WO2023142750A1 - 天线和电子设备 - Google Patents
天线和电子设备 Download PDFInfo
- Publication number
- WO2023142750A1 WO2023142750A1 PCT/CN2022/139115 CN2022139115W WO2023142750A1 WO 2023142750 A1 WO2023142750 A1 WO 2023142750A1 CN 2022139115 W CN2022139115 W CN 2022139115W WO 2023142750 A1 WO2023142750 A1 WO 2023142750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiator
- antenna
- transmission line
- length
- coupled
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/357—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
- H01Q5/364—Creating multiple current paths
- H01Q5/371—Branching current paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/42—Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
Definitions
- Embodiments of the present application mainly relate to the field of antennas. More specifically, the embodiments of the present application relate to an antenna and an electronic device including the antenna.
- the mobile phone communication frequency band will have coexistence of 3G, 4G, and 5G frequency bands for a long time.
- the number of antennas is increasing, the frequency band coverage is wider and wider, and the mutual influence is becoming more and more serious.
- MIMO Multi-input Multi-output
- Antenna is an indispensable terminal component of a wireless system, and its performance determines the overall performance of the system.
- embodiments of the present application provide an antenna and related electronic equipment.
- an antenna in a first aspect of the present disclosure, includes a first radiator including a ground end and an open end; a transmission line having a first end and a second end, the first end being coupled to the ground end or the open end of the first radiator, and the second The end is open or grounded; the feed unit is coupled to the coupling point of the transmission line and feeds power to the first radiator through the transmission line, wherein, when the feed unit feeds power, the first radiator It is used to generate a first resonance, and the transmission line is used to generate a resonance in a frequency band adjacent to the first resonance.
- the coupling point is offset from the midpoint of the transmission line.
- the antenna further includes a second radiator, including a ground end and an open end; wherein the second end of the transmission line is coupled to the ground end or the open end of the second radiator, and wherein, When the feeding unit feeds power, the second radiator is used to generate a second resonance, and the transmission line is also used to generate a resonance in a frequency band adjacent to the second resonance.
- the first end of the transmission line is coupled to the ground end of the first radiator, the second end is grounded or coupled to the ground end of the second radiator, and the coupling A point is located near the first end or the second end.
- the first end of the transmission line is coupled to the open end of the first radiator, the second end is opened or coupled to the open end of the second radiator, and the The coupling point is located near the midpoint.
- the first end of the transmission line is coupled to the ground end of the first radiator, the second end is open or coupled to the open end of the second radiator, and the A coupling point is located near the first end.
- the length T of the transmission line satisfies 1/2 ⁇ 1 ⁇ T ⁇ 1/2 ⁇ 2, where ⁇ 1 and ⁇ 2 are respectively the lowest resonance generated by the antenna when the feeding unit is feeding The minimum and maximum dielectric wavelengths of the working frequency band.
- the length T of the transmission line satisfies 1/4 ⁇ 1 ⁇ T ⁇ 1/4 ⁇ 2, where ⁇ 1 and ⁇ 2 are respectively the lowest resonance generated by the antenna when the feeding unit is feeding The minimum and maximum dielectric wavelengths of the working frequency band.
- the transmission line includes two sections connected by a capacitor, and the coupling point is located on one of the two sections.
- the transmission line is coupled to the first radiator via a first matching circuit, and/or the transmission line is coupled to the second radiator via a second matching circuit.
- the transmission line may include any one of the following items: a microstrip line, a coaxial line, a liquid crystal polymer material, a stent antenna body, a glass antenna body, and any combination of the foregoing items.
- the antenna further includes: an adjustment circuit 105, coupled between a predetermined position of the transmission line and ground, and including at least one of capacitance and inductance.
- an antenna in a second aspect of the present application, includes a pair of radiators, the first radiator and the second radiator in the pair of radiators both include a ground end and an open end; at least one transmission line coupled to the pair of radiators, the at least one transmission line includes a first A transmission line, the first transmission line includes a first section and a second section with unequal lengths; and a feeding unit.
- the feeding unit includes a first feeding part, and the first feeding part passes through the A section and the second section are respectively coupled to the first radiator and the second radiator.
- an asymmetrically fed antenna is provided according to the embodiment of the application, so that the radiator pair can be introduced between the radiator pair Excitation current with phase difference.
- a multi-mode broadband antenna can be formed, and at the same time, an antenna pair with high isolation can be formed.
- the antenna further includes a matching circuit coupled between the first feeding part and the first transmission line, the matching circuit includes a capacitance and/or an inductance, wherein the length of the first transmission line is Less than or equal to 1/10 of the medium wavelength corresponding to the lowest working frequency band of the antenna.
- the difference (T2-T1) between the lengths of the two sections of the first transmission line satisfies 0 ⁇ (T2-T1) ⁇ 8mm, or the length of the two sections of the first transmission line
- the ratio T1/T2 satisfies 1/2 ⁇ T1/T2 ⁇ 2.
- the at least one transmission line further includes a second transmission line, the second transmission line includes a third section and a fourth section with unequal lengths, and the feeding unit includes a second feeding part , the second feeder is respectively coupled to the pair of radiators via the third section and the fourth section.
- both the first feeding part and the second feeding part are coupled to the ground end of the first radiator or both are coupled to the open end of the first radiator, and the first feeding Both the electric part and the second feeding part are coupled to the open end of the second radiator or both are coupled to the ground end of the second radiator; or, the first feeding part and the second feeding part are respectively coupled to The ground end of the first radiator and the open end of the first radiator, and the first feeding part and the second feeding part are respectively coupled to the open end of the second radiator and the ground end of the second radiator.
- the antenna when the first power feeder feeds power, the antenna is used to generate a first resonance, and when the second power feeder feeds power, the antenna is used to generate a second resonance, And the first resonance and the second resonance are at least partially located in the same frequency band, or the first resonance and the second resonance are at least partially located in two different frequency bands.
- the frequency bands supported by the antenna pair can be the same frequency band, different frequency bands or adjacent frequency bands, so as to obtain an antenna with a wider application range.
- a length ratio T1/T2 of the first section and the second section of the first transmission line satisfies: 1/4 ⁇ T1/T2 ⁇ 1/2.
- a length ratio T3/T4 of the third section and the fourth section of the second transmission line satisfies: 1/4 ⁇ T3/T4 ⁇ 1/2.
- the difference (T6-T5) between the length T6 of the second transmission line and the length T5 of the first transmission line is the same as the first medium wavelength ⁇ 1 of the first resonance or the second medium wavelength of the second resonance ⁇ 1 satisfies: 1/4 ⁇ 1 ⁇ (T6-T5) ⁇ 3/4 ⁇ 1 or 1/4 ⁇ 2 ⁇ (T6-T5) ⁇ 3/4 ⁇ 2.
- the difference in length can be about 1/2 the wavelength of the medium, so as to ensure that there is a phase difference of about 180° in the excitation current fed to the radiator pair through the first transmission line and the second transmission line, so that A high-isolation antenna pair is realized while realizing a multi-mode broadband antenna.
- the difference between the lengths of the second transmission line and the first transmission line (T6-T5) satisfies: 50mm ⁇ (T6 - T5) ⁇ 80mm; or in the mid-high frequency band where the first resonance and the second resonance are less than 3GHz, the difference between the lengths of the second transmission line and the first transmission line (T6-T5) satisfies 25mm ⁇ (T6- T5) ⁇ 40mm.
- the difference between the lengths of the second transmission line and the first transmission line can be about 1/2 the wavelength of the medium, thus allowing the phase difference of the excitation current to be in the range of 1-180°.
- the equivalent length of the first transmission line or the second transmission line is determined by at least one of the following methods: the capacitance or inductance provided between the corresponding transmission line and the radiator pair, the capacitance or inductance provided between the corresponding transmission line Phase shifters and corresponding transmission lines are coupled to the locations of the radiator pairs. In this way, different equivalent lengths can be set for different types of electronic equipment, so that electronic equipment with antennas with improved performance can be obtained more specifically.
- the at least one transmission line may include any one of the following items: microstrip line, coaxial line, liquid crystal polymer material, stent antenna body, glass antenna body, and any combination of the foregoing items.
- the transmission line can be made of appropriate materials according to different needs, so that the performance of the antenna can be improved in a cost-effective manner.
- an antenna includes a pair of radiators, the first radiator and the second radiator in the pair of radiators both include a ground end and an open end; a first transmission line is coupled to the pair of radiators, and the first transmission line includes two sections; and a first feed part, respectively coupled to the first feed point of the first radiator and the second feed of the second radiator via the two sections of the first transmission line point, and the phase difference between the excitation current provided by the first feeding part at the first feeding point and the second feeding point is within the range of 90° ⁇ 45°.
- the phase difference between the excitation current provided by the first feeding part at the first feeding point and the second feeding point is within a range of 90° ⁇ 30°. In this way, the antenna can use any appropriate means to make the phase difference of the excitation current at the first feeding point and the second feeding point meet the above requirements, thereby improving the flexibility of antenna manufacturing and improving performance of the antenna.
