WO2021169700A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2021169700A1
WO2021169700A1 PCT/CN2021/073626 CN2021073626W WO2021169700A1 WO 2021169700 A1 WO2021169700 A1 WO 2021169700A1 CN 2021073626 W CN2021073626 W CN 2021073626W WO 2021169700 A1 WO2021169700 A1 WO 2021169700A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
antenna
gap
conductive
metal segment
Prior art date
Application number
PCT/CN2021/073626
Other languages
English (en)
French (fr)
Inventor
吴鹏飞
王汉阳
冯堃
余冬
侯猛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/802,900 priority Critical patent/US20230146114A1/en
Priority to EP21760008.9A priority patent/EP4099504A4/en
Publication of WO2021169700A1 publication Critical patent/WO2021169700A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • H01Q1/244Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas extendable from a housing along a given path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/35Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • This application relates to the field of antenna technology, in particular to an electronic device.
  • This application provides an electronic device.
  • the antenna of the electronic device can cover more frequency bands.
  • this application provides an electronic device.
  • the electronic equipment includes a circuit board and an antenna structure.
  • the antenna structure includes a first metal segment, a second metal segment, a first conductive segment, a second conductive segment, a first feeding circuit, and a second feeding circuit.
  • a first gap is formed between the first metal segment and the side surface of the circuit board.
  • a second gap is formed between the second metal segment and the side surface of the circuit board. The second gap communicates with the first gap.
  • the first metal segment includes a first part, a first ground part, and a second part that are sequentially connected.
  • the second metal segment includes a third part, a second ground part, and a fourth part connected in sequence.
  • the second part and the third part form a third gap.
  • the third gap communicates with the first gap and the second gap.
  • the end of the first part facing away from the first grounding part is an open end that is not grounded.
  • the end of the fourth part facing away from the second grounding part is an open end that is not grounded.
  • the negative pole of the first feeder circuit is grounded.
  • the anode of the first feeder circuit is connected to the second part of the first metal segment, and connected to the third part of the second metal segment.
  • the first conductive section includes a first end and a second end. The first end is grounded. The second end is connected to the first part of the first metal segment.
  • the second conductive section includes a third end and a fourth end. The third terminal is grounded. The fourth end is connected to the fourth part of the second metal segment.
  • the negative electrode of the second feeder circuit is electrically connected between the first end and the second end.
  • the anode of the second feeder circuit is electrically connected between the third end and the fourth end.
  • the antenna structure can excite multiple resonance modes, so that the antenna can cover multiple frequency bands.
  • the antenna structure further includes a first insulating section and a second insulating section.
  • the first insulating section is connected to the open end of the first part.
  • the second insulating section is connected to the open end of the fourth part.
  • the electronic device includes a frame, and the circuit board, the first feeding circuit, and the second feeding circuit are all located in an area surrounded by the frame.
  • the first metal segment, the second metal segment, the first insulating segment, and the second insulating segment are all part of the frame.
  • the frame further includes a third insulating section filled in the third gap.
  • the radiator of the antenna structure is formed by using the frame, so that the antenna design space can be saved.
  • the antenna structure is used to generate five resonance modes, so as to broaden the frequency band in which the antenna structure radiates or receives signals.
  • the antenna structure further includes a bridge structure.
  • One end of the bridge structure is connected to the second part of the first metal segment.
  • the other end of the bridge structure is connected to the third part of the second metal segment.
  • the anode of the first feeder circuit is connected to the middle of the bridge structure.
  • the structure of the bridge structure is simple, easy to process, and easy to implement.
  • the antenna structure further includes a third conductive section, a fourth conductive section, a first matching circuit, and a second matching circuit.
  • the second end of the first conductive segment is sequentially connected to the first matching circuit, the third conductive segment, and the first part.
  • the fourth end of the second conductive segment is sequentially connected to the second matching circuit, the fourth conductive segment, and the fourth part.
  • the first conductive section and the second conductive section are two symmetrical parallel wires extending from the floor of the circuit board.
  • the width direction of the electronic device is the X direction.
  • the length direction of the electronic device is the Y direction.
  • the thickness direction of the electronic device is the Z direction. In the Z direction, there is a height difference between the first conductive segment and the second conductive segment and the third conductive segment and the fourth conductive segment.
  • this application provides an electronic device.
  • the electronic device includes a first metal segment, a second metal segment, a circuit board, a first type antenna, and a second type antenna.
  • the first metal segment includes a first part, a first ground part, and a second part that are sequentially connected.
  • the second metal segment includes a third part, a second ground part, and a fourth part connected in sequence.
  • the second part and the third part form a third gap, and the end of the first part facing away from the first grounding part is an open end that is not grounded.
  • the end of the fourth part facing away from the second grounding part is an open end that is not grounded.
  • the first type antenna includes a first slot and a first feeding circuit.
  • the first gap communicates with the third gap.
  • the first gap is opened between the first metal segment and the second metal segment and the circuit board.
  • the first gap includes a first side and a second side.
  • the first side is formed by one side of the circuit board.
  • the second side is composed of the first ground part, the second part, the third part, and the second ground part.
  • the negative pole of the first feeder circuit is grounded.
  • the anode of the first feeder circuit is connected to the second part of the first metal segment, and connected to the third part of the second metal segment.
  • the second type antenna includes the first portion, the first ground portion, the second ground portion, and the fourth portion, a first conductive section, a second conductive section, and a second feeder circuit.
  • the first conductive section includes a first end and a second end. The first end is grounded. The second end is connected to the first part of the first metal segment.
  • the second conductive section includes a third end and a fourth end. The third terminal is grounded. The fourth end is connected to the fourth part of the second metal segment.
  • the negative electrode of the second feeder circuit is electrically connected between the first end and the second end.
  • the anode of the second feeder circuit is electrically connected between the third end and the fourth end.
  • the antenna structure can excite multiple resonance modes, so that the antenna can cover multiple frequency bands.
  • the antenna structure further includes a first insulating section and a second insulating section.
  • the first insulating section is connected to the open end of the first part.
  • the second insulating section is connected to the open end of the fourth part.
  • the electronic device includes a frame.
  • the circuit board, the first feeding circuit, and the second feeding circuit are all located in an area surrounded by the frame. Both the first metal segment and the second metal segment are part of the frame.
  • the frame further includes a third insulating section filled in the third gap.
  • the radiator of the antenna structure is formed by using the frame, so that the antenna design space can be saved.
  • the antenna structure is used to generate five resonance modes, so as to broaden the frequency band in which the antenna structure radiates or receives signals.
  • the antenna structure further includes a bridge structure.
  • One end of the bridge structure is connected to the second part of the first metal segment.
  • the other end of the bridge structure is connected to the third part of the second metal segment.
  • the anode of the first feeder circuit is connected to the middle of the bridge structure.
  • the structure of the bridge structure is simple, easy to process, and easy to implement.
  • the antenna structure further includes a third conductive section, a fourth conductive section, a first matching circuit, and a second matching circuit.
  • the second end of the first conductive segment is sequentially connected to the first matching circuit, the third conductive segment, and the first part.
  • the fourth end of the second conductive segment is sequentially connected to the second matching circuit, the fourth conductive segment, and the fourth part.
  • the first conductive section and the second conductive section are two symmetrical parallel wires extending from the floor of the circuit board.
  • the width direction of the electronic device is the X direction.
  • the length direction of the electronic device is the Y direction.
  • the thickness direction of the electronic device is the Z direction. In the Z direction, there is a height difference between the first conductive segment and the second conductive segment and the third conductive segment and the fourth conductive segment.
  • this application provides an electronic device.
  • the electronic device includes a circuit board and an antenna structure.
  • the antenna structure includes a first metal segment, a second metal segment, a third metal segment, a first conductive segment, a second conductive segment, a first feeding circuit, and a second feeding circuit .
  • a first gap is formed between the first metal segment and the side surface of the circuit board.
  • a second gap is formed between the second metal segment and the side surface of the circuit board.
  • a third gap is formed between the third metal segment and the side surface of the circuit board, and the first gap, the second gap, and the third gap are in communication with each other.
  • the second metal segment includes a first part, a first ground part, and a second part that are connected in sequence.
  • One end of the first metal segment forms a fourth gap with the first part, and the other end is grounded.
  • One end of the third metal segment forms a fifth gap with the second part, and the other end is grounded.
  • the fourth gap and the fifth gap communicate with the first gap, the second gap, and the third gap.
  • the negative pole of the first feeder circuit is grounded, and the positive pole of the first feeder circuit is connected to the first part and the second part of the second metal segment.
  • the first conductive section includes a first end and a second end. The first end is grounded, and the second end is connected to the first metal segment.
  • the second conductive section includes a third end and a fourth end. The third terminal is grounded. The fourth end is connected to the third metal segment.
  • the negative electrode of the second feeder circuit is electrically connected between the first end and the second end.
  • the anode of the second feeder circuit is electrically connected between the third end and the fourth end.
  • the antenna structure is used to generate six resonance modes to broaden the frequency band of the antenna structure to radiate or receive signals.
  • the electronic device includes a frame.
  • the circuit board, the first feeding circuit, and the second feeding circuit are all located in an area surrounded by the frame.
  • the first metal segment, the second metal segment, and the third metal segment are all part of the frame.
  • the frame further includes a first insulating section filled in the fourth gap, and a second insulating section filled in the fifth gap.
  • the antenna structure further includes a bridge structure.
  • One end of the bridge structure is connected to the first part of the second metal segment.
  • the other end of the bridge structure is connected to the second part of the second metal segment.
  • the anode of the first feeder circuit is connected to the middle of the bridge structure.
  • the antenna structure further includes a third conductive section, a fourth conductive section, a first matching circuit, and a second matching circuit.
  • the second end of the first conductive segment is sequentially connected to the first matching circuit, the third conductive segment, and the first metal segment.
  • the fourth end of the second conductive segment is sequentially connected to the second matching circuit, the fourth conductive segment, and the third metal segment.
  • the first conductive section and the second conductive section are two symmetrical parallel wires extending from the floor of the circuit board.
  • the width direction of the electronic device is the X direction.
  • the length direction of the electronic device is the Y direction.
  • the thickness direction of the electronic device is the Z direction. In the Z direction, there is a height difference between the first conductive segment and the second conductive segment and the third conductive segment and the fourth conductive segment.
  • this application provides an electronic device.
  • the electronic equipment includes a circuit board and an antenna structure.
  • the antenna structure includes a first metal segment, a second metal segment, a third metal segment, a fourth metal segment, a first conductive segment, a second conductive segment, a first feeding circuit, and a second feeding circuit.
  • a first gap is formed between the first metal segment and the side surface of the circuit board.
  • a second gap is formed between the second metal segment and the side surface of the circuit board.
  • a third gap is formed between the third metal segment and the side surface of the circuit board.
  • a fourth gap is formed between the fourth metal segment and the side surface of the circuit board.
  • the first slot, the second slot, the third slot, and the fourth slot communicate with each other.
  • a fifth gap is formed between the second metal segment and the first metal segment.
  • the second metal segment and the third metal segment form a sixth gap.
  • a seventh gap is formed between the third metal segment and the fourth metal segment.
  • the fifth gap, the sixth gap, and the seventh gap communicate with the first gap, the second gap, the third gap, and the fourth gap.
  • the end of the first metal segment facing away from the fifth slot is grounded.
  • the end of the second metal segment toward the fifth slot is grounded.
  • the third metal segment is grounded toward the end of the seventh slot.
  • the end of the fourth metal segment facing away from the seventh slot is grounded.
  • the negative pole of the first feeder circuit is grounded.
  • the anode of the first feeder circuit is connected to the second metal segment and the third metal segment.
  • the first conductive section includes a first end and a second end. The first end is grounded. The second end is connected to the first metal segment.
  • the second conductive section includes a third end and a fourth end. The third terminal is grounded. The fourth end is connected to the fourth metal segment.
  • the negative electrode of the second feeder circuit is electrically connected between the first end and the second end.
  • the anode of the second feeder circuit is electrically connected between the third end and the fourth end.
  • the antenna structure can excite multiple resonance modes, so that the antenna can cover multiple frequency bands.
  • the electronic device includes a frame.
  • the circuit board, the first feeding circuit, and the second feeding circuit are all located in an area surrounded by the frame.
  • the first metal segment, the second metal segment, the third metal segment, and the fourth metal segment are all part of the frame.
  • the frame further includes a first insulating section filled in the fifth gap, a second insulating section filled in the sixth gap, and a third insulating section filled in the seventh gap.
  • the radiator of the antenna structure is formed by using the frame, so that the antenna design space can be saved.
  • the antenna structure further includes a bridge structure.
  • One end of the bridge structure is connected to the first part of the second metal segment.
  • the other end of the bridge structure is connected to the second part of the second metal segment.
  • the anode of the first feeder circuit is connected to the middle of the bridge structure.
  • the structure of the bridge structure is simple, easy to process, and easy to implement.
  • the antenna structure further includes a third conductive section, a fourth conductive section, a first matching circuit, and a second matching circuit.
  • the second end of the first conductive segment is sequentially connected to the first matching circuit, the third conductive segment, and the first metal segment.
  • the fourth end of the second conductive segment is sequentially connected to the second matching circuit, the fourth conductive segment, and the third metal segment.
  • the first matching circuit is used to match the antenna impedance. At this time, the first matching circuit can be used to reduce the size of the first conductive segment and the third conductive segment.
  • the second matching circuit is also used to match the antenna impedance. At this time, the second matching circuit can be used to reduce the size of the second conductive segment and the fourth conductive segment.
  • the first conductive section and the second conductive section are two symmetrical parallel wires extending from the floor of the circuit board.
  • the width direction of the electronic device is the X direction.
  • the length direction of the electronic device is the Y direction, and the thickness direction of the electronic device is the Z direction.
  • the Z direction there is a height difference between the first conductive segment and the second conductive segment and the third conductive segment and the fourth conductive segment.
  • this application provides an electronic device.
  • the electronic equipment includes a circuit board and an antenna structure.
  • the antenna structure includes a first metal segment, a second metal segment, a third metal segment, a first conductive segment, a second conductive segment, a first feeding circuit, and a second feeding circuit.
  • a first gap is formed between the first metal segment and the side surface of the circuit board.
  • a second gap is formed between the second metal segment and the side surface of the circuit board.
  • a third gap is formed between the third metal segment and the side surface of the circuit board. The first gap, the second gap, and the third gap communicate with each other.
  • the second metal segment includes a first part, a first ground part, and a second part that are connected in sequence.
  • the first metal segment and the first part form a fourth gap.
  • the third metal segment and the second part form a fifth gap.
  • the fourth gap and the fifth gap communicate with the first gap, the second gap, and the third gap.
  • the end of the first metal segment facing the second metal segment is grounded.
  • the fourth metal segment is grounded toward the end of the second metal segment.
  • the negative pole of the first feeder circuit is grounded.
  • the anode of the first feeder circuit is connected to the first part and the second part of the second metal segment.
  • the first conductive section includes a first end and a second end. The first end is grounded. The second end is connected to the first metal segment.
  • the second conductive section includes a third end and a fourth end. The third terminal is grounded. The fourth end is connected to the third metal segment.
  • the negative electrode of the second feeder circuit is electrically connected between the first end and the second end.
  • the anode of the second feeder circuit is electrically connected between the third end and the fourth end.
  • the antenna structure can excite multiple resonance modes, so that the antenna can cover multiple frequency bands.
  • the electronic device includes a frame.
  • the circuit board, the first feeding circuit and the second feeding circuit are all located in the area enclosed by the frame.
  • the first metal segment, the second metal segment, and the third metal segment are all part of the frame.
  • the frame further includes a first insulating section filled in the fourth gap, and a second insulating section filled in the fifth gap.
  • the radiator of the antenna structure is formed by using the frame, so that the antenna design space can be saved.
  • the antenna structure further includes a bridge structure.
  • One end of the bridge structure is connected to the first part of the second metal segment.
  • the other end of the bridge structure is connected to the second part of the second metal segment.
  • the anode of the first feeder circuit is connected to the middle of the bridge structure.
  • the structure of the bridge structure is simple, easy to process, and easy to implement.
  • the antenna structure further includes a third conductive section, a fourth conductive section, a first matching circuit, and a second matching circuit.
  • the second end of the first conductive segment is sequentially connected to the first matching circuit, the third conductive segment, and the first metal segment.
  • the fourth end of the second conductive segment is sequentially connected to the second matching circuit, the fourth conductive segment, and the third metal segment.
  • the first matching circuit is used to match the antenna impedance. At this time, the first matching circuit can be used to reduce the size of the first conductive segment and the third conductive segment.
  • the second matching circuit is also used to match the antenna impedance. At this time, the second matching circuit can be used to reduce the size of the second conductive segment and the fourth conductive segment.
  • the first conductive section and the second conductive section are two symmetrical parallel wires extending from the floor of the circuit board.
  • the width direction of the electronic device is the X direction.
  • the length direction of the electronic device is the Y direction.
  • the thickness direction of the electronic device is the Z direction. In the Z direction, there is a height difference between the first conductive segment and the second conductive segment and the third conductive segment and the fourth conductive segment.
  • this application provides an electronic device.
  • the electronic equipment includes a circuit board and an antenna structure.
  • the antenna structure includes a first metal segment, a second metal segment, a third metal segment, a first conductive segment, a second conductive segment, a first feeding circuit, and a second feeding circuit.
  • a first gap is formed between the first metal segment and the side surface of the circuit board.
  • a second gap is formed between the second metal segment and the side surface of the circuit board.
  • a third gap is formed between the third metal segment and the side surface of the circuit board. The first gap, the second gap, and the third gap communicate with each other.
  • one end of the first metal segment and the second metal segment form a fourth gap, and the other end is grounded.
  • One end of the third metal segment forms a fifth gap with the second metal segment, and the other end is grounded.
  • the fourth gap and the fifth gap communicate with the first gap, the second gap, and the third gap.
  • the second metal segment is grounded toward the end of the fourth slot, and the second metal segment is grounded toward the end of the fifth slot.
  • the negative pole of the first feeder circuit is grounded, and the positive pole of the first feeder circuit is connected to the second metal segment.
  • the first conductive section includes a first end and a second end. The first end is grounded, and the second end is connected to the first metal segment.
  • the second conductive section includes a third end and a fourth end. The third terminal is grounded. The fourth end is connected to the third metal segment.
  • the negative electrode of the second feeder circuit is electrically connected between the first end and the second end.
  • the anode of the second feeder circuit is electrically connected between the third end and the fourth end.
  • the antenna structure can excite multiple resonance modes, so that the antenna can cover multiple frequency bands.
  • the electronic device includes a frame.
  • the circuit board, the first feeding circuit, and the second feeding circuit are all located in an area surrounded by the frame.
  • the first metal segment, the second metal segment, and the third metal segment are all part of the frame.
  • the frame further includes a first insulating section filled in the fourth gap, and a second insulating section filled in the fifth gap.
  • the radiator of the antenna structure is formed by using the frame, so that the antenna design space can be saved.
  • the antenna structure further includes a third conductive section, a fourth conductive section, a first matching circuit, and a second matching circuit.
  • the second end of the first conductive segment is sequentially connected to the first matching circuit, the third conductive segment, and the first metal segment.
  • the fourth end of the second conductive segment is sequentially connected to the second matching circuit, the fourth conductive segment, and the third metal segment.
  • the first matching circuit is used to match the antenna impedance. At this time, the first matching circuit can be used to reduce the size of the first conductive segment and the third conductive segment.
  • the second matching circuit is also used to match the antenna impedance. At this time, the second matching circuit can be used to reduce the size of the second conductive segment and the fourth conductive segment.
  • the first conductive section and the second conductive section are two symmetrical parallel wires extending from the floor of the circuit board.
  • the width direction of the electronic device is the X direction.
  • the length direction of the electronic device is the Y direction.
  • the thickness direction of the electronic device is the Z direction. In the Z direction, there is a height difference between the first conductive segment and the second conductive segment and the third conductive segment and the fourth conductive segment.
  • FIG. 1 is a schematic structural diagram of an implementation manner of an electronic device provided by an embodiment of the present application
  • FIG. 2 is an exploded schematic diagram of the electronic device shown in FIG. 1;
  • 3A is a schematic diagram of the common mode slot antenna involved in this application.
  • FIG. 3B is a schematic diagram of the distribution of current, electric field, and magnetic current in a common mode slot antenna mode
  • 4A is a schematic diagram of the differential mode slot antenna involved in this application.
  • 4B is a schematic diagram of the distribution of current, electric field, and magnetic current in a differential mode slot antenna mode
  • Fig. 5A shows the common mode line antenna provided by the present application
  • FIG. 5B shows a schematic diagram of the current and electric field distribution of the common mode line antenna mode provided by the present application
  • Fig. 6A shows the differential mode line antenna provided by the present application
  • FIG. 6B shows the current and electric field distribution of the differential mode line antenna mode provided by the present application
  • Fig. 7 is a schematic cross-sectional view of the electronic device shown in Fig. 1 at the line A-A;
  • FIG. 8 is an enlarged schematic diagram of an embodiment of the electronic device shown in FIG. 7 at B;
  • FIG. 9 is a schematic diagram of an embodiment of the antenna structure of the electronic device shown in FIG. 8;
  • Fig. 10 is a graph of reflection coefficient of the antenna structure shown in Fig. 9;
  • FIG. 11 is an efficiency curve diagram of the antenna structure shown in FIG. 9;
  • Fig. 12 is a graph of isolation of the antenna structure shown in Fig. 9;
  • Fig. 13a is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 9 under a signal with a frequency of 1.84 GHz;
  • Fig. 13b is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.07 GHz;
  • Fig. 13c is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.49 GHz;
  • Fig. 13d is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.04 GHz;
  • Fig. 13e is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.21 GHz;
  • Fig. 13f is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 9 under a signal with a frequency of 1.84 GHz;
