WO2021169703A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2021169703A1
WO2021169703A1 PCT/CN2021/073714 CN2021073714W WO2021169703A1 WO 2021169703 A1 WO2021169703 A1 WO 2021169703A1 CN 2021073714 W CN2021073714 W CN 2021073714W WO 2021169703 A1 WO2021169703 A1 WO 2021169703A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
reflective film
reflective
invisible
Prior art date
Application number
PCT/CN2021/073714
Other languages
English (en)
French (fr)
Inventor
张树柏
刘建涛
孙海威
翟明
浩育涛
范利涛
王硕
辛秦
张智强
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/424,423 priority Critical patent/US11899302B2/en
Publication of WO2021169703A1 publication Critical patent/WO2021169703A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/11Function characteristic involving infrared radiation

Definitions

  • the present disclosure generally relates to the field of display technology, and in particular to a display panel and a display device.
  • LCD liquid crystal display
  • LCD Display products have more and more functions.
  • fingerprint recognition function into the liquid crystal display. Due to the limitation of the structure of the liquid crystal display, a light-passing hole is usually opened on the color filter substrate, and the light reflected by the fingerprint is transmitted to the fingerprint recognition module through the light-passing hole to perform fingerprint identification in a small hole imaging method.
  • the provision of light-through holes on the color filter substrate will bring about the problem of displaying dark areas.
  • the embodiment of the present disclosure provides a display panel including: a liquid crystal display module, a reflective film, and a fingerprint recognition module.
  • the liquid crystal display module is located on the first side of the reflective film
  • the fingerprint identification module is located on the second side of the reflective film opposite to the first side.
  • the fingerprint recognition module includes an invisible light emitting unit and an invisible light sensor, the invisible light emitting unit is configured to emit invisible light in a direction toward the reflective film, and the invisible light sensor is configured to receive the reflected light.
  • the reflective film is configured to transmit the invisible light and reflect visible light reaching the reflective film through the liquid crystal display module.
  • the reflective film includes a plurality of reflective layers having different refractive indexes.
  • each of the plurality of reflective layers includes zinc selenide and silicon dioxide.
  • the plurality of reflective layers include a first reflective layer, a second reflective layer, and a third reflective layer, wherein the second reflective layer is located between the first reflective layer and the third reflective layer. Between the layers, and the thickness of the third reflective layer is greater than the thickness of the first reflective layer but less than the thickness of the second reflective layer.
  • each of the first reflective layer, the second reflective layer, and the third reflective layer includes a plurality of zinc selenide layers and a plurality of silicon dioxide layers that are alternately stacked with each other, wherein each The thickness of each zinc selenide layer is smaller than the thickness of each silicon dioxide layer.
  • the liquid crystal display module includes a front light source and a display unit located on the first side of the reflective film, and the display unit is located between the front light source and the reflective film. And the display unit includes a liquid crystal layer.
  • the front light source includes a light guide plate and a visible light emitting element
  • the light guide plate is configured to receive visible light from the visible light emitting element and guide the visible light to the display unit.
  • the light guide plate includes a body and a plurality of light extraction protrusions, and the plurality of light extraction protrusions are located on a light exit surface of the body facing the display unit.
  • the display panel further includes a transparent substrate located between the plurality of light extraction protrusions and the display unit, and the transparent substrate is configured to support the plurality of light extraction protrusions.
  • the plurality of light extraction protrusions includes a frustum, wherein the frustum includes a first surface attached to the body and a second surface opposite to the first surface, wherein The area of the second surface is greater than the area of the first surface.
  • the frustum includes a regular quadrangular frustum
  • the regular quadrangular frustum includes a side surface between the first surface and the second surface, wherein the second surface and the side surface
  • the range of the included angle is 39.8°-74.8°.
  • the plurality of light extraction protrusions are distributed on the light exit surface of the body at intervals, wherein the light extraction surface is close to the light extraction protrusions on the visible light emitting element.
  • the distribution density of is smaller than the distribution density of the light extraction protrusions on the area of the light exit surface away from the visible light emitting element.
  • the body of the light guide plate includes a light incident surface for receiving visible light from the visible light emitting element and a side surface opposite to the light incident surface, wherein the The distribution density of the light extraction protrusions gradually increases along the direction from the light incident surface to the side surface.
  • the distance from the fingerprint identification module to the light-incident surface of the body is smaller than the distance from the fingerprint identification module to the side surface of the body.
  • the fingerprint recognition module further includes a lens configured to concentrate the reflected invisible light passing through the reflective film to the invisible light sensor.
  • the wavelength range of the invisible light includes 800 nm to 1200 nm invisible light
  • the wavelength range of the visible light includes 380 nm to 780 nm.
  • Another embodiment of the present disclosure provides a display device including the display panel described in any one of the above-mentioned embodiments.
  • FIG. 1 schematically shows the main structure of a display panel provided according to an embodiment of the present invention, in which a human finger F is illustrated to illustrate the reflection of invisible light from a fingerprint recognition module;
  • FIG. 2 is used to illustrate the main structure of the display panel provided by another embodiment of the present disclosure, in which the invisible light emitted by the fingerprint recognition module and the visible light propagating in the light guide plate are illustrated;
  • FIG. 3 is a schematic structural diagram of a reflective film in a display panel provided by an embodiment of the disclosure.
  • FIG. 4 is an exemplary cross-sectional view of a light guide plate provided according to an embodiment of the present disclosure
  • FIG. 5 illustrates the forming process of the light extraction protrusion of the light guide plate according to the embodiment of the present disclosure
  • FIG. 6 is a partial perspective view of a light guide plate including light extraction protrusions provided by an embodiment of the disclosure
  • FIG. 7 is a schematic diagram for determining the angle between the bottom surface and the side surface of the frustum of a light guide plate provided by an embodiment of the disclosure.
  • Fig. 1 schematically shows the main structure of a display panel provided according to an embodiment of the present disclosure.
  • the display panel includes a liquid crystal display module D, a reflective film 1, and a fingerprint recognition module.
  • the liquid crystal display module D is located on the first side of the reflective film 1
  • the fingerprint recognition module is located on the first side of the reflective film 2.
  • the fingerprint recognition module includes an invisible light emitting unit E and an invisible light sensor S.
  • the invisible light emitting unit E is configured to emit invisible light in a direction toward the reflective film 1, and the invisible light sensor S is configured to Receiving the reflected invisible light, the reflective film 1 is configured to transmit the invisible light and reflect the visible light reaching the reflective film 1 through the liquid crystal display module.
  • the invisible light emitted from the invisible light emitting unit E of the fingerprint recognition module is reflected by an external object (for example, a human finger F).
  • arrows A1 and A2 represent the invisible light emitted from the invisible light emitting unit E and The invisible light reflected by the finger F to the invisible light sensor S is reflected.
  • the arrow A3 in FIG. 1 indicates the visible light that reaches the reflective film 1 through the liquid crystal display module D and is reflected by the reflective film 1.
  • the liquid crystal display module D itself may include a light source, which can generate visible light as shown by arrow A3 in FIG. 1.
