WO2021170896A1 - Herramienta, sistema y procedimiento para la orientación de muestras de núcleo en la perforación de pozos - Google Patents

Herramienta, sistema y procedimiento para la orientación de muestras de núcleo en la perforación de pozos Download PDF

Info

Publication number
WO2021170896A1
WO2021170896A1 PCT/ES2021/070147 ES2021070147W WO2021170896A1 WO 2021170896 A1 WO2021170896 A1 WO 2021170896A1 ES 2021070147 W ES2021070147 W ES 2021070147W WO 2021170896 A1 WO2021170896 A1 WO 2021170896A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
orientation
processing unit
core
rotation
Prior art date
Application number
PCT/ES2021/070147
Other languages
English (en)
French (fr)
Inventor
Orlando Rene Ramírez Ozuna
Original Assignee
Stockholm Precision Tools, S.L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stockholm Precision Tools, S.L filed Critical Stockholm Precision Tools, S.L
Priority to US17/802,769 priority Critical patent/US11939830B2/en
Priority to CA3167925A priority patent/CA3167925A1/en
Priority to AU2021227284A priority patent/AU2021227284A1/en
Publication of WO2021170896A1 publication Critical patent/WO2021170896A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/10Correction of deflected boreholes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
    • E21B25/16Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors for obtaining oriented cores
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/024Determining slope or direction of devices in the borehole
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5621Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks the devices involving a micromechanical structure

