WO2021169727A1 - 一种数据传输方法及装置、存储介质、终端 - Google Patents

一种数据传输方法及装置、存储介质、终端 Download PDF

Info

Publication number
WO2021169727A1
WO2021169727A1 PCT/CN2021/074325 CN2021074325W WO2021169727A1 WO 2021169727 A1 WO2021169727 A1 WO 2021169727A1 CN 2021074325 W CN2021074325 W CN 2021074325W WO 2021169727 A1 WO2021169727 A1 WO 2021169727A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
current
preset threshold
data transmission
beams
Prior art date
Application number
PCT/CN2021/074325
Other languages
English (en)
French (fr)
Inventor
顾祥新
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2021169727A1 publication Critical patent/WO2021169727A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present invention relates to the field of communication technology, in particular to a data transmission method and device, storage medium, and terminal.
  • the visible time of a beam to a user equipment is very short.
  • the visible time of a beam to the UE is usually 11 seconds (s).
  • the time required to complete a communication is relatively long, and may occupy half or more of the visible time of the beam.
  • Narrow Band Internet of Things (NB-IoT) does not Support cell handover. Therefore, there is a high probability that one communication of the UE will fail.
  • the process of UE accessing the network and completing communication may have to go through multiple beams, or even two or more cells, but the messages 1, 2, 3, and 3 of the access process 4 (msg1, msg2, msg3, msg4), or the transmission of messages A and B (msgA, msgB) must be completed in one beam. Therefore, the communication of the UE will also have a high probability of failure.
  • the technical problem solved by the present invention is how to increase the success rate of data transmission and increase the probability of completing a communication task.
  • an embodiment of the present invention provides a data transmission method, including: determining whether the remaining time camped in the current cell is greater than a preset threshold, where the preset threshold is used to characterize the completion of the minimum data transmission The minimum time required; when the judgment result indicates that the remaining time is greater than the preset threshold, the data is transmitted.
  • the preset threshold is determined at least according to at least one of the following parameters: data traffic; access type; system round-trip delay; frame structure; data repetition times; whether to allow data reception in subsequent beams; whether to allow The repetition of a single transmission block is transmitted on different beams in the same cell.
  • the preset threshold value is obtained from a system message or pre-configuration; or, the parameter for determining the preset threshold value is obtained from the system message and/or pre-configuration.
  • the method before determining whether the remaining time of camping on the current cell is greater than a preset threshold, the method further includes: determining the total time period during which the current cell covers the UE according to satellite ephemeris data and the current location of the UE; The remaining time is calculated according to the current time and the total time period, or the total time period is subtracted from the elapsed time since the UE resides in the current cell to obtain the remaining time.
  • the determining the total time period during which the current cell covers the UE according to satellite ephemeris data and the current position of the UE includes: determining the satellite to which the current cell belongs according to the association relationship between the satellite and the cell; The satellite ephemeris data acquires the cell distribution map of the satellite to which the current cell belongs; determines the motion trajectory and time relationship of the current cell according to the cell distribution map; combines the current position of the UE and the motion trajectory of the current cell and The time relationship determines the total time period during which the current cell covers the UE.
  • the association relationship between the satellite and the cell is obtained from the satellite ephemeris data.
  • the transmitting the data includes: transmitting the data in the current beam, and The reception indication information in the data indicates that the data is received in a subsequent beam of the current beam.
  • the transmitting the data in the current beam, and the reception indication information in the data indicating that the data is received in a subsequent beam of the current beam includes: selecting a combination of RO and preamble corresponding to the subsequent beam to initiate Random access process.
  • the method further includes: When the transmission block repetition is not enough for successful decoding, the transmission block repetition that continues to receive the data in subsequent beams of the current beam.
  • the current beam and subsequent beams are beams that are configured to allow repeated transmission blocks across the beams to continue to receive data among the multiple beams.
  • the transmitting the data includes: selecting a beam that is configured to allow repeated transmission blocks to continue receiving data across beams as the current beam; The combination of RO and preamble corresponding to the current beam initiates a random access procedure.
  • the current cell is associated with a single beam.
  • an embodiment of the present invention also provides a data transmission device, including: a judging module for judging whether the remaining time of camping in the current cell is greater than a preset threshold, wherein the preset threshold is used To characterize the minimum time required to complete the minimum data transmission; the transmission module transmits the data when the judgment result indicates that the remaining time is greater than the preset threshold.
  • an embodiment of the present invention further provides a storage medium on which computer instructions are stored, and the computer instructions execute the steps of the above method when the computer instructions are executed.
  • an embodiment of the present invention also provides a terminal, including a memory and a processor, the memory stores computer instructions that can run on the processor, and when the processor runs the computer instructions Perform the steps of the above method.
  • An embodiment of the present invention provides a data transmission method, including: determining whether the remaining time of camping in a current cell is greater than a preset threshold, where the preset threshold is used to characterize the minimum time required to complete the minimum data transmission; When the judgment result indicates that the remaining time is greater than the preset threshold, the data is transmitted.
  • the solution of this embodiment initiates data transmission operations such as the random access time of the UE.
  • Reasonable time limitation makes it possible to increase the success rate of data transmission, which is beneficial to increase the probability of completing a communication task.
  • the transmitting the data includes: transmitting the data in the current beam, and the data
  • the reception indication information in indicates that data is received in a subsequent beam of the current beam. Therefore, by allowing the UE to select the next beam that is not currently visible to receive data such as random access response, the random access process and other protocols originally stipulated that the data that needs to be transmitted in a single beam can be transmitted in multiple beams. Success, increase the possibility of data communication. Further, whether to allow data to be received in subsequent beams can be configured by a system message, or can also be configured as a system parameter in the UE or UICC.