- the antenna further includes a second transmission line and a second feeder
- the second transmission line includes two sections
- the second feeder passes through the two sections of the second transmission line respectively coupled to the third feeding point of the first radiator and the fourth feeding point of the second radiator
- the phase difference of the current at the first feeding point and the third feeding point is at Within the range of 180° ⁇ 60°
- the phase difference of the current at the second feed point and the fourth feed point is within the range of 180° ⁇ 60°.
- the phase difference of the currents at the first feeding point and the third feeding point is within the range of 180° ⁇ 45°.
- the phase difference of the currents at the second feed point and the fourth feed point is within the range of 180° ⁇ 45°.
- an electronic device includes a casing including a frame; a circuit board arranged in the casing and including a feed unit; and the antenna according to the first, second or third aspect above.
- the electronic device can realize multi-mode broadband coverage, thereby improving the performance of the electronic device.
- the first radiator of the antenna includes a first continuous section of the frame, and the second radiator includes a second continuous section of the frame. This arrangement is more conducive to improving the flexibility of the arrangement of the antenna in the electronic device.
- the first radiator and the second radiator are separated on the frame; or the first radiator and the second radiator are continuous on the frame.
- the pair of radiators is arranged inside the casing.
- the above several implementation manners make the arrangement of the antenna in the electronic device more flexible, thereby promoting the arrangement of the broadband multi-mode antenna and the antenna pair with high isolation in the electronic device.
- the antenna is arranged inside the casing. This arrangement further improves the flexibility of the arrangement of the antenna in the electronic device.
- the ground terminals of the first radiator and the second radiator are a common ground terminal.
- the open end of the first radiator and the open end of the second radiator are oppositely arranged to form a gap, and the width of the gap is less than 3mm.
- Figure 1 shows a schematic exploded view of an electronic device according to an embodiment of the present application
- Figure 2 shows a schematic cross-sectional view of a microstrip line
- FIG. 3 shows a schematic diagram of a transmission line according to an embodiment of the present application
- FIG. 4 shows a schematic diagram of a transmission line with both ends grounded according to an embodiment of the present application and its S11 curve, efficiency curve, current direction and electric field distribution diagram when it is fed;
- Fig. 5 shows a schematic diagram of a transmission line grounded at both ends according to an embodiment of the present application after adding a regulating circuit and a comparison diagram of the S11 curve when it is not added with a regulating circuit;
- FIG. 6 shows a schematic diagram of an antenna formed by coupling one end of a transmission line grounded at both ends to a radiator according to an embodiment of the present application
- Fig. 7 shows a schematic diagram of the S11 curve and the efficiency curve of the transmission line and the antenna shown in Fig. 5 and Fig. 6;
- FIG. 8 shows a schematic diagram of an antenna formed by coupling two ends of a transmission line with both ends grounded to a radiator according to an embodiment of the present application
- FIG. 9 shows a schematic diagram of the S11 curve and the efficiency curve of the antenna shown in FIG. 8;
- Fig. 10 shows the current direction, electric field distribution and radiation pattern of the antenna shown in Fig. 8 at different resonant frequencies
- FIG. 11 shows a schematic diagram of a modified antenna formed by coupling two ends of a transmission line with both ends grounded to a radiator according to an embodiment of the present application
- Fig. 12 shows a schematic diagram of the S11 curve and the efficiency curve of the antenna shown in Fig. 11;
- Fig. 13 shows the current distribution diagram of the antenna shown in Fig. 11 at different resonant frequencies
- Fig. 14 shows a schematic diagram comparing the S11 curve and the efficiency curve of the antenna shown in Fig. 11 and the directly fed T-antenna;
- FIG. 15 shows a schematic diagram of an antenna formed by applying a transmission line grounded at both ends according to an embodiment of the present application to two radiators of comparable size;
- Fig. 16 shows a schematic diagram of the S11 curve and the efficiency curve of the antenna shown in Fig. 15;
- Fig. 17 shows the current distribution diagram of the antenna shown in Fig. 15 at different resonant frequencies
- Fig. 18 shows a schematic diagram in which the transmission line in the antenna shown in Fig. 15 can reduce the occupied area by increasing the dielectric constant, and a comparison diagram of the corresponding S11 curve and the efficiency curve;
- FIG. 19 shows a schematic diagram in which the transmission line in the antenna shown in FIG. 15 can reduce the occupied area through the zigzag structure of the transmission line, and a comparison chart of the corresponding S11 curve and the efficiency curve;
- FIG. 20 shows a schematic diagram of the antenna formed after an impedance matching circuit is arranged between the transmission line and the radiator in the antenna shown in FIG. 15 and the corresponding S11 curve and efficiency curve;
- Figure 21 shows the current pattern of the antenna shown in Figure 20 at different resonant frequencies
- Fig. 22 shows a schematic diagram of the S11 curve and the efficiency curve of the directly fed T antenna and the antenna and the above-mentioned several antennas;
- Fig. 23 shows the efficiency curves of the antenna shown in Fig. 22 and several antennas mentioned above in the left-hand mode and the right-hand mode;
- FIG. 24 shows a schematic diagram of a transmission line with both ends open according to an embodiment of the present application
- Fig. 25 shows a schematic diagram of the S11 curve and the efficiency curve when the transmission line with both ends open according to the embodiment of the present application is fed;
- Fig. 26 shows the current direction diagram and electric field distribution diagram when a transmission line with both ends open according to an embodiment of the present application is fed;
- Fig. 27 shows a schematic diagram of a transmission line with both ends open according to an embodiment of the present application after adding a regulating circuit and a comparison diagram of the S11 curve when it is not added with a regulating circuit;
- FIG. 28 shows a schematic diagram of an antenna formed by coupling one end of a transmission line with two ends open to a radiator according to an embodiment of the present application
- Figure 29 shows a schematic diagram of the S11 curve and efficiency curve of the transmission line and antenna shown in Figure 27 and Figure 28;
- FIG. 30 shows a schematic diagram of an antenna formed by coupling two ends of a transmission line with open ends to a radiator according to an embodiment of the present application
- Fig. 31 shows a schematic diagram of the S11 curve and the efficiency curve of the antenna shown in Fig. 30;
- Figure 32 shows the current direction, electric field distribution and radiation pattern of the antenna shown in Figure 30 at different resonance frequencies
- FIG. 33 shows a schematic diagram of an antenna formed by applying a transmission line with open ends according to an embodiment of the present application to two radiators of comparable size;
- Fig. 34 shows a schematic diagram of the S11 curve and the efficiency curve of the antenna shown in Fig. 33;
- Fig. 35 shows a schematic diagram of the current direction and electric field distribution of the antenna shown in Fig. 33 at different resonant frequencies
- Figure 36 shows a schematic diagram of the direct-fed slot antenna and its comparison with the S11 curve and efficiency curve of several antennas mentioned above;
- Fig. 37 shows the efficiency curves of the antenna shown in Fig. 36 and the above-mentioned several antennas in the left-hand mode and the right-hand mode;
- FIG. 38 shows a schematic diagram of a transmission line with one end open and one end grounded according to an embodiment of the present application
- Fig. 39 shows a schematic diagram of the S11 curve and the efficiency curve when a transmission line with one end open and one end grounded is fed according to an embodiment of the present application
- Fig. 40 shows a current pattern and an electric field distribution diagram when a transmission line with one end open and one end grounded is fed according to an embodiment of the present application
- FIG. 41 shows a schematic diagram of an antenna formed by coupling one end of a transmission line with one end open and one end grounded to a radiator according to an embodiment of the present application
- Figure 42 shows a schematic diagram of the S11 curve and efficiency curve of the transmission line and antenna shown in Figure 38 and Figure 41;
- Fig. 43 shows a schematic diagram of an antenna formed by coupling two ends of a transmission line with one end open and one end grounded to a radiator according to an embodiment of the present application;
- Figure 44 shows a schematic diagram of the S11 curve and the efficiency curve of the antenna shown in Figure 43;
- Fig. 45 shows a schematic diagram of the current direction of the antenna shown in Fig. 43 at different resonant frequencies
- Fig. 46 shows a schematic diagram of a transmission line in which two ends of a transmission line are disconnected in the middle to form two segment structures according to an embodiment of the present application;
- Fig. 47 shows the S11 curve and the efficiency curve, the current distribution and the electric field distribution schematic diagram of the transmission line structure shown in Fig. 46 when being fed;
- FIG. 48 shows a schematic diagram of a transmission line using a different feeding mode from the transmission line shown in FIG. 46 and the S11 curves of the two transmission lines;
- FIG. 49 shows a schematic diagram of an antenna formed by coupling one end of the transmission line shown in FIG. 48 to a radiator and the corresponding S11 curve and efficiency curve;