Definitions

  • the present invention is related to a measurement tool for mining prospecting that combines the operation of orientation of the core in diamond drilling simultaneously with that of continuous measurement of the trajectory of the well when extracting the core (CoreRetriever).
  • the purpose of diamond drilling is to extract a sample or “core” from the ground being drilled to carry out an analysis of the geological formations present in the subsoil.
  • trajectory measurement tools for prospecting wells have also evolved.
  • the technology included in the trajectory measurement tools allows obtaining the positioning data of the well at all times.
  • This technology consists of an accessory that is attached to the core hole that collects the core sample from the ground and that once the drilling is finished takes a period of time to record the angular orientation data of the core with respect to the ground.
  • This tool through accelerometers, is capable of making a spatial positioning of the core, determining, once the core hole has been rescued on the surface, what position the core had when it was extracted from the ground and thus facilitating subsequent modeling for geological analysis.
  • Core or core orientation tools are only capable of extracting core orientation angular data at the bottom of the hole and, therefore, are not capable of defining the trajectory, that is, the azimuth that each point of the wellbore presents with with respect to a known and fixed reference (True North).
  • the gyroscopic technology mentioned in the document is for reference, this means that the gyroscopes installed in the device are not able to find the geographic north by themselves, but must be given a value to refer to. This type of technology clearly induces human error during operation.
  • the referred document also describes how the tool could be used to determine the trajectory of the entire well by means of each one of the unique shots that it would take, thus calculating the azimuth and inclination values each time the orientation operation is carried out.
  • each and every one of these unique shots are taken with reference to the starting point on the collar (orientation of the machine on the surface), and to know this value, another tool with absolute gyroscopic technology must be available, capable of finding the right one. geographic north, or being exposed to error adhering to the use of less precise technology.
  • Core or core orientation technology has not undergone further modifications or evolutions, while trajectory measurement tool technology has.
  • the equipment with the magnetic operating principle and single shot is lowered to record the angular deviation data in the horizontal plane (azimuth) and in the vertical plane (inclination) of that point.
  • the equipment must be recovered on the surface, the drillstring must be reintroduced to the bottom of the hole, another internal core bit tube (CoreBarrel) must be inserted and another section of drilling continued.
  • multi-shot the technology known as multi-shot (“multishot” in English) was born. The main contribution of this method was the possibility of taking several data points during the same incursion of the tool into the well.
  • the tool could be lowered by stopping every certain interval (for example, every 20 meters) to record the deviation data at those points and finally build the trajectory model of said well. water well.
  • every certain interval for example, every 20 meters
  • Core retriever As a solution to the loss of time that involves the need to prepare the well to measure with the magnetic tool (lift the crown to avoid magnetic interference), the technology known as core retriever (“Core retriever” in English) was developed. This type of tools with gyroscopic operating principle are equipped at both ends with the commercial Overshot and spearhead parts (“Spearhead” in English). By having this design, it is possible to reduce inoperative times for preparing the well since an operation is saved. In the same operation in which the equipment is lowered to the bottom of the hole and the point is taken with the angular deviation data (azimuth and inclination), it is possible to recover the core bit with the core sample inside.
  • the present invention provides a tool for the orientation of core samples extracted in the drilling of wells, the tool that is of an absolute gyroscopic nature, (True North Seeking Gyro in English), which It allows carrying out the operations of measuring the trajectory or spatial positioning of the well (azimuth and inclination) and orientation of the core or core sample in a single operation.
  • the tool of the invention in one embodiment is configured to be coupled, for example, in a threaded way, to the core bit (CoreBarrel in English) at one end and at an end opposite to the previous one it is configured to be coupled to the head assembly ( Head Assembly), so that, once the drilling is complete and the core sample has been detached and deposited inside the core bit, an bypass assembly can be launched from the surface to proceed with the removal of the core sample to the surface.
  • the tool proposed in the invention will be recording data both on the relative orientation of the core with respect to the ground and on the angular deviation (azimuth and inclination).
  • an order is given to the tool through a portable device, such as a smartphone, tablet or similar, to start the measurements and / or detections (the data will be correlated using “time stamping”) and the bypass tool will be lowered to rescue the core bit with the core sample inside.
  • a portable device such as a smartphone, tablet or similar
  • the main advantage achieved with the technology developed in the proposed tool is to improve the efficiency in the operation of determining the trajectory of the well and the orientation of the core since it is possible to reduce operations with which time is saved by completely eliminating the exclusive time of measurement and integrating the measurement operation together with the drilling operation, which directly affects a reduction in the costs associated with the operation.
  • Another advantage of the tool of the invention is its multifunctionality, managing to integrate in a single tool the tasks that are currently done with different tools and separate technologies, for example, core orientation plus single-shot measurement of azimuth and inclination (configuration standard), core orientation only, core orientation plus continuous measurement, or continuous measurement only.
  • Gyro Tool Face data can be used to find the orientation of the core in these wells.
  • Figure 1 shows an exploded view of a drillstring in which the tool for the orientation of core samples extracted in the drilling of wells is attached.
  • Figure 2 shows a perspective view of the tip of the drillstring where the tool for the orientation of core samples extracted in the drilling of wells of the invention is attached.
  • the invention provides a tool 1 for the orientation of core samples in well drilling, intended to be coupled to a core bit 7 and / or to the cable of a head assembly 2 of a drillstring , where the tool 1 at least comprises electronic processing means provided with at least one communication means connected to a processing unit, and a set of triaxial accelerometers orthogonally coupled to each other in data communication with the processing unit, configured to recording data of the instantaneous movement and / or instantaneous vibration of the tool 1 and transmitting it to the processing unit.
  • the tool 1 also comprises a set of micromechanical gyroscopes arranged orthogonally to each other, in data communication with the processing unit, where the arrangement of said set of micromechanical gyroscopes allows them to rotate in relation to an axis of rotation of the tool 1 to record the instantaneous orientation of said tool and / or core sample and transmit them to the processing unit.
  • said processing unit is configured to calculate the orientation of the core sample with respect to north. absolutely true and the continuous trajectory of the drilled well.
  • the design of the tool 1 for the orientation of core samples will be such that it can be coupled to the head assembly assembly 7 and / or the cable head assembly 2 (Cable Head Assembly) through adapters 5 and 6 to allow its operation. during the well drilling operation.
  • the tool 1 is designed to position the overshot adapter fittings 4 and the spearhead to retrieve the core sample after drilling.
  • the invention is a tool for determining the orientation of the samples obtained in a borehole with respect to the subsoil environment at the time it is removed from it, although, alternatively, it could be used when the drilling head is making the water well.
  • the invention consists of two tools for measurement (used alternately) and a portable device or hand held device arranged on the surface in data connection with the tool 1.
  • the tool 1 consists of a tubular structure that protects the electronic processing means provided inside it during operation.
  • the electronics or electronic processing means of the tool 1 comprise at least one control module in charge of minimizing the noise that can be generated in the signals of the sensors (triaxial accelerometers and micromechanical gyroscopes) due to the nature of the operation, a module acquisition system made up of at least one set of orthogonally distributed MEMS micromechanical gyroscopes and a set of triaxial accelerometers with the same distribution, a power regulation module that will be in charge of feeding the rest of the circuits, a communication module or means of communication. communication configured to transmit and / or receive data from the portable surface device and a processing unit configured to process all the data from the detection signals coming from the sensors and calculate the orientation of the core sample with with respect to true north in an absolute way and the continuous trajectory of the drilled well.
  • Tool 1 is configured to determine the orientation (angular position with respect to the gravitational vector, or in with respect to true north, for example, in totally vertical wells or very close to vertical) of the sample or core extracted from the subsoil, and also the trajectory or angular position of each of the points of the trajectory of the well with respect to True North (azimuth).
  • MEMS micromechanical gyroscopes used together with the electronics that accompanies them allows to obtain the positioning data with respect to True North in an absolute way, that is, no reference has to be entered in the wellhead or any other value known as if necessary in the rest of the existing technology.
  • the processing unit is configured to, based on the rotation of the micromechanical gyroscopes at discrete angles, self-compensate the detection signals of the micromechanical gyros from the filtration and iterative purification of said detection signals.
  • This self-compensation carried out by the processing unit is to maximize the quality and precision of the tool 1 by self-compensation of the signals based on the rotation of the micromechanical gyros around the axis of the tool itself and through discrete angles. By repeating these self-compensating cycles, the signals are further filtered and refined, resulting in a cleaner, more precise and accurate output of the Absolute or True North.
  • MEMS gyros have the best performance with respect to stability and resistance to mechanical loads.
  • micromechanical gyro technology is the best choice.
  • No other type of gyro device withstands prolonged mechanical loads. This makes its applications in the oil, gas and mining sectors impossible.
  • MEMS gyroscopes currently known have poor characteristics in terms of time and temperature drift of the zero signal. This circumstance is a problem of its direct use and requires, therefore, the development of new methods or procedures, in parallel with the implementation of hardware to improve the accuracy of gyroscopic instruments using MEMS micromechanical gyros, which will be described below.
  • the self-compensation is carried out by a self-compensation device of the tool 1 comprised of a structure, in the form of a rotating platform, on which the interperpendicular micromechanical gyroscopes, the triaxial accelerometers and a direct current motor are installed.
  • the rotor of the DC motor is fixed in the outer tube that represents the housing for the device and the tool itself.
  • the casing can rotate and stop in two different fixed positions comprising an angle of 180 degrees between said positions, which is obtained by two limits physically defined in the mechanical structure.
  • the motor current is measured and voltage is cut when this current increases more than a previously defined value.
  • the physically intrinsic property of the motor is used to increase the current when the load on the motor increases. What is described allows to carry out auto compensation with minimum complexity and quantity of elements composed of the entire system.
  • both gyroscopes and accelerometers are mounted on the turntable which preferably has one degree of freedom.
  • this design allows parallel operation of the instrument in two modes: directional gyroscope and true north gyro.
  • the rig at certain points of time can be rotated by the motor, in particular, as said, a direct current motor or, alternatively, by suitable means of rotation, for example, taking advantage of the rotation of the drillstring or of the tool to transmit said rotation to the platform.
  • the axis of rotation of the platform coincides with the longitudinal axis of the drilling instrument and is orthogonal to two of the three measurement axes of the MEMS gyros.
  • the triaxial accelerometers are placed in the same mobile structure or mobile housing as the micromechanical gyroscopes allows to control the angle of rotation and check that the device works correctly.
  • Some ways to improve accuracy in gyro mode are to organize the platform during work by making 180 degree cyclical turns around the axis. longitudinal drift of the drilling instrument (Z axis) and / or of the tool because the monotonous temporal drift of the gyros in the "steering gyroscope" inclinometer operating mode is converted into a variable drift of the navigational angles: angle antiaircraft and azimuth. Ultimately, the relationship of angular velocities involving slow-changing temporal deviations and sailing angles can be described as follows:
  • Incl Az - navigational angles, azimuth and zenith; ax (t), ay (t) - projections of the vector of the gravitational field of the Earth on the axes of instruments perpendicular to the axes of rotation; wx (t), wy (t) - projection of the angular speed of rotation of the inclinometer on the axes of the instrument; tc, tg - are components of the time drift of gyroscopes; fel, k2 - are proportionality coefficients that depend on the current value of the anti-aircraft angle.
  • ax (t) k * sin (TF + y (t))
  • w H3M W + t ( ⁇ ) + t (T)
  • w H3M - the measured gyroscope signal consisting of the measured angular velocity w, the time drift t ( ⁇ ) and the temperature drift t (T) .
  • the 3 minute time drift can be considered constant.
  • the same temperature component can change significantly during the measurement process. Due to the presence of hysteresis in the MEMS gyroscope zero drift temperature characteristics, traditional methods of approximating temperature dependencies with curves of different orders, and then taking them into account, it is not possible to get rid of the effects of change of temperature for gyroscopic inclinometers on MEMS gyros with the correct degree of precision.
  • the deviation from zero develops monotonic, it can almost always be approximated by linear dependence.
  • the idea of repeating the measurement in position 0 allows estimating the deviation in time and bringing the measurements in position 0 to the measurement in position 180.
  • processing measurements with formula (2) eliminates temporal drift, and with a monotonous change in temperature during measurement, temperature drift is also compensated, improving measurement accuracy in mode. gyro without the need for expensive calibration procedures and complex mathematical algorithms to correct for temperature dependencies with hysteresis.
  • the measurement is modeled at constant temperature, completely eliminating the errors related to temperature change during the north search and other errors that develop linearly in time during the north search.
  • the fact that the triaxial accelerometers are housed in the same structure with the micromechanical gyroscopes allows to measure in the continuous mode moving the tool in the well and to carry out auto compensation of the deviations without the need to stop the movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