  • the liquid crystal display module may not include a light source.
  • the visible light indicated by arrow A3 in FIG. 1 may include external ambient light.
  • the liquid crystal display module D may include an array substrate, a color filter substrate, and a liquid crystal layer between the two.
  • the reflective layer 1 may reflect external ambient light entering the display panel, thereby realizing normal display functions.
  • FIG. 2 schematically shows the main structure of a display panel provided according to another embodiment of the present disclosure.
  • the display panel includes a liquid crystal display module, a reflective film 1 and a fingerprint recognition module.
  • the liquid crystal display module and the fingerprint recognition module are placed on both sides of the reflective film 1.
  • the fingerprint recognition module includes an invisible light emitting unit 11 and an invisible light sensor 12.
  • the invisible light emitting unit 11 is configured to emit invisible light toward the reflective film 1, and the invisible light sensor 12 is configured to receive reflected invisible light.
  • the reflective film 1 is used to transmit invisible light and reflect visible light from the liquid crystal display module.
  • the visible light mentioned here refers to the light that can be perceived by the human eye
  • the invisible light refers to the light that cannot be perceived by the human eye, including but not limited to, for example, infrared light, ultraviolet light, and the like.
  • the invisible light emitting unit When the display panel with fingerprint recognition function shown in Fig. 1 or Fig. 2 is operating, the invisible light emitting unit emits invisible light, and the invisible light passes through the reflective film 1 and the liquid crystal display module in turn to reach the object to be identified (for example, , Finger F), the invisible light is reflected by the finger F, and then sequentially passes through the liquid crystal display module and the reflective film 1, and is received by the invisible light sensor. Because the intensity of the invisible light reflected by the unevenness of the fingerprint is different, the reflected invisible light carries the uneven information of the fingerprint. The invisible light sensor determines the pattern of the fingerprint according to the intensity of the reflected invisible light.
  • the liquid crystal display module can perform normally during the fingerprint recognition process.
  • the image is displayed.
  • the light emitted from the light-emitting element 7 reaches the reflective layer 1 through the light guide plate, the liquid crystal layer and other structures, and is reflected by the reflective layer 1 back to the liquid crystal display module. Therefore, even at night or occasions where the ambient light is not very good, the display panel can achieve normal display performance, and at the same time improve the effect of fingerprint recognition.
  • the reflective film transmits invisible light and reflects the visible light that reaches the reflective film through the liquid crystal display module. Therefore, the reflective film 1 here can be regarded as a selective transmission film, and only light within a predetermined wavelength range can penetrate. The remaining wavelengths of light are reflected.
  • the reflective film includes a plurality of reflective layers having different refractive indexes to realize the above-mentioned selective transmission function.
  • the reflective film 1 may include a plurality of stacked reflective layers, and adjacent reflective layers of the multiple reflective layers have different refractive indexes, so as to realize the reflection of light in a specific wavelength range.
  • the wavelength range that can be transmitted and the wavelength range of reflection can be determined by controlling the thickness of each reflective layer in the reflective film (correspondingly, controlling the refractive index of each reflective layer).
  • the above-mentioned visible light has a wavelength range of 380-780 nm
  • the invisible light may include infrared light with a wavelength range of 800-1200 nm.
  • the reflective film is configured to transmit infrared light in the wavelength range of 800 to 1200 nm, and reflect visible light in the long range of 380 to 780 nm.
  • the above-mentioned reflective film can be made of zinc selenide and silicon dioxide, that is, each reflective layer of the reflective film includes zinc selenide and silicon dioxide.
  • the reflective film includes a first reflective layer L1, a second reflective layer L2, and a third reflective layer L3, and the second reflective layer L2 is located between the first reflective layer L1 and the Between the three reflective layers L3, and the thickness of the third reflective layer L3 is greater than the thickness of the first reflective layer L1 but less than the thickness of the second reflective layer L2.
  • the first reflective layer L1, the second reflective layer L2, and the third reflective layer L3 all include zinc selenide and silicon dioxide.
  • the first reflective layer can basically reflect blue light wavelengths
  • the second reflective layer can basically achieve For the reflection of the yellow light wavelength
  • the third reflective layer can basically realize the reflection of the red light wavelength.
  • the first reflective layer and the second reflective layer may include a plurality of zinc selenide layers and a plurality of silicon dioxide layers alternately stacked with each other, and the thickness of each zinc selenide layer is smaller than the thickness of each silicon dioxide layer.
  • Table 1 below gives examples of the zinc selenide layer and the silicon dioxide layer included in the reflective film.
  • the zinc selenide layer and silicon dioxide layer in the first reflective layer are represented by letters c and d, respectively, and the zinc selenide layer and silicon dioxide layer in the second reflective layer are represented by letters h and l, respectively.
  • the zinc selenide layer and the silicon dioxide layer in the third reflective layer are denoted by a and b, respectively.
  • the thickness of each zinc selenide layer is approximately 36.06 nm
  • the thickness of each silicon dioxide layer is approximately 64.26 nm
  • the zinc selenide layer and the silicon dioxide layer The total number can reach 100.
  • each zinc selenide layer is approximately 48.08 nm
  • the thickness of each silicon dioxide layer is approximately 85.68 nm
  • the total number of zinc selenide layers and silicon dioxide layers can reach 300.
  • the thickness of each zinc selenide layer is approximately 60.1 nm
  • the thickness of each silicon dioxide layer is approximately 107.09 nm
  • the total number of zinc selenide layers and silicon dioxide layers can reach 200.
  • the above-mentioned reflective film can be manufactured through a layer-by-layer coating process.
  • a zinc selenide layer can be made first, and then a silicon dioxide material can be sputtered on the made zinc selenide layer to form a silicon dioxide layer, and the above process can be repeated to form multiple alternating zinc selenide layers and dioxide Silicon layer.
  • the visible light propagating in the liquid crystal display module is reflected by the reflective film, and cannot penetrate the reflective film.
  • the invisible light emitted by the identification module can penetrate the reflective film to reach the object to be identified (for example, a finger), and the fingerprint identification module can receive the invisible light reflected by the finger to perform fingerprint identification.
  • the liquid crystal display module includes a front light source located on the first side of the reflective film 1 and a display unit 2, and the display unit 2 is located between the front light source (7, 8) and the reflective film 1.
  • the display unit 2 includes a liquid crystal layer.
  • the front light source includes a light guide plate 8 and a visible light emitting element 7, and the light guide plate is configured to receive visible light from the visible light emitting element 7 and guide the visible light to the display unit 2.
  • the display unit 3 may include an array substrate and a color filter substrate located on both sides of the liquid crystal layer.
  • the display unit 3 may also include a first polarizer located on the side of the array substrate away from the liquid crystal layer and a first polarizer located on the color filter.
  • the second polarizer on the side of the substrate away from the liquid crystal layer.
  • the specific structure of the display unit 3 is not limited by the examples described herein, and those skilled in the art can make any modifications or replacements to the above examples of the display unit 3 as long as the basic image display function can be realized.
  • Examples of the visible light emitting element 7 include, but are not limited to, various types of LEDs, such as Micro-LEDs.
  • the light guide plate includes a body and a plurality of light extraction protrusions, and the plurality of light extraction protrusions are located on the light exit surface of the body facing the display unit.