  • Fig. 13g is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.07 GHz;
  • Fig. 13h is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.49 GHz;
  • Fig. 13i is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.04 GHz;
  • Fig. 13j is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.21 GHz;
  • FIG. 14 is a schematic diagram of another embodiment of the antenna structure of the electronic device shown in FIG. 8;
  • FIG. 15 is a schematic diagram of still another embodiment of the antenna structure of the electronic device shown in FIG. 8;
  • Fig. 16 is an enlarged schematic diagram of another embodiment of the electronic device shown in Fig. 7 at B;
  • FIG. 17 is a schematic diagram of an embodiment of the antenna structure of the electronic device shown in FIG. 16;
  • FIG. 18 is a graph of the reflection coefficient of the antenna structure shown in FIG. 17;
  • FIG. 19 is an efficiency curve diagram of the antenna structure shown in FIG. 17;
  • FIG. 20 is a graph of isolation of the antenna structure shown in FIG. 17;
  • Fig. 21a is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 17 under a signal with a frequency of 1.75 GHz;
  • Fig. 21b is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 17 under a signal with a frequency of 2.36 GHz;
  • Fig. 21c is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 17 under a signal with a frequency of 2.79 GHz;
  • Fig. 21d is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 17 under a signal with a frequency of 1.87 GHz;
  • 21e is a schematic diagram of the flow of current and electric field of the antenna structure shown in FIG. 17 under a signal with a frequency of 2.36 GHz;
  • FIG. 21f is a schematic diagram of the flow of current and electric field of the antenna structure shown in FIG. 17 under a signal with a frequency of 2.87 GHz;
  • Fig. 21g is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 17 under a signal with a frequency of 1.75 GHz;
  • 21h is a schematic diagram of the radiation direction of the antenna structure shown in FIG. 17 under a signal with a frequency of 2.36 GHz;
  • Fig. 21i is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 17 under a signal with a frequency of 2.79 GHz;
  • Fig. 21j is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 17 under a signal with a frequency of 1.87 GHz;
  • Fig. 21k is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 17 under a signal with a frequency of 2.36 GHz;
  • FIG. 21l is a schematic diagram of the radiation direction of the antenna structure shown in FIG. 17 under a signal with a frequency of 2.87 GHz;
  • FIG. 22 is a schematic diagram of another embodiment of the antenna structure of the electronic device shown in FIG. 16;
  • Fig. 23a is an enlarged schematic diagram of another embodiment of the electronic device shown in Fig. 7 at B;
  • FIG. 23b is a schematic diagram of the antenna structure of the electronic device shown in FIG. 23a;
  • FIG. 24a is an enlarged schematic diagram of another embodiment of the electronic device shown in FIG. 7 at B;
  • FIG. 24b is a schematic diagram of the antenna structure of the electronic device shown in FIG. 24a;
  • Fig. 25a is an enlarged schematic diagram of another embodiment of the electronic device shown in Fig. 7 at B;
  • FIG. 25b is a schematic diagram of the antenna structure of the electronic device shown in FIG. 25a.
  • FIG. 1 is a schematic structural diagram of an implementation manner of an electronic device according to an embodiment of the present application.
  • the electronic device 100 may be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a camera, a personal computer, a notebook computer, a vehicle-mounted device, a wearable device, Augmented reality (AR) glasses, AR helmet, virtual reality (VR) glasses or VR helmet.
  • the electronic device 100 of the embodiment shown in FIG. 1 is described by taking a mobile phone as an example.
  • the width direction of the electronic device 100 is defined as the X axis.
  • the length direction of the electronic device 100 is the Y axis.
  • the thickness direction of the electronic device 100 is the Z axis.
  • FIG. 2 is an exploded schematic diagram of the electronic device shown in FIG. 1.
  • the electronic device 100 includes a housing 10, a screen 20 and a circuit board 30.
  • the housing 10 can be used to support the screen 20 and related components in the electronic device 100.
  • the housing 10 includes a back cover 11 and a frame 12.
  • the back cover 11 is arranged opposite to the screen 20.
  • the back cover 11 and the screen 20 are installed on opposite sides of the frame 12.
  • the back cover 11, the frame 12 and the screen 20 jointly enclose a receiving space 13.
  • the accommodating space 13 can be used to accommodate components of the electronic device 100, such as a battery, a speaker, a microphone, or a receiver.
  • FIG. 1 illustrates a structure in which the back cover 11, the frame 12 and the screen 20 enclose a substantially rectangular parallelepiped.
  • the back cover 11 can be fixedly connected to the frame 12 by glue.
  • the back cover 11 and the frame 12 may also form an integral structure, that is, the back cover 11 and the frame 12 are integrally formed.
  • the material of the back cover 11 may be a metal material, or an insulating material, such as glass or plastic.
  • the material of the frame 12 may be a metal material or an insulating material, such as plastic or glass.
  • the screen 20 is installed in the housing 10.
  • the screen 20 can be used to display images, text, and the like.
  • the screen 20 includes a protective cover 21 and a display screen 22.
  • the protective cover 21 is laminated on the display screen 22.
  • the protective cover 21 can be arranged close to the display screen 22, and can be mainly used to protect the display screen 22 from dust.
  • the material of the protective cover 21 can be, but is not limited to, glass.
  • the display 22 may be an organic light-emitting diode (OLED) display, an active matrix organic light-emitting diode or an active-matrix organic light-emitting diode (AMOLED) display , Mini organic light-emitting diode display, micro organic light-emitting diode display, micro organic light-emitting diode display, quantum dot light-emitting diode (quantum) dot light emitting diodes, QLED) display screen.
  • OLED organic light-emitting diode
  • AMOLED active-matrix organic light-emitting diode
  • Mini organic light-emitting diode display micro organic light-emitting diode display
  • micro organic light-emitting diode display micro organic light-emitting diode display
  • quantum dot light-emitting diode (quantum) dot light emitting diodes, QLED) display screen QLED
  • the circuit board 30 can be used to install electronic components of the electronic device 100.
  • the electronic components may include a central processing unit (CPU), a battery management unit, and a baseband processing unit.
  • the circuit board 30 is located between the screen 20 and the back cover 11, that is, the circuit board 30 is located in the receiving space 13.
  • the position of the circuit board 30 in the electronic device 100 is not limited to the position indicated by the dashed line in FIG. 1.
  • the circuit board 30 may be a rigid circuit board, a flexible circuit board, or a flexible and rigid circuit board.
  • the circuit board 30 may be a FR-4 dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, and so on.
  • FR-4 is the code name of a flame-resistant material grade
  • Rogers dielectric board is a high-frequency board.
  • the electronic device 100 includes multiple antennas.
  • “plurality” means at least two.
  • the antenna is used to transmit and receive electromagnetic wave signals.
  • Each antenna in the electronic device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the electronic device 100 may use an antenna to communicate with a network or other devices using one or more of the following communication technologies.
  • communication technology includes Bluetooth (BT) communication technology, global positioning system (GPS) communication technology, wireless fidelity (Wi-Fi) communication technology, global system for mobile communications , GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication technology, 5G communication technology, SUB-6G communication technology, and other future communication technologies, etc.
  • BT Bluetooth
  • GPS global positioning system
  • Wi-Fi wireless fidelity
  • GSM global system for mobile communications
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • the antenna includes a ground plate.
  • the ground plate can be used to ground the radiator of the antenna.
  • the ground plate may be the circuit board 30 of the electronic device 100 or part of the housing 10 of the electronic device 100.
  • the ground plate can also be integrated in other components of the electronic device 100, such as the screen 20. In this application, it is described as an example that the ground plate is the circuit board 30.
  • FIGS. 1 and 2 only schematically show some components included in the electronic device 100, and the actual shape, actual size, and actual structure of these components are not limited by FIGS. 1 and 2.
  • the electronic device 100 may adopt a full-screen industrial design (ID).
  • ID means a huge screen-to-body ratio (usually above 90%).
  • the width of the frame 12 of the full screen is greatly reduced, and the internal components of the electronic device 100, such as the front camera, receiver, fingerprint reader, antenna, etc., need to be re-arranged.
  • the headroom area is reduced, and the antenna space is further compressed.
  • the size, bandwidth, and efficiency of the antenna are interrelated and affect each other. If the size (space) of the antenna is reduced, the efficiency-bandwidth product of the antenna is bound to decrease.
  • multi-input multi-output, MIMO multi-input multi-output
  • ECC envelope correlation coefficient
  • the antenna design solution provided in this application can be applied to a MIMO antenna.
  • MIMO antenna characteristics with high isolation and low ECC can be realized.
  • the antenna structure can also implement an antenna that covers more frequency bands, so that the electronic device 100 with limited space can also transmit or receive electromagnetic wave signals of more frequency bands.
  • CM slot antenna mode 1. Common mode (CM) slot antenna mode
  • FIG. 3A is a schematic diagram of the common mode slot antenna involved in this application.
  • the slot antenna 101 may include a slot 103, a feeding point 107, and a feeding point 109.
  • the gap 103 can be opened on the floor of the PCB 17.
  • An opening 105 is provided on one side of the gap 103, and the opening 105 can be specifically opened in the middle of the side.
  • the feeding point 107 and the feeding point 109 may be respectively arranged on both sides of the opening 105.
  • the feeding point 107 and the feeding point 109 can be respectively used to connect the positive pole and the negative pole of the feed source of the slot antenna 101.
  • the center conductor (transmission line center conductor) of the coaxial transmission line can be connected to the feed point 107 through the transmission line, and the outer conductor (transmission line outer conductor) of the coaxial transmission line can pass through The transmission line is connected to the feeding point 109.
  • the outer conductor of the coaxial transmission line is grounded.
  • the slot antenna 101 can be fed at the opening 105, and the opening 105 can also be referred to as a feeding place.
  • the positive pole of the feed source can be connected to one side of the opening 105, and the negative pole of the feed source can be connected to the other side of the opening 105.
  • FIG. 3B is a schematic diagram of the current, electric field, and magnetic current distribution of the common mode slot antenna mode.
  • the current is distributed in the same direction on both sides of the middle position of the slot antenna 101, but the electric field and magnetic current are distributed in opposite directions on both sides of the middle position of the slot antenna 101.
  • the feed structure shown in FIG. 3A may be referred to as an anti-symmetric feed structure.
  • the slot antenna pattern shown in FIG. 3B can be referred to as a CM slot antenna pattern.
  • the electric field, current, and magnetic current shown in FIG. 3B can be respectively referred to as the electric field, current, and magnetic current of the CM slot antenna mode.
  • the current and electric field of the CM slot antenna mode are generated by the slots on both sides of the middle position of the slot antenna 101 working in the 1/4 wavelength mode: the current is weak at the middle position of the slot antenna 101 and strong at both ends of the slot antenna 101.
  • the electric field is strong at the middle position of the slot antenna 101 and weak at both ends of the slot antenna 101.
  • FIG. 4A is a schematic diagram of the differential mode slot antenna involved in this application.
  • the slot antenna 110 may include a slot 113, a feeding point 117, and a feeding point 115. Wherein, the gap 113 can be opened on the floor of the PCB 17.
  • the feeding point 117 and the feeding point 115 may be respectively arranged in the middle positions of the two sides of the slot 113.
  • the feeding point 117 and the feeding point 115 may be respectively used to connect the positive pole and the negative pole of the feed source of the slot antenna 110.
  • the center conductor of the coaxial transmission line can be connected to the feed point 117 through the transmission line, and the outer conductor of the coaxial transmission line can be connected to the feed point 115 through the transmission line.
  • the outer conductor of the coaxial transmission line is grounded.
  • the middle position 112 of the slot antenna 110 is connected to the feed source, and the middle position 112 may also be referred to as the feed point.
  • the positive pole of the feed source can be connected to one side of the slot 113, and the negative pole of the feed source can be connected to the other side of the slot 113.
  • FIG. 4B is a schematic diagram of the current, electric field, and magnetic current distribution of the differential mode slot antenna mode.
  • the current is distributed in opposite directions on both sides of the middle position 112 of the slot antenna 110, but the electric field and magnetic current are distributed in the same direction on both sides of the middle position 112 of the slot antenna 110.
  • the feed structure shown in FIG. 4A may be referred to as a symmetric feed structure.
  • the slot antenna pattern shown in FIG. 4B may be referred to as a DM slot antenna pattern.
  • the electric field, current, and magnetic current shown in Fig. 4B can be distributed called the electric field, current, and magnetic current of the DM slot antenna mode.
  • the current and electric field of the DM slot antenna mode are generated by the entire slot 113 working in the 1/2 wavelength mode: the current is weak at the middle position of the slot antenna 110 and strong at both ends of the slot antenna 110.
  • the electric field is strong at the middle position of the slot antenna 110 and weak at both ends of the slot antenna 110.
  • FIG. 5A shows the common mode line antenna provided by the present application.
  • the wire antenna 101 is connected to the feed at an intermediate position 103.
  • the positive pole of the feed is connected to the middle position 103 of the online antenna 101, and the negative pole of the feed is connected to the ground (for example, the floor).
  • FIG. 5B shows a schematic diagram of the current and electric field distribution of the common mode line antenna mode provided by the present application.
  • the current is reversed on both sides of the middle position 103 and presents a symmetrical distribution; the electric field is distributed in the same direction on both sides of the middle position 103.
  • the current at the feeder 102 is distributed in the same direction.
  • the feed structure shown in FIG. 5A may be referred to as a symmetric feed structure.
  • the wire antenna pattern shown in FIG. 5B can be referred to as a CM wire antenna pattern.
  • the current and electric field shown in FIG. 5B can be respectively referred to as the current and electric field of the CM line antenna mode.
  • the current and electric field of the CM line antenna mode are generated by the two horizontal branches of the line antenna 101 on both sides of the middle position 103 as 1/4 wavelength antennas.
  • the current is strong at the middle position 103 of the in-line antenna 101 and weak at both ends of the in-line antenna 101.
  • the electric field is weak at the middle position 103 of the line antenna 101, and strong at both ends of the line antenna 101.
  • FIG. 6A shows the differential mode line antenna provided by the present application.
  • the wire antenna 104 is connected to the feed at an intermediate position 106.
  • the positive pole of the feed is connected to one side of the middle position 106, and the negative pole of the feed is connected to the other side of the middle position 106.
  • FIG. 6B shows the current and electric field distribution of the differential mode line antenna mode provided by the present application.
  • the current is in the same direction on both sides of the middle position 106, showing an antisymmetric distribution; the electric field is distributed in opposite directions on both sides of the middle position 106.
  • the current at the feeder 105 exhibits a reverse distribution.
  • the feed structure shown in FIG. 6A can be referred to as an antisymmetric feed structure.
  • the wire antenna pattern shown in FIG. 6B may be referred to as a DM wire antenna pattern.
  • the current and electric field shown in FIG. 6B can be referred to as the current and electric field of the DM line antenna mode, respectively.
  • the current and electric field in the DM wire antenna mode are generated by the entire wire antenna 104 as a 1/2-wavelength antenna.
  • the current is strong at the middle position 106 of the in-line antenna 104, and weak at both ends of the in-line antenna 104.
  • the electric field is weak at the middle position 106 of the line antenna 104, and strong at both ends of the line antenna 104.
  • the first embodiment By setting an antenna structure composed of a slot antenna and a wire antenna, and using two feeding methods, the antenna structure excites four antenna modes: common mode slot antenna, differential mode slot antenna, and common mode slot antenna. Mode line antenna and differential mode line antenna.
  • the antenna structure composed of the slot antenna and the wire antenna can excite multiple resonant modes through two feeding methods, so that the antenna can cover multiple frequency bands.
  • FIG. 7 is a schematic cross-sectional view of the electronic device shown in FIG. 1 at the line A-A.
  • the frame 12 includes a first long frame 121 and a second long frame 122 disposed opposite to each other, and a first short frame 123 and a second short frame 124 disposed opposite to each other.
  • the first short frame 123 and the second short frame 124 are connected between the first long frame 121 and the second long frame 122.
  • the shape of the frame 12 is rectangular or substantially rectangular.
  • the circuit board 30 is located in an area enclosed by the first long frame 121, the second long frame 122, the first short frame 123 and the second short frame 124.
  • the radiator of the antenna structure is a part of the first short frame 123 as an example for description.
  • the radiator of the antenna structure may also be a part of the first long frame 121, a part of the second long frame 122, or a part of the second short frame 124.
  • two or more of a part of the first long frame 121, a part of the second long frame 122, a part of the first short frame 123, and a part of the second short frame 124 may be used as The radiator of the antenna structure.
  • FIG. 8 is an enlarged schematic diagram of an embodiment of the electronic device shown in FIG. 7 at B.
  • the first short frame 123 includes 1231 of the first metal segments connected in sequence.
  • the first insulating segment 1232 and the second metal segment 1233 that is, the first insulating segment 1232 is connected between the first metal segment 1231 and the second metal segment 1233.
  • the first insulating section 1232 electrically isolates the first metal section 1231 from the second metal section 1233.
  • a third gap is formed between the first metal segment 1231 and the second metal segment 1233.
  • the first insulating section 1232 may be formed by filling an insulating material in the third gap.
  • the insulating material may be a material such as polymer, glass, ceramic, or a combination of these materials.
  • the third gap can be filled with air, that is, the third gap is not filled with any insulating material.
  • At least one suspended metal segment may also be provided in the third gap. At this time, the floating metal segment in the third gap is divided into multiple parts.
  • the positions of the first metal segment 1231 and the second metal segment 1233 can be reversed. At this time, the 1231 of the first metal segment is located to the right of the first insulating segment 1232. The second metal segment 1233 is located to the left of the first insulating segment 1232.
  • the 1231 of the first metal segment includes a first part 1, a first ground part 2 and a second part 3 connected in sequence.
  • the first ground part 2 is connected between the first part 1 and the second part 3.
  • the first grounding part 2 refers to the part of the first metal segment 1231 that is grounded.
  • the size and shape of the first grounding portion 2 are not limited to the size and shape shown in FIG. 8.
  • the frame 12 includes connecting branches 125.
  • the material of the connection branch 125 is a conductive material, such as a metal material.
  • the first grounding part 2 is electrically connected to the floor of the circuit board 30 through the connection stub 125.
  • the connecting branch 125 and the first metal segment 1231 may be an integral structure.
  • the connecting branch 125 can also be fixed to the first metal segment 1231 by welding or bonding.
  • the electronic device 100 may also include shrapnel.
  • the first grounding part 2 is electrically connected to the floor of the circuit board 30 through an elastic sheet.
  • a first gap 31 is provided between the first metal segment 1231 and the circuit board 30.
  • the first gap 31 communicates with the first metal segment 1231 and the second metal segment 1233 to form a third gap.
  • the first gap 31 can be filled with insulating materials, for example, the first gap 31 can be filled with materials such as polymer, glass, ceramic, or a combination of these materials.
  • the first gap 31 can be filled with air, that is, the first gap 31 is not filled with any insulating material.
  • the second metal segment 1233 includes a third part 4, a second grounding part 5 and a third part 6.
  • the second grounding part 5 refers to a part of the second metal segment 1233 that is grounded.
  • the second ground part 5 is electrically connected to the floor of the circuit board 30.
  • the electrical connection manner of the second grounding portion 5 and the floor of the circuit board 30 please refer to the electrical connection manner of the first grounding portion 2 and the floor of the circuit board 30.
  • a second gap 32 is provided between the second metal segment 1233 and the circuit board 30.
  • the second slit 32 communicates with the first slit 31.
  • the second gap 32 communicates with the first metal segment 1231 and the second metal segment 1233 to form a third gap.
  • the setting method of the second slot 32 can refer to the setting method of the first slot 31, which will not be repeated here.
  • FIG. 9 is a schematic diagram of an embodiment of the antenna structure of the electronic device shown in FIG. 8.
  • the first part 1 and the first ground part 2 form a first radiator 101.
  • the second part 3 and the first ground part 2 form a second radiator 102.
  • the first ground part 2 is the ground terminal of the first radiator 101 and the second radiator 102.
  • the end of the first radiator 101 away from the first grounded portion 2 is an open end that is not grounded.
  • the end of the second radiator 102 away from the first grounded portion 2 is an open end that is not grounded.
  • the third part 4 and the second ground part 5 form a third radiator 103.
  • the fourth part 6 and the second ground part 5 form a fourth radiator 104.
  • the second ground part 5 is the ground end of the third radiator 103 and the fourth radiator 104, and the end of the third radiator 103 away from the second ground part 5 is an open end that is not grounded.
  • the end of the fourth radiator 104 away from the second grounding portion 5 is an open end that is not grounded.
  • the second radiator 102 and the third radiator 103 form the radiator of the slot antenna 40.
  • the first radiator 101 and the fourth radiator 104 form a radiator of the wire antenna 50.
  • the length of the second radiator 102 is equal to the length of the third radiator 103, and the length of the second radiator 102 and the length of the third radiator 103 are both 1/4 wavelength.
  • the length of the first radiator 101 is equal to the length of the fourth radiator 104, and the length of the first radiator 101 and the length of the fourth radiator 104 are 1/4 wavelength.
  • the radiator of the wire antenna 50 is preferable. It can be understood that, in practical applications, the length of the first radiator 101 and the length of the fourth radiator 104 are difficult to be completely equal, and this structural imbalance can be compensated by adjusting the matching circuit or the like.
  • the length of the second radiator 102 and the length of the third radiator 103 may not be equal.
  • the length of the first radiator 101 and the length of the fourth radiator 104 may not be equal.
  • the first short frame 123 may further include a second insulating section 1237 and a third insulating section 1239.
  • the second insulating section 1237 is connected to the first part 1.
  • the third insulating section 1239 is connected to the fourth part 6.
  • the second insulating section 1237 is used to electrically isolate the first metal section 1231 from other metal sections of the frame 12.
  • the third insulating section 1239 is used to electrically isolate the second metal section 1233 from other metal sections of the frame 12.
  • the slot antenna 40 includes a bridge structure 41.
  • the material of the bridge structure 41 is a conductive material, for example, a metal material.
  • the bridge structure 41 is located inside the frame 12.
  • the bridge structure 41 is disposed on the circuit board 30, and the bridge structure 41 is insulated from the floor of the circuit board 30.
  • the surface of the circuit board 30 facing the screen 20 is a floor.
  • a bridge structure 41 is provided on the surface of the circuit board 30 away from the screen 20. In this way, the bridge structure 41 can be insulated from the floor of the circuit board 30.
  • the structure of the bridge structure 41 may be a flexible circuit board, laser direct structuring (LDS) metal, in-mold injection metal, or printed circuit board wiring.
  • a bracket is provided on the surface of the circuit board 30 facing the screen 20. The material of the bracket is an insulating material, such as plastic. At this time, the bracket is insulated from the floor of the circuit board 30. Then the bridge structure 41 is set on the support. In this way, the bridge structure 41 can also be insulated from the floor of the circuit board 30.
  • the bridge structure 41 is a symmetrical figure.
  • the shape of the bridge structure 41 is a "P" shape.
  • the symmetry of the bridge structure 41 is better, that is, the symmetry of the slot antenna 40 is better.
  • the structure of the bridge structure 41 is relatively simple and easy to prepare.
  • the shape of the bridge structure 41 may also be an arc.
  • the bridge structure 41 may also be an asymmetrical figure.
  • one end of the bridge structure 41 is connected to the second radiator 102. In one embodiment, one end of the bridge structure 41 is connected to the second radiator 102 through an elastic sheet. The other end of the bridge structure 41 is connected to the third radiator 103. In one embodiment, the other end of the bridge structure 41 is connected to the third radiator 103 via an elastic sheet. At this time, the position where the second radiator 102 is connected to the bridge structure 41 is the first feeding point of the slot antenna 40. The position where the third radiator 103 is connected to the bridge structure 41 is the second feeding point of the slot antenna 40.
  • the slot antenna 40 further includes a first feeding circuit 42.
  • the negative electrode of the first feeder circuit 42 is grounded, that is, the negative electrode of the first feeder circuit 42 is electrically connected to the floor of the circuit board 30.
  • the anode of the first feed circuit 42 is electrically connected to the middle of the bridge structure 41.
  • FIG. 8 simply illustrates the orientation of the positive electrode and the negative electrode of the first feeder circuit 42 by arrows. The arrow points to the negative pole to the positive pole. It is understandable that this type of feeding method is a symmetric feeding method.
  • the first feed circuit 42 includes a feed source and a capacitor.
  • the negative electrode of the feed is electrically connected to the floor of the circuit board 30.
  • the positive pole of the feed is electrically connected to one side of the capacitor.
  • the other side of the capacitor is electrically connected to the middle of the bridge structure 41.
