RU2166084C1 - Устройство для определения углов искривления скважины - Google Patents

Устройство для определения углов искривления скважины Download PDF

Info

Publication number
RU2166084C1
RU2166084C1 RU2000118692A RU2000118692A RU2166084C1 RU 2166084 C1 RU2166084 C1 RU 2166084C1 RU 2000118692 A RU2000118692 A RU 2000118692A RU 2000118692 A RU2000118692 A RU 2000118692A RU 2166084 C1 RU2166084 C1 RU 2166084C1
Authority
RU
Russia
Prior art keywords
unit
flux
accelerometers
sensors
axes
Prior art date
Application number
RU2000118692A
Other languages
English (en)
Inventor
Г.Н. Ковшов
Г.Ю. Коловертнов
Ю.Д. Коловертнов
С.Н. Федоров
Original Assignee
Уфимский государственный нефтяной технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Уфимский государственный нефтяной технический университет filed Critical Уфимский государственный нефтяной технический университет
Priority to RU2000118692A priority Critical patent/RU2166084C1/ru
Application granted granted Critical
Publication of RU2166084C1 publication Critical patent/RU2166084C1/ru

Links

Abstract

Изобретение относится к нефтедобывающей промышленности и предназначено для контроля за пространственным положением ствола обсаженных и необсаженных скважин при бурении. Техническим результатом изобретения является повышение точности определения углов ориентации в процессе бурения и расширение функциональных возможностей. Для этого устройство содержит блоки датчиков азимута на основе трех ортогональных феррозондов, неподвижно закрепленных относительно корпуса устройства, и датчиков угла отклонения в виде трех ортогональных акселерометров, оси чувствительности которых коллинеарны осям чувствительности феррозондов, аналого-цифровой преобразователь и блок коммутаторов. К входам блока коммутаторов подключены выходы феррозондов и акселерометров. Выход блока коммутаторов подключен к наземному блоку через блок телеметрии. Дополнительно устройство снабжено датчиками температуры и давления, блоком телеметрии и блоком гироскопических датчиков азимута на основе одноосных или двухосных датчиков угловой скорости вращения Земли, оси чувствительности которых коллинеарны осям чувствительности феррозондов и акселерометров. Выходы датчиков температуры и давления и гироскопических датчиков угловой скорости подключены к дополнительным входам коммутаторов. 1 ил.