  • FIG. 4 separately shows a cross-sectional view of the light guide plate with light extraction protrusions, and at the same time, the light emitting element 7 is also shown.
  • a plurality of light extraction protrusions 5 are attached to the light exit surface of the main body of the light guide plate 8. In this way, the visible light emitted from the visible light emitting element 7 will be emitted through the light extraction protrusion 5 and then enter the display unit 3.
  • the arrangement of the light extraction protrusions can change the incident direction of visible light entering the display unit, so that different light extraction protrusions can be designed according to the requirements of the display product performance.
  • the structure of the light extraction protrusion can be specifically designed to realize that the visible light enters the display unit in a manner substantially perpendicular to the surface of the display unit after leaving the light guide plate 8, thereby improving the light utilization efficiency.
  • the light-trapping protrusion 5 and the body of the light guide plate are formed as a whole, that is, the light-trapping protrusion 5 and the body are directly connected.
  • the light-trapping protrusions can be connected to the main body in an appropriate manner.
  • the light-trapping protrusions can be glued to the body by using a glue material.
  • FIG. 2 schematically shows the light guide plate 8 The glue layer 6 between the main body and the light-trapping protrusion 5.
  • the light-trapping protrusion can also be fixed to the main body by an appropriate mechanical connection, which is not specifically limited in the embodiments of the present disclosure.
  • the light extraction protrusion 5 and the body of the light guide plate can be separately manufactured.
  • Fig. 5 schematically shows a method of making a light-trapping protrusion.
  • a transparent substrate 4 is prepared, and the glue 18 for forming the light-trapping protrusions 5 is dripped onto the transparent substrate 4 through the glue nozzle 17. After the glue drops on the transparent substrate, the glue is leveled and then passed
  • the transfer roller 16 transfers the pattern of light-trapping protrusions on the glue layer formed by leveling, and thereafter solidifies the glue pattern obtained by the transfer to form a plurality of light-trapping protrusions 5.
  • FIG. 2 shows a plurality of light extraction protrusions 5 formed on the transparent substrate 4, and the light extraction protrusions 5 are bonded to the body of the light guide plate through the glue layer 6.
  • the transparent substrate 4 may also be bonded to the display unit 2 by an appropriate means such as gluing (for example, through the adhesive layer 3 shown in FIG. 2).
  • the plurality of light extraction protrusions includes a frustum.
  • FIG. 6 shows a partial perspective view of the light guide plate when viewed from the angle of the light exit surface of the body of the light guide plate.
  • Each of the protrusions 5 has the shape of a truncated cone.
  • the frustum includes a first surface attached to the body of the light guide plate and a second surface opposite to the first surface, and the area of the second surface is larger than that of the first surface.
  • the light-trapping protrusion in the form of a frustum shown in FIG. 6 may have a cross-section similar to that of the light-trapping protrusion shown in FIG. 5 or FIG. 4.
  • the frustum 5 may include a regular quadrangular pyramid frustum, that is, the frustum 5 includes four side surfaces between the first surface and the second surface.
  • Fig. 7 schematically shows a light path diagram of the light emitted from the visible light emitting element passing through the body of the light guide plate and the light-trapping protrusion in the shape of a regular quadrangular pyramid.
  • the visible light emitted by the visible light emitting element enters the light guide plate body through the light entrance surface of the light guide plate body and then propagates through total reflection. The light is refracted at the light extraction protrusion 5 and leaves the light guide plate. Set the angle between the light entering the light guide plate body and the horizontal direction as ⁇ .
  • the angle ⁇ between the visible light and the vertical direction ranges from 50.7° to 90°, and the angle between the visible light and the horizontal direction ranges from 0° to 39.3°.
  • the angle between the second surface of the frustum with a larger area and its side surface is ⁇
  • the angle between the visible light reflected by the side surface of the frustum and the horizontal direction can be expressed as:
  • the angle of the visible light leaving the light extraction protrusion from the vertical direction can be made within 30°, that is, the angle relative to the horizontal line is within the range of 60°-120°, then 39.8° ⁇ ⁇ 74.8°. Therefore, the light extraction efficiency of the light guide plate can be increased, the light utilization efficiency can be improved, and the image display quality of the display panel can be promoted at the same time.
  • the distance from the invisible light sensor in the fingerprint identification module to the light incident surface of the body is smaller than the distance from the invisible light sensor to the side surface of the body.
  • the orthographic projection of the fingerprint recognition module on the body of the light guide plate is closer to the light incident surface of the light guide plate body (for example, the body of the light guide plate shown in FIG. 2 is close to the side surface of the light-emitting element 7), thus, It is further conducive to the accuracy of fingerprint recognition.
  • a plurality of light-extracting protrusions 5 are distributed on the light-emitting surface of the body at intervals, and the light-emitting surface is close to the distribution density of the light-emitting protrusions on the visible light emitting element It is smaller than the distribution density of the light extraction protrusions on the area where the light exit surface is far away from the visible light emitting element. That is to say, the closer to the light incident surface of the light guide plate, the lighter the projections are arranged relatively sparsely. Correspondingly, the light-emitting surface is close to the visible light emitting element.
  • the distance between the light-trapping protrusions is larger, and the fingerprint recognition module is also arranged relatively close to the light-incident surface of the light guide plate, so more invisible light It will be transmitted through the larger space between the light extraction protrusions, reducing the loss of invisible light on the propagation path, thereby improving the accuracy and clarity of fingerprint recognition.
  • one side (light-incident surface) of the light guide plate close to the visible light emitting element is marked as S1
  • the other side opposite to the light-incident surface S1 is marked as S2. Therefore, the closer it is to the light-incident surface S1, The larger the distance A between the light-trapping protrusions is.
  • the distribution density of the light extraction protrusions on the light exit surface gradually increases along the direction from the light incident surface S1 to the side surface S2.
  • the fingerprint recognition module further includes a transparent 15.
  • the lens 15 is configured to concentrate the reflected invisible light passing through the reflective film 1 to the invisible light sensor 12.
  • the convex lens 15 is arranged on the side of the invisible light sensor 12 facing the reflective film 1. By providing the convex lens 15, the reflected invisible light in a larger area can be concentrated on the sensor 12, which is beneficial to realize high-efficiency fingerprint recognition.
  • the fingerprint recognition module further includes a bracket 10, and a light emitting element 11 (for example, LED), a die attach film 14 (Die Attach Film; DAF) and a board-to-board connector 13 (Board To Board Connectors; BTB) are also provided under the invisible light sensor 12.
  • the wafer bonding film 14 and the board-to-board connector 13 can support the invisible light sensor 12 and transmit the signal of the invisible light sensor 12 to other external circuits to analyze and process the signal sensed by the sensor.
  • the wavelength range of invisible light includes 800 nm to 1200 nm (infrared light), and the wavelength range of visible light includes 380 nm to 780 nm. That is, in this embodiment, the invisible light emitting element is a light emitting element capable of emitting infrared light.
  • a display device including the display panel described in any one of the foregoing embodiments.
  • the display device is, for example, but not limited to, any electronic product or component with a display function, such as a smart phone or a tablet computer. .
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In this document, unless otherwise specified, “plurality” means two or more.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Image Input (AREA)

