or unburned particulates, thereby ensuring the durability of the filter. This is a major practical issue.
【0003】パティキュレートは600℃程度から燃焼
することが知られており、パティキュレートをこの温度
域に予熱するためのエネルギ供給手段としてバーナ、電
気ヒータ、マイクロ波などが考えられている。本発明者
らはクラック抑制、高再生効率を実現するため、フィル
タ内部のパティキュレートも加熱でき、フィルタ温度を
均一化できるマイクロ波加熱方式のフィルタ再生装置を
開発してきた。[0003] It is known that particulates burn from about 600 ° C, and burners, electric heaters, microwaves, and the like are considered as energy supply means for preheating the particulates in this temperature range. The inventors of the present invention have developed a microwave heating type filter regenerating apparatus capable of heating particulates inside the filter and uniforming the filter temperature in order to suppress cracks and achieve high regeneration efficiency.
【0004】マイクロ波再生方式はマイクロ波でパティ
キュレートを誘電加熱して予熱し、予熱後に空気を供給
し、フィルタ内でパティキュレートを燃焼させる。マイ
クロ波方式だけでなく他の加熱方式においてもフィルタ
の耐久性を保証するため、パティキュレート燃焼時の過
昇温抑制と失火防止が求められる。このため予熱時のパ
ティキュレート温度を把握し予熱過多あるいは過少を防
止すること、パティキュレート捕集量を管理することが
重要となる。[0004] In the microwave regeneration system, the particulates are preheated by dielectric heating with microwaves, air is supplied after the preheating, and the particulates are burned in a filter. In order to guarantee the durability of the filter not only in the microwave system but also in other heating systems, it is required to suppress excessive temperature rise during particulate combustion and to prevent misfire. For this reason, it is important to grasp the particulate temperature at the time of preheating to prevent overheating or underheating, and to manage the amount of collected particulates.
【0005】従来のフィルタ再生装置におけるパティキ
ュレートの温度検出と捕集量検出として、特開平5−1
49126号公報に記載されているようなものが一般的
であった。この装置は図7に示されているように、パテ
ィキュレートを捕集するフイルタ4と、空気を供給する
再生ガス供給手段11と、着火手段6と、フイルタ温度
検出手段としての温度センサ17と、制御手段13と、
エンジン回転数センサ14と、排気温度センサ15およ
び16と、圧力センサ18および19を有する。Japanese Patent Laid-Open No. 5-1 discloses a conventional filter regeneration apparatus for detecting the temperature of particulates and the amount of trapped particulates.
The one described in JP-A-49126 was common. As shown in FIG. 7, the apparatus includes a filter 4 for collecting particulates, a regeneration gas supply unit 11 for supplying air, an ignition unit 6, a temperature sensor 17 as a filter temperature detection unit, Control means 13;
It has an engine speed sensor 14, exhaust temperature sensors 15 and 16, and pressure sensors 18 and 19.
【0006】パティキュレート捕集中において再生開始
タイミングを決定するため制御手段13は圧力センサ1
8と同19との差からフィルタ4の圧力損失を検出し、
エンジン回転数センサ14と、排気温度センサ15およ
び16との信号によりこれを補正し、捕集量を推定す
る。推定捕集量が規定値に達すると、再生を開始する。In order to determine the reproduction start timing in the concentration of particulates, the control means 13 controls the pressure sensor 1
The pressure loss of the filter 4 is detected from the difference between 8 and 19,
This is corrected by the signals from the engine speed sensor 14 and the exhaust temperature sensors 15 and 16 to estimate the trapping amount. When the estimated trapped amount reaches the specified value, regeneration is started.
【0007】制御手段13は捕集完了後に温度センサ1
7からの信号によりフイルタ4が再生開始温度範囲にあ
るか否かを判断し、着火手段6の作動によりフィルタ4
を昇温または再生ガス供給手段11の作動によりフィル
タ4の冷却を行い、再生開始温度範囲(例えば約200
℃)となった場合には着火手段6及び再生ガス供給手段
11を作動させて、着火手段6による直接加熱および熱
風によりパティキュレートを予熱する。温度センサ17
で予熱中のフィルタ4の温度を検出し、規定温度(例え
ば約600℃)に達したところで予熱が終了したものと
して着火手段6の動作を停止し、再生ガス供給手段11
の供給空気でパティキュレートの燃焼除去を行わせる。[0007] The control means 13 operates the temperature sensor 1 after the collection is completed.
7, it is determined whether or not the filter 4 is within the regeneration start temperature range.
The filter 4 is cooled by raising the temperature or by operating the regeneration gas supply means 11, and the regeneration start temperature range (for example, about 200
(° C.), the ignition means 6 and the regenerating gas supply means 11 are operated to preheat the particulates by direct heating by the ignition means 6 and hot air. Temperature sensor 17
The temperature of the filter 4 during preheating is detected, and when the temperature reaches a specified temperature (for example, about 600 ° C.), the operation of the ignition means 6 is stopped, and the operation of the ignition means 6 is stopped.
The particulates are burned and removed with the supplied air.
【0008】[0008]
【発明が解決しようとする課題】しかしながら従来のフ
ィルタ再生装置は、温度センサでパティキュレートの温
度検出をしており、温度センサとして一般的に用いられ
る金属製の熱電対あるいは温度抵抗体はマイクロ波雰囲
気中での正確な温度測定は困難であるため、マイクロ波
再生方式において従来発明を適用してもフィルタ再生時
の予熱段階等におけるパティキュレート温度検出が困難
である課題を有していた。However, in the conventional filter regeneration apparatus, the temperature of particulates is detected by a temperature sensor, and a metal thermocouple or a temperature resistor generally used as a temperature sensor is a microwave. Since accurate temperature measurement in an atmosphere is difficult, there has been a problem that it is difficult to detect a particulate temperature in a preheating stage or the like at the time of filter regeneration even if the conventional invention is applied to a microwave regeneration system.
【0009】捕集量推定に関しては、捕集中に行われる
捕集量推定が不可能な状態になったとき(例えばセンサ
の故障)の対応は未開示である。Regarding the estimation of the trapping amount, the response when the trapping amount estimation for the concentration becomes impossible (for example, a sensor failure) is not disclosed.
【0010】[0010]
【課題を解決するための手段】本発明は上記課題を解決
するため、フィルタにマイクロ波を供給するマイクロ波
供給手段と、空気を供給する空気供給手段と、フィルタ
を収納した空間のマイクロ波強度を検出するマイクロ波
強度を検出するマイクロ波強度検出手段と、制御手段と
を設け、空気供給手段の所定動作時に得られる検出マイ
クロ波強度に基づいて誘電加熱されたパティキュレート
温度を推定し、推定温度に基づいてマイクロ波供給手段
および空気供給手段を制御するものである。According to the present invention, there is provided a microwave supply means for supplying microwaves to a filter, an air supply means for supplying air, and a microwave intensity of a space containing the filter. A microwave intensity detecting means for detecting a microwave intensity for detecting the temperature, and a control means, for estimating and estimating the dielectrically heated particulate temperature based on the detected microwave intensity obtained at a predetermined operation of the air supply means. The microwave supply means and the air supply means are controlled based on the temperature.
【0011】上記発明によれば、検出マイクロ波強度と
パティキュレート温度との相関関係により、温度センサ
を使うことなく、再生中に精度良くパティキュレート温
度が推定でき、最適な温度で燃焼のための空気を供給す
るよう予熱時間を可変制御できる。これにより再生開始
前のパティキュレート温度のばらつき(捕集中の内燃機
関の排気ガス温度で変動する)、マイクロ波供給量のば
らつき(電源電圧の変動)の影響を受けることなく、予
熱過多による燃焼温度の高温化の抑制、あるいは予熱過
少による燃焼失火を防止でき、フィルタの耐久性を保証
できる。また無駄な加熱電力を抑制することもできる。According to the above invention, the particulate temperature can be accurately estimated during the regeneration without using a temperature sensor by the correlation between the detected microwave intensity and the particulate temperature. Preheating time can be variably controlled to supply air. As a result, the combustion temperature due to excessive preheating is not affected by the variation in the particulate temperature before the start of the regeneration (it fluctuates with the exhaust gas temperature of the internal combustion engine that is concentrated) and the variation in the microwave supply amount (the fluctuation in the power supply voltage). It is possible to prevent the temperature of the filter from becoming high or prevent misfire due to insufficient preheating, and to assure the durability of the filter. Further, unnecessary heating power can be suppressed.
