WO2021171401A1 - Air conditioning apparatus - Google Patents

Air conditioning apparatus Download PDF

Info

Publication number
WO2021171401A1
WO2021171401A1 PCT/JP2020/007615 JP2020007615W WO2021171401A1 WO 2021171401 A1 WO2021171401 A1 WO 2021171401A1 JP 2020007615 W JP2020007615 W JP 2020007615W WO 2021171401 A1 WO2021171401 A1 WO 2021171401A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
source side
heat source
side heat
Prior art date
Application number
PCT/JP2020/007615
Other languages
French (fr)
Japanese (ja)
Inventor
淳 西尾
勇輝 水野
宗史 池田
亮宗 石村
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/007615 priority Critical patent/WO2021171401A1/en
Priority to JP2022502642A priority patent/JP7258212B2/en
Publication of WO2021171401A1 publication Critical patent/WO2021171401A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • the present disclosure relates to an air conditioner having a refrigerant circuit in which a non-azeotropic mixed refrigerant circulates.
  • the refrigerant GWP Global Warming Potential
  • Most of the refrigerants having a low GWP are non-azeotropic mixed refrigerants in which a plurality of types of refrigerants having different boiling points are mixed.
  • the temperature is not constant from the start to the end of each process of the evaporation process and the condensation process, and a temperature gradient occurs.
  • the temperature gradient acts in the direction in which the refrigerant temperature on the refrigerant inlet side of the evaporator becomes lower in the evaporation stroke. Therefore, in an air conditioner using a non-azeotropic mixed refrigerant, the refrigerant temperature at the refrigerant inlet of the evaporator drops to 0 ° C. or lower, and frost formation or freezing is likely to occur.
  • Patent Document 1 an air conditioner that suppresses frost formation of a non-azeotropic mixed refrigerant is known (see, for example, Patent Document 1).
  • the air conditioner disclosed in Patent Document 1 is provided with a decompression means such as a capillary tube in the middle portion of the evaporator in order to raise the saturation temperature on the refrigerant inlet side of the evaporator and suppress frost formation. ..
  • the present disclosure has been made to solve the above-mentioned problems, and provides an air conditioner that suppresses a decrease in heat exchange performance of a heat source side heat exchanger that acts as an evaporator during heating operation. ..
  • the air conditioner according to the present disclosure includes a compressor, a heat source side heat exchanger including a first heat source side heat exchanger and a second heat source side heat exchanger connected in parallel, a load side throttle device, and a load side.
  • a pipe, a second refrigerant pipe, and a first throttle device provided in the first refrigerant pipe to reduce the pressure of the refrigerant flowing into the first heat source side heat exchanger via the first refrigerant pipe during the heating operation.
  • a second throttle device provided in the second refrigerant pipe to reduce the pressure of the refrigerant flowing into the second heat source side heat exchanger through the second refrigerant pipe during the heating operation, and the second refrigerant pipe. It has a refrigerant that flows between the two drawing devices and the second heat source side heat exchanger, and a heat exchanger between refrigerants that exchanges heat between the refrigerant flowing into the first drawing device during the heating operation.
  • the pressure loss of the refrigerant flowing through the first heat source side heat exchanger is the pressure loss of the refrigerant flowing through the second heat source side heat exchanger. It is a larger configuration.
  • the pressure of the refrigerant flowing into the first heat source side heat exchanger during the heating operation decreases according to the pressure loss in the first heat source side heat exchanger while maintaining a high temperature. Further, the refrigerant flowing into the second heat source side heat exchanger is overheated in the inter-refrigerant heat exchanger and the temperature rises. Therefore, it is possible to prevent the refrigerant temperature on the refrigerant inlet side of the heat source side heat exchanger from becoming low. Therefore, it is possible to suppress a decrease in heat exchange performance of the heat source side heat exchanger that acts as an evaporator during the heating operation.
  • FIG. 5 is a ph diagram for explaining the operation of the air conditioner according to the first embodiment during the heating operation.
  • It is a schematic diagram which shows an example of the heat transfer tube provided in the 1st heat source side heat exchanger shown in FIG.
  • It is a schematic diagram which shows an example of the heat transfer tube provided in the 2nd heat source side heat exchanger shown in FIG.
  • It is a schematic diagram for comparing the flow path cross-sectional area of the plurality of heat transfer tubes shown in FIG. 5 with the flow path cross-sectional area of the heat transfer tube shown in FIG.
  • It is a schematic diagram which shows one structural example of the refrigerant circuit of the air conditioner which concerns on Embodiment 2.
  • FIG. 1 is a schematic view showing a configuration example of a refrigerant circuit of the air conditioner according to the first embodiment.
  • the air conditioner 100 includes an outdoor unit 1 that generates a heat source, and indoor units 2a and 2b that utilize the heat source generated by the outdoor unit 1.
  • the refrigerant that circulates between the outdoor unit 1 and the indoor units 2a and 2b is a non-azeotropic mixed refrigerant.
  • the air conditioner 100 has a cooling operation mode and a heating operation mode as operation modes of the indoor units 2a and 2b.
  • the air conditioner 100 includes a liquid main pipe 3, two liquid branch pipes 5a and 5b branching from the liquid main pipe 3, and a gas as refrigerant pipes through which the refrigerant flows between the outdoor unit 1 and the indoor units 2a and 2b. It has a main pipe 4 and two gas branch pipes 6a and 6b branching from the gas main pipe 4.
  • the outdoor unit 1 and the indoor unit 2a are connected by a liquid main pipe 3 and a liquid branch pipe 5a, and a gas main pipe 4 and a gas branch pipe 6a.
  • the outdoor unit 1 and the indoor unit 2b are connected by a liquid main pipe 3 and a liquid branch pipe 5b, and a gas main pipe 4 and a gas branch pipe 6b.
  • the outdoor unit 1 is installed, for example, outside the room.
  • the outdoor unit 1 functions as a heat source unit that discharges or supplies heat for air conditioning.
  • the outdoor unit 1 includes a compressor 10, a flow path switching device 11, a heat source side heat exchanger 12, an accumulator 13, a heat source side fan 17, and a control device 30.
  • the outdoor unit 1 includes a first throttle device 16, a second throttle device 15, an inter-refrigerant heat exchanger 14, a first refrigerant pipe 18a, and a second refrigerant pipe 18b.
  • the heat source side heat exchanger 12 has a first heat source side heat exchanger 12a and a second heat source side heat exchanger 12b connected in parallel.
  • Each of the compressor 10, the flow path switching device 11, the heat source side fan 17, the first throttle device 16, and the second throttle device 15 is connected to the control device 30 via a signal line (not shown).
  • the first refrigerant pipe 18a and the second refrigerant pipe 18b divide the refrigerant flowing into the heat source side heat exchanger 12.
  • the first refrigerant pipe 18a circulates a part of the refrigerant flowing into the heat source side heat exchanger 12 to the first heat source side heat exchanger 12a.
  • the second refrigerant pipe 18b circulates the remaining refrigerant among the refrigerants flowing into the heat source side heat exchanger 12 to the second heat source side heat exchanger 12b.
  • the first throttle device 16 is provided in the first refrigerant pipe 18a.
  • the second throttle device 15 is provided in the second refrigerant pipe 18b.
  • the inter-refrigerant heat exchanger 14 is provided in the middle of both the first refrigerant pipe 18a and the second refrigerant pipe 18b.
  • the flow path to which the first heat source side heat exchanger 12a, the first throttle device 16 and the inter-refrigerant heat exchanger 14 are connected via the first refrigerant pipe 18a, and the second heat source side heat via the second refrigerant pipe 18b.
  • the flow path to which the exchanger 12b, the inter-refrigerant heat exchanger 14 and the second throttle device 15 are connected is connected in parallel.
  • the compressor 10 sucks in the refrigerant in the low temperature and low pressure states, compresses the sucked refrigerant into the high temperature and high pressure states, and discharges the refrigerant.
  • the compressor 10 is, for example, an inverter compressor whose capacity can be controlled.
  • the heat source side fan 17 supplies outside air to the heat source side heat exchanger 12.
  • the heat source side fan 17 is, for example, a propeller fan.
  • the number of heat source side fans 17 is not limited to one, and may be a plurality of fans.
  • the accumulator 13 is connected to the refrigerant suction port side of the compressor 10. The accumulator 13 prevents the liquid refrigerant from flowing into the compressor 10.
  • the flow path switching device 11 switches the flow direction of the refrigerant circulating in the refrigerant circuits 50a and 50b according to the operation modes of the heating operation mode and the cooling operation mode.
  • the flow path switching device 11 circulates the refrigerant discharged from the compressor 10 to the load side heat exchangers 21a and 21b in the heating operation mode, and heats the refrigerant discharged from the compressor 10 to the heat source side heat in the cooling operation mode. It is distributed to the exchanger 12.
  • the flow path switching device 11 is, for example, a four-way valve.
  • the first heat source side heat exchanger 12a and the second heat source side heat exchanger 12b exchange heat between the air supplied by the heat source side fan 17 and the refrigerant.
  • the first heat source side heat exchanger 12a and the second heat source side heat exchanger 12b function as a condenser or a gas cooler in the cooling operation mode and as an evaporator in the heating operation mode.
  • the second heat source side heat exchanger 12b is arranged on the wind side of the first heat source side heat exchanger 12a.
  • the first heat source side heat exchanger 12a has a configuration that causes a pressure loss of the refrigerant according to the temperature gradient of the non-azeotropic mixed refrigerant in order to suppress frost formation in the heating operation mode.
  • the first heat source side heat exchanger 12a has a configuration in which, for example, the flow path cross-sectional area of the refrigerant is small so as to cause a large pressure loss of the refrigerant as compared with the second heat source side heat exchanger 12b. Further, the first heat source side heat exchanger 12a may have a longer flow path length of the heat transfer tube than the second heat source side heat exchanger 12b.
  • the first throttle device 16 and the second throttle device 15 are expansion valves that can control the opening degree.
  • the first throttle device 16 and the second throttle device 15 are, for example, electronic expansion valves.
  • the first throttle device 16 depressurizes the refrigerant flowing from the indoor units 2a and 2b into the first heat source side heat exchanger 12a via the first refrigerant pipe 18a in the heating operation mode.
  • the second throttle device 15 depressurizes the refrigerant flowing from the indoor units 2a and 2b into the second heat source side heat exchanger 12b via the second refrigerant pipe 18b in the heating operation mode.
  • the first throttle device 16 and the second throttle device 15 are fully opened in the cooling operation mode.
  • the inter-refrigerant heat exchanger 14 includes a refrigerant that flows between the second throttle device 15 and the second heat source side heat exchanger 12b in the second refrigerant pipe 18b, and a refrigerant that flows into the first throttle device 16 during the heating operation. To exchange heat.
  • the inter-refrigerant heat exchanger 14 is, for example, a double tube heat exchanger, a plate heat exchanger or a shell and tube heat exchanger.
  • the configuration of the control device 30 will be described after the description of the configurations of the indoor units 2a and 2b.
  • the configurations of the indoor units 2a and 2b shown in FIG. 1 will be described.
  • Each of the indoor units 2a and 2b is installed, for example, in a room inside the room.
  • the indoor unit 2a supplies conditioned air to the room in which the indoor unit 2a is installed.
  • the indoor unit 2b supplies conditioned air to the room in which the indoor unit 2b is installed.
  • the indoor unit 2a includes a load-side throttle device 20a, a load-side heat exchanger 21a, a load-side fan 22a, and a room temperature sensor 23a.
  • the indoor unit 2b includes a load-side throttle device 20b, a load-side heat exchanger 21b, a load-side fan 22b, and a room temperature sensor 23b.
  • Refrigerant leakage detectors may be provided in the indoor units 2a and 2b.
  • the load-side throttle devices 20a and 20b, the load-side fans 22a and 22b, and the room temperature sensors 23a and 23b are connected to the control device 30 via signal lines not shown in the figure, respectively.
  • the room temperature sensor 23a detects the room temperature of the room in which the indoor unit 2a is installed, and outputs the detected room temperature data to the control device 30.
  • the room temperature sensor 23b detects the room temperature of the room in which the indoor unit 2b is installed, and outputs the detected room temperature data to the control device 30.
  • the load-side fan 22a sucks air from the room in which the indoor unit 2a is installed, and supplies the sucked air to the load-side heat exchanger 21a.
  • the load-side fan 22b sucks air from the room in which the indoor unit 2b is installed, and supplies the sucked air to the load-side heat exchanger 21b.
  • the load-side fans 22a and 22b are, for example, cross-flow fans.
  • the load-side throttle devices 20a and 20b function as a pressure reducing valve or an expansion valve that depressurizes and expands the refrigerant.
  • the load-side throttle devices 20a and 20b are, for example, electronic expansion valves whose opening degree can be changed.
  • the load-side throttle device 20a is located on the upstream side of the load-side heat exchanger 21a in the flow direction of the refrigerant when the indoor unit 2a operates in the cooling operation mode.
  • the load-side throttle device 20b is located on the upstream side of the load-side heat exchanger 21b in the flow direction of the refrigerant when the indoor unit 2b operates in the cooling operation mode.
  • the load-side heat exchanger 21a is connected to the flow path switching device 11 of the outdoor unit 1 via the gas branch pipe 6a and the gas main pipe 4, and is connected to the flow path switching device 11 of the outdoor unit 1 via the load-side throttle device 20a, the liquid branch pipe 5a, and the liquid main pipe 3. It is connected to the first refrigerant pipe 18a and the second refrigerant pipe 18b of the outdoor unit 1.
  • the load-side heat exchanger 21b is connected to the flow path switching device 11 of the outdoor unit 1 via the gas branch pipe 6b and the gas main pipe 4, and is connected to the flow path switching device 11 of the outdoor unit 1 via the load-side throttle device 20b, the liquid branch pipe 5b, and the liquid main pipe 3. It is connected to the first refrigerant pipe 18a and the second refrigerant pipe 18b of the outdoor unit 1.
  • the load side heat exchangers 21a and 21b function as an evaporator in the cooling operation mode and as a condenser in the heating operation mode.
  • the load-side heat exchanger 21a generates heating air or cooling air to be supplied to the room by exchanging heat between the air supplied by the load-side fan 22a and the refrigerant.
  • the load-side heat exchanger 21b generates heating air or cooling air to be supplied to the room by exchanging heat between the air supplied by the load-side fan 22b and the refrigerant.
  • each of the refrigerant circuits 50a and 50b includes a first throttle device 16, a second throttle device 15, and an inter-refrigerant heat exchanger 14, as shown in FIG.
  • FIG. 1 shows a configuration in which two indoor units 2a and 2b are connected in parallel to the outdoor unit 1, one indoor unit may be connected to the outdoor unit 1. It may be more than one. Further, FIG. 1 shows a case where the load-side throttle device 20a is provided in the indoor unit 2a and the load-side throttle device 20b is provided in the indoor unit 2b. If the first throttle device 16 and the second throttle device 15 serve as the load-side throttle devices 20a and 20b, the indoor units 2a and 2b may not be provided with the diaphragm devices. When there is one indoor unit, the indoor unit may not be provided with the diaphragm device, and the outdoor unit may be provided with the diaphragm device. Further, although FIG.
  • the configuration may be such that the flow path switching device 11 is not provided, such as a dedicated heating machine.
  • the sensors provided in the air conditioner 100 are not limited to the room temperature sensors 23a and 23b, and sensors not shown in the figure may be provided.
  • the control device 30 controls the entire air conditioner 100.
  • the control device 30 controls the refrigerating cycle of the refrigerant circulating in the refrigerant circuits 50a and 50b, based on the detected values of various sensors such as the room temperature sensors 23a and 23b and the set temperature Tset.
  • the operation mode and the set temperature Tset1 are input to the control device 30 by the user of the indoor unit 2a via a remote controller (not shown in the figure).
  • the operation mode and the set temperature Tset2 are input to the control device 30 by the user of the indoor unit 2b via a remote controller (not shown).
  • the operation mode selected by the user of the indoor unit 2a and the operation mode selected by the user of the indoor unit 2b are the same.
  • the control device 30 controls the flow path switching device 11 so that the flow direction of the refrigerant flowing through the refrigerant circuits 50a and 50b is switched according to the operation mode selected by the user of the indoor units 2a and 2b. Specifically, when the operation mode is the heating operation mode, the control device 30 controls the flow path switching device 11 so that the refrigerant discharged from the compressor 10 flows to the load side heat exchangers 21a and 21b. When the operation mode is the cooling operation mode, the control device 30 controls the flow path switching device 11 so that the refrigerant discharged from the compressor 10 flows to the heat source side heat exchanger 12.
  • the control device 30 controls the opening degree of the first throttle device 16 and the second throttle device 15 to the fully open state. Further, in the cooling operation mode, the control device 30 controls each of the indoor units 2a and 2b as follows.
  • the control device 30 has the drive rotation speed of the compressor 10, the rotation speed of the heat source side fan 17, the rotation speed of the load side fan 22a, and the load side throttle device 20a so that the detected value of the room temperature sensor 23a matches the set temperature Tset1. Control the opening of.
  • the control device 30 has the drive rotation speed of the compressor 10, the rotation speed of the heat source side fan 17, the rotation speed of the load side fan 22b, and the load side throttle device 20b so that the detected value of the room temperature sensor 23b matches the set temperature Tset2. Control the opening of.
  • the control device 30 minimizes the depressurization so as not to interfere with the heat exchange performed by the inter-refrigerant heat exchanger 14 for the purpose of adjusting the flow rates of the load side heat exchangers 21a and 21b.
  • the opening degrees of the load side throttle devices 20a and 20b are controlled so as to be.
  • the control device 30 sets the opening degrees of the load-side throttle devices 20a and 20b to the fully open state. Further, in the heating operation mode, the control device 30 controls each of the indoor units 2a and 2b as follows.
  • the drive rotation speed of the compressor 10 In the control device 30, the drive rotation speed of the compressor 10, the rotation speed of the heat source side fan 17, the rotation speed of the load side fan 22a, and the first The opening degree of the drawing device 16 and the second drawing device 15 is controlled.
  • the drive rotation speed of the compressor 10 In the control device 30, the drive rotation speed of the compressor 10, the rotation speed of the heat source side fan 17, the rotation speed of the load side fan 22b, and the first The opening degree of the drawing device 16 and the second drawing device 15 is controlled.
  • the control device 30 adjusts the flow rate of the refrigerant flowing to the first heat source side heat exchanger 12a by controlling the opening ratio Rv of the first throttle device 16 and the second throttle device 15.
  • the pressure loss of the refrigerant in the first heat source side heat exchanger 12a may be controlled.
  • the control device 30 controls the pressure loss of the first heat source side heat exchanger 12a in response to the cooling and heating loads of the air conditioner 100. For example, in the heating operation mode, the control device 30 is opened so that the pressure loss of the first heat source side heat exchanger 12a becomes small in the case of low load operation where there is no concern about frost formation or operation at a high outside air temperature.
  • the degree ratio Rv is controlled.
  • control device 30 In the heating operation mode, the control device 30 has an opening ratio so that the pressure loss of the first heat source side heat exchanger 12a becomes large in the case of high load operation in which there is a large concern about frost formation or operation at a low outside air temperature. Control Rv.
  • the opening ratio Rv is the opening ratio Rvl in the case of low load operation or operation at a high outside air temperature where there is no concern about frost formation, and the case of high load operation or operation at a low outside air temperature where there is a large concern about frost formation.
  • the opening ratio Rvh may be predetermined.
  • a refrigerant temperature sensor (not shown) is provided on the refrigerant outlet side in the heating operation mode of the first heat source side heat exchanger 12a, and the control device 30 sets the detection value of the refrigerant temperature sensor to a predetermined target temperature Temp.
  • the opening ratio Rv may be controlled so as to be.
  • the control device 30 is composed of, for example, an analog circuit, a digital circuit, or a circuit in which these circuits are combined.
  • the control device 30 is composed of hardware such as a circuit device that realizes various functions. Further, the control device 30 may have a configuration in which various functions are realized by executing software by an arithmetic unit such as a microcomputer.
  • FIG. 2 is a hardware configuration diagram showing a configuration example of the control device shown in FIG.
  • the control device 30 is composed of a processing circuit 80 as shown in FIG.
  • the processing circuit 80 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field). -Programmable Gate Array), or a combination of these.
  • FIG. 3 is a hardware configuration diagram showing another configuration example of the control device shown in FIG.
  • the control device 30 shown in FIG. 1 is composed of a processor 81 such as a CPU (Central Processing Unit) and a memory 82 as shown in FIG.
  • the function of the control device 30 is realized by the processor 81 and the memory 82.
  • FIG. 3 shows that the processor 81 and the memory 82 are communicably connected to each other.
  • the function of the control device 30 When the function of the control device 30 is executed by software, the function of the control device 30 is realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are written as a program and stored in the memory 82.
  • the processor 81 realizes the function of the control device 30 by reading and executing the program stored in the memory 82.
  • the memory 82 may store the above-mentioned opening ratios Rvh and Rvr and the target temperature Temp.
  • a non-volatile semiconductor memory such as a ROM (Read Only Memory), a flash memory, an EPROM (Erasable and Programmable ROM), and an EPROM (Electrically Erasable and Programmable ROM) is used.
  • a volatile semiconductor memory of RAM Random Access Memory