- FIG. 50 shows a schematic diagram showing an antenna formed by coupling two ends of the transmission line shown in FIG. 48 to a T radiator;
- Figure 51 shows a schematic diagram of the S11 curve and efficiency curve of the antenna shown in Figure 50, and a schematic diagram of the current direction at different resonance frequencies;
- Fig. 52 shows a schematic diagram of an antenna whose transmission line is changed from a microstrip line to a stent wiring, and a schematic diagram of the S11 curve and efficiency curve of the antenna with the microstrip line as the transmission line;
- Fig. 53 shows a schematic diagram of an antenna formed by connecting three radiators according to an embodiment of the present application
- Fig. 54 shows a simplified structural diagram of an antenna according to an embodiment of the present application when it is fed by a feeder
- Fig. 55 shows the current pattern and the current phase diagram of the antenna shown in Fig. 54 in operation
- Fig. 56 shows a simplified structure schematic diagram, a current pattern diagram and a current phase diagram when a feeder is fed by a longer transmission line according to an embodiment of the present application
- Fig. 57 shows a simplified structural schematic diagram of a T antenna provided with a matching circuit between a transmission line and a feed unit according to an embodiment of the present application
- Fig. 58 shows a simplified structural schematic diagram of a slot antenna with a matching circuit arranged between a transmission line and a feed unit according to an embodiment of the present application
- Fig. 59 shows a simplified structural diagram of an antenna according to an embodiment of the present application when two feeding parts and transmission lines of different equivalent lengths are used to feed a radiator pair;
- Fig. 60 shows the current pattern of the antenna structure shown in Fig. 59 under different working modes
- FIG. 61 and FIG. 62 show simplified structural schematic diagrams of an antenna adopting a T antenna structure according to an embodiment of the present application
- Figure 63 shows the current pattern of the antenna shown in Figure 62 in different working modes
- Figure 64 shows the radiation patterns of the antenna shown in Figure 62 in different operating modes
- Fig. 65 shows the S11 curve of the antenna shown in Fig. 62, the efficiency curves in the free-space mode, the right-hand mode and the left-hand mode;
- FIG. 66 shows a simplified structural diagram of an antenna adopting a modified T antenna structure according to an embodiment of the present application
- FIG. 67 and FIG. 68 show simplified structural schematic diagrams of an antenna adopting another T antenna structure according to an embodiment of the present application
- Figure 69(a), (b) and (c) show the S11 curves of the single distributed T antenna, the antenna shown in Figure 66 operating in different modes and the single distributed T antenna, and the free space mode
- the antenna efficiency diagram below, Fig. 69(d) shows the S21 diagram between the second antenna and the third antenna;
- FIG. 70 and FIG. 71 show simplified schematic structural diagrams of the antenna shown in FIG. 65 and FIG. 66 transformed into an IFA antenna structure according to an embodiment of the present application;
- Figure 72 shows the S11 curve of the antenna shown in Figure 71 and the antenna efficiency diagram in free space mode
- Fig. 73 shows a simplified structural schematic diagram of further improving the antenna shown in Fig. 66 to form an antenna capable of working in MIMO mode;
- FIG. 74 shows a simplified structural diagram of an antenna adopting another IFA antenna structure according to an embodiment of the present application.
- Fig. 75 shows two different antennas with single-ended feeding and the S11 curves and antenna efficiency diagrams of these two antennas and the antenna shown in Fig. 72;
- Figure 76 shows the current pattern and radiation pattern of the antenna shown in Figure 74 when it works at different resonant frequencies
- FIG. 77 shows a simplified structural diagram of an antenna using an IFA antenna structure and a longer transmission line according to an embodiment of the present application
- Fig. 78 shows the S11 curve diagram and the antenna efficiency diagram of the antenna shown in Fig. 77;
- Figure 79 shows the current pattern and radiation pattern of the antenna shown in Figure 77 when it works at different resonant frequencies
- FIG. 80 shows a simplified structural schematic diagram of an antenna adopting an IFA antenna structure and different transmission line feeds according to an embodiment of the present application
- Figure 81 shows the S11, S21 curves and antenna efficiency diagrams of the antenna shown in Figure 80 working in different modes
- Figure 82 shows the current pattern and radiation pattern of the antenna shown in Figure 80 when it works at different resonant frequencies
- Fig. 83 shows a simplified structure diagram of an antenna adopting a modified IFA antenna structure
- FIG. 84 shows curves of S11 and S21 of the antenna shown in FIG. 83 working in different modes
- Figure 85 shows antenna efficiency diagrams for the antenna shown in Figure 83 in free-space mode, in right-hand mode, and in left-hand mode;
- Fig. 86 shows a simplified structure schematic diagram of an antenna adopting several other modified IFA antenna structures
- Figure 87 shows the S11, S21 curves and antenna efficiency diagrams of the antenna shown in Figure 86 working in different modes;
- Figure 88 shows the S11, S21 curves and efficiency diagrams of the antenna structure shown in Figure 83 working in the 2.5Ghz-2.9Ghz frequency band;
- Fig. 89 shows a simplified schematic diagram of a dual-antenna system formed by adopting a shorter transmission line and a longer transmission line respectively as transmission lines and performing asymmetric feeding;
- Figure 90 shows from top to bottom the S11 and S21 curves of each antenna in Figure 89 and the antenna efficiency diagrams in free space mode, right-handed mode, and left-handed mode;
- Figure 91 shows the current pattern and radiation pattern of the antenna in Figure 89 at different resonant frequencies
- Fig. 92 shows a simplified structural diagram of an antenna in which the first radiator is arranged on the top side of the frame of the electronic device and the second radiator is arranged on the right side;
- Fig. 93 shows the S11 curve diagram, the Smith circle diagram and the S21 curve diagram of the antenna in Fig. 90 from top to bottom;
- Figure 94 shows a simplified schematic diagram of a single distributed antenna based on a short transmission line
- Fig. 95 and Fig. 96 show simplified structural diagrams of antennas employing a slot antenna structure
- Figure 97 shows the S11, S21 curves and the antenna efficiency diagram in the free space mode of each antenna in Figure 95 and Figure 96 from top to bottom;
- Figure 98 shows the current pattern and radiation pattern of the antenna in Figure 96 at different resonant frequencies
- Figure 99(a), (b) and (c) respectively show the S11 curves of the single distributed slot antenna, the antenna shown in Figure 93 and Figure 94 working in different modes and the single distributed slot antenna and Antenna efficiency plot in free space mode;
- FIG. 100 shows a simplified structural schematic diagram of an antenna adopting another deformed slot antenna structure
- Figure 101 shows the S11, S21 curves of the antenna in Figure 98 and the antenna efficiency diagram in the free space mode from top to bottom;
- FIG. 102 shows a simplified structural schematic diagram of an antenna provided with a phase modulator on a transmission line according to an embodiment of the present application
- FIG. 103 shows a simplified structural schematic diagram of an antenna fed near an open end according to an embodiment of the present application
- FIG. 104 shows a simplified schematic structural diagram of an antenna in which the feed points connected to the transmission line and the radiator are set near the ground end to form a combined structure of a slot antenna and an IFA antenna according to an embodiment of the present application;
- Fig. 105 shows a simplified structural diagram of an antenna in which at least a part of the first radiator and at least a part of the second radiator are located on different sides of the frame according to an embodiment of the present application;
- FIG. 106 and FIG. 107 respectively show a simplified structural diagram of an antenna in which two transmission lines are respectively coupled to the open end and the ground end of the radiator pair according to an embodiment of the present application.
- FIG. 108 and FIG. 109 show simplified structural schematic diagrams of the radiator pair extending from the right side of the frame to the bottom via the corner according to the embodiment of the present application.
- connection and “connection” may refer to a mechanical or physical connection relationship, that is, the connection between A and B or the connection between A and B may mean that there is a fastening relationship between A and B.
- Components such as screws, bolts, rivets, etc.
- a and B are in contact with each other and A and B are difficult to be separated.
- Coupled can be understood as direct coupling and/or indirect coupling.
- Direct coupling can also be called “electrical connection”, which is understood as the physical contact and electrical conduction of components; it can also be understood as the connection between different components in the circuit structure through printed circuit board (PCB) copper foil or wires, etc.
- PCB printed circuit board
- indirect coupling can be understood as the electrical conduction of two conductors through a space/non-contact method.
- the indirect coupling may also be called capacitive coupling, for example, the equivalent capacitance is formed through the coupling between the gaps between two conductive elements to realize signal transmission.
- Radiator It is a device used to receive/send electromagnetic wave radiation in the antenna.
- an "antenna” is understood in a narrow sense as a radiator that converts guided wave energy from a transmitter into radio waves, or converts radio waves into guided wave energy for radiating and receiving radio waves.
- the modulated high-frequency current energy (or guided wave energy) generated by the transmitter is transmitted to the emitting radiator through the feeder, and is converted into a certain polarized electromagnetic wave energy by the radiator, and radiated in the desired direction.