Abstract

一种显示面板及显示装置,其中,显示面板包括液晶显示模组(D)、反射膜(1)及指纹识别模组。液晶显示模组(D)位于反射膜(1)的第一侧,指纹识别模组位于反射膜(1)的与第一侧相对的第二侧。指纹识别模组包括不可见光发射单元(11)及不可见光传感器(12),不可见光发射单元(11)被配置成在朝反射膜(1)的方向上发射不可见光,不可见光传感器(12)被配置成接收被反射的不可见光。反射膜(1)被配置成透射不可见光、且反射经由液晶显示模组(D)到达反射膜(1)的可见光。

Description

显示面板及显示装置
相关申请的交叉引用
本申请要求于2020年2月28日向中国专利局提交的专利申请202010131445.9的优先权利益,并且在此通过引用的方式将该在先申请的内容并入本文。
技术领域
本公开一般涉及显示技术领域,具体涉及一种显示面板及显示装置。
背景技术
目前,有机发光二极管(OLED)显示技术得到了快速的发展,但是,液晶显示(LCD)面板在终端显示产品中仍占据着主要地位,其市场份额可以达到60%-70%,人们也期望液晶显示产品具备越来越丰富的功能。例如,更好地将指纹识别功能融合至液晶显示器。由于液晶显示器自身结构的限制,通常在彩膜基板上开设通光孔,以小孔成像的方式,将指纹反射的光线经通光孔传播至指纹识别模组来进行指纹识别。然而,在彩膜基板上设置通光孔会带来显示暗区的问题。
发明内容
本公开的实施例提供了一种显示面板,包括:液晶显示模组、反射膜和指纹识别模组。液晶显示模组位于所述反射膜的第一侧,所述指纹识别模组位于所述反射膜的与所述第一侧相对的第二侧。所述指纹识别模组包括不可见光发射单元及不可见光传感器,所述不可见光发射单元被配置成在朝所述反射膜的方向上发射不可见光,所述不可见光传感器被配置成接收被反射的不可见光,所述反射膜被配置成透射所述不可见光、且反射经由所述液晶显示模组到达所述反射膜的可见光。
根据本公开的一些实施例,所述反射膜包括具有不同折射率的多个反射层。
根据本公开的一些实施例,所述多个反射层中的每个反射层包括 硒化锌和二氧化硅。
根据本公开的一些实施例,所述多个反射层包括第一反射层、第二反射层和第三反射层,其中所述第二反射层处于所述第一反射层和所述第三反射层之间,且所述第三反射层的厚度大于所述第一反射层的厚度而小于所述第二反射层的厚度。
根据本公开的一些实施例,所述第一反射层、第二反射层和第三反射层中的每个包括相互交替地堆叠的多个硒化锌层和多个二氧化硅层,其中每个硒化锌层的厚度小于每个二氧化硅层的厚度。
根据本公开的一些实施例,所述液晶显示模组包括位于所述反射膜的所述第一侧的前置光源及显示单元,所述显示单元处于所述前置光源和所述反射膜之间,且所述显示单元包括液晶层。
根据本公开的一些实施例,所述前置光源包括导光板和可见光发光元件,所述导光板被配置成接收来自所述可见光发光元件的可见光并将所述可见光引导至所述显示单元。
根据本公开的一些实施例,所述导光板包括本体和多个取光凸起,所述多个取光凸起位于所述本体面向所述显示单元的出光表面。
根据本公开的一些实施例,显示面板还包括位于所述多个取光凸起和所述显示单元之间的透明基板,所述透明基板被配置成支撑所述多个取光凸起。
根据本公开的一些实施例,所述多个取光凸起包括锥台,其中所述锥台包括附接于所述本体的第一表面和与所述第一表面相对的第二表面,其中所述第二表面的面积大于所述第一表面的面积。
根据本公开的一些实施例,所述锥台包括正四棱锥台,所述正四棱锥台包括处于所述第一表面和所述第二表面之间的侧面,其中所述第二表面与所述侧面的夹角的范围为39.8°-74.8°。
根据本公开的一些实施例,所述多个取光凸起彼此间隔地分布在所述本体的所述出光表面上,其中所述出光表面靠近所述可见光发光元件的区域上的取光凸起的分布密度小于所述出光表面远离所述可见光发光元件的区域上的取光凸起的分布密度。
根据本公开的一些实施例,所述导光板的所述本体包括用于接收来自所述可见光发光元件的可见光的入光面和与所述入光面相对的侧面,其中所述出光表面上的取光凸起的分布密度沿所述入光面到所述 侧面的方向逐渐增加。
根据本公开的一些实施例,所述指纹识别模组到所述本体的入光面的距离小于所述指纹识别模组到所述本体的所述侧面的距离。
根据本公开的一些实施例,所述指纹识别模组还包括透镜,所述透镜被配置成将穿过所述反射膜的被反射的不可见光汇聚至所述不可见光传感器。
根据本公开的一些实施例,所述不可见光的波长范围包括800nm~1200nm不可见光,所述可见光的波长范围包括380nm~780nm。
本公开的另外的实施例提供了一种显示装置,包括如上述实施例中任一实施例所述的显示面板。
附图说明
通过阅读参照以下附图所作的对非限制性实施例的示例性实施方式所作的详细描述,本公开的实施例提供的技术方案的其它特征、目的和优点将会变得更明显.
图1示意性地示出了根据本发明的一个实施例提供的显示面板的主要结构,其中图示了人的手指F用于说明对来自指纹识别模组的不可见光的反射;
图2用于图示本公开的另一实施例提供的显示面板的主要结构,其中图示了指纹识别模组发出的不可见光和在导光板中传播的可见光;
图3为本公开实施例提供的显示面板中的反射膜的示意性结构图;
图4为根据本公开实施例提供的导光板的示例性截面图;
图5图示了根据本公开实施例的导光板的取光凸起的形成过程;
图6为本公开实施例提供的包括取光凸起的导光板的局部透视图;
图7为本公开实施例提供的用于确定导光板的锥台的底面与侧面的夹角的原理图。
具体实施方式
下面结合附图和实施例对本申请的技术方案作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请的技术方案的原理,而非对本申请的保护范围的限定。另外还需要说明的是,为了便于描述,附图中仅示出了显示面板与本技术的技术方案相关的 部分,而没有示出显示面板的全部结构。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合而形成不同的另外的实施例,这些不同的另外的实施例同样属于本申请的保护范围。图1示意性地示出了根据本公开实施例提供的显示面板的主要结构。如图1所示,显示面板包括液晶显示模组D、反射膜1及指纹识别模组,液晶显示模组D位于反射膜1的第一侧,指纹识别模组位于反射膜2的与第一侧相对的第二侧,指纹识别模组包括不可见光发射单元E及不可见光传感器S,不可见光发射单元E被配置成在朝反射膜1的方向上发射不可见光,不可见光传感器S被配置成接收被反射的不可见光,反射膜1被配置成透射所述不可见光、且反射经由所述液晶显示模组到达所述反射膜1的可见光。从指纹识别模组的不可见光发射单元E发出的不可见光经可由外部对象(例如,人的手指F)反射,图1中分别用箭头A1和A2表示从不可见光发射单元E发出的不可见光和由手指F反射至不可见光传感器S的被反射的不可见光。图1中的箭头A3表示经由液晶显示模组D到达反射膜1而又被反射膜1反射的可见光。