  • a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versaille Disc) may be used.
  • FIG. 1 illustrates a case where the control device 30 is provided in the outdoor unit 1
  • the control device may be provided in the outdoor unit 1 and the indoor units 2a and 2b, respectively. It may be provided in at least one of the indoor units 2a and 2b.
  • the plurality of control devices are communicated with each other to perform the functions of the control device 30 described above.
  • each operation mode executed by the air conditioner 100 executes the cooling operation and the heating operation of the indoor units 2a and 2b based on the instructions input from the user via the remote controller (not shown) for each of the indoor units 2a and 2b.
  • the operation modes executed by the air conditioner 100 of FIG. 1 include a cooling operation mode in which all of the operating indoor units 2a and 2b perform cooling operation and a heating operation in which both the operating indoor units 2a and 2b perform heating operation. There is a heating operation mode to perform.
  • the flow of the refrigerant in each operation mode will be described below.
  • the compressor 10 sucks in low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 is diverted to the first heat source side heat exchanger 12a and the second heat source side heat exchanger 12b via the flow path switching device 11. Then, the refrigerant flowing into the second heat source side heat exchanger 12b and the first heat source side heat exchanger 12a exchanges heat with the outside air supplied by the heat source side fan 17 and condenses.
  • the refrigerant condensed in the first heat source side heat exchanger 12a and the second heat source side heat exchanger 12b flows out from the outdoor unit 1 and passes through the liquid main pipe 3 and the liquid branch pipes 5a and 5b to the indoor unit 2a. And flow into 2b.
  • the first drawing device 16 and the second drawing device 15 are in a fully open state so as not to obstruct the flow of the refrigerant.
  • the refrigerant flowing into the indoor unit 2a is expanded by the load side throttle device 20a.
  • the refrigerant expanded by the load-side throttle device 20a flows into the load-side heat exchanger 21a that acts as an evaporator, absorbs heat from the room air, and evaporates.
  • the indoor air is cooled by the refrigerant absorbing heat from the indoor air.
  • the refrigerant flowing into the indoor unit 2b is expanded by the load side throttle device 20b.
  • the refrigerant expanded by the load-side throttle device 20b flows into the load-side heat exchanger 21b that acts as an evaporator, absorbs heat from the room air, and evaporates.
  • the indoor air is cooled by the refrigerant absorbing heat from the indoor air.
  • the refrigerant flowing out of the load-side heat exchangers 21a and 21b returns to the outdoor unit 1 via the gas branch pipes 6a and 6b and the gas main pipe 4.
  • the refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 10 via the flow path switching device 11 and is compressed again.
  • the refrigerant may be expanded by the first throttle device 16 and the second throttle device 15 instead of the load side throttle devices 20a and 20b. In this case, the amount of refrigerant that occupies the liquid main pipe 3 can be reduced.
  • Heating operation mode The flow of the refrigerant in the heating operation mode will be described with reference to FIG. In FIG. 1, the flow direction of the refrigerant flowing through the refrigerant circuits 50a and 50b in the heating operation mode is indicated by a solid arrow.
  • the compressor 10 sucks in low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 10 flows out from the outdoor unit 1 via the flow path switching device 11.
  • the high-temperature and high-pressure refrigerant flowing out of the outdoor unit 1 is diverted to the load-side heat exchangers 21a and 21b via the gas main pipe 4 and the gas branch pipes 6a and 6b.
  • the refrigerant flowing into the load side heat exchanger 21a is condensed while heating the indoor space by dissipating heat to the indoor air in the load side heat exchanger 21a.
  • the refrigerant condensed in the load side heat exchanger 21a is slightly expanded in the load side drawing device 20a.
  • the refrigerant flowing into the load side heat exchanger 21b is condensed while heating the indoor space by dissipating heat to the indoor air in the load side heat exchanger 21b.
  • the refrigerant condensed in the load side heat exchanger 21b is slightly expanded by the load side drawing device 20b.
  • the refrigerant flowing out of the load-side throttle devices 20a and 20b returns to the outdoor unit 1 via the liquid branch pipes 5a and 5b and the liquid main pipe 3.
  • the load-side throttle devices 20a and 20b function as flow rate adjustments for the load-side heat exchangers 21a and 21b, but are set so that decompression is minimized.
  • the refrigerant that has flowed into the outdoor unit 1 is divided into the first refrigerant pipe 18a and the second refrigerant pipe 18b.
  • the refrigerant that has flowed into the second refrigerant pipe 18b is expanded to a low pressure by the second throttle device 15, and then partly evaporates in the inter-refrigerant heat exchanger 14.
  • the refrigerant flowing out of the inter-refrigerant heat exchanger 14 flows into the second heat source side heat exchanger 12b.
  • the refrigerant flowing into the first refrigerant pipe 18a is overcooled in the inter-refrigerant heat exchanger 14 in a high pressure state, expanded to a low pressure in the first throttle device 16, and then the first heat source side heat exchanger. It flows into 12a.
  • the refrigerant evaporated in the second heat source side heat exchanger 12b and the first heat source side heat exchanger 12a is sucked into the compressor 10 via the flow path switching device 11 and compressed again.
  • FIG. 4 is a ph diagram for explaining the operation of the air conditioner according to the first embodiment during the heating operation.
  • the horizontal axis of FIG. 4 is the specific enthalpy h, and the vertical axis is the pressure p.
  • the sloping broken line shown in the wet steam region indicates the isotherm of the non-azeotropic mixed refrigerant.
  • the isotherms of the non-azeotropic mixed refrigerant indicate that there is a temperature gradient.
  • the relationship between the temperatures T1, T2 and T3 shown in FIG. 4 is T1> T2> T3.
  • the relationship between the pressures p1 and p2 is p2> p1.
  • Step K1 shows a process in which the refrigerant flowing through the second drawing device 15 is depressurized and expanded.
  • Step K2 shows a process in which the refrigerant flowing through the first drawing device 16 is depressurized and expanded.
  • the refrigerant flowing into the second refrigerant pipe 18b is depressurized to the pressure p1 by the second throttle device 15, and then a part of the refrigerant evaporates in the inter-refrigerant heat exchanger 14 shown in the section RR. And overheated.
  • the refrigerant flowing out of the inter-refrigerant heat exchanger 14 flows into the second heat source side heat exchanger 12b while maintaining the pressure p1.
  • the temperature of the refrigerant is higher than the temperature T2 when flowing into the second heat source side heat exchanger 12b. That is, the temperature of the refrigerant is higher than 0 ° C. at the refrigerant inlet of the second heat source side heat exchanger 12b.
  • the refrigerant flowing into the first refrigerant pipe 18a is supercooled in the inter-refrigerant heat exchanger 14 shown in the section RR while maintaining the high pressure state.
  • the refrigerant flowing out of the inter-refrigerant heat exchanger 14 is reduced to the pressure p2 in the first throttle device 16 and then flows into the first heat source side heat exchanger 12a.
  • the temperature of the refrigerant is T1 which is higher than the temperature T2 when flowing into the first heat source side heat exchanger 12a.
  • the pressure p of the refrigerant flowing through the first heat source side heat exchanger 12a gradually decreases due to the pressure loss in the first heat source side heat exchanger 12a.
  • the change in pressure p at this time corresponds to the temperature gradient of the isotherm of the temperature T1 of the non-azeotropic mixed refrigerant.
  • the refrigerant flowing through the first heat source side heat exchanger 12a flows through the first heat source side heat exchanger 12a while maintaining the temperature T1 from the refrigerant inlet to the refrigerant outlet of the first heat source side heat exchanger 12a, and at the refrigerant outlet.
  • the pressure drops to p1.
  • the pressure of the refrigerant flowing into the first heat source side heat exchanger 12a decreases according to the pressure loss in the first heat source side heat exchanger 12a while maintaining a high temperature. Further, the refrigerant flowing into the second heat source side heat exchanger is overheated in the inter-refrigerant heat exchanger and the temperature rises. Therefore, it is possible to prevent the refrigerant temperature on the refrigerant inlet side of the heat source side heat exchanger 12 from becoming low. As a result, frost formation and freezing can be prevented, and deterioration of the heat exchange performance of the heat source side heat exchanger acting as an evaporator during the heating operation can be suppressed.
  • the pressure loss of the refrigerant generated in the first heat source side heat exchanger 12a is set to a size along the isotherm in the evaporation process of the non-azeotropic mixed refrigerant.
  • the pressure change of the refrigerant due to the pressure loss does not have to completely coincide with the isotherm in the evaporation process of the non-azeotropic mixed refrigerant.
  • the pressure loss of the refrigerant generated in the second heat source side heat exchanger 12b is preferably as small as possible in order to increase the temperature difference between the refrigerant and the air and improve the heat exchange performance. Therefore, the pressure loss of the first heat source side heat exchanger 12a is configured to be larger than the pressure loss of the second heat source side heat exchanger 12b.
  • the flow path cross-sectional area of the refrigerant is reduced. Can be considered to be smaller.
  • the flow path cross-sectional area of the first heat source side heat exchanger 12a is made smaller than the flow path cross-sectional area of the second heat source side heat exchanger 12b.
  • the number of heat transfer tubes in the first heat source side heat exchanger 12a is increased.
  • the number should be less than the number of heat transfer tubes of the second heat source side heat exchanger 12b.
  • the first heat source side heat exchanger 12a is smaller than the second heat source side heat exchanger 12b in terms of the total area of the flow paths of the plurality of heat transfer tubes.
  • the heat transfer area of the first heat source side heat exchanger 12a is set to the second heat source. It is conceivable to make it larger than the heat transfer area of the side heat exchanger 12b.
  • the amount of heat exchange of the first heat source side heat exchanger 12a increases.
  • the pressure loss of the first heat source side heat exchanger 12a becomes large.
  • the heat transfer of the first heat source side heat exchanger 12a is performed.
  • the heat area becomes larger than the heat transfer area of the second heat source side heat exchanger 12b.
  • the pressure loss of the first heat source side heat exchanger 12a is larger than the pressure loss of the second heat source side heat exchanger 12b.
  • the flow path cross-sectional area of the first heat source side heat exchanger 12a may be configured to increase from the refrigerant inlet side toward the refrigerant outlet side in the heating operation mode.
  • the dryness increases on the downstream side of the refrigerant as the refrigerant evaporates, preventing the pressure loss from becoming excessive and maintaining a constant pressure loss along the flow direction of the refrigerant. be able to.
  • the flow path cross-sectional area becomes smaller on the downstream side of the refrigerant as the refrigerant condenses, which has the effect of suppressing a decrease in the heat transfer coefficient.
  • first heat source side heat exchanger 12a and the second heat source side heat exchanger 12b may be arranged side by side in the vertical direction, one heat exchanger is arranged on the wind side and the other heat exchanger is arranged on the leeward side. May be placed in.
  • the effect of suppressing frost formation is expected to be improved. can.
  • the second heat source side heat exchanger 12b is more likely to be frosted than the first heat source side heat exchanger 12a because the refrigerant temperature at the refrigerant inlet is lowered due to the temperature gradient.
  • control device 30 controls the opening ratio Rv of the first drawing device 16 and the second drawing device 15 to adjust the flow rate of the refrigerant flowing through the first heat source side heat exchanger 12a, and to adjust the flow rate of the refrigerant flowing to the first heat source side heat exchanger 12a.
  • the pressure loss of the refrigerant in the exchanger 12a may be controlled.
  • the control device 30 has an opening ratio Rvl in the case of low load operation or operation at a high outside air temperature where there is no concern about frost formation, and in the case of high load operation or operation at a low outside air temperature where there is a large concern about frost formation.
  • the opening ratio Rvh of the above may be set to a different value.
  • FIG. 5 is a schematic view showing an example of a heat transfer tube provided in the first heat source side heat exchanger shown in FIG.
  • FIG. 5 shows a case where the heat transfer tube provided in the first heat source side heat exchanger 12a is a flat tube 61 in which a plurality of heat transfer tubes 61a are arranged in parallel with the flow path.
  • FIG. 5 shows a case where the number of heat transfer tubes 61a of the flat tube 61 is seven.
  • FIG. 5 shows the cross-sectional shape of the flat tube 61, and the diameter of each heat transfer tube 61a is D.
  • the plurality of heat transfer tubes 61a extend in the direction perpendicular to the surface of the plate-shaped heat radiation fin 71 (in the direction of the Y-axis arrow).
  • HTA1 (total circumference of the seven heat transfer tubes 61a)
  • ⁇ flow path length L 7 ⁇ ( ⁇ )
  • FIG. 6 is a schematic view showing an example of a heat transfer tube provided in the second heat source side heat exchanger shown in FIG.
  • FIG. 6 shows a case where the heat transfer tube 62 provided in the second heat source side heat exchanger 12b is a single circular tube.
  • FIG. 6 shows the cross-sectional shape of the heat transfer tube 62, and the diameter of the heat transfer tube 62 is 3 ⁇ D. That is, the diameter of the heat transfer tube 62 is three times as long as the diameter of the heat transfer tube 61a shown in FIG.
  • the heat transfer tube 62 extends in the direction perpendicular to the surface of the plate-shaped heat radiation fin 72 (in the direction of the Y-axis arrow).
  • FIG. 7 is a schematic diagram for comparing the flow path cross-sectional area of the plurality of heat transfer tubes shown in FIG. 5 with the flow path cross-sectional area of the heat transfer tube shown in FIG.
  • FIG. 7 shows the seven heat transfer tubes 61a in order to make it easier to compare the flow path cross-sectional area of the seven heat transfer tubes 61a shown in FIG. 5 with the flow path cross-sectional area of the heat transfer tubes 62 shown in FIG.
  • the bundled and bundled seven heat transfer tubes 61a are displayed so as to overlap with the heat transfer tubes 62.
  • the flow path cross-sectional area of the flat tube 61 shown in FIG. 5 is smaller than the flow path cross-sectional area of the heat transfer tube 62 shown in FIG.
  • the heat transfer area of the flat tube 61 shown in FIG. 5 is larger than the heat transfer area of the heat transfer tube 62 shown in FIG.
  • the heat radiation fin 71 shown in FIG. 5 shows a part cut out from the actual heat radiation fin along the periphery of the flat tube 61 for convenience of explanation, and FIG. 5 does not show the entire shape of the heat radiation fin 71. .. Like the heat radiating fins 71 shown in FIG. 5, the heat radiating fins 72 shown in FIG. 6 do not show the overall shape of the heat radiating fins 72. Further, although FIG. 5 shows a case where the number of heat transfer tubes 61a is 7, the number of heat transfer tubes 61a used for the flat tube 61 is not limited to 7.
  • the compressor 10, the heat source side heat exchanger 12, the load side throttle devices 20a and 20b, and the load side heat exchangers 21a and 21b are connected by piping and are not connected. It has refrigerant circuits 50a and 50b through which the conditioned mixed refrigerant circulates.
  • the heat source side heat exchanger 12 has a first heat source side heat exchanger 12a and a second heat source side heat exchanger 12b connected in parallel.
  • the air conditioner 100 includes a first refrigerant pipe 18a and a second refrigerant pipe 18b that divide the refrigerant flowing out from the load side throttle devices 20a and 20b during the heating operation and distribute the refrigerant to the heat source side heat exchanger 12, and a first throttle device.
  • the first throttle device 16 depressurizes the refrigerant flowing into the first heat source side heat exchanger 12a via the first refrigerant pipe 18a during the heating operation.
  • the second throttle device 15 depressurizes the refrigerant flowing into the second heat source side heat exchanger 12b via the second refrigerant pipe 18b during the heating operation.
  • the inter-refrigerant heat exchanger 14 includes a refrigerant that flows between the second throttle device 15 and the second heat source side heat exchanger 12b in the second refrigerant pipe 18b, and a refrigerant that flows into the first throttle device 16 during the heating operation. To exchange heat.
  • the pressure loss of the refrigerant flowing through the first heat source side heat exchanger 12a is the pressure loss of the refrigerant flowing through the second heat source side heat exchanger 12b. It is a larger configuration.
  • the refrigerant flowing into the first heat source side heat exchanger 12a has a pressure according to the pressure loss in the first heat source side heat exchanger 12a while maintaining a high temperature. Decreases. Further, the refrigerant flowing into the second heat source side heat exchanger 12b is overheated in the inter-refrigerant heat exchanger 14 and the temperature rises. Therefore, it is possible to prevent the refrigerant temperature on the refrigerant inlet side of the heat source side heat exchanger 12 from becoming low. As a result, during the heating operation, frost formation and freezing in the heat source side heat exchanger 12 can be prevented, and deterioration of the heat exchange performance of the heat source side heat exchanger 12 acting as an evaporator can be suppressed.
  • Embodiment 2 The air conditioner of the second embodiment effectively utilizes the inter-refrigerant heat exchanger 14 shown in FIG. 1 in the cooling operation mode.
  • the same reference numerals are given to the configurations described in the first embodiment, and detailed description thereof will be omitted. Further, in the second embodiment, the points different from the configuration described in the first embodiment will be described in detail, and the description of the same configuration will be omitted.
  • FIG. 8 is a schematic view showing a configuration example of a refrigerant circuit of the air conditioner according to the second embodiment.
  • the air conditioner 101 shown in FIG. 8 has a different configuration of the outdoor unit as compared with the air conditioner 100 shown in FIG.
  • the outdoor unit 1a of the air conditioner 101 includes a third refrigerant pipe 19, a first on-off valve 41, a second on-off valve 42, a third on-off valve 43, and an injection. It has a pipe 44.
  • the first on-off valve 41 is provided in the first refrigerant pipe 18a.
  • the first on-off valve 41 includes a confluence point MP between the first refrigerant pipe 18a, the second refrigerant pipe 18b, and the pipes connected to the load-side throttle devices 20a and 20b, and a heat exchanger between the refrigerants. It is provided between 14 and 14.
  • the third refrigerant pipe 19 is used between the first heat source side heat exchanger 12a and the first throttle device 16 in the first refrigerant pipe 18a, and between the second heat source side heat exchanger 12b and the refrigerant in the second refrigerant pipe 18b. Connect between the vessels 14.
  • the second on-off valve 42 is provided in the third refrigerant pipe 19.
  • the injection pipe 44 branches from between the refrigerant heat exchanger 14 and the first on-off valve 41 and is connected to the suction side of the compressor 10.
  • the third on-off valve 43 is provided in the injection pipe 44.
  • the first on-off valve 41, the second on-off valve 42, and the third on-off valve 43 are, for example, solenoid valves. Each of the first on-off valve 41, the second on-off valve 42, and the third on-off valve 43 is connected to the control device 30 via a signal line (not shown).
  • the control device 30 opens the first on-off valve 41 and closes the second on-off valve 42 and the third on-off valve 43.
  • the control device 30 closes the first on-off valve 41 and opens the second on-off valve 42 and the third on-off valve 43.
  • the flow direction of the refrigerant flowing through the refrigerant circuits 50a and 50b is indicated by a solid arrow in the heating operation mode, and the flow direction of the refrigerant flowing through the refrigerant circuits 50a and 50b is indicated by a broken arrow in the cooling operation mode. Shown.
  • the first on-off valve 41 is in the open state, and the second on-off valve 42 and the third on-off valve 43 are in the closed state. Since the flow of the refrigerant in the heating operation mode is the same as that described in the first embodiment, the detailed description thereof will be omitted in the second embodiment.
  • the flow of the refrigerant in the cooling operation mode will be described with reference to FIG.
  • the first on-off valve 41 is in the closed state
  • the second on-off valve 42 and the third on-off valve 43 are in the open state.
  • the refrigerant flowing out of the compressor 10 is diverted to the first refrigerant pipe 18a and the second refrigerant pipe 18b via the flow path switching device 11.
  • the refrigerant that has flowed into the second refrigerant pipe 18b condenses in the second heat source side heat exchanger 12b, and then flows into the inter-refrigerant heat exchanger 14.
  • the refrigerant flowing into the first refrigerant pipe 18a is condensed in the first heat source side heat exchanger 12a, then a part of the refrigerant flows into the first throttle device 16, and the remaining refrigerant remains in a high pressure state and is a third refrigerant. It flows into the pipe 19.
  • the refrigerant flowing from the first refrigerant pipe 18a into the third refrigerant pipe 19 merges with the refrigerant flowing through the second heat source side heat exchanger 12b and passes through the second refrigerant pipe 18b. Then, it flows into the inter-refrigerant heat exchanger 14 and condenses.
  • the refrigerant that has flowed into the first throttle device 16 from the first heat source side heat exchanger 12a is decompressed in the first throttle device 16 and then flows into the inter-refrigerant heat exchanger 14.
  • the refrigerant flow direction of the second on-off valve 42 may be opposite.
  • the refrigerant flowing through the first throttle device 16 flows into the suction side of the compressor 10 via the injection pipe 44. .. In this way, the refrigerant flowing through the first throttle device 16 does not flow into the refrigerant pipes flowing through the indoor units 2a and 2b. Therefore, there is an effect of reducing the pressure loss in the refrigerant pipes flowing from the outdoor unit 1 to the indoor units 2a and 2b.
  • the opening degree of the first throttle device 16 may be increased.
  • the wet refrigerant can flow into the compressor 10 and the discharge temperature can be reduced.
  • the temperature of the refrigerant discharged by the compressor 10 in the cooling operation mode, the temperature of the refrigerant discharged by the compressor 10 can be prevented from becoming too high by flowing the refrigerant of intermediate pressure into the suction side of the compressor 10. Further, since the intermediate pressure refrigerant does not flow into the refrigerant pipes flowing to the indoor units 2a and 2b, it is possible to suppress the reduction of the pressure loss. Therefore, the refrigerant heat exchanger 14 can be effectively used even in the cooling operation mode.