【0012】[0012]
【発明の実施の形態】本発明は、内燃機関の排気ガス中
に含まれるパティキュレートを捕集するフィルタと、前
記フィルタが捕集したパティキュレートを誘電加熱する
マイクロ波供給手段と、前記フィルタに空気を供給する
空気供給手段と、前記フィルタを収納した空間のマイク
ロ波強度を検出するマイクロ波強度検出手段と、前記マ
イクロ波強度検出手段が検出したマイクロ波強度に基づ
いて前記フィルタが捕集したパティキュレートを燃焼除
去させる制御手段とを備え、前記制御手段は、前記マイ
クロ波供給手段の動作中の前記空気供給手段の所定動作
によって得られる検出マイクロ波強度に基づいて誘電加
熱中のパティキュレートの温度を推定し、推定した温度
に基づいて前記マイクロ波供給手段および前記空気供給
手段を制御するものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a filter for collecting particulates contained in exhaust gas of an internal combustion engine, microwave supply means for dielectrically heating the particulates collected by the filter, Air supply means for supplying air, microwave intensity detection means for detecting microwave intensity in the space containing the filter, and the filter collected based on the microwave intensity detected by the microwave intensity detection means Control means for burning and removing the particulates, wherein the control means detects the particulates during the dielectric heating based on the detected microwave intensity obtained by the predetermined operation of the air supply means during the operation of the microwave supply means. Estimating a temperature and controlling the microwave supply means and the air supply means based on the estimated temperature; It is.
【0013】そしてマイクロ波強度の変化量とパティキ
ュレート温度との相関関係から、空気供給手段の所定動
作によって得られるマイクロ波強度から誘電加熱された
パティキュレートの温度を推定できる。これにより再生
中に精度良くパティキュレート温度が推定でき、最適な
温度に予熱されたタイミングで燃焼のための空気を供給
できる。これにより再生開始前のパティキュレート温度
のばらつき(捕集中の内燃機関の排気ガス温度で変動す
る)、マイクロ波供給量のばらつき(電源電圧の変動)
に対して予熱時間を可変制御し、予熱過多による燃焼温
度の高温化の抑制、あるいは予熱過少による燃焼失火を
防止でき、フィルタの耐久性を保証できる。From the correlation between the amount of change in the microwave intensity and the particulate temperature, the temperature of the dielectrically heated particulate can be estimated from the microwave intensity obtained by the predetermined operation of the air supply means. As a result, the particulate temperature can be accurately estimated during the regeneration, and air for combustion can be supplied at the timing of preheating to the optimum temperature. As a result, the variation in the particulate temperature before the start of regeneration (it fluctuates with the exhaust gas temperature of the concentrated internal combustion engine), and the variation in the microwave supply amount (fluctuation in the power supply voltage)
For this purpose, the preheating time is variably controlled to prevent the combustion temperature from becoming too high due to excessive preheating, or to prevent combustion misfire due to insufficient preheating, thereby ensuring the durability of the filter.
【0014】また制御手段は空気供給手段の空気供給量
の増減動作によって得られるマイクロ波強度の変化量に
基づいてパティキュレートの温度を推定するものであ
る。さらに制御手段は推定温度が規定値を超えると空気
供給手段の空気供給量の増減動作の周期を短縮するもの
である。The control means estimates the temperature of the particulates based on the change in the microwave intensity obtained by the operation of increasing or decreasing the air supply amount of the air supply means. Further, the control means shortens the cycle of the increase / decrease operation of the air supply amount of the air supply means when the estimated temperature exceeds the specified value.
【0015】そして推定温度が規定値を超えると空気供
給量の増減動作の周期を短縮し、パティキュレート着火
温度(約600℃)近傍での温度推定の頻度を増し、最
適な温度に加熱されたタイミングに空気を供給すること
ができる。When the estimated temperature exceeds the specified value, the period of the increase / decrease operation of the air supply amount is shortened, the frequency of temperature estimation near the particulate ignition temperature (about 600 ° C.) is increased, and the temperature is increased to the optimum temperature. Air can be supplied at the timing.
【0016】また内燃機関の排気ガス中に含まれるパテ
ィキュレートを捕集するフィルタと、前記フィルタが捕
集したパティキュレートを誘電加熱するマイクロ波供給
手段と、前記フィルタに空気を供給する空気供給手段
と、前記フィルタを収納した空間のマイクロ波強度を検
出するマイクロ波強度検出手段と、前記マイクロ波強度
検出手段が検出したマイクロ波強度に基づいて前記フィ
ルタが捕集したパティキュレートを燃焼除去させる制御
手段とを備え、前記制御手段は前記マイクロ波供給手段
の動作中の前記空気供給手段の所定動作によって得られ
る検出マイクロ波強度に基づいて前記フィルタが捕集し
たパティキュレートの捕集量を推定し、推定した捕集量
に基づいて前記マイクロ波供給手段および前記空気供給
手段を制御するものである。A filter for collecting the particulates contained in the exhaust gas of the internal combustion engine, microwave supply means for dielectrically heating the particulates collected by the filter, and air supply means for supplying air to the filter A microwave intensity detecting means for detecting a microwave intensity in a space accommodating the filter; and a control for burning and removing particulates collected by the filter based on the microwave intensity detected by the microwave intensity detecting means. Means, and the control means estimates the collection amount of particulates collected by the filter based on a detected microwave intensity obtained by a predetermined operation of the air supply means during operation of the microwave supply means. Controlling the microwave supply means and the air supply means based on the estimated trapping amount A.
【0017】そしてパティキュレート燃焼初期段階にお
けるマイクロ波強度の変化量とパティキュレート捕集量
との相関関係から燃焼初期段階でパティキュレート捕集
量が推定できる。通常行われる、フィルタによるパティ
キュレート捕集中の捕集量推定に加え、再生中のパティ
キュレート燃焼初期段階において捕集量を再確認し、こ
の推定捕集量に応じてマイクロ波供給手段と空気供給手
段を制御することにより、捕集量管理の信頼性を高め、
低温度での高効率の再生を保証でき、本装置の信頼性を
高めることができる。The amount of trapped particulates can be estimated in the early stage of combustion from the correlation between the amount of change in microwave intensity and the amount of trapped particulates in the early stage of particulate combustion. In addition to the usual estimation of the trapping amount of particulates by the filter, the trapping amount is reconfirmed in the initial stage of particulate combustion during regeneration, and the microwave supply means and air supply are determined in accordance with the estimated trapping amount. By controlling the means, the reliability of collection volume management is improved,
Highly efficient regeneration at a low temperature can be guaranteed, and the reliability of the present apparatus can be improved.
【0018】また制御手段は空気供給手段の連続動作中
における規定した時間帯での検出マイクロ波強度の変化
量に基づいてパティキュレートの捕集量を推定するもの
である。さらに制御手段は推定した捕集量が多くなるに
従いマイクロ波の供給量をより減少させるものである。The control means estimates the amount of trapped particulates based on the amount of change in the detected microwave intensity during a specified time period during continuous operation of the air supply means. The control means further reduces the supply amount of the microwave as the estimated trapping amount increases.