- the receiving radiator converts a certain polarized electromagnetic wave energy from a specific direction in space into modulated high-frequency current energy, which is sent to the input terminal of the receiver through the feeder.
- a radiator can be a conductor of a specific shape and size, such as a wire antenna.
- a wire antenna is an antenna composed of one or more metal wires whose wire diameter is much smaller than the wavelength and whose length is comparable to the wavelength. It can be used as a transmitting or receiving antenna.
- the main forms of wire antennas are dipole antennas, half-wave vibrator antennas, monopole antennas, loop antennas, inverted F antennas (also known as IFA, Inverted F Antenna), planar inverted F antennas (also known as PIFA, Planar Inverted F Antenna) ), slot antenna or slot antenna, antenna array, etc.
- each dipole antenna generally includes two radiating stubs, each of which is fed by a feeding part from a feeding end of the radiating stub.
- an inverted-F antenna Inverted-F Antenna, IFA
- IFA inverted-F Antenna
- the IFA antenna has a feed point and a ground point, and both the feed point and the ground point are set away from the open end. Since its side view is an inverted F shape, it is called an inverted F antenna.
- a composite right/left handed (CRLH) can be regarded as a combination of a left-handed antenna and a monopole antenna.
- the composite left-handed antenna has a feeding point of a series capacitor and a grounding point.
- the feeding point is set away from the grounding point. Because it has the characteristics of both left-handed transmission lines and right-handed transmission lines, it is called a composite left-handed antenna.
- a single radiation stub may be included, and both ends of the stub are grounded to form a slot or a slot.
- the "inverted F radiator/IFA radiator” in this application can be understood as a radiator with a feeding point and a grounding point, wherein the grounding point is located at one end of the radiator, and the other end of the radiator is an open end, The feeding point is arranged between the open end and the grounding point.
- the feed point of the IFA radiator is set between the center point of the radiator and the ground point.
- the grounding point is located at one end of the IFA radiator, which can be understood as being within 5 mm, eg, within 2 mm, of the grounding point from the end of the IFA radiator.
- the open end of the IFA radiator can be understood as not being grounded within 5 mm of the end.
- the IFA radiator is used to generate resonance from the ground point to the open end.
- the electrical length of the IFA radiator from the ground point to the open end is about 1/4 of the wavelength corresponding to the resonance.
- the "composite left-handed radiator/CRLH radiator” in this application can be understood as a radiator with a feeding point and a grounding point, wherein the grounding point is located at one end of the radiator, and the other end of the radiator is an open end, The feed point is set between the open end and the ground point, and a capacitor is connected in series between the feed point and the feed source. In one embodiment, the capacitance of the capacitor connected in series is less than or equal to 1 pF. In one embodiment, the feed point of the composite left and right hand radiator is disposed between the center point and the open end of the radiator.
- the grounding point is located at one end of the composite left-handed radiator, which can be understood as being within 5 mm from the end of the end, for example, within 2 mm.
- the part of the CRLH radiator from the ground point to the feeding point is used to generate the first resonance.
- the electrical length of the CRLH radiator from the ground point to the feeding point is about 1/8 of the wavelength corresponding to the first resonance, for example, the electrical length is between 1/4 wavelength and 1/8 wavelength or Less than 1/8 wavelength.
- the part of the CRLH radiator from the feeding point to the open end is used to generate the second resonance.
- the electrical length of the CRLH radiator from the feeding point to the open end is about 1/4 of the wavelength corresponding to the second resonance.
- the capacitance of the capacitor connected in series between the feed point and the feed source can be understood as an equivalent capacitance.
- the equivalent capacitance after the two capacitors are connected in series can be calculated.
- the radiator may also be a slot or slot formed on the conductor.
- an antenna formed by slits on a conductor surface may also be called a slot antenna or a slot antenna.
- the slot shape is elongated.
- the length of the slot is about half a wavelength.
- the slot may be fed by a transmission line spanning one or both of its sides, or by a waveguide or resonant cavity. A radio frequency electromagnetic field is excited on the gap and radiates electromagnetic waves into the space.
- Feed unit is the combination of all components of an antenna for the purpose of reception and transmission of radio frequency waves.
- the feed unit can be considered as the part of the antenna from the first amplifier to the front-end transmitter.
- the feed unit can be regarded as the part after the last power amplifier.
- the "feed unit" in a narrow sense is the radio frequency chip, or includes the transmission path from the radio frequency chip to the radiator or the feed point on the transmission line.
- the feed unit has the function of converting radio waves into electrical signals and sending them to the receiver component. Often, it is considered the part of the antenna that converts radio waves into electrical signals and vice versa. Antennas should be designed with maximum power transfer possibility and efficiency in mind.
- the antenna feed impedance must match the load resistance.
- Antenna feed impedance is a combination of resistance, capacitance and inductance. To ensure maximum power transfer conditions, the two impedances (load resistance and feed resistance) should be matched. Matching can be done by considering frequency requirements and antenna design parameters such as gain, directivity and radiation efficiency.
- the feed-in impedance consists of two resistive elements, the loss resistor and the radiation resistor.
- the loss resistance is the resistance provided by the actual components of the antenna, and the feed resistance is the resistance provided by the antenna input signal. Therefore, loss and feed impedance must work together to obtain a proper working antenna feed.
- Radiation resistance is the resistance provided by the antenna to the radiated power, in other words it represents the dissipated radiated power.
- Transmission line also called feeder line, refers to the connection line between the transceiver of the antenna and the radiator. Transmission lines can directly transmit current waves or electromagnetic waves, depending on the frequency and form.
- the connection on the radiator to the transmission line is usually called the feed point.
- the transmission line includes a wire transmission line, a coaxial transmission line, a waveguide, or a microstrip line, etc.
- the transmission line may include a bracket antenna body, a glass antenna body, etc. according to different implementation forms.
- the transmission line can be realized by LCP (Liquid Crystal Polymer, liquid crystal polymer material), FPC (Flexible Printed Circuit, flexible printed circuit board), or PCB (Printed Circuit Board, printed circuit board) according to different carriers.
- Ground/floor It can generally refer to at least a part of any ground layer, or ground plane, or ground metal layer, etc. in electronic equipment, or at least a part of any combination of any of the above ground layers, or ground planes, or ground components, etc.
- ground / Floor can be used for grounding of components in electronic equipment.
- the "ground/floor” may be the ground layer of the circuit board of the electronic device, or the ground plane formed by the middle frame of the electronic device or the ground metal layer formed by the metal film under the screen.
- the circuit board may be a printed circuit board (PCB), such as an 8-layer, 10-layer or 12-14 layer board with 8, 10, 12, 13 or 14 layers of conductive material, or a printed circuit board such as A dielectric or insulating layer, such as fiberglass, polymer, etc., that separates and electrically insulates components.
- the circuit board includes a dielectric substrate, a ground layer and a wiring layer, and the wiring layer and the ground layer are electrically connected through via holes.
- components such as displays, touch screens, input buttons, transmitters, processors, memory, batteries, charging circuits, system on chip (SoC) structures, etc. may be mounted on or connected to a circuit board; or electrically connected to trace and/or ground planes in the circuit board.
- the radio frequency source is set on the wiring layer.
- the conductive material can be any one of the following materials: copper, aluminum, stainless steel, brass and their alloys, copper foil on an insulating substrate, aluminum foil on an insulating substrate, gold foil on an insulating substrate, Silver-plated copper, silver-plated copper foil on insulating substrate, silver foil and tin-plated copper on insulating substrate, cloth impregnated with graphite powder, graphite-coated substrate, copper-plated substrate, brass-plated substrate sheets and aluminum-coated substrates.
- the ground layer/ground plate/ground metal layer can also be made of other conductive materials.
- Resonant frequency is also called resonance frequency.
- the resonant frequency may refer to the frequency at which the imaginary part of the input impedance of the antenna is zero.
- the resonance frequency may have a frequency range, ie, a frequency range in which resonance occurs.
- the frequency corresponding to the strongest point of resonance is the center frequency - point frequency.
- the return loss characteristic of the center frequency can be less than -20dB.
- Resonant frequency band/communication frequency band/working frequency band No matter what type of antenna, it always works within a certain frequency range (frequency band width).
- the working frequency band of the antenna supporting the B40 frequency band includes frequencies in the range of 2300 MHz to 2400 MHz, or in other words, the working frequency band of the antenna includes the B40 frequency band.
- the frequency range that meets the requirements of the index can be regarded as the working frequency band of the antenna.
- the width of the working frequency band is called the working bandwidth.
- the operating bandwidth of an omnidirectional antenna may reach 3-5% of the center frequency.
- the operating bandwidth of directional antennas may reach 5-10% of the center frequency.
- Bandwidth can be thought of as the range of frequencies on either side of a center frequency (eg, the resonant frequency of a dipole) where the antenna characteristics are within acceptable values for the center frequency.
- the impedance of an antenna generally refers to the ratio of the voltage to the current at the input of the antenna.