  • the base station when the current beam has not enough time to complete the downlink data reception after the uplink data is transmitted, if the base station is still transmitting data in the current beam, communication will fail on the one hand, and resources will be wasted on the other hand.
  • the base station can send data in the subsequent beam instead of the current beam, which is beneficial for the base station to reasonably save resources.
  • the judgment result indicates that the remaining time is greater than the preset threshold and the current cell is associated with multiple beams
  • it further includes: if the transmission block of the data received in the current beam
  • the transmission block that continues to receive the data in subsequent beams of the current beam is repeated. Therefore, by allowing the UE to continue to receive data across the beams to repeat the transmission block, such as the repetition of msg2, msg4, or msgB, the UE can make full use of all received data and complete procedures such as random access as soon as possible. It is possible to balance the success rate and efficiency of communication. Further, whether to allow the repetition of transmission blocks to continue receiving data across beams may be configured by system messages, or may also be configured as a system parameter in the UE or UICC.
  • the transmission block repetition of the data that can be continuously received across the beam may be msg2, msg4, msgB or subsequent transmission blocks of dedicated channel data that are repeatedly transmitted.
  • FIG. 1 is a flowchart of a data transmission method according to an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of a data transmission device according to an embodiment of the present invention.
  • completing a communication task may refer to the process of accessing the network and completing the communication, such as completing the random access process.
  • NB-IoT terminals will not be equipped with satellite parabolic antennas and direction tracking systems, but generally use ordinary omnidirectional antennas.
  • ordinary omnidirectional antennas a single carrier 3.75kHz is required for uplink, so the transmission block duration is relatively long.
  • a single-carrier 3.75kHz transmission of a transmission block needs to last 32ms.
  • the signal of the satellite system is relatively weak, and the satellite with a height of 1200km may reach about -140dbm.
  • a transmission block signal requires hundreds of repetitions, and combined with the aforementioned duration required for a single transmission block to be sent at one time, the entire transmission duration of an uplink transmission block can reach about 5 seconds.
  • round trip time (RTT) of the satellite system is relatively large. This further lengthens the communication process, resulting in an access plus data transmission process that may take about 10 seconds.
  • the movement of the satellite is predicted, so the movement of the cell or beam is also predicted.
  • the moving speed of the UE is negligible, so only the mobility brought by the cell's movement with the satellite needs to be considered.
  • the inventor of the present application found through analysis that a major cause of the aforementioned problem is that the existing UE can initiate data transmission operations such as random access at any time, regardless of whether this communication can be completed in the current cell or the current beam.
  • an embodiment of the present invention provides a data transmission method, including: determining whether the remaining time camped in the current cell is greater than a preset threshold, where the preset threshold is used to characterize the completion of the minimum data transmission The minimum time required; when the judgment result indicates that the remaining time is greater than the preset threshold, the data is transmitted.
  • the solution of this embodiment makes it possible to increase the success rate of data transmission by reasonably restricting the initiation time of data transmission operations such as the random access time of the UE, which is beneficial to increase the probability of completing a communication task.
  • Fig. 1 is a flowchart of a data transmission method according to an embodiment of the present invention.
  • the solution of this embodiment can be applied to a scenario where a UE initiates a random access procedure, and the data can be used to initiate a random access procedure.
  • the data may include a random access request (Random Access Request).
  • Random Access Request Random Access Request
  • the data transmission method described in this embodiment may include the following steps:
  • Step S101 judging whether the remaining time of camping in the current cell is greater than a preset threshold, where the preset threshold is used to characterize the minimum time required to complete the minimum data transmission;
  • step S101 When the judgment result of step S101 is affirmative, that is, when the remaining time is greater than the preset threshold, the method further includes step S102 of transmitting the data.
  • the step S101 When the judgment result of the step S101 is negative, that is, when the remaining time is less than the preset threshold, the data transmission operation is not performed temporarily. For example, after the UE performs cell reselection, the step S101 may be performed again.
  • the preset threshold can be determined at least according to at least one of the following parameters: data traffic; access type; system round-trip delay; frame structure; data repetition times; whether to allow data reception in subsequent beams ; Whether to allow the repetition of a single transmission block to be transmitted on different beams in the same cell.
  • the data communication volume may refer to the amount of data that needs to be transmitted in this communication.
  • the approximate size and number of transmission blocks for completing this communication can be determined based on formulas or pre-configured tables.
  • the access type may refer to whether this communication adopts four-step random access or two-step random access.
  • the system round trip delay may refer to the RTT of the satellite system, and the UE communicates with the satellite system to access the communication network maintained by the satellite system.
  • the frame structure may refer to the physical layer frame structure of the wireless air interface Uu.
  • the number of repetitions of the data may refer to the number of repetitions of each transmission block included in the data.
  • the number of repetitions may refer to the number of repetitions of msg2, msg4, or msgB.
  • whether to allow the receiving of data in a subsequent beam may include: whether to allow the UE to receive msg2 or msg4 in the next beam.
  • the next beam is a beam relative to the current beam used by the UE to send msg1, msg3, or msgA.
  • whether to allow the repetition of a single transmission block to be transmitted on different beams of the same cell may include: whether to allow the UE to continue to receive the repetition of msg2, msg4, or msgB in the next beam.
  • the next beam is a beam relative to the current beam used by the UE to send msg1, msg3, or msgA.
  • the preset threshold may be obtained from a system information (System Information, SI for short).
  • SI System Information
  • the preset threshold may be pre-configured in the UE or Universal Integrated Circuit Card (UICC for short).
  • UICC Universal Integrated Circuit Card
  • At least a part of the aforementioned parameters for determining the preset threshold may be obtained from the system message.
  • At least a part of the aforementioned parameters for determining the preset threshold may be pre-configured in the UE or UICC as system parameters.