La presente invención se refiere a una herramienta (1) para la orientación de muestras de núcleo extraídas durante la perforación de pozos, que comprende al menos unos medios de procesamiento electrónico, provistos de al menos una unidad de procesamiento y unos acelerómetros triaxiales acoplados ortogonalmente comunicados con la unidad de procesamiento, configurados para registrar datos del movimiento y/o vibración instantánea de la herramienta, que además comprende unos giróscopos micromecánicos acoplados ortogonalmente, configurados para rotar con relación a un eje de rotación de la herramienta y transmitir los datos de orientación a la unidad de procesamiento, donde la unidad de procesamiento está configurada, a partir de los datos del set de acelerómetros triaxiales y del set de giróscopos micromecánicos, para calcular la orientación de la muestra de núcleo con respecto al norte verdadero y la trayectoria del pozo perforado.

Description

HERRAMIENTA, SISTEMA Y PROCEDIMIENTO PARA LA ORIENTACIÓN DE MUESTRAS DE NÚCLEO EN LA PERFORACIÓN DE POZOS
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se encuentra relacionada con una herramienta de medición para la prospección minera que aúna la operación de orientación del testigo en perforación diamantina simultáneamente con la de medición continua de la trayectoria del pozo al extraer el núcleo (CoreRetriever).
ESTADO DE LA TÉCNICA
El propósito de la perforación diamantina es el de extraer una muestra o “núcleo” del terreno que se está perforando para llevar a cabo un análisis de las formaciones geológicas presentes en el subsuelo.
Históricamente este análisis ha sido llevado a cabo por los geólogos mediante inspección visual para evaluar la rentabilidad de iniciar o no una explotación minera en dicho emplazamiento.
Con el paso de los años y el avance de la tecnología se ha ido evolucionando en el ejercicio de análisis de las muestras o núcleos, introduciendo aparatos que facilitan este arduo trabajo.
En líneas generales y tras la evolución de la informática y los softwares de modelado y simulación esta industria ha demostrado una clara tendencia a extrapolar los datos crudos para construir un modelo en el cual observar los diferentes estratos y formaciones geológicas.
En esta línea de necesidad también han ido evolucionando las herramientas de medición de trayectoria para los pozos de prospección.
La tecnología que comprenden las herramientas de medición de trayectoria permite obtener los datos de posicionamiento del pozo en cada momento.
Históricamente, estos datos de posicionamiento eran obtenidos cada cierta distancia de perforación debido a la pérdida de tiempo que suponía el proceso. Estas herramientas, cuyo l principio de funcionamiento podía ser mecánico, magnético o giroscópico, solamente eran capaces de tomar los datos de un punto sin almacenar más información. En un proceso convencional por aquel entonces, por tanto, se realizaba la perforación de una varilla (3 metros) y una vez se terminaba, se bajaba el equipo a una velocidad de 15-20 m/min, cuando llegaba al fondo de pozo se realizaba la medición del punto y se recuperaba el equipo en superficie. Esta operación, denominada disparo único (“single shot” en inglés) ralentizaba considerablemente la operación de perforación ya que, una vez terminada la perforación de un tramo, se debía dedicar un tiempo exclusivo al proceso de medición de la trayectoria con gran pérdida de tiempo durante la bajada y subida del equipo hasta el punto donde tomaban los datos. Una vez medido dicho punto y rescatada la herramienta se podía proceder con la operación de recuperación del núcleo lanzando una herramienta de sobrepaso (“overshot” en inglés) para subir a la superficie el barreno de núcleo (“Core barrel” en inglés) cargado de muestra del núcleo del terreno.
Más adelante surgieron las herramientas orientadoras de testigo (“Core Orientators tools” en inglés). Esta tecnología consiste en un accesorio que se acopla al barreno de núcleo que recoge la muestra de núcleo del terreno y que una vez terminada la perforación toma un lapso de tiempo para registrar los datos de orientación angular del núcleo con respecto al terreno. Esta herramienta, por medio de acelerómetros es capaz de hacer un posicionamiento espacial del núcleo, determinando, una vez que se ha rescatado el barreno de núcleo en la superficie, qué posición tenía el núcleo cuando fue extraído del terreno y facilitando así el modelado posterior para el análisis geológico.
Las herramientas de orientación de testigos o núcleo solamente son capaces de extraer los datos angulares de orientación del testigo en el fondo de pozo y, por tanto, no son capaces de definir la trayectoria, esto es, el acimut que presenta cada punto del pozo con respecto a una referencia conocida y fija (Norte Verdadero).
Según menciona la publicación de solicitud internacional WO 2008/113127, por el momento esto no es posible definir la trayectoria del pozo con respecto al norte verdadero debido a que la tecnología giroscópica no ha evolucionado lo suficiente como para mantener fiabilidad durante la etapa de perforación con las vibraciones que ello conlleva.
Además, la tecnología giroscópica que mencionan en el documento es de referencia, esto quiere decir que los giróscopos instalados en el dispositivo no son capaces de encontrar el norte geográfico por sí solos, sino que se les debe dar un valor al cual referenciarse. Este tipo de tecnología induce claramente a la aparición del error humano durante la operación.
El documento referido también describe como la herramienta podría ser utilizada para determinar la trayectoria de todo el pozo por medio de cada uno de los disparos únicos que iría efectuando, calculando de esta manera los valores de acimut e inclinación cada vez que hace la operación de orientación. Cabe destacar que todos y cada uno de estos disparos únicos son tomados con referencia al punto inicial en el collar (orientación de la máquina en superficie), y para conocer este valor se ha de tener otra herramienta con tecnología giroscópica absoluta, capaz de encontrar el norte geográfico, o estar expuesta al error adherido a la utilización de una tecnología menos precisa.
En líneas posteriores, en el mismo documento se vuelve a hacer referencia a la imposibilidad actual de utilizar esta tecnología giroscópica para dicha función:
La tecnología de orientación de testigos o núcleos no ha sufrido más modificaciones o evoluciones, mientras que si lo ha hecho la tecnología de herramientas de medición de trayectoria.
La operatividad convencional con los equipos de medición para pozos se puede resumir como sigue. Durante el proceso de perforación, una herramienta orientación de testigos permanece instalada en la sarta de perforación, concretamente entre el conjunto de cabezal y la barrena de núcleos. Una vez se ha finalizado el tramo de perforación, se toma el punto en fondo de pozo que contendrá la información acerca de la orientación del núcleo en el subsuelo. Tras recuperar el tubo interno junto con el núcleo y la herramienta de orientación de núcleo en superficie, resultaba necesario izar el entubado del pozo unos cuantos metros para evitar la perturbación magnética, esto conlleva una operación adicional, se ha de sacar al menos una tubería del encamisado del pozo, quedando la corona en el fondo del pozo suspendida la cantidad de metros que se haya alzado el conjunto. Una vez se ha suspendido la corona, se procede a descender el equipo con principio de funcionamiento magnético y disparo único para registrar los datos de desviación angular en el plano horizontal (azimuth) y en el vertical (inclinación) de ese punto. Una vez completado el disparo único, se ha de recuperar el equipo en superficie, volver a introducir la sarta de perforación hasta el fondo de pozo, introducir otro tubo interno barrena de núcleo (CoreBarrel) y continuar otro tramo más de perforación. Cada vez que se complete un tramo sería necesario repetir ambas operaciones de medición. Tras el disparo único nació la tecnología conocida como multidisparo (“multishot” en inglés). El principal aporte de este método fue la posibilidad de tomar varios puntos de datos durante una misma incursión de la herramienta dentro del pozo. De este modo, si el pozo se encontraba perforado hasta los 500 metros se podía bajar la herramienta haciendo paradas cada cierto intervalo (por ejemplo, cada 20 metros) para registrar los datos de desviación en esos puntos y construir finalmente el modelo de trayectoria de dicho pozo. Con la aparición de esta tecnología se consiguió reducir considerablemente los tiempos inoperativos en los cuales la herramienta estaba siendo desplazada al punto de medición, estos intervalos de tiempo la operación de perforación se debía detener.