  • the capacitor is electrically connected to the positive electrode of the feed source and the middle of the bridge structure 41.
  • the wire antenna 50 includes a first conductive section 51, a third conductive section 52 and a first matching circuit 56.
  • the materials of the first conductive section 51 and the third conductive section 52 are both conductive materials, for example, metal materials.
  • the first conductive segment 51, the third conductive segment 52 and the first matching circuit 56 are located inside the frame 12.
  • the first conductive section 51 includes a first end 511 and a second end 512 disposed away from the first end 511.
  • the first end 511 of the first conductive section 51 is electrically connected to the floor of the circuit board 30, that is, the first end 511 is grounded. It can be understood that the electrical connection manner of the first end 511 and the floor of the circuit board 30 can refer to the electrical connection manner of the first metal segment 1231 and the floor of the circuit board 30. I won't repeat it here.
  • the second end 512 of the first conductive section 51 is electrically connected to the third conductive section 52 through the first matching circuit 56.
  • the first matching circuit 56 is used to match the antenna impedance.
  • the first matching circuit 56 may include at least one circuit component.
  • the first matching circuit 56 may include at least one of a resistor, an inductor, and a capacitor as a lumped element.
  • the first matching circuit 56 may include at least one of an inductance and a capacitance as a distributed element.
  • the second end 512 may also be directly electrically connected to the third conductive section 52.
  • the end of the third conductive segment 52 away from the first matching circuit 56 is connected to the first radiator 101.
  • the end portion of the third conductive section 52 away from the first matching circuit 56 is connected to the first radiator 101 through an elastic sheet. At this time, the position where the first radiator 101 is connected to the third conductive section 52 is the first feeding point.
  • the first conductive section 51, the third conductive section 52 and the first matching circuit 56 are arranged on the floor of the circuit board 30, and the first conductive section 51, the third conductive section 52 and the first matching circuit 56 are all connected to The floor of the circuit board 30 is insulated.
  • the circuit board 30 is provided with a floor facing the surface of the screen 20.
  • a bracket is provided on the surface of the circuit board 30 facing the screen 20.
  • the material of the bracket is an insulating material, such as plastic.
  • the first conductive section 51 is then arranged on the support.
  • a third conductive section 52 is provided on the surface of the circuit board 30 away from the screen 20.
  • a hollow area is provided on the circuit board 30, and the first matching circuit 56 is disposed in the hollow area. It is understandable that because the first conductive section 51 and the third conductive section 52 are located on the opposite sides of the circuit board 30 (that is, there is a height difference between the first conductive section 51 and the third conductive section 52 in the Z direction), so attached FIG.
  • first conductive section 51 simply illustrates the third conductive section 52 through a solid line, and simply illustrates the first conductive section 51 through a dashed line.
  • first conductive section 51, the third conductive section 52 and the first matching circuit 56 can also be insulated from the floor of the circuit board 30.
  • the structure of the first conductive section 51 and the third conductive section 52 may be a flexible circuit board, a laser directly formed metal, an in-mold injection metal, or a printed circuit board wiring.
  • the first conductive section 51, the third conductive section 52 and the first matching circuit 56 are provided on the surface of the circuit board 30 away from the screen 20.
  • the first end 511 of the first conductive section 51 can be electrically connected to the floor of the circuit board 30 through the hollow area.
  • the first conductive section 51, the third conductive section 52, and the first matching circuit 56 can all be insulated from the floor of the circuit board 30.
  • the structure of the first conductive section 51 and the third conductive section 52 may be a flexible circuit board, a laser directly formed metal, an in-mold injection metal, or a printed circuit board wiring.
  • the wire antenna 50 further includes a second conductive section 53, a fourth conductive section 54 and a second matching circuit 57.
  • the materials of the second conductive section 53 and the fourth conductive section 54 are both conductive materials, for example, metal materials.
  • the second conductive section 53, the fourth conductive section 54 and the second matching circuit 57 are located inside the frame 12, that is, in the receiving space 13.
  • the arrangement of the second conductive segment 53, the fourth conductive segment 54 and the second matching circuit 57 can refer to the arrangement of the first conductive segment 51, the third conductive segment 52 and the first matching circuit 56. I won't repeat it here. At this time, there is a height difference between the second conductive segment 53 and the fourth conductive segment 54 in the Z direction).
  • the second conductive section 53 includes a third end 531 and a fourth end 532 located away from the third end 531.
  • the third end 531 of the second conductive section 53 is electrically connected to the floor of the circuit board 30, that is, the first end 511 is grounded. It can be understood that the manner of electrical connection between the third end 531 and the floor of the circuit board 30 can refer to the manner of electrical connection between the first metal segment 1231 and the floor of the circuit board 30. I won't repeat it here.
  • the fourth end 532 of the second conductive section 53 is electrically connected to the fourth conductive section 54 through the second matching circuit 57.
  • the second matching circuit 57 is used to match the antenna impedance.
  • the second matching circuit 57 may include at least one circuit component.
  • the second matching circuit 57 may include at least one of a resistor, an inductor, and a capacitor as a lumped element.
  • the second matching circuit 57 may include at least one of an inductance and a capacitance as a distributed element.
  • the fourth terminal 532 may also be directly electrically connected to the fourth conductive section 54.
  • the end of the fourth conductive segment 54 away from the second conductive segment 53 is connected to the fourth radiator 104.
  • the end of the fourth conductive section 54 away from the second conductive section 53 is connected to the fourth radiator 104 through an elastic sheet. At this time, the position where the fourth radiator 104 is connected to the fourth conductive section 54 is the second feeding point.
  • the first conductive segment 51 and the second conductive segment 53 are two symmetrical parallel wires.
  • the shape of the first conductive section 51 is a " ⁇ " shape.
  • the shape of the second conductive section 53 is also a " ⁇ " shape.
  • the symmetry between the first conductive segment 51 and the second conductive segment 53 is better, that is, the structural symmetry of the wire antenna 50 is better.
  • the structures of the first conductive section 51 and the second conductive section 53 are simple and easy to prepare.
  • the first conductive section 51 may also be arc-shaped.
  • the second conductive section 53 may also be arc-shaped.
  • the first conductive section 51 and the second conductive section 53 may also be asymmetrical patterns.
  • the third conductive section 52 and the fourth conductive section 54 are symmetrical figures.
  • the shape of the third conductive section 52 is shape.
  • the shape of the fourth conductive section 54 is shape.
  • the third conductive section 52 and the fourth conductive section 54 have better symmetry, that is, the structural symmetry of the wire antenna 50 is better.
  • the structures of the third conductive section 52 and the fourth conductive section 54 are simple and easy to prepare.
  • the third conductive section 52 may also be arc-shaped.
  • the fourth conductive section 54 may also be arc-shaped.
  • the third conductive section 52 and the fourth conductive section 54 may also be asymmetrical patterns.
  • the wire antenna 50 further includes a second feeding circuit 55.
  • the negative electrode of the second feeding circuit 55 is electrically connected between the first end 511 and the second end 512 of the first conductive section 51.
  • the anode of the second feeding circuit 55 is electrically connected between the third end 531 and the fourth end 532 of the second conductive section 53.
  • the negative electrode of the second feeding circuit 55 is electrically connected to the middle position of the first terminal 511 and the second terminal 512.
  • the anode of the second feeding circuit 55 is electrically connected to the middle position of the third terminal 531 and the fourth terminal 532. At this time, the symmetry of the structure of the wire antenna 50 is better.
  • the negative electrode of the second feeder circuit 55 may also deviate from the middle position of the first end 511 and the second end 512.
  • the positive electrode of the second feeding circuit 55 may also deviate from the middle position of the third terminal 531 and the fourth terminal 532.
  • Fig. 8 simply illustrates the orientation of the positive electrode and the negative electrode of the second feeder circuit 55 by arrows. The direction of the arrow is negative to positive, that is, from left to right. It is understandable that this feeding method is an anti-symmetric feeding method.
  • the orientation of the positive electrode and the negative electrode of the second feeder circuit 55 is from right to left.
  • this embodiment specifically introduces an antenna structure composed of a slot antenna 40 and a wire antenna 50, and two feeding modes of the antenna structure: symmetrical feeding and antisymmetrical feeding. Feed.
  • the antenna performance of this antenna structure will be described in detail below in conjunction with related drawings.
  • the frame 12 of the electronic device 100 has a thickness of about 4 mm and a width of about 3 mm.
  • the width of the clearance area between the frame 12 of the electronic device 100 and the floor of the circuit board 30 is about 1 mm, that is, the widths of the first gap 31 and the second gap 32 are both about 1 mm.
  • the width of the first insulating section 1232 is about 2 mm.
  • the dielectric constant of the insulating material used in the first insulating section 1232, the second insulating section 1237, and the third insulating section 1239 is 3.0, and the loss angle is 0.01.
  • the dielectric constant of the insulating material filled in the first gap 31 and the second gap 32 is also 3.0, and the loss angle is also 0.01.
  • FIG. 10 is a graph of the reflection coefficient of the antenna structure shown in FIG. 9.
  • the solid line represents the reflection coefficient curve of the antenna structure in the anti-symmetric feeding mode.
  • the dotted line in Fig. 10 represents the reflection coefficient curve of the antenna structure in the symmetrical feeding mode.
  • the abscissa of FIG. 10 represents frequency (in GHz), and the ordinate represents the reflection coefficient (in dB).
  • the antenna structure in the anti-symmetric feeding mode, can generate three resonant modes, and the resonant frequencies of the three resonant modes are in the vicinity of 1.84 GHz (the solid arrow 1 indicates Position), the vicinity of 2.07 GHz (the position indicated by the solid arrow 2), and the vicinity of 2.49 GHz (the position indicated by the solid arrow 3).
  • the antenna structure in a symmetrical feeding mode, can generate two resonance modes.
  • the resonant frequencies of the two resonant modes are respectively in the vicinity of 2.04 GHz (the position indicated by the dashed arrow 1) and the vicinity of 2.21 GHz (the position indicated by the dashed arrow 2). It is understandable that, in this embodiment, the frequency band 0 to 3 GHz is taken as an example for description.
  • the antenna structure can also generate five resonance modes. That is, five resonance frequencies are generated.
  • the antenna structure can excite five resonance modes, so that the antenna can cover multiple frequency bands.
  • FIG. 11 is an efficiency graph of the antenna structure shown in FIG. 9.
  • the solid line 1 (the curve indicated by the solid arrow 1) represents the system efficiency curve of the antenna structure in the anti-symmetric feeding mode.
  • the solid line 2 (the curve indicated by the solid arrow 2) represents the system efficiency curve of the antenna structure in the symmetrical feeding mode.
  • the dashed line 1 (the curve indicated by the dashed arrow 1) represents the radiation efficiency curve of the antenna structure in the anti-symmetric feeding mode.
  • the dashed line 2 (the curve indicated by the dashed arrow 2) represents the radiation efficiency curve of the antenna structure in the symmetrical feeding mode.
  • Fig. 11 represents frequency (unit: GHz), and the ordinate represents efficiency (unit: dB). According to Fig. 11, it can be seen that in the anti-symmetric feed mode of the antenna structure, the generated excitation resonance signal broadens the bandwidth of the antenna structure. In addition, in the symmetrical feeding mode of the antenna structure, the generated excitation resonance signal broadens the bandwidth of the antenna structure. Therefore, the antenna performance of the antenna structure is better.
  • FIG. 12 is a graph of isolation of the antenna structure shown in FIG. 9.
  • the abscissa of Fig. 12 represents frequency (unit: GHz), and the ordinate represents efficiency (unit: dB).
  • GHz frequency
  • dB efficiency
  • FIG. 12 it can be seen that in the anti-symmetric feeding mode of the antenna structure, the excitation resonance signal generated by the antenna structure and the isolation of the excitation resonance signal generated in the symmetric feeding mode can reach more than 16dB (the position indicated by the arrow). . Therefore, the antenna performance of the antenna structure is better.
  • Fig. 13a is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 9 under a signal with a frequency of 1.84 GHz.
  • Fig. 13b is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.07 GHz.
  • Fig. 13c is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.49 GHz.
  • Fig. 13d is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.04 GHz.
  • Fig. 13e is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.21 GHz.
  • the first type of current is generated on the antenna structure.
  • the current flow of the first type of current has two parts: one is the ground terminal of the third radiator 103 is transmitted to the open end of the third radiator 103, and the other is the open end of the second radiator 102 is transmitted to the second radiator 102 The ground terminal.
  • the direction of the electric field on each side of the second radiator 102 and the third radiator 103 is different.
  • the second type of current is generated on the antenna structure.
  • the flow of the second type of current has two parts: one part is the first conductive section 51, the third conductive section 52, the ground terminal of the first radiator 101 and the second radiator 102, and the other part is the third radiator 103 and the fourth radiator.
  • the flow of the second type of current is roughly in a loop.
  • the direction of the electric field on each side of the second radiator 102 and the third radiator 103 is different.
  • the directions of the electric fields on both sides of the first conductive section 51 and the third conductive section 52 are also opposite.
  • the directions of the electric fields on both sides of the fourth conductive section 54 and the second conductive section 53 are also opposite.
  • a third type of current is generated on the antenna structure.
  • the flow of the third type of current has two parts: one part is the open end of the fourth radiator 104, the ground end of the third radiator 103, and the open end of the third radiator 103, and the other part is the open end of the second radiator 102 , The ground end of the second radiator 102 and the open end of the first radiator 101.
  • the direction of the electric field on the side of the first radiator 101 and the second radiator 102 and the third radiator 103 and the fourth radiator 104 are the same.
  • the first radiator 101 and the second radiator 102 and the third radiator 103 and the fourth radiator 104 have different electric field directions on their respective sides.
  • a fourth current is generated on the antenna structure.
  • the fourth specific current flow includes two parts. One part is the open end of the fourth radiator 104, the ground end of the third radiator 103, and the open end of the third radiator 103, and the other part is the open end of the first radiator 101, the ground end of the first radiator 101, and The open end of the second radiator 102.
  • the directions of the electric fields on the respective sides of the first radiator 101 and the second radiator 102 and the third radiator 103 and the fourth radiator 104 are the same.
  • a fifth current flow direction is generated on the antenna structure.
  • the fifth specific current flow direction includes four parts. The first part is that the feeding end of the bridge structure 41 flows to the second radiator 102, and the second part is that the ground end of the second radiator 102 flows to the open end of the second radiator 102.
  • the third part is that the feeding end of the bridge structure 41 flows to the third radiator 103.
  • the fourth part is the open end of the third radiator 103 flowing to the ground end of the third radiator 103.
  • the direction of the electric field on each side of the second radiator 102 and the third radiator 103 is the same.
  • Fig. 13f is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 9 under a signal with a frequency of 1.84 GHz.
  • Fig. 13g is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.07 GHz.
  • Fig. 13h is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.49 GHz.
  • Fig. 13i is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.04 GHz.
  • Fig. 13j is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 9 under a signal with a frequency of 2.21 GHz.
  • the antenna structure of Figure 13f to Figure 13h has a stronger radiation intensity in the Y-axis direction and a weaker radiation intensity in the X-axis direction when the antenna structure of Figure 13f to Figure 13h is fed antisymmetrically. That is, the common mode slot antenna with a frequency of 1.84GHz has strong radiation intensity in the Y-axis direction, the common mode slot antenna with a frequency of 2.07GHz has strong radiation intensity in the Y-axis direction, and the 2.49GHz differential mode line antenna is on the Y-axis. The radiation intensity in the direction is stronger.
  • an antenna structure composed of a slot antenna 40 and a wire antenna 50 is provided, and two feeding methods are used to make the antenna structure excite four antenna resonances, of which the differential mode line antenna has two resonances. Mode, so that the antenna can cover multiple frequency bands.
  • the isolation between the excitation resonance signal generated by the antenna structure in the antisymmetric feeding mode and the excitation resonance signal generated by the antenna structure in the symmetric feeding mode can reach more than 16dB, thus making the antenna structure The antenna performance is better.
  • FIG. 14 is a schematic diagram of another implementation manner of the antenna structure of the electronic device shown in FIG.
  • the slot antenna 40 also includes a first tuning circuit 44 and a second tuning circuit 45.
  • a part of the first tuning circuit 44 is electrically connected to the end of the first metal segment 1231 facing the second metal segment 1233, and a part is grounded. In other words, the open end of the second radiator 102 is grounded through the first tuning circuit 44.
  • the first tuning circuit 44 is used to adjust the electrical length of the second radiator 102.
  • a part of the second tuning circuit 45 is electrically connected to the end of the second metal segment 1233 facing the first metal segment 1231, and a part is grounded.
  • the open end of the third radiator 103 is grounded through the second tuning circuit 45.
  • the second tuning circuit 45 is used to adjust the electrical length of the third radiator 103.
  • the first tuning circuit 44 is a capacitor. At this time, by setting the operating parameters of the capacitor, the electrical length of the second radiator 102 can be effectively adjusted, so that when the electrical length of the second radiator 102 is reduced, the slot antenna 40 can be miniaturized.
  • the second tuning circuit 45 may also be a capacitor.
  • FIG. 15 is a schematic diagram of still another implementation manner of the antenna structure of the electronic device shown in FIG. 8.
  • the wire antenna 50 also includes a third tuning circuit 58.
  • the third tuning circuit 58 is electrically connected between the end of the third conductive segment 52 away from the first metal segment 1231 and the end of the fourth conductive segment 54 away from the second metal segment 1233.
  • the third tuning circuit 58 is used to adjust the electrical length of the first radiator 101 and the electrical length of the fourth radiator 104.
  • the third tuning circuit 58 is a capacitor.
  • the capacitor is electrically connected between the third conductive section 52 and the fourth conductive section 54.
  • the electrical length of the first radiator 101 and the electrical length of the fourth radiator 104 can be reduced, thereby reducing the electrical length of the first radiator 101 and the electrical length of the fourth radiator 104.
  • the miniaturization of the wire antenna 50 can be realized.
  • the antenna structure of this embodiment may also include a first tuning circuit 44 and a second tuning circuit 45 that extend the antenna structure of the first embodiment.
  • a first tuning circuit 44 and a second tuning circuit 45 that extend the antenna structure of the first embodiment.
  • the material of the frame 12 is an insulating material.
  • the material of the first short frame 123 is also an insulating material.
  • a first metal segment 1231, a first insulating segment 1232, and a second metal segment 1233 are sequentially formed inside the first short frame 123.
  • the structure of the first metal segment 1231 and the second metal segment 1233 may be a flexible circuit board, laser direct structuring (LDS) metal, in-mold injection metal, or printed circuit board wiring.
  • LDS laser direct structuring
  • the first insulating section 1232 may be formed by filling the gap between the first metal section 1231 and the second metal section 1233 with an insulating material, for example, the insulating material is a material such as polymer, glass, ceramic, or a combination of these materials. In other embodiments, the first insulating section 1232 may also be a gap, that is, the gap is not filled with insulating material.
  • the antenna structure can excite four antennas.
  • a variety of antenna modes common mode slot antenna, differential mode slot antenna, common mode line antenna and differential mode line antenna.
  • the common mode line antenna has two resonance modes.
  • the common mode slot antenna also has two resonant modes. In this way, in this embodiment, multiple resonance modes can be excited by an antenna structure composed of a slot antenna 40 and a wire antenna 50, so that the antenna can cover multiple frequency bands.
  • the radiator of the antenna structure composed of the slot antenna and the wire antenna is a part of the first short frame 123 as an example for description.
  • the radiator of the antenna structure composed of the slot antenna and the wire antenna may also be a part of the first long frame 121, a part of the second long frame 122, or a part of the second short frame 124.
  • FIG. 16 is an enlarged schematic diagram of another embodiment of the electronic device shown in FIG. 7 at B.
  • the first short frame 123 includes a first metal segment 1231, a first insulating segment 1232, a second metal segment 1233, a second insulating segment 1234, and a third metal segment 1235 connected in sequence.
  • the first insulating section 1232 is located between the first metal section 1231 and the second metal section 1233.
  • the second insulating section 1234 is located between the second metal section 1233 and the third metal section 1235.
  • the second metal segment 1233 includes a first part 1, a first grounding part 2 and a second part 3.
  • the first part 1 is connected to the first insulating section 1232.
  • the second part 3 is connected to the second insulating section 1234.
  • a fourth gap is formed between the first metal segment 1231 and the first part 1.
  • the first insulating section 1232 may be formed by filling an insulating material in the fourth gap.
  • the insulating material may be a material such as polymer, glass, ceramic, or a combination of these materials.
  • the fourth gap can be filled with air, that is, the fourth gap is not filled with any insulating material.
  • a fifth gap is formed between the second portion 3 and the third metal segment 1235.
  • the second insulating section 1234 may be formed by filling an insulating material in the fifth gap.
  • the insulating material may be a material such as polymer, glass, ceramic, or a combination of these materials.
  • the grounding manner of the first grounding portion 2 in this embodiment can refer to the grounding manner of the first grounding portion 2 of the first embodiment, which will not be repeated here.
  • the end of the first metal segment 1231 away from the first insulating segment 1232 is grounded.
  • the end of the third metal segment 1235 away from the second insulating segment 1234 is grounded.
  • the grounding manner of the first metal section 1231 and the grounding manner of the third metal section 1235 can refer to the grounding manner of the first grounding portion 2 of the first embodiment, and details are not described herein again.
  • a first gap 31 is provided between the first metal segment 1231 and the floor of the circuit board 30.
  • the first gap 31 connects the first metal segment 1231 and the first part 1 to form a fourth gap, and the second part 3 and the third metal segment 1235 form a fifth gap.
  • the first gap 31 can be filled with insulating materials, for example, the first gap 31 can be filled with materials such as polymer, glass, ceramic, or a combination of these materials. In another embodiment, the first gap 31 can be filled with air, that is, the first gap 31 is not filled with any insulating material.
  • a second gap 32 is provided between the second metal segment 1233 and the floor of the circuit board 30.
  • the second slit 32 communicates with the first slit 31.
  • the second gap 32 connects the first metal segment 1231 and the first part 1 to form a fourth gap, and the second part 3 and the third metal segment 1235 form a fifth gap.
  • the arrangement of the second slit 32 can refer to the arrangement of the first slit 31. I won't repeat it here.
  • a third gap 33 is provided between the third metal segment 1235 and the floor of the circuit board 30.
  • the third gap 33 communicates with the first gap 31 and the second gap 32.
  • the third slit 33 communicates with the first slit 31.
  • the second gap 32 connects the first metal segment 1231 and the first part 1 to form a fourth gap, and the second part 3 and the third metal segment 1235 form a fifth gap.
  • the arrangement of the third slit 33 can refer to the arrangement of the first slit 31. I won't repeat it here.
  • FIG. 17 is a schematic diagram of an embodiment of the antenna structure of the electronic device shown in FIG. 16.
  • the first part 1 and the first ground part 2 form a second radiator 102.
  • the second part 3 and the first ground part 2 form a third radiator 103.
  • the second radiator 102 and the third radiator 103 form a radiator of the wire antenna 50.
  • first metal segment 1231 forms the first radiator 101.
  • the third metal segment 1235 forms the fourth radiator 104.
  • the first radiator 101 and the fourth radiator 104 form the radiator of the slot antenna 40.
  • the feeding method of the wire antenna 50 of this embodiment can refer to the feeding method of the slot antenna 40 of the first embodiment. I won't repeat it here.
  • the feeding method of the slot antenna 40 of this embodiment can refer to the feeding method of the wire antenna 50 of the first embodiment. I won't repeat it here.
  • the length of the second radiator 102 is equal to the length of the third radiator 103, and the length of the second radiator 102 and the length of the third radiator 103 are both 1/4 wavelength.
  • the length of the first radiator 101 is equal to the length of the fourth radiator 104, and the lengths of the first radiator 101 and the fourth radiator 104 are 1/4 wavelength.
  • the length of the second radiator 102 and the length of the third radiator 103 may not be equal.
  • the length of the first radiator 101 and the length of the fourth radiator 104 may not be equal.
  • the thickness of the frame 12 of the electronic device 100 is about 4 mm, and the width is about 3 mm.
  • the width of the clearance area between the frame 12 of the electronic device 100 and the floor of the circuit board 30 is about 1 mm, that is, the widths of the first gap 31, the second gap 32, and the third gap 33 are all about 1 mm.