  • the preset threshold may be used to ensure that at least 80% of the communications can be successfully completed within this time.
  • the specific value of the preset threshold may vary. For example, if data is allowed to be received in subsequent beams, and the repetition of a single transmission block is allowed to be transmitted on different beams in the same cell, the preset threshold can be relatively shortened.
  • the method described in this embodiment may further include the step of: determining the total time period during which the current cell covers the UE according to the satellite ephemeris data and the current position of the UE; The current time and the total time period are calculated to obtain the remaining time. As a result, the remaining time can be accurately determined.
  • the satellite to which the current cell belongs can be determined according to the association relationship between the satellite and the cell.
  • the association relationship between the satellite and the cell can be obtained from the satellite ephemeris data.
  • the association relationship between the satellite and the cell may also be separately included in another piece of data.
  • the cell distribution map of the satellite to which the current cell belongs may be obtained based on the satellite ephemeris data.
  • the movement trajectory and time relationship of the current cell can be determined according to the cell distribution map. Furthermore, in combination with the current location of the UE, the total time period during which the current cell covers the UE can be determined.
  • the total time period may be subtracted from the elapsed time since the UE camped on the current cell to obtain the remaining time.
  • the current cell may be associated with a single beam. That is, the current cell is composed of a single beam, and when it is determined that the remaining time is greater than the preset threshold, data transmission can be performed.
  • the current cell may be associated with multiple beams, that is, the current cell may be composed of multiple beams.
  • the step S102 may include: transmitting the data in the current beam, and the reception indication information in the data indicates receiving in the subsequent beams of the current beam. data.
  • the UE may select the timing of the physical random access channel corresponding to the subsequent beam or the time-frequency resource (Physical Random Access Channel Occasion, referred to as RO or PRACH Occasion) and preamble combination to initiate random access. Access process.
  • the time-frequency resource Physical Random Access Channel Occasion, referred to as RO or PRACH Occasion
  • the UE may choose to send the preamble (that is, msg1) through the RO corresponding to the subsequent beam.
  • the subsequent beam may be the next beam of the current beam.
  • the random access process and other protocols originally stipulated that the data that needs to be transmitted in a single beam can be transmitted in multiple beams. Success, increase the possibility of data communication.
  • whether to allow data to be received in subsequent beams can be configured by a system message, or can also be configured as a system parameter in the UE or UICC.
  • the base station when the current beam has not enough time to complete the downlink data reception after the uplink data is transmitted, if the base station is still transmitting data in the current beam, communication will fail on the one hand, and resources will be wasted on the other hand.
  • the base station can send data in the subsequent beam instead of the current beam, which is beneficial for the base station to reasonably save resources.
  • the method described in this embodiment may further include the following steps: When the transmission block repetition of the data received in the current beam is not sufficient for successful decoding, the transmission block repetition for continuing to receive the data in a subsequent beam of the current beam is repeated.
  • the base station may configure part of the multiple beams associated with the cell as a random access response (Random Access Response, RAR) window that will go through the current beam and the next beam, and set the RO corresponding to this part of the beam.
  • RAR Random Access Response
  • the preamble or the combination of RO and preamble is pre-configured to the UE.
  • the UE may select the beam of the aforementioned beams configured to allow repeated transmission blocks to continue to receive data across beams as the current beam, and initiate random access according to the combination of RO and preamble corresponding to the current beam. Into the process.
  • the UE can receive random access responses of msg2, msg4, or msgB in the current beam. If the repetition of msg2, msg4 or msgB received in the current beam is not enough to successfully decode, the repetition of msg2, msg4 or msgB can be received in the next beam according to the satellite operation law.
  • the UE can make full use of all received data and complete procedures such as random access as soon as possible. It is possible to balance the success rate and efficiency of communication.
  • whether to allow the repetition of transmission blocks to continue receiving data across beams may be configured by system messages, or may also be configured as a system parameter in the UE or UICC.
  • the transmission block repetition of the data that can be continuously received across the beam may be msg2, msg4, msgB or subsequent transmission blocks of dedicated channel data that are repeatedly sent.
  • the repetition of data that can be continuously received across beams may also be msg2 and msg4, for example, msg2 is received in the current beam, and msg4 is received in the next beam.
  • the UE is allowed to receive data in subsequent beams, and is allowed to repeat a single transmission block to transmit on different beams in the same cell.
  • the corresponding downlink control channel search space on the next beam can be specified in accordance with the current protocol.
  • Fig. 2 is a schematic structural diagram of a data transmission device according to an embodiment of the present invention. Those skilled in the art understand that the data transmission device 2 described in this embodiment can be used to implement the method and technical solution described in the embodiment shown in FIG. 1.
  • the data transmission device 2 may include: a judging module 21 for judging whether the remaining time of staying in the current cell is greater than a preset threshold, where the preset threshold is used for It characterizes the minimum time required to complete the minimum data transmission; the transmission module 22 transmits the data when the judgment result indicates that the remaining time is greater than the preset threshold.
  • the embodiment of the present invention also discloses a storage medium having a computer instruction stored thereon, and the computer instruction executes the method and technical solution described in the embodiment shown in FIG. 1 when the computer instruction is run.
  • the storage medium may include a computer-readable storage medium such as a non-volatile memory or a non-transitory memory.
  • the storage medium may include ROM, RAM, magnetic disk or optical disk, etc.
  • an embodiment of the present invention also discloses a terminal, including a memory and a processor, the memory stores computer instructions that can run on the processor, and the processor executes the above diagram when the computer instructions are executed.
  • the terminal may be user equipment (User Equipment, UE for short).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及装置、存储介质、终端,所述方法包括:判断驻留在当前小区的余留时间是否大于预设阈值,其中,所述预设阈值用于表征完成最低限度数据传输所需的最少时间;当判断结果表明所述余留时间大于所述预设阈值时,传输所述数据。通过本发明方案能够有效提高数据传输成功率,提高完成一次通信任务的概率。