Abstract

An air conditioning apparatus according to the present invention comprises: a coolant circuit in which a compressor, a heat source-side heat exchanger including a first heat source-side heat exchanger and a second heat source-side heat exchanger connected in parallel, a load-side throttle device, and a load-side heat exchanger are connected, and a non-azeotropic mixed coolant is circulated; first coolant piping and second coolant piping that divide the flow of coolant flowing out from the load-side throttle device during a heating operation and cause the coolant to circulate to the heat source-side heat exchanger; a first throttle device that reduces the pressure of coolant flowing into the first heat source-side heat exchanger through the first coolant piping during a heating operation; a second throttle device that reduces the pressure of coolant flowing into the second heat source-side heat exchanger through the second coolant piping during a heating operation; and a coolant-to-coolant heat exchanger that exchanges heat between a coolant circulating between the second throttle device and the second heat source-side heat exchanger and a coolant flowing into the first throttle device during a heating operation. The pressure loss of coolant circulating through the first heat source-side heat exchanger is greater than the pressure loss of coolant circulating through the second heat source-side heat exchanger.

Description

空気調和装置Air conditioner
 本開示は、非共沸混合冷媒が循環する冷媒回路を有する空気調和装置に関する。 The present disclosure relates to an air conditioner having a refrigerant circuit in which a non-azeotropic mixed refrigerant circulates.
 地球温暖化抑制のため、モントリオール議定書および欧州のF-gas規制などにより冷媒のGWP(Grobal Warming Potential)が規制されている。GWPの低い冷媒は、沸点の異なる複数種の冷媒を混合させた非共沸混合冷媒が多い。非共沸混合冷媒は、蒸発行程および凝縮行程の各行程において、行程の開始から終了まで温度が一定でなく温度勾配が生じる。温度勾配は、蒸発行程において、蒸発器の冷媒入口側の冷媒温度が低くなる方向に作用する。そのため、非共沸混合冷媒を用いる空気調和装置は、蒸発器の冷媒入口の冷媒温度が0℃以下に低下し、着霜または凍結が生じやすい。 In order to curb global warming, the refrigerant GWP (Global Warming Potential) is regulated by the Montreal Protocol and European F-gas regulations. Most of the refrigerants having a low GWP are non-azeotropic mixed refrigerants in which a plurality of types of refrigerants having different boiling points are mixed. In the non-azeotropic mixed refrigerant, the temperature is not constant from the start to the end of each process of the evaporation process and the condensation process, and a temperature gradient occurs. The temperature gradient acts in the direction in which the refrigerant temperature on the refrigerant inlet side of the evaporator becomes lower in the evaporation stroke. Therefore, in an air conditioner using a non-azeotropic mixed refrigerant, the refrigerant temperature at the refrigerant inlet of the evaporator drops to 0 ° C. or lower, and frost formation or freezing is likely to occur.
 従来、非共沸混合冷媒の着霜を抑制する空気調和装置が知られている(例えば、特許文献1参照)。特許文献1に開示された空気調和装置は、蒸発器の冷媒入口側の飽和温度を上昇させて着霜を抑制するために、蒸発器の中間部分にキャピラリチューブ等の減圧手段が設けられている。 Conventionally, an air conditioner that suppresses frost formation of a non-azeotropic mixed refrigerant is known (see, for example, Patent Document 1). The air conditioner disclosed in Patent Document 1 is provided with a decompression means such as a capillary tube in the middle portion of the evaporator in order to raise the saturation temperature on the refrigerant inlet side of the evaporator and suppress frost formation. ..
特開昭60-140048号公報Japanese Unexamined Patent Publication No. 60-140048
 しかしながら、特許文献1に開示された空気調和装置では、蒸発器の冷媒入口から減圧手段までの区間で冷媒と空気との温度差が小さくなるため、熱交換性能が低下する。 However, in the air conditioner disclosed in Patent Document 1, the temperature difference between the refrigerant and the air becomes small in the section from the refrigerant inlet of the evaporator to the decompression means, so that the heat exchange performance deteriorates.
 本開示は、上記のような課題を解決するためになされたもので、暖房運転時に蒸発器として作用する熱源側熱交換器の熱交換性能の低下を抑制する空気調和装置を提供するものである。 The present disclosure has been made to solve the above-mentioned problems, and provides an air conditioner that suppresses a decrease in heat exchange performance of a heat source side heat exchanger that acts as an evaporator during heating operation. ..
 本開示に係る空気調和装置は、圧縮機と、並列に接続された第1熱源側熱交換器および第2熱源側熱交換器を含む熱源側熱交換器と、負荷側絞り装置と、負荷側熱交換器とが配管で接続され、非共沸混合冷媒が循環する冷媒回路と、暖房運転時に前記負荷側絞り装置から流出する冷媒を分流して前記熱源側熱交換器に流通させる第1冷媒配管および第2冷媒配管と、前記第1冷媒配管に設けられ、前記暖房運転時に前記第1冷媒配管を介して前記第1熱源側熱交換器に流入する冷媒を減圧する第1絞り装置と、前記第2冷媒配管に設けられ、前記暖房運転時に前記第2冷媒配管を介して前記第2熱源側熱交換器に流入する冷媒を減圧する第2絞り装置と、前記第2冷媒配管において前記第2絞り装置と前記第2熱源側熱交換器との間を流通する冷媒と、前記暖房運転時に前記第1絞り装置に流入する冷媒とを熱交換させる冷媒間熱交換器と、を有し、前記第1熱源側熱交換器および前記第2熱源側熱交換器は、前記第1熱源側熱交換器を流通する冷媒の圧力損失が前記第2熱源側熱交換器を流通する冷媒の圧力損失よりも大きい構成である。 The air conditioner according to the present disclosure includes a compressor, a heat source side heat exchanger including a first heat source side heat exchanger and a second heat source side heat exchanger connected in parallel, a load side throttle device, and a load side. A first refrigerant that is connected to a heat exchanger by a pipe and circulates a non-co-boiling mixed refrigerant, and a first refrigerant that divides the refrigerant flowing out from the load-side throttle device during heating operation and distributes it to the heat source-side heat exchanger. A pipe, a second refrigerant pipe, and a first throttle device provided in the first refrigerant pipe to reduce the pressure of the refrigerant flowing into the first heat source side heat exchanger via the first refrigerant pipe during the heating operation. A second throttle device provided in the second refrigerant pipe to reduce the pressure of the refrigerant flowing into the second heat source side heat exchanger through the second refrigerant pipe during the heating operation, and the second refrigerant pipe. It has a refrigerant that flows between the two drawing devices and the second heat source side heat exchanger, and a heat exchanger between refrigerants that exchanges heat between the refrigerant flowing into the first drawing device during the heating operation. In the first heat source side heat exchanger and the second heat source side heat exchanger, the pressure loss of the refrigerant flowing through the first heat source side heat exchanger is the pressure loss of the refrigerant flowing through the second heat source side heat exchanger. It is a larger configuration.
 本開示によれば、暖房運転時に第1熱源側熱交換器に流入する冷媒は高い温度を維持したまま、第1熱源側熱交換器内の圧力損失に応じて圧力が低下する。また、第2熱源側熱交換器に流入する冷媒は、冷媒間熱交換器において過熱され温度が上昇する。そのため、熱源側熱交換器の冷媒入口側の冷媒温度が低くなることが抑えられる。したがって、暖房運転時に蒸発器として作用する熱源側熱交換器の熱交換性能の低下を抑制できる。 According to the present disclosure, the pressure of the refrigerant flowing into the first heat source side heat exchanger during the heating operation decreases according to the pressure loss in the first heat source side heat exchanger while maintaining a high temperature. Further, the refrigerant flowing into the second heat source side heat exchanger is overheated in the inter-refrigerant heat exchanger and the temperature rises. Therefore, it is possible to prevent the refrigerant temperature on the refrigerant inlet side of the heat source side heat exchanger from becoming low. Therefore, it is possible to suppress a decrease in heat exchange performance of the heat source side heat exchanger that acts as an evaporator during the heating operation.
実施の形態1に係る空気調和装置の冷媒回路の一構成例を示す模式図である。It is a schematic diagram which shows one structural example of the refrigerant circuit of the air conditioner which concerns on Embodiment 1. FIG. 図1に示した制御装置の一構成例を示すハードウェア構成図である。It is a hardware configuration diagram which shows one configuration example of the control device shown in FIG. 図1に示した制御装置の別の構成例を示すハードウェア構成図である。It is a hardware configuration diagram which shows another configuration example of the control device shown in FIG. 実施の形態1に係る空気調和装置の暖房運転時の作用を説明するためのp-h線図である。FIG. 5 is a ph diagram for explaining the operation of the air conditioner according to the first embodiment during the heating operation. 図1に示した第1熱源側熱交換器に設けられる伝熱管の一例を示す模式図である。It is a schematic diagram which shows an example of the heat transfer tube provided in the 1st heat source side heat exchanger shown in FIG. 図1に示した第2熱源側熱交換器に設けられる伝熱管の一例を示す模式図である。It is a schematic diagram which shows an example of the heat transfer tube provided in the 2nd heat source side heat exchanger shown in FIG. 図5に示した複数の伝熱管の流路断面積と図6に示した伝熱管の流路断面積とを比較するための模式図である。It is a schematic diagram for comparing the flow path cross-sectional area of the plurality of heat transfer tubes shown in FIG. 5 with the flow path cross-sectional area of the heat transfer tube shown in FIG. 実施の形態2に係る空気調和装置の冷媒回路の一構成例を示す模式図である。It is a schematic diagram which shows one structural example of the refrigerant circuit of the air conditioner which concerns on Embodiment 2. FIG.
 図面を参照して、本開示の空気調和装置の実施の形態を説明する。複数の図面間において、同等な構成については同一の符号を付し、一度説明した構成は、その後の別の実施の形態において、その説明を適宜省略し、または簡略化する。また、各図に記載した構成について、構成の形状、大きさおよび配置などは、図に示した場合に限定されない。 An embodiment of the air conditioner of the present disclosure will be described with reference to the drawings. Equivalent configurations are designated by the same reference numerals among a plurality of drawings, and once described, the description thereof will be appropriately omitted or simplified in another embodiment thereafter. Further, with respect to the configurations described in each figure, the shape, size, arrangement, etc. of the configurations are not limited to the cases shown in the drawings.
実施の形態1.
 本実施の形態1の空気調和装置の構成を説明する。
[空気調和装置の全体構成]
 図1は、実施の形態1に係る空気調和装置の冷媒回路の一構成例を示す模式図である。空気調和装置100は、熱源を生成する室外機1と、室外機1によって生成された熱源を利用する室内機2aおよび2bとを有する。本実施の形態1においては、室外機1と室内機2aおよび2bとを循環する冷媒が非共沸混合冷媒である。空気調和装置100は、室内機2aおよび2bの運転モードとして、冷房運転モードおよび暖房運転モードを有する。
Embodiment 1.
The configuration of the air conditioner of the first embodiment will be described.
[Overall configuration of air conditioner]
FIG. 1 is a schematic view showing a configuration example of a refrigerant circuit of the air conditioner according to the first embodiment. The air conditioner 100 includes an outdoor unit 1 that generates a heat source, and indoor units 2a and 2b that utilize the heat source generated by the outdoor unit 1. In the first embodiment, the refrigerant that circulates between the outdoor unit 1 and the indoor units 2a and 2b is a non-azeotropic mixed refrigerant. The air conditioner 100 has a cooling operation mode and a heating operation mode as operation modes of the indoor units 2a and 2b.
 空気調和装置100は、室外機1と室内機2aおよび2bとの間で冷媒が流通する冷媒配管として、液主管3と、液主管3から分岐する2本の液枝管5aおよび5bと、ガス主管4と、ガス主管4から分岐する2本のガス枝管6aおよび6bとを有する。室外機1と室内機2aとは、液主管3および液枝管5aと、ガス主管4およびガス枝管6aとによって接続されている。室外機1と室内機2bとは、液主管3および液枝管5bと、ガス主管4およびガス枝管6bとによって接続されている。 The air conditioner 100 includes a liquid main pipe 3, two liquid branch pipes 5a and 5b branching from the liquid main pipe 3, and a gas as refrigerant pipes through which the refrigerant flows between the outdoor unit 1 and the indoor units 2a and 2b. It has a main pipe 4 and two gas branch pipes 6a and 6b branching from the gas main pipe 4. The outdoor unit 1 and the indoor unit 2a are connected by a liquid main pipe 3 and a liquid branch pipe 5a, and a gas main pipe 4 and a gas branch pipe 6a. The outdoor unit 1 and the indoor unit 2b are connected by a liquid main pipe 3 and a liquid branch pipe 5b, and a gas main pipe 4 and a gas branch pipe 6b.
[室外機]
 図1に示す室外機1の構成を説明する。室外機1は、例えば、部屋の外部である室外に設置される。室外機1は、空調の熱を排出または供給する熱源機として機能する。室外機1は、圧縮機10と、流路切替装置11と、熱源側熱交換器12と、アキュムレータ13と、熱源側ファン17と、制御装置30とを有する。また、室外機1は、第1絞り装置16と、第2絞り装置15と、冷媒間熱交換器14と、第1冷媒配管18aおよび第2冷媒配管18bとを有する。熱源側熱交換器12は、並列に接続される第1熱源側熱交換器12aおよび第2熱源側熱交換器12bを有する。圧縮機10、流路切替装置11、熱源側ファン17、第1絞り装置16および第2絞り装置15のそれぞれは、図に示さない信号線を介して制御装置30と接続される。
[Outdoor unit]
The configuration of the outdoor unit 1 shown in FIG. 1 will be described. The outdoor unit 1 is installed, for example, outside the room. The outdoor unit 1 functions as a heat source unit that discharges or supplies heat for air conditioning. The outdoor unit 1 includes a compressor 10, a flow path switching device 11, a heat source side heat exchanger 12, an accumulator 13, a heat source side fan 17, and a control device 30. Further, the outdoor unit 1 includes a first throttle device 16, a second throttle device 15, an inter-refrigerant heat exchanger 14, a first refrigerant pipe 18a, and a second refrigerant pipe 18b. The heat source side heat exchanger 12 has a first heat source side heat exchanger 12a and a second heat source side heat exchanger 12b connected in parallel. Each of the compressor 10, the flow path switching device 11, the heat source side fan 17, the first throttle device 16, and the second throttle device 15 is connected to the control device 30 via a signal line (not shown).
 第1冷媒配管18aおよび第2冷媒配管18bは、熱源側熱交換器12に流入する冷媒を分流する。第1冷媒配管18aは、熱源側熱交換器12に流入する冷媒のうち、一部の冷媒を第1熱源側熱交換器12aに流通させる。第2冷媒配管18bは、熱源側熱交換器12に流入する冷媒のうち、残りの冷媒を第2熱源側熱交換器12bに流通させる。 The first refrigerant pipe 18a and the second refrigerant pipe 18b divide the refrigerant flowing into the heat source side heat exchanger 12. The first refrigerant pipe 18a circulates a part of the refrigerant flowing into the heat source side heat exchanger 12 to the first heat source side heat exchanger 12a. The second refrigerant pipe 18b circulates the remaining refrigerant among the refrigerants flowing into the heat source side heat exchanger 12 to the second heat source side heat exchanger 12b.
 第1絞り装置16は第1冷媒配管18aに設けられている。第2絞り装置15は第2冷媒配管18bに設けられている。冷媒間熱交換器14は第1冷媒配管18aおよび第2冷媒配管18bの両方の途中に設けられている。第1冷媒配管18aを介して第1熱源側熱交換器12a、第1絞り装置16および冷媒間熱交換器14が接続される流路と、第2冷媒配管18bを介して第2熱源側熱交換器12b、冷媒間熱交換器14および第2絞り装置15が接続される流路とが並列に接続される。 The first throttle device 16 is provided in the first refrigerant pipe 18a. The second throttle device 15 is provided in the second refrigerant pipe 18b. The inter-refrigerant heat exchanger 14 is provided in the middle of both the first refrigerant pipe 18a and the second refrigerant pipe 18b. The flow path to which the first heat source side heat exchanger 12a, the first throttle device 16 and the inter-refrigerant heat exchanger 14 are connected via the first refrigerant pipe 18a, and the second heat source side heat via the second refrigerant pipe 18b. The flow path to which the exchanger 12b, the inter-refrigerant heat exchanger 14 and the second throttle device 15 are connected is connected in parallel.
 圧縮機10は、低温および低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温および高圧の状態にして吐出する。圧縮機10は、例えば、容量を制御できるインバータ圧縮機である。熱源側ファン17は、外気を熱源側熱交換器12に供給する。熱源側ファン17は、例えば、プロペラファンである。熱源側ファン17の台数は、1台に限らず、複数台であってもよい。アキュムレータ13は、圧縮機10の冷媒吸入口側に接続されている。アキュムレータ13は、液冷媒が圧縮機10に流入してしまうことを防ぐ。 The compressor 10 sucks in the refrigerant in the low temperature and low pressure states, compresses the sucked refrigerant into the high temperature and high pressure states, and discharges the refrigerant. The compressor 10 is, for example, an inverter compressor whose capacity can be controlled. The heat source side fan 17 supplies outside air to the heat source side heat exchanger 12. The heat source side fan 17 is, for example, a propeller fan. The number of heat source side fans 17 is not limited to one, and may be a plurality of fans. The accumulator 13 is connected to the refrigerant suction port side of the compressor 10. The accumulator 13 prevents the liquid refrigerant from flowing into the compressor 10.
 流路切替装置11は、暖房運転モードおよび冷房運転モードの運転モードに対応して、冷媒回路50aおよび50bを循環する冷媒の流通方向を切り替える。流路切替装置11は、暖房運転モードにおいて、圧縮機10から吐出される冷媒を負荷側熱交換器21aおよび21bに流通させ、冷房運転モードにおいて、圧縮機10から吐出される冷媒を熱源側熱交換器12に流通させる。流路切替装置11は、例えば、四方弁である。 The flow path switching device 11 switches the flow direction of the refrigerant circulating in the refrigerant circuits 50a and 50b according to the operation modes of the heating operation mode and the cooling operation mode. The flow path switching device 11 circulates the refrigerant discharged from the compressor 10 to the load side heat exchangers 21a and 21b in the heating operation mode, and heats the refrigerant discharged from the compressor 10 to the heat source side heat in the cooling operation mode. It is distributed to the exchanger 12. The flow path switching device 11 is, for example, a four-way valve.
 第1熱源側熱交換器12aおよび第2熱源側熱交換器12bは、熱源側ファン17によって供給される空気と冷媒とを熱交換させる。第1熱源側熱交換器12aおよび第2熱源側熱交換器12bは、冷房運転モードにおいては凝縮器またはガスクーラとして機能し、暖房運転モードにおいては蒸発器として機能する。図1に示す構成例においては、第2熱源側熱交換器12bは第1熱源側熱交換器12aよりも風上側に配置されている。 The first heat source side heat exchanger 12a and the second heat source side heat exchanger 12b exchange heat between the air supplied by the heat source side fan 17 and the refrigerant. The first heat source side heat exchanger 12a and the second heat source side heat exchanger 12b function as a condenser or a gas cooler in the cooling operation mode and as an evaporator in the heating operation mode. In the configuration example shown in FIG. 1, the second heat source side heat exchanger 12b is arranged on the wind side of the first heat source side heat exchanger 12a.
 第1熱源側熱交換器12aは、暖房運転モードにおいて、着霜を抑制するために、非共沸混合冷媒の温度勾配に応じた冷媒の圧力損失を生じる構成である。第1熱源側熱交換器12aは、第2熱源側熱交換器12bに比べて、大きな冷媒の圧力損失を生じるように、例えば、冷媒の流路断面積が小さい構成である。また、第1熱源側熱交換器12aは、第2熱源側熱交換器12bに比べて、伝熱管の流路長を長くしてもよい。 The first heat source side heat exchanger 12a has a configuration that causes a pressure loss of the refrigerant according to the temperature gradient of the non-azeotropic mixed refrigerant in order to suppress frost formation in the heating operation mode. The first heat source side heat exchanger 12a has a configuration in which, for example, the flow path cross-sectional area of the refrigerant is small so as to cause a large pressure loss of the refrigerant as compared with the second heat source side heat exchanger 12b. Further, the first heat source side heat exchanger 12a may have a longer flow path length of the heat transfer tube than the second heat source side heat exchanger 12b.
 第1絞り装置16および第2絞り装置15は、開度を制御できる膨張弁である。第1絞り装置16および第2絞り装置15は、例えば、電子式膨張弁である。第1絞り装置16は、暖房運転モードにおいて、室内機2aおよび2bから第1冷媒配管18aを介して第1熱源側熱交換器12aに流入する冷媒を減圧する。第2絞り装置15は、暖房運転モードにおいて、室内機2aおよび2bから第2冷媒配管18bを介して第2熱源側熱交換器12bに流入する冷媒を減圧する。第1絞り装置16および第2絞り装置15は、冷房運転モードにおいて、全開状態となる。 The first throttle device 16 and the second throttle device 15 are expansion valves that can control the opening degree. The first throttle device 16 and the second throttle device 15 are, for example, electronic expansion valves. The first throttle device 16 depressurizes the refrigerant flowing from the indoor units 2a and 2b into the first heat source side heat exchanger 12a via the first refrigerant pipe 18a in the heating operation mode. The second throttle device 15 depressurizes the refrigerant flowing from the indoor units 2a and 2b into the second heat source side heat exchanger 12b via the second refrigerant pipe 18b in the heating operation mode. The first throttle device 16 and the second throttle device 15 are fully opened in the cooling operation mode.
 冷媒間熱交換器14は、第2冷媒配管18bにおいて第2絞り装置15と第2熱源側熱交換器12bとの間を流通する冷媒と、暖房運転時に第1絞り装置16に流入する冷媒とを熱交換させる。冷媒間熱交換器14は、例えば、二重管熱交換器、プレート熱交換器またはシェルアンドチューブ熱交換器である。なお、制御装置30の構成は、室内機2aおよび2bの構成の説明の後に説明する。 The inter-refrigerant heat exchanger 14 includes a refrigerant that flows between the second throttle device 15 and the second heat source side heat exchanger 12b in the second refrigerant pipe 18b, and a refrigerant that flows into the first throttle device 16 during the heating operation. To exchange heat. The inter-refrigerant heat exchanger 14 is, for example, a double tube heat exchanger, a plate heat exchanger or a shell and tube heat exchanger. The configuration of the control device 30 will be described after the description of the configurations of the indoor units 2a and 2b.
[室内機]
 図1に示す室内機2aおよび2bの構成を説明する。室内機2aおよび2bのそれぞれは、例えば、部屋の内部である室内に設置される。室内機2aは、自機が設置された室内に空調空気を供給する。室内機2bは、自機が設置された室内に空調空気を供給する。室内機2aは、負荷側絞り装置20aと、負荷側熱交換器21aと、負荷側ファン22aと、室温センサ23aとを有する。室内機2bは、負荷側絞り装置20bと、負荷側熱交換器21bと、負荷側ファン22bと、室温センサ23bとを有する。室内機2aおよび2bに冷媒漏洩検知器(図示せず)が設けられていてもよい。
[Indoor unit]