  • the widths of the first insulating section 1232 and the second insulating section 1234 are approximately 2 millimeters.
  • the dielectric constant of the insulating material used in the first insulating section 1232 and the second insulating section 1234 is 3.0, and the loss angle is 0.01.
  • the dielectric constant of the insulating material filled in the first gap 31, the second gap 32, and the third gap 33 is also 3.0, and the loss angle is also 0.01.
  • FIG. 18 is a graph of the reflection coefficient of the antenna structure shown in FIG. 17.
  • the curve indicated by the curve arrow 1 represents the reflection coefficient curve of the antenna structure in the anti-symmetric feeding mode.
  • the curve indicated by the curve arrow 2 in FIG. 18 is the reflection coefficient of the antenna structure in the symmetrical feeding mode.
  • the abscissa of FIG. 18 represents the frequency (unit: GHz), and the ordinate represents the reflection coefficient (unit: dB).
  • the antenna structure in the anti-symmetric feeding mode, can generate three resonance modes, and the resonance frequencies of the three resonance modes are respectively near 1.75 GHz (solid line The position indicated by arrow 1), the vicinity of 2.36 GHz (the position indicated by the solid arrow 2), and the vicinity of 2.79 GHz (the position indicated by the solid arrow 3).
  • the antenna structure in the symmetrical feeding mode, can generate three resonance modes.
  • the resonant frequencies of the three resonance modes are around 1.87 GHz (the position indicated by the dashed arrow 1), 2.36 GHz (the position indicated by the dashed arrow 2), and 2.87 GHz (the position indicated by the dashed arrow 3) . It is understandable that, in this embodiment, the frequency band 0 to 3 GHz is taken as an example for description.
  • the antenna structure can also generate six resonance modes. That is, six resonance frequencies are generated.
  • an antenna structure composed of a slot antenna 40 and a wire antenna 50 is provided, and two feeding modes are used to make the antenna structure excite six resonant modes, so that the antenna can cover multiple frequency bands.
  • FIG. 19 is an efficiency graph of the antenna structure shown in FIG. 17.
  • the solid line 1 (the curve indicated by the solid arrow 1) represents the system efficiency curve of the antenna structure in the anti-symmetric feeding mode.
  • the solid line 2 (the curve indicated by the solid arrow 2) represents the system efficiency curve of the antenna structure in the symmetrical feeding mode.
  • the dashed line 1 (the curve indicated by the dashed arrow 1) represents the radiation efficiency curve of the antenna structure in the anti-symmetric feeding mode.
  • the dashed line 2 (the curve indicated by the dashed arrow 2) represents the radiation efficiency curve of the antenna structure in the symmetrical feeding mode.
  • Fig. 19 represents frequency (unit: GHz), and the ordinate represents efficiency (unit: dB). According to Fig. 19, it can be seen that in the anti-symmetric feeding mode of the antenna structure, the generated excitation resonance signal broadens the bandwidth of the antenna structure. In addition, in the symmetrical feeding mode of the antenna structure, the generated excitation resonance signal broadens the bandwidth of the antenna structure. Therefore, the antenna performance of the antenna structure is better.
  • FIG. 20 is a graph of isolation of the antenna structure shown in FIG. 17.
  • the abscissa of FIG. 20 represents frequency (unit: GHz), and the ordinate represents efficiency (unit: dB).
  • GHz frequency
  • dB efficiency
  • FIG. 21a is a schematic diagram of the flow of current and electric field of the antenna structure shown in FIG. 17 under a signal with a frequency of 1.75 GHz.
  • FIG. 21b is a schematic diagram of the flow of current and electric field of the antenna structure shown in FIG. 17 under a signal with a frequency of 2.36 GHz.
  • Fig. 21c is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 17 under a signal with a frequency of 2.79 GHz.
  • Fig. 21d is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig.
  • FIG. 21e is a schematic diagram of the flow of current and electric field of the antenna structure shown in Fig. 17 under a signal with a frequency of 2.36 GHz.
  • FIG. 21f is a schematic diagram of the flow of current and electric field of the antenna structure shown in FIG. 17 under a signal with a frequency of 2.87 GHz.
  • the first type of current is generated on the antenna structure.
  • the current flow direction of the first type of current has two parts: one part is the transmission from the open end of the first radiator 101 to the ground end of the first radiator 101.
  • the other part is the ground end of the fourth radiator 104 being transmitted to the open end of the fourth radiator 104.
  • the directions of the electric field on the respective sides of the first radiator 101 and the fourth radiator 104 are different.
  • the second type of current is generated on the antenna structure.
  • the current flow of the second type of current has three parts: one part is the open end of the fourth radiator 104, the fourth conductive section 54, the second conductive section 53, the first conductive section 51, the third conductive section 52, and the first radiator.
  • the other part is the ground end of the first radiator 101 flowing to the open end of the first radiator 101.
  • Another part is that the open end of the fourth radiator 104 flows to the ground end of the fourth radiator 104.
  • the directions of the electric field on the respective sides of the first radiator 101 and the fourth radiator 104 are different.
  • the directions of the electric fields on both sides of the first conductive section 51 and the third conductive section 52 are also opposite.
  • the directions of the electric fields on both sides of the fourth conductive section 54 and the second conductive section 53 are also opposite.
  • a third type of current is generated on the antenna structure.
  • the current flow directions of the third type of current are the open end of the third radiator 103, the ground end of the second radiator 102, and the open end of the second radiator 102.
  • the direction of the electric field on each side of the third radiator 103 and the second radiator 102 is different.
  • a fourth current is generated on the antenna structure.
  • the current flow direction of the fourth type of current has two parts: one part is the transmission from the open end of the first radiator 101 to the ground end of the first radiator 101. The other part is the transmission from the open end of the fourth radiator 104 to the ground end of the fourth radiator 104.
  • the direction of the electric field on each side of the first radiator 101 and the fourth radiator 104 is the same.
  • a fifth current is generated on the antenna structure.
  • the current flow direction of the fifth current has two parts: the first part is the ground terminal of the second radiator 102 being transmitted to the open end of the second radiator 102.
  • the second part is the transmission from the ground terminal of the third radiator 103 to the open end of the third radiator 103.
  • the direction of the electric field on each side of the third radiator 103 and the second radiator 102 is the same. It can be understood that the 2.36 GHz resonant mode mainly acts through the second radiator 102 and the third radiator 103.
  • a sixth current is generated on the antenna structure.
  • the specific flow includes four parts.
  • the first part is the current flowing to the feeding end of the left part of the feeding end of the bridge structure 41.
  • the second part is the current flowing to the right side of the feeding end of the bridge structure 41 to the feeding end.
  • the third part is the current flowing from the bridge structure 41 to the open end of the second radiator 102.
  • the fourth part is the current flowing from the bridge structure 41 to the open end of the third radiator 103.
  • the direction of the electric field on each side of the third radiator 103 and the second radiator 102 is the same. It can be understood that, in addition to the functions of the second radiator 102 and the third radiator 103, the 2.87 GHz resonant mode also uses the symmetrically fed bridge structure 41.
  • FIG. 21g is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 17 under a signal with a frequency of 1.75 GHz.
  • FIG. 21h is a schematic diagram of the radiation direction of the antenna structure shown in FIG. 17 under a signal with a frequency of 2.36 GHz.
  • FIG. 21i is a schematic diagram of the radiation direction of the antenna structure shown in FIG. 17 under a signal with a frequency of 2.79 GHz.
  • FIG. 21j is a schematic diagram of the radiation direction of the antenna structure shown in FIG. 17 under a signal with a frequency of 1.87 GHz.
  • Fig. 21g is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 17 under a signal with a frequency of 1.75 GHz.
  • FIG. 21h is a schematic diagram of the radiation direction of the antenna structure shown in FIG. 17 under a signal with a frequency of 2.36 GHz.
  • FIG. 21i is a schematic diagram of the radiation direction of the antenna structure shown in FIG. 17 under
  • 21k is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 17 under a signal with a frequency of 2.36 GHz.
  • Fig. 21l is a schematic diagram of the radiation direction of the antenna structure shown in Fig. 17 under a signal with a frequency of 2.87 GHz.
  • the antenna structure of Fig. 21g to Fig. 21i has a stronger radiation intensity in the Y-axis direction and a weaker radiation intensity in the X-axis direction under the anti-symmetric feeding. That is, the common-mode slot antenna with a frequency of 1.75GHz has strong radiation intensity in the Y-axis direction, the common-mode slot antenna with a frequency of 2.36GHz has a strong radiation intensity in the Y-axis direction, and the 2.79GHz differential mode line antenna is on the Y-axis. The radiation intensity in the direction is stronger.
  • the antenna structure of Fig. 21j to Fig. 21l has a stronger radiation intensity in the X-axis direction and weaker radiation intensity in the Y-axis direction when the antenna structure of Figs. That is, the differential mode slot antenna with a frequency of 1.87GHz has a strong radiation intensity in the X-axis direction, a common-mode line antenna with a frequency of 2.36GHz has a strong radiation intensity in the X-axis direction, and a common-mode line antenna with a frequency of 2.87GHz has a strong radiation intensity in the X-axis direction. The radiation intensity in the direction is stronger.
  • the ECC of the antenna signal generated under antisymmetric feeding and that of the antenna signal generated under symmetric feeding are both less than 0.1.
  • the ECC of the antenna structure of this embodiment is small.
  • an antenna structure composed of a slot antenna 40 and a wire antenna 50 is provided, and two feeding modes are used to make the antenna structure excite six resonant modes, that is, six resonant frequencies.
  • the antenna can cover multiple frequency bands.
  • the isolation between the two can reach 22dB or more, so that the antenna structure The antenna performance is better.
  • FIG. 22 is a schematic diagram of another implementation manner of the antenna structure of the electronic device shown in FIG. 16.
  • the slot antenna 40 also includes a first tuning circuit 44 and a second tuning circuit 45.
  • a part of the first tuning circuit 44 is connected to the end of the first radiator 101 facing the second radiator 102, and the other part is grounded. In other words, the open end of the first radiator 101 is grounded through the first tuning circuit 44.
  • the first tuning circuit 44 is used to adjust the electrical length of the first radiator 101.
  • a part of the second tuning circuit 45 is connected to the end of the fourth radiator 104 facing the third radiator 103, and the other part is grounded. In other words, the open end of the fourth radiator 104 is grounded through the second tuning circuit 45.
  • the first tuning circuit 44 is a capacitor.
  • the second tuning circuit 45 is also a capacitor. At this time, by setting the operating parameters of the capacitor, the electrical length of the first radiator 101 and the electrical length of the fourth radiator 104 can be effectively adjusted, so that the electrical length of the first radiator 101 and the electrical length of the fourth radiator 104 can be adjusted effectively. When the length is reduced, the miniaturization of the slot antenna 40 can be realized.
  • the material of the frame 12 is an insulating material.
  • the material of the first short frame 123 is also an insulating material.
  • a first metal segment 1231, a first insulating segment 1232, a second metal segment 1233, a second insulating segment 1234, and a third metal segment 1235 that are sequentially connected are formed inside the first short frame 123.
  • the structure of the first metal segment 1231, the second metal segment 1233, and the third metal segment 1235 may be flexible circuit board, laser direct structuring (LDS) metal, in-mold injection metal, or printed circuit board wiring.
  • LDS laser direct structuring
  • first insulating section 1232 and the second insulating section 1234 may be formed by filling an insulating material, for example, the insulating material is a material such as polymer, glass, ceramic, or a combination of these materials.
  • the first insulating section 1237 and the second insulating section 1234 may be gaps, that is, the gaps are not filled with insulating materials.
  • the technical content of the third embodiment that is the same as the first embodiment and the second embodiment will not be repeated: in this embodiment, two slot antennas (first slot antenna and second slot antenna) are formed.
  • the antenna structure uses two power feeding modes to excite multiple resonance modes in the antenna structure, so that the antenna can cover multiple frequency bands.
  • FIG. 23a is an enlarged schematic diagram of another embodiment of the electronic device shown in FIG. 7 at B.
  • FIG. 23b is a schematic diagram of the antenna structure of the electronic device shown in FIG. 23a.
  • Fig. 23b is a schematic diagram of the antenna structure shown in Fig. 23a.
  • the radiator of the antenna structure composed of two slot antennas is a part of the first short frame 123 as an example for description.
  • the radiator of the antenna structure composed of two slot antennas may also be a part of the first long frame 121, a part of the second long frame 122, or a part of the second short frame 124.
  • the two slot antennas are a first slot antenna 61 and a second slot antenna 62.
  • the first metal segment 1231, the first insulating segment 1232, the second metal segment 1233, the second insulating segment 1234, the third metal segment 1235, the third insulating segment 1236, and the fourth metal segment are sequentially connected by the first short frame 123. 1237.
  • the first insulating section 1232 is located between the first metal section 1231 and the second metal section 1233.
  • the second insulating section 1234 is located between the second metal section 1233 and the third metal section 1235.
  • the third insulating section 1236 is located between the third metal section 1235 and the fourth metal section 1237. It can be understood that a fifth gap is formed between the first metal segment 1231 and the second metal segment 1233.
  • the first insulating section 1232 may be formed by filling an insulating material in the fifth gap.
  • the insulating material may be a material such as polymer, glass, ceramic, or a combination of these materials.
  • the fifth gap can be filled with air, that is, the fifth gap is not filled with any insulating material.
  • the arrangement of the second insulating section 1234 and the third insulating section 1236 please refer to the arrangement of the first insulating section 1232. I won't repeat it here.
  • the grounding manner of the first metal segment 1231 in this embodiment can refer to the grounding manner of the first grounding portion 2 of the first embodiment, and will not be repeated here.
  • the end portion of the second metal segment 1233 close to the first insulating segment 1232 is grounded.
  • the end portion of the third metal segment 1235 close to the third insulating segment 1236 is grounded.
  • the end portion of the fourth metal segment 1237 away from the third insulating segment 1236 is grounded.
  • the grounding manners of the second metal segment 1233, the third metal segment 1235, and the fourth metal segment 1237 of this embodiment can refer to the grounding manner of the first grounding portion 2 of the first embodiment, which will not be repeated here.
  • a first gap 31 is provided between the first metal segment 1231 and the floor of the circuit board 30.
  • the first gap 31 can be filled with insulating materials, for example, the first gap 31 can be filled with materials such as polymer, glass, ceramic, or a combination of these materials.
  • the insulating material is connected to the first insulating section 1232, the second insulating section 1234, and the third insulating section 1236.
  • the first gap 31 can be filled with air, that is, the first gap 31 is not filled with any insulating material.
  • a second gap 32 is provided between the second metal segment 1233 and the floor of the circuit board 30.
  • the second slit 32 communicates with the first slit 31.
  • the arrangement of the second slit 32 can refer to the arrangement of the first slit 31. I won't repeat it here.
  • a third gap 33 is provided between the third metal segment 1235 and the floor of the circuit board 30.
  • the third gap 33 communicates with the first gap 31 and the second gap 32.
  • the arrangement of the third slit 33 can refer to the arrangement of the first slit 31. I won't repeat it here.
  • a fourth gap 34 is provided between the third metal segment 1235 and the floor of the circuit board 30.
  • the fourth gap 34 communicates with the first gap 31, the second gap 32 and the third gap 33.
  • the arrangement of the fourth slot 34 can refer to the arrangement of the first slot 31. I won't repeat it here.
  • the first metal segment 1231 forms the first radiator 101.
  • the second metal segment 1233 forms the second radiator 102.
  • the third metal segment 1235 forms the third radiator 103.
  • the fourth metal segment 1237 forms the fourth radiator 104.
  • the second radiator 102 and the third radiator 103 form the radiator of the first slot antenna 61.
  • first radiator 101 and the fourth radiator 104 form the radiator of the second slot antenna 62.
  • the feeding mode of the first slot antenna 61 in this embodiment can refer to the feeding mode of the slot antenna 40 in the first embodiment. I won't repeat it here.
  • the feeding mode of the second slot antenna 62 in this embodiment can refer to the feeding mode of the wire antenna 50 in the first embodiment. I won't repeat it here.
  • multiple resonance modes can be excited by an antenna structure composed of two slot antennas, so that the antenna can cover multiple frequency bands.
  • the antenna structure can excite Multiple resonance modes, so that the antenna can cover multiple frequency bands.
  • FIG. 24a is an enlarged schematic diagram of another embodiment of the electronic device shown in FIG. 7 at B.
  • Fig. 24b is a schematic diagram of the antenna structure of the electronic device shown in Fig. 24a.
  • the radiator of the antenna structure composed of two wire antennas is a part of the first short frame 123.
  • the radiator of the antenna structure composed of two wire antennas may also be a part of the first long frame 121, a part of the second long frame 122, or a part of the second short frame 124.
  • the two wire antennas are the first wire antenna 71 and the second wire antenna 72.
  • the first short frame 123 includes a first metal segment 1231, a first insulating segment 1232, a second metal segment 1233, a second insulating segment 1234, and a third metal segment 1235 connected in sequence.
  • the first insulating section 1232 is located between the first metal section 1231 and the second metal section 1233.
  • the second insulating section 1234 is located between the second metal section 1233 and the third metal section 1235.
  • the second metal segment 1233 includes a first part 1, a first grounding part 2 and a second part 3.
  • the first part 1 is connected to the first insulating section 1232.
  • the second part 3 is connected to the second insulating section 1234.
  • a fourth gap is formed between the first metal segment 1231 and the first part 1.
  • the first insulating section 1232 may be formed by filling an insulating material in the fourth gap.
  • the insulating material may be a material such as polymer, glass, ceramic, or a combination of these materials.
  • the fourth gap can be filled with air, that is, the fourth gap is not filled with any insulating material.
  • a fifth gap is formed between the second portion 3 and the third metal segment 1235.
  • the second insulating section 1234 may be formed by filling an insulating material in the fifth gap.
  • the insulating material may be a material such as polymer, glass, ceramic, or a combination of these materials.
  • the grounding manner of the first grounding portion 2 in this embodiment can refer to the grounding manner of the first grounding portion 2 of the first embodiment, which will not be repeated here.
  • the end of the first metal segment 1231 close to the first insulating segment 1232 is grounded.
  • the end of the third metal segment 1235 close to the second insulating segment 1234 is grounded.
  • the grounding manner of the first metal section 1231 and the grounding manner of the third metal section 1235 can refer to the grounding manner of the first grounding portion 2 of the first embodiment, and details are not described herein again.
  • a first gap 31 is provided between the first metal segment 1231 and the circuit board 30.
  • the first gap 31 can be filled with insulating materials, for example, the first gap 31 can be filled with materials such as polymer, glass, ceramic, or a combination of these materials.
  • the insulating material is connected to the first insulating section 1232.
  • the first gap 31 can be filled with air, that is, the first gap 31 is not filled with any insulating material.
  • a second gap 32 is provided between the second metal segment 1233 and the circuit board 30.
  • the second gap 32 communicates with the first gap 31.
  • the arrangement of the second slit 32 can refer to the arrangement of the first slit 31. I won't repeat it here.
  • a third gap 33 is provided between the third metal segment 1235 and the circuit board 30.
  • the third gap 33 communicates with the first gap 31 and the second gap 32.
  • the arrangement of the third slit 33 can refer to the arrangement of the first slit 31. I won't repeat it here.
  • the first part 1 and the first ground part 2 form a second radiator 102.
  • the second part 3 and the first ground part 2 form a third radiator 103.
  • the second radiator 102 and the third radiator 103 form a radiator of the first wire antenna 71.
  • first metal segment 1231 forms the first radiator 101.
  • third metal segment 1235 forms the fourth radiator 104.
  • the first radiator 101 and the fourth radiator 104 form a radiator of the second wire antenna 72.
  • the feeding mode of the first wire antenna 71 in this embodiment can refer to the feeding mode of the slot antenna 40 in the first embodiment. I won't repeat it here.
  • the feeding mode of the second wire antenna 72 in this embodiment can refer to the feeding mode of the wire antenna 50 in the first embodiment. I won't repeat it here.
  • multiple resonance modes can be excited by an antenna structure composed of two wire antennas, so that the antenna can cover multiple frequency bands.
  • the technical content of the fifth embodiment that is the same as the first and second embodiments will not be repeated: by setting an antenna structure composed of a loop antenna and a slot antenna, and using two power feeding methods to make the antenna The structure excites multiple resonance modes, so that the antenna can cover multiple frequency bands.
  • FIG. 25a is an enlarged schematic diagram of another embodiment of the electronic device shown in FIG. 7 at B.
  • FIG. 25b is a schematic diagram of the antenna structure of the electronic device shown in FIG. 25a.
  • the radiator of the antenna structure of this embodiment is a part of the first short frame 123 as an example for description. In other embodiments, the radiator of the antenna structure may also be a part of the first long frame 121, a part of the second long frame 122, or a part of the second short frame 124.
  • the antenna of the electronic device 100 includes a loop antenna 81 and a slot antenna 82.
  • the first short frame 123 includes a first metal segment 1231, a first insulating segment 1232, a second metal segment 1233, a second insulating segment 1234, and a third metal segment 1235 that are sequentially connected.
  • the first insulating section 1232 is located between the first metal section 1231 and the second metal section 1233.
  • the second insulating section 1234 is located between the second metal section 1233 and the third metal section 1235. It can be understood that a fourth gap is formed between the first metal segment 1231 and the second metal segment 1233.
  • the first insulating section 1232 may be formed by filling an insulating material in the fourth gap.
  • the insulating material may be a material such as polymer, glass, ceramic, or a combination of these materials.
  • the fourth gap can be filled with air, that is, the fourth gap is not filled with any insulating material.
  • the arrangement of the second insulating section 1234 please refer to the arrangement of the first insulating section 1232.
  • first metal segment 1231 away from the first insulating segment 1232 is grounded.
  • the end of the third metal segment 1235 away from the second insulating segment 1234 is grounded.
  • the grounding manner of the first metal section 1231 and the third metal section 1235 can refer to the grounding manner of the first grounding part 2 of the first embodiment, and will not be repeated here.
  • the end of the second metal segment 1233 connected to the first insulating segment 1232 is grounded.
  • the end of the second metal segment 1233 connected to the second insulating segment 1234 is grounded.
  • the antenna structure further includes a third conductive section 41 and a fourth conductive section 42.
  • the third conductive segment 41 and the fourth conductive segment 42 are located inside the frame 12.
  • One end of the third conductive section 41 is connected to the end of the second metal section 1233 connected to the first insulating section 1232.
  • the other end is grounded.
  • One end of the fourth conductive segment 42 is connected to the end of the second metal segment 1233 connected to the second insulating segment 1234, and the other end is grounded.
  • the end of the second metal segment 1233 connected to the first insulating segment 1232 is grounded through the third conductive segment 41.
  • the end of the second metal segment 1233 connected to the second insulating segment 1234 is grounded through the fourth conductive segment 42.
  • the grounding manner of the third conductive section 41 and the grounding manner of the fourth conductive section 42 can refer to the grounding manner of the first grounding part 2 of the first embodiment. I won't repeat it here.
  • a first gap 31 is provided between the second metal segment 1233 and the circuit board 30.
  • the first gap 31 can be connected with an insulating material.
  • the first gap 31 can be filled with materials such as polymer, glass, ceramic, or a combination of these materials.
  • the insulating material is connected to the first insulating section 1233.
  • the first gap 31 can be filled with air, that is, the first gap 31 is not filled with any insulating material.
  • a second gap 32 is provided between the first metal segment 1231 and the circuit board 30.
  • the second slit 32 communicates with the first slit 31.
  • the arrangement of the second slit 32 can refer to the arrangement of the first slit 31. I won't repeat it here.
  • a third gap 33 is provided between the third metal segment 1235 and the circuit board 30.
  • the third gap 33 communicates with the first gap 31 and the second gap 32.
  • the arrangement of the third slit 33 can refer to the arrangement of the first slit 31. I won't repeat it here.
  • the first metal segment 1231 forms the first radiator 101.
  • the second metal segment 1233 forms the second radiator 102.
  • the third metal segment 1235 forms the third radiator 103.
  • the second radiator 102 is a radiator of the loop antenna 81.
  • the first radiator 101 and the third radiator 103 are the radiators of the slot antenna 82.
  • the loop antenna 81 also includes a first feeding circuit 83.
  • the negative electrode of the first feeder circuit 83 is electrically grounded.
  • the anode of the first feeding circuit 83 is electrically connected to the second radiator 102.
  • the feeding method of the slot antenna 82 in this embodiment can refer to the feeding method of the wire antenna 50 in the first embodiment. I won't repeat it here.
  • antenna structure composed of a loop antenna 81 and a slot antenna 82, so that the antenna can cover multiple frequency bands.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供一种天线设计方案,通过设置一种槽天线及线天线组成的天线结构,并通过对称馈电和反对称馈电,以使天线结构激励产生四种天线模式: 共模槽天线、差模槽天线、共模线天线以及差模线天线,从而实现高隔离度、低ECC的MIMO天线特性。而且,该天线结构能够实现覆盖较多频段的天线,从而使得具有有限空间的电子设备能够发射或者接收较多频段的电磁波信号。