根据本公开的实施例,液晶显示模组D自身可以包括光源,该光源可产生如图1中的箭头A3所示的可见光。替代性地,液晶显示模组可以不包括光源,在该情形中,图1中箭头A3所示的可见光可以包括外部的环境光。根据本公开的一些实施例,液晶显示模组D可包括阵列基板、彩膜基板和位于二者之间的液晶层。在液晶显示模组可以不包括光源的情形中,反射层1可以对进入显示面板的外部环境光进行反射,从而实现正常的显示功能。
图2示意性地示出了根据本公开的另一实施例提供的显示面板的主要结构。如图2所示,显示面板包括液晶显示模组、反射膜1及指纹识别模组,液晶显示模组与指纹识别模组分置于反射膜1的两侧。指纹识别模组包括不可见光发射单元11及不可见光传感器12,不可见光发射单元11被配置成朝反射膜1的方向发射不可见光,不可见光传感器12被配置成接收被反射的不可见光。同样地,反射膜1用于透射不可见光,且反射来自液晶显示模组中的可见光。
这里所说的可见光是指可以被人眼所感知的光线,不可见光是指不能被人眼所感知的光线,包括但不限于例如红外光、紫外光等。
当图1或图2所示的具有指纹识别功能的显示面板运行时,不可见光发射单元发射不可见光,该不可见光依次穿过反射膜1及液晶显示模组,到达要被识别的对象(例如,手指F),该不可见光经手指F反射后,再顺次经过液晶显示模组及反射膜1,由不可见光传感器所接收。因为指纹凹凸处所反射的不可见光的强度是不同的,所以被反射的不可见光携带有指纹的凹凸信息,不可见光传感器根据反射回的不可见光强度的不同来确定指纹的图案。在指纹识别过程中,由于在液晶显示模组中传播的可见光无法透过反射膜1,该可见光不会对指纹识别带来不利影响,因此,在指纹识别的过程中液晶显示模组可以进行正常的图像显示。图2所示的显示面板的与图1的主要的区别在于:图2所示的显示面板中的液晶显示模组包括光源(在本文中可被称为前置光源),光源可包括发光元件7和导光板等,具体将在后文中具体描述。如图2所示,从发光元件7发出的光经由导光板、液晶层等结构到达反射层1,由反射层1反射回至液晶显示模组。因此,即使在夜晚或者环境光状况不太好的场合,显示面板也能够实现正常的显示能够,同时提升指纹识别的效果。
如前所述,反射膜透射不可见光、且反射经由液晶显示模组到达反射膜的可见光,因此,这里的反射膜1可以认为是选择性透射的膜,只有预定波长范围的光线可以穿透,其余波长的光线被反射。根据本公开的实施例,反射膜包括具有不同折射率的多个反射层,以实现上述的选择性透射的功能。例如,反射膜1可以包括层叠的多个反射层,多个反射层中相邻的反射层具有不同的折射率,从而实现对特定波长范围的光线的反射。一般地,可以通过控制反射膜中每个反射层的厚度(相应地,控制每个反射层的折射率)来确定其可以透射的波长范围及反射的波长范围。
接下来,通过示例的方式来详细说明上述的反射膜的实施方式。
根据本公开的一个实施例,上述的可见光的波长范围是380~780nm,不可见光可包括波长范围为800~1200nm的红外光。反射膜被配置成透射波长范围为800~1200nm的红外光,而反射长范围为380~780nm的可见光。可以用硒化锌和二氧化硅来制作上述的反射膜,即,反射膜的每个反射层包括硒化锌和二氧化硅。
根据本公开的一些实施例,如图3所示,反射膜包括第一反射层 L1、第二反射层L2和第三反射层L3,第二反射层L2处于所述第一反射层L1和第三反射层L3之间,且第三反射层L3的厚度大于第一反射层L1的厚度而小于第二反射层L2的厚度。第一反射层L1、第二反射层L2和第三反射层L3均包括硒化锌和二氧化硅,由此,第一反射层可以基本实现对蓝光波长的反射,第二反射层可以基本实现对黄光波长的反射,第三反射层可以基本实现对红光波长的反射。
进一步地,为了更好地实现对波长范围为800~1200nm的红外光的透射和对波长范围为380~780nm的可见光的反射,根据本公开的一些实施例,第一反射层、第二反射层和第三反射层中的每个可包括相互交替地堆叠的多个硒化锌层和多个二氧化硅层,且每个硒化锌层的厚度小于每个二氧化硅层的厚度。下面的表1给出了反射膜所包括的硒化锌层和二氧化硅层的示例。
在表1中,第一反射层中的硒化锌层和二氧化硅层分别用字母c和d表示,第二反射层中的硒化锌层和二氧化硅层分别用字母h和l表示,第三反射层中的硒化锌层和二氧化硅层分别用a和b表示。在表1的示例中,对于第一反射层而言,每个硒化锌层的厚度大约为36.06nm,每个二氧化硅层的厚度大约为64.26nm,硒化锌层和二氧化硅层的总数可达100。对于第二反射层而言,每个硒化锌层的厚度大约为48.08nm,每个二氧化硅层的厚度大约为85.68nm,硒化锌层和二氧化硅层的总数可达300。对于第三反射层而言,每个硒化锌层的厚度大约为60.1nm,每个二氧化硅层的厚度大约为107.09nm,硒化锌层和二氧化硅层的总数可达200。
表1
Figure PCTCN2021073714-appb-000001
根据本公开的一些实施例,可以通过逐层镀膜工艺来制作上述的反射膜。例如,可以先制作一个硒化锌层,然后在制作的硒化锌层上溅射二氧化硅材料,形成二氧化硅层,循环上述过程,形成多个相互交替的硒化锌层和二氧化硅层。
对于本公开实施例提供的技术方案,通过在反射膜的两侧分别设置液晶显示模组与指纹识别模组,液晶显示模组内传播的可见光被反射膜反射,而不能穿透反射膜,指纹识别模组发射的不可见光可以穿透反射膜到达待识别的对象(例如,手指)处,指纹识别模组可接收经手指反射的不可见光来进行指纹识别。由此,不需要在液晶显示模组的彩膜基板上开设通光孔,避免了因需要在彩膜基板上开设通光孔而导致的显示暗区的问题。
返回图2,在图2的示例中,液晶显示模组包括位于反射膜1的第一侧的前置光源和显示单元2,显示单元2处于前置光源(7,8)和反射膜1之间,显示单元2包括液晶层。前置光源包括导光板8和可见光发光元件7,导光板被配置成接收来自可见光发光元件7的可见光并将所述可见光引导至所述显示单元2。在一些实施例中,显示单元3可包括位于液晶层两侧的阵列基板和彩膜基板,进一步地,显示单元3还可包括位于阵列基板背离液晶层一侧的第一偏光片和位于彩膜基板背离液晶层一侧的第二偏光片。当然,显示单元3的具体结构不受本文描述的示例的限制,本领域技术人员对上述的显示单元3的示例进行任何的修改或替换,只要能够实现基本的图像显示功能即可。可见光发光元件7的示例包括但不限于各种类型的LED,例如Micro-LED。