Description

Изобретение относится к контролю за пространственным положением ствола обсаженных и не обсаженных буровых скважин при бурении.
Известны метод и устройства для определения азимутального и зенитного углов. Метод и устройство основаны на измерении трех ортогональных компонент Gx, Gy, Gz гравитационного поля 3х осевым акселерометром и трех ортогональных компонент Hx, Hy, Hz магнитного поля Земли 3х осевым магнитометром, информация с которых анализируется на ЭВМ и выдается на дисплей [Патент Великобритании N 2205166, 1988 г.].
Известен метод расчета пространственного расположения скважины по измерениям гравитационного (с помощью акселерометров) и магнитного (с помощью феррозондов) полей Земли. По этим измерениям вычисляют аксиальную компоненту магнитного поля Земли и с учетом компонент ускорения силы тяжести определяют пространственные компоненты скважины [Патент США N 4709486, 1987 г.].
Известен гироскопический датчик ориентации скважин. Датчик может использовать: гироскоп с одной степенью свободы, гироскоп с двумя степенями свободы, вибрационные гироскопы, акселерометры. Однако гироскопические датчики не работоспособны в процессе бурения, т.к. высокие вибрационные и ударные перегрузки, возникающие при бурении, а также угловые колебания бурового инструмента значительно превышают угловые скорости вращения Земли, на измерении которых и основаны перечисленные гироскопические приборы ориентации [Патент США N 4611405, 1986 г., патент США N 4706388, 1986 г.].
Наиболее близким техническим решением к заявляемому изобретению является устройство для определения углов искривления скважин, содержащее датчик азимута с тремя ортогональными феррозондами и датчик угла отклонения в виде двух или трех маятников, оси вращения которых ортогональны и неподвижно закреплены относительно корпуса устройства, выходы которых соединены с входами аналого-цифрового преобразователя [Авт. свид. СССР N 1139835, E 21 В 47/02, Бюл. N 6, 1985 г.].
Недостаток устройства для определения углов искривления скважин на основе феррозондов - невозможность ориентировать отклонитель по магнитному меридиану при бурении наклонно направленных и горизонтальных скважин малого диаметра из обсаженной скважины при восстановлении старых нефтяных и газовых месторождений.
Изобретение решает задачу повышения точности определения углов ориентации в процессе бурения и расширение функциональных возможностей.
Задача решается тем, что устройство для определения углов искривления скважин, содержащее скважинный снаряд, включающий блоки датчиков азимута на основе трех ортогональных феррозондов, неподвижно закрепленных относительно корпуса устройства, и датчиков угла отклонения в виде трех ортогональных акселерометров, оси чувствительности которых коллинеарны осям чувствительности феррозондов, аналого-цифровой преобразователь и блок коммутаторов, к входам которого подключены выходы феррозондов и акселерометров, а выход блока коммутаторов подключен к наземному блоку, согласно изобретению снабжено датчиками температуры и давления, блоком телеметрии и блоком гироскопических датчиков азимута, состоящим из неподвижно закрепленных одноосных или двухосных датчиков угловой скорости вращения Земли, оси чувствительности коллинеарны осям чувствительности феррозондов и акселерометров, причем выходы датчиков температуры и давления и гироскопических датчиков угловой скорости вращения Земли подключены к соответствующим входам блока коммутаторов, выходы которого подключены соответственно к входам аналого-цифрового преобразователя и через блок телеметрии к наземному блоку.
На чертеже представлена блок-схема устройства.
Устройство содержит скважинный снаряд 1, включающий блок датчика азимута 2 на трех взаимно ортогональных феррозондах 3, блок датчиков углов отклонения 4, состоящий из трех взаимно ортогональных акселерометров 5, оси чувствительности которых коллинеарны осям чувствительности феррозондов, блок гироскопических датчиков азимута 6, состоящий: из трех 7 или двух неподвижно закрепленных одноосных гироскопических датчиков угловой скорости вращения Земли или двух или одного двухосного датчика угловой скорости вращения, оси чувствительности которых коллинеарны осям чувствительности соответствующих феррозондов и акселерометров. Датчики содержат встроенные измерительные схемы и другие схемы, необходимые для их работы. Блок коммутаторов 8 включает и блоки управления работой устройства. В скважинном снаряде размещены аналого-цифровой преобразователь 9, блок питания 10 электронных схем и датчиков, блок телеметрии 11, датчики температуры и давления 12. Наземный блок 13 содержит источник питания скважинного снаряда, блоки дешифрации сигналов и связи с ЭВМ 14.
После поступления с наземного блока 13 запускающего импульса на блок коммутаторов 8 подключаются блоки датчиков к аналого-цифровому преобразователю 9, который включается после окончания переходных процессов датчиков. Полученный параллельный код преобразуется в последовательный, и через блок телеметрии 11 и наземный блок 13 поступает в последовательный порт компьютера.
Для измерения зенитного угла, угла установки отклонителя, а также географического азимута используется блок акселерометров 4 и блок гироскопов 6. По ним контролируется выставка отклонителя в обсаженной скважине по заданному направлению. При отходе от скважины на 5-7 метров осуществляются измерения магнитного азимута по показаниям феррозондов 3 и акселерометров 5. При этом гироблок 6 выключается.
Величина зенитного θ угла установки отклонителя φ, магнитного αm и географического αг азимута вычисляются ЭВМ 14 согласно формулам [Ковшов Г.Н., Алимбеков Р. И. , Жибер А.В. Инклинометры (Основы теории и проектирования), Уфа, Гилем, 1998 г., 380 с.]:
Figure 00000002

Figure 00000003

Figure 00000004

b = a1·b1 + a2·b2 + a3·b3
Figure 00000005

b* = c1 · b1 + c2·b2 + c3· b3,
где ai, bi, ci, i = 1,2,3 - приведенные безразмерные сигналы с феррозондов, акселерометров и гироскопических датчиков угловой скорости вращения Земли, b, b* - тангенсы углов магнитного наклонения и географической широты устья скважины. Если используются из трех лишь любые два одностепенных датчиков ориентации, то показания третьего вычисляются из выражений:
a1 2 + a2 2 + a3 2 = 1 + c2
b1 2 + b2 2 + b3 2 = 1
c1 2 + с2 2 + c3 2 = 1 + b*2
Каждый гироскопический или магнитный инклинометр имеет свои блоки акселерометров, питания, АЦП, телеметрии, сопряжения с ЭВМ. Объединение датчиков в единую конструкцию устройства позволяет помимо упрощения решать и следующие практические задачи, расширяющие функциональные возможности устройства:
- феррозондовый блок при известном азимуте позволяет вычислять положение отклонителя непосредственно в процессе бурения, т.к. на показания феррозондов не сказываются вибрационные и ударные перегрузки,
- феррозондовый блок при известном азимуте позволяет контролировать критическое приближение к другой обсаженной скважине по измерению угла магнитного наклонения или величине модуля вектора напряженности магнитного поля Земли; это исключает аварийные ситуации,
- феррозондовый блок позволяет наводить буровой снаряд на ствол аварийной (горящей) скважины для ее ликвидации,
- феррозондовый блок при перемещении инклинометра в обсаженной скважине позволяет контролировать стенки обсадных труб, а также их целостность, что особенно актуально при возрождении старых месторождений.
Измерение температуры в скважинном снаряде позволяет непрерывно алгоритмически корректировать посредством ЭВМ показания датчиков ориентации при изменении температуры окружающей среды, чем достигается повышенная точность измерения в широком диапазоне температур от -10oC до +125oC.
Датчик гидростатического и гидродинамического давления позволяет при отсутствии прокачки бурового раствора уточнить глубину скважины, а при бурении - наличие зон повышенного или пониженного пластового давления. Недостаточная информация о пластовых давлениях может привести к неправильному выбору плотности промывочных жидкостей, возникновению нефтегазопроявлений при вскрытии пластов с аномально высокими пластовыми давлениями или к поглощению промывочной жидкости при вскрытии пластов с аномально низкими давлениями, что в любом случае приводит к возникновению аварийных ситуаций.
Лабораторные и скважинные испытания устройства показали, что погрешность измерения азимутов бурящейся скважины в широком диапазоне изменения температуры не превышают 2o, а погрешность измерения угла отклонения 0,2o.
Предлагаемое изобретение может быть использовано в нефтегазовой промышленности для измерений при бурении наклонно направленных и горизонтальных скважин, бурящихся из обсаженного ствола при возрождении старых месторождений и месторождений под поймами рек и водоемами.