【0019】そして捕集量が少ないときは燃焼維持に必
要なマイクロ波供給量を確保し、一方捕集量が多いとき
は加熱量を低減し、幅広い捕集量において燃焼温度の高
温化抑制と再生率低下防止を図りフィルタの耐久性を保
証することができる。さらに制御手段は推定した捕集量
が多くなるに従い空気の供給量をより減少させるもので
ある。When the trapping amount is small, the amount of microwave supply necessary for maintaining the combustion is secured. On the other hand, when the trapping amount is large, the heating amount is reduced. The regeneration rate can be prevented from lowering, and the durability of the filter can be guaranteed. The control means further reduces the air supply amount as the estimated trapping amount increases.
【0020】そして捕集量が多いときの燃焼を緩慢化さ
せ、燃焼温度の高温化を抑制しフィルタの耐久性を保証
できる。Further, the combustion when the trapping amount is large is slowed down, the combustion temperature is prevented from increasing, and the durability of the filter can be guaranteed.
【0021】また制御手段は推定した捕集量が多くなる
に従い空気供給手段をより長く動作させるものである。The control means operates the air supply means for a longer time as the estimated trapping amount increases.
【0022】そして捕集量が多いときは空気供給手段の
動作時間を長くし、捕集されたパティキュレートが燃焼
し尽くすまで空気を供給して再生率の低下を防止でき
る。捕集量が少ないときは無駄な空気供給を省き、再生
時間の長期化を防止し省電力化できる。When the trapped amount is large, the operation time of the air supply means is lengthened, and air is supplied until the trapped particulates are completely burned, so that the regeneration rate can be prevented from lowering. When the trapping amount is small, useless air supply can be omitted, and prolonged regeneration time can be prevented, thereby saving power.
【0023】以下本発明の実施例について図面を用いて
説明する。 (実施例1)図1は本発明の実施例1のフィルタ再生装
置の構成図であり、図2は本装置のの制御のメインルー
チンを示すフローチャートである。Hereinafter, embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 is a block diagram of a filter regeneration apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a flowchart showing a main routine of control of the apparatus.
【0024】図1において内燃機関(ディーゼルエンジ
ン)51より排出された排気ガスは排気管52を通して
加熱空間53内に収納されたフィルタ54に導かれる。
フィルタ54はハニカム構造からなり排気ガスが通過す
る際に排気ガス中に含まれるパティキュレートを捕集す
る。加熱空間53はパンチング穴構成あるいはハニカム
構成などからなるマイクロ波遮蔽手段55、56でもっ
てマイクロ波を実質的に閉じこめる空間を限定してい
る。57はフィルタ54の外周と加熱空間53を形成す
る管壁58との間に設けた断熱材でありフィルタ54の
支持も兼ねている。この断熱材57が配設された空間は
排気ガスの通流が遮断されている。In FIG. 1, exhaust gas discharged from an internal combustion engine (diesel engine) 51 is led through an exhaust pipe 52 to a filter 54 housed in a heating space 53.
The filter 54 has a honeycomb structure and captures particulates contained in the exhaust gas when the exhaust gas passes. The heating space 53 defines a space in which microwaves are substantially confined by microwave shielding means 55 and 56 having a punching hole configuration or a honeycomb configuration. Reference numeral 57 denotes a heat insulating material provided between the outer periphery of the filter 54 and the pipe wall 58 forming the heating space 53, and also serves as a support for the filter 54. The space in which the heat insulating material 57 is provided is cut off the flow of exhaust gas.
【0025】マイクロ波供給手段59の発生するマイク
ロ波は同軸伝送路60、同軸導波管変換用アンテナ6
1、環状の矩形導波管62および給電孔63、64を通
して加熱空間53に給電され、フィルタ54が捕集した
パティキュレートが誘電加熱される。65はマイクロ波
供給手段59の駆動電源であり、環状の矩形導波管62
は排気ガス排出管66の管壁面に略対面して設けられた
給電孔63、64を終端に配する構成からなる。この二
つの給電孔63、64から180゜の位相差を持ってマ
イクロ波を加熱空間53内に放射するように同軸導波管
変換用アンテナ61は環状矩形導波管62の所望位置に
配設している。The microwave generated by the microwave supply means 59 is supplied to the coaxial transmission line 60 and the coaxial waveguide conversion antenna 6.
1. Power is supplied to the heating space 53 through the annular rectangular waveguide 62 and the power supply holes 63 and 64, and the particulates collected by the filter 54 are dielectrically heated. Reference numeral 65 denotes a driving power supply for the microwave supply means 59, which is an annular rectangular waveguide 62.
Has a configuration in which power supply holes 63 and 64 provided substantially facing the pipe wall surface of the exhaust gas discharge pipe 66 are disposed at the end. The coaxial waveguide conversion antenna 61 is disposed at a desired position of the annular rectangular waveguide 62 so that microwaves are emitted into the heating space 53 with a phase difference of 180 ° from the two feed holes 63 and 64. doing.
【0026】67は断熱材57によって排気ガスが遮断
されている加熱空間53に設けられ、マイクロ波供給手
段59の動作によって配設空間近傍に存在するマイクロ
波強度を検出するマイクロ波強度検出手段であり、同軸
線路構造とし同軸線路の中心導体68を所定の長さだけ
加熱空間53内に突出させている。マイクロ波強度検出
手段67は所望するパティキュレート捕集量においてパ
ティキュレート捕集量の増加にともないマイクロ波強度
検出値が単調に低下するような位置に設けている。Reference numeral 67 denotes a microwave intensity detecting means provided in the heating space 53 in which the exhaust gas is blocked by the heat insulating material 57 and detecting the microwave intensity existing near the installation space by the operation of the microwave supply means 59. In addition, a coaxial line structure is adopted, and the center conductor 68 of the coaxial line is projected into the heating space 53 by a predetermined length. The microwave intensity detecting means 67 is provided at a position where the microwave intensity detection value monotonously decreases with an increase in the particulate collection amount at a desired particulate collection amount.
【0027】バルブ69は通常は内燃機関51より排出
された排気ガスをフィルタ54に通流させるが、フィル
タ54を再生(フィルタ54が捕集したパティキュレー
トを燃焼除去することをフィルタ再生と呼ぶ)するとき
はバルブ位置を切り替えて排気ガスを排気分岐管70に
通流させ、マフラー71を通して排気ガスを排出させ
る。空気供給手段72は空気搬送パイプ73を通して加
熱空間53内に酸素を含む空気を供給する。バルブ7
4、75がこの酸素を含む空気のフィルタ54への通流
を制御する。バルブ74はフィルタ54再生時にフィル
タ54に通流させた空気の排気経路である分岐管76に
配設し、バルブ75は加熱空間53と大気に通じる排気
管77との間に配設し、これら二つのバルブ74および
75を制御してフィルタ54再生時にフィルタ54に加
熱されたパティキュレートの燃焼を促進させる空気を通
流させる。Normally, the valve 69 allows exhaust gas discharged from the internal combustion engine 51 to flow through the filter 54, and regenerates the filter 54 (burning and removing particulates collected by the filter 54 is referred to as filter regeneration). In this case, the exhaust gas is caused to flow through the exhaust branch pipe 70 by switching the valve position, and the exhaust gas is discharged through the muffler 71. The air supply means 72 supplies air containing oxygen into the heating space 53 through the air conveying pipe 73. Valve 7
4 and 75 control the flow of the oxygen-containing air to the filter 54. The valve 74 is disposed on a branch pipe 76 that is an exhaust path of air that has flowed through the filter 54 during regeneration of the filter 54, and the valve 75 is disposed between the heating space 53 and an exhaust pipe 77 that communicates with the atmosphere. By controlling the two valves 74 and 75, air for promoting the combustion of the heated particulates is passed through the filter 54 during regeneration of the filter 54.
【0028】マイクロ波強度検出手段67が検出する信
号は同軸線路78を介して電子制御ユニット(ECU)
である制御手段79に入力させる。制御手段79はマイ
クロ波供給手段59動作中の検出マイクロ波強度に基づ
いて、マイクロ波供給手段59の駆動電源65、空気供
給手段72、バルブ69、バルブ74およびバルブ75
を制御し、フィルタ54が捕集したパティキュレートを
燃焼除去しフィルタ54を再生する。The signal detected by the microwave intensity detecting means 67 is transmitted via a coaxial line 78 to an electronic control unit (ECU).