- Antenna impedance is a measure of the resistance in an antenna to electrical signals.
- the input impedance of the antenna is a complex number, the real part is called the input resistance, represented by Ri; the imaginary part is called the input reactance, represented by Xi.
- An antenna whose electrical length is much smaller than the working wavelength has a large input reactance, for example, a short dipole antenna has a large capacitive reactance; an electric small loop antenna has a large inductive reactance.
- the input impedance of a half-wave vibrator with a very thin diameter is about 73.1+j42.5 ohms.
- the input reactance of the symmetrical oscillator is zero, and the length of the oscillator at this time is called the resonance length.
- the length of the resonant half-wave oscillator is slightly shorter than the half-wavelength in free space, and it is generally estimated to be 5% shorter in engineering.
- the input impedance of the antenna is related to factors such as the geometric shape, size, feed point location, working wavelength and surrounding environment of the antenna. When the diameter of the wire antenna is thicker, the change of the input impedance with the frequency is gentler, and the impedance bandwidth of the antenna is wider.
- the main purpose of studying the antenna impedance is to realize the matching between the antenna and the transmission line.
- the input impedance of the antenna should be equal to the characteristic impedance of the transmission line.
- the input impedance of the antenna should be equal to the complex conjugate of the load impedance.
- receivers typically have real impedances.
- a matching circuit is required to remove the reactance part of the antenna and make their resistive parts equal.
- the antenna matches the transmission line, the power transmitted from the transmitter to the antenna or from the antenna to the receiver is the largest. At this time, there will be no reflected waves on the transmission line, the reflection coefficient S11 is equal to zero, and the standing wave coefficient is equal to 1.
- the degree of matching between the antenna and the transmission line is measured by the reflection coefficient S11 or standing wave ratio at the input end of the antenna.
- the radiated power of the antenna will decrease, the loss on the transmission line will increase, and the power capacity of the transmission line will also decrease. In severe cases, the transmitter frequency "pulling" phenomenon will occur. That is, the oscillation frequency changes.
- System efficiency refers to the ratio of the power radiated from the antenna to space (that is, the power that effectively converts the electromagnetic wave part) to the input power of the antenna.
- the system efficiency refers to the actual efficiency after the port matching of the antenna is considered, that is, the system efficiency of the antenna is the actual efficiency (ie, efficiency) of the antenna.
- Radiation efficiency refers to the ratio of the power radiated from the antenna to space (that is, the power that effectively converts the electromagnetic wave part) to the active power input to the antenna.
- active power input to the antenna input power of the antenna ⁇ loss power
- the loss power mainly includes return loss power and metal ohmic loss power and/or dielectric loss power. Radiation efficiency is a value to measure the radiation capability of an antenna, and metal loss and dielectric loss are both influencing factors of radiation efficiency.
- the efficiency is generally represented by a percentage, and there is a corresponding conversion relationship between it and dB, and the closer the efficiency is to 0 dB, the better the efficiency of the antenna is.
- Antenna return loss It can be understood as the ratio of the signal power reflected back to the antenna port through the antenna circuit and the transmit power of the antenna port. The smaller the reflected signal, the larger the signal radiated to the space through the antenna, and the greater the radiation efficiency of the antenna. The larger the reflected signal, the smaller the signal radiated to the space through the antenna, and the smaller the radiation efficiency of the antenna.
- the return loss of the antenna can be expressed by the S11 parameter, and the S11 is one of the S parameters.
- S11 represents the reflection coefficient, which can characterize the quality of the antenna's emission efficiency.
- the S11 parameter is usually a negative number. The smaller the S11 parameter, the smaller the return loss of the antenna, and the smaller the energy reflected back by the antenna itself, which means that the more energy actually enters the antenna, and the higher the system efficiency of the antenna; the S11 parameter The larger is, the greater the return loss of the antenna is, and the lower the system efficiency of the antenna is.
- the S11 value of -6dB is generally used as a standard.
- the S11 value of the antenna is less than -6dB, it can be considered that the antenna can work normally, or it can be considered that the transmission efficiency of the antenna is relatively good.
- Isolation It refers to the ratio of the signal transmitted by one antenna and the signal received by another antenna to the signal of the transmitting antenna. Isolation is a physical quantity used to measure the degree of mutual coupling of antennas. Assuming that two antennas form a dual-port network, then the isolation between the two antennas is S21, S12 between the antennas. Antenna isolation can be expressed by S21 and S12 parameters. S21, S12 parameters are usually negative. The smaller the parameters of S21 and S12, the greater the isolation between antennas and the smaller the degree of antenna mutual coupling; the larger the parameters of S21 and S12, the smaller the isolation between antennas and the greater the degree of mutual coupling between antennas. The isolation of the antenna depends on the radiation pattern of the antenna, the spatial distance of the antenna, and the gain of the antenna.
- the Smith chart is a calculation chart that plots the normalized input impedance (or admittance) equivalent circle family on the reflection system dispersion plane.
- the Smith chart is mainly used for impedance matching of transmission lines.
- the circular line in the chart represents the real value of reactance, that is, the resistance value
- the horizontal line in the middle and the lines that radiate upward and downward represent the imaginary value of electrical resistance, that is, the resistance generated by capacitance or inductance at high frequencies. Values, where upwards are positive numbers, and downwards are negative numbers.
- the middle point (1+j0) of the graph represents an impedance-matched resistor value, and its reflection coefficient S11 value will be zero.
- the edge of the graph represents that the length of the reflection coefficient S11 is 1, that is, 100% reflection.
- the numbers on the side of the figure represent the angle (0-180 degrees) and wavelength (from zero to half wavelength) of the reflection coefficient S11.
- Electrical length can be defined as the physical length (i.e., mechanical or geometric) multiplied by the travel time of an electrical or electromagnetic signal in a medium and the time required for this signal to travel in free space over the same distance as the physical length of the medium. Expressed as the ratio of the required time, the electrical length can satisfy the following formula:
- L is the physical length
- a is the transmission time of the electric or electromagnetic signal in the medium
- b is the medium transmission time in free space.
- the electrical length can also refer to the ratio of the physical length (i.e. mechanical length or geometric length) to the wavelength of the transmitted electromagnetic wave, and the electrical length can satisfy the following formula:
- L is the physical length
- ⁇ is the wavelength of the electromagnetic wave.
- the physical length of the radiator may be set to be ⁇ 10%, for example ⁇ 5%, of the electrical length of the radiator.
- the wavelength in this application may be the wavelength in the medium corresponding to the center frequency of the resonance frequency, or the wavelength in the medium corresponding to the center frequency of the working frequency band supported by the antenna.
- the wavelength can be the wavelength calculated using the frequency of 1955MHz, or the calculated wavelength in the medium (referred to as the medium wavelength).
- the "wavelength/medium wavelength” may also refer to the wavelength/medium wavelength corresponding to the resonant frequency or the non-center frequency of the working frequency band.
- the medium wavelength mentioned in the embodiments of the present application can be simply understood as a wavelength.
- the current distribution in the same direction/reverse direction mentioned in this application should be understood as the direction of the main current on the conductors on the same side is the same direction/reverse direction.
- a circular conductor is excited to distribute current in the same direction (for example, the current path is also circular)
- the conductors on both sides of the circular conductor such as the conductor surrounding a gap, in the gap
- the main current excited on the conductors on both sides is reversed in direction, it still belongs to the definition of the current distributed in the same direction in this application.
- Equivalent length Due to factors such as transmission distance, set capacitance and/or inductance, and radiation impedance, electromagnetic waves will cause phase differences when they are transmitted on the transmission medium. If the phase difference caused is the same as the phase difference caused by the guided wave when it is transmitted on a transmission line with a predetermined length, a predetermined dielectric constant, and no radiation capability, then the equivalent length transmitted in the transmission medium is equal to the predetermined length of the transmission line .
- the equivalent length may be affected by the physical length of the corresponding transmission line in the transmission medium, the capacitance and/or inductance provided in the transmission medium, the phase shifter provided, and the position where the transmission line is coupled to the radiator, etc.
- the physical length can be shortened while the equivalent length is basically unchanged.
- the relationship between the physical length L and the equivalent length Le can satisfy: (1-1/3)Le ⁇ L ⁇ (1+1/3)Le, or (1-1/4 )Le ⁇ L ⁇ (1+1/4)Le.
- SAR Specific Absorption Ration
- the SAR value is usually used to measure the thermal effect of terminal radiation.
- SAR can refer to the ratio of radiation absorbed by the human body (eg, the head). The lower the SAR value, the less the amount of radiation absorbed by the human body.
- the Envelope Correlation Coefficient indicates the degree of independence of the radiation patterns of two antennas. If one antenna is completely horizontally polarized and the other is completely vertically polarized, the correlation between the two antennas is essentially zero. Similarly, if one antenna radiates energy only to the sky and the other radiates energy only to the ground, the ECC for these antennas will also be essentially 0. Thus, the envelope correlation coefficient takes into account the antenna's radiation pattern shape, polarization and even the relative phase of the field between the two antennas. ECC generally characterizes the relationship between two antennas. For a MIMO antenna system, multiple sets of ECC can be used to characterize the independence between antennas. For example, a MIMO antenna with an ECC below 0.5 will work "reasonably well".