Description

一种数据传输方法及装置、存储介质、终端
本申请要求于2020年2月26日提交中国专利局、申请号为202010120994.6、发明名称为“一种数据传输方法及装置、存储介质、终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体地涉及一种数据传输方法及装置、存储介质、终端。
背景技术
在中低高度卫星系统中,小区在地面移动的场景下,一个波束对用户设备(User Equipment,简称UE)的可见时间很短。以高度1200km卫星直径60km波束为例,一个波束对UE的可见时间通常为11秒(s)。
但是,完成一次通信所需时间比较长,可能在占据波束可见时间的一半甚至更多。
对于UE接入网络并完成通信的过程,当一个小区由一个波束构成时,这个过程可能要经历两个或更多小区,而窄带物联网(Narrow Band Internet of Things,简称NB-IoT)并不支持小区切换。因此,UE的一次通信会有很大概率失败。
而当一个小区由多个相邻波束构成时,UE接入网络并完成通信的过程可能要经历多个波束,甚至经历2个或更多小区,但接入过程的消息1、2、3、4(msg1、msg2、msg3、msg4),或者消息A、B(msgA、msgB)的传输必须在一个波束内完成。因此,UE的通信 同样会有很大概率失败。
发明内容
本发明解决的技术问题是如何提高数据传输成功率,提高完成一次通信任务的概率。
为解决上述技术问题,本发明实施例提供一种数据传输方法,包括:判断驻留在当前小区的余留时间是否大于预设阈值,其中,所述预设阈值用于表征完成最低限度数据传输所需的最少时间;当判断结果表明所述余留时间大于所述预设阈值时,传输所述数据。
可选的,所述预设阈值至少根据如下参数中的至少一个确定:数据通信量;接入类型;系统往返时延;帧结构;数据的重复次数;是否允许在后续波束接收数据;是否允许单个传输块的重复在同一小区的不同波束上传输。
可选的,所述预设阈值获取自系统消息或预配置;或者,用于确定所述预设阈值的参数获取自所述系统消息和/或预配置。
可选的,在判断驻留在当前小区的余留时间是否大于预设阈值之前,还包括:根据卫星星历数据以及UE的当前位置,确定所述当前小区覆盖所述UE的总时间段;根据当前时间以及所述总时间段计算得到所述余留时间,或者,将所述总时间段减去所述UE驻留所述当前小区至今的已逝时间以得到所述余留时间。
可选的,所述根据卫星星历数据以及UE的当前位置,确定所述当前小区覆盖所述UE的总时间段包括:根据卫星和小区的关联关系确定所述当前小区所属卫星;基于所述卫星星历数据获取所述当前小区所属卫星的小区分布图;根据所述小区分布图确定所述当前小区的运动轨迹和时间关系;结合所述UE的当前位置以及所述当前小区的运动轨迹和时间关系,确定所述当前小区覆盖所述UE的总时间段。
可选的,所述卫星和小区的关联关系获取自所述卫星星历数据。
可选的,当判断结果表明所述余留时间大于所述预设阈值,且所述当前小区关联多个波束时,所述传输所述数据包括:在当前波束传输所述数据,并且,所述数据中的接收指示信息指示在所述当前波束的后续波束接收数据。
可选的,所述在当前波束传输所述数据,并且,所述数据中的接收指示信息指示在所述当前波束的后续波束接收数据包括:选择所述后续波束对应的RO和前导码组合发起随机接入流程。
可选的,当判断结果表明所述余留时间大于所述预设阈值,且所述当前小区关联多个波束时,在传输所述数据之后,还包括:若当前波束中接收到的数据的传输块重复尚不足以成功解码时,在所述当前波束的后续波束继续接收所述数据的传输块重复。
可选的,所述当前波束和后续波束为所述多个波束中被配置为允许跨波束继续接收数据的传输块重复的波束。
可选的,当所述数据用于发起随机接入流程时,所述传输所述数据包括:选择被配置为允许跨波束继续接收数据的传输块重复的波束中的波束作为当前波束;根据所述当前波束对应的RO和前导码组合发起随机接入流程。
可选的,所述当前小区关联单个波束。
为解决上述技术问题,本发明实施例还提供一种数据传输装置,包括:判断模块,用于判断判断驻留在当前小区的余留时间是否大于预设阈值,其中,所述预设阈值用于表征完成最低限度数据传输所需的最少时间;传输模块,当判断结果表明所述余留时间大于所述预设阈值时,传输所述数据。
为解决上述技术问题,本发明实施例还提供一种存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述方法的步骤。
为解决上述技术问题,本发明实施例还提供一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例提供一种数据传输方法,包括:判断驻留在当前小区的余留时间是否大于预设阈值,其中,所述预设阈值用于表征完成最低限度数据传输所需的最少时间;当判断结果表明所述余留时间大于所述预设阈值时,传输所述数据。
较之现有UE随时发起随机接入等数据传输操作,而不考虑本次通信是否能够在当前小区或当前波束内完成,本实施例方案通过对UE的随机接入时间等数据传输操作的发起时间进行合理限制,使得提高数据传输成功率成为可能,利于提高完成一次通信任务的概率。
进一步,当判断结果表明所述余留时间大于所述预设阈值,且所述当前小区关联多个波束时,所述传输所述数据包括:在当前波束传输所述数据,并且,所述数据中的接收指示信息指示在所述当前波束的后续波束接收数据。由此,通过允许UE选择当前还不可见的下一波束来接收诸如随机接入响应等的数据,使得随机接入过程等协议原先规定需要在单个波束内完成传输的数据能够在多个波束内成功,提高数据通信可能性。进一步,是否允许在后续波束接收数据可以由系统消息配置,或者,也可以作为系统参数配置于UE或UICC。
对于基站而言,在当前波束在传输完上行数据后剩余的时间不够完成下行数据的接收时,如果基站仍在当前波束传输数据则一方面通信会失败,另一方面还会造成资源浪费。采用本实施例方案时,基站可以在所述后续波束而非当前波束发送数据,这有利于基站合理节省资源。