The configurations of the indoor units 2a and 2b shown in FIG. 1 will be described. Each of the indoor units 2a and 2b is installed, for example, in a room inside the room. The indoor unit 2a supplies conditioned air to the room in which the indoor unit 2a is installed. The indoor unit 2b supplies conditioned air to the room in which the indoor unit 2b is installed. The indoor unit 2a includes a load-side throttle device 20a, a load-side heat exchanger 21a, a load-side fan 22a, and a room temperature sensor 23a. The indoor unit 2b includes a load-side throttle device 20b, a load-side heat exchanger 21b, a load-side fan 22b, and a room temperature sensor 23b. Refrigerant leakage detectors (not shown) may be provided in the indoor units 2a and 2b.
 負荷側絞り装置20aおよび20bと、負荷側ファン22aおよび22bと、室温センサ23aおよび23bとのそれぞれは、図に示さない信号線を介して制御装置30と接続される。室温センサ23aは、室内機2aが設置された部屋の室温を検出し、検出した室温のデータを制御装置30に出力する。室温センサ23bは、室内機2bが設置された部屋の室温を検出し、検出した室温のデータを制御装置30に出力する。 The load- side throttle devices 20a and 20b, the load- side fans 22a and 22b, and the room temperature sensors 23a and 23b are connected to the control device 30 via signal lines not shown in the figure, respectively. The room temperature sensor 23a detects the room temperature of the room in which the indoor unit 2a is installed, and outputs the detected room temperature data to the control device 30. The room temperature sensor 23b detects the room temperature of the room in which the indoor unit 2b is installed, and outputs the detected room temperature data to the control device 30.
 負荷側ファン22aは、室内機2aが設置された部屋から空気を吸い込んで、吸い込んだ空気を負荷側熱交換器21aに供給する。負荷側ファン22bは、室内機2bが設置された部屋から空気を吸い込んで、吸い込んだ空気を負荷側熱交換器21bに供給する。負荷側ファン22aおよび22bは、例えば、クロスフローファンである。 The load-side fan 22a sucks air from the room in which the indoor unit 2a is installed, and supplies the sucked air to the load-side heat exchanger 21a. The load-side fan 22b sucks air from the room in which the indoor unit 2b is installed, and supplies the sucked air to the load-side heat exchanger 21b. The load- side fans 22a and 22b are, for example, cross-flow fans.
 負荷側絞り装置20aおよび20bは、冷媒を減圧して膨張させる減圧弁または膨張弁として機能する。負荷側絞り装置20aおよび20bは、例えば、開度を変えることができる電子式膨張弁である。負荷側絞り装置20aは、室内機2aが冷房運転モードで動作するとき、冷媒の流通方向について負荷側熱交換器21aの上流側に位置する。負荷側絞り装置20bは、室内機2bが冷房運転モードで動作するとき、冷媒の流通方向について負荷側熱交換器21bの上流側に位置する。 The load- side throttle devices 20a and 20b function as a pressure reducing valve or an expansion valve that depressurizes and expands the refrigerant. The load- side throttle devices 20a and 20b are, for example, electronic expansion valves whose opening degree can be changed. The load-side throttle device 20a is located on the upstream side of the load-side heat exchanger 21a in the flow direction of the refrigerant when the indoor unit 2a operates in the cooling operation mode. The load-side throttle device 20b is located on the upstream side of the load-side heat exchanger 21b in the flow direction of the refrigerant when the indoor unit 2b operates in the cooling operation mode.
 負荷側熱交換器21aは、ガス枝管6aおよびガス主管4を介して室外機1の流路切替装置11と接続され、負荷側絞り装置20a、液枝管5aおよび液主管3を介して、室外機1の第1冷媒配管18aおよび第2冷媒配管18bと接続されている。負荷側熱交換器21bは、ガス枝管6bおよびガス主管4を介して室外機1の流路切替装置11と接続され、負荷側絞り装置20b、液枝管5bおよび液主管3を介して、室外機1の第1冷媒配管18aおよび第2冷媒配管18bと接続されている。 The load-side heat exchanger 21a is connected to the flow path switching device 11 of the outdoor unit 1 via the gas branch pipe 6a and the gas main pipe 4, and is connected to the flow path switching device 11 of the outdoor unit 1 via the load-side throttle device 20a, the liquid branch pipe 5a, and the liquid main pipe 3. It is connected to the first refrigerant pipe 18a and the second refrigerant pipe 18b of the outdoor unit 1. The load-side heat exchanger 21b is connected to the flow path switching device 11 of the outdoor unit 1 via the gas branch pipe 6b and the gas main pipe 4, and is connected to the flow path switching device 11 of the outdoor unit 1 via the load-side throttle device 20b, the liquid branch pipe 5b, and the liquid main pipe 3. It is connected to the first refrigerant pipe 18a and the second refrigerant pipe 18b of the outdoor unit 1.
 負荷側熱交換器21aおよび21bは、冷房運転モードにおいては蒸発器として機能し、暖房運転モードにおいては凝縮器として機能する。負荷側熱交換器21aは、負荷側ファン22aによって供給される空気と冷媒とを熱交換させることで、室内に供給する暖房用空気または冷房用空気を生成する。負荷側熱交換器21bは、負荷側ファン22bによって供給される空気と冷媒とを熱交換させることで、室内に供給する暖房用空気または冷房用空気を生成する。 The load side heat exchangers 21a and 21b function as an evaporator in the cooling operation mode and as a condenser in the heating operation mode. The load-side heat exchanger 21a generates heating air or cooling air to be supplied to the room by exchanging heat between the air supplied by the load-side fan 22a and the refrigerant. The load-side heat exchanger 21b generates heating air or cooling air to be supplied to the room by exchanging heat between the air supplied by the load-side fan 22b and the refrigerant.
 圧縮機10、熱源側熱交換器12、負荷側絞り装置20aおよび負荷側熱交換器21aが冷媒配管で接続され、冷媒が循環する冷媒回路50aが構成される。圧縮機10、熱源側熱交換器12、負荷側絞り装置20bおよび負荷側熱交換器21bが冷媒配管で接続され、冷媒が循環する冷媒回路50bが構成される。本実施の形態1においては、冷媒回路50aおよび50bのそれぞれに、図1に示すように、第1絞り装置16、第2絞り装置15および冷媒間熱交換器14が含まれる。 The compressor 10, the heat source side heat exchanger 12, the load side throttle device 20a, and the load side heat exchanger 21a are connected by a refrigerant pipe to form a refrigerant circuit 50a in which the refrigerant circulates. The compressor 10, the heat source side heat exchanger 12, the load side throttle device 20b, and the load side heat exchanger 21b are connected by a refrigerant pipe to form a refrigerant circuit 50b in which the refrigerant circulates. In the first embodiment, each of the refrigerant circuits 50a and 50b includes a first throttle device 16, a second throttle device 15, and an inter-refrigerant heat exchanger 14, as shown in FIG.
 なお、図1は、室外機1に2台の室内機2aおよび2bが並列に接続される構成を示しているが、室外機1に接続される室内機は1台であってもよく、3台以上であってもよい。また、図1は、負荷側絞り装置20aが室内機2aに設けられ、負荷側絞り装置20bが室内機2bに設けられている場合を示している。第1絞り装置16および第2絞り装置15が負荷側絞り装置20aおよび20bの役目を果たせば、室内機2aおよび2bに絞り装置を設けなくてもよい。室内機が1台の場合、室内機に絞り装置を設けず、室外機に絞り装置を設けてもよい。また、図1は、室外機1に流路切替装置11が設けられた構成を示しているが、暖房専用機などのように、流路切替装置11が設けられていない構成であってもよい。さらに、空気調和装置100に設けられるセンサは室温センサ23aおよび23bに限らず、図に示さないセンサが設けられていてもよい。 Although FIG. 1 shows a configuration in which two indoor units 2a and 2b are connected in parallel to the outdoor unit 1, one indoor unit may be connected to the outdoor unit 1. It may be more than one. Further, FIG. 1 shows a case where the load-side throttle device 20a is provided in the indoor unit 2a and the load-side throttle device 20b is provided in the indoor unit 2b. If the first throttle device 16 and the second throttle device 15 serve as the load- side throttle devices 20a and 20b, the indoor units 2a and 2b may not be provided with the diaphragm devices. When there is one indoor unit, the indoor unit may not be provided with the diaphragm device, and the outdoor unit may be provided with the diaphragm device. Further, although FIG. 1 shows a configuration in which the flow path switching device 11 is provided in the outdoor unit 1, the configuration may be such that the flow path switching device 11 is not provided, such as a dedicated heating machine. .. Further, the sensors provided in the air conditioner 100 are not limited to the room temperature sensors 23a and 23b, and sensors not shown in the figure may be provided.
 次に、図1に示した制御装置30の構成を説明する。制御装置30は、空気調和装置100の全体を制御する。制御装置30は、室温センサ23aおよび23b等の各種センサの検出値と設定温度Tsetとに基づいて、冷媒回路50aおよび50bのそれぞれを循環する冷媒の冷凍サイクルを制御する。 Next, the configuration of the control device 30 shown in FIG. 1 will be described. The control device 30 controls the entire air conditioner 100. The control device 30 controls the refrigerating cycle of the refrigerant circulating in the refrigerant circuits 50a and 50b, based on the detected values of various sensors such as the room temperature sensors 23a and 23b and the set temperature Tset.
 室内機2aのユーザによって、図に示さないリモートコントローラを介して、運転モードおよび設定温度Tset1が制御装置30に入力される。室内機2bのユーザによって、図に示さないリモートコントローラを介して、運転モードおよび設定温度Tset2が制御装置30に入力される。本実施の形態1においては、室内機2aのユーザが選択する運転モードおよび室内機2bのユーザが選択する運転モードが同じものとする。 The operation mode and the set temperature Tset1 are input to the control device 30 by the user of the indoor unit 2a via a remote controller (not shown in the figure). The operation mode and the set temperature Tset2 are input to the control device 30 by the user of the indoor unit 2b via a remote controller (not shown). In the first embodiment, the operation mode selected by the user of the indoor unit 2a and the operation mode selected by the user of the indoor unit 2b are the same.
 制御装置30は、室内機2aおよび2bのユーザによって選択された運転モードに対応して、冷媒回路50aおよび50bに流れる冷媒の流通方向が切り替わるように、流路切替装置11を制御する。具体的には、運転モードが暖房運転モードの場合、制御装置30は、圧縮機10から吐出される冷媒が負荷側熱交換器21aおよび21bに流通するように流路切替装置11を制御する。運転モードが冷房運転モードの場合、制御装置30は、圧縮機10から吐出される冷媒が熱源側熱交換器12に流通するように流路切替装置11を制御する。 The control device 30 controls the flow path switching device 11 so that the flow direction of the refrigerant flowing through the refrigerant circuits 50a and 50b is switched according to the operation mode selected by the user of the indoor units 2a and 2b. Specifically, when the operation mode is the heating operation mode, the control device 30 controls the flow path switching device 11 so that the refrigerant discharged from the compressor 10 flows to the load side heat exchangers 21a and 21b. When the operation mode is the cooling operation mode, the control device 30 controls the flow path switching device 11 so that the refrigerant discharged from the compressor 10 flows to the heat source side heat exchanger 12.
 運転モードが冷房運転モードの場合、制御装置30は、第1絞り装置16および第2絞り装置15の開度を全開状態に制御する。また、冷房運転モードにおいて、制御装置30は、次のようにして、室内機2aおよび2b毎に制御する。制御装置30は、室温センサ23aの検出値が設定温度Tset1と一致するように、圧縮機10の駆動回転数、熱源側ファン17の回転数、負荷側ファン22aの回転数および負荷側絞り装置20aの開度を制御する。制御装置30は、室温センサ23bの検出値が設定温度Tset2と一致するように、圧縮機10の駆動回転数、熱源側ファン17の回転数、負荷側ファン22bの回転数および負荷側絞り装置20bの開度を制御する。 When the operation mode is the cooling operation mode, the control device 30 controls the opening degree of the first throttle device 16 and the second throttle device 15 to the fully open state. Further, in the cooling operation mode, the control device 30 controls each of the indoor units 2a and 2b as follows. The control device 30 has the drive rotation speed of the compressor 10, the rotation speed of the heat source side fan 17, the rotation speed of the load side fan 22a, and the load side throttle device 20a so that the detected value of the room temperature sensor 23a matches the set temperature Tset1. Control the opening of. The control device 30 has the drive rotation speed of the compressor 10, the rotation speed of the heat source side fan 17, the rotation speed of the load side fan 22b, and the load side throttle device 20b so that the detected value of the room temperature sensor 23b matches the set temperature Tset2. Control the opening of.
 運転モードが暖房運転モードの場合、制御装置30は、負荷側熱交換器21aおよび21bの流量調整を目的として、冷媒間熱交換器14で行われる熱交換を妨げないように、減圧が最小限になるように負荷側絞り装置20aおよび20bの開度を制御する。例えば、制御装置30は、負荷側絞り装置20aおよび20bの開度を全開状態にする。また、暖房運転モードにおいて、制御装置30は、次のようにして、室内機2aおよび2b毎に制御する。制御装置30は、室温センサ23aの検出値が設定温度Tset1と一致するように、圧縮機10の駆動回転数と、熱源側ファン17の回転数と、負荷側ファン22aの回転数と、第1絞り装置16および第2絞り装置15の開度とを制御する。制御装置30は、室温センサ23bの検出値が設定温度Tset2と一致するように、圧縮機10の駆動回転数と、熱源側ファン17の回転数と、負荷側ファン22bの回転数と、第1絞り装置16および第2絞り装置15の開度とを制御する。 When the operation mode is the heating operation mode, the control device 30 minimizes the depressurization so as not to interfere with the heat exchange performed by the inter-refrigerant heat exchanger 14 for the purpose of adjusting the flow rates of the load side heat exchangers 21a and 21b. The opening degrees of the load side throttle devices 20a and 20b are controlled so as to be. For example, the control device 30 sets the opening degrees of the load- side throttle devices 20a and 20b to the fully open state. Further, in the heating operation mode, the control device 30 controls each of the indoor units 2a and 2b as follows. In the control device 30, the drive rotation speed of the compressor 10, the rotation speed of the heat source side fan 17, the rotation speed of the load side fan 22a, and the first The opening degree of the drawing device 16 and the second drawing device 15 is controlled. In the control device 30, the drive rotation speed of the compressor 10, the rotation speed of the heat source side fan 17, the rotation speed of the load side fan 22b, and the first The opening degree of the drawing device 16 and the second drawing device 15 is controlled.
 さらに、暖房運転モードにおいて、制御装置30は、第1絞り装置16および第2絞り装置15の開度比率Rvを制御することで第1熱源側熱交換器12aに流れる冷媒の流量を調節し、第1熱源側熱交換器12aにおける冷媒の圧力損失を制御してもよい。制御装置30は、空気調和装置100の冷房および暖房の負荷に対応して、第1熱源側熱交換器12aの圧力損失を制御する。例えば、制御装置30は、暖房運転モードにおいて、着霜の懸念がない低負荷運転、または高外気温度での運転の場合、第1熱源側熱交換器12aの圧力損失が小さくなるように、開度比率Rvを制御する。制御装置30は、暖房運転モードにおいて、着霜の懸念が大きい高負荷運転、または低外気温度での運転の場合、第1熱源側熱交換器12aの圧力損失が大きくなるように、開度比率Rvを制御する。 Further, in the heating operation mode, the control device 30 adjusts the flow rate of the refrigerant flowing to the first heat source side heat exchanger 12a by controlling the opening ratio Rv of the first throttle device 16 and the second throttle device 15. The pressure loss of the refrigerant in the first heat source side heat exchanger 12a may be controlled. The control device 30 controls the pressure loss of the first heat source side heat exchanger 12a in response to the cooling and heating loads of the air conditioner 100. For example, in the heating operation mode, the control device 30 is opened so that the pressure loss of the first heat source side heat exchanger 12a becomes small in the case of low load operation where there is no concern about frost formation or operation at a high outside air temperature. The degree ratio Rv is controlled. In the heating operation mode, the control device 30 has an opening ratio so that the pressure loss of the first heat source side heat exchanger 12a becomes large in the case of high load operation in which there is a large concern about frost formation or operation at a low outside air temperature. Control Rv.
 開度比率Rvとして、着霜の懸念がない低負荷運転または高外気温度での運転の場合の開度比率Rvlと、着霜の懸念が大きい高負荷運転または低外気温度での運転の場合の開度比率Rvhとが予め決められていてもよい。また、図に示さない冷媒温度センサが第1熱源側熱交換器12aの暖房運転モードにおける冷媒出口側に設けられ、制御装置30は、冷媒温度センサの検出値が予め決められた目標温度Tempになるように、開度比率Rvを制御してもよい。 The opening ratio Rv is the opening ratio Rvl in the case of low load operation or operation at a high outside air temperature where there is no concern about frost formation, and the case of high load operation or operation at a low outside air temperature where there is a large concern about frost formation. The opening ratio Rvh may be predetermined. Further, a refrigerant temperature sensor (not shown) is provided on the refrigerant outlet side in the heating operation mode of the first heat source side heat exchanger 12a, and the control device 30 sets the detection value of the refrigerant temperature sensor to a predetermined target temperature Temp. The opening ratio Rv may be controlled so as to be.
 制御装置30は、例えば、アナログ回路もしくはデジタル回路、またはこれらの回路を組み合わせた回路で構成される。制御装置30は、各種機能を実現する回路デバイスなどのハードウェアで構成される。また、制御装置30は、マイクロコンピュータなどの演算装置がソフトウェアを実行することにより各種機能が実現される構成でもよい。 The control device 30 is composed of, for example, an analog circuit, a digital circuit, or a circuit in which these circuits are combined. The control device 30 is composed of hardware such as a circuit device that realizes various functions. Further, the control device 30 may have a configuration in which various functions are realized by executing software by an arithmetic unit such as a microcomputer.
 図1に示した制御装置30のハードウェアの一例を説明する。図2は、図1に示した制御装置の一構成例を示すハードウェア構成図である。制御装置30の機能がハードウェアで実行される場合、制御装置30は、図2に示すように、処理回路80で構成される。 An example of the hardware of the control device 30 shown in FIG. 1 will be described. FIG. 2 is a hardware configuration diagram showing a configuration example of the control device shown in FIG. When the function of the control device 30 is executed by hardware, the control device 30 is composed of a processing circuit 80 as shown in FIG.
 制御装置30の機能がハードウェアで実行される場合、処理回路80は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものに該当する。 When the function of the control device 30 is executed by hardware, the processing circuit 80 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field). -Programmable Gate Array), or a combination of these.
 図1に示した制御装置30のハードウェアの別の構成例を説明する。図3は、図1に示した制御装置の別の構成例を示すハードウェア構成図である。制御装置30の機能がソフトウェアで実行される場合、図1に示した制御装置30は、図3に示すように、CPU(Central Processing Unit)等のプロセッサ81と、メモリ82とで構成される。制御装置30の機能は、プロセッサ81およびメモリ82により実現される。図3は、プロセッサ81およびメモリ82が互いに通信可能に接続されることを示している。 Another configuration example of the hardware of the control device 30 shown in FIG. 1 will be described. FIG. 3 is a hardware configuration diagram showing another configuration example of the control device shown in FIG. When the function of the control device 30 is executed by software, the control device 30 shown in FIG. 1 is composed of a processor 81 such as a CPU (Central Processing Unit) and a memory 82 as shown in FIG. The function of the control device 30 is realized by the processor 81 and the memory 82. FIG. 3 shows that the processor 81 and the memory 82 are communicably connected to each other.
 制御装置30の機能がソフトウェアで実行される場合、制御装置30の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ82に格納される。プロセッサ81は、メモリ82に記憶されたプログラムを読み出して実行することにより、制御装置30の機能を実現する。メモリ82は、上述の開度比率RvhおよびRvlと、目標温度Tempとを記憶していてもよい。 When the function of the control device 30 is executed by software, the function of the control device 30 is realized by software, firmware, or a combination of software and firmware. The software and firmware are written as a program and stored in the memory 82. The processor 81 realizes the function of the control device 30 by reading and executing the program stored in the memory 82. The memory 82 may store the above-mentioned opening ratios Rvh and Rvr and the target temperature Temp.
 メモリ82として、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性の半導体メモリが用いられる。また、メモリ82として、RAM(Random Access Memory)の揮発性の半導体メモリが用いられてもよい。さらに、メモリ82として、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。 As the memory 82, for example, a non-volatile semiconductor memory such as a ROM (Read Only Memory), a flash memory, an EPROM (Erasable and Programmable ROM), and an EPROM (Electrically Erasable and Programmable ROM) is used. Further, as the memory 82, a volatile semiconductor memory of RAM (Random Access Memory) may be used. Further, as the memory 82, a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versaille Disc) may be used.
 なお、図1は、制御装置30が室外機1に設けられている場合を例示しているが、制御装置は、室外機1と室内機2aおよび2bとのそれぞれに設けられていてもよく、室内機2aおよび2bのうち、少なくとも一方に設けられていてもよい。空気調和装置100に複数の制御装置が設けられる場合、複数の制御装置は互いに通信接続され、上述した制御装置30の機能を実行する。 Although FIG. 1 illustrates a case where the control device 30 is provided in the outdoor unit 1, the control device may be provided in the outdoor unit 1 and the indoor units 2a and 2b, respectively. It may be provided in at least one of the indoor units 2a and 2b. When a plurality of control devices are provided in the air conditioner 100, the plurality of control devices are communicated with each other to perform the functions of the control device 30 described above.
[空気調和装置の運転モード]
 次に、空気調和装置100が実行する各運転モードについて説明する。空気調和装置100は、室内機2aおよび2b毎にユーザからリモートコントローラ(図示せず)を介して入力される指示に基づいて、室内機2aおよび2bの冷房運転および暖房運転を実行する。図1の空気調和装置100が実行する運転モードは、上述したように、動作する室内機2aおよび2bの全てが冷房運転を行う冷房運転モードと、動作する室内機2aおよび2bの両方が暖房運転を行う暖房運転モードとがある。以下に、各運転モードにおける冷媒の流れを説明する。
[Operation mode of air conditioner]
Next, each operation mode executed by the air conditioner 100 will be described. The air conditioner 100 executes the cooling operation and the heating operation of the indoor units 2a and 2b based on the instructions input from the user via the remote controller (not shown) for each of the indoor units 2a and 2b. As described above, the operation modes executed by the air conditioner 100 of FIG. 1 include a cooling operation mode in which all of the operating indoor units 2a and 2b perform cooling operation and a heating operation in which both the operating indoor units 2a and 2b perform heating operation. There is a heating operation mode to perform. The flow of the refrigerant in each operation mode will be described below.
[冷房運転モード]
 図1を参照して、冷房運転モードにおける冷媒の流れを説明する。図1において、冷房運転モードの場合に冷媒回路50aおよび50bを流れる冷媒の流通方向を破線の矢印で示している。
[Cooling operation mode]
The flow of the refrigerant in the cooling operation mode will be described with reference to FIG. In FIG. 1, the flow direction of the refrigerant flowing through the refrigerant circuits 50a and 50b in the cooling operation mode is indicated by a broken line arrow.