根据本公开的另一实施例,导光板包括本体和多个取光凸起,多个取光凸起位于本体面向显示单元的出光表面。为了清楚起见,图4单独地示出了具有取光凸起的导光板的截面图,同时,也示出了发光元件7。如图4所示,多个取光凸起5附接于导光板8的本体的出光表面。这样,从可见光发光元件7发出的可见关将通过取光凸起5而射出,之后进入显示单元3。取光凸起的设置可以改变进入显示单元的可见光的入射方向,从而可以根据显示产品性能的需要设计不同的取光凸起。例如,可以对取光凸起的结构进行特定的设计,以实现可见光从导光板8离开后以基本上垂直于显示单元的表面的方式进入显示单元,从而提高光的利用效率。在图4的示例中,取光凸起5和导光板 的本体形成为一个整体,即,取光凸起5与本体是直接连接的。在另外的实施例中,取光凸起可以通过适当的方式而连接至本体,例如,可以利用胶材料将取光凸起胶接至本体,图2中示意性地示出了导光板8的本体和取光凸起5之间的胶层6。或者,在其它的实施例中,也可以用适当机械连接方式将取光凸起固定至本体,本公开的实施例对此不作具体的限定。
根据本公开的一些实施例,取光凸起5和导光板的本体可以分别单独地制作。图5示意性地示出了制作取光凸起的方法。准备一透明基板4,通过滴胶嘴17向透明基板4上滴注用于形成取光凸起5的胶液18,在胶液滴落在透明基板上之后,胶液进行流平,然后通过转印辊16在流平形成的胶层上转印取光凸起的图案,此后对通过转印得到的胶图案进行固化,从而形成多个取光凸起5。接下来,可以将导光板的本体以诸如胶接的方式固定至所形成的取光凸起的顶部。图2中示出了形成在透明基板4上的多个取光凸起5,取光凸起5通过胶层6结合至导光板的本体。透明基板4也可以通过诸如胶接之类的适当的方式(例如,通过图2中示出的粘结层3)结合至显示单元2。
根据本公开的一些实施例,所述多个取光凸起包括锥台,图6中示出了从导光板的本体的出光表面的角度看过去时导光板的局部透视图,每个取光凸起5均为锥台的形状。锥台包括附接于导光板的本体的第一表面和与第一表面相对的第二表面,第二表面的面积大于第一表面的面积。图6中所示的锥台形式的取光凸起可具有与图5或图4中所示的取光凸起类似的截面。
进一步地,如图6所示,锥台5可包括正四棱锥台,即锥台5为包括处于所述第一表面和所述第二表面之间四个侧表面。图7示意性地示出了从可见光发光元件发出的光经过导光板的本体和正四棱锥台形的取光凸起而射出的光路图。如图7所示,可见光发光元件发出的可见光经导光板本体的入光面进入到导光板的本体后通过全反射方式进行传播,光在取光凸起5处被折射,而离开导光板。设定光进入导光板本体时与水平方向的夹角为θ,导光板的本体包括聚碳酸酯材料,其折射率为1.58,那么,可将上述的夹角θ的最大值设定为arcsin(1/1.58)=±39.3°。相应地,可见光进入取光凸起5后,其与竖直方向夹角β的范围为:50.7°~90°,而与水平方向的夹角范围为0 °~39.3°。
假如,锥台具有较大面积的第二表面与其侧表面的夹角为α,则由锥台的侧表面反射的可见光与水平方向的夹角可表示为:
y=2α-39.3°
x=180°-2α
如图7所示,为了使经取光凸起5而出射的可见光以基本上垂直于显示单元的表面方式(即,基本位于竖直方向上)进入显示单元,那么x=y,由此计算得到:α≈54.8°。此时,取光凸起5的出光方向位于竖直方向上,也即相对于水平线为90°。
根据本公开的一些实施例,可以使得从取光凸起离开的可见光偏离竖直方向的角度在30°以内,也即相对于水平线的角度在60°-120°范围内,则39.8°≤α≤74.8°。由此,可以增加导光板的出光效率,提升光的利用效率,同时也有利于促进显示面板的图像显示质量。
在一些实施例中,指纹识别模组中的不可见光传感器到所述本体的入光面的距离小于所述不可见光传感器到所述本体的所述侧面的距离。也就是说,指纹识别模组在导光板的本体上的正投影更靠近导光板本体的入光面(例如,图2中所示的导光板的本体靠近发光元件7的侧面),由此,进一步有利于指纹识别的准确性。继续参照图6,在一些实施例中,多个取光凸起5彼此间隔地分布在本体的出光表面上,所述出光表面靠近所述可见光发光元件的区域上的取光凸起的分布密度小于出光表面远离可见光发光元件的区域上的取光凸起的分布密度。也就是说,越是靠近导光板的本体的入光面,取光凸起越是布置得相对稀疏。相应地,出光表面靠近可见光发光元件的区域上的取光凸起之间的间距较大,而指纹识别模组也被布置成相对靠近导光板的本体的入光面,所以更多的不可见光将通过取光凸起之间较大的间距区域而透射,降低不可见光在传播路径上的损失,从而提高指纹识别的准确度和清晰度。如图6所示,导光板靠近可见光发光元件的一侧面(入光面)被标识为S1,与入光面S1相对的另一侧面被标识为S2,因此,越是靠入光面S1,取光凸起之间的间距A越大。
进一步地,在另一实施例中,出光表面上的取光凸起的分布密度沿入光面S1到侧面S2的方向逐渐增加。
返回参照图2,根据本公开的另外的实施例,指纹识别模组还包括 透,15,透镜15被配置成将穿过反射膜1的被反射的不可见光汇聚至不可见光传感器12。凸透镜15布置在不可见光传感器12朝向反射膜1的一侧。通过设置凸透镜15,可以将较大面积范围内的反射的不可见光汇聚到传感器12上,有利于实现高效率的指纹识别。
图2中还示意性地示出了指纹识别模组的示例中的其他结构,例如,指纹识别模组还包括支架10,在支架10的顶部设置用于发射不可见光的发光元件11(例如,LED),在不可见光传感器12的下方还设置有晶片粘结薄膜14(Die Attach Film;DAF)和板对板连接器13(Board To Board Connectors;BTB)。晶片粘结薄膜14和板对板连接器13可支撑不可见光传感器12、并将不可见光传感器12的信号传输至其它的外部电路,以对传感器感测到的信号进行分析和处理。
根据本公开的实施例,不可见光的波长范围包括800nm~1200nm(红外光),所述可见光的波长范围包括380nm~780nm。也就是说,在该实施例中,不可见光发光元件是能够发射红外光的发光元件。本公开的另一方面提供一种显示装置,包括上述各实施例中任一实施例所述的显示面板。显示装置例如但不限于为智能手机、平板电脑等任何具有显示功能的电子产品或部件。。
需要理解的是,上文如有涉及术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本文中,除非另有说明,“多个”的含义是两个或两个以上。
以上描述仅为本申请的部分实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开所涉及的技术方案并不限于上述技术特征的特定组合而成的实施例,同时也应涵盖在不脱离公开构思的情况下由上述技术特征或其等同特征进行任意组合而形成的其它实施 例。例如上述特征与本文公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (17)