- the "point” or “end” in “feed end”, “feed point”, “ground end”, “open end” and “one end” in this application cannot be understood as a point in a narrow sense. It can also be considered as a section of radiator including the first end point on the antenna radiator, or it can also be considered as a section of radiator at the junction of the transmission line and the radiator, and the first endpoint is the endpoint of the first end on the antenna radiator .
- the first end of the antenna radiator is the feeding end, which can be regarded as a section of radiator within a first wavelength range of one-eighth of the distance from the first end point, wherein the first wavelength can be the working frequency band of the antenna structure
- the corresponding wavelength may be the wavelength corresponding to the center frequency of the working frequency band, or the wavelength corresponding to the resonance point.
- the first end of the antenna radiator is the feeding end, which can also be considered as a section of radiator within 5 mm or a section of radiator within 3 mm from the first end point.
- the first end of the antenna radiator is a ground end, which can be regarded as a section of radiator within 5 mm or a section of radiator within 3 mm from the first end point.
- the first end of the antenna radiator is an open end, which should be understood in two ways.
- the "open end" of the IFA radiator can be considered as a section of radiation within 5mm from the first end point. body, or a section of the radiator within 3mm; one is for the CRLH radiator, the "open end" of the CRLH radiator can be considered as a section of the radiator with a distance of more than 5mm from the end point of the ground end of the CRLH radiator, or a distance of more than 10mm A radiant.
- the open end of the CRLH radiator is the feeding end, and a monopole radiator is electrically connected to the direction away from the ground end from the feeding end, and the monopole radiator can also be regarded as the open end of the CRLH radiator. It should be understood that the monopole radiator can be regarded as a part of the CRLH radiator.
- Coupled to the ground terminal in this application should be understood as being electrically connected or indirectly coupled to the above-mentioned “ground terminal”, and the point of electrical connection or indirect coupling should be located on the above-mentioned “ground terminal”.
- Coupled to the open end in this application should be understood as being electrically connected or indirectly coupled to the above-mentioned "open end", and the point of electrical connection or indirect coupling should be located on the above-mentioned "open end”.
- Near in this application refer to two points or parts (such as a feeding point and a ground terminal or The distance between the open ends) does not exceed a specific distance value, and the distance value can be constrained by using 1/16 of the medium wavelength or 1/8 of the medium wavelength or other values, but these two values are only for examples.
- “near”, “adjacent”, and “near” refer to two points or parts (such as feed point and ground end or open end) is no more than 10mm, such as no more than 5mm, or such as no more than 3mm.
- “near”, “adjacent”, and “near” refer to two points or parts (such as feed point and ground end or open end) at least partially overlap, or as the distance between them is 0mm.
- the feed point and feed end mentioned above in the present application may refer to any point in the connection area (also called the connection point) between the transmission line and the radiator, such as a central point.
- the distance from a point (such as a feeding point, a connection point, a grounding point, etc.) to a slot or from a slot to a point may be the distance from the point to the midpoint of the slot, or the distance from the point to both ends of the slot.
- the technical solution provided by this application is applicable to electronic equipment using one or more of the following communication technologies: Bluetooth (blue-tooth, BT) communication technology, global positioning system (global positioning system, GPS) communication technology, wireless fidelity (wireless Fidelity, WiFi) communication technology, global system for mobile communications (GSM) communication technology, wideband code division multiple access (WCDMA) communication technology, long term evolution (LTE) communication technology, 5G communication technology and other communication technologies in the future.
- the electronic device in the embodiment of the present application may be a mobile phone, a tablet computer, a notebook computer, a smart home, a smart bracelet, a smart watch, a smart helmet, smart glasses, and the like.
- the electronic device can also be a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle device, an electronic device in a 5G network, or a public land mobile network (PLMN) that will evolve in the future. ) in the electronic equipment, etc., which are not limited in this embodiment of the present application.
- FIG. 1 schematically shows an electronic device provided by the present application, and the electronic device is a mobile phone for illustration.
- the electronic device 200 may include: a cover (cover) 201, a display screen/module (display) 202, a printed circuit board (printed circuit board, PCB) 203, a middle frame (middle frame) 204 and a rear Cover (rear cover) 205.
- the cover plate 201 can be a glass cover plate (cover glass), and can also be replaced by a cover plate of other materials, such as an ultra-thin glass material cover plate, PET (Polyethylene terephthalate, polyterephthalate Ethylene formate) material cover plate, etc.
- the cover plate 201 can be arranged close to the display module 202 , and can be mainly used for protecting and dustproofing the display module 202 .
- the display module 202 may include a liquid crystal display panel (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display panel or an organic light emitting semiconductor (organic light-emitting diode, OLED) display panel, etc. , this application does not limit it.
- liquid crystal display panel liquid crystal display, LCD
- light emitting diode light emitting diode, LED
- organic light emitting semiconductor organic light-emitting diode, OLED
- the middle frame 204 mainly plays a supporting role for the whole machine. It is shown in FIG. 1 that the PCB 203 is arranged between the middle frame 204 and the rear cover 205. It should be understood that, in one embodiment, the PCB 203 can also be arranged between the middle frame 204 and the display module 202. This application does not Do limit.
- the printed circuit board PCB203 may use a flame-resistant material (FR-4) dielectric board, or a Rogers (Rogers) dielectric board, or a mixed media board of Rogers and FR-4, and so on.
- FR-4 is a code name for a flame-resistant material grade
- Rogers dielectric board is a high-frequency board.
- the PCB 203 carries electronic components, for example, a power feeding unit and the like.
- a metal layer may be disposed on the printed circuit board PCB203.
- the metal layer can be used for grounding electronic components carried on the printed circuit board PCB203, and can also be used for grounding other components, such as bracket antennas, frame antennas, etc.
- the metal layer can be called a floor, or a ground plane, or a ground layer.
- the metal layer can be formed by etching metal on the surface of any dielectric board in the PCB 203 .
- the metal layer for grounding can be disposed on the side of the printed circuit board PCB 203 close to the middle frame 204 .
- the edges of the printed circuit board PCB 203 can be considered as the edges of its ground plane.
- the metal middle frame 204 can also be used for grounding the above components.
- the electronic device 200 may also have other ground/ground planes/ground layers, as mentioned above, which will not be repeated here.
- the electronic device 200 may further include a battery (not shown in the figure).
- the battery can be disposed between the middle frame 204 and the rear cover 205 , or between the middle frame 204 and the display module 202 , which is not limited in the present application.
- the PCB 203 is divided into a main board and a sub-board, and the battery can be arranged between the main board and the sub-board, wherein the main board can be arranged between the middle frame 204 and the upper edge of the battery, and the sub-board can be arranged on the Between the middle frame 204 and the lower edge of the battery.
- the electronic device 200 may further include a frame 2041, and the frame 2041 may be at least partially formed of a conductive material such as metal.
- the frame 2041 can be disposed between the display module 202 and the rear cover 205 and extend around the periphery of the electronic device 200 .
- the frame 2041 can have four sides surrounding the display module 202 to help fix the display module 202 .
- the frame 2041 made of metal material can be directly used as the metal frame of the electronic device 200 to form the appearance of a metal frame, which is suitable for metal industrial design (ID).
- ID metal industrial design
- the outer surface of the frame 2041 can also be made of non-metallic material, such as a plastic frame, to form the appearance of a non-metal frame, which is suitable for a non-metal ID.
- the middle frame 204 may include a frame 2041, and the middle frame 204 including the frame 2041 as an integral part may support the electronic devices in the whole machine.
- the cover plate 201 and the rear cover 205 are respectively covered along the upper and lower edges of the frame to form a housing or housing of the electronic device.
- the cover plate 201 , the rear cover 205 , the frame 2041 and/or the middle frame 204 may be collectively referred to as a housing or a shell of the electronic device 200 .
- shell or shell may be used to refer to any part or all of the cover plate 201, the rear cover 205, the frame 2041 or the middle frame 204, or to refer to the cover plate 201, the rear cover 205, the frame 2041 Or part or all of any combination in the middle frame 204.
- the frame 2041 on the middle frame 204 can be at least partly used as an antenna radiator to receive/transmit radio frequency signals, and there may be a gap between this part of the frame of the radiator and other parts of the middle frame 204, so as to ensure that the antenna radiator has a good performance. radiation environment.
- the middle frame 204 may be provided with an aperture at this part of the frame as the radiator, so as to facilitate the radiation of the antenna.
- the frame 2041 may not be regarded as a part of the middle frame 204 .
- the frame 2041 can be connected with the middle frame 204 and integrally formed.
- the frame 2041 may include a protruding piece extending inward to connect with the middle frame 204 , for example, by means of spring clips, screws, welding and the like.