 圧縮機10が、低温および低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温および高圧の冷媒を吐出する。圧縮機10から吐出された高温および高圧の冷媒は、流路切替装置11を経由して、第1熱源側熱交換器12aおよび第2熱源側熱交換器12bに分流する。そして、第2熱源側熱交換器12bおよび第1熱源側熱交換器12aに流入した冷媒は、熱源側ファン17によって供給される外気と熱交換して凝縮する。第1熱源側熱交換器12aおよび第2熱源側熱交換器12bにおいて凝縮された冷媒は、室外機1から流出して、液主管3と液枝管5aおよび5bを経由して、室内機2aおよび2bに流入する。このとき、第1絞り装置16および第2絞り装置15は、冷媒の流れを妨げないように全開状態である。 The compressor 10 sucks in low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressor 10 is diverted to the first heat source side heat exchanger 12a and the second heat source side heat exchanger 12b via the flow path switching device 11. Then, the refrigerant flowing into the second heat source side heat exchanger 12b and the first heat source side heat exchanger 12a exchanges heat with the outside air supplied by the heat source side fan 17 and condenses. The refrigerant condensed in the first heat source side heat exchanger 12a and the second heat source side heat exchanger 12b flows out from the outdoor unit 1 and passes through the liquid main pipe 3 and the liquid branch pipes 5a and 5b to the indoor unit 2a. And flow into 2b. At this time, the first drawing device 16 and the second drawing device 15 are in a fully open state so as not to obstruct the flow of the refrigerant.
 室内機2aに流入した冷媒は、負荷側絞り装置20aで膨張される。負荷側絞り装置20aで膨張された冷媒は、蒸発器として作用する負荷側熱交換器21aに流入し、室内空気から吸熱して蒸発する。負荷側熱交換器21aにおいて、冷媒が室内空気から吸熱することによって、室内空気が冷却される。また、室内機2bに流入した冷媒は、負荷側絞り装置20bで膨張される。負荷側絞り装置20bで膨張された冷媒は、蒸発器として作用する負荷側熱交換器21bに流入し、室内空気から吸熱して蒸発する。負荷側熱交換器21bにおいて、冷媒が室内空気から吸熱することによって、室内空気が冷却される。負荷側熱交換器21aおよび21bから流出した冷媒は、ガス枝管6aおよび6bとガス主管4とを経由して、室外機1に戻る。室外機1に流入した冷媒は、流路切替装置11を経由して、圧縮機10に吸入され、再度、圧縮される。 The refrigerant flowing into the indoor unit 2a is expanded by the load side throttle device 20a. The refrigerant expanded by the load-side throttle device 20a flows into the load-side heat exchanger 21a that acts as an evaporator, absorbs heat from the room air, and evaporates. In the load side heat exchanger 21a, the indoor air is cooled by the refrigerant absorbing heat from the indoor air. Further, the refrigerant flowing into the indoor unit 2b is expanded by the load side throttle device 20b. The refrigerant expanded by the load-side throttle device 20b flows into the load-side heat exchanger 21b that acts as an evaporator, absorbs heat from the room air, and evaporates. In the load side heat exchanger 21b, the indoor air is cooled by the refrigerant absorbing heat from the indoor air. The refrigerant flowing out of the load- side heat exchangers 21a and 21b returns to the outdoor unit 1 via the gas branch pipes 6a and 6b and the gas main pipe 4. The refrigerant that has flowed into the outdoor unit 1 is sucked into the compressor 10 via the flow path switching device 11 and is compressed again.
 なお、省冷媒化の観点から、負荷側絞り装置20aおよび20bの代わりに、第1絞り装置16および第2絞り装置15によって冷媒を膨張させてもよい。この場合、液主管3を占める冷媒を減らすことができる。 From the viewpoint of saving refrigerant, the refrigerant may be expanded by the first throttle device 16 and the second throttle device 15 instead of the load side throttle devices 20a and 20b. In this case, the amount of refrigerant that occupies the liquid main pipe 3 can be reduced.
[暖房運転モード]
 図1を参照して、暖房運転モードにおける冷媒の流れを説明する。図1において、暖房運転モードの場合に冷媒回路50aおよび50bを流れる冷媒の流通方向を実線の矢印で示している。
[Heating operation mode]
The flow of the refrigerant in the heating operation mode will be described with reference to FIG. In FIG. 1, the flow direction of the refrigerant flowing through the refrigerant circuits 50a and 50b in the heating operation mode is indicated by a solid arrow.
 圧縮機10が、低温および低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温および高圧の冷媒を吐出する。圧縮機10から吐出された高温および高圧の冷媒は、流路切替装置11を経由して、室外機1から流出する。室外機1から流出した高温および高圧の冷媒は、ガス主管4とガス枝管6aおよび6bとを経由して、負荷側熱交換器21aおよび21bに分流する。 The compressor 10 sucks in low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressor 10 flows out from the outdoor unit 1 via the flow path switching device 11. The high-temperature and high-pressure refrigerant flowing out of the outdoor unit 1 is diverted to the load- side heat exchangers 21a and 21b via the gas main pipe 4 and the gas branch pipes 6a and 6b.
 負荷側熱交換器21aに流入した冷媒は、負荷側熱交換器21aにおいて、室内空気に放熱することにより、室内空間を暖房しながら凝縮する。負荷側熱交換器21aにおいて凝縮された冷媒は、負荷側絞り装置20aにおいて、わずかに膨張される。また、負荷側熱交換器21bに流入した冷媒は、負荷側熱交換器21bにおいて、室内空気に放熱することにより、室内空間を暖房しながら凝縮する。負荷側熱交換器21bにおいて凝縮された冷媒は、負荷側絞り装置20bでわずかに膨張される。負荷側絞り装置20aおよび20bを流出した冷媒は、液枝管5aおよび5bと液主管3とを経由して、室外機1に戻る。 The refrigerant flowing into the load side heat exchanger 21a is condensed while heating the indoor space by dissipating heat to the indoor air in the load side heat exchanger 21a. The refrigerant condensed in the load side heat exchanger 21a is slightly expanded in the load side drawing device 20a. Further, the refrigerant flowing into the load side heat exchanger 21b is condensed while heating the indoor space by dissipating heat to the indoor air in the load side heat exchanger 21b. The refrigerant condensed in the load side heat exchanger 21b is slightly expanded by the load side drawing device 20b. The refrigerant flowing out of the load- side throttle devices 20a and 20b returns to the outdoor unit 1 via the liquid branch pipes 5a and 5b and the liquid main pipe 3.
 ここで、負荷側絞り装置20aおよび20bは、負荷側熱交換器21aおよび21bの流量調整として機能するが、減圧が必要最小限となるように設定されている。室外機1に流入した冷媒は、第1冷媒配管18aと第2冷媒配管18bとに分流する。 Here, the load- side throttle devices 20a and 20b function as flow rate adjustments for the load- side heat exchangers 21a and 21b, but are set so that decompression is minimized. The refrigerant that has flowed into the outdoor unit 1 is divided into the first refrigerant pipe 18a and the second refrigerant pipe 18b.
 第2冷媒配管18bに流入した冷媒は、第2絞り装置15によって低圧まで膨張された後、冷媒間熱交換器14において一部が蒸発する。冷媒間熱交換器14を流出した冷媒は、第2熱源側熱交換器12bに流入する。一方、第1冷媒配管18aに流入した冷媒は、高圧の状態で冷媒間熱交換器14において過冷却された後、第1絞り装置16で低圧まで膨張された後、第1熱源側熱交換器12aに流入する。第2熱源側熱交換器12bおよび第1熱源側熱交換器12aで蒸発した冷媒は、流路切替装置11を経由して、圧縮機10に吸入され、再度、圧縮される。 The refrigerant that has flowed into the second refrigerant pipe 18b is expanded to a low pressure by the second throttle device 15, and then partly evaporates in the inter-refrigerant heat exchanger 14. The refrigerant flowing out of the inter-refrigerant heat exchanger 14 flows into the second heat source side heat exchanger 12b. On the other hand, the refrigerant flowing into the first refrigerant pipe 18a is overcooled in the inter-refrigerant heat exchanger 14 in a high pressure state, expanded to a low pressure in the first throttle device 16, and then the first heat source side heat exchanger. It flows into 12a. The refrigerant evaporated in the second heat source side heat exchanger 12b and the first heat source side heat exchanger 12a is sucked into the compressor 10 via the flow path switching device 11 and compressed again.
 本実施の形態1の空気調和装置100の暖房運転モードの場合の作用を説明する。図4は、実施の形態1に係る空気調和装置の暖房運転時の作用を説明するためのp-h線図である。図4の横軸は比エンタルピhであり、縦軸は圧力pである。 The operation of the air conditioner 100 of the first embodiment in the heating operation mode will be described. FIG. 4 is a ph diagram for explaining the operation of the air conditioner according to the first embodiment during the heating operation. The horizontal axis of FIG. 4 is the specific enthalpy h, and the vertical axis is the pressure p.
 また、図4において、湿り蒸気領域に示す傾斜した破線は、非共沸混合冷媒の等温線を示す。非共沸混合冷媒の等温線は温度勾配があることを示している。図4に示す温度T1、T2およびT3の関係は、T1>T2>T3である。T2>0℃である。また、圧力p1およびp2の関係は、p2>p1である。行程K1は、第2絞り装置15を流通する冷媒が減圧され、膨張する過程を示す。行程K2は、第1絞り装置16を流通する冷媒が減圧され、膨張する過程を示す。 Further, in FIG. 4, the sloping broken line shown in the wet steam region indicates the isotherm of the non-azeotropic mixed refrigerant. The isotherms of the non-azeotropic mixed refrigerant indicate that there is a temperature gradient. The relationship between the temperatures T1, T2 and T3 shown in FIG. 4 is T1> T2> T3. T2> 0 ° C. The relationship between the pressures p1 and p2 is p2> p1. Step K1 shows a process in which the refrigerant flowing through the second drawing device 15 is depressurized and expanded. Step K2 shows a process in which the refrigerant flowing through the first drawing device 16 is depressurized and expanded.
 第2冷媒配管18bに流入した冷媒は、図4に示すように、第2絞り装置15によって圧力p1まで減圧された後、区間RRに示す冷媒間熱交換器14において、一部の冷媒が蒸発し、過熱される。冷媒間熱交換器14を流出した冷媒は、圧力p1を維持したまま、第2熱源側熱交換器12bに流入する。冷媒の温度は、第2熱源側熱交換器12bに流入する際、温度T2よりも高くなっている。つまり、第2熱源側熱交換器12bの冷媒入口において、冷媒の温度が0℃より高くなっている。 As shown in FIG. 4, the refrigerant flowing into the second refrigerant pipe 18b is depressurized to the pressure p1 by the second throttle device 15, and then a part of the refrigerant evaporates in the inter-refrigerant heat exchanger 14 shown in the section RR. And overheated. The refrigerant flowing out of the inter-refrigerant heat exchanger 14 flows into the second heat source side heat exchanger 12b while maintaining the pressure p1. The temperature of the refrigerant is higher than the temperature T2 when flowing into the second heat source side heat exchanger 12b. That is, the temperature of the refrigerant is higher than 0 ° C. at the refrigerant inlet of the second heat source side heat exchanger 12b.
 一方、第1冷媒配管18aに流入した冷媒は、高圧の状態を維持したまま、区間RRに示す冷媒間熱交換器14において過冷却される。その後、冷媒間熱交換器14を流出した冷媒は、第1絞り装置16において、圧力p2まで減圧された後、第1熱源側熱交換器12aに流入する。冷媒の温度は、第1熱源側熱交換器12aに流入する際、温度T2よりも高い温度T1になっている。第1熱源側熱交換器12aを流通する冷媒は、第1熱源側熱交換器12aにおける圧力損失によって圧力pが少しずつ低下する。このときの圧力pの変化は、非共沸混合冷媒の温度T1の等温線の温度勾配に対応している。第1熱源側熱交換器12aを流通する冷媒は、第1熱源側熱交換器12aの冷媒入口から冷媒出口まで温度T1を維持したまま第1熱源側熱交換器12aを流通し、冷媒出口で圧力p1まで低下する。 On the other hand, the refrigerant flowing into the first refrigerant pipe 18a is supercooled in the inter-refrigerant heat exchanger 14 shown in the section RR while maintaining the high pressure state. After that, the refrigerant flowing out of the inter-refrigerant heat exchanger 14 is reduced to the pressure p2 in the first throttle device 16 and then flows into the first heat source side heat exchanger 12a. The temperature of the refrigerant is T1 which is higher than the temperature T2 when flowing into the first heat source side heat exchanger 12a. The pressure p of the refrigerant flowing through the first heat source side heat exchanger 12a gradually decreases due to the pressure loss in the first heat source side heat exchanger 12a. The change in pressure p at this time corresponds to the temperature gradient of the isotherm of the temperature T1 of the non-azeotropic mixed refrigerant. The refrigerant flowing through the first heat source side heat exchanger 12a flows through the first heat source side heat exchanger 12a while maintaining the temperature T1 from the refrigerant inlet to the refrigerant outlet of the first heat source side heat exchanger 12a, and at the refrigerant outlet. The pressure drops to p1.
 このように、暖房運転モードにおいて、第1熱源側熱交換器12aに流入する冷媒は高い温度を維持したまま、第1熱源側熱交換器12a内の圧力損失に応じて圧力が低下する。また、第2熱源側熱交換器に流入する冷媒は、冷媒間熱交換器において過熱され温度が上昇する。そのため、熱源側熱交換器12の冷媒入口側の冷媒温度が低くなることが抑えられる。その結果、着霜および凍結を防止するとともに、暖房運転時に蒸発器として作用する熱源側熱交換器の熱交換性能の低下を抑制できる。 As described above, in the heating operation mode, the pressure of the refrigerant flowing into the first heat source side heat exchanger 12a decreases according to the pressure loss in the first heat source side heat exchanger 12a while maintaining a high temperature. Further, the refrigerant flowing into the second heat source side heat exchanger is overheated in the inter-refrigerant heat exchanger and the temperature rises. Therefore, it is possible to prevent the refrigerant temperature on the refrigerant inlet side of the heat source side heat exchanger 12 from becoming low. As a result, frost formation and freezing can be prevented, and deterioration of the heat exchange performance of the heat source side heat exchanger acting as an evaporator during the heating operation can be suppressed.
 第1熱源側熱交換器12aで生じる冷媒の圧力損失は、図4に示すように、非共沸混合冷媒の蒸発過程における等温線に沿う程度の大きさに設定されることが望ましい。圧力損失による冷媒の圧力変化が非共沸混合冷媒の蒸発過程における等温線と完全に一致していなくてもよい。また、第2熱源側熱交換器12bで生じる冷媒の圧力損失は、冷媒と空気との温度差を大きくし、熱交換性能を上げるために、できるだけ小さい方が望ましい。そのため、第1熱源側熱交換器12aの圧力損失は、第2熱源側熱交換器12bの圧力損失よりも大きくなるように構成される。 As shown in FIG. 4, it is desirable that the pressure loss of the refrigerant generated in the first heat source side heat exchanger 12a is set to a size along the isotherm in the evaporation process of the non-azeotropic mixed refrigerant. The pressure change of the refrigerant due to the pressure loss does not have to completely coincide with the isotherm in the evaporation process of the non-azeotropic mixed refrigerant. Further, the pressure loss of the refrigerant generated in the second heat source side heat exchanger 12b is preferably as small as possible in order to increase the temperature difference between the refrigerant and the air and improve the heat exchange performance. Therefore, the pressure loss of the first heat source side heat exchanger 12a is configured to be larger than the pressure loss of the second heat source side heat exchanger 12b.
 第1熱源側熱交換器12aの圧力損失を第2熱源側熱交換器12bの圧力損失よりも大きくするための構成として、伝熱管の断面の直径を小さくすることで、冷媒の流路断面積を小さくすることが考えられる。例えば、第1熱源側熱交換器12aの流路断面積が第2熱源側熱交換器12bの流路断面積よりも小さくなるようにする。第1熱源側熱交換器12aの流路断面積を小さくすることで、第1熱源側熱交換器12aの圧力損失が大きくなる。 As a configuration for making the pressure loss of the first heat source side heat exchanger 12a larger than the pressure loss of the second heat source side heat exchanger 12b, by reducing the diameter of the cross section of the heat transfer tube, the flow path cross-sectional area of the refrigerant is reduced. Can be considered to be smaller. For example, the flow path cross-sectional area of the first heat source side heat exchanger 12a is made smaller than the flow path cross-sectional area of the second heat source side heat exchanger 12b. By reducing the flow path cross-sectional area of the first heat source side heat exchanger 12a, the pressure loss of the first heat source side heat exchanger 12a becomes large.
 また、第1熱源側熱交換器12aおよび第2熱源側熱交換器12bの各熱交換器に複数の伝熱管が並列に設けられる場合、第1熱源側熱交換器12aの伝熱管の本数が第2熱源側熱交換器12bの伝熱管の本数よりも少なくする。この構成により、複数の伝熱管の流路断面積の総和について、第2熱源側熱交換器12bよりも第1熱源側熱交換器12aが小さくなる。複数の伝熱管が並列に設けられる場合として、例えば、扁平管がある。 When a plurality of heat transfer tubes are provided in parallel in each of the heat exchangers 12a on the first heat source side and the heat exchanger 12b on the second heat source side, the number of heat transfer tubes in the first heat source side heat exchanger 12a is increased. The number should be less than the number of heat transfer tubes of the second heat source side heat exchanger 12b. With this configuration, the first heat source side heat exchanger 12a is smaller than the second heat source side heat exchanger 12b in terms of the total area of the flow paths of the plurality of heat transfer tubes. As a case where a plurality of heat transfer tubes are provided in parallel, for example, there is a flat tube.
 また、第1熱源側熱交換器12aの圧力損失を第2熱源側熱交換器12bの圧力損失よりも大きくするための構成として、第1熱源側熱交換器12aの伝熱面積を第2熱源側熱交換器12bの伝熱面積よりも大きくすることが考えられる。第1熱源側熱交換器12aの伝熱面積を大きくすることで、第1熱源側熱交換器12aの熱交換量が大きくなる。熱交換量の大きい第1熱源側熱交換器12a側の冷媒流量を増やすことで、第1熱源側熱交換器12aの圧力損失が大きくなる。例えば、第1熱源側熱交換器12aの伝熱管の流路長を第2熱源側熱交換器12bの伝熱管の流路長よりも長くすることで、第1熱源側熱交換器12aの伝熱面積が第2熱源側熱交換器12bの伝熱面積よりも大きくなる。この場合、第1熱源側熱交換器12aの圧力損失は第2熱源側熱交換器12bの圧力損失よりも大きくなる。 Further, as a configuration for making the pressure loss of the first heat source side heat exchanger 12a larger than the pressure loss of the second heat source side heat exchanger 12b, the heat transfer area of the first heat source side heat exchanger 12a is set to the second heat source. It is conceivable to make it larger than the heat transfer area of the side heat exchanger 12b. By increasing the heat transfer area of the first heat source side heat exchanger 12a, the amount of heat exchange of the first heat source side heat exchanger 12a increases. By increasing the flow rate of the refrigerant on the side of the first heat source side heat exchanger 12a having a large amount of heat exchange, the pressure loss of the first heat source side heat exchanger 12a becomes large. For example, by making the flow path length of the heat transfer tube of the first heat source side heat exchanger 12a longer than the flow path length of the heat transfer tube of the second heat source side heat exchanger 12b, the heat transfer of the first heat source side heat exchanger 12a is performed. The heat area becomes larger than the heat transfer area of the second heat source side heat exchanger 12b. In this case, the pressure loss of the first heat source side heat exchanger 12a is larger than the pressure loss of the second heat source side heat exchanger 12b.
 また、第1熱源側熱交換器12aの流路断面積が、暖房運転モードにおいて、冷媒入口側から冷媒出口側に向かって大きくなるように構成してもよい。この構成により、暖房運転モードにおいて、冷媒の蒸発に伴って冷媒の下流側で乾き度が大きくなり、圧力損失が過剰になることを防止し、冷媒の流通方向に沿って一定の圧力損失を保つことができる。また、冷房運転モードにおいて、冷媒の凝縮に伴って冷媒の下流側で流路断面積が小さくなることにより、熱伝達率が低下することを抑制する効果がある。 Further, the flow path cross-sectional area of the first heat source side heat exchanger 12a may be configured to increase from the refrigerant inlet side toward the refrigerant outlet side in the heating operation mode. With this configuration, in the heating operation mode, the dryness increases on the downstream side of the refrigerant as the refrigerant evaporates, preventing the pressure loss from becoming excessive and maintaining a constant pressure loss along the flow direction of the refrigerant. be able to. Further, in the cooling operation mode, the flow path cross-sectional area becomes smaller on the downstream side of the refrigerant as the refrigerant condenses, which has the effect of suppressing a decrease in the heat transfer coefficient.
 また、第1熱源側熱交換器12aおよび第2熱源側熱交換器12bを上下方向に並べて配置してもよく、一方の熱交換器を風上側に配置し、他方の熱交換器を風下側に配置してもよい。図1に示したように、第1熱源側熱交換器12aが風下側に配置され、第2熱源側熱交換器12bが風上側に配置される場合、着霜を抑制する効果の向上が期待できる。具体的に説明すると、第2熱源側熱交換器12bは、温度勾配によって冷媒入口の冷媒温度が低くなるため、第1熱源側熱交換器12aに比べて着霜しやすい。第2熱源側熱交換器12bを空気温度の高い風上側に配置することにより、配管の表面温度が高くなり、着霜耐力が向上し、着霜しにくくなる。 Further, the first heat source side heat exchanger 12a and the second heat source side heat exchanger 12b may be arranged side by side in the vertical direction, one heat exchanger is arranged on the wind side and the other heat exchanger is arranged on the leeward side. May be placed in. As shown in FIG. 1, when the first heat source side heat exchanger 12a is arranged on the leeward side and the second heat source side heat exchanger 12b is arranged on the windward side, the effect of suppressing frost formation is expected to be improved. can. More specifically, the second heat source side heat exchanger 12b is more likely to be frosted than the first heat source side heat exchanger 12a because the refrigerant temperature at the refrigerant inlet is lowered due to the temperature gradient. By arranging the second heat source side heat exchanger 12b on the wind side where the air temperature is high, the surface temperature of the pipe becomes high, the frost resistance is improved, and frost formation becomes difficult.
 また、制御装置30が第1絞り装置16および第2絞り装置15の開度比率Rvを制御することで、第1熱源側熱交換器12aに流れる冷媒の流量を調節し、第1熱源側熱交換器12aの冷媒の圧力損失を制御してもよい。例えば、制御装置30は、着霜の懸念がない低負荷運転または高外気温度での運転の場合の開度比率Rvlと、着霜の懸念が大きい高負荷運転または低外気温度での運転の場合の開度比率Rvhとを異なる値に設定してもよい。 Further, the control device 30 controls the opening ratio Rv of the first drawing device 16 and the second drawing device 15 to adjust the flow rate of the refrigerant flowing through the first heat source side heat exchanger 12a, and to adjust the flow rate of the refrigerant flowing to the first heat source side heat exchanger 12a. The pressure loss of the refrigerant in the exchanger 12a may be controlled. For example, the control device 30 has an opening ratio Rvl in the case of low load operation or operation at a high outside air temperature where there is no concern about frost formation, and in the case of high load operation or operation at a low outside air temperature where there is a large concern about frost formation. The opening ratio Rvh of the above may be set to a different value.