Description

电子设备
本申请要求于2020年02月29日提交中国专利局、申请号为202010132991.4、申请名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别涉及一种电子设备。
背景技术
电子设备特别是手机产品,随着曲面屏柔性屏等关键技术的快速发展,电子设备的轻薄化、极致屏占比已成为一种趋势,这种设计大大压缩了天线排布空间。在这种天线排布紧张的环境,传统天线很难满足多通信频段的性能需求,故而,如何在手机上实现多频段覆盖的天线成为当务之急。
发明内容
本申请提供一种电子设备。电子设备的天线可覆盖较多的频段。
第一方面,本申请提供了一种电子设备。电子设备包括电路板及天线结构。所述天线结构包括第一金属段、第二金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路。所述第一金属段与所述电路板的侧面之间形成第一缝隙。所述第二金属段与所述电路板的侧面之间形成第二缝隙。所述第二缝隙连通所述第一缝隙。
在第一方向上,所述第一金属段包括依次连接的第一部分、第一接地部分和第二部分。所述第二金属段包括依次连接的第三部分、第二接地部分和第四部分。所述第二部分与所述第三部分形成第三缝隙。所述第三缝隙连通所述第一缝隙与所述第二缝隙。所述第一部分背向所述第一接地部分的端部为未接地的开放端。所述第四部分背向所述第二接地部分的端部为未接地的开放端。
所述第一馈电电路的负极接地。所述第一馈电电路的正极连接所述第一金属段的所述第二部分,并且连接所述第二金属段的所述第三部分。
所述第一导电段包括第一端及第二端。所述第一端接地。所述第二端连接所述第一金属段的所述第一部分。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第二金属段的所述第四部分。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
在本实施例中,所述天线结构能够激励出多个谐振模式,从而实现天线可覆盖多个频段。
一种实施方式中,所述天线结构还包括第一绝缘段及第二绝缘段。在所述第一方向上,所述第一绝缘段连接于所述第一部分的开放端。所述第二绝缘段连接于所述第四部分的开放端。
一种实施方式中,所述电子设备包括边框,所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内。所述第一金属段、所述第二金属段、所述第一绝缘段及所述第二绝缘段均为所述边框的一部分。所述边框还包括填充于所述第三缝隙的 第三绝缘段。
在本实施方式中,通过利用边框来形成天线结构的辐射体,从而可以节省天线设计空间。
一种实施方式中,所述天线结构用于产生五个谐振模式,以扩宽所述天线结构辐射或者接收信号的频段。
一种实施方式中,所述天线结构还包括桥结构。所述桥结构的一端连接所述第一金属段的所述第二部分。所述桥结构的另一端连接所述第二金属段的所述第三部分。所述第一馈电电路的正极连接于所述桥结构的中部。
在本实施方式中,桥结构的结构简单,易于加工,容易实现。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一部分。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第四部分。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向。所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
第二方面,本申请提供了一种电子设备。电子设备包括第一金属段、第二金属段、电路板、第一类天线及第二类天线。在第一方向上,所述第一金属段包括依次连接的第一部分、第一接地部分和第二部分。所述第二金属段包括依次连接的第三部分、第二接地部分和第四部分。所述第二部分与所述第三部分形成第三缝隙,所述第一部分背向所述第一接地部分的端部为未接地的开放端。所述第四部分背向所述第二接地部分的端部为未接地的开放端。
所述第一类天线包括第一缝隙及第一馈电电路。所述第一缝隙连通所述第三缝隙。其中,所述第一缝隙开设在所述第一金属段及所述第二金属段与所述电路板之间。所述第一缝隙包括第一侧边及第二侧边。所述第一侧边由所述电路板的一侧边构成。所述第二侧边由所述第一接地部分、所述第二部分、所述第三部分以及所述第二接地部分构成。所述第一馈电电路的负极接地。所述第一馈电电路的正极连接所述第一金属段的所述第二部分,并且连接所述第二金属段的所述第三部分。
所述第二类天线包括所述第一部分、所述第一接地部分、所述第二接地部分和所述第四部分、第一导电段、第二导电段以及第二馈电电路。所述第一导电段包括第一端及第二端。所述第一端接地。所述第二端连接所述第一金属段的所述第一部分。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第二金属段的所述第四部分。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
在本实施例中,天线结构能够激励出多个谐振模式,从而实现天线可覆盖多个频段。
一种实施方式中,所述天线结构还包括第一绝缘段及第二绝缘段。在所述第一方向上, 所述第一绝缘段连接于所述第一部分的开放端。所述第二绝缘段连接于所述第四部分的开放端。
一种实施方式中,所述电子设备包括边框。所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内。所述第一金属段与所述第二金属段均为所述边框的一部分。所述边框还包括填充于所述第三缝隙的第三绝缘段。
在本实施方式中,通过利用边框来形成天线结构的辐射体,从而可以节省天线设计空间。
一种实施方式中,所述天线结构用于产生五个谐振模式,以扩宽所述天线结构辐射或者接收信号的频段。
一种实施方式中,所述天线结构还包括桥结构。所述桥结构的一端连接所述第一金属段的所述第二部分。所述桥结构的另一端连接所述第二金属段的所述第三部分。所述第一馈电电路的正极连接于所述桥结构的中部。
在本实施方式中,桥结构的结构简单,易于加工,容易实现。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一部分。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第四部分。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向。所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
第三方面,本申请提供了一种电子设备。电子设备包括电路板及天线结构,所述天线结构包括第一金属段、第二金属段、第三金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路。所述第一金属段与所述电路板的侧面之间形成第一缝隙。所述第二金属段与所述电路板的侧面之间形成第二缝隙。所述第三金属段与所述电路板的侧面之间形成第三缝隙,所述第一缝隙、所述第二缝隙及所述第三缝隙相互连通。
在第一方向上,所述第二金属段包括依次连接的第一部分、第一接地部分和第二部分。所述第一金属段的一端与所述第一部分形成第四缝隙,另一端接地。所述第三金属段的一端与所述第二部分形成第五缝隙,另一端接地。所述第四缝隙与所述第五缝隙连通所述第一缝隙、所述第二缝隙及所述第三缝隙。
所述第一馈电电路的负极接地,所述第一馈电电路的正极连接所述第二金属段的所述第一部分以及所述第二部分。
所述第一导电段包括第一端及第二端。所述第一端接地,所述第二端连接所述第一金属段。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第三金属段。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
一种实施方式中,所述天线结构用于产生六个谐振模式,以扩宽所述天线结构辐射或 者接收信号的频段。
一种实施方式中,所述电子设备包括边框。所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内。所述第一金属段、所述第二金属段及所述第三金属段均为所述边框的一部分。所述边框还包括填充于所述第四缝隙的第一绝缘段,以及填充于所述第五缝隙的第二绝缘段。
一种实施方式中,所述天线结构还包括桥结构。所述桥结构的一端连接所述第二金属段的所述第一部分。所述桥结构的另一端连接所述第二金属段的所述第二部分。所述第一馈电电路的正极连接于所述桥结构的中部。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一金属段。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第三金属段。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向。所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
第四方面,本申请提供一种电子设备。电子设备包括电路板及天线结构。所述天线结构包括第一金属段、第二金属段、第三金属段、第四金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路。所述第一金属段与所述电路板的侧面之间形成第一缝隙。所述第二金属段与所述电路板的侧面之间形成第二缝隙。所述第三金属段与所述电路板的侧面之间形成第三缝隙。所述第四金属段与所述电路板的侧面之间形成第四缝隙。所述第一缝隙、所述第二缝隙、所述第三缝隙及所述第四缝隙相互连通。
在第一方向上,所述第二金属段与所述第一金属段之间形成第五缝隙。所述第二金属段与所述第三金属段形成第六缝隙。所述第三金属段与所述第四金属段之间形成第七缝隙。所述第五缝隙、所述第六缝隙与所述第七缝隙连通所述第一缝隙、所述第二缝隙、所述第三缝隙及所述第四缝隙。所述第一金属段背向所述第五缝隙的端部接地。所述第二金属段朝向所述第五缝隙的端部接地。所述第三金属段朝向所述第七缝隙的端部接地。所述第四金属段背向所述第七缝隙的端部接地。
所述第一馈电电路的负极接地。所述第一馈电电路的正极连接所述第二金属段以及所述第三金属段。
所述第一导电段包括第一端及第二端。所述第一端接地。所述第二端连接所述第一金属段。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第四金属段。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
在本实施例中,天线结构能够激励出多个谐振模式,从而实现天线可覆盖多个频段。
一种实施方式中,所述电子设备包括边框。所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内。所述第一金属段、所述第二金属段、所述第三 金属段及所述第四金属段均为所述边框的一部分。所述边框还包括填充于所述第五缝隙的第一绝缘段、填充于所述第六缝隙的第二绝缘段,以及填充于所述第七缝隙的第三绝缘段。
在本实施方式中,通过利用边框来形成天线结构的辐射体,从而可以节省天线设计空间。
一种实施方式中,所述天线结构还包括桥结构。所述桥结构的一端连接所述第二金属段的所述第一部分。所述桥结构的另一端连接所述第二金属段的所述第二部分。所述第一馈电电路的正极连接于所述桥结构的中部。
在本实施方式中,桥结构的结构简单,易于加工,容易实现。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一金属段。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第三金属段。
在本实施方式中,第一匹配电路用于匹配天线阻抗。此时,第一匹配电路可用于缩小第一导电段以及第三导电段的尺寸。所述第二匹配电路也用于匹配天线阻抗。此时,第二匹配电路可用于缩小第二导电段以及第四导电段的尺寸。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向,所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
第五方面,本申请提供一种电子设备。电子设备包括电路板及天线结构。所述天线结构包括第一金属段、第二金属段、第三金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路。所述第一金属段与所述电路板的侧面之间形成第一缝隙。所述第二金属段与所述电路板的侧面之间形成第二缝隙。所述第三金属段与所述电路板的侧面之间形成第三缝隙。所述第一缝隙、所述第二缝隙及所述第三缝隙相互连通。
在第一方向上,所述第二金属段包括依次连接的第一部分、第一接地部分和第二部分。所述第一金属段与所述第一部分形成第四缝隙。所述第三金属段与所述第二部分形成第五缝隙。所述第四缝隙与所述第五缝隙连通所述第一缝隙、所述第二缝隙及所述第三缝隙。所述第一金属段朝向所述第二金属段的端部接地。所述第四金属段朝向所述第二金属段的端部接地。
所述第一馈电电路的负极接地。所述第一馈电电路的正极连接所述第二金属段的所述第一部分以及所述第二部分。
所述第一导电段包括第一端及第二端。所述第一端接地。所述第二端连接所述第一金属段。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第三金属段。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
在本实施例中,天线结构能够激励出多个谐振模式,从而实现天线可覆盖多个频段。
一种实施方式中,所述电子设备包括边框。所述电路板、所述第一馈电电路与所述第 二馈电电路均位于所述边框所围的区域内。所述第一金属段、所述第二金属段及所述第三金属段均为所述边框的一部分。所述边框还包括填充于所述第四缝隙的第一绝缘段,以及填充于所述第五缝隙的第二绝缘段。
在本实施方式中,通过利用边框来形成天线结构的辐射体,从而可以节省天线设计空间。
一种实施方式中,所述天线结构还包括桥结构。所述桥结构的一端连接所述第二金属段的所述第一部分。所述桥结构的另一端连接所述第二金属段的所述第二部分。所述第一馈电电路的正极连接于所述桥结构的中部。
在本实施方式中,桥结构的结构简单,易于加工,容易实现。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一金属段。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第三金属段。
在本实施方式中,第一匹配电路用于匹配天线阻抗。此时,第一匹配电路可用于缩小第一导电段以及第三导电段的尺寸。所述第二匹配电路也用于匹配天线阻抗。此时,第二匹配电路可用于缩小第二导电段以及第四导电段的尺寸。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中的地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向。所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
第六方面,本申请提供一种电子设备。电子设备包括电路板及天线结构。所述天线结构包括第一金属段、第二金属段、第三金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路。所述第一金属段与所述电路板的侧面之间形成第一缝隙。所述第二金属段与所述电路板的侧面之间形成第二缝隙。所述第三金属段与所述电路板的侧面之间形成第三缝隙。所述第一缝隙、所述第二缝隙及所述第三缝隙相互连通。
在第一方向上,所述第一金属段的一端与所述第二金属段形成第四缝隙,另一端接地。所述第三金属段的一端与所述第二金属段形成第五缝隙,另一端接地。所述第四缝隙与所述第五缝隙连通所述第一缝隙、所述第二缝隙及所述第三缝隙。所述第二金属段朝向所述第四缝隙的端部接地,所述第二金属段朝向所述第五缝隙的端部接地。
所述第一馈电电路的负极接地,所述第一馈电电路的正极连接所述第二金属段。
所述第一导电段包括第一端及第二端。所述第一端接地,所述第二端连接所述第一金属段。所述第二导电段包括第三端及第四端。所述第三端接地。所述第四端连接所述第三金属段。所述第二馈电电路的负极电连接于所述第一端与所述第二端之间。所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
在本实施例中,天线结构能够激励出多个谐振模式,从而实现天线可覆盖多个频段。
一种实施方式中,所述电子设备包括边框。所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内。所述第一金属段、所述第二金属段及所述第三 金属段均为所述边框的一部分。所述边框还包括填充于所述第四缝隙的第一绝缘段,以及填充于所述第五缝隙的第二绝缘段。
在本实施方式中,通过利用边框来形成天线结构的辐射体,从而可以节省天线设计空间。
一种实施方式中,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路。所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一金属段。所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第三金属段。
在本实施方式中,第一匹配电路用于匹配天线阻抗。此时,第一匹配电路可用于缩小第一导电段以及第三导电段的尺寸。所述第二匹配电路也用于匹配天线阻抗。此时,第二匹配电路可用于缩小第二导电段以及第四导电段的尺寸。
一种实施方式中,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
一种实施方式中,所述电子设备的宽度方向为X方向。所述电子设备的长度方向为Y方向。所述电子设备的厚度方向为Z方向。在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
附图说明
图1是本申请实施例提供的电子设备的一种实施方式的结构示意图;
图2是图1所示的电子设备的分解示意图;
图3A为本申请涉及的共模槽天线的示意图;
图3B为共模槽天线模式的电流、电场、磁流的分布的示意图;
图4A为本申请涉及的差模槽天线的示意图;
图4B为差模槽天线模式的电流、电场、磁流的分布的示意图;
图5A示出了本申请提供的共模线天线;
图5B示出了本申请提供的共模线天线模式的电流、电场的分布示意图;
图6A示出了本申请提供的差模线天线;
图6B示出了本申请提供的差模线天线模式的电流、电场的分布;
图7是图1所示电子设备在A-A线处的剖面示意图;
图8是图7所示的电子设备在B处的一种实施方式的放大示意图;
图9是图8所示的电子设备的天线结构的一种实施方式的示意图;
图10是图9所示天线结构的反射系数曲线图;
图11是图9所示天线结构的效率曲线图;
图12是图9所示天线结构的隔离度曲线图;
图13a是图9所示的天线结构在频率为1.84GHz的信号下的电流及电场的流向示意图;
图13b是图9所示的天线结构在频率为2.07GHz的信号下的电流及电场的流向示意图;
图13c是图9所示的天线结构在频率为2.49GHz的信号下的电流及电场的流向示意图;
图13d是图9所示的天线结构在频率为2.04GHz的信号下的电流及电场的流向示意图;
图13e是图9所示的天线结构在频率为2.21GHz的信号下的电流及电场的流向示意图;
图13f是图9所示的天线结构在频率为1.84GHz的信号下的辐射方向示意图;
图13g是图9所示的天线结构在频率为2.07GHz的信号下的辐射方向示意图;
图13h是图9所示的天线结构在频率为2.49GHz的信号下的辐射方向示意图;
图13i是图9所示的天线结构在频率为2.04GHz的信号下的辐射方向示意图;
图13j是图9所示的天线结构在频率为2.21GHz的信号下的辐射方向示意图;
图14是图8所示的电子设备的天线结构的另一种实施方式的示意图;
图15是图8所示的电子设备的天线结构的再一种实施方式的示意图;
图16是图7所示的电子设备在B处的另一种实施方式的放大示意图;
图17是图16所示的电子设备的天线结构的一种实施方式的示意图;
图18是图17所示天线结构的反射系数曲线图;
图19是图17所示天线结构的效率曲线图;
图20是图17所示天线结构的隔离度曲线图;
图21a是图17所示的天线结构在频率为1.75GHz的信号下的电流及电场的流向示意图;
图21b是图17所示的天线结构在频率为2.36GHz的信号下的电流及电场的流向示意图;
图21c是图17所示的天线结构在频率为2.79GHz的信号下的电流及电场的流向示意图;
图21d是图17所示的天线结构在频率为1.87GHz的信号下的电流及电场的流向示意图;
图21e是图17所示的天线结构在频率为2.36GHz的信号下的电流及电场的流向示意图;
图21f是图17所示的天线结构在频率为2.87GHz的信号下的电流及电场的流向示意图;
图21g是图17所示的天线结构在频率为1.75GHz的信号下的辐射方向的示意图;
图21h是图17所示的天线结构在频率为2.36GHz的信号下的辐射方向的示意图;
图21i是图17所示的天线结构在频率为2.79GHz的信号下的辐射方向的示意图;
图21j是图17所示的天线结构在频率为1.87GHz的信号下的辐射方向的示意图;
图21k是图17所示的天线结构在频率为2.36GHz的信号下的辐射方向的示意图;
图21l是图17所示的天线结构在频率为2.87GHz的信号下的辐射方向的示意图;
图22是图16所示的电子设备的天线结构的另一种实施方式的示意图;
图23a是图7所示的电子设备在B处的另一种实施方式的放大示意图;
图23b是图23a所示的电子设备的天线结构的示意图;
图24a是图7所示的电子设备在B处的另一种实施方式的放大示意图;
图24b是图24a所示的电子设备的天线结构的示意图;
图25a是图7所示的电子设备在B处的另一种实施方式的放大示意图;
图25b是图25a所示的电子设备的天线结构的示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参阅图1,图1是本申请实施例提供的电子设备的一种实施方式的结构示意图。电子设备100可以为手机、平板电脑(tablet personal computer)、膝上型电脑(laptop computer)、个人数码助理(personal digital assistant,PDA)、照相机、个人计算机、笔记本电脑、车载设备、可穿戴设备、增强现实(augmented reality,AR)眼镜、AR头盔、虚拟现实(virtual reality,VR)眼镜或者VR头盔。图1所示实施例的电子设备100以手机为例进行阐述。其中,为了便于描述,如图1所示,定义电子设备100的宽度方向为X轴。电子设备100的长度方向为Y轴。电子设备100的厚度方向为Z轴。
请参阅图2,并结合图1所示,图2是图1所示的电子设备的分解示意图。电子设备100包括壳体10、屏幕20及电路板30。
其中,壳体10可用于支撑屏幕20以及电子设备100内相关器件。
一种实施方式中,壳体10包括后盖11及边框12。后盖11与屏幕20相对设置。后盖11与屏幕20安装于边框12的相背两侧,此时,后盖11、边框12与屏幕20共同围设出收容空间13。收容空间13可用于收容电子设备100的器件,例如电池、扬声器、麦克风或者听筒。结合附图1所示,附图1示意了后盖11、边框12与屏幕20围成大致呈长方体的结构。
一种实施方式中,后盖11可通过粘胶固定连接于边框12上。在另一种实施方式中,后盖11也可以与边框12形成一体结构,即后盖11与边框12一体成型。
其中,后盖11的材质可以是金属材料,也可以是绝缘材料,例如玻璃或者塑料等。此外,边框12的材质可以为金属材料,也可以为绝缘材料,例如塑料或者玻璃等。
其中,屏幕20安装于壳体10。屏幕20可用于显示图像、文字等。
一种实施方式中,屏幕20包括保护盖板21和显示屏22。保护盖板21层叠于显示屏22。保护盖板21可以紧贴显示屏22设置,可主要用于对显示屏22起到保护防尘作用。保护盖板21的材质可以为但不仅限于为玻璃。显示屏22可以采用有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏,迷你发光二极管(mini organic light-emitting diode)显示屏,微型发光二极管(micro organic light-emitting diode)显示屏,微型有机发光二极管(micro organic light-emitting diode)显示屏,量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏。
其中,电路板30可用于安装电子设备100的电子元器件。例如,电子元器件可以包括中央处理器(central processing unit,CPU)、电池管理单元和基带处理单元。电路板30位于屏幕20与后盖11之间,也即电路板30位于收容空间13内。电路板30在电子设备100内的位置不仅限于附图1虚线所示意的位置。
此外,电路板30可以为硬质电路板,也可以为柔性电路板,也可以为软硬结合电路板。此外,电路板30可以采用FR-4介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers 介质板为一种高频板。
此外,电子设备100包括多个天线。在本申请中,“多个”是指至少两个。天线用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。
电子设备100可以通过天线,以利用以下一种或多种通信技术与网络或其他设备通信。其中,通信技术包括蓝牙(bluetooth,BT)通信技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wirelessfidelity,Wi-Fi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术、SUB-6G通信技术以及未来其他通信技术等。
此外,天线包括接地板。接地板可以用于使天线的辐射体接地。接地板可以为电子设备100的电路板30,也可以为电子设备100的部分壳体10。当然,接地板也可以集成在电子设备100的其他部件中,例如屏幕20。在本申请中,以接地板是电路板30为例进行描述。
可以理解的是,图1及图2仅示意性的示出了电子设备100包括的一些部件,这些部件的实际形状、实际大小和实际构造不受图1及图2限定。
此外,为了给用户带来更为舒适的视觉感受,电子设备100可以采用全面屏工业设计(industry design,ID)。全面屏意味着极大的屏占比(通常在90%以上)。全面屏的边框12宽度大幅缩减,需要对电子设备100内部器件,如前置摄像头、受话器、指纹识别器、天线等,进行重新布局。尤其对于天线设计来说,净空区域缩减,天线空间进一步被压缩。而天线的尺寸、带宽、效率是相互关联、相互影响的,减小天线尺寸(空间),天线的效率带宽积(efficiency-bandwidth product)势必减小。
在传统的天线设计中,在天线设计空间进一步缩减的情况下,在金属边框、玻璃后盖这种常见ID的手机上,往往在整机四周布局多个不同的辐射体来实现多输入多输出(multi-input multi-output,MIMO)天线。但是,这多个不同的辐射体需要在天线形式、接地、馈电等方面符合较高要求,才能实现较高的天线隔离度以及较低的包络相关系数(envelopeIcorrelation coefficient,ECC)。
本申请提供的天线设计方案可应用于MIMO天线中。通过设置一种天线结构,以及利用两种馈电方式:对称馈电和反对称馈电,可实现高隔离度、低ECC的MIMO天线特性。此外,天线结构还能实现覆盖较多频段的天线,从而使得具有有限空间的电子设备100也可以发射或者接收较多频段的电磁波信号。
首先,介绍本申请涉及四个天线模式。
1.共模(common mode,CM)槽天线模式
如图3A所示,图3A为本申请涉及的共模槽天线的示意图。槽天线101可包括:缝隙103、馈电点107以及馈电点109。其中,缝隙103可开设在PCB17的地板上。缝隙103的一侧设有开口105,开口105可具体开设在该侧的中间位置。馈电点107以及馈电点109可分别设置在开口105的两侧。馈电点107、馈电点109可分别用于连接槽天线101的馈源的正极、负极。例如,采用同轴传输线对槽天线101进行馈电,同轴传输线的中心导体 (transmission line center conductor)可通过传输线连接至馈电点107,同轴传输线的外导体(transmission line outer conductor)可通过传输线连接至馈电点109。同轴传输线的外导体是接地的。
也即是说,槽天线101可在开口105处馈电,开口105又可以称为馈电处。馈源的正极可连接在开口105的一侧,馈源的负极可连接在开口105的另一侧。
如图3B所示,图3B为共模槽天线模式的电流、电场、磁流的分布的示意图。电流在槽天线101的中间位置两侧呈现同向分布,但电场、磁流在槽天线101的中间位置两侧呈现反向分布。图3A中示出的这种馈电结构可以称为反对称馈电结构。图3B所示的这种槽天线模式可以称为CM槽天线模式。图3B所示的电场、电流、磁流可分别称为CM槽天线模式的电场、电流、磁流。
CM槽天线模式的电流、电场是槽天线101的中间位置两侧的槽各自工作在1/4波长模式产生的:电流在槽天线101的中间位置处弱,在槽天线101的两端强。电场在槽天线101的中间位置处强,在槽天线101的两端弱。
2.差模(differential mode,DM)槽天线模式
如图4A所示,图4A为本申请涉及的差模槽天线的示意图。槽天线110可包括:缝隙113、馈电点117以及馈电点115。其中,缝隙113可开设在PCB17的地板上。馈电点117、馈电点115可分别设置在缝隙113的两个侧边的中间位置。馈电点117、馈电点115可分别用于连接槽天线110的馈源的正极、负极。例如,采用同轴传输线对槽天线110进行馈电,同轴传输线的中心导体可通过传输线连接至馈电点117,同轴传输线的外导体可通过传输线连接至馈电点115。同轴传输线的外导体是接地的。
也即是说,槽天线110的中间位置112处连接馈源,中间位置112又可以称为馈电处。馈源的正极可连接缝隙113的一侧边,馈源的负极可连接缝隙113的另一侧边。
如图4B所示,图4B为差模槽天线模式的电流、电场、磁流的分布的示意图。电流在槽天线110的中间位置112两侧呈现反向分布,但电场、磁流在槽天线110的中间位置112两侧呈现同向分布。图4A中示出的这种馈电结构可以称为对称馈电结构。图4B所示的这种槽天线模式可以称为DM槽天线模式。图4B所示的电场、电流、磁流可分布称为DM槽天线模式的电场、电流、磁流。
DM槽天线模式的电流、电场是整个缝隙113工作在1/2波长模式产生:电流在槽天线110的中间位置处弱,在槽天线110的两端强。电场在槽天线110的中间位置处强,在槽天线110的两端弱。
3.共模(common mode,CM)线天线模式
如图5A所示,图5A示出了本申请提供的共模线天线。线天线101在中间位置103处连接馈源。馈源的正极连接在线天线101的中间位置103,馈源的负极连接地(例如地板)。