Is input to the control means 79. The control means 79 controls the drive power supply 65, the air supply means 72, the valve 69, the valve 74, and the valve 75 of the microwave supply means 59 based on the detected microwave intensity during the operation of the microwave supply means 59.
And the filter 54 is regenerated by burning and removing the particulates collected by the filter 54.
【0029】以下、上記構成の動作、作用を説明する。
図1、2において制御手段79はパティキュレート捕集
時にバルブ69、バルブ74、バルブ75を制御し、内
燃機関51より排出される排気ガスをフィルタ54に通
すことにより、排気ガス中に含まれるパティキュレート
を捕集し排気ガスを浄化する。フィルタ54に捕集され
たパティキュレートの量が増加すると、フィルタ54で
の圧損が増大し内燃機関51の負荷が増大するとともに
最悪の場合は停止に至る。捕集量を推定するため制御手
段79は内燃機関51動作中に所定の周期でマイクロ波
供給手段59を動作させる。そしてマイクロ波供給手段
59の動作を開始させてから所定時間後の時点にマイク
ロ波強度検出手段67の検出値を取り込む。制御手段7
9は取り込んだマイクロ波強度検出手段67の検出マイ
クロ波強度に基づいてフィルタ54が捕集したパティキ
ュレート捕集量を推定する。推定捕集量が予め決めた値
を越えた時にフィルタ54の再生処理の開始時期と判定
する(S100)。捕集中の捕集量推定に加え、本発明
では、再生中においても再生中のマイクロ波強度検出手
段67の検出マイクロ波強度に基づいて捕集量を推定し
(S107)、捕集中に推定された捕集量のばらつきに
対応するとともに、捕集中の捕集量推定が行えなかった
ときのバックアップを行い、捕集量管理の信頼性を向上
させている。なお内燃機関51の運転状態(運転時間、
負荷、回転数)から捕集量を推定してもよい。The operation and operation of the above configuration will be described below.
1 and 2, the control means 79 controls the valve 69, the valve 74, and the valve 75 at the time of particulate collection, and allows the exhaust gas discharged from the internal combustion engine 51 to pass through the filter 54, so that the particulate matter contained in the exhaust gas is removed. Collects curate and purifies exhaust gas. When the amount of the particulates collected in the filter 54 increases, the pressure loss in the filter 54 increases, the load on the internal combustion engine 51 increases, and in the worst case, the operation stops. The control unit 79 operates the microwave supply unit 59 at a predetermined cycle during the operation of the internal combustion engine 51 to estimate the trapping amount. Then, the detection value of the microwave intensity detecting means 67 is fetched at a point in time after a predetermined time from the start of the operation of the microwave supplying means 59. Control means 7
Numeral 9 estimates the amount of particulates collected by the filter 54 based on the detected microwave intensity detected by the microwave intensity detecting means 67. When the estimated trapping amount exceeds a predetermined value, it is determined that it is time to start the regeneration processing of the filter 54 (S100). In addition to the estimation of the collection amount of the concentration, in the present invention, the collection amount is estimated based on the microwave intensity detected by the microwave intensity detection means 67 during the reproduction (S107), and the concentration is estimated. In addition to responding to the variation in the collected amount, a backup is performed when the collected amount cannot be estimated for concentration, thereby improving the reliability of the collected amount management. The operating state of the internal combustion engine 51 (operating time,
The collection amount may be estimated from the load and the rotation speed).
【0030】制御手段79が再生開始時期と判定する
と、再生開始信号を出力し(S101)、フィルタ4再
生時はバルブ69、バルブ74、バルブ75を制御し、
内燃機関51が動作中は排気ガスを排気分岐管70を通
してバイパスさせる。マイクロ波供給手段59を動作さ
せ(S102)、供給マイクロ波によりフィルタ54に
捕集されたパティキュレートを誘電加熱する。When the control means 79 determines that it is time to start regeneration, it outputs a regeneration start signal (S101), and controls the valves 69, 74 and 75 during regeneration of the filter 4,
During the operation of the internal combustion engine 51, the exhaust gas is bypassed through the exhaust branch pipe 70. The microwave supply means 59 is operated (S102), and the particulates collected in the filter 54 are dielectrically heated by the supplied microwave.
【0031】また気供給手段72の間欠駆動時の停止時
間toffをta(例えば3分)に設定し(S103
1)、空気供給手段72の間欠動作(空気供給量の増減
動作)時に得られるマイクロ波強度検出手段67の検出
マイクロ波強度に基づいて誘電加熱中のパティキュレー
ト温度の推定値Tiを演算する(S1041、サブルー
チン)。規定温度T1(例えば450℃)と比較してT
iがT1よりも大であれば次のステップに進む(S10
51)。次に空気供給手段72の間欠駆動時の停止時間
toffを今度はtc(例えば1分)に設定し(S10
32)、再びパティキュレート温度の推定値Tiを演算
する(S1042、サブルーチン)。空気供給手段72
の間欠駆動時の停止時間を短縮して間欠動作の周期を短
縮化し、パティキュレート温度推定の頻度を増す。規定
温度T2(例えば650℃)と比較してTiがT2より
も大であればパティキュレートの予熱が完了したものと
し、次のステップに進む(S1052)。パティキュレ
ートの燃焼を拡大するため空気供給量Q0(例えば50
リットル毎分)にて空気供給を開始(連続供給)する
(S106)。The stop time toff during intermittent driving of the air supply means 72 is set to ta (for example, 3 minutes) (S103).
1) The estimated value Ti of the particulate temperature during dielectric heating is calculated based on the microwave intensity detected by the microwave intensity detecting means 67 obtained at the time of the intermittent operation (increase / decrease operation of the air supply amount) of the air supplying means 72 ( S1041, subroutine). T compared with the specified temperature T1 (for example, 450 ° C.)
If i is greater than T1, the process proceeds to the next step (S10).
51). Next, the stop time toff during the intermittent drive of the air supply means 72 is set to tc (for example, 1 minute) this time (S10).
32) Then, an estimated value Ti of the particulate temperature is calculated again (S1042, subroutine). Air supply means 72
The intermittent operation is shortened by shortening the stop time at the time of intermittent driving, and the frequency of the particulate temperature estimation is increased. If Ti is higher than T2 (for example, 650 ° C.), it is determined that the particulate preheating has been completed, and the process proceeds to the next step (S1052). In order to expand the combustion of particulates, the air supply amount Q0 (for example, 50
Air supply is started (continuous supply) at liters per minute (S106).
【0032】またマイクロ波強度検出手段67の検出マ
イクロ波強度に基づいて燃焼初期段階においてパティキ
ュレート捕集量Xiを演算して再確認し(S107、サ
ブルーチン)、Xiに応じてマイクロ波供給手段59と
空気供給手段72の動作を制御して、それぞれの供給量
を制御する(S108、サブルーチン)。これにより捕
集中に演算された捕集量推定値のばらつきに対応すると
ともに、捕集中の捕集量推定が行えなかったときのバッ
クアップを行う。At the initial stage of combustion, the amount of trapped particulates Xi is calculated and reconfirmed (S107, subroutine) based on the microwave intensity detected by the microwave intensity detecting means 67 (S107, subroutine). And the operation of the air supply means 72 to control the respective supply amounts (S108, subroutine). In this way, it is possible to cope with the variation of the estimated value of the collection amount calculated for the concentration and to perform a backup when the estimation of the collection amount of the concentration cannot be performed.
【0033】そしてS108終了後、再生終了信号を出
力し(S109)、バルブ69、バルブ74、バルブ7
5を再び制御して、1サイクルの捕集、再生を終了す
る。そして再生したフィルタ54に排気ガスを通流でき
る状態にして内燃機関51の排気ガスをフィルタ54に
通流させる。After the end of S108, a reproduction end signal is output (S109), and the valve 69, the valve 74, and the valve 7 are output.