 ここで、図1に示した熱源側熱交換器12に設けられる伝熱管の構成例を説明する。図5は、図1に示した第1熱源側熱交換器に設けられる伝熱管の一例を示す模式図である。図5は、第1熱源側熱交換器12aに設けられる伝熱管が、複数の伝熱管61aが流路と平行に並列に配置された扁平管61の場合を示す。図5は、扁平管61の伝熱管61aの本数が7本の場合である。図5は、扁平管61の断面形状を示し、各伝熱管61aの直径をDとする。複数の伝熱管61aは、板状の放熱フィン71の面に対して垂直方向(Y軸矢印方向)に伸びている。 Here, a configuration example of a heat transfer tube provided in the heat source side heat exchanger 12 shown in FIG. 1 will be described. FIG. 5 is a schematic view showing an example of a heat transfer tube provided in the first heat source side heat exchanger shown in FIG. FIG. 5 shows a case where the heat transfer tube provided in the first heat source side heat exchanger 12a is a flat tube 61 in which a plurality of heat transfer tubes 61a are arranged in parallel with the flow path. FIG. 5 shows a case where the number of heat transfer tubes 61a of the flat tube 61 is seven. FIG. 5 shows the cross-sectional shape of the flat tube 61, and the diameter of each heat transfer tube 61a is D. The plurality of heat transfer tubes 61a extend in the direction perpendicular to the surface of the plate-shaped heat radiation fin 71 (in the direction of the Y-axis arrow).
 図5に示す扁平管61の流路断面積をSA1とすると、流路断面積SA1は、7本の伝熱管61aの断面積の総和で表される。つまり、SA1=7×π×(D/2)の=(7/4)πDの式で表される。図5に示す扁平管61の伝熱面積をHTA1とすると、流路長がLである場合、HTA1=(7本の伝熱管61aの円周の総和)×流路長L=7×(π×D)×L=7πDLの式で表される。 Assuming that the flow path cross-sectional area of the flat tube 61 shown in FIG. 5 is SA1, the flow path cross-sectional area SA1 is represented by the total cross-sectional area of the seven heat transfer tubes 61a. That is, it is expressed by the equation of SA1 = 7 × π × (D / 2) 2 = (7/4) πD 2. Assuming that the heat transfer area of the flat tube 61 shown in FIG. 5 is HTA1, when the flow path length is L, HTA1 = (total circumference of the seven heat transfer tubes 61a) × flow path length L = 7 × (π) It is expressed by the formula of × D) × L = 7πDL.
 図6は、図1に示した第2熱源側熱交換器に設けられる伝熱管の一例を示す模式図である。図6は、第2熱源側熱交換器12bに設けられる伝熱管62が1本の円管の場合を示す。図6は、伝熱管62の断面形状を示し、伝熱管62の直径を3×Dとする。つまり、伝熱管62の直径は図5に示した伝熱管61aの直径の3倍の長さである。伝熱管62は、板状の放熱フィン72の面に対して垂直方向(Y軸矢印方向)に伸びている。 FIG. 6 is a schematic view showing an example of a heat transfer tube provided in the second heat source side heat exchanger shown in FIG. FIG. 6 shows a case where the heat transfer tube 62 provided in the second heat source side heat exchanger 12b is a single circular tube. FIG. 6 shows the cross-sectional shape of the heat transfer tube 62, and the diameter of the heat transfer tube 62 is 3 × D. That is, the diameter of the heat transfer tube 62 is three times as long as the diameter of the heat transfer tube 61a shown in FIG. The heat transfer tube 62 extends in the direction perpendicular to the surface of the plate-shaped heat radiation fin 72 (in the direction of the Y-axis arrow).
 図6に示す伝熱管62の流路断面積をSA2とすると、流路断面積SA2は、SA2=π×(3×D/2)の=(9/4)πDの式で表される。図6に示す伝熱管62の伝熱面積をHTA2とすると、流路長がLである場合、HTA2=(伝熱管62の円周)×流路長L=π×(3×D)×L=3πDLの式で表される。 Assuming that the flow path cross-sectional area of the heat transfer tube 62 shown in FIG. 6 is SA2, the flow path cross-sectional area SA2 is expressed by the equation of SA2 = π × (3 × D / 2) 2 = (9/4) πD 2. NS. Assuming that the heat transfer area of the heat transfer tube 62 shown in FIG. 6 is HTA2, when the flow path length is L, HTA2 = (circumference of the heat transfer tube 62) × flow path length L = π × (3 × D) × L It is expressed by the formula of = 3πDL.
 図7は、図5に示した複数の伝熱管の流路断面積と図6に示した伝熱管の流路断面積とを比較するための模式図である。図7は、図5に示した7本の伝熱管61aの流路断面積と図6に示した伝熱管62の流路断面積とを比較しやすくするために、7本の伝熱管61aを束ね、束ねた7本の伝熱管61aを伝熱管62と重ねて表示している。 FIG. 7 is a schematic diagram for comparing the flow path cross-sectional area of the plurality of heat transfer tubes shown in FIG. 5 with the flow path cross-sectional area of the heat transfer tube shown in FIG. FIG. 7 shows the seven heat transfer tubes 61a in order to make it easier to compare the flow path cross-sectional area of the seven heat transfer tubes 61a shown in FIG. 5 with the flow path cross-sectional area of the heat transfer tubes 62 shown in FIG. The bundled and bundled seven heat transfer tubes 61a are displayed so as to overlap with the heat transfer tubes 62.
 図7を参照すると、7本の伝熱管61aの流路断面積が伝熱管62の流路断面積よりも小さいことがわかる。このことは、SA1=(7/4)πDおよびSA2=(9/4)πDの2つの式を比較しても、SA1<SA2の関係になることは明らかである。図5に示した扁平管61の流路断面積は、図6に示した伝熱管62の流路断面積よりも小さい。 With reference to FIG. 7, it can be seen that the flow path cross-sectional area of the seven heat transfer tubes 61a is smaller than the flow path cross-sectional area of the heat transfer tubes 62. It is clear that the relationship of SA1 <SA2 is obtained even when the two equations of SA1 = (7/4) πD 2 and SA2 = (9/4) πD 2 are compared. The flow path cross-sectional area of the flat tube 61 shown in FIG. 5 is smaller than the flow path cross-sectional area of the heat transfer tube 62 shown in FIG.
 続いて、図5に示した7本の伝熱管61aの伝熱面積と図6に示した伝熱管62の伝熱面積とを比較してみる。7本の伝熱管61aの伝熱面積HTA1は、HTA1=7πDLであり、伝熱管62の伝熱面積HTA2は、HTA2=3πDLである。そのため、HTA1>HTA2の関係になっている。図5に示した扁平管61の伝熱面積は、図6に示した伝熱管62の伝熱面積よりも大きい。 Next, let's compare the heat transfer area of the seven heat transfer tubes 61a shown in FIG. 5 with the heat transfer area of the heat transfer tube 62 shown in FIG. The heat transfer area HTA1 of the seven heat transfer tubes 61a is HTA1 = 7πDL, and the heat transfer area HTA2 of the heat transfer tubes 62 is HTA2 = 3πDL. Therefore, the relationship is HTA1> HTA2. The heat transfer area of the flat tube 61 shown in FIG. 5 is larger than the heat transfer area of the heat transfer tube 62 shown in FIG.
 なお、図5に示す放熱フィン71は、説明の便宜上、実際の放熱フィンから扁平管61の周囲に沿って切り取った一部を示し、図5は放熱フィン71の全体の形状を示すものではない。図6に示す放熱フィン72も、図5に示した放熱フィン71と同様に、放熱フィン72の全体の形状を示すものではない。さらに、図5は、伝熱管61aの本数が7本の場合を示しているが、扁平管61に用いられる伝熱管61aの本数は7本に限らない。 The heat radiation fin 71 shown in FIG. 5 shows a part cut out from the actual heat radiation fin along the periphery of the flat tube 61 for convenience of explanation, and FIG. 5 does not show the entire shape of the heat radiation fin 71. .. Like the heat radiating fins 71 shown in FIG. 5, the heat radiating fins 72 shown in FIG. 6 do not show the overall shape of the heat radiating fins 72. Further, although FIG. 5 shows a case where the number of heat transfer tubes 61a is 7, the number of heat transfer tubes 61a used for the flat tube 61 is not limited to 7.
 本実施の形態1の空気調和装置100は、圧縮機10と、熱源側熱交換器12と、負荷側絞り装置20aおよび20bと、負荷側熱交換器21aおよび21bとが配管で接続され、非共沸混合冷媒が循環する冷媒回路50aおよび50bを有する。熱源側熱交換器12は、並列に接続された第1熱源側熱交換器12aおよび第2熱源側熱交換器12bを有する。空気調和装置100は、暖房運転時に負荷側絞り装置20aおよび20bから流出する冷媒を分流して熱源側熱交換器12に流通させる第1冷媒配管18aおよび第2冷媒配管18bと、第1絞り装置16と、第2絞り装置15と、冷媒間熱交換器14とを有する。第1絞り装置16は、暖房運転時に第1冷媒配管18aを介して第1熱源側熱交換器12aに流入する冷媒を減圧する。第2絞り装置15は、暖房運転時に第2冷媒配管18bを介して第2熱源側熱交換器12bに流入する冷媒を減圧する。冷媒間熱交換器14は、第2冷媒配管18bにおいて第2絞り装置15と第2熱源側熱交換器12bとの間を流通する冷媒と、暖房運転時に第1絞り装置16に流入する冷媒とを熱交換させる。第1熱源側熱交換器12aおよび第2熱源側熱交換器12bは、第1熱源側熱交換器12aを流通する冷媒の圧力損失が第2熱源側熱交換器12bを流通する冷媒の圧力損失よりも大きい構成である。 In the air conditioner 100 of the first embodiment, the compressor 10, the heat source side heat exchanger 12, the load side throttle devices 20a and 20b, and the load side heat exchangers 21a and 21b are connected by piping and are not connected. It has refrigerant circuits 50a and 50b through which the conditioned mixed refrigerant circulates. The heat source side heat exchanger 12 has a first heat source side heat exchanger 12a and a second heat source side heat exchanger 12b connected in parallel. The air conditioner 100 includes a first refrigerant pipe 18a and a second refrigerant pipe 18b that divide the refrigerant flowing out from the load side throttle devices 20a and 20b during the heating operation and distribute the refrigerant to the heat source side heat exchanger 12, and a first throttle device. It has 16, a second drawing device 15, and a refrigerant heat exchanger 14. The first throttle device 16 depressurizes the refrigerant flowing into the first heat source side heat exchanger 12a via the first refrigerant pipe 18a during the heating operation. The second throttle device 15 depressurizes the refrigerant flowing into the second heat source side heat exchanger 12b via the second refrigerant pipe 18b during the heating operation. The inter-refrigerant heat exchanger 14 includes a refrigerant that flows between the second throttle device 15 and the second heat source side heat exchanger 12b in the second refrigerant pipe 18b, and a refrigerant that flows into the first throttle device 16 during the heating operation. To exchange heat. In the first heat source side heat exchanger 12a and the second heat source side heat exchanger 12b, the pressure loss of the refrigerant flowing through the first heat source side heat exchanger 12a is the pressure loss of the refrigerant flowing through the second heat source side heat exchanger 12b. It is a larger configuration.
 本実施の形態1によれば、暖房運転モードにおいて、第1熱源側熱交換器12aに流入する冷媒は高い温度を維持したまま、第1熱源側熱交換器12a内の圧力損失に応じて圧力が低下する。また、第2熱源側熱交換器12bに流入する冷媒は、冷媒間熱交換器14において過熱され温度が上昇する。そのため、熱源側熱交換器12の冷媒入口側の冷媒温度が低くなることが抑えられる。その結果、暖房運転時において、熱源側熱交換器12における着霜および凍結を防止するとともに、蒸発器として作用する熱源側熱交換器12の熱交換性能の低下を抑制できる。 According to the first embodiment, in the heating operation mode, the refrigerant flowing into the first heat source side heat exchanger 12a has a pressure according to the pressure loss in the first heat source side heat exchanger 12a while maintaining a high temperature. Decreases. Further, the refrigerant flowing into the second heat source side heat exchanger 12b is overheated in the inter-refrigerant heat exchanger 14 and the temperature rises. Therefore, it is possible to prevent the refrigerant temperature on the refrigerant inlet side of the heat source side heat exchanger 12 from becoming low. As a result, during the heating operation, frost formation and freezing in the heat source side heat exchanger 12 can be prevented, and deterioration of the heat exchange performance of the heat source side heat exchanger 12 acting as an evaporator can be suppressed.
実施の形態2.
 本実施の形態2の空気調和装置は、冷房運転モードにおいて、図1に示した冷媒間熱交換器14を有効に利用するものである。本実施の形態2においては、実施の形態1で説明した構成に同一の符号を付し、その詳細な説明を省略する。また、本実施の形態2においては、実施の形態1で説明した構成と異なる点を詳しく説明し、同様な構成について説明を省略する。
Embodiment 2.
The air conditioner of the second embodiment effectively utilizes the inter-refrigerant heat exchanger 14 shown in FIG. 1 in the cooling operation mode. In the second embodiment, the same reference numerals are given to the configurations described in the first embodiment, and detailed description thereof will be omitted. Further, in the second embodiment, the points different from the configuration described in the first embodiment will be described in detail, and the description of the same configuration will be omitted.
 本実施の形態2の空気調和装置の構成を説明する。図8は、実施の形態2に係る空気調和装置の冷媒回路の一構成例を示す模式図である。図8に示す空気調和装置101は、図1に示した空気調和装置100と比較すると、室外機の構成が異なる。空気調和装置101の室外機1aは、図1に示した室外機1が有する構成の他に、第3冷媒配管19、第1開閉弁41、第2開閉弁42、第3開閉弁43およびインジェクション配管44を有する。 The configuration of the air conditioner of the second embodiment will be described. FIG. 8 is a schematic view showing a configuration example of a refrigerant circuit of the air conditioner according to the second embodiment. The air conditioner 101 shown in FIG. 8 has a different configuration of the outdoor unit as compared with the air conditioner 100 shown in FIG. In addition to the configuration of the outdoor unit 1 shown in FIG. 1, the outdoor unit 1a of the air conditioner 101 includes a third refrigerant pipe 19, a first on-off valve 41, a second on-off valve 42, a third on-off valve 43, and an injection. It has a pipe 44.
 第1開閉弁41は、第1冷媒配管18aに設けられている。具体的には、第1開閉弁41は、第1冷媒配管18aと、第2冷媒配管18bと、負荷側絞り装置20aおよび20bに接続される配管との合流点MPと、冷媒間熱交換器14との間に設けられている。第3冷媒配管19は、第1冷媒配管18aにおいて第1熱源側熱交換器12aおよび第1絞り装置16の間と、第2冷媒配管18bにおいて第2熱源側熱交換器12bおよび冷媒間熱交換器14の間とを接続する。第2開閉弁42は、第3冷媒配管19に設けられている。インジェクション配管44は、冷媒間熱交換器14と第1開閉弁41との間から分岐して圧縮機10の吸入側に接続されている。第3開閉弁43はインジェクション配管44に設けられている。 The first on-off valve 41 is provided in the first refrigerant pipe 18a. Specifically, the first on-off valve 41 includes a confluence point MP between the first refrigerant pipe 18a, the second refrigerant pipe 18b, and the pipes connected to the load- side throttle devices 20a and 20b, and a heat exchanger between the refrigerants. It is provided between 14 and 14. The third refrigerant pipe 19 is used between the first heat source side heat exchanger 12a and the first throttle device 16 in the first refrigerant pipe 18a, and between the second heat source side heat exchanger 12b and the refrigerant in the second refrigerant pipe 18b. Connect between the vessels 14. The second on-off valve 42 is provided in the third refrigerant pipe 19. The injection pipe 44 branches from between the refrigerant heat exchanger 14 and the first on-off valve 41 and is connected to the suction side of the compressor 10. The third on-off valve 43 is provided in the injection pipe 44.
 第1開閉弁41、第2開閉弁42および第3開閉弁43は、例えば、電磁弁である。第1開閉弁41、第2開閉弁42および第3開閉弁43のそれぞれは、図に示さない信号線を介して制御装置30と接続される。制御装置30は、室内機2aおよび2bの運転モードが暖房運転モードの場合、第1開閉弁41を開状態にし、第2開閉弁42および第3開閉弁43を閉状態にする。制御装置30は、室内機2aおよび2bの運転モードが冷房運転モードの場合、第1開閉弁41を閉状態にし、第2開閉弁42および第3開閉弁43を開状態にする。 The first on-off valve 41, the second on-off valve 42, and the third on-off valve 43 are, for example, solenoid valves. Each of the first on-off valve 41, the second on-off valve 42, and the third on-off valve 43 is connected to the control device 30 via a signal line (not shown). When the operation mode of the indoor units 2a and 2b is the heating operation mode, the control device 30 opens the first on-off valve 41 and closes the second on-off valve 42 and the third on-off valve 43. When the operation mode of the indoor units 2a and 2b is the cooling operation mode, the control device 30 closes the first on-off valve 41 and opens the second on-off valve 42 and the third on-off valve 43.
 本実施の形態2の空気調和装置101の作用を説明する。図8において、暖房運転モードの場合に冷媒回路50aおよび50bを流れる冷媒の流通方向を実線の矢印で示し、冷房運転モードの場合に冷媒回路50aおよび50bを流れる冷媒の流通方向を破線の矢印で示している。 The operation of the air conditioner 101 of the second embodiment will be described. In FIG. 8, the flow direction of the refrigerant flowing through the refrigerant circuits 50a and 50b is indicated by a solid arrow in the heating operation mode, and the flow direction of the refrigerant flowing through the refrigerant circuits 50a and 50b is indicated by a broken arrow in the cooling operation mode. Shown.
 暖房運転モードにおいては、第1開閉弁41が開状態であり、第2開閉弁42および第3開閉弁43は閉状態である。暖房運転モードの冷媒の流れは、実施の形態1で説明した場合と同様になるため、本実施の形態2においては、その詳細な説明を省略する。 In the heating operation mode, the first on-off valve 41 is in the open state, and the second on-off valve 42 and the third on-off valve 43 are in the closed state. Since the flow of the refrigerant in the heating operation mode is the same as that described in the first embodiment, the detailed description thereof will be omitted in the second embodiment.
 本実施の形態2において、冷房運転モードの冷媒の流れを、図8を参照して説明する。冷房運転モードにおいては、第1開閉弁41が閉状態であり、第2開閉弁42および第3開閉弁43は開状態である。 In the second embodiment, the flow of the refrigerant in the cooling operation mode will be described with reference to FIG. In the cooling operation mode, the first on-off valve 41 is in the closed state, and the second on-off valve 42 and the third on-off valve 43 are in the open state.
 圧縮機10から流出した冷媒は流路切替装置11を経由して、第1冷媒配管18aおよび第2冷媒配管18bに分流する。第2冷媒配管18bに流入した冷媒は第2熱源側熱交換器12bにおいて凝縮した後、冷媒間熱交換器14に流入する。第1冷媒配管18aに流入した冷媒は第1熱源側熱交換器12aにおいて凝縮した後、一部の冷媒は第1絞り装置16に流入し、残りの冷媒は高圧の状態のまま、第3冷媒配管19に流入する。第2開閉弁42が開状態なので、第1冷媒配管18aから第3冷媒配管19に流入した冷媒は、第2熱源側熱交換器12bを流通した冷媒と合流し、第2冷媒配管18bを経由して冷媒間熱交換器14に流入して凝縮する。一方、第1熱源側熱交換器12aから第1絞り装置16に流入した冷媒は、第1絞り装置16において減圧された後、冷媒間熱交換器14に流入する。 The refrigerant flowing out of the compressor 10 is diverted to the first refrigerant pipe 18a and the second refrigerant pipe 18b via the flow path switching device 11. The refrigerant that has flowed into the second refrigerant pipe 18b condenses in the second heat source side heat exchanger 12b, and then flows into the inter-refrigerant heat exchanger 14. The refrigerant flowing into the first refrigerant pipe 18a is condensed in the first heat source side heat exchanger 12a, then a part of the refrigerant flows into the first throttle device 16, and the remaining refrigerant remains in a high pressure state and is a third refrigerant. It flows into the pipe 19. Since the second on-off valve 42 is in the open state, the refrigerant flowing from the first refrigerant pipe 18a into the third refrigerant pipe 19 merges with the refrigerant flowing through the second heat source side heat exchanger 12b and passes through the second refrigerant pipe 18b. Then, it flows into the inter-refrigerant heat exchanger 14 and condenses. On the other hand, the refrigerant that has flowed into the first throttle device 16 from the first heat source side heat exchanger 12a is decompressed in the first throttle device 16 and then flows into the inter-refrigerant heat exchanger 14.
 ここでは、図8の破線矢印に示すように、第2開閉弁42において、冷媒が第1冷媒配管18aから第2冷媒配管18bに流れる場合で説明したが、第1絞り装置16を流れる冷媒の流量が大きい場合、第2開閉弁42の冷媒流通方向が逆向きになることもある。 Here, as shown by the broken line arrow in FIG. 8, the case where the refrigerant flows from the first refrigerant pipe 18a to the second refrigerant pipe 18b in the second on-off valve 42 has been described, but the refrigerant flowing through the first throttle device 16 has been described. When the flow rate is large, the refrigerant flow direction of the second on-off valve 42 may be opposite.
 第1絞り装置16を流通した冷媒は、第1開閉弁41が閉状態であり、第3開閉弁43が開状態であるため、インジェクション配管44を経由して圧縮機10の吸入側に流入する。このように、第1絞り装置16を流通する冷媒は、室内機2aおよび2b側に流通する冷媒配管に流入しない。そのため、室外機1から室内機2aおよび2b側に流通する冷媒配管において、圧力損失を低減する効果がある。 Since the first on-off valve 41 is in the closed state and the third on-off valve 43 is in the open state, the refrigerant flowing through the first throttle device 16 flows into the suction side of the compressor 10 via the injection pipe 44. .. In this way, the refrigerant flowing through the first throttle device 16 does not flow into the refrigerant pipes flowing through the indoor units 2a and 2b. Therefore, there is an effect of reducing the pressure loss in the refrigerant pipes flowing from the outdoor unit 1 to the indoor units 2a and 2b.
 また、本実施の形態2の冷房運転モードにおいて、第1絞り装置16の開度を大きくしてもよい。冷媒間熱交換器14の冷媒出口を湿り状態にすることで、圧縮機10に湿り冷媒を流入させ、吐出温度を低減することができる。 Further, in the cooling operation mode of the second embodiment, the opening degree of the first throttle device 16 may be increased. By making the refrigerant outlet of the inter-refrigerant heat exchanger 14 wet, the wet refrigerant can flow into the compressor 10 and the discharge temperature can be reduced.
 本実施の形態2では、冷房運転モードにおいて、中間圧力の冷媒を圧縮機10の吸入側に流入することで、圧縮機10が吐出する冷媒の温度が高くなり過ぎることを抑制できる。また、中間圧力の冷媒が室内機2aおよび2b側に流通する冷媒配管に流入しないため、圧力損失が低減することを抑制できる。そのため、冷房運転モードにおいても冷媒間熱交換器14を有効に利用できる。 In the second embodiment, in the cooling operation mode, the temperature of the refrigerant discharged by the compressor 10 can be prevented from becoming too high by flowing the refrigerant of intermediate pressure into the suction side of the compressor 10. Further, since the intermediate pressure refrigerant does not flow into the refrigerant pipes flowing to the indoor units 2a and 2b, it is possible to suppress the reduction of the pressure loss. Therefore, the refrigerant heat exchanger 14 can be effectively used even in the cooling operation mode.
 1、1a 室外機、2a、2b 室内機、3 液主管、4 ガス主管、5a、5b 液枝管、6a、6b ガス枝管、10 圧縮機、11 流路切替装置、12 熱源側熱交換器、12a 第1熱源側熱交換器、12b 第2熱源側熱交換器、13 アキュムレータ、14 冷媒間熱交換器、15 第2絞り装置、16 第1絞り装置、17 熱源側ファン、18a 第1冷媒配管、18b 第2冷媒配管、19 第3冷媒配管、20a、20b 負荷側絞り装置、21a、21b 負荷側熱交換器、22a、22b 負荷側ファン、23a、23b 室温センサ、30 制御装置、41 第1開閉弁、42 第2開閉弁、43 第3開閉弁、44 インジェクション配管、50a、50b 冷媒回路、61 扁平管、61a 伝熱管、62 伝熱管、71、72 放熱フィン、80 処理回路、81 プロセッサ、82 メモリ、100、101 空気調和装置。 1, 1a outdoor unit, 2a, 2b indoor unit, 3 liquid main pipe, 4 gas main pipe, 5a, 5b liquid branch pipe, 6a, 6b gas branch pipe, 10 compressor, 11 flow path switching device, 12 heat source side heat exchanger , 12a 1st heat source side heat exchanger, 12b 2nd heat source side heat exchanger, 13 accumulator, 14 inter-refrigerant heat exchanger, 15 2nd throttle device, 16 1st throttle device, 17 heat source side fan, 18a 1st refrigerant Piping, 18b 2nd refrigerant piping, 19 3rd refrigerant piping, 20a, 20b load side throttle device, 21a, 21b load side heat exchanger, 22a, 22b load side fan, 23a, 23b room temperature sensor, 30 control device, 41st 1 on-off valve, 42 2nd on-off valve, 43 3rd on-off valve, 44 injection piping, 50a, 50b refrigerant circuit, 61 flat tube, 61a heat transfer tube, 62 heat transfer tube, 71, 72 heat dissipation fins, 80 processing circuit, 81 processor , 82 memory, 100, 101 air exchanger.