Como solución a la pérdida de tiempo que supone la necesidad de preparar el pozo para medir con la herramienta magnética (levantar la corona para evitar la interferencia magnética), se desarrolló la tecnología conocida como recuperador de núcleo (“Core Retriever” en inglés). Este tipo de herramientas con principio de funcionamiento giroscópico están dotadas en ambos extremos con las partes comerciales Overshot y cabeza de lanza (“Spearhead” en inglés). Al tener este diseño se consigue reducir tiempos inoperativos de preparado del pozo ya que se ahorra una operación. En la misma operación en la que se desciende el equipo hasta el fondo del pozo y se toma el punto con los datos de desviación angular (acimut e inclinación) es posible recuperar la barrena de núcleo con la muestra de núcleo en su interior.
En la actualidad, la tecnología giroscópica de medición más avanzada es la que permite realizar la medición continua. La base en la que se fundamenta el desarrollo de esta tecnología es la adaptación de las señales recibidas por los giróscopos mediante el desarrollo de filtros que se encargan de eliminar el ruido presente en la señal con el objetivo de minimizar la desviación que pudiera existir por la naturaleza de los propios sensores. Con la invención de esta tecnología se consigue por tanto realizar tomas de datos continuas a lo largo de toda la trayectoria del pozo y con ello obtener los datos de posicionamiento en cada punto del pozo sin interpolación. DESCRIPCIÓN
Para superar los inconvenientes hallados la presente invención proporciona una herramienta para la orientación de muestras de núcleo extraídas en la perforación de pozos, la herramienta que es de naturaleza giroscópica absoluta, (Giroscopio buscador de norte verdadero “North Seeking Gyro” en inglés), que permite realizar las operaciones de medir la trayectoria o posicionamiento espacial del pozo (acimut e inclinación) y orientación de la muestra de núcleo o testigo en una sola operación.
Al conseguir desarrollar una herramienta que sea capaz de ejecutar las operaciones que hasta ahora se hacían separadamente se está consiguiendo minimizar los tiempos exclusivos de medición. De hecho, con la herramienta propuesta no existe como tal un tiempo de medición, sino que se integra completamente en los tiempos correspondientes a las operaciones propiamente de la perforación. La herramienta de la invención en una realización está configurada para ir acoplada, por ejemplo, de forma roscada, a la barrena de núcleos (CoreBarrel en inglés) por un extremo y en un extremo contrario al anterior esta configurada para acoplarse al conjunto de cabezal (Head Assembly), de manera que, una vez terminada la perforación y se ha desprendido la muestra de núcleo y se ha depositado en el interior de la barrena de núcleos, se puede lanzar desde la superficie un conjunto de sobrepaso para proceder con la retirada de la muestra de núcleo hasta la superficie. Durante el tiempo en el cual el conjunto de sobrepaso llega hasta el fondo de pozo, la herramienta propuesta en la invención estará registrando datos tanto de la orientación relativa del núcleo respecto del terreno como de la desviación angular (acimut e inclinación).
Hasta el momento, como se ha mencionado en el apartado anterior, solamente existen herramientas que son capaces de realizar dichas operaciones de forma separada (Orientador de núcleos + Herramienta Magnética, u Orientador de núcleos + Recuperador de núcleos), es decir, la operatividad en campo requerirá de dos procesos diferenciados y separados, cada uno con sus respectivos tiempos de preparación y ejecución para obtener ambos conjuntos de datos: la trayectoria de pozo y la orientación de la muestra de núcleo.
Mediante la herramienta para la orientación de muestras de núcleo de la invención es posible determinar el posicionamiento/trayectoria del pozo y la orientación del núcleo tan solo en una operación y, por tanto, obtener toda la información necesaria para generar un reporte acerca de dicho posicionamiento del pozo y de la orientación del núcleo. Además, si bien se ha observado que la tecnología actual obliga al operador a parar la perforación para llevar a cabo el proceso de medición, en el caso de la herramienta de la presente invención esto no resultará necesario ya que la misma está preparada para ir directamente acoplada en la sarta de perforación, preferiblemente entre la barrena de núcleo y el conjunto de cabezal, siendo capaz de soportar los esfuerzos generados durante la perforación.
Una vez finalizada la perforación del tramo se da una orden a la herramienta a través de un dispositivo portable, tal como un smartphone, Tablet o similar, para comenzar las mediciones y/o detecciones (se correlacionarán los datos usando “time stamping”) y se bajará la herramienta de sobrepaso para rescatar la barrena de núcleo con la muestra de núcleo en su interior.
La principal ventaja conseguida con la tecnología desarrollada en la herramienta propuesta es mejorar la eficiencia en la operación de determinación de la trayectoria del pozo y la orientación del núcleo ya que se consigue reducir operaciones con lo que se ahorra tiempo al suprimir por completo el tiempo exclusivo de medición e integrando la operación de medición junto con la de perforación, lo cual incide directamente en una disminución de los costos asociados a la operación.
Otra ventaja de la herramienta de la invención la multifuncionalidad de la misma, logrando integrar en una sola herramienta las labores que actualmente se hacen con diferentes herramientas y tecnologías por separado, por ejemplo, orientación de núcleo más medición disparo único de acimut e inclinación (configuración estándar), solamente orientación de núcleo, orientación de núcleo más medición continua o solamente medición continua.
Una ventaja adicional que aporta esta herramienta con respecto a la tecnología existente es la de poder hallar la orientación del núcleo en pozos verticales o cercanos a la vertical. Al incorporar tecnología giroscópica a través de giroscopios micromecánicos se puede valer de datos de Gyro Tool Face para encontrar la orientación del núcleo en dichos pozos. BREVE DESCRIPCION DE LAS FIGURAS
Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de la siguiente descripción detallada de unos ejemplos de realización con referencia a los dibujos adjuntos, que deben considerarse a título ilustrativo y no limitativo, en los que:
La figura 1 muestra una vista en explosivo de una sarta de perforación en la cual se halla acoplada la la herramienta para la orientación de muestras de núcleo extraídas en la perforación de pozos.
La figura 2 muestra una vista en perspectiva de la punta de la sarta de perforación en donde se acopla la herramienta para la orientación de muestras de núcleo extraídas en la perforación de pozos de la invención