5 is again controlled to end one cycle of collection and regeneration. Then, the exhaust gas of the internal combustion engine 51 is caused to flow through the filter 54 in a state where the exhaust gas can flow through the regenerated filter 54.
【0034】以下、フィルタ54再生中のパティキュレ
ート温度推定について詳細に説明する。パティキュレー
ト温度推定は、パティキュレートを燃焼させるためのパ
ティキュレートを予熱する段階において、空気供給手段
72の間欠動作による空気供給量の増減時に得られるマ
イクロ波強度検出手段69の検出マイクロ波強度に基づ
いて推定される。Hereinafter, the estimation of the particulate temperature during regeneration of the filter 54 will be described in detail. The particulate temperature estimation is based on the microwave intensity detected by the microwave intensity detecting means 69 obtained when the air supply amount is increased or decreased due to the intermittent operation of the air supply means 72 at the stage of preheating the particulates for burning the particulates. Is estimated.
【0035】図2において空気供給手段72の間欠動作
における停止時間toffをtaもしくはtcに設定し
(S1031もしくはS1032)、パティキュレート
温度推定値の演算を行うサブルーチン(S1041もし
くはS1042)が実行される。In FIG. 2, the stop time toff in the intermittent operation of the air supply means 72 is set to ta or tc (S1031 or S1032), and a subroutine (S1041 or S1042) for calculating the estimated particulate temperature is executed.
【0036】図3はそのサブルーチンを示す図である。
時間toffの間空気供給手段72の動作停止をそのま
ま継続し(S200)、その後空気供給手段72を規定
風量Q0(例えば50リットル毎分)で動作させ(S2
01)、マイクロ波強度検出手段67からの検出マイク
ロ波強度をV0として取り込む(S202)。時間tb
(例えば30秒間)経過後(S203)、検出マイクロ
波強度をV1として再び取り込み(S204)、検出マ
イクロ波強度の変化量dV1(V1−V0)を算出する
(S205)。制御手段79に記憶させている関数f1
にdV1代入して推定温度Tiを求め(S206)、空
気供給手段72の動作を停止して(S207)、本サブ
ルーチンが終了する。その後Tiと規定温度T1もしく
はT2とを比較して(S1051もしくはS105
2)、TiがT1もしくはT2よりも大となるまでS1
041とS1051もしくはS1042とS1052が
繰り返される。ここで検出マイクロ波強度の変化量dV
1とパティキュレート温度Tiとの関係を表す関数f1
であるが、検出マイクロ波強度の変化量dV1とパティ
キュレート温度Tiとの間に相関性があることを実験を
通じて発見した。FIG. 3 is a diagram showing the subroutine.
The operation stop of the air supply means 72 is continued as it is for the time toff (S200), and thereafter the air supply means 72 is operated at the specified air volume Q0 (for example, 50 liters per minute) (S2).
01), the detected microwave intensity from the microwave intensity detecting means 67 is taken in as V0 (S202). Time tb
After a lapse of (for example, 30 seconds) (S203), the detected microwave intensity is taken in again as V1 (S204), and a change amount dV1 (V1-V0) of the detected microwave intensity is calculated (S205). Function f1 stored in control means 79
Is substituted for dV1 to obtain the estimated temperature Ti (S206), the operation of the air supply means 72 is stopped (S207), and this subroutine ends. Thereafter, Ti is compared with the specified temperature T1 or T2 (S1051 or S105
2), S1 until Ti becomes larger than T1 or T2
041 and S1051 or S1042 and S1052 are repeated. Here, the change amount dV of the detected microwave intensity is
F1 representing the relationship between 1 and the particulate temperature Ti
However, it has been found through experiments that there is a correlation between the detected microwave intensity variation dV1 and the particulate temperature Ti.
【0037】これらにより温度センサを使うことなく誘
電加熱されたパティキュレートの温度を推定して、最適
な温度に予熱されたときに空気を連続供給し、燃焼状態
に移行させる。よって予熱過少あるいは過多を防止で
き、高効率かつ低燃焼温度でのフィルタ再生を行ことが
できる。With these, the temperature of the particulates subjected to dielectric heating is estimated without using a temperature sensor, and when the particulates are preheated to an optimum temperature, air is continuously supplied to shift to a combustion state. Therefore, underheating or preheating can be prevented from being insufficient or excessive, and the filter can be regenerated with high efficiency at a low combustion temperature.
【0038】また推定温度が規定温度よりも大きくなる
と、空気供給手段72の間欠駆動時における停止時間を
短縮化して空気供給量の増減動作の周期を短縮し、パテ
ィキュレート温度の推定頻度を増すことにより、燃焼に
移行させる最適なタイミングで空気を供給でき、燃焼温
度の高温化抑制と高再生効率維持によりフィルタの耐久
性を保証できる。If the estimated temperature is higher than the specified temperature, the stop time during the intermittent drive of the air supply means 72 is shortened to shorten the cycle of the air supply amount increasing / decreasing operation and increase the frequency of estimating the particulate temperature. Accordingly, air can be supplied at the optimal timing for shifting to combustion, and the durability of the filter can be guaranteed by suppressing the combustion temperature from increasing and maintaining high regeneration efficiency.
【0039】なお空気供給量の増減動作として空気供給
手段72の間欠動作としたが、空気通流経路にバルブを
設け(図示せず)、空気量を増減させてもよい。Although the intermittent operation of the air supply means 72 has been described as the operation of increasing or decreasing the air supply amount, a valve (not shown) may be provided in the air flow path to increase or decrease the air amount.
【0040】以下、フィルタ54再生中のパティキュレ
ート捕集量推定について詳細に説明する。パティキュレ
ート捕集量推定は、予熱完了後のパティキュレート燃焼
段階において、空気供給手段72の連続動作時に得られ
るマイクロ波強度検出手段67の検出マイクロ波強度に
基づいて推定される。さらにこの推定捕集量に応じてマ
イクロ波供給手段59と空気供給手段72の動作を制御
してそれぞれの供給量を制御する。Hereinafter, estimation of the amount of trapped particulate during regeneration of the filter 54 will be described in detail. In the particulate combustion stage after the completion of preheating, the amount of trapped particulates is estimated based on the detected microwave intensity of the microwave intensity detection means 67 obtained when the air supply means 72 operates continuously. Further, the operation of the microwave supply means 59 and the operation of the air supply means 72 are controlled in accordance with the estimated trapping amount to control the respective supply amounts.
【0041】図2において空気供給手段72を供給量Q
0で動作させ(S106)、再生中のパティキュレート
捕集量推定値Xiの演算を行うサブルーチン(S10
7)に進み、さらにXiに応じたマイクロ波供給量と空
気供給量制御を行うサブルーチン(S108)に進む。In FIG. 2, the air supply means 72 has a supply amount Q.
0 (S10) and a subroutine (S10) for calculating the estimated particulate collection amount Xi during reproduction.
The process proceeds to 7), and further proceeds to a subroutine (S108) for controlling the microwave supply amount and the air supply amount according to Xi.
【0042】図4は再生中のパティキュレート捕集量推
定値Xiの演算を行うサブルーチンを示す図である。マ
イクロ波強度検出手段67からの検出マイクロ波強度を
V2として取り込む(S300)。規定時間td(例え
ば5分)経過後(S301)に検出マイクロ波強度をV
3として取り込み(S302)、規定した時間帯tdで
の検出マイクロ波強度の変化量dV2(=V3―V2)
を算出する(S303)。制御手段79に記憶させてい
る関数f2にdV2代入して推定捕集量Xiを求め(S
304)。再生中の燃焼初期段階においてパティキュレ
ート燃焼状態を大きく支配する因子の一つであるパティ
キュレートの捕集量を再確認する。ここで検出マイクロ
波強度の変化量dV2とパティキュレート捕集量Xiと
の関係を表す関数f2であるが、検出マイクロ波強度の
変化量dV1とパティキュレート捕集量Xiとの間に相
関性があることを実験を通じて発見したものである。FIG. 4 is a diagram showing a subroutine for calculating the estimated particulate collection amount Xi during reproduction. The detected microwave intensity from the microwave intensity detecting means 67 is taken in as V2 (S300). After the specified time td (for example, 5 minutes) has elapsed (S301), the detected microwave intensity is set to V
3 (S302), and the detected microwave intensity change amount dV2 (= V3-V2) in the specified time zone td.