Claims (9)

  1.  圧縮機と、並列に接続された第1熱源側熱交換器および第2熱源側熱交換器を含む熱源側熱交換器と、負荷側絞り装置と、負荷側熱交換器とが配管で接続され、非共沸混合冷媒が循環する冷媒回路と、
     暖房運転時に前記負荷側絞り装置から流出する冷媒を分流して前記熱源側熱交換器に流通させる第1冷媒配管および第2冷媒配管と、
     前記第1冷媒配管に設けられ、前記暖房運転時に前記第1冷媒配管を介して前記第1熱源側熱交換器に流入する冷媒を減圧する第1絞り装置と、
     前記第2冷媒配管に設けられ、前記暖房運転時に前記第2冷媒配管を介して前記第2熱源側熱交換器に流入する冷媒を減圧する第2絞り装置と、
     前記第2冷媒配管において前記第2絞り装置と前記第2熱源側熱交換器との間を流通する冷媒と、前記暖房運転時に前記第1絞り装置に流入する冷媒とを熱交換させる冷媒間熱交換器と、を有し、
     前記第1熱源側熱交換器および前記第2熱源側熱交換器は、前記第1熱源側熱交換器を流通する冷媒の圧力損失が前記第2熱源側熱交換器を流通する冷媒の圧力損失よりも大きい構成である、
     空気調和装置。
    The compressor, the heat source side heat exchanger including the first heat source side heat exchanger and the second heat source side heat exchanger connected in parallel, the load side throttle device, and the load side heat exchanger are connected by piping. , A refrigerant circuit in which non-co-boiling mixed refrigerant circulates,
    The first refrigerant pipe and the second refrigerant pipe that divide the refrigerant flowing out from the load side throttle device during the heating operation and distribute it to the heat source side heat exchanger.
    A first throttle device provided in the first refrigerant pipe to reduce the pressure of the refrigerant flowing into the first heat source side heat exchanger via the first refrigerant pipe during the heating operation.
    A second throttle device provided in the second refrigerant pipe to reduce the pressure of the refrigerant flowing into the second heat source side heat exchanger via the second refrigerant pipe during the heating operation.
    Inter-refrigerant heat that exchanges heat between the refrigerant that flows between the second throttle device and the second heat source side heat exchanger in the second refrigerant pipe and the refrigerant that flows into the first throttle device during the heating operation. With a exchanger,
    In the first heat source side heat exchanger and the second heat source side heat exchanger, the pressure loss of the refrigerant flowing through the first heat source side heat exchanger is the pressure loss of the refrigerant flowing through the second heat source side heat exchanger. Larger configuration,
    Air conditioner.
  2.  前記第1熱源側熱交換器の伝熱面積は、前記第2熱源側熱交換器の伝熱面積よりも大きい、
     請求項1に記載の空気調和装置。
    The heat transfer area of the first heat source side heat exchanger is larger than the heat transfer area of the second heat source side heat exchanger.
    The air conditioner according to claim 1.
  3.  前記第1熱源側熱交換器の伝熱管の流路長は、前記第2熱源側熱交換器の伝熱管の流路長よりも長い、
     請求項2に記載の空気調和装置。
    The flow path length of the heat transfer tube of the first heat source side heat exchanger is longer than the flow path length of the heat transfer tube of the second heat source side heat exchanger.
    The air conditioner according to claim 2.
  4.  前記第1熱源側熱交換器の流路断面積は、前記第2熱源側熱交換器の流路断面積よりも小さい、
     請求項1~3のいずれか1項に記載の空気調和装置。
    The flow path cross-sectional area of the first heat source side heat exchanger is smaller than the flow path cross-sectional area of the second heat source side heat exchanger.
    The air conditioner according to any one of claims 1 to 3.
  5.  前記第1熱源側熱交換器は、流路断面積が前記暖房運転時に冷媒が流入する入口側から冷媒が流出する出口側に近づくほど大きくなる構成である、
     請求項1に記載の空気調和装置。
    The first heat source side heat exchanger has a configuration in which the cross-sectional area of the flow path becomes larger as it approaches from the inlet side where the refrigerant flows in during the heating operation to the outlet side where the refrigerant flows out.
    The air conditioner according to claim 1.
  6.  前記第2熱源側熱交換器は、前記第1熱源側熱交換器よりも風上側に配置されている、
     請求項1~5のいずれか1項に記載の空気調和装置。
    The second heat source side heat exchanger is arranged on the wind side of the first heat source side heat exchanger.
    The air conditioner according to any one of claims 1 to 5.
  7.  前記第1絞り装置および前記第2絞り装置の開度比率を制御する制御装置をさらに有し、
     前記制御装置は、
     前記第1熱源側熱交換器を流通する冷媒の圧力損失が前記第2熱源側熱交換器を流通する冷媒の圧力損失よりも大きくなるように前記開度比率を制御する、
     請求項2~6のいずれか1項に記載の空気調和装置。
    It further has a control device for controlling the opening ratio of the first diaphragm device and the second diaphragm device.
    The control device is
    The opening ratio is controlled so that the pressure loss of the refrigerant flowing through the first heat source side heat exchanger is larger than the pressure loss of the refrigerant flowing through the second heat source side heat exchanger.
    The air conditioner according to any one of claims 2 to 6.
  8.  前記暖房時において、前記第1熱源側熱交換器を流通する冷媒の圧力変化が前記非共沸混合冷媒の温度勾配に対応する、
     請求項1~7のいずれか1項に記載の空気調和装置。
    During the heating, the pressure change of the refrigerant flowing through the first heat source side heat exchanger corresponds to the temperature gradient of the non-azeotropic mixed refrigerant.
    The air conditioner according to any one of claims 1 to 7.
  9.  前記暖房運転時に前記圧縮機から吐出される冷媒を前記負荷側熱交換器に流通させ、冷房運転時に前記圧縮機から吐出される冷媒を前記熱源側熱交換器に流通させる流路切替装置と、
     前記第1冷媒配管において、前記第1冷媒配管と前記負荷側絞り装置に接続される配管との合流点と、前記冷媒間熱交換器との間に設けられた第1開閉弁と、
     前記第1冷媒配管において前記第1熱源側熱交換器および前記第1絞り装置の間と、前記第2冷媒配管において前記第2熱源側熱交換器および前記冷媒間熱交換器の間とを接続する第3冷媒配管と、
     前記第3冷媒配管に設けられた第2開閉弁と、
     前記冷媒間熱交換器と前記第1開閉弁との間から分岐して前記圧縮機の吸入側に接続されるインジェクション配管と、
     前記インジェクション配管に設けられた第3開閉弁と、をさらに有し、
     前記冷房運転時において、前記第1開閉弁が閉状態であり、前記第2開閉弁および前記第3開閉弁が開状態である、
     請求項1~8のいずれか1項に記載の空気調和装置。
    A flow path switching device that circulates the refrigerant discharged from the compressor during the heating operation to the load side heat exchanger and circulates the refrigerant discharged from the compressor to the heat source side heat exchanger during the cooling operation.
    In the first refrigerant pipe, a first on-off valve provided between the confluence point of the first refrigerant pipe and the pipe connected to the load-side throttle device and the inter-refrigerant heat exchanger.
    The first refrigerant pipe connects between the first heat source side heat exchanger and the first throttle device, and the second refrigerant pipe connects between the second heat source side heat exchanger and the refrigerant heat exchanger. 3rd refrigerant pipe and
    The second on-off valve provided in the third refrigerant pipe and
    An injection pipe that branches from between the refrigerant heat exchanger and the first on-off valve and is connected to the suction side of the compressor.
    Further having a third on-off valve provided in the injection pipe,
    During the cooling operation, the first on-off valve is in the closed state, and the second on-off valve and the third on-off valve are in the open state.
    The air conditioner according to any one of claims 1 to 8.
PCT/JP2020/007615 2020-02-26 2020-02-26 Air conditioning apparatus WO2021171401A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/007615 WO2021171401A1 (en) 2020-02-26 2020-02-26 Air conditioning apparatus
JP2022502642A JP7258212B2 (en) 2020-02-26 2020-02-26 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007615 WO2021171401A1 (en) 2020-02-26 2020-02-26 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2021171401A1 true WO2021171401A1 (en) 2021-09-02