  1. 一种显示面板,包括:液晶显示模组、反射膜及指纹识别模组;
    其中所述液晶显示模组位于所述反射膜的第一侧,所述指纹识别模组位于所述反射膜的与所述第一侧相对的第二侧,
    其中所述指纹识别模组包括不可见光发射单元及不可见光传感器,所述不可见光发射单元被配置成在朝所述反射膜的方向上发射不可见光,所述不可见光传感器被配置成接收被反射的不可见光,
    其中所述反射膜被配置成透射所述不可见光、且反射经由所述液晶显示模组到达所述反射膜的可见光。
  2. 根据权利要求1所述的显示面板,其中所述反射膜包括具有不同折射率的多个反射层。
  3. 根据权利要求2所述的显示面板,其中所述多个反射层中的每个反射层包括硒化锌和二氧化硅。
  4. 根据权利要求3所述的显示面板,其中所述多个反射层包括第一反射层、第二反射层和第三反射层,其中所述第二反射层处于所述第一反射层和所述第三反射层之间,且所述第三反射层的厚度大于所述第一反射层的厚度而小于所述第二反射层的厚度。
  5. 根据权利要求4所述的显示面板,其中所述第一反射层、第二反射层和第三反射层中的每个包括相互交替地堆叠的多个硒化锌层和多个二氧化硅层,其中每个硒化锌层的厚度小于每个二氧化硅层的厚度。
  6. 根据权利要求1-5中任一项所述的显示面板,其中,所述液晶显示模组包括位于所述反射膜的所述第一侧的前置光源及显示单元,所述显示单元处于所述前置光源和所述反射膜之间,且所述显示单元包括液晶层。
  7. 根据权利要求6所述的显示面板,其中所述前置光源包括导光板和可见光发光元件,所述导光板被配置成接收来自所述可见光发光元件的可见光并将所述可见光引导至所述显示单元。
  8. 根据权利要求7所述的显示面板,其中所述导光板包括本体和多个取光凸起,所述多个取光凸起位于所述本体面向所述显示单元的出光表面。
  9. 根据权利要求8所述的显示面板,其中所述显示面板还包括位于所述多个取光凸起和所述显示单元之间的透明基板,所述透明基板被配置成支撑所述多个取光凸起。
  10. 根据权利要求8所述的显示面板,其中所述多个取光凸起包括锥台,其中所述锥台包括附接于所述本体的第一表面和与所述第一表面相对的第二表面,其中所述第二表面的面积大于所述第一表面的面积。
  11. 根据权利要求10所述的显示面板,其中所述锥台包括正四棱锥台,所述正四棱锥台包括处于所述第一表面和所述第二表面之间的侧面,其中所述第二表面与所述侧面的夹角的范围为39.8°-74.8°。
  12. 根据权利要求8所述的显示面板,其中所述指纹识别模组中的所述不可见光传感器到所述本体的入光面的距离小于所述不可见光传感器到所述本体的所述侧面的距离。
  13. 根据权利要求12所述的显示面板,其中所述多个取光凸起彼此间隔地分布在所述本体的所述出光表面上,其中所述出光表面靠近所述可见光发光元件的区域上的取光凸起的分布密度小于所述出光表面远离所述可见光发光元件的区域上的取光凸起的分布密度。
  14. 根据权利要求13所述的显示面板,其中所述导光板的所述本体包括用于接收来自所述可见光发光元件的可见光的入光面和与所述入光面相对的侧面,其中所述出光表面上的取光凸起的分布密度沿所述入光面到所述侧面的方向逐渐增加。
  15. 根据权利要求1-5中任一项所述的显示面板,其中所述指纹识别模组还包括透镜,所述透镜被配置成将穿过所述反射膜的被反射的不可见光汇聚至所述不可见光传感器。
  16. 根据权利要求1-5中任一项所述的显示面板,其中所述不可见光的波长范围包括800nm~1200nm不可见光,所述可见光的波长范围包括380nm~780nm。
  17. 一种显示装置,包括权利要求1-16中任一项所述的显示面板。
PCT/CN2021/073714 2020-02-28 2021-01-26 显示面板及显示装置 WO2021169703A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/424,423 US11899302B2 (en) 2020-02-28 2021-01-26 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010131445.9 2020-02-28
CN202010131445.9A CN111258099B (zh) 2020-02-28 2020-02-28 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2021169703A1 true WO2021169703A1 (zh) 2021-09-02