- the protruding part of the frame 2041 can also be used to receive feeding signals, so that at least a part of the frame 2041 serves as a radiator of the antenna to receive/transmit radio frequency signals.
- the back cover 205 can be a back cover made of a metal material; it can also be a back cover made of a non-conductive material, such as a non-metal back cover such as a glass back cover or a plastic back cover; material made of the back cover.
- the antenna of the electronic device 200 may also be disposed inside the casing, more specifically, disposed inside the frame 2041 .
- the antenna radiator may be located in the electronic device 200 and arranged along the frame 2041 .
- the antenna radiator is arranged close to the frame 2041 to minimize the volume occupied by the antenna radiator and to be closer to the outside of the electronic device 200 to achieve better signal transmission effect.
- the arrangement of the antenna radiator close to the frame 2041 means that the antenna radiator can be arranged close to the frame 2041 , or can be arranged close to the frame 2041 , for example, there can be a certain small gap between the antenna radiator and the frame 2041 .
- the antenna of the electronic device 200 can also be arranged at any other appropriate position in the casing, such as a bracket antenna, a millimeter wave module, etc., and the clearance of the antenna arranged in the casing can be determined by the middle frame 204, and/or the frame 2041, and/or or the rear cover 205, and/or the slit/opening on any one of the display screen 202, or the non-conductive gap/aperture formed between any of them, the clearance setting of the antenna can ensure the radiation of the antenna performance.
- the clearance of the antenna may be a non-conductive area formed by any conductive components in the electronic device 200, and the antenna radiates signals to the external space through the non-conductive area.
- the form of the antenna can be an antenna form based on a flexible main board (Flexible Printed Circuit, FPC), an antenna form based on laser direct forming (Laser-Direct-structuring, LDS) or a microstrip antenna (Microstrip Disk Antenna, MDA) and other antenna forms.
- FPC Flexible Printed Circuit
- LDS Laser-Direct-structuring
- MDA microstrip antenna
- the antenna may also adopt a transparent structure embedded in the screen of the electronic device 200 , so that the antenna is a transparent antenna unit embedded in the screen of the electronic device 200 .
- FIG. 1 the structure and arrangement of the electronic device shown in FIG. 1 are only schematic, and are not intended to limit the protection scope of the present application. Any other suitable construction or arrangement of electronic devices is also possible, where applicable.
- the following will mainly take the structure shown in FIG. 1 as an example to describe the electronic device 200 according to the embodiment of the present application. It should be understood that the application to other electronic devices 200 is similar. They will not be described in detail below.
- the broadband antenna on the electronic device 200 may adopt distributed feeding in order to achieve better grip performance.
- two monopole antennas located above the mobile phone are connected by distributed feed, and a signal/guided wave with a phase difference of about 90° is introduced to the two antennas at the same time, showing the effect of double-resonant broadband matching.
- a distributed antenna design may be adopted, for example, symmetrical and antisymmetrical feeds may be used to excite radiators with a symmetrical structure to implement an orthogonal mode MIMO antenna pair.
- the radiator is symmetrically designed on both sides of the mobile phone, and a low-frequency dual-mode antenna pair is realized through a symmetrical and anti-symmetrical feed connection with a broadband matching circuit.
- the two antennas have a certain bandwidth and are isolated higher degree.
- the embodiment of the present application also provides an antenna, which uses a transmission line 104 with a predetermined length to feed the radiator.
- the feeding unit 103 feeds power on the radiator, it can excite the mode of the radiator to form resonance, and at the same time, it can excite the mode of the transmission line on the transmission line 104 to form resonance.
- the transmission line mode can be superimposed with the radiator mode, which can effectively improve the efficiency and bandwidth of the antenna. Exemplary embodiments of such antennas will be described below with reference to the accompanying drawings.
- the transmission line 104 mentioned in this application may include but not limited to: microstrip line, strip line, coaxial line, or other linear conductors, and any combination of the foregoing items.
- the linear conductor can be the combination of one or more of the following: a linear conductor forming LCP, FPC, and/or PCB; a linear conductor formed on an insulating medium (for example, LDS antenna body, glass / ceramic antenna body).
- the linear conductor can be understood as a strip-shaped or curved conductor whose length is greater than twice the width.
- the transmission line can be made of various appropriate materials or wires, the degree of freedom in design and structure is high, and it can be designed in any appropriate position of the electronic device, which is more conducive to the design flexibility of antennas and electronic devices.
- inventive concepts according to the embodiments of the present disclosure will be described mainly by taking a commonly used microstrip line as the transmission line 104 as an example. It should be understood that the case where the transmission line 104 is formed in other manners is also similar, and details will not be repeated hereafter.
- a microstrip line is a transmission line 104 consisting of a single conductor strip supported on a dielectric substrate.
- the microstrip line is composed of a dielectric substrate, conductor strips on the dielectric substrate, and a metal floor at the bottom of the dielectric.
- FIG. 2 shows an exemplary cross-sectional view of a 50 ohm microstrip line taken along a direction perpendicular to the extending direction of the conductor strip.
- the width W of the conductor strip is in the range of about 1mm-1.4mm, for example about 1.2mm
- the height h of the dielectric substrate is between 0.6mm-0.8mm, for example about 0.7mm.
- the dielectric constant ⁇ of the dielectric substrate is about 4.4.
- FIG. 3 shows an exemplary structure of the transmission line 104 .
- the transmission line 104 includes two ends, namely, a first end and a second end. Both ends of the transmission line 104 according to an embodiment of the present disclosure may be grounded or open. In some embodiments, one end or both ends of the transmission line 104 may be directly grounded, and this end may be referred to as a ground end. In some embodiments, the ground end may also be grounded by being coupled to the vicinity of the ground end of the radiator of the antenna. In some embodiments, the transmission line 104 is directly or coupled to ground within 5 mm near the end of one end, for example, about 2 mm from the end.
- one or both ends of the transmission line 104 may be open by not being grounded, and this end may be referred to as an open end. In some embodiments, this end may also be open by coupling to the vicinity of the open end of the radiator of the antenna. In some embodiments, the transmission line 104 is not grounded within 5 mm near the end of one end, eg, within 2 mm from the end.
- FIG. 4(A) shows the case where both ends of the transmission line 104 are grounded.
- the transmission line 104 forms a loop radiator type transmission line 104
- the length T of the transmission line 104 is about 1/2 ⁇ , where ⁇ is the lowest resonance among the resonances generated by the antenna when it is fed. medium wavelength.
- "Length T is about 1/2 ⁇ " in this application can be understood as the length T of the transmission line satisfies 1/2 ⁇ 1 ⁇ T ⁇ 1/2 ⁇ 2, where ⁇ 1 and ⁇ 2 are respectively when the feed unit is feeding, the antenna The minimum and maximum dielectric wavelengths of the working frequency band corresponding to the lowest resonance generated.
- the transmission line 104 is used as a conductor structure, and when the feeding unit 103 is coupled to its coupling point (or feeding point) for excitation, it can also be 1/2, 1 times, 3/2 times, etc. 1/2 times the wavelength of the medium. Resonance occurs at natural multiples of , which excites the transmission line mode.
- 4(B) and (C) respectively show the S11 parameter and efficiency diagrams of the transmission line 104 itself when it is excited. Since the environment of the transmission line 104 is relatively closed, its radiation efficiency is very low, which can basically be ignored.
- FIG. 4(D) shows a schematic diagram of the current and electric field distribution of the transmission line 104 itself when it is excited.
- the transmission line 104 shown in FIG. 4(A) can excite three transmission line modes when being fed.
- Figure 4(D) shows that the resonant frequencies of these three transmission line modes can correspond to 1.05GHz, 2.14GHz and 3.2GHz, respectively.
- the first radiator when the feed unit feeds power to the transmission line and feeds power to the first radiator and the second radiator through transmission line coupling, the first radiator is used to generate the first resonance, and the transmission line is used to generate a resonance adjacent to the first resonance; the second radiator is used to generate a second resonance, and the transmission line is also used to generate a resonance adjacent to the second resonance.
- adjacent resonance should be understood as that both resonances include frequencies in the same operating frequency band; or that the two resonances include frequencies in adjacent operating frequency bands; or that the two resonances are at the S11 of the antenna structure In the graph, there are adjacent resonances and there is an overlapping area in the interval below -2dB.
- the conditioning circuit may include capacitance and/or inductance. Specifically, if a grounded capacitor can be installed at the current strength point of the half-wavelength mode and the electric field strength point of the 1-times and 1.5-times wavelength mode, the resonance frequency of the medium and high frequencies can be shifted to a lower level. If the inductance can be set at the above position, the resonant frequency of the medium and high frequencies can be shifted to a higher level. For example, in some embodiments, if the current intensity region of 1/2 wavelength mode (corresponding to 1.05GHz in Fig.