Family

ID=77490805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007615 WO2021171401A1 (en) 2020-02-26 2020-02-26 Air conditioning apparatus

Country Status (2)

Country Link
JP (1) JP7258212B2 (en)
WO (1) WO2021171401A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123060A (en) * 1982-01-18 1983-07-22 株式会社日立製作所 Freezing refrigerator
JPS60140048A (en) * 1983-12-27 1985-07-24 ダイキン工業株式会社 Refrigerator using non-eutectic mixed refrigerant
JPH06265228A (en) * 1993-03-15 1994-09-20 Matsushita Electric Ind Co Ltd Refrigerating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6265228B2 (en) 2016-06-15 2018-01-24 富士通株式会社 Control station, terminal and base station in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123060A (en) * 1982-01-18 1983-07-22 株式会社日立製作所 Freezing refrigerator
JPS60140048A (en) * 1983-12-27 1985-07-24 ダイキン工業株式会社 Refrigerator using non-eutectic mixed refrigerant
JPH06265228A (en) * 1993-03-15 1994-09-20 Matsushita Electric Ind Co Ltd Refrigerating device

Also Published As

Publication number Publication date
JPWO2021171401A1 (en) 2021-09-02
JP7258212B2 (en) 2023-04-14

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
WO2018002983A1 (en) Refrigeration cycle device
WO2012077275A1 (en) Air-conditioner
JP6647406B2 (en) Refrigeration cycle device
CN112437856B (en) Air conditioner
KR101737365B1 (en) Air conditioner
JP4206870B2 (en) Refrigeration cycle equipment
CN107238161B (en) Multi-split system and mode switching control method thereof
JP2020073854A (en) Refrigeration cycle device
JP7099046B2 (en) Refrigeration equipment for transportation
WO2021171401A1 (en) Air conditioning apparatus
JP7224503B2 (en) refrigeration cycle equipment
US11879677B2 (en) Air-conditioning apparatus
KR101692243B1 (en) Heat pump with cascade refrigerating cycle
JP2007163085A (en) Air-conditioning system
CN107356009B (en) Multi-split air conditioning system and low-temperature control method thereof
WO2021014520A1 (en) Air-conditioning device
JP7134266B2 (en) refrigeration equipment
WO2022059136A1 (en) Refrigeration cycle device
WO2024023991A1 (en) Refrigeration cycle device
JPH04236062A (en) Air conditioner
JP6593483B2 (en) Refrigeration equipment
KR20110085393A (en) Air conditioner
JP3228135B2 (en) Refrigeration equipment
WO2020161838A1 (en) Freezing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920846

Country of ref document: EP

Kind code of ref document: A1