Is calculated (S303). The estimated trapping amount Xi is obtained by substituting dV2 into the function f2 stored in the control means 79 (S
304). At the initial stage of combustion during regeneration, the amount of trapped particulates, which is one of the factors that largely control the state of particulate combustion, is reconfirmed. Here, the function f2 represents the relationship between the change amount dV2 of the detected microwave intensity and the trapped amount Xi of the particulate matter. I discovered something through experimentation.
【0043】これによりパティキュレート捕集中の捕集
量推定に加え、再生中のパティキュレート燃焼初期段階
において捕集量を再確認し、この推定捕集量に応じてマ
イクロ波供給手段59と空気供給手段72とを制御する
ことにより、捕集中の捕集量推定が不可能となったとき
でも捕集量を正確に把握して、低温度での高再生効率の
再生を保証でき、フィルタ再生装置の信頼性を高めるこ
とができる。In this way, in addition to the estimation of the trapped amount of the particulate concentration, the trapped amount is reconfirmed in the initial stage of the particulate combustion during regeneration, and the microwave supply means 59 and the air supply are supplied in accordance with the estimated trapped amount. By controlling the means 72, even when it is impossible to estimate the collection amount of the concentration, it is possible to accurately grasp the collection amount and to guarantee the high regeneration efficiency at a low temperature, and the filter regeneration device Reliability can be improved.
【0044】図5は前サブルーチンで演算されたXiに
応じたマイクロ波供給量と空気供給量制御を行うサブル
ーチンを示す図であり、図6は制御手段79に記憶させ
ている、マイクロ波と空気供給量とその供給時間を決定
するためのXiを変数とする関数f3、f4、f5であ
る。まずXiを制御手段79に記憶させている関数f
3、f4およびf5に代入してマイクロ波供給量P1、
空気供給量Q1およびそれらの供給時間teを求める
(S4001から4003)。マイクロ波供給量をP0
からP1へと出力を変化させ(S401)、空気供給量
をQ0からQ1に変化させ(S402)て、時間teの
間待機して(S403)マイクロ波量P1と空気量Q1
の供給を続ける。FIG. 5 is a diagram showing a subroutine for controlling the microwave supply amount and the air supply amount according to Xi calculated in the previous subroutine. FIG. These are functions f3, f4, and f5 that use Xi as a variable to determine the supply amount and the supply time. First, a function f storing Xi in the control means 79
3, f4 and f5 to substitute microwave supply amount P1,
The air supply amount Q1 and their supply time te are obtained (S4001 to 4003). Microwave supply amount is P0
The output is changed from P0 to P1 (S401), the air supply amount is changed from Q0 to Q1 (S402), and the apparatus waits for a time te (S403). The microwave amount P1 and the air amount Q1
Continue to supply.
【0045】ここでP1はXiが多くなるに従い、P1
を少なくしている。これにより捕集量が多いときはマイ
クロ波供給量を少なくして燃焼温度の高温化を抑制し、
一方捕集量が少ないときは燃焼維持に必要なマイクロ波
量を確保し、高再生効率を維持する。またXiが多くな
るに従い、Q1を少なくしている。これにより捕集量が
多いときは空気量抑制により燃焼を緩慢化させ、燃焼温
度の高温化を抑制する。さらにXiが多くなるに従いt
eを長くしている。これにより捕集量に応じて総空気量
を可変し、効率よくパティキュレートを燃焼させる。Here, P1 increases as Xi increases.
Is reduced. With this, when the trapping amount is large, the microwave supply amount is reduced to suppress the increase in combustion temperature,
On the other hand, when the trapping amount is small, the amount of microwaves necessary for maintaining combustion is secured, and high regeneration efficiency is maintained. In addition, as Xi increases, Q1 decreases. Thus, when the trapping amount is large, the combustion is slowed down by suppressing the air amount, and the combustion temperature is suppressed from increasing. As Xi further increases, t
e is lengthened. As a result, the total air amount is varied according to the trapped amount, and the particulates are burned efficiently.
【0046】燃焼が終了したフィルタ54を冷却するた
めマイクロ波供給を停止し(S404)、空気供給量を
Q1からQ2(例えば100リットル毎分)に増量する
(S405)。時間tf経過後(S406)、空気供給
を停止して(S407)、本サブルーチンが終了する。The microwave supply is stopped to cool the burned filter 54 (S404), and the air supply amount is increased from Q1 to Q2 (for example, 100 liters per minute) (S405). After elapse of the time tf (S406), the air supply is stopped (S407), and this subroutine ends.
【0047】なお実施例1においてフィルタ54再生中
の排気ガスを排気分岐管70にバイパスさせフィルタ5
4に対して内燃機関51の排気ガスと空気供給手段72
の供給空気の流れ方向が逆のバイパス逆流再生方式で説
明したが、フィルタ54を2個設けたツインフィルタ方
式、フィルタ54に対して内燃機関51の排気ガスと空
気供給手段72の供給空気の流れ方向が同じ順流再生方
式、排気分岐管70を無くし内燃機関51停止時にフィ
ルタ54再生を行う停車再生方式などにも上記実施例は
適用できる。In the first embodiment, the exhaust gas during regeneration of the filter 54 is bypassed to the exhaust branch pipe 70 and the filter 5
4, the exhaust gas of the internal combustion engine 51 and the air supply means 72
The flow direction of the supply air is reversed in the bypass reverse flow regeneration method, but the twin filter method in which two filters 54 are provided, the flow of the exhaust gas of the internal combustion engine 51 and the flow of the supply air of the air supply means 72 with respect to the filters 54 The above embodiment can also be applied to a forward flow regeneration system having the same direction, a vehicle stop regeneration system in which the exhaust branch pipe 70 is eliminated, and the filter 54 is regenerated when the internal combustion engine 51 is stopped.
【0048】[0048]
【発明の効果】以上説明したように本発明のフィルタ再
生装置によれば以下の効果が得られる。As described above, according to the filter regeneration apparatus of the present invention, the following effects can be obtained.
【0049】(1)マイクロ波強度検出手段を設け、フ
ィルタ再生中の空気供給手段の動作時に得られるマイク
ロ波強度検出手段の検出マイクロ波強度に基づいて、検
出マイクロ波強度とパティキュレート温度との関係か
ら、温度センサを用いることなく、誘電加熱中のティキ
ュレート温度を推定できる。これにより再生開始前のパ
ティキュレート温度のばらつき(捕集中の内燃機関の排
気ガス温度で変動する)、マイクロ波供給量のばらつき
(電源電圧の変動)に対して予熱時間を可変制御し、予
熱過多による燃焼温度の高温化の抑制、あるいは予熱過
少による燃焼失火による再生効率低下を防止でき、フィ
ルタの耐久性を保証できる。また無駄な予熱を無くして
省電力を図ることができ、本装置が車両のバッテリで駆
動されているときに特に効果的である。(1) A microwave intensity detecting means is provided, and based on the detected microwave intensity of the microwave intensity detecting means obtained when the air supply means is operating during filter regeneration, the detected microwave intensity and the particulate temperature are compared. From the relation, it is possible to estimate the particulate temperature during dielectric heating without using a temperature sensor. As a result, the preheating time is variably controlled with respect to the variation in the particulate temperature before the start of the regeneration (it fluctuates with the exhaust gas temperature of the concentrated internal combustion engine), and the variation in the microwave supply amount (the fluctuation in the power supply voltage). Thus, it is possible to prevent the combustion temperature from becoming high, or to prevent the regeneration efficiency from decreasing due to combustion misfire due to insufficient preheating, and to guarantee the durability of the filter. Further, power can be saved by eliminating unnecessary preheating, which is particularly effective when the present apparatus is driven by a battery of a vehicle.