DESCRIPCIÓN DETALLADA DE UN EJEMPLO DE REALIZACIÓN
En la siguiente descripción detallada se exponen numerosos detalles específicos en forma de ejemplos para proporcionar un entendimiento minucioso de las enseñanzas relevantes. Sin embargo, resultará evidente para los expertos en la materia que las presentes enseñanzas pueden llevarse a la práctica sin tales detalles.
En referencia a los dibujos, la invención proporciona una herramienta 1 para la orientación de muestras de núcleo en la perforación de pozos, prevista para acoplarse a una barrena de núcleos 7 y/o al cable de un ensamblaje de cabezal 2 de una sarta de perforación, donde la herramienta 1 al menos comprende unos medios de procesamiento electrónico provistos de al menos unos medios de comunicación conectados a una unidad de procesamiento, y un set de acelerómetros triaxiales acoplados ortogonalmente entre sí en comunicación de datos con la unidad de procesamiento, configurados para registrar datos del movimiento instantáneo y/o vibración instantánea de la herramienta 1 y trasmitirlos a la unidad de procesamiento.
La herramienta 1 comprende además un set de giroscopios micromecánicos dispuestos ortogonalmente entre sí, en comunicación de datos con la unidad de procesamiento, donde la disposición de dicho set de giroscopios micromecánicos les permite rotar con relación a un eje de rotación de la herramienta 1 para registrar la orientación instantánea de dicha herramienta y/o de la muestra de núcleo y transmitirlos a la unidad de procesamiento. Una vez los datos del set de acelerómetros triaxiales y del set de giroscopios micromecánicos han sido recepcionados por la unidad de procesamiento a través de los medios de comunicación, dicha unidad de procesamiento está configurada para calcular la orientación de la muestra de núcleo con respecto al norte verdadero de manera absoluta y la trayectoria en continuo del pozo perforado.
El diseño de la herramienta 1 para la orientación de muestras de núcleo será tal que permita acoplarse al conjunto ensamblaje de cabeza 7 y/o al ensamblaje de cabeza 2 de cable (Cable Head Assembly) a través de adaptadores 5 y 6 para permitir su funcionamiento durante la operación de perforación del pozo.
Alternativamente, la herramienta 1 está diseñada para colocar los accesorios de adaptador de sobrepaso (overshot) 4 y la lanza de cabeza (spearhead) para recuperar la muestra de núcleo tras la perforación.
La invención se trata de una herramienta para la determinación de la orientación de las muestras obtenidas en un sondeo con respecto al entorno del subsuelo en el momento en que es retirada del mismo, aunque, alternativamente, podría emplearse cuando el cabezal de perforación va haciendo el pozo. La invención se compone de dos herramientas para la medición (usadas alternativamente) y un dispositivo portable o dispositivo sujetado en mano dispuesto en la superficie en conexión de datos con la herramienta 1.
La herramienta 1 consta de una estructura tubular que protege los medios de procesamiento electrónico provistos en su interior durante la operación. La electrónica o medios de procesamiento electrónico de la herramienta 1 comprenden al menos un módulo de control encargado de minimizar el ruido que se pueda generar en las señales de los sensores (acelerómetros triaxiales y giroscopios micromecánicos) debido a la naturaleza de la operación, un módulo de adquisición de datos conformado al menos por un set giróscopos micromecánicos MEMS ortogonalmente distribuidos y un set de acelerómetros triaxiales con la misma distribución, un módulo de regulación de potencia que será el encargado de alimentar al resto de circuitos, un módulo de comunicación o medios de comunicación configurado para transmitir y/o recibir datos desde el dispositivo portable en superficie y una unidad de procesamiento configurada para procesar todos los datos de las señales de detección provenientes de los sensores y calcular la orientación de la muestra de núcleo con respecto al norte verdadero de manera absoluta y la trayectoria en continuo del pozo perforado.
La herramienta 1 está configurada para determinar la orientación (posición angular respecto al vector gravitacional, o en con respecto al norte verdadero, por ejemplo, en pozos totalmente verticales o muy cercanos a la vertical) de la muestra o núcleo extraída del subsuelo, y además la trayectoria o posición angular de cada uno de los puntos de la trayectoria del pozo con respecto al Norte Verdadero (acimut).
La naturaleza de los giróscopos micromecánicos MEMS utilizados junto con la electrónica que los acompaña permite obtener los datos de posicionamiento respecto al Norte Verdadero de manera absoluta, es decir, no se ha de introducir ninguna referencia en la boca del pozo ni ningún otro valor conocido como si resulta necesario en el resto de tecnología existente.
La unidad de procesamiento está configurada para, con base en la rotación de los giroscopios micromecánicos en ángulos discretos, autocompensar las señales de detección de los giroscopios micromecánicos a partir del filtración y depuración iterativa de dichas señales de detección.
Esta autocompensación realizada por la unidad de procesamiento tiene como finalidad maximizar la calidad y precisión de la herramienta 1 mediante autocompensación de las señales basada en la rotación de los giróscopos micromecánicos alrededor del propio eje de la herramienta y a través de ángulos discretos. Mediante la repetición de estos ciclos de autocompensación se filtran y depuran aún más las señales y se consigue una salida más limpia, precisa y exacta del Norte Absoluto o Verdadero.
En este sentido cabe destacar que, de toda la gama de sensores giroscópicos, los giroscopios MEMS tienen el mejor rendimiento con respecto a la estabilidad y resistencia a las cargas mecánicas. Obviamente, para su uso en operaciones agresivas como, por ejemplo, diferentes tipos de perforación, la tecnología de giroscopios micromecánicos es la mejor opción. Ningún otro tipo de dispositivo giroscópico soporta cargas mecánicas prolongadas. Esto hace imposible sus aplicaciones en los sectores del petróleo, gas y minería. Pero, los mejores ejemplos de giroscopios MEMS conocidos en estos momentos tienen características deficientes en términos de deriva temporal y de temperatura de la señal cero. Esta circunstancia es un problema de su uso directo y requiere, por tanto, el desarrollo de nuevos métodos o procedimientos, en paralelo con la implementación de hardware para mejorar la precisión de los instrumentos giroscópicos que utilizan los giróscopos micromecánimos MEMS, que se describirán a continuación.
La auto compensación se lleva a cabo de un dispositivo de autocompensación de la herramienta 1 comprendido por una estructura, en forma de plataforma giratoria, sobre la que se instalan los giróscopos micromecánicos ínter perpendiculares, los acelerómetros triaxiales y un motor de corriente continua. El rotor del motor de corriente continua se fija en el tubo exterior que representa la carcasa para el dispositivo y de la herramienta misma. La carcasa puede girar y detenerse en dos posiciones fijas distintas comprendiendo un ángulo de 180 grados entre dichas posiciones, lo cual se obtiene por dos límites definidos físicamente en la estructura mecánica.
Para no romper el motor de corriente continua al llegar el límite, se mide el corriente del motor y se corta voltaje cuando esta corriente aumenta más de un valor previamente definido. Se usa la propiedad físicamente intrínseca del motor de aumentar la corriente cuando la carga del motor aumenta. Lo que se describe permite realizar auto compensación con mínima complejidad y cantidad de elementos compuestos el sistema entero.