如图5B所示,图5B示出了本申请提供的共模线天线模式的电流、电场的分布示意图。电流在中间位置103两侧反向,呈现对称分布;电场在中间位置103两侧,呈现同向分布。如图5B所示,馈电102处的电流呈现同向分布。基于馈电102处的电流同向分布,图5A中示出的这种馈电结构可以称为对称馈电结构。图5B所示的这种线天线模式,可以称为CM线天线模式。图5B所示的电流、电场可分别称为CM线天线模式的电流、电场。
CM线天线模式的电流、电场是线天线101在中间位置103两侧的两个水平枝节作为1/4波长天线产生的。电流在线天线101的中间位置103处强,在线天线101的两端弱。电场在线天线101的中间位置103处弱,在线天线101的两端强。
4.差模(differential mode,DM)线天线模式
如图6A所示,图6A示出了本申请提供的差模线天线。线天线104在中间位置106处连接馈源。馈源的正极连接在中间位置106的一侧,馈源的负极连接在中间位置106的另一侧。
如图6B所示,图6B示出了本申请提供的差模线天线模式的电流、电场的分布。电流在中间位置106两侧同向,呈现反对称分布;电场在中间位置106两侧呈反向分布。如图6B所示,馈电105处的电流呈现反向分布。基于馈电105处的电流反向分布,图6A所示出的这种馈电结构可以称为反对称馈电结构。图6B所示的这种线天线模式可以称为DM线天线模式。图6B所示的电流、电场可分别称为DM线天线模式的电流、电场。
DM线天线模式的电流、电场是整个线天线104作为1/2波长天线产生的。电流在线天线104的中间位置106处强,在线天线104的两端弱。电场在线天线104的中间位置106处弱,在线天线104的两端强。
第一种实施例:通过设置一种槽天线和线天线组成的天线结构,并利用两种馈电方式,以使天线结构激励出四种天线模式:共模槽天线、差模槽天线、共模线天线及差模线天线。这样,本实施例可通过两种馈电方式,以使槽天线和线天线组成的天线结构激励出多种谐振模式,从而实现天线可覆盖多个频段。
请参阅图7,图7是图1所示电子设备在A-A线处的剖面示意图。边框12包括相对设置的第一长边框121以及第二长边框122与相对设置的第一短边框123以及第二短边框124。第一短边框123与第二短边框124连接在第一长边框121与第二长边框122之间。此时,边框12的形状呈矩形,或者大致呈矩形。电路板30位于第一长边框121、第二长边框122、第一短边框123以及第二短边框124所围成的区域内。在本实施例中,天线结构的辐射体是第一短边框123的一部分为例进行说明。在其他实施例中,天线结构的辐射体也可以是第一长边框121的一部分、第二长边框122的一部分或者第二短边框124的一部分。当然,在其他实施例中,第一长边框121的一部分、第二长边框122的一部分、第一短边框123的一部分以及第二短边框124的一部分中的两个或者两个以上均可以作为天线结构的辐射体。
请参阅图8,图8是图7所示的电子设备在B处的一种实施方式的放大示意图。
首先,结合相关附图具体描述一下槽天线的辐射体的结构以及线天线的辐射体的结构。
在第一方向上(附图8示意了第一方向为X方向,在其他实施方式中,第一方向也可以为Y方向),第一短边框123包括依次连接的第一金属段的1231、第一绝缘段1232和第二金属段1233,也即第一绝缘段1232连接在第一金属段1231与第二金属段1233之间。此时,第一绝缘段1232将第一金属段1231与第二金属段1233电隔离。可以理解的是,第一金属段1231与第二金属段1233之间形成第三缝隙。第一绝缘段1232可以通过在第三缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施例中,第三缝隙内可填充空气,也即第三缝隙未填充任何绝缘材料。
在其他实施例中,第三缝隙内也可以设置有至少一个悬浮金属段。此时,第三缝隙内被悬浮金属段分成多个部分。
在其他实施例中,第一金属段的1231与第二金属段1233的位置可以对调。此时,第一金属段的1231位于第一绝缘段1232的右边。第二金属段1233位于第一绝缘段1232的左边。
第一金属段的1231包括依次连接的第一部分1、第一接地部分2及第二部分3。换言之,第一接地部分2连接在第一部分1与第二部分3之间。第一接地部分2指的是第一金属段的1231中接地的部分。第一接地部分2的大小及形状不局限于附图8所示意的大小及形状。
可以理解的是,第一接地部分2接地的方式具有多种。一种实施方式中,边框12包括连接枝节125。连接枝节125的材质为导电材料,例如金属材料。此时,第一接地部分2通过连接枝节125电连接于电路板30的地板。连接枝节125可以与第一金属段1231为一体成型结构。当然,连接枝节125也可以通过焊接或者粘接固定于第一金属段1231。在其他实施方式中,电子设备100也可以包括弹片。第一接地部分2通过弹片电连接于电路板30的地板。
此外,第一金属段1231与电路板30之间设置有第一缝隙31。第一缝隙31连通第一金属段1231与第二金属段1233之间形成第三缝隙。一种实施方式中,第一缝隙31内可填充绝缘材料,例如第一缝隙31内可填充聚合物、玻璃、陶瓷等材料或者这些材料的组合。另一种实施方式中,第一缝隙31内可填充空气,也即第一缝隙31未填充任何绝缘材料。
此外,第二金属段1233包括第三部分4、第二接地部分5及第三部分6。可以理解的是,第二接地部分5指的是第二金属段1233中接地的部分。具体的,第二接地部分5电连接于电路板30的地板。第二接地部分5与电路板30的地板的电连接方式可参阅第一接地部分2与电路板30的地板的电连接方式。
此外,第二金属段1233与电路板30之间设置有第二缝隙32。第二缝隙32与第一缝隙31相连通。此外,第二缝隙32连通第一金属段1231与第二金属段1233之间形成第三缝隙。第二缝隙32的设置方式可参阅第一缝隙31的设置方式,这里不再赘述。
请参阅图9,并结合图8所示,图9是图8所示的电子设备的天线结构的一种实施方式的示意图。第一部分1与第一接地部分2形成第一辐射体101。第二部分3与第一接地部分2形成第二辐射体102。此时,第一接地部分2为第一辐射体101与第二辐射体102的接地端。第一辐射体101远离第一接地部分2的端部为未接地的开放端。第二辐射体102远离第一接地部分2的端部为未接地的开放端。
此外,第三部分4与第二接地部分5形成第三辐射体103。第四部分6与第二接地部分5形成第四辐射体104。此时,第二接地部分5为第三辐射体103与第四辐射体104的接地端,第三辐射体103远离第二接地部分5的端部为未接地的开放端。第四辐射体104远离第二接地部分5的端部为未接地的开放端。
这样,第二辐射体102与第三辐射体103形成槽天线40的辐射体。第一辐射体101与第四辐射体104形成线天线50的辐射体。
在本实施例中,第二辐射体102的长度与第三辐射体103的长度相等,且第二辐射体 102的长度与第三辐射体103的长度均为1/4波长。波长可依据第第二辐射体102与第三辐射体103的工作频率f1计算得到。具体的,辐射信号在空气中的波长可以如下计算:波长=光速/f1。辐射信号在介质中的波长可以如下计算:波长=(光速/√ε)/f1,其中,ε为该介质的相对介电常数。此时,槽天线40的辐射体的对称性较佳。可以理解的是,实际应用中,第二辐射体102的长度与第三辐射体103的长度难以完全相等,可以通过调整匹配电路等来补偿这种结构上的不平衡。
第一辐射体101的长度与第四辐射体104的长度相等,且第一辐射体101的长度与第四辐射体104的长度为1/4波长。波长可依据第一辐射体101与第四辐射体104的工作频率f1计算得到。具体的,辐射信号在空气中的波长可以如下计算:波长=光速/f1。辐射信号在介质中的波长可以如下计算:波长=(光速/√ε)/f1,其中,ε为该介质的相对介电常数。此时,线天线50的辐射体较佳。可以理解的是,实际应用中,第一辐射体101的长度与第四辐射体104的长度难以完全相等,可以通过调整匹配电路等来补偿这种结构上的不平衡。
在其他实施例中,第二辐射体102的长度与第三辐射体103的长度也可以不相等。第一辐射体101的长度与第四辐射体104的长度也可以不相等。
请再次参阅图8,第一短边框123还可以包括第二绝缘段1237以及第三绝缘段1239。第二绝缘段1237连接于第一部分1。第三绝缘段1239连接于第四部分6。第二绝缘段1237用于将第一金属段1231与边框12其他金属段电隔离。第三绝缘段1239用于将第二金属段1233与边框12其他金属段电隔离。
其次,下文将结合相关附图具体描述一种对称馈电方式。
请再次参阅图8及图9,槽天线40包括桥结构41。桥结构41的材质为导电材料,例如,金属材料。桥结构41位于边框12的内侧。
在本实施例中,桥结构41设置于电路板30,且桥结构41与电路板30的地板绝缘设置。一种实施方式中,电路板30朝屏幕20的表面为地板。此时,在电路板30背离屏幕20的表面设置桥结构41。这样,桥结构41能够与电路板30的地板绝缘设置。桥结构41的结构形式可以是柔性电路板、激光直接成型(laser direct structuring,LDS)金属、模内注塑金属或印刷电路板的走线。再一种实施方式中,在电路板30朝屏幕20的表面设置支架。支架的材质为绝缘材料,例如塑料。此时,支架与电路板30的地板绝缘设置。再将桥结构41设置于支架上。这样,桥结构41也能够与电路板30的地板绝缘设置。
在本实施例中,桥结构41为对称图形。例如,桥结构41的形状为“П”形。此时,桥结构41的对称性较佳,也即槽天线40的对称性较佳。桥结构41的结构较为简单,易于制备。在其他实施方式中,桥结构41的形状也可以为弧形。此外,桥结构41也可以为非对称图形。
此外,桥结构41的一端连接于第二辐射体102。一种实施方式中,桥结构41的一端通过弹片连接于的第二辐射体102。桥结构41的另一端连接于第三辐射体103。一种实施方式中,桥结构41的另一端通过弹片连接于第三辐射体103。此时,第二辐射体102连接桥结构41的位置为槽天线40的第一个馈电点。第三辐射体103连接桥结构41的位置为槽天线40的第二个馈电点。
请再次参阅图8及图9,槽天线40还包括第一馈电电路42。第一馈电电路42的负极接地,也即第一馈电电路42的负极电连接于电路板30的地板。第一馈电电路42的正极电连接于桥结构41的中部。附图8通过箭头简单地示意了第一馈电电路42的正极和负极的朝向。箭头的指向为负极指向正极。可以理解的是,该种馈电方式为对称馈电方式。
一种实施方式中,第一馈电电路42包括馈源和电容。馈源的负极电连接于电路板30的地板。馈源的正极电连接于电容的一侧。电容的另一侧电连接于桥结构41的中部。换言之,电容电连接于馈源的正极与桥结构41的中部。
其次,下文将结合相关附图具体描述一下反对称馈电方式。
请再次参阅图8及图9,线天线50包括第一导电段51、第三导电段52及第一匹配电路56。第一导电段51及第三导电段52的材质均为导电材料,例如,金属材料。第一导电段51、第三导电段52及第一匹配电路56位于边框12的内侧。
此外,第一导电段51包括第一端511及远离第一端511设置的第二端512。第一导电段51的第一端511电连接于电路板30的地板,也即第一端511接地。可以理解的是,第一端511与电路板30的地板的电连接方式可参阅第一金属段1231与电路板30的地板的电连接方式。这里不再赘述。
此外,第一导电段51的第二端512通过第一匹配电路56电连接于第三导电段52。可以理解的是,第一匹配电路56用于匹配天线阻抗。第一匹配电路56可以包括至少一个电路组件。例如,第一匹配电路56可以包括作为集总元件的电阻器、电感器和电容器中的至少一个。例如,第一匹配电路56可以包括作为分布元件的电感和电容中的至少一个。在其他实施方式中,第二端512也可以直接电连接于第三导电段52。
此外,第三导电段52远离第一匹配电路56的端部连接于第一辐射体101。一种实施方式中,第三导电段52远离第一匹配电路56的端部分通过弹片连接于第一辐射体101。此时,第一辐射体101连接于第三导电段52的位置为第一个馈电点。
在本实施方式中,第一导电段51、第三导电段52及第一匹配电路56设置于电路板30的地板,第一导电段51、第三导电段52及第一匹配电路56均与电路板30的地板绝缘设置。
一种实施方式中,电路板30朝屏幕20的表面设置有地板。此时,在电路板30朝屏幕20的表面设置支架。支架的材质为绝缘材料,例如塑料。再将第一导电段51设置于支架上。此外,在电路板30背离屏幕20的表面设置第三导电段52。再者,在电路板30设置镂空区域,将第一匹配电路56设置于镂空区域内。可以理解的是,因为第一导电段51与第三导电段52位于电路板30相背的两面(也即第一导电段51与第三导电段52在Z方向上存在高度差),所以附图8通过实线简单地示意了第三导电段52,通过虚线简单地示意了第一导电段51。这样,第一导电段51、第三导电段52及第一匹配电路56也能够与电路板30的地板绝缘设置。此外,第一导电段51与第三导电段52的结构形式可以是柔性电路板、激光直接成型金属、模内注塑金属或印刷电路板的走线。
另一种实施方式中,在电路板30背离屏幕20的表面设置第一导电段51、第三导电段52及第一匹配电路56。通过在电路板30设置镂空区域,以使第一导电段51的第一端511能够通过镂空区域电连接于电路板30的地板。这样,第一导电段51、第三导电段52及第 一匹配电路56均能够与电路板30的地板绝缘设置。此外,第一导电段51与第三导电段52的结构形式可以是柔性电路板、激光直接成型金属、模内注塑金属或印刷电路板的走线。
请再次参阅图4及图5,线天线50还包括第二导电段53、第四导电段54及第二匹配电路57。第二导电段53及第四导电段54的材质均为导电材料,例如,金属材料。第二导电段53、第四导电段54及第二匹配电路57位于边框12的内侧,也即收容空间13内。此外,第二导电段53、第四导电段54及第二匹配电路57的设置方式可参阅第一导电段51、第三导电段52及第一匹配电路56的设置方式。这里不再赘述。此时,第二导电段53与第四导电段54在Z方向上存在高度差)。
此外,第二导电段53包括第三端531及远离第三端531设置的第四端532。第二导电段53的第三端531电连接于电路板30的地板,也即第一端511接地。可以理解的是,第三端531与电路板30的地板的电连接方式可参阅第一金属段1231与电路板30的地板的电连接方式。这里不再赘述。
此外,第二导电段53的第四端532通过第二匹配电路57电连接于第四导电段54。可以理解的是,第二匹配电路57用于匹配天线阻抗。第二匹配电路57可以包括至少一个电路组件。例如,第二匹配电路57可以包括作为集总元件的电阻器、电感器和电容器中的至少一个。例如,第二匹配电路57可以包括作为分布元件的电感和电容中的至少一个。在其他实施方式中,第四端532也可以直接电连接于第四导电段54。
此外,第四导电段54远离第二导电段53的一端连接于第四辐射体104。一种实施方式中,第四导电段54远离第二导电段53的一端通过弹片连接于第四辐射体104。此时,第四辐射体104连接于第四导电段54的位置为第二个馈电点。
在本实施方式中,第一导电段51与第二导电段53为两条对称的平行导线。一种实施方式中,第一导电段51的形状为“丨”形。第二导电段53的形状也为“丨”形。此时,第一导电段51与第二导电段53的对称性较佳,也即线天线50的结构对称性较佳。第一导电段51与第二导电段53的结构简单,易于制备。在其他实施方式中,第一导电段51也可以为弧形。第二导电段53也可以为弧形。第一导电段51与第二导电段53也可以为非对称图形。
在本实施例中,第三导电段52与第四导电段54为对称图形。一种实施方式中,第三导电段52的形状为
Figure PCTCN2021073626-appb-000001
形。第四导电段54的形状为
Figure PCTCN2021073626-appb-000002
形。此时,第三导电段52与第四导电段54对称性较佳,也即线天线50的结构对称性较佳。第三导电段52与第四导电段54的结构简单,易于制备。在其他实施方式中,第三导电段52也可以为弧形。第四导电段54也可以为弧形。第三导电段52与第四导电段54也可以为非对称图形。
此外,线天线50还包括第二馈电电路55。第二馈电电路55的负极电连接于第一导电段51的第一端511与第二端512之间。第二馈电电路55的正极电连接于第二导电段53的第三端531与第四端532之间。在本实施方式中,第二馈电电路55的负极电连接于第一端511与第二端512的中间位置。第二馈电电路55的正极电连接于第三端531与第四端532的中间位置。此时,线天线50的结构的对称性较佳。在其他实施方式中,第二馈电电路55的负极也可以偏离第一端511与第二端512的中间位置。第二馈电电路55的正极也可以偏离第三端531与第四端532的中间位置。此外,附图8通过箭头简单地示意了第二馈 电电路55的正极和负极的朝向。箭头的指向为负极指向正极,也即自左向右。可以理解的是,这种馈电方式为反对称馈电方式。此外,在其他实施例中,当第一金属段的1231与第二金属段1233的位置对调时,第二馈电电路55的正极和负极的朝向为自右向左。
可以理解的是,通过上文以及相关附图,本实施例具体介绍了一种槽天线40与线天线50结组成的天线结构,以及天线结构的两种馈电方式:对称馈电以及反对称馈电。下文将结合相关附图具体描述这种天线结构的天线性能。
下文具体描述一下电子设备100的相关部分件的具体参数。具体的,电子设备100的边框12厚度约为4毫米,宽度约为3毫米。电子设备100的边框12与电路板30的地板之间的净空区域的宽度约为1毫米,也即第一缝隙31以及第二缝隙32的宽度均约为1毫米。第一绝缘段1232的宽约为2毫米。第一绝缘段1232、第二绝缘段1237以及第三绝缘段1239采用的绝缘材料的介电常数为3.0,损耗角为0.01。此外,第一缝隙31以及第二缝隙32内填充的绝缘材料的介电常数也为3.0,损耗角也为0.01。
请参阅图10,图10是图9所示天线结构的反射系数曲线图。其中,在图10中,实线线条代表的是天线结构在反对称馈电方式下的反射系数曲线。图10中的虚线表示的是天线结构在对称馈电方式下的反射系数曲线。图10的横坐标代表频率(单位为GHz),纵坐标代表反射系数(单位dB)。
根据图10的实线可以看出在反对称的馈电方式下,天线结构可以产生三个谐振模式,且该三个谐振模式的谐振频率分别在1.84GHz的附近(实线箭头1所指的位置)、2.07GHz的附近(实线箭头2所指的位置)以及2.49GHz的附近(实线箭头3所指的位置)。此外,根据图10的虚线可以看出在对称的馈电方式下,天线结构可以产生两个谐振模式。两个谐振模式的谐振频率分别在2.04GHz的附近(虚线箭头1所指的位置)和2.21GHz的附近(虚线箭头2所指的位置)。可以理解的是,本实施例是以频段0至3GHz为例进行描述。当然,在其他实施例中,通过调节相关参数(例如,槽天线40的第二辐射体102的长度、槽天线40的第三辐射体103的长度,或者线天线50的第一辐射体101的长度,或者线天线50的第四辐射体104的长度),从而在其他频段(例如:3GHz至6GHz,6GHz至8GHz,或者8GHz至11GHz等)内,天线结构也可以产生五个谐振模式,也即产生五个谐振频率。
可以理解的是,通过设置一种槽天线40和线天线50组成的天线结构,并利用两种馈电方式,可以使得天线结构激励出五个谐振模式,从而实现天线覆盖多个频段。
此外,请参阅图11,图11是图9所示天线结构的效率曲线图。其中,在图11中,实线线条1(实线箭头1所指的曲线)代表的是天线结构在反对称馈电方式下的系统效率曲线。在图11中,实线线条2(实线箭头2所指的曲线)代表的是天线结构在对称馈电方式下的系统效率曲线。在图11中,虚线线条1(虚线箭头1所指的曲线)代表的是天线结构在反对称馈电方式下的辐射效率曲线。在图11中,虚线线条2(虚线箭头2所指的曲线)代表的是天线结构在对称馈电方式下的辐射效率曲线。图11的横坐标代表频率(单位为GHz),纵坐标代表效率(单位dB)。根据附图11可知,天线结构在反对称馈电方式下,产生的激励谐振信号拓宽了天线结构的带宽。此外,天线结构在对称馈电方式下,产生的激励谐振信号拓宽了天线结构的带宽。故而,天线结构的天线性能更佳。
请参阅图12,图12是图9所示天线结构的隔离度曲线图。图12的横坐标代表频率(单 位为GHz),纵坐标代表效率(单位dB)。根据附图12可知,天线结构在反对称馈电方式下,产生的激励谐振信号以及天线结构在对称馈电方式下,产生的激励谐振信号的隔离度可以达到16dB(箭头所指的位置)以上。故而,天线结构的天线性能更佳。
以下结合图13a至图13e来具体描述一下天线结构在五个谐振频率下的电流及电场流向示意图。图13a是图9所示的天线结构在频率为1.84GHz的信号下的电流及电场的流向示意图。图13b是图9所示的天线结构在频率为2.07GHz的信号下的电流及电场的流向示意图。图13c是图9所示的天线结构在频率为2.49GHz的信号下的电流及电场的流向示意图。图13d是图9所示的天线结构在频率为2.04GHz的信号下的电流及电场的流向示意图。图13e是图9所示的天线结构在频率为2.21GHz的信号下的电流及电场的流向示意图。
请参阅图13a,天线结构上产生了第一种电流。第一种电流的电流流向具有两部分:一部分为第三辐射体103的接地端传输至第三辐射体103的开放端,另一部分为第二辐射体102的开放端传输至第二辐射体102的接地端。此外,第二辐射体102与第三辐射体103各自一侧的电场方向不同。
请参阅图13b,天线结构上产生了第二种电流。第二种电流的流向具有两部分:一部分为第一导电段51、第三导电段52、第一辐射体101的接地端以及第二辐射体102,另一部分为第三辐射体103、第四辐射体104、第四导电段54以及第二导电段53。第二种电流的流向大致呈一环状。此外,第二辐射体102与第三辐射体103各自一侧的电场方向不同。此外,第一导电段51、第三导电段52两边的电场方向也相反。第四导电段54以及第二导电段53两边的电场方向也相反。
请参阅图13c,天线结构上产生了第三种电流。第三种电流的流向具有两部分:一部分为第四辐射体104的开放端、第三辐射体103的接地端以及第三辐射体103的开放端,另一部分为第二辐射体102的开放端、第二辐射体102的接地端以及第一辐射体101的开放端。此外,第一辐射体101及第二辐射体102和第三辐射体103及第四辐射体104一侧的电场方向相同。此外,第一辐射体101及第二辐射体102和第三辐射体103及第四辐射体104各自一侧的电场方向不同。
请参阅图13d,天线结构上产生了第四种电流。第四种电流具体流向包括两部分。一部分为第四辐射体104的开放端、第三辐射体103的接地端以及第三辐射体103的开放端,另一部分为第一辐射体101的开放端、第一辐射体101的接地端以及第二辐射体102的开放端。此外,第一辐射体101及第二辐射体102和第三辐射体103及第四辐射体104各自一侧的电场方向相同。
请参阅图13e,天线结构上产生了第五种电流的流向。第五种电流具体流向包括四部分。第一部分为桥结构41的馈电端流向第二辐射体102,第二部分为第二辐射体102的接地端流向第二辐射体102的开放端。第三部分为桥结构41的馈电端流向第三辐射体103。第四部分为第三辐射体103的开放端流向第三辐射体103的接地端。此外,第二辐射体102与第三辐射体103各自一侧的电场方向相同。
以下结合图13f至图13j来具体描述一下天线结构在五个谐振频率下的辐射方向示意图。图13f是图9所示的天线结构在频率为1.84GHz的信号下的辐射方向示意图。图13g是图9所示的天线结构在频率为2.07GHz的信号下的辐射方向示意图。图13h是图9所示 的天线结构在频率为2.49GHz的信号下的辐射方向示意图。图13i是图9所示的天线结构在频率为2.04GHz的信号下的辐射方向示意图。图13j是图9所示的天线结构在频率为2.21GHz的信号下的辐射方向示意图。
请参阅图13f至图13h,图13f至图13h的天线结构在反对称馈电下,产生的天线信号的辐射方向在Y轴方向的辐射强度较强,在X轴方向的辐射强度较弱,也即频率为1.84GHz的共模槽天线在Y轴方向的辐射强度较强、频率为2.07GHz的共模槽天线在Y轴方向的辐射强度较强、2.49GHz的差模线天线在Y轴方向的辐射强度较强。
请参阅图13i至图13j,图13i至图13j的天线结构在对称馈电下,产生的天线信号的辐射方向在Y轴方向的辐射强度较弱,在X轴方向的辐射强度较强,也即频率为2.04GHz的共模线天线在X轴方向的辐射强度较强、频率为2.21GHz的差模槽天线在X轴方向的辐射强度较强。
此外,根据图13f至图13j可知,在相同的频段(例如本实施方式的0-3GHz)下,天线结构在反对称馈电方式下,产生的激励谐振信号以及天线结构在对称馈电方式下,产生的激励谐振信号的方向差异较大。此时,天线结构辐射范围较广。
此外,通过图13f至图13j的两个天线的辐射方向图可以计算出在反对称馈电下,产生的天线信号与在对称馈电下,产生的天线信号的ECC均小于0.1。换言之,本实施例的天线结构的ECC较小。
在本实施例中,通过设置一种槽天线40和线天线50组成的天线结构,并利用两种馈电方式,以使天线结构激励出四个天线谐振,其中差模线天线具有两个谐振模式,从而实现天线覆盖多个频段。
此外,天线结构在反对称馈电方式下,产生的激励谐振信号,以及天线结构在对称馈电方式下,产生的激励谐振信号,两者之间的隔离度可以达到16dB以上,从而使得天线结构的天线性能较佳。
扩展实施例一,与第一种实施例相同的技术内容不再赘述:请参阅图14,图14是图8所示的电子设备的天线结构的另一种实施方式的示意图。槽天线40还包括第一调谐电路44和第二调谐电路45。第一调谐电路44的一部分电连接于第一金属段1231朝向第二金属段1233的端部,一部分接地。换言之,第二辐射体102的开放端通过第一调谐电路44接地。第一调谐电路44用于调整第二辐射体102的电长度。第二调谐电路45的一部分电连接于第二金属段1233朝向第一金属段1231的端部,一部分接地。换言之,第三辐射体103的开放端通过第二调谐电路45接地。第二调谐电路45用于调整第三辐射体103的电长度。一种实施方式中,第一调谐电路44为电容。此时,通过设置电容的工作参数,可以有效地调整第二辐射体102的电长度,从而在第二辐射体102的电长度减小时,可以实现槽天线40的小型化设置。此外,第二调谐电路45也可以为电容。
扩展实施例二,与第一种实施例相同的技术内容不再赘述:请参阅图15,图15是图8所示的电子设备的天线结构的再一种实施方式的示意图。线天线50还包括第三调谐电路58。第三调谐电路58电连接于第三导电段52远离第一金属段1231的端部与第四导电段54远离第二金属段1233的端部之间。第三调谐电路58用于调整第一辐射体101的电长度以及第四辐射体104的电长度。例如,第三调谐电路58为电容。电容电连接于第三导电段 52与第四导电段54之间。此时,通过调整电容的参数,可以减小第一辐射体101的电长度以及第四辐射体104的电长度,从而在第一辐射体101的电长度以及第四辐射体104的电长度减小时,可实现线天线50的小型化设置。
可以理解的是,本实施例的天线结构也可以包括扩展实施一的天线结构的第一调谐电路44和第二调谐电路45。具体可参阅扩展实施例一。
扩展实施例三,与第一种实施例相同的技术内容不再赘述:边框12的材质为绝缘材料。此时,第一短边框123的材质也为绝缘材料。此时,在第一短边框123的内侧依次形成第一金属段1231、第一绝缘段1232及第二金属段1233。第一金属段1231与第二金属段1233的结构形式可以是柔性电路板、激光直接成型(laser direct structuring,LDS)金属、模内注塑金属或印刷电路板的走线。此外,第一绝缘段1232可以通过在第一金属段1231与第二金属段1233之间的缝隙内填充绝缘材料形成,例如绝缘材料为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施方式中,第一绝缘段1232也可以为缝隙,也即缝隙内未填充绝缘材料。
第二种实施例,与第一种实施例相同的技术内容不再赘述:通过设置另一种槽天线和线天线组成的天线结构,并利用两种馈电方式,以使天线结构激励出四种天线模式:共模槽天线、差模槽天线、共模线天线及差模线天线。其中,共模线天线具有两个谐振模式。共模槽天线也具有两个谐振模式。这样,本实施例可通过一种槽天线40和线天线50组成的天线结构激励出多种谐振模式,从而实现天线可覆盖多个频段。
本实施例以槽天线和线天线组成的天线结构的辐射体是第一短边框123的一部分为例进行说明。在其他实施例中,槽天线和线天线组成的天线结构的辐射体也可以是第一长边框121的一部分、第二长边框122的一部分或者第二短边框124的一部分。
首先,结合相关附图具体描述一下槽天线的辐射体的结构及线天线的辐射体的结构。
请参阅图16,图16是图7所示的电子设备在B处的另一种实施方式的放大示意图。
第一短边框123包括依次连接的第一金属段1231、第一绝缘段1232、第二金属段1233、第二绝缘段1234及第三金属段1235。换言之,第一绝缘段1232位于第一金属段1231与第二金属段1233之间。第二绝缘段1234位于第二金属段1233与第三金属段1235之间。
此外,第二金属段1233包括第一部分1、第一接地部分2及第二部分3。第一部分1连接于第一绝缘段1232。第二部分3连接于第二绝缘段1234。可以理解的是,第一金属段1231与第一部分1之间形成第四缝隙。第一绝缘段1232可以通过在第四缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施例中,第四缝隙内可填充空气,也即第四缝隙未填充任何绝缘材料。此外,第二部分3与第三金属段1235之间形成第五缝隙。第二绝缘段1234可以通过在第五缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。
此外,本实施例的第一接地部分2的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。此外,第一金属段1231远离第一绝缘段1232的端部接地。第三金属段1235远离第二绝缘段1234的端部接地。第一金属段1231的接地方式与第三金属段1235的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。
此外,第一金属段1231与电路板30的地板之间设置有第一缝隙31。第一缝隙31连 通第一金属段1231与第一部分1之间形成第四缝隙、以及第二部分3与第三金属段1235之间形成第五缝隙。一种实施方式中,第一缝隙31内可填充绝缘材料,例如第一缝隙31内可填充聚合物、玻璃、陶瓷等材料或者这些材料的组合。另一种实施方式中,第一缝隙31内可填充空气,也即第一缝隙31未填充任何绝缘材料。
此外,第二金属段1233与电路板30的地板之间设置有第二缝隙32。第二缝隙32连通第一缝隙31。第二缝隙32连通第一金属段1231与第一部分1之间形成第四缝隙、以及第二部分3与第三金属段1235之间形成第五缝隙。第二缝隙32的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
此外,第三金属段1235与电路板30的地板之间设置有第三缝隙33。第三缝隙33连通第一缝隙31与第二缝隙32。第三缝隙33连通第一缝隙31。第二缝隙32连通第一金属段1231与第一部分1之间形成第四缝隙、以及第二部分3与第三金属段1235之间形成第五缝隙。第三缝隙33的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