进一步,当判断结果表明所述余留时间大于所述预设阈值,且所述当前小区关联多个波束时,在传输所述数据之后,还包括:若当前 波束中接收到的数据的传输块重复尚不足以成功解码时,在所述当前波束的后续波束继续接收所述数据的传输块重复。由此,通过允许UE跨波束继续接收数据的传输块重复,如msg2、msg4或msgB的重复,使得UE能够充分利用接收到的所有数据,尽早完成诸如随机接入等流程。使得兼顾通信成功率和效率成为可能。进一步,是否允许跨波束继续接收数据的传输块重复可以由系统消息配置,或者,也可以作为系统参数配置于UE或UICC。
进一步,能够跨波束继续接收的数据的传输块重复可以是重复传送的msg2、msg4、msgB或后续的专用信道数据的传输块。
附图说明
图1是本发明实施例的一种数据传输方法的流程图;
图2是本发明实施例的一种数据传输装置的结构示意图。
具体实施方式
如背景技术所言,受到小区移动的限制,UE完成一次通信任务的失败率较高。其中,完成一次通信任务可以指:接入网络并完成通信的过程,如完成随机接入流程。
具体而言,NB-IoT终端不会配备卫星抛物面天线及方向跟踪系统,而是普遍使用普通全向天线。对于普通全向天线,上行需要单载波3.75kHz,所以传输块持续时间比较长。NB-IoT中单载波3.75kHz发送一个传输块的一次发送需要持续32ms。
进一步,卫星系统的信号较弱,高度1200km的卫星可能达到-140dbm左右。而一个传输块信号需要上百次重复,结合前述单个传输块一次发送需要的持续时间,则一个上行传输块的整个发送持续时间可以到达5秒左右。
并且,卫星系统的往返时延(Round Trip Time,简称RTT)比较大。这进一步加长了通信过程,导致一次接入加数据传输过程可能达10秒左右。
如背景技术中的分析,由于UE在接入网络并完成通信的过程中,不能进行小区切换,且接入过程的消息1、2、3、4(msg1、msg2、msg3、msg4),或者消息A、B(msgA、msgB)的传输必须在一个波束内完成。结合前述分析,UE极有可能无法在单个波束内完成随机接入流程,导致通信会有很大概率失败。
另一方面,卫星的移动是预知的,所以小区或波束的移动也是预知的。相对小区或波束随卫星移动而在地面的移动速度,UE的移动速度可忽略,因此只需考虑小区随卫星移动带来的移动性。
本申请发明人经过分析发现,造成前述问题的一大原因是,现有UE能够随时发起随机接入等数据传输操作,而不考虑本次通信是否能够在当前小区或当前波束内完成。
为解决上述技术问题,本发明实施例提供一种数据传输方法,包括:判断驻留在当前小区的余留时间是否大于预设阈值,其中,所述预设阈值用于表征完成最低限度数据传输所需的最少时间;当判断结果表明所述余留时间大于所述预设阈值时,传输所述数据。
本实施例方案通过对UE的随机接入时间等数据传输操作的发起时间进行合理限制,使得提高数据传输成功率成为可能,利于提高完成一次通信任务的概率。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明实施例的一种数据传输方法的流程图。
本实施例方案可以应用于UE发起随机接入流程的场景,所述数据可以用于发起随机接入流程。例如,所述数据可以包括随机接入请求(Random Access Request)。采用本实施例方案,通过提高数据传 输成功率,使得UE能够尽早完成随机接入流程。在实际应用中,本实施例方案还可以应用于其他通信任务场景。
具体地,参考图1,本实施例所述数据传输方法可以包括如下步骤:
步骤S101,判断驻留在当前小区的余留时间是否大于预设阈值,其中,所述预设阈值用于表征完成最低限度数据传输所需的最少时间;
当所述步骤S101的判断结果为肯定的,也即所述余留时间大于所述预设阈值时,还包括步骤S102,传输所述数据。
当所述步骤S101的判断结果为否定的,也即所述余留时间小于所述预设阈值时,暂不执行数据传输操作。例如,可以在UE进行小区重选后,重新执行所述步骤S101。
在一个具体实施中,所述预设阈值至少可以根据如下参数中的至少一个确定:数据通信量;接入类型;系统往返时延;帧结构;数据的重复次数;是否允许在后续波束接收数据;是否允许单个传输块的重复在同一小区的不同波束上传输。
所述数据通信量可以指本次通信所需要传输的数据数量。可以基于公式或者预配置的表格等形式确定完成本次通信大致的传输块大小以及数量。
所述接入类型可以指本次通信采用的是四步随机接入还是两步随机接入。
所述系统往返时延可以指卫星系统的RTT,UE与所述卫星系统相通信以接入所述卫星系统维护的通信网络。
所述帧结构可以指无线空口Uu的物理层帧结构。
所述数据的重复次数可以指数据包括的每一传输块的重复次数。例如,在随机接入流程中,所述重复次数可以指msg2、msg4或msgB 的重复次数。
在随机接入流程中,所述是否允许在后续波束接收数据可以包括:是否允许UE在下一波束接收msg2或msg4。其中,下一波束是相对于UE发送msg1、msg3或msgA所采用的当前波束而言的波束。
在随机接入流程中,所述是否允许单个传输块的重复在同一小区的不同波束上传输可以包括:是否允许UE在下一波束继续接收msg2、msg4或msgB的重复。其中,下一波束是相对于UE发送msg1、msg3或msgA所采用的当前波束而言的波束。
在一个具体实施中,所述预设阈值可以获取自系统消息(System Information,简称SI)。
或者,所述预设阈值可以预配置于UE或通用集成电路卡(Universal Integrated Circuit Card,简称UICC)。
或者,前述用于确定所述预设阈值的参数中的至少一部分可以获取自所述系统消息。
或者,前述用于确定所述预设阈值的参数中的至少一部分可以作为系统参数预配置于UE或UICC。
在一个具体实施中,所述预设阈值可以用于确保在该时间内至少80%的通信能够成功完成。
进一步,结合不同参数,所述预设阈值的具体数值可以存在变化。例如,如果允许在后续波束接收数据,且允许单个传输块的重复在同一小区的不同波束上传输,则所述预设阈值可以相对缩短。