- the electrical length of the transmission line 104 corresponds to about 1/2 or about 1/4 of the wavelength of the medium corresponding to a certain resonant frequency (eg, the lowest resonant frequency). In one embodiment, the electrical length of the transmission line 104 corresponds to about 1/2 of the wavelength of the medium corresponding to a certain resonant frequency (for example, the lowest resonant frequency), wherein the length T of the transmission line satisfies 1/2 ⁇ 1 ⁇ T ⁇ 1/2 ⁇ 2, Where ⁇ 1 and ⁇ 2 are respectively the minimum dielectric wavelength and maximum dielectric wavelength of the working frequency band corresponding to the lowest resonance generated by the antenna when the feed unit is feeding power.
- the electrical length of the transmission line 104 corresponds to about 1/4 of the wavelength of the medium corresponding to a certain resonant frequency (for example, the lowest resonant frequency), wherein the length T of the transmission line satisfies 1/4 ⁇ 1 ⁇ T ⁇ 1/4 ⁇ 2, Where ⁇ 1 and ⁇ 2 are respectively the minimum dielectric wavelength and maximum dielectric wavelength of the working frequency band corresponding to the lowest resonance generated by the antenna when the feed unit is feeding power.
- the design of the transmission line 104 can be independent of space, so its structure can be sufficiently miniaturized.
- the electrical length of the transmission line 104 can be shortened by increasing the dielectric coefficient of the medium, and in this way, the physical length will be correspondingly shortened.
- the physical length corresponding to 1/2 of the wavelength of the medium corresponding to the lowest resonance frequency is about 75mm
- the lowest resonance frequency corresponds to The physical length corresponding to 1/2 of the medium wavelength
- the physical length corresponding to 1/2 of the medium wavelength is about 32mm
- the physical length corresponding to 1/2 of the medium wavelength corresponding to the lowest resonance frequency is about 22mm.
- the transmission line 104 can also reduce the occupied area by adopting a meandering structure, thereby facilitating the miniaturization of the antenna and electronic equipment.
- the transmission line 104 Based on the above structure of the transmission line 104, one end thereof is connected to the vicinity of the ground end of the IFA radiator, and the other end is directly grounded (as shown in FIG. 6(A)).
- the length of the radiator is about a quarter of the wavelength of the medium corresponding to the resonant frequency of the antenna.
- the IFA radiator forms a low-frequency antenna, and the resonance generated by it can cover the low-frequency band.
- one end of the transmission line 104 is connected to the vicinity of the ground end of the IFA radiator, and the other end is directly grounded (as shown in FIG. 6(B) ).
- the length of the radiator is about a quarter of the wavelength of the medium corresponding to the resonant frequency of the antenna.
- the IFA radiator forms an intermediate frequency antenna, and the resonance generated by it can cover the intermediate frequency band. Since the connection points between the transmission line 104 and the radiator are close to the ground point of the radiator, at this time, the transmission line 104 is similar to the case where both ends are grounded.
- the radiator adopts a metal frame and is arranged at a corner of any position of the frame of the electronic device.
- the transmission line 104 when feeding power, the transmission line 104 (the length is about 1/2 of the medium wavelength corresponding to the resonant frequency of the antenna) can generate three resonances at low frequency and medium and high frequency respectively to form a transmission line mode.
- the radiator When feeding on the transmission line 104 in the antenna structures shown in FIG. 6(A) and FIG. 6(B), the radiator resonates at low frequency, medium frequency and high frequency respectively to form radiator modes.
- the transmission line mode and the radiator mode are superimposed in the corresponding frequency band, thereby effectively improving efficiency and bandwidth.
- the transmission line 104 is connected to the vicinity of the ground end of the radiator, which can satisfy the boundary condition of the transmission line mode.
- Figure 5 (A) Take the structure shown in Figure 5 (A) as the first antenna, the structure shown in Figure 6 (A) as the second antenna and the structure shown in Figure 6 (B) as the third antenna, Figure 7 (A) and (B) show the S11 curves and efficiency plots of these three antennas, respectively. It can be found that the structure of the transmission line 104 achieves mode expansion for both the low-frequency and high-frequency bands of the second antenna, and also achieves mode expansion for the low-frequency band of the third antenna, greatly improving the efficiency bandwidth.
- Figure 6 (A) and (B) respectively show the situation that one end of the transmission line 104 is connected to one end of the radiator
- the two ends of the transmission line 104 can also be respectively connected to radiators working in the same or different frequency bands .
- the radiators to which two ends of the transmission line 104 are respectively connected may comprise a continuous section of the frame. This can include two cases, one case is that the first radiator and the second radiator connected to the transmission line are connected and include a continuous section of the frame; the other case is that the first radiator and the second radiator are respectively A contiguous section that includes the frame, but separate sections.
- the separation can refer to the isolation between the two conductive sections by non-conductive materials, or the connection between the two conductive sections through other parts of the frame, so the ground terminals of the two are separated, or the first radiation
- the space between the two conductive sections of the body and the second radiator includes both non-conductive material and other parts of the frame.
- Both ends of the transmission line 104 are respectively connected to radiators working in the same or different frequency bands.
- FIG. 8 shows that one end of the transmission line 104 is connected to the first radiator 1013, and the other end is connected to the second radiator 1014.
- the first radiator 1013 and the second radiator 1014 work in different frequency bands, for example, work in the low frequency band and the middle frequency band respectively.
- FIG. 54 an exemplary structure of the antenna 100 is shown in FIG. 54 later.
- the antenna 100 shown in FIG. 54 includes a radiator pair 101 (including a first radiator 1013 and a second radiator 1014 ), a transmission line 102 and a feeding unit 1031 working in the same frequency band.
- the transmission lines are respectively connected near the ground ends of the first radiator 1013 and the second radiator 1014 . It should be understood that the transmission line can also be connected to the open ends of the first radiator 1013 and the second radiator 1014 respectively, or one end of the transmission line is connected to the ground end of one of the radiators, and the other end is connected to the open end of the other radiator. end.
- the transmission lines connecting radiators working in the same or different frequency bands include two sections with different equivalent lengths, for example, two sections with different physical lengths.
- the inventive concept according to the present disclosure will be described mainly by taking the physical length of a transmission line as an example.
- the transmission lines connected to radiators operating in the same or different frequency bands may be one or more, for example, two transmission lines, and the two ends of each transmission line are respectively connected to the radiators in the same or different frequency bands, and each Each transmission line consists of two sections of unequal equivalent length, eg two sections of unequal physical length.
- the equivalent length can also be determined by at least one of the following: a capacitance or an inductance provided between the corresponding transmission line and the radiator pair, a phase shifter provided on the corresponding transmission line, and a corresponding transmission line coupled to the The position of the radiator pair, which will be further elaborated later.
- a single reference to "length” herein generally refers to a physical length.
- the feeding unit is respectively coupled to the first radiator 1013 and the second radiator 1014 via these two sections, as shown in FIG. 8 or FIG. 54 .
- the equivalent lengths of the two sections are different, so there will be a phase difference when the excitation current provided by the feeding unit is transmitted to the first radiator 1013 and the second radiator 1014 .
- the difference between the lengths of the two sections may be between 1/8-3/8 of the wavelength of the medium, for example approximately 1/4 of the wavelength of the medium.
- the difference in the length of the two sections can be 1cm ⁇ 7cm.
- the difference between the lengths of two sections of a transmission line may be less than 1/8 or less.
- the difference D in length may be between 1cm ⁇ 7cm, which means 1cm ⁇ D ⁇ 7cm.
- Other ranges with respect to scale and/or angle are similar.
- the excitation current reaches feeding points A and B respectively through two sections of the transmission line (for example, the transmission line and the second radiator 1014).
- the electrical connection point of two radiators has a phase difference ⁇ , and the phase difference is within the range of 90° ⁇ 45°.
- the phase difference between the exciting current passing through the two sections and reaching the feeding points A and B respectively is within the range of 90° ⁇ 30°.
- the length of the transmission line is an odd multiple of 1/2 the wavelength of the medium, for example 1/2 the wavelength of the medium.
- the equivalent lengths of the two sections of the transmission line differ by 1/4 of the medium wavelength.
- the power feeding part can realize currents of equal amplitude and same direction at points A and B.
- the directions of currents excited by the power feeding part on the radiator pair 101 are the same.
- the length of the transmission line is an odd multiple of 1/2 the wavelength of the medium, which can be understood as the length of the transmission line is within the range of [odd multiple of 1/2 the wavelength of the medium ⁇ (1 ⁇ 20%)].
- the length difference between the two sections of the transmission line is 1/4 of the medium wavelength, which can be understood as the length difference is within the range of [1/4 medium wavelength ⁇ (1 ⁇ 10%)].
- the relationship between the physical length L and the equivalent length Le can satisfy: (1-1/3)Le ⁇ L ⁇ (1 +1/3)Le, or (1-1/4)Le ⁇ L ⁇ (1+1/4)Le.
- the length of the transmission line is an even multiple of 1/2 the wavelength of the medium