Family

ID=70949571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073714 WO2021169703A1 (zh) 2020-02-28 2021-01-26 显示面板及显示装置

Country Status (3)

Country Link
US (1) US11899302B2 (zh)
CN (1) CN111258099B (zh)
WO (1) WO2021169703A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111258099B (zh) * 2020-02-28 2022-07-26 京东方科技集团股份有限公司 显示面板及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326953A (ja) * 1998-05-16 1999-11-26 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその作製方法
US20100182532A1 (en) * 2009-01-20 2010-07-22 Au Optronics Corporation Backlight Module and Liquid Crystal Display
US20170124376A1 (en) * 2015-10-28 2017-05-04 Qualcomm Incorporated Infrared fluorescent backlight for optical touch and fingerprint
CN109031512A (zh) * 2018-09-04 2018-12-18 京东方科技集团股份有限公司 导光膜组件、前置光源和反射式显示装置
CN110187537A (zh) * 2019-05-09 2019-08-30 维沃移动通信有限公司 一种终端
CN110383123A (zh) * 2017-03-06 2019-10-25 3M创新有限公司 高对比度光学膜和包括该光学膜的设备
CN209728221U (zh) * 2019-03-11 2019-12-03 深圳阜时科技有限公司 一种背光模组、显示装置以及电子设备
CN111258099A (zh) * 2020-02-28 2020-06-09 京东方科技集团股份有限公司 显示面板及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6839108B1 (en) 1998-05-16 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method of manufacturing the same
US20120127084A1 (en) * 2010-11-18 2012-05-24 Microsoft Corporation Variable light diffusion in interactive display device
US11156757B2 (en) 2017-03-06 2021-10-26 3M Innovative Properties Company High contrast optical film and devices including the same
KR102504527B1 (ko) * 2018-03-22 2023-02-28 삼성디스플레이 주식회사 표시 장치
CN210864744U (zh) * 2019-07-29 2020-06-26 深圳阜时科技有限公司 一种屏下感测装置及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326953A (ja) * 1998-05-16 1999-11-26 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその作製方法
US20100182532A1 (en) * 2009-01-20 2010-07-22 Au Optronics Corporation Backlight Module and Liquid Crystal Display
US20170124376A1 (en) * 2015-10-28 2017-05-04 Qualcomm Incorporated Infrared fluorescent backlight for optical touch and fingerprint
CN110383123A (zh) * 2017-03-06 2019-10-25 3M创新有限公司 高对比度光学膜和包括该光学膜的设备
CN109031512A (zh) * 2018-09-04 2018-12-18 京东方科技集团股份有限公司 导光膜组件、前置光源和反射式显示装置
CN209728221U (zh) * 2019-03-11 2019-12-03 深圳阜时科技有限公司 一种背光模组、显示装置以及电子设备
CN110187537A (zh) * 2019-05-09 2019-08-30 维沃移动通信有限公司 一种终端
CN111258099A (zh) * 2020-02-28 2020-06-09 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
US20220308382A1 (en) 2022-09-29
US11899302B2 (en) 2024-02-13
CN111258099A (zh) 2020-06-09
CN111258099B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
WO2020037991A1 (zh) 屏下光学指纹识别系统及电子装置
WO2020119289A1 (zh) 指纹识别装置和电子设备
US20150160401A1 (en) Backlight and liquid-crystal display apparatus using the same
CN210155472U (zh) 背光模组、显示器及电子装置
TWI484389B (zh) 觸控顯示裝置
WO2019196724A1 (zh) 指纹识别装置、识别装置和显示设备
TW201250298A (en) Optical sheet and method for manufacturing the same and liquid crystal display device using the same
US11227138B2 (en) Liquid crystal display device having fingerprint sensor
WO2016145670A1 (zh) 智能手表和液晶屏
CN106772760B (zh) 一种导光板及液晶模组
WO2021169703A1 (zh) 显示面板及显示装置
WO2020181445A1 (zh) 生物特征检测模组和背光模组及电子装置
WO2020181443A1 (zh) 生物特征检测模组和背光模组及电子装置
TWM601851U (zh) 顯示裝置
CN111399271A (zh) 电子装置
CN210402375U (zh) 背光模组、显示器、生物特征检测模组及电子装置
CN210573817U (zh) 生物特征检测模组和背光模组及电子装置
CN210402376U (zh) 生物特征检测模组和背光模组及电子装置
CN210402370U (zh) 生物特征检测模组和背光模组及电子装置
CN209962256U (zh) 生物特征检测模组和背光模组、显示器及电子装置
CN210155679U (zh) 生物特征检测模组、背光模组及电子装置
WO2021168973A1 (zh) 液晶显示装置
JP7249779B2 (ja) 表示装置および電子機器
KR101932949B1 (ko) 투명 액정표시장치
US20170059939A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760170

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21760170

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21760170

Country of ref document: EP

Kind code of ref document: A1