Como parte del hardware una tríada de sensores inerciales, tanto de giroscopios como de acelerómetros, se montan en la plataforma giratoria que, preferiblemente, tiene un grado de libertad. A diferencia de los inclinómetros giroscópicos conocidos, este diseño permite el funcionamiento paralelo del instrumento en dos modos: giroscopio direccional y girocompás hacia el norte verdadero. La plataforma en ciertos puntos de tiempo puede ser girada por el motor, en particular, como se ha dicho, un motor de corriente continua o, alternativamente, por medios de rotación adecuados, por ejemplo, aprovechando la rotación de la sarta de perforación o de la herramienta para transmitir dicha rotación a la plataforma. El eje de rotación de la plataforma coincide con el eje longitudinal del instrumento de perforación y es ortogonal a dos de los tres ejes de medición de los giroscopios MEMS.
El hecho de que los acelerómetros triaxiales estén puestos en la misma estructura móvil o carcasa móvil que los giróscopos micromecánicos permite controlar el ángulo de rotación y comprobar que el dispositivo funciona correctamente.
Algunas formas de mejorar la precisión en el modo de girocompás consisten en organizar la plataforma durante el trabajo realizando giros cíclicos de 180 grados alrededor del eje longitudinal del instrumento de perforación (eje Z) y/o de la herramienta debido a que la deriva temporal monótona de los giroscopios en el modo de operación del inclinómetro "giroscopio de dirección" se convierte en una deriva variable de los ángulos de navegación: ángulo antiaéreo y azimut. En definitiva, la relación de las velocidades angulares que involucran desviaciones temporales de cambio lento y los ángulos de navegación se pueden describir de la siguiente manera:
Incl = j fel * [ax(t) * (wx(t) + tc) + ay(t ) * ( wy(t ) + ry)] * dt Az = j k2 * [— ay(t) * (wx(t) + tc) + ax(t) * (wy(t) + ry)] * dt (1)
Donde,
Incl, Az - ángulos de navegación, azimut y zenit; ax(t), ay(t) - proyecciones del vector del campo gravitatorio de la Tierra en los ejes de instrumentos perpendiculares a los ejes de rotación; wx(t),wy(t ) - proyección de la velocidad angular de giro del inclinómetro en los ejes del instrumento; tc, tg - son componentes de la deriva temporal de los giroscopios; fel, k2 - son coeficientes de proporcionalidad que dependen del valor actual del ángulo antiaéreo.
En presencia de giros cíclicos de la plataforma del inclinómetro por ángulo y = 0 180 grados de función ax(t ) = k * sin (TF + y(t)) M ay(t ) = k * eos (TF + y(t)) son variables de signo y, en consecuencia, componentes kl * ax(t) * (tc), kl * ay(t) * (ry) para el ángulo de inclinación y fe 2 * ay(t ) * (tc), fe2 * ax(t) * (ry) para azimut en el modo giroscopio de dirección, diseñado para formar la exposición inicial de dicho modo, la presencia de giros cíclicos permite no solo resaltar la deriva de inicio aleatorio de la señal cero, sino también evaluar y compensar parcialmente la deriva de la temperatura durante la ejecución del ciclo de medición. Para los dispositivos giroscópicos utilizados en estudios de pozos, esta es una tarea urgente debido a las características de su operación que requieren un girocompás en condiciones de cambio de temperatura fuerte hasta 3...5 G / min durante la recopilación de datos: wH3M = W + t(ί) + t(T) donde wH3M - es la señal de giroscopio medida que consiste en la velocidad angular medida w, la deriva temporal t(ί) y la deriva de la temperatura t(T).
Durante el ciclo de medición 1. la deriva temporal de 3 minutos se puede considerar constante. El mismo componente de temperatura puede cambiar significativamente durante el proceso de medición. Debido a la presencia de histéresis en las características de temperatura de la deriva cero del giroscopio MEMS, los métodos tradicionales para aproximar las dependencias de temperatura con curvas de diferentes órdenes, y luego tenerlas en cuenta, no es posible deshacerse de los efectos del cambio de temperatura para los inclinómetros giroscópicos en los giroscopios MEMS con el grado correcto de precisión.
En el modo de la búsqueda del norte verdadero, la eliminación del desfase o desviación resultante de los giróscopos micromecánicos típica en otros métodos de auto compensación se logra por usar tres mediciones realizadas en posición 0 de la estructura móvil (wo), en posición 180 (wiso) y otra vez en posición 0 (wo_).
En el eje de tiempos, la desviación del cero se desarrolla monotónico, casi siempre se puede aproximarla por la dependencia lineal. La idea de repetir la medida en posición 0 permite estimar la desviación en el tiempo y traer las mediciones en posición 0 a la medida en posición 180.
W - ((wo + Wo_)/2 — Wi8o)/2 (2)
En otras palabras, para llevar a cabo la evaluación de los efectos y la compensación automática de los cambios de temperatura ambiente, se propone realizar un girocompás, produciendo una acumulación de datos en las tres posiciones de la plataforma y = 0, 180, 0 en lugar de dos, suficientes para excluir la deriva de lanzamiento.
Y procesar los resultados de la siguiente manera: wx = [(wxO + wx0_) * 0.5 — wxl80] * 0.5 (2) donde el valor wx del componente X de la velocidad angular es "purificado" de la influencia de los componentes de temperatura y tiempo de la deriva wxO = Wc + t + t(7 ) - señal medida del girocompás X en la posición y = 0 wxl80 = — Wc + t + t(T2 ) - señal medida del girocompás X en la posición y = 180 wxO = Wc + t + t(T3) - señal medida en varías ocasiones del girocompás X en la posición y = 0
Wc - componente de velocidad angular medible
Para el componente Y, la medición y el procesamiento se realizan de manera similar.
Como se puede ver en la explicación de la fórmula (2) como resultado de una inversión de plataforma giratoria de 180 grados, la señal deseada cambia su signo, a diferencia de la deriva temporal y de temperatura, que, en la mayoría de los casos, se desarrolla monótonamente en el tiempo sin cambiar su derivada.
Por lo tanto, el procesamiento de las mediciones con la fórmula (2) elimina la deriva temporal y, con un cambio monótono en la temperatura durante la medición, la deriva de la temperatura también se compensa, mejorando la precisión de la medición en el modo de girocompás sin la necesidad de procedimientos de calibración costosos y algoritmos matemáticos complejos para corregir las dependencias de la temperatura con histéresis.
De esta manera se hace la modelización de la medición en temperatura constante, completamente eliminando los errores relacionados con cambio de la temperatura durante la búsqueda del norte y otros errores que se desarrollan linealmente en el tiempo durante de la búsqueda del norte. El hecho de que los acelerómetros triaxiales se alojen en la misma estructura con los giróscopos micromecánicos permite medir en el modo continúo moviendo la herramienta en el pozo y realizar auto compensación de las desviaciones sin necesidad de detener el movimiento.
Con esta auto compensación es posible implementar medidas de control de calidad como método de auditoría. Como se ha explicado en el presente documento, la operatividad estándar con la herramienta será haciendo un disparo único en el fondo de pozo y eliminando el tiempo dedicado exclusivamente a medición. Los accesorios presentados en los dibujos permiten también realizar una medición continua del tramo perforado y construir así toda la trayectoria del pozo. Con esta herramienta se deberán obtener por tanto resultados coincidentes o muy próximos a los que se obtuvieron cuando se completó haciendo disparo único, y así se podrá tener un reporte de calidad de las mediciones realizadas con una pérdida de tiempo mínima pero un incremento en los procesos de calidad significativo.