在一个具体实施中,在所述步骤S101之前,本实施例所述方法还可以包括步骤:根据卫星星历数据以及UE的当前位置,确定所述当前小区覆盖所述UE的总时间段;根据当前时间以及所述总时间段计算得到所述余留时间。由此,能够准确确定所述余留时间。
具体地,可以根据卫星和小区的关联关系确定所述当前小区所属 卫星。其中,所述卫星和小区的关联关系可以获取自所述卫星星历数据。或者,所述卫星和小区的关联关系也可以单独包含于另一份数据中。
进一步,可以基于所述卫星星历数据获取所述当前小区所属卫星的小区分布图。
进一步,基于所述卫星星历数据,可以根据所述小区分布图确定所述当前小区的运动轨迹和时间关系。进而结合所述UE的当前位置,可以确定所述当前小区覆盖所述UE的总时间段。
在一个变化例中,可以将所述总时间段减去所述UE驻留所述当前小区至今的已逝时间,以得到所述余留时间。
在一个具体实施中,所述当前小区可以关联单个波束。也即,所述当前小区由单个波束组成,则在确定所述余留时间大于所述预设阈值时,可以进行数据传输。
由此,通过对UE的随机接入时间等数据传输操作的发起时间进行合理限制,使得提高数据传输成功率成为可能,利于提高完成一次通信任务的概率。
在一个具体实施中,所述当前小区可以关联多个波束,也即,所述当前小区可以由多个波束组成。
进一步,当所述步骤S101的判断结果为肯定的时,所述步骤S102可以包括:在当前波束传输所述数据,并且,所述数据中的接收指示信息指示在所述当前波束的后续波束接收数据。
例如,在随机接入流程中,所述UE可以选择所述后续波束对应的物理随机接入信道的时机或时频资源(Physical Random Access Channel Occasion,简称RO或PRACH Occasion)和前导码组合发起随机接入流程。
换言之,对于被允许在后续波束接收数据的UE,所述UE可以 选择通过后续波束对应的RO发送所述前导码(即msg1)。
进一步,所述后续波束可以是当前波束的下一个波束。
由此,通过允许UE选择当前还不可见的下一波束来接收诸如随机接入响应等的数据,使得随机接入过程等协议原先规定需要在单个波束内完成传输的数据能够在多个波束内成功,提高数据通信可能性。
进一步,是否允许在后续波束接收数据可以由系统消息配置,或者,也可以作为系统参数配置于UE或UICC。
对于基站而言,在当前波束在传输完上行数据后剩余的时间不够完成下行数据的接收时,如果基站仍在当前波束传输数据则一方面通信会失败,另一方面还会造成资源浪费。采用本实施例方案时,基站可以在所述后续波束而非当前波束发送数据,这有利于基站合理节省资源。
在一个具体实施中,当所述步骤S101的判断结果为肯定的,且所述当前小区关联多个相邻波束时,在所述步骤S102之后,本实施例所述方法还可以包括步骤:若当前波束中接收到的数据的传输块重复尚不足以成功解码时,在所述当前波束的后续波束继续接收所述数据的传输块重复。
具体地,基站可以将所述小区关联的多个波束中的部分波束配置为随机接入响应(Random Access Response,简称RAR)窗口会经历当前波束和下一波束,并将这部分波束对应的RO、前导码或RO与前导码的组合预先配置给UE。
在执行所述步骤S102时,UE可以选择前述被配置为允许跨波束继续接收数据的传输块重复的波束中的波束为当前波束,并根据所述当前波束对应的RO和前导码组合发起随机接入流程。
由此,UE可以在当前波束接收msg2、msg4或msgB这些随机接入响应。若当前波束中接收到的msg2、msg4或msgB的重复不够 成功解码时,可以依据卫星运行规律在所述下一波束中继续接收所述msg2、msg4或msgB的重复。
由此,通过允许UE跨波束继续接收数据的传输块重复,如msg2、msg4或msgB的重复,使得UE能够充分利用接收到的所有数据,尽早完成诸如随机接入等流程。使得兼顾通信成功率和效率成为可能。
进一步,是否允许跨波束继续接收数据的传输块重复可以由系统消息配置,或者,也可以作为系统参数配置于UE或UICC。
在一个具体实施中,能够跨波束继续接收的数据的传输块重复可以是重复发送的msg2、msg4、msgB或后续的专用信道数据的传输块。
或者,能够跨波束继续接收的数据的重复还可以是msg2和msg4,例如,在当前波束接收msg2,在下一波束接收msg4。此时,所述UE即被允许在后续波束接收数据,又被允许单个传输块的重复在同一小区的不同波束上传输。
在一个具体实施中,下一个波束上所对应的下行控制信道搜索空间可以依据当前协议规定。
图2是本发明实施例的一种数据传输装置的结构示意图。本领域技术人员理解,本实施例所述数据传输装置2可以用于实施上述图1所示实施例中所述的方法技术方案。
具体地,在本实施例中,所述数据传输装置2可以包括:判断模块21,用于判断判断驻留在当前小区的余留时间是否大于预设阈值,其中,所述预设阈值用于表征完成最低限度数据传输所需的最少时间;传输模块22,当判断结果表明所述余留时间大于所述预设阈值时,传输所述数据。
关于所述数据传输装置2的工作原理、工作方式的更多内容,可以参照上述图1中的相关描述,这里不再赘述。
进一步地,本发明实施例还公开一种存储介质,其上存储有计算 机指令,所述计算机指令运行时执行上述图1所示实施例中所述的方法技术方案。优选地,所述存储介质可以包括诸如非挥发性(non-volatile)存储器或者非瞬态(non-transitory)存储器等计算机可读存储介质。所述存储介质可以包括ROM、RAM、磁盘或光盘等。
进一步地,本发明实施例还公开一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述图1所示实施例中所述的方法技术方案。优选地,所述终端可以是用户设备(User Equipment,简称UE)。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (15)