【0050】(2)推定温度か規定値を超えると空気供
給量の増減動作の周期を短縮しパティキュレート温度の
推定頻度を増すことにより、燃焼に移行させる最適なタ
イミングで空気を供給でき、燃焼温度の高温化抑制と高
再生効率維持によりフィルタの耐久性を保証できる。(2) If the estimated temperature exceeds a specified value, the cycle of the operation of increasing or decreasing the air supply amount is shortened, and the frequency of estimating the particulate temperature is increased, so that air can be supplied at the optimal timing for shifting to combustion, The durability of the filter can be guaranteed by suppressing the increase in temperature and maintaining high regeneration efficiency.
【0051】(3)マイクロ波強度検出手段を設け、フ
ィルタ再生中の空気供給手段の動作時に得られるマイク
ロ波強度検出手段の検出マイクロ波強度に基づいて、検
出マイクロ波強度とパティキュレート捕集量との関係か
ら燃焼初期段階においてパティキュレート捕集量を推定
できる。これにより通常行われる、フィルタによるパテ
ィキュレート捕集中の捕集量推定に加え、再生中のパテ
ィキュレート燃焼初期段階において捕集量を再確認し、
この捕集量に応じてマイクロ波供給手段と空気供給手段
とを制御することにより、捕集量管理の信頼性を高め、
低温度での高再生効率の再生を保証でき、フィルタ再生
装置の信頼性を高めることができる。(3) A microwave intensity detecting means is provided, and based on the detected microwave intensity of the microwave intensity detecting means obtained at the time of operation of the air supply means during filter regeneration, the detected microwave intensity and the amount of collected particulates are determined. From the relationship, the amount of trapped particulates can be estimated in the initial stage of combustion. In this way, in addition to the collection amount estimation of particulate concentration by the filter which is usually performed, the collection amount is reconfirmed in the initial stage of particulate combustion during regeneration,
By controlling the microwave supply means and the air supply means according to the collected amount, the reliability of the collected amount management is improved,
Regeneration with high regeneration efficiency at low temperatures can be guaranteed, and the reliability of the filter regeneration device can be improved.
【0052】(4)マイクロ波供給量を途中で減少さ
せ、減少後のマイクロ波供給量を再生中に推定したパテ
ィキュレート捕集量が多くなるに従いより減少させるこ
とにより、捕集量が少ないときは燃焼維持に必要なマイ
クロ波供給量を確保し、一方捕集量が多いときはマイク
ロ波の低減により加熱量を低減し、幅広い捕集量におい
て燃焼温度の高温化抑制と高再生効率維持を図り、フィ
ルタの耐久性を保証することができる。(4) When the amount of collected microwaves is small, the amount of supplied microwaves is reduced on the way, and the reduced amount of microwave supply is further reduced as the amount of collected particulates estimated during reproduction increases. Secures the amount of microwave supply necessary to maintain combustion, while reducing the amount of microwaves to reduce the amount of heating when the amount of trapping is large, to suppress the combustion temperature from increasing over a wide range of trapping and maintain high regeneration efficiency. As a result, the durability of the filter can be guaranteed.
【0053】(5)空気供給量を途中で減少させ、減少
後の空気供給量を再生中に推定したパティキュレート捕
集量が多くなるに従いより減少させることにより、捕集
量が多いときは空気量抑制により燃焼を緩慢化させ、フ
ィルタの燃焼温度の高温化を抑制し、フィルタの耐久性
を保証することができる。(5) The air supply amount is reduced on the way, and the reduced air supply amount is further reduced as the particulate collection amount estimated during regeneration increases. The combustion can be slowed down by suppressing the amount, the combustion temperature of the filter can be prevented from increasing, and the durability of the filter can be guaranteed.
【0054】(6)推定捕集量が多くなるに従い燃焼の
ための空気供給時間をより長くすることにより、捕集量
が多いときは空気供給手段の動作時間を長くし、捕集さ
れたパティキュレートが燃焼し尽くすまで空気を供給し
て再生効率の低下を防止できる。一方捕集量が少ないと
きは無駄な空気供給を省き、再生時間の長期化を防止し
省電力化できる。が少ないときの無駄な空気供給を省い
て再生時間の長期化を防止し、省電力化できる。(6) By increasing the air supply time for combustion as the estimated trapping amount increases, the operating time of the air supply means is increased when the trapping amount is large, and Air can be supplied until the curate is completely burned to prevent a decrease in regeneration efficiency. On the other hand, when the trapping amount is small, useless air supply can be omitted, and a prolonged regeneration time can be prevented to save power. When the amount of power is small, useless air supply can be omitted to prevent a prolonged reproduction time, and power can be saved.
【図1】本発明のフィルタ再生装置の実施例1を示す構
成図FIG. 1 is a configuration diagram showing a filter regeneration apparatus according to a first embodiment of the present invention.
【図2】同フィルタ再生装置の実施例1の制御における
メインルーチンのフローチャートFIG. 2 is a flowchart of a main routine in control of Embodiment 1 of the filter regeneration device.
【図3】同フィルタ再生装置の実施例1の制御における
サブルーチンのフローチャートFIG. 3 is a flowchart of a subroutine in control of Embodiment 1 of the filter regeneration device.
【図4】同フィルタ再生装置の実施例1の制御における
サブルーチンのフローチャートFIG. 4 is a flowchart of a subroutine in control of Embodiment 1 of the filter regeneration device.
【図5】同フィルタ再生装置の実施例1の制御における
サブルーチンのフローチャートFIG. 5 is a flowchart of a subroutine in control of Embodiment 1 of the filter regeneration device.
【図6】同フィルタ再生装置の実施例1の制御における
制御変数を示す図FIG. 6 is a diagram showing control variables in control of Embodiment 1 of the filter regeneration device.
【図7】従来のフィルタ再生装置の構成図FIG. 7 is a configuration diagram of a conventional filter regeneration device.
51 内燃機関 54 フィルタ 59 マイクロ波供給手段 67 マイクロ波強度検出手段 72 空気供給手段 79 制御手段 Reference Signs List 51 internal combustion engine 54 filter 59 microwave supply means 67 microwave intensity detection means 72 air supply means 79 control means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 垰 統雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Norio Tao 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.
Claims (8)
ュレートを捕集するフィルタと、前記フィルタが捕集し
たパティキュレートを誘電加熱するマイクロ波供給手段
と、前記フィルタに空気を供給する空気供給手段と、前
記フィルタを収納した空間のマイクロ波強度を検出する
マイクロ波強度検出手段と、前記マイクロ波強度検出手
段が検出したマイクロ波強度に基づいて前記フィルタが
捕集したパティキュレートを燃焼除去させる制御手段と
を備え、前記制御手段は、前記マイクロ波供給手段の動
作中の前記空気供給手段の所定動作によって得られる検
出マイクロ波強度に基づいて誘電加熱中のパティキュレ
ートの温度を推定し、推定した温度に基づいて前記マイ
クロ波供給手段および前記空気供給手段を制御するフィ
ルタ再生装置。1. A filter for collecting particulates contained in exhaust gas of an internal combustion engine, microwave supply means for dielectrically heating the particulates collected by the filter, and air supply for supplying air to the filter. Means, microwave intensity detecting means for detecting microwave intensity in a space containing the filter, and burning and removing particulates collected by the filter based on the microwave intensity detected by the microwave intensity detecting means. Control means, wherein the control means estimates the temperature of the particulate during dielectric heating based on the detected microwave intensity obtained by the predetermined operation of the air supply means during the operation of the microwave supply means, and estimates the temperature. A filter regeneration device that controls the microwave supply means and the air supply means based on the temperature obtained.
減動作によって得られる検出マイクロ波強度の変化量に
基づいてパティキュレートの温度を推定することとした
請求項1記載のフィルタ再生装置。2. The filter regenerating apparatus according to claim 1, wherein the control means estimates the temperature of the particulate based on a change amount of the detected microwave intensity obtained by an increase / decrease operation of the air supply amount of the air supply means.