请参阅图17,并结合图16,图17是图16所示的电子设备的天线结构的一种实施方式的示意图。第一部分1与第一接地部分2形成第二辐射体102。第二部分3与第一接地部分2形成第三辐射体103。第二辐射体102与第三辐射体103形成线天线50的辐射体。
此外,第一金属段1231形成第一辐射体101。第三金属段1235形成第四辐射体104。第一辐射体101与第四辐射体104形成槽天线40的辐射体。
其次,本实施例的线天线50的馈电方式可参阅第一个实施例的槽天线40的馈电方式。这里不再赘述。
此外,本实施例的槽天线40的馈电方式可参阅第一个实施例的线天线50的馈电方式。这里不再赘述。
在本实施例中,第二辐射体102的长度与第三辐射体103的长度相等,且第二辐射体102的长度与第三辐射体103的长度均为1/4波长。波长1可依据第二辐射体102与第三辐射体103的工作频率f1计算得到。具体的,辐射信号在空气中的波长1可以如下计算:波长=光速/f1。辐射信号在介质中的波长1可以如下计算:波长=(光速/√ε)/f1,其中,ε为该介质的相对介电常数。
第一辐射体101的长度与第四辐射体104的长度相等,且第一辐射体101与第四辐射体104的长度为1/4波长。波长1可依据第一辐射体101与第四辐射体104的工作频率f1计算得到。具体的,辐射信号在空气中的波长1可以如下计算:波长=光速/f1。辐射信号在介质中的波长1可以如下计算:波长=(光速/√ε)/f1,其中,ε为该介质的相对介电常数。
在其他实施例中,第二辐射体102的长度与第三辐射体103的长度也可以不相等。第一辐射体101的长度与第四辐射体104的长度也可以不相等。
上文具体介绍了一种线天线50与槽天线40组成的天线结构,以及天线结构的两种馈电方式:对称馈电以及反对称馈电。下文将结合相关附图具体描述这种天线结构的天线性能。
此外,下文具体描述一下电子设备100的相关部分件的具体参数。电子设备100的边框12厚度约为4毫米,宽度约为3毫米。电子设备100的边框12与电路板30的地板之间 的净空区域的宽度约为1毫米,也即第一缝隙31、第二缝隙32以及第三缝隙33的宽度均约为1毫米。第一绝缘段1232以及第二绝缘段1234的宽约为2毫米。第一绝缘段1232以及第二绝缘段1234采用的绝缘材料的介电常数为3.0,损耗角为0.01。此外,第一缝隙31、第二缝隙32以及第三缝隙33内填充的绝缘材料的介电常数也为3.0,损耗角也为0.01。
请参阅图18,图18是图17所示天线结构的反射系数曲线图。其中,在图18中,曲线箭头1所指的曲线代表的是天线结构在反对称馈电方式的反射系数曲线。图18中的曲线箭头2所指的曲线是天线结构在对称馈电方式的反射系数。图18的横坐标代表频率(单位为GHz),纵坐标代表反射系数(单位dB)。
根据图18中曲线箭头1所指的曲线可以看出在反对称的馈电方式下,天线结构可以产生三个谐振模式,且该三个谐振模式的谐振频率分别在1.75GHz的附近(实线箭头1所指的位置)、2.36GHz的附近(实线箭头2所指的位置)以及2.79GHz的附近(实线箭头3所指的位置)。此外,根据图18中曲线箭头2所指的曲线可以看出在对称的馈电方式下,天线结构可以产生三个谐振模式。三个谐振模式的谐振频率分别在1.87GHz的附近(虚线箭头1所指的位置)、2.36GHz的附近(虚线箭头2所指的位置)以及2.87GHz的附近(虚线箭头3所指的位置)。可以理解的是,本实施例是以频段0至3GHz为例进行描述。当然,在其他实施例中,通过调节相关参数(例如,线天线50的第二辐射体102的长度、线天线50的第三辐射体103的长度,或者槽天线40的第一辐射体101的长度,或者线天线50的第四辐射体104的长度),从而在其他频段(例如:3GHz至6GHz,6GHz至8GHz,或者8GHz至11GHz等)内,天线结构也可以产生六个谐振模式,也即产生六个谐振频率。
在本实施例中,通过设置一种槽天线40和线天线50组成的天线结构,并利用两种馈电方式,以使天线结构激励出六个谐振模式,从而实现天线覆盖多个频段。
请参阅图19,图19是图17所示天线结构的效率曲线图。其中,在图19中,实线线条1(实线箭头1所指的曲线)代表的是天线结构在反对称馈电方式下的系统效率曲线。在图19中,实线线条2(实线箭头2所指的曲线)代表的是天线结构在对称馈电方式下的系统效率曲线。在图19中,虚线线条1(虚线箭头1所指的曲线)代表的是天线结构在反对称馈电方式下的辐射效率曲线。在图19中,虚线线条2(虚线箭头2所指的曲线)代表的是天线结构在对称馈电方式下的辐射效率曲线。图19的横坐标代表频率(单位为GHz),纵坐标代表效率(单位dB)。根据附图19可知,天线结构在反对称馈电方式下,产生的激励谐振信号拓宽了天线结构的带宽。此外,天线结构在对称馈电方式下,产生的激励谐振信号拓宽了天线结构的带宽。故而,天线结构的天线性能更佳。
请参阅图20,图20是图17所示天线结构的隔离度曲线图。图20的横坐标代表频率(单位为GHz),纵坐标代表效率(单位dB)。根据附图20可知,天线结构在反对称馈电方式下,产生的激励谐振信号以及天线结构在对称馈电方式下,产生的激励谐振信号的隔离度可以达到22dB(箭头所指的位置)以上。故而,天线结构的天线性能更佳。
以下结合图21a至图21f来具体描述一下天线结构在六个谐振频率下的电流及电场流向示意图。图21a是图17所示的天线结构在频率为1.75GHz的信号下的电流及电场的流向示意图。图21b是图17所示的天线结构在频率为2.36GHz的信号下的电流及电场的流向示意图。图21c是图17所示的天线结构在频率为2.79GHz的信号下的电流及电场的流向示意 图。图21d是图17所示的天线结构在频率为1.87GHz的信号下的电流及电场的流向示意图。图21e是图17所示的天线结构在频率为2.36GHz的信号下的电流及电场的流向示意图。图21f是图17所示的天线结构在频率为2.87GHz的信号下的电流及电场的流向示意图。
请参阅图21a,天线结构上产生了第一种电流。第一种电流的电流流向具有两部分:一部分为第一辐射体101的开放端传输至第一辐射体101的接地端。另一部分为第四辐射体104的接地端传输至第四辐射体104的开放端。此外,第一辐射体101与第四辐射体104各自一侧的电场方向不同。
请参阅图21b,天线结构上产生了第二种电流。第二种电流的电流流向具有三部分:一部分为第四辐射体104的开放端、第四导电段54、第二导电段53、第一导电段51、第三导电段52以及第一辐射体101的开放端。另一部分为第一辐射体101的接地端流向第一辐射体101的开放端。再一部分为第四辐射体104的开放端流向第四辐射体104接地端。此外,第一辐射体101与第四辐射体104各自一侧的电场方向不同。此外,第一导电段51、第三导电段52两边的电场方向也相反。第四导电段54以及第二导电段53两边的电场方向也相反。
请参阅图21c,天线结构上产生了第三种电流。第三种电流的电流流向为第三辐射体103的开放端、第二辐射体102的接地端以及第二辐射体102的开放端。此外,第三辐射体103与第二辐射体102各自一侧的电场方向不同。
请参阅图21d,天线结构上产生了第四种电流。第四种电流的电流流向具有两部分:一部分为第一辐射体101的开放端传输至第一辐射体101的接地端。另一部分为第四辐射体104的开放端传输至第四辐射体104的接地端。第一辐射体101与第四辐射体104各自一侧的电场方向相同。
请参阅图21e,天线结构上产生了第五种电流。第五种电流的电流流向具有两部分:第一部分为第二辐射体102的接地端传输至第二辐射体102开放端。第二部分为第三辐射体103的接地端传输至第三辐射体103的开放端。此外,第三辐射体103与第二辐射体102各自一侧的电场方向相同。可以理解的是,2.36GHz谐振模式主要通过第二辐射体102与第三辐射体103作用。
请参阅图21f,天线结构上产生了第六种电流。具体流向包括四部分。第一部分为桥结构41的馈电端的左侧部分流向馈电端的电流。第二部分为流向桥结构41的馈电端的右侧部分流向馈电端的电流。第三部分为桥结构41流向第二辐射体102的开放端的电流。第四部分为桥结构41流向第三辐射体103的开放端的电流。此外,第三辐射体103与第二辐射体102各自一侧的电场方向相同。可以理解的是,2.87GHz谐振模式除了第二辐射体102以及第三辐射体103的作用,还通过对称馈电的桥结构41的作用。
以下结合图21g至图21l来具体描述一下天线结构在五个谐振频率下的辐射方向示意图。图21g是图17所示的天线结构在频率为1.75GHz的信号下的辐射方向的示意图。图21h是图17所示的天线结构在频率为2.36GHz的信号下的辐射方向的示意图。图21i是图17所示的天线结构在频率为2.79GHz的信号下的辐射方向的示意图。图21j是图17所示的天线结构在频率为1.87GHz的信号下的辐射方向的示意图。图21k是图17所示的天线结构在频率为2.36GHz的信号下的辐射方向的示意图。图21l是图17所示的天线结构在频率 为2.87GHz的信号下的辐射方向的示意图。
请参阅图21g至图21i,图21g至图21i的天线结构在反对称馈电下,产生的天线信号的辐射方向在Y轴方向的辐射强度较强,在X轴方向的辐射强度较弱,也即频率为1.75GHz的共模槽天线在Y轴方向的辐射强度较强、频率为2.36GHz的共模槽天线在Y轴方向的辐射强度较强、2.79GHz的差模线天线在Y轴方向的辐射强度较强。
请参阅图21j至图21l,图21j至图21l的天线结构在反对称馈电下,产生的天线信号的辐射方向在X轴方向的辐射强度较强,在Y轴方向的辐射强度较弱,也即频率为1.87GHz的差模槽天线在X轴方向的辐射强度较强、频率为2.36GHz的共模线天线在X轴方向的辐射强度较强、2.87GHz的共模线天线在X轴方向的辐射强度较强。
此外,根据图13f至图13j可知,在相同的频段(例如本实施方式的0-3GHz)下,天线结构在反对称馈电方式下,产生的激励谐振信号以及天线结构在对称馈电方式下,产生的激励谐振信号的方向差异较大。此时,天线结构辐射范围较广。
此外,通过图21g至图21l的两个天线的辐射方向图可以计算出在反对称馈电下,产生的天线信号与在对称馈电下,产生的天线信号的ECC均小于0.1。换言之,本实施例的天线结构的ECC较小。
在本实施例中,通过设置一种槽天线40和线天线50组成的天线结构,并利用两种馈电方式,以使天线结构激励出六个谐振模式,也即产生六个谐振频率,从而实现天线覆盖多个频段。
此外,天线结构在反对称馈电方式下,产生的激励谐振信号以及天线结构在对称馈电方式下,产生的激励谐振信号,两者之间的隔离度可以达到22dB以上,从而使得天线结构的天线性能更佳。
扩展实施例一,与第二种实施例相同的技术内容不再赘述:请参阅图22,图22是图16所示的电子设备的天线结构的另一种实施方式的示意图。槽天线40还包括第一调谐电路44和第二调谐电路45。第一调谐电路44的一部分连接于第一辐射体101朝向第二辐射体102的端部,另一部分接地。换言之,第一辐射体101的开放端通过第一调谐电路44接地。第一调谐电路44用于调整第一辐射体101的电长度。第二调谐电路45的一部分连接于第四辐射体104朝向第三辐射体103的端部,另一部分接地。换言之,第四辐射体104的开放端通过第二调谐电路45接地。例如,第一调谐电路44为电容。第二调谐电路45也为电容。此时,通过设置电容的工作参数,可以有效地调整第一辐射体101的电长度以及第四辐射体104的电长度,从而在第一辐射体101的电长度以及第四辐射体104的电长度减小时,可实现槽天线40的小型化设置。
扩展实施例二,与第二种实施例相同的技术内容不再赘述:边框12的材质为绝缘材料。此时,第一短边框123的材质也为绝缘材料。此时,在第一短边框123的内侧形成依次连接的第一金属段1231、第一绝缘段1232、第二金属段1233、第二绝缘段1234及第三金属段1235。第一金属段1231、第二金属段1233以及第三金属段1235的结构形式可以是柔性电路板、激光直接成型(laser direct structuring,LDS)金属、模内注塑金属或印刷电路板的走线。此外,第一绝缘段1232以及第二绝缘段1234可以通过填充绝缘材料形成,例如绝缘材料为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施方式中,第 一绝缘段1237以及第二绝缘段1234可以为缝隙,也即缝隙内未填充绝缘材料。
第三种实施例与第一种实施例及第二种实施例相同的技术内容不再赘述:在本实施例中,通过设置两个槽天线(第一槽天线和第二槽天线)组成的天线结构,并利用两种馈电方式,以使天线结构激励出多个谐振模式,从而实现天线可覆盖多个频段。
请参阅图23a及图23b,图23a是图7所示的电子设备在B处的另一种实施方式的放大示意图。图23b是图23a所示的电子设备的天线结构的示意图。图23b是图23a所示的天线结构的示意图。本实施例以两个槽天线组成的天线结构的辐射体是第一短边框123的一部分为例进行说明。在其他实施例中,两个槽天线组成的天线结构的辐射体也可以是第一长边框121的一部分、第二长边框122的一部分或者第二短边框124的一部分。
具体的,两个槽天线为第一槽天线61和第二槽天线62。
首先,第一短边框123依次连接的第一金属段1231、第一绝缘段1232、第二金属段1233、第二绝缘段1234、第三金属段1235、第三绝缘段1236与第四金属段1237。换言之,第一绝缘段1232位于第一金属段1231与第二金属段1233之间。第二绝缘段1234位于第二金属段1233与第三金属段1235之间。第三绝缘段1236位于第三金属段1235与第四金属段1237之间。可以理解的是,第一金属段1231与第二金属段1233之间形成第五缝隙。第一绝缘段1232可以通过在第五缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施例中,第五缝隙内可填充空气,也即第五缝隙未填充任何绝缘材料。第二绝缘段1234以及第三绝缘段1236的设置方式可参阅第一绝缘段1232的设置方式。这里不再赘述。
此外,第一金属段1231远离第一绝缘段1232的端部分接地。本实施例的第一金属段1231的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。第二金属段1233靠近第一绝缘段1232的端部分接地。第三金属段1235靠近第三绝缘段1236的端部分接地。第四金属段1237远离第三绝缘段1236的端部分接地。本实施例的第二金属段1233、第三金属段1235与第四金属段1237的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。
此外,第一金属段1231与电路板30的地板之间设置有第一缝隙31。一种实施方式中,第一缝隙31内可填充绝缘材料,例如第一缝隙31内可填充聚合物、玻璃、陶瓷等材料或者这些材料的组合。该绝缘材料连接于第一绝缘段1232、第二绝缘段1234及第三绝缘段1236。另一种实施方式中,第一缝隙31内可填充空气,也即第一缝隙31未填充任何绝缘材料。
此外,第二金属段1233与电路板30的地板之间设置有第二缝隙32。第二缝隙32连通第一缝隙31。第二缝隙32的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
此外,第三金属段1235与电路板30的地板之间设置有第三缝隙33。第三缝隙33连通第一缝隙31与第二缝隙32。第三缝隙33的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
此外,第三金属段1235与电路板30的地板之间设置有第四缝隙34。第四缝隙34连通第一缝隙31、第二缝隙32与第三缝隙33。第四缝隙34的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
这样,第一金属段1231形成第一辐射体101。第二金属段1233形成第二辐射体102。第三金属段1235形成第三辐射体103。第四金属段1237形成第四辐射体104。
此外,第二辐射体102与第三辐射体103形成第一槽天线61的辐射体。
此外,第一辐射体101与第四辐射体104形成第二槽天线62的辐射体。
其次,本实施例的第一槽天线61的馈电方式可参阅第一个实施例的槽天线40的馈电方式。这里不再赘述。
此外,本实施例的第二槽天线62的馈电方式可参阅第一个实施例的线天线50的馈电方式。这里不再赘述。
可以理解的是,本实施例可通过一种两个槽天线组成的天线结构激励出多个谐振模式,从而实现天线可覆盖多个频段。
第四种实施例与第一种实施例及第二种实施例相同的技术内容不再赘述:通过设置两个线天线组成的天线结构,并利用两种馈电方式,以使天线结构激励出多个谐振模式,从而实现天线可覆盖多个频段。
请参阅图24a及图24b,图24a是图7所示的电子设备在B处的另一种实施方式的放大示意图。图24b是图24a所示的电子设备的天线结构的示意图。以两个线天线组成的天线结构的辐射体是第一短边框123的一部分为例进行说明。在其他实施例中,两个线天线组成的天线结构的辐射体也可以是第一长边框121的一部分、第二长边框122的一部分或者第二短边框124的一部分。
具体的,两个线天线为第一线天线71和第二线天线72。
第一短边框123包括依次连接的第一金属段1231、第一绝缘段1232、第二金属段1233、第二绝缘段1234及第三金属段1235。换言之,第一绝缘段1232位于第一金属段1231与第二金属段1233之间。第二绝缘段1234位于第二金属段1233与第三金属段1235之间。
此外,第二金属段1233包括第一部分1、第一接地部分2及第二部分3。第一部分1连接于第一绝缘段1232。第二部分3连接于第二绝缘段1234。可以理解的是,第一金属段1231与第一部分1之间形成第四缝隙。第一绝缘段1232可以通过在第四缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施例中,第四缝隙内可填充空气,也即第四缝隙未填充任何绝缘材料。此外,第二部分3与第三金属段1235之间形成第五缝隙。第二绝缘段1234可以通过在第五缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。
此外,本实施例的第一接地部分2的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。此外,第一金属段1231靠近第一绝缘段1232的端部接地。第三金属段1235靠近第二绝缘段1234的端部接地。第一金属段1231的接地方式与第三金属段1235的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。
此外,第一金属段1231与电路板30之间设置有第一缝隙31。一种实施方式中,第一缝隙31内可填充绝缘材料,例如第一缝隙31内可填充聚合物、玻璃、陶瓷等材料或者这些材料的组合。该绝缘材料连接于第一绝缘段1232。另一种实施方式中,第一缝隙31内可填充空气,也即第一缝隙31未填充任何绝缘材料。
此外,第二金属段1233与电路板30之间设置有第二缝隙32。第二缝隙32连通第一 缝隙31。第二缝隙32的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
此外,第三金属段1235与电路板30之间设置有第三缝隙33。第三缝隙33连通第一缝隙31与第二缝隙32。第三缝隙33的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
这样,第一部分1与第一接地部分2形成第二辐射体102。第二部分3与第一接地部分2形成第三辐射体103。第二辐射体102与第三辐射体103形成第一线天线71的辐射体。
此外,第一金属段1231形成第一辐射体101。第三金属段1235形成第四辐射体104。第一辐射体101与第四辐射体104形成第二线天线72的辐射体。
其次,本实施例的第一线天线71的馈电方式可参阅第一个实施例的槽天线40的馈电方式。这里不再赘述。
此外,本实施例的第二线天线72的馈电方式可参阅第一个实施例的线天线50的馈电方式。这里不再赘述。
可以理解的是,本实施例可通过一种两个线天线组成的天线结构激励出多种谐振模式,从而实现天线可覆盖多个频段。
第五种实施例与第一种实施例及第二种实施例相同的技术内容不再赘述:通过设置一种环天线和槽天线组成的天线结构,并利用两种馈电方式,以使天线结构激励出多种谐振模式,从而实现天线可覆盖多个频段。
请参阅图25a及图25b,图25a是图7所示的电子设备在B处的另一种实施方式的放大示意图。图25b是图25a所示的电子设备的天线结构的示意图。本实施例的天线结构的辐射体是第一短边框123的一部分为例进行说明。在其他实施例中,天线结构的辐射体也可以是第一长边框121的一部分、第二长边框122的一部分或者第二短边框124的一部分。
电子设备100的天线包括环天线81及槽天线82。
在X轴方向上,第一短边框123包括依次连接的第一金属段1231、第一绝缘段1232、第二金属段1233、第二绝缘段1234及第三金属段1235。换言之,第一绝缘段1232位于第一金属段1231与第二金属段1233之间。第二绝缘段1234位于第二金属段1233与第三金属段1235之间。可以理解的是,第一金属段1231与第二金属段1233之间形成第四缝隙。第一绝缘段1232可以通过在第四缝隙内填充绝缘材料所形成,例如绝缘材料可以为聚合物、玻璃、陶瓷等材料或者这些材料的组合。在其他实施例中,第四缝隙内可填充空气,也即第四缝隙未填充任何绝缘材料。第二绝缘段1234的设置方式可参阅第一绝缘段1232的设置方式。
此外,第一金属段1231远离第一绝缘段1232的端部接地。第三金属段1235远离第二绝缘段1234的端部接地。第一金属段1231与第三金属段1235的接地方式可参阅第一种实施例的第一接地部分2的接地方式,这里不再赘述。
此外,第二金属段1233连接第一绝缘段1232的端部接地。第二金属段1233连接第二绝缘段1234的端部接地。
具体的,天线结构还包括第三导电段41及第四导电段42。第三导电段41及第四导电段42位于边框12的内侧。第三导电段41的一端连接于第二金属段1233连接第一绝缘段1232的端部。另一端接地。第四导电段42的一端连接于第二金属段1233连接第二绝缘段 1234的端部,另一端接地。换言之,第二金属段1233连接第一绝缘段1232的端部通过第三导电段41接地。第二金属段1233连接第二绝缘段1234的端部通过第四导电段42接地。
第三导电段41接地方式以及第四导电段42的接地方式可参阅第一种实施例的第一接地部分2的接地方式。这里不再赘述。
此外,第二金属段1233与电路板30之间设置有第一缝隙31。第一缝隙31连通一种实施方式中,第一缝隙31内可填充绝缘材料,例如第一缝隙31内可填充聚合物、玻璃、陶瓷等材料或者这些材料的组合。该绝缘材料连接于第一绝缘段1233。另一种实施方式中,第一缝隙31内可填充空气,也即第一缝隙31未填充任何绝缘材料。
此外,第一金属段1231与电路板30之间设置有第二缝隙32。第二缝隙32连通第一缝隙31。第二缝隙32的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
此外,第三金属段1235与电路板30之间设置有第三缝隙33。第三缝隙33连通第一缝隙31与第二缝隙32。第三缝隙33的设置方式可参阅第一缝隙31的设置方式。这里不再赘述。
这样,第一金属段1231形成第一辐射体101。第二金属段1233形成第二辐射体102。第三金属段1235形成第三辐射体103。第二辐射体102为环天线81的辐射体。第一辐射体101与第三辐射体103为槽天线82的辐射体。
其次,下文将结合相关附图具体描述一下环天线81的馈电方式。
环天线81还包括第一馈电电路83。第一馈电电路83的负极电接地。第一馈电电路83的正极电连接于第二辐射体102。
此外,本实施例的槽天线82的馈电方式可参阅第一个实施例的线天线50的馈电方式。这里不再赘述。
可以理解的是,本实施例可通过一种环天线81和槽天线82组成的天线结构激励出四种天线模式,从而实现天线可覆盖多个频段。
在本申请中,通过结合相关附图介绍了五种实施例的天线结构,以及两种馈电方式,以使天线结构能够产生多种谐振模式,从而使得天线能够覆盖较多的频段。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种电子设备,其特征在于,包括电路板及天线结构,所述天线结构包括第一金属段、第二金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路,所述第一金属段与所述电路板的侧面之间形成第一缝隙,所述第二金属段与所述电路板的侧面之间形成第二缝隙,所述第二缝隙连通所述第一缝隙;
    在第一方向上,所述第一金属段包括依次连接的第一部分、第一接地部分和第二部分,所述第二金属段包括依次连接的第三部分、第二接地部分和第四部分,所述第二部分与所述第三部分形成第三缝隙,所述第三缝隙连通所述第一缝隙与所述第二缝隙,所述第一部分背向所述第一接地部分的端部为未接地的开放端,所述第四部分背向所述第二接地部分的端部为未接地的开放端;
    所述第一馈电电路的负极接地,所述第一馈电电路的正极连接所述第一金属段的所述第二部分,并且连接所述第二金属段的所述第三部分;
    所述第一导电段包括第一端及第二端,所述第一端接地,所述第二端连接所述第一金属段的所述第一部分,所述第二导电段包括第三端及第四端,所述第三端接地,所述第四端连接所述第二金属段的所述第四部分,所述第二馈电电路的负极电连接于所述第一端与所述第二端之间,所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
  2. 根据权利要求1所述的电子设备,其特征在于,所述天线结构还包括第一绝缘段及第二绝缘段,在所述第一方向上,所述第一绝缘段连接于所述第一部分的开放端,所述第二绝缘段连接于所述第四部分的开放端。
  3. 根据权利要求2所述的电子设备,其特征在于,所述电子设备包括边框,所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内,所述第一金属段、所述第二金属段、所述第一绝缘段及所述第二绝缘段均为所述边框的一部分,所述边框还包括填充于所述第三缝隙的第三绝缘段。
  4. 根据权利要求1至3中任一项所述的电子设备,其特征在于,所述天线结构用于产生五个谐振模式,以扩宽所述天线结构辐射或者接收信号的频段。
  5. 根据权利要求1至3中任一项所述的电子设备,其特征在于,所述天线结构还包括桥结构,所述桥结构的一端连接所述第一金属段的所述第二部分,所述桥结构的另一端连接所述第二金属段的所述第三部分,所述第一馈电电路的正极连接于所述桥结构的中部。
  6. 根据权利要求5所述的电子设备,其特征在于,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路;
    所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一部分;
    所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第四部分。
  7. 根据权利要求6所述的电子设备,其特征在于,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
  8. 根据权利要求6所述的电子设备,其特征在于,所述电子设备的宽度方向为X方向,所述电子设备的长度方向为Y方向,所述电子设备的厚度方向为Z方向,在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
  9. 一种电子设备,其特征在于,包括电路板及天线结构,所述天线结构包括第一金属段、第二金属段、第三金属段、第一导电段、第二导电段、第一馈电电路以及第二馈电电路,所述第一金属段与所述电路板的侧面之间形成第一缝隙,所述第二金属段与所述电路板的侧面之间形成第二缝隙,所述第三金属段与所述电路板的侧面之间形成第三缝隙,所述第一缝隙、所述第二缝隙及所述第三缝隙相互连通;
    在第一方向上,所述第二金属段包括依次连接的第一部分、第一接地部分和第二部分,所述第一金属段的一端与所述第一部分形成第四缝隙,另一端接地,所述第三金属段的一端与所述第二部分形成第五缝隙,另一端接地,所述第四缝隙与所述第五缝隙连通所述第一缝隙、所述第二缝隙及所述第三缝隙;
    所述第一馈电电路的负极接地,所述第一馈电电路的正极连接所述第二金属段的所述第一部分以及所述第二部分;
    所述第一导电段包括第一端及第二端,所述第一端接地,所述第二端连接所述第一金属段,所述第二导电段包括第三端及第四端,所述第三端接地,所述第四端连接所述第三金属段,所述第二馈电电路的负极电连接于所述第一端与所述第二端之间,所述第二馈电电路的正极电连接于所述第三端与所述第四端之间。
  10. 根据权利要求9所述的电子设备,其特征在于,所述天线结构用于产生六个谐振模式,以扩宽所述天线结构辐射或者接收信号的频段。
  11. 根据权利要求9所述的电子设备,其特征在于,所述电子设备包括边框,所述电路板、所述第一馈电电路与所述第二馈电电路均位于所述边框所围的区域内,所述第一金属段、所述第二金属段及所述第三金属段均为所述边框的一部分,所述边框还包括填充于所述第四缝隙的第一绝缘段,以及填充于所述第五缝隙的第二绝缘段。
  12. 根据权利要求9至11中任一项所述的电子设备,其特征在于,所述天线结构还包括桥结构,所述桥结构的一端连接所述第二金属段的所述第一部分,所述桥结构的另一端连接所述第二金属段的所述第二部分,所述第一馈电电路的正极连接于所述桥结构的中部。
  13. 根据权利要求12所述的电子设备,其特征在于,所述天线结构还包括第三导电段、第四导电段、第一匹配电路及第二匹配电路;
    所述第一导电段的所述第二端依次连接所述第一匹配电路、所述第三导电段及所述第一金属段;
    所述第二导电段的所述第四端依次连接所述第二匹配电路、所述第四导电段及所述第三金属段。
  14. 根据权利要求13所述的电子设备,其特征在于,所述第一导电段与所述第二导电段为从所述电路板中地板延伸出来的两条对称的平行导线。
  15. 根据权利要求13所述的电子设备,其特征在于,所述电子设备的宽度方向为X方向,所述电子设备的长度方向为Y方向,所述电子设备的厚度方向为Z方向,在Z方向上,所述第一导电段及所述第二导电段与所述第三导电段及所述第四导电段存在高度差。
PCT/CN2021/073626 2020-02-29 2021-01-25 电子设备 WO2021169700A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/802,900 US20230146114A1 (en) 2020-02-29 2021-01-25 Electronic device
EP21760008.9A EP4099504A4 (en) 2020-02-29 2021-01-25 ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010132991.4A CN113328233B (zh) 2020-02-29 2020-02-29 电子设备
CN202010132991.4 2020-02-29