Claims

REVINDICACIONES
1. Herramienta para la orientación de muestras de núcleo extraídas en la perforación de pozos, prevista para acoplarse a una barrena de núcleos y/o al cable de un ensamblaje de cabezal de una sarta de perforación, que al menos comprende unos medios de procesamiento electrónico provistos de al menos unos medios de comunicación conectados a una unidad de procesamiento, y un set de acelerómetros triaxiales acoplados ortogonalmente entre sí en comunicación de datos con la unidad de procesamiento, configurados para registrar datos del movimiento instantáneo y/o vibración instantánea de la herramienta y trasmitirlos a la unidad de procesamiento, caracterizada por el hecho de que comprende un set de giroscopios micromecánicos acoplados ortogonalmente entre sí, en comunicación de datos con la unidad de procesamiento, configurados para rotar con relación a un eje de rotación de la herramienta, registrar la orientación instantánea de dicha herramienta y transmitirlos a la unidad de procesamiento; donde la unidad de procesamiento está configurada para, a partir de los datos del set de acelerómetros triaxiales y del set de giroscopios micromecánicos, calcular la orientación de la muestra de núcleo con respecto al norte verdadero absoluto y la trayectoria en continuo del pozo perforado.
2. Herramienta para la orientación de muestras de núcleo según reivindicación anterior donde el set de acelerómetros triaxiales comprende tres acelerómetros triaxiales acoplados ortogonalmente entre sí y el set de giroscopios micromecánicos comprende tres giroscopios micromecánicos acoplados ortogonal mente entre sí.
3. Herramienta para la orientación de muestras de núcleo según cualquiera de las reivindicaciones 1 o 2 donde el set de giroscopios micromecánicos y el set de acelerómetros triaxiales están dispuestos en una plataforma giratoria cuyo eje de rotación está previsto para coincidir con el eje de rotación de la herramienta y/o de la sarta de perforación, siendo dicho eje de rotación de la plataforma giratoria ortogonal a por los menos dos ejes de medición del set de giroscopios micromecánicos.
4. Herramienta para la orientación de muestras de núcleo según reivindicación 3, donde la plataforma giratoria es controlable a rotación por la unidad de procesamiento para rotación en ángulos discretos de 180 grados de manera que con base en la rotación del set de giroscopios por la rotación de la plataforma giratoria, la unidad de procesamiento está configurada para calcular una deriva de inicio aleatorio de una señal cero, evaluar y compensar parcialmente una deriva de la temperatura durante la ejecución de un ciclo de medición.
5. Herramienta para la orientación de muestras de núcleo según cualquiera de las reivindicaciones anteriores, donde la unidad de procesamiento está configurada para calcular la trayectoria del pozo en continuo a partir de una serie de detecciones de los acelerómetros triaxiales y de los giroscopios micromecánicos en el recorrido ascendente y/o descendente de la herramienta
6. Herramienta para la orientación de muestras de núcleo que comprende una carcasa tubular en cuyo interior están provistos al menos los medios de procesamiento electrónico, el set de acelerómetros triaxiales y el set de giroscopios triaxiales, donde dicha carcasa está configurada para acoplarse a la barrena de núcleos y/o al cable de un ensamblaje de cabezal de una sarta de perforación.
PCT/ES2021/070147 2020-02-28 2021-03-01 Herramienta, sistema y procedimiento para la orientación de muestras de núcleo en la perforación de pozos WO2021170896A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/802,769 US11939830B2 (en) 2020-02-28 2021-03-01 Tool, system and method for orienting core samples during borehole drilling
CA3167925A CA3167925A1 (en) 2020-02-28 2021-03-01 Tool, system and method for orienting core samples during borehole drilling
AU2021227284A AU2021227284A1 (en) 2020-02-28 2021-03-01 Tool, system and method for orienting core samples during borehole drilling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202030169A ES2820674A1 (es) 2020-02-28 2020-02-28 Herramienta, sistema y procedimiento para la orientacion de muestras de nucleo en la perforacion de pozos
ESP202030169 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021170896A1 true WO2021170896A1 (es) 2021-09-02