Claims (1)

  1. Устройство для определения углов искривления скважин, содержащее скважинный снаряд, включающий блоки датчиков азимута на основе трех ортогональных феррозондов, неподвижно закрепленных относительно корпуса устройства, и датчиков углов отклонения в виде трех ортогональных акселерометров, оси чувствительности которых коллинеарны осям чувствительности феррозондов, аналого-цифровой преобразователь и блок коммутаторов, к входам которого подключены выходы феррозондов и акселерометров, а выходы блока коммутаторов подключен к наземному блоку, отличающееся тем, что оно снабжено датчиками температуры и давления, блоком телеметрии и блоком гироскопических датчиков азимута, состоящим из неподвижно закрепленных одноосных или двухосных датчиков угловой скорости вращения Земли, оси чувствительности которых коллинеарны осям чувствительности феррозондов и акселерометров, причем выходы датчиков температуры и давления и гироскопических датчиков угловой скорости вращения Земли подключены к соответствующим входам блока коммутаторов, выходы которого подключены соответственно к входам аналого-цифрового преобразователя и через блок телеметрии к наземному блоку.
RU2000118692A 2000-07-14 2000-07-14 Устройство для определения углов искривления скважины RU2166084C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000118692A RU2166084C1 (ru) 2000-07-14 2000-07-14 Устройство для определения углов искривления скважины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000118692A RU2166084C1 (ru) 2000-07-14 2000-07-14 Устройство для определения углов искривления скважины

Publications (1)

Publication Number Publication Date
RU2166084C1 true RU2166084C1 (ru) 2001-04-27

Family

ID=20237851

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000118692A RU2166084C1 (ru) 2000-07-14 2000-07-14 Устройство для определения углов искривления скважины

Country Status (1)

Country Link
RU (1) RU2166084C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503810C1 (ru) * 2012-07-03 2014-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Способ определения углов искривления скважины

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2503810C1 (ru) * 2012-07-03 2014-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Способ определения углов искривления скважины

Similar Documents

Publication Publication Date Title
US6453239B1 (en) Method and apparatus for borehole surveying
US6816788B2 (en) Inertially-stabilized magnetometer measuring apparatus for use in a borehole rotary environment
US6145378A (en) Aided inertial navigation system
EP1828540B1 (en) Gyroscopically-oriented survey tool
US10550686B2 (en) Tumble gyro surveyor
Wang et al. Rotary in-drilling alignment using an autonomous MEMS-based inertial measurement unit for measurement-while-drilling processes
Ledroz et al. FOG-based navigation in downhole environment during horizontal drilling utilizing a complete inertial measurement unit: Directional measurement-while-drilling surveying
US9976408B2 (en) Navigation device and method for surveying and directing a borehole under drilling conditions
RU2166084C1 (ru) Устройство для определения углов искривления скважины
US6728639B2 (en) Method and apparatus for determining the orientation of a borehole
US20220186607A1 (en) System and Method For Using A Magnetometer In A Gyro-While-Drilling Survey Tool
WO2021170896A1 (es) Herramienta, sistema y procedimiento para la orientación de muestras de núcleo en la perforación de pozos
RU2482270C1 (ru) Способ определения ориентации скважинного прибора в буровой скважине
US11549362B2 (en) Azimuth determination while rotating
Feng et al. Study on Downhole North-Seeking and Horizontal Hole Trajectory Measurement Technology Based on Inertial Navigation
AU2012318276B8 (en) Navigation device and method for surveying and directing a borehole under drilling conditions
Brzezowski et al. Analysis of alternate borehole survey systems
Qi et al. Research on a High-Precision Measurement Algorithm Using FOG-Based Single-Axis RINS for Core Drilling
RU2206737C1 (ru) Способ измерения параметров траектории скважины
Chao Jr A Low-cost SINS-based MWD Method for Directional Drilling Applications
RU2057924C1 (ru) Комплекс гироинклинометра
UA116346U (uk) Інклінометр для вертикальної частини свердловини та врізки бокових стовбурів
Gao et al. Borehole survey system using fiber optic gyroscopes strapdown inertial navigation
GB2603081A (en) Azimuth determination while rotating