  1. 一种数据传输方法,其特征在于,包括:
    判断驻留在当前小区的余留时间是否大于预设阈值,其中,所述预设阈值用于表征完成最低限度数据传输所需的最少时间;
    当判断结果表明所述余留时间大于所述预设阈值时,传输所述数据。
  2. 根据权利要求1所述的数据传输方法,其特征在于,所述预设阈值至少根据如下参数中的至少一个确定:数据通信量;接入类型;系统往返时延;帧结构;数据的重复次数;是否允许在后续波束接收数据;是否允许单个传输块的重复在同一小区的不同波束上传输。
  3. 根据权利要求1或2所述的数据传输方法,其特征在于,所述预设阈值获取自系统消息或预配置;或者,用于确定所述预设阈值的参数获取自所述系统消息和/或预配置。
  4. 根据权利要求1所述的数据传输方法,其特征在于,在判断驻留在当前小区的余留时间是否大于预设阈值之前,还包括:
    根据卫星星历数据以及UE的当前位置,确定所述当前小区覆盖所述UE的总时间段;
    根据当前时间以及所述总时间段计算得到所述余留时间,或者,将所述总时间段减去所述UE驻留所述当前小区至今的已逝时间以得到所述余留时间。
  5. 根据权利要求4所述的数据传输方法,其特征在于,所述根据卫星星历数据以及UE的当前位置,确定所述当前小区覆盖所述UE的总时间段包括:
    根据卫星和小区的关联关系确定所述当前小区所属卫星;
    基于所述卫星星历数据获取所述当前小区所属卫星的小区分布图;
    根据所述小区分布图确定所述当前小区的运动轨迹和时间关系;
    结合所述UE的当前位置以及所述当前小区的运动轨迹和时间关系,确定所述当前小区覆盖所述UE的总时间段。
  6. 根据权利要求5所述的数据传输方法,其特征在于,所述卫星和小区的关联关系获取自所述卫星星历数据。
  7. 根据权利要求1所述的数据传输方法,其特征在于,当判断结果表明所述余留时间大于所述预设阈值,且所述当前小区关联多个波束时,所述传输所述数据包括:
    在当前波束传输所述数据,并且,所述数据中的接收指示信息指示在所述当前波束的后续波束接收数据。
  8. 根据权利要求7所述的数据传输方法,其特征在于,所述在当前波束传输所述数据,并且,所述数据中的接收指示信息指示在所述当前波束的后续波束接收数据包括:选择所述后续波束对应的RO和前导码组合发起随机接入流程。
  9. 根据权利要求1或2或4至8中任一项所述的数据传输方法,其特征在于,当判断结果表明所述余留时间大于所述预设阈值,且所述当前小区关联多个波束时,在传输所述数据之后,还包括:
    若当前波束中接收到的数据的传输块重复尚不足以成功解码时,在所述当前波束的后续波束继续接收所述数据的传输块重复。
  10. 根据权利要求9所述的数据传输方法,其特征在于,所述当前波束和后续波束为所述多个波束中被配置为允许跨波束继续接收数据的传输块重复的波束。
  11. 根据权利要求10所述的数据传输方法,其特征在于,当所述数据用于发起随机接入流程时,所述传输所述数据包括:
    选择被配置为允许跨波束继续接收数据的传输块重复的波束中的波束作为当前波束;
    根据所述当前波束对应的RO和前导码组合发起随机接入流程。
  12. 根据权利要求1所述的数据传输方法,其特征在于,所述当前小区关联单个波束。
  13. 一种数据传输装置,其特征在于,包括:
    判断模块,用于判断判断驻留在当前小区的余留时间是否大于预设阈值,其中,所述预设阈值用于表征完成最低限度数据传输所需的最少时间;
    传输模块,当判断结果表明所述余留时间大于所述预设阈值时,传输所述数据。
  14. 一种存储介质,其上存储有计算机指令,其特征在于,所述计算机指令运行时执行权利要求1至12中任一项所述方法的步骤。
  15. 一种终端,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,其特征在于,所述处理器运行所述计算机指令时执行权利要求1至12中任一项所述方法的步骤。
PCT/CN2021/074325 2020-02-26 2021-01-29 一种数据传输方法及装置、存储介质、终端 WO2021169727A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010120994.6A CN111294962B (zh) 2020-02-26 2020-02-26 一种数据传输方法及装置、存储介质、终端
CN202010120994.6 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021169727A1 true WO2021169727A1 (zh) 2021-09-02