Family

ID=75492916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2021/070147 WO2021170896A1 (es) 2020-02-28 2021-03-01 Herramienta, sistema y procedimiento para la orientación de muestras de núcleo en la perforación de pozos

Country Status (5)

Country Link
US (1) US11939830B2 (es)
AU (1) AU2021227284A1 (es)
CA (1) CA3167925A1 (es)
ES (1) ES2820674A1 (es)
WO (1) WO2021170896A1 (es)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES1280689Y (es) * 2021-09-29 2022-01-28 Stockholm Prec Tools S L Dispositivo y sistema para la orientacion de muestras de nucleo

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008113127A1 (en) 2007-03-19 2008-09-25 2Ic Australia Pty Ltd A core orientation tool
WO2014053012A1 (en) * 2012-10-05 2014-04-10 Minnovare Pty Ltd Core orientation apparatus
AU2015261610A1 (en) * 2012-09-19 2015-12-17 Reservoir Nominees Pty Ltd Multifunction orientation system with failover measurement system
WO2017132736A1 (en) * 2016-02-04 2017-08-10 Imdex Global B.V. Method and system for enabling at surface core orientation data transfer
CA3034082A1 (en) * 2018-02-19 2019-08-19 Borecam Asia Pte Ltd. Method of obtaining borehole and core orientation measurements in a single run and apparatus for performing the method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408877A (en) * 1992-03-16 1995-04-25 The Charles Stark Draper Laboratory, Inc. Micromechanical gyroscopic transducer with improved drive and sense capabilities
US6315062B1 (en) * 1999-09-24 2001-11-13 Vermeer Manufacturing Company Horizontal directional drilling machine employing inertial navigation control system and method
US8065087B2 (en) * 2009-01-30 2011-11-22 Gyrodata, Incorporated Reducing error contributions to gyroscopic measurements from a wellbore survey system
WO2015054432A1 (en) * 2013-10-08 2015-04-16 Fastcap Systems Corporation Dynamics monitoring system with rotational sensor
SE538872C2 (en) * 2015-05-04 2017-01-17 Lkab Wassara Ab Gyro-based surveying tool and method for surveying
CN110392836A (zh) * 2017-02-21 2019-10-29 Hrl实验室有限责任公司 基于mems的传感器套件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008113127A1 (en) 2007-03-19 2008-09-25 2Ic Australia Pty Ltd A core orientation tool
AU2015261610A1 (en) * 2012-09-19 2015-12-17 Reservoir Nominees Pty Ltd Multifunction orientation system with failover measurement system
WO2014053012A1 (en) * 2012-10-05 2014-04-10 Minnovare Pty Ltd Core orientation apparatus
WO2017132736A1 (en) * 2016-02-04 2017-08-10 Imdex Global B.V. Method and system for enabling at surface core orientation data transfer
CA3034082A1 (en) * 2018-02-19 2019-08-19 Borecam Asia Pte Ltd. Method of obtaining borehole and core orientation measurements in a single run and apparatus for performing the method

Also Published As

Publication number Publication date
US20230082354A1 (en) 2023-03-16
CA3167925A1 (en) 2021-09-02
ES2820674A1 (es) 2021-04-21
US11939830B2 (en) 2024-03-26
AU2021227284A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
EP1828540B1 (en) Gyroscopically-oriented survey tool
US10047600B2 (en) Attitude reference for tieback/overlap processing
US20190017367A1 (en) System and Method for Providing a Continuous Wellbore Survey
US10781691B2 (en) System and method for providing a continuous wellbore survey
US20190330979A1 (en) System and Method for Providing a Continuous Wellbore Survey
AU2005220213B2 (en) Method and apparatus for mapping the trajectory in the subsurface of a borehole
ES2718338T3 (es) Aparato para alinear máquinas de perforación
WO2021170896A1 (es) Herramienta, sistema y procedimiento para la orientación de muestras de núcleo en la perforación de pozos
US12012847B2 (en) System and method for using a magnetometer in a gyro-while-drilling survey tool
ES1284394U (es) Herramienta para la orientacion de muestras de nucleo en la perforacion de pozos
CA3055560C (en) Device and method for surveying boreholes or orienting downhole assemblies
RU2166084C1 (ru) Устройство для определения углов искривления скважины
Ursenbach Motion Aided Inertial Navigation System Calibration for In-Drilling Alignment
CN106321073A (zh) 连续测斜短节以及具备该短节的高速遥传测井仪
Scott et al. A new generation directional survey system using continuous gyrocompassing techniques
Killeen et al. Surveying the path of boreholes: A review of developments and methods since 1987
UA116346U (uk) Інклінометр для вертикальної частини свердловини та врізки бокових стовбурів

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21720795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3167925

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021227284

Country of ref document: AU

Date of ref document: 20210301

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21720795

Country of ref document: EP

Kind code of ref document: A1