Publications (1)

Publication Number Publication Date
WO2021169700A1 true WO2021169700A1 (zh) 2021-09-02

Family

ID=77412977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073626 WO2021169700A1 (zh) 2020-02-29 2021-01-25 电子设备

Country Status (4)

Country Link
US (1) US20230146114A1 (zh)
EP (1) EP4099504A4 (zh)
CN (1) CN113328233B (zh)
WO (1) WO2021169700A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839204A (zh) * 2021-09-18 2021-12-24 荣耀终端有限公司 移动终端及高隔离天线对
CN114361784A (zh) * 2022-01-12 2022-04-15 西安电子科技大学 一种基于共模差模的宽频带紧凑型圆极化天线

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161721B (zh) * 2020-01-22 2023-11-28 华为技术有限公司 天线装置及电子设备
CN113540758B (zh) * 2020-04-22 2022-10-25 华为技术有限公司 天线单元和电子设备
CN114069230A (zh) * 2021-11-09 2022-02-18 Oppo广东移动通信有限公司 一种天线结构和电子设备
WO2023142750A1 (zh) * 2022-01-28 2023-08-03 华为技术有限公司 天线和电子设备
US20230387584A1 (en) * 2022-05-31 2023-11-30 Apple Inc. Electronic Devices with Interconnected Ground Structures

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080316117A1 (en) * 2007-06-21 2008-12-25 Hill Robert J Handheld electronic device antennas
WO2017090865A1 (ko) * 2015-11-27 2017-06-01 엘지전자 주식회사 이동 단말기
CN107369891A (zh) * 2017-08-29 2017-11-21 努比亚技术有限公司 天线系统及金属框移动终端
CN107453056A (zh) * 2017-06-22 2017-12-08 瑞声科技(新加坡)有限公司 天线系统以及通讯设备
CN107483675A (zh) * 2017-09-14 2017-12-15 厦门美图移动科技有限公司 一种移动终端的金属背壳及移动终端
CN108713277A (zh) * 2017-03-20 2018-10-26 华为技术有限公司 一种移动终端的天线及移动终端
US20190115653A1 (en) * 2017-10-12 2019-04-18 Lg Electronics Inc. Mobile terminal

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867736B2 (en) * 2002-11-08 2005-03-15 Motorola, Inc. Multi-band antennas
US7403161B2 (en) * 2005-10-14 2008-07-22 Motorola, Inc. Multiband antenna in a communication device
TWI347709B (en) * 2007-11-16 2011-08-21 Lite On Technology Corp Dipole antenna device and dipole antenna system
US20100231461A1 (en) * 2009-03-13 2010-09-16 Qualcomm Incorporated Frequency selective multi-band antenna for wireless communication devices
US8164537B2 (en) * 2009-05-07 2012-04-24 Mororola Mobility, Inc. Multiband folded dipole transmission line antenna
CA2766182C (en) * 2009-06-30 2015-01-27 Nokia Corporation Apparatus for wireless communication comprising a loop like antenna
US8497806B2 (en) * 2010-07-23 2013-07-30 Research In Motion Limited Mobile wireless device with multi-band loop antenna with arms defining a slotted opening and related methods
US9166279B2 (en) * 2011-03-07 2015-10-20 Apple Inc. Tunable antenna system with receiver diversity
WO2012124247A1 (ja) * 2011-03-16 2012-09-20 パナソニック株式会社 アンテナ装置及び無線通信装置
CN102760949A (zh) * 2011-04-27 2012-10-31 鸿富锦精密工业(深圳)有限公司 多输入输出天线
EP2715865A4 (en) * 2011-05-23 2015-03-18 Nokia Corp APPARATUSES AND METHODS FOR WIRELESS COMMUNICATION
US9673520B2 (en) * 2011-09-28 2017-06-06 Sony Corporation Multi-band wireless terminals with multiple antennas along an end portion, and related multi-band antenna systems
US8686918B1 (en) * 2012-02-29 2014-04-01 General Atomics Multi-function magnetic pseudo-conductor antennas
CN104577304B (zh) * 2013-10-18 2019-07-23 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
US20150123871A1 (en) * 2013-11-06 2015-05-07 Acer Incorporated Mobile device and antenna structure with conductive frame
US9490542B1 (en) * 2014-01-17 2016-11-08 Stellenbosch University Multi-mode composite antenna
GB2529885B (en) * 2014-09-05 2017-10-04 Smart Antenna Tech Ltd Multiple antenna system arranged in the periphery of a device casing
US20160111772A1 (en) * 2014-10-16 2016-04-21 Microsoft Corporation Loop antenna with a parasitic element inside
DE102014016851B3 (de) * 2014-11-13 2015-12-10 Kathrein-Werke Kg MIMO Schlitzantenne für Kraftfahrzeuge
US9698486B2 (en) * 2015-01-15 2017-07-04 Commscope Technologies Llc Low common mode resonance multiband radiating array
GB201610113D0 (en) * 2016-06-09 2016-07-27 Smart Antenna Tech Ltd An antenna system for a portable device
US10079922B2 (en) * 2016-03-11 2018-09-18 Microsoft Technology Licensing, Llc Conductive structural members acting as NFC antenna
CN105742812B (zh) * 2016-03-23 2019-05-10 深圳市万普拉斯科技有限公司 移动终端及其天线结构
CN107799909B (zh) * 2016-09-01 2021-02-05 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
TWI732931B (zh) * 2016-09-29 2021-07-11 仁寶電腦工業股份有限公司 天線結構
CN106450744B (zh) * 2016-10-18 2023-09-05 上海德门电子科技有限公司 一种基于金属壳体结构的nfc和射频二合一天线及通讯设备
CN108496278B (zh) * 2017-01-16 2021-01-12 华为技术有限公司 一种天线结构及通信终端
TWI641185B (zh) * 2017-06-27 2018-11-11 華碩電腦股份有限公司 通訊裝置及其天線組件
CN107394365B (zh) * 2017-07-18 2019-11-26 西安电子科技大学 陷波可重构的超宽带差分天线
US10886607B2 (en) * 2017-07-21 2021-01-05 Apple Inc. Multiple-input and multiple-output antenna structures
US10658749B2 (en) * 2017-09-07 2020-05-19 Apple Inc. Electronic device slot antennas
US10158384B1 (en) * 2017-09-08 2018-12-18 Apple Inc. Electronic devices with indirectly-fed adjustable slot elements
CN109560386B (zh) * 2017-09-27 2022-02-11 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN108232421B (zh) * 2017-12-29 2021-04-02 瑞声精密制造科技(常州)有限公司 天线系统及移动终端
US10193597B1 (en) * 2018-02-20 2019-01-29 Apple Inc. Electronic device having slots for handling near-field communications and non-near-field communications
US10916832B2 (en) * 2018-02-20 2021-02-09 Apple Inc. Electronic device slot antennas
CN108470979B (zh) * 2018-03-30 2020-04-28 清华大学 一种奇偶模工作的小型宽带圆极化天线
TWI675507B (zh) * 2018-05-30 2019-10-21 啟碁科技股份有限公司 天線結構
US10396438B1 (en) * 2018-05-31 2019-08-27 Motorola Mobility Llc Antenna system and electronic device including one or more conductive elements for use with a differential and an alternative signal source
CN110556620B (zh) * 2018-06-01 2021-07-09 华为技术有限公司 天线及移动终端
CN110556619B (zh) * 2018-06-01 2021-10-19 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
US11205834B2 (en) * 2018-06-26 2021-12-21 Apple Inc. Electronic device antennas having switchable feed terminals
CN109103576B (zh) * 2018-08-03 2020-03-17 瑞声精密制造科技(常州)有限公司 天线系统及移动终端
CN109149115B (zh) * 2018-08-03 2021-01-12 瑞声科技(南京)有限公司 天线系统及移动终端
CN109149086B (zh) * 2018-08-03 2020-07-07 瑞声科技(南京)有限公司 天线系统及移动终端
CN109149072B (zh) * 2018-08-20 2020-11-17 瑞声科技(新加坡)有限公司 天线模组及移动终端
CN109149071B (zh) * 2018-08-20 2021-05-07 瑞声光电科技(常州)有限公司 天线模组及移动终端
CA3057782C (en) * 2018-10-23 2022-03-22 Neptune Technology Group Inc. Compact folded dipole antenna with multiple frequency bands
US10992045B2 (en) * 2018-10-23 2021-04-27 Neptune Technology Group Inc. Multi-band planar antenna
US11114748B2 (en) * 2019-09-06 2021-09-07 Apple Inc. Flexible printed circuit structures for electronic device antennas
CN112803158B (zh) * 2019-11-14 2022-06-28 华为技术有限公司 一种电子设备
KR20210101711A (ko) * 2020-02-10 2021-08-19 삼성전자주식회사 안테나 및 이를 구비한 전자 장치
US11515648B2 (en) * 2021-02-04 2022-11-29 Iq Group Sdn. Bhd. Dipole antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080316117A1 (en) * 2007-06-21 2008-12-25 Hill Robert J Handheld electronic device antennas
WO2017090865A1 (ko) * 2015-11-27 2017-06-01 엘지전자 주식회사 이동 단말기
CN108713277A (zh) * 2017-03-20 2018-10-26 华为技术有限公司 一种移动终端的天线及移动终端
CN107453056A (zh) * 2017-06-22 2017-12-08 瑞声科技(新加坡)有限公司 天线系统以及通讯设备
CN107369891A (zh) * 2017-08-29 2017-11-21 努比亚技术有限公司 天线系统及金属框移动终端
CN107483675A (zh) * 2017-09-14 2017-12-15 厦门美图移动科技有限公司 一种移动终端的金属背壳及移动终端
US20190115653A1 (en) * 2017-10-12 2019-04-18 Lg Electronics Inc. Mobile terminal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099504A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839204A (zh) * 2021-09-18 2021-12-24 荣耀终端有限公司 移动终端及高隔离天线对
CN114361784A (zh) * 2022-01-12 2022-04-15 西安电子科技大学 一种基于共模差模的宽频带紧凑型圆极化天线
CN114361784B (zh) * 2022-01-12 2022-10-28 西安电子科技大学 一种基于共模差模的宽频带紧凑型圆极化天线

Also Published As

Publication number Publication date
CN113328233B (zh) 2022-11-08
EP4099504A1 (en) 2022-12-07
CN113328233A (zh) 2021-08-31
US20230146114A1 (en) 2023-05-11
EP4099504A4 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
WO2021169700A1 (zh) 电子设备
TWI425713B (zh) 諧振產生之三頻段天線
US10511079B2 (en) Electronic device and antenna structure thereof
US20230318180A1 (en) Antenna Structure and Electronic Device
JP2022511667A (ja) 結合アンテナ機器及び電子装置
CN113224503B (zh) 一种天线及终端设备
EP2677596B1 (en) Communication device and antenna system therein
WO2022042306A1 (zh) 天线单元和电子设备
CN114824749B (zh) 一种电子设备
WO2022143320A1 (zh) 一种电子设备
US20230048914A1 (en) Antenna Apparatus and Electronic Device
WO2021203939A1 (zh) 一种电子设备
TWI678024B (zh) 天線結構和電子裝置
WO2021254322A1 (zh) 天线装置与电子设备
WO2021218800A1 (zh) 电子设备
WO2022017220A1 (zh) 一种电子设备
CN114389005B (zh) 一种电子设备
WO2024046200A1 (zh) 一种电子设备
WO2024046199A1 (zh) 一种电子设备
WO2024179404A1 (zh) 一种天线结构和电子设备
TWI827202B (zh) 開迴路天線及電子裝置
US20230238700A1 (en) Antenna structure and electronic device using the same
WO2024183690A1 (zh) 一种天线结构和电子设备
WO2023246694A1 (zh) 一种电子设备
TW202332130A (zh) 天線結構及具有該天線結構之電子設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021760008

Country of ref document: EP

Effective date: 20220829

NENP Non-entry into the national phase

Ref country code: DE