と空気供給量の増減動作の周期を短縮する請求項1また
は2記載のフィルタ再生装置。3. The filter regeneration apparatus according to claim 1, wherein the control means shortens the cycle of the increase / decrease operation of the air supply amount when the estimated temperature exceeds a specified value.
ュレートを捕集するフィルタと、前記フィルタが捕集し
たパティキュレートを誘電加熱するマイクロ波供給手段
と、前記フィルタに空気を供給する空気供給手段と、前
記フィルタを収納した空間のマイクロ波強度を検出する
マイクロ波強度検出手段と、前記マイクロ波強度検出手
段が検出したマイクロ波強度に基づいて前記フィルタが
捕集したパティキュレートを燃焼除去させる制御手段と
を備え、前記制御手段は前記マイクロ波供給手段の動作
中の前記空気供給手段の所定動作によって得られる検出
マイクロ波強度に基づいて前記フィルタが捕集したパテ
ィキュレートの捕集量を推定し、推定した捕集量に基づ
いて前記マイクロ波供給手段および前記空気供給手段を
制御するフィルタ再生装置。4. A filter for collecting particulates contained in exhaust gas of an internal combustion engine, microwave supply means for dielectrically heating the particulates collected by the filter, and air supply for supplying air to the filter. Means, microwave intensity detecting means for detecting microwave intensity in a space containing the filter, and burning and removing particulates collected by the filter based on the microwave intensity detected by the microwave intensity detecting means. Control means, the control means estimating the amount of particulates collected by the filter based on a detected microwave intensity obtained by a predetermined operation of the air supply means during operation of the microwave supply means. And a filter for controlling the microwave supply means and the air supply means based on the estimated trapping amount. Raw devices.
ける規定した時間帯での検出マイクロ波強度の変化量に
基づいてパティキュレートの捕集量を推定することとし
た請求項4記載のフィルタ再生装置。5. The filter according to claim 4, wherein the control means estimates the amount of trapped particulates based on the amount of change in the detected microwave intensity during a specified time period during continuous operation of the air supply means. Playback device.
いマイクロ波の供給量をより減少させる請求項4記載の
フィルタ再生装置。6. The filter regeneration apparatus according to claim 4, wherein the control means further reduces the supply amount of the microwave as the estimated trapping amount increases.
い空気の供給量をより減少させる請求項4記載のフィル
タ再生装置。7. The filter regeneration apparatus according to claim 4, wherein the control means further reduces the air supply amount as the estimated trapping amount increases.
い空気供給手段をより長く動作させる請求項4記載のフ
ィルタ再生装置。8. The filter regeneration apparatus according to claim 4, wherein the control means operates the air supply means for a longer time as the estimated trapping amount increases.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9016107A JPH10212928A (en) | 1997-01-30 | 1997-01-30 | Filter recovering device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9016107A JPH10212928A (en) | 1997-01-30 | 1997-01-30 | Filter recovering device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10212928A true JPH10212928A (en) | 1998-08-11 |
Family
ID=11907303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9016107A Pending JPH10212928A (en) | 1997-01-30 | 1997-01-30 | Filter recovering device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10212928A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001254616A (en) * | 2000-03-13 | 2001-09-21 | Toyota Motor Corp | Exhaust emission control device of internal combustion engine |
JP2003035128A (en) * | 2001-07-19 | 2003-02-07 | Toyota Central Res & Dev Lab Inc | Exhaust emission control device for internal combustion engine |
JP2003155921A (en) * | 2001-11-21 | 2003-05-30 | Toyota Motor Corp | Exhaust emission control device of internal combustion engine |
JP2005048691A (en) * | 2003-07-30 | 2005-02-24 | Nissan Motor Co Ltd | Regeneration control device for exhaust filter |
JP2012082701A (en) * | 2010-10-07 | 2012-04-26 | Denso Corp | Engine control device |
JP2019509427A (en) * | 2016-03-21 | 2019-04-04 | シーティーエス・コーポレーションCts Corporation | High frequency process sensing, control and diagnostic networks and systems |
JP2019167852A (en) * | 2018-03-22 | 2019-10-03 | トヨタ自動車株式会社 | Exhaust emission control system for internal combustion engine |
CN112112710A (en) * | 2019-06-21 | 2020-12-22 | 丰田自动车株式会社 | Control device for internal combustion engine |
CN114144260A (en) * | 2020-02-25 | 2022-03-04 | 富士电机株式会社 | Dust collecting device |
-
1997
- 1997-01-30 JP JP9016107A patent/JPH10212928A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001254616A (en) * | 2000-03-13 | 2001-09-21 | Toyota Motor Corp | Exhaust emission control device of internal combustion engine |
JP2003035128A (en) * | 2001-07-19 | 2003-02-07 | Toyota Central Res & Dev Lab Inc | Exhaust emission control device for internal combustion engine |
JP2003155921A (en) * | 2001-11-21 | 2003-05-30 | Toyota Motor Corp | Exhaust emission control device of internal combustion engine |
JP2005048691A (en) * | 2003-07-30 | 2005-02-24 | Nissan Motor Co Ltd | Regeneration control device for exhaust filter |
JP2012082701A (en) * | 2010-10-07 | 2012-04-26 | Denso Corp | Engine control device |
JP2019509427A (en) * | 2016-03-21 | 2019-04-04 | シーティーエス・コーポレーションCts Corporation | High frequency process sensing, control and diagnostic networks and systems |
JP2019167852A (en) * | 2018-03-22 | 2019-10-03 | トヨタ自動車株式会社 | Exhaust emission control system for internal combustion engine |
CN112112710A (en) * | 2019-06-21 | 2020-12-22 | 丰田自动车株式会社 | Control device for internal combustion engine |
JP2021001576A (en) * | 2019-06-21 | 2021-01-07 | トヨタ自動車株式会社 | Internal combustion engine control apparatus |
US11085341B2 (en) * | 2019-06-21 | 2021-08-10 | Toyota Jidosha Kabushiki Kaisha | Control device for internal combustion engine |
CN114144260A (en) * | 2020-02-25 | 2022-03-04 | 富士电机株式会社 | Dust collecting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2738251B2 (en) | Filter regeneration device for internal combustion engine | |
JP2004301013A (en) | Exhaust emission control device of internal combustion engine | |
JPH10212928A (en) | Filter recovering device | |
JPH07317528A (en) | Method and device for exhaust gas processing for internal combustion engine | |
JP3187183B2 (en) | Exhaust gas purification device | |
JP2827925B2 (en) | Filter regeneration device | |
JPH10238335A (en) | Filter regenerator | |
JP2785656B2 (en) | Filter regeneration device for internal combustion engine | |
JP2900786B2 (en) | Particulate weight determination device | |
JPH0763039A (en) | Exhaust emission control device | |
JP2856016B2 (en) | Filter regeneration device for internal combustion engine | |
JP2833473B2 (en) | Filter regeneration device for internal combustion engine | |
JP2792397B2 (en) | Filter regeneration device for internal combustion engine | |
JPH07332066A (en) | Exhaust emission control device of diesel engine | |
JP3173028B2 (en) | Filter regeneration device for internal combustion engine | |
JP2006118357A (en) | Exhaust emission control device | |
JP2000145432A (en) | Exhaust gas purifier for diesel engines | |
JP2785659B2 (en) | Filter regeneration device for internal combustion engine | |
JPH077533Y2 (en) | Particulate trap filter regeneration device | |
KR100464623B1 (en) | Diesel soot reduction control method | |
JPH05149126A (en) | Diesel particulate after-treatment device | |
JP2000310110A (en) | Reproducing system for exhaust emission control device | |
JPH0544531B2 (en) | ||
JPH07102940A (en) | Filter regeneration device for internal combustion engine | |
JP3211510B2 (en) | Exhaust gas purification device |