Family

ID=71024530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074325 WO2021169727A1 (zh) 2020-02-26 2021-01-29 一种数据传输方法及装置、存储介质、终端

Country Status (2)

Country Link
CN (1) CN111294962B (zh)
WO (1) WO2021169727A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294962B (zh) * 2020-02-26 2022-12-20 展讯通信(上海)有限公司 一种数据传输方法及装置、存储介质、终端
CN111917451B (zh) * 2020-07-10 2022-09-06 华力智芯(成都)集成电路有限公司 一种数据传输方法、装置、卫星模块及存储介质
CN112020084B (zh) * 2020-07-21 2021-07-20 北京邮电大学 一种卫星场景下两步随机接入信道设计及信号检测方法
CN114765821A (zh) * 2021-01-15 2022-07-19 展讯通信(上海)有限公司 数据传输方法及小区驻留方法、装置、介质
CN115967426A (zh) * 2021-10-09 2023-04-14 华为技术有限公司 传输数据的方法和装置
CN116801342A (zh) * 2022-03-11 2023-09-22 维沃移动通信有限公司 网络确定方法、网络接入方法、数据传输方法、装置及相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101751298A (zh) * 2009-12-18 2010-06-23 武汉理工大学 一种基于能量和时间约束的移动网格任务调度方法
CN105044745A (zh) * 2015-07-15 2015-11-11 中国人民解放军理工大学 一种圆轨道低轨卫星过顶剩余可见时长预测方法
CN107346988A (zh) * 2017-06-20 2017-11-14 大连大学 一种基于低轨卫星网络的容迟/容断网络路由计算方法
US10524185B2 (en) * 2016-09-17 2019-12-31 Hughes Network Systems, Llc Radio resource management and routing for fixed data circuits in an NGSO satellite data communications system
CN111294962A (zh) * 2020-02-26 2020-06-16 展讯通信(上海)有限公司 一种数据传输方法及装置、存储介质、终端
CN111371487A (zh) * 2020-03-10 2020-07-03 展讯通信(上海)有限公司 基于卫星系统的数据传输方法及装置、存储介质、ue、基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476069B (zh) * 2012-06-08 2016-03-30 华为技术有限公司 小区重选方法、资源释放方法、用户设备和基站
CN105379331B (zh) * 2013-05-14 2021-02-02 Lg 电子株式会社 在无线lan系统中支持基本服务集的方法及其设备
CN107800472B (zh) * 2017-11-23 2019-10-22 中国空间技术研究院 一种卫星网络中的基于资源预留的切换控制方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101751298A (zh) * 2009-12-18 2010-06-23 武汉理工大学 一种基于能量和时间约束的移动网格任务调度方法
CN105044745A (zh) * 2015-07-15 2015-11-11 中国人民解放军理工大学 一种圆轨道低轨卫星过顶剩余可见时长预测方法
US10524185B2 (en) * 2016-09-17 2019-12-31 Hughes Network Systems, Llc Radio resource management and routing for fixed data circuits in an NGSO satellite data communications system
CN107346988A (zh) * 2017-06-20 2017-11-14 大连大学 一种基于低轨卫星网络的容迟/容断网络路由计算方法
CN111294962A (zh) * 2020-02-26 2020-06-16 展讯通信(上海)有限公司 一种数据传输方法及装置、存储介质、终端
CN111371487A (zh) * 2020-03-10 2020-07-03 展讯通信(上海)有限公司 基于卫星系统的数据传输方法及装置、存储介质、ue、基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUGHES: "NR-NTN: Paging in NGSO Satellite Systems", 3GPP DRAFT; R3-184403, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Gothernburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 6, XP051527768 *

Also Published As

Publication number Publication date
CN111294962A (zh) 2020-06-16
CN111294962B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2021169727A1 (zh) 一种数据传输方法及装置、存储介质、终端
US11490303B2 (en) Cell handover method and apparatus, RRC reestablishment method and apparatus, storage medium and user equipment
US20230189078A1 (en) Use of wait period to obtain on-demand system information for wireless networks
KR20220070493A (ko) 정보 보고 및 수신 방법, 장치, 단말, 서비스 노드 및 저장매체
WO2019154272A1 (zh) 波束失败恢复方法及用户终端
JP2012512601A (ja) 中継への初期アクセスのためのシステムおよび方法
US11051342B2 (en) Random access method and apparatus
JPWO2020084878A1 (ja) 無線端末、無線局、及びこれらの方法
EP4156796A1 (en) Wireless communication method and terminal device
CN115699909A (zh) 无线通信的方法和终端设备
EP4084553A1 (en) Information transmission method, terminal device and network device
CN112332967A (zh) 数据传输方法及系统、终端及存储介质
CN114731632A (zh) 一种随机接入的方法和装置
CN107484258B (zh) 处理与基站的通信的装置及方法
CN110234098B (zh) eMTC系统中用户设备调整PRACH发送时间的方法及系统
CN113596892B (zh) 无线通信的方法和设备
WO2022148496A1 (zh) 载波确定方法及相关装置、系统信息广播方法及相关装置
CN112929978B (zh) 前导码发送方法及装置、计算机可读存储介质
CN117158035A (zh) 小区切换方法、装置、设备及存储介质
CN115623603A (zh) 数据传输方法及系统、终端及存储介质
JP2023519396A (ja) 端末デバイスによって実行される方法、及び端末デバイス
WO2024109723A1 (zh) 随机接入方法及装置、终端、网络设备
WO2024077639A1 (en) Hybrid automatic request (harq) feedback
KR20190014944A (ko) 단말장치와, 그 장치의 업링크패킷 송신 방법
WO2024040598A1 (zh) 无线通信的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760712

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 07/03/2023 )

122 Ep: pct application non-entry in european phase

Ref document number: 21760712

Country of ref document: EP

Kind code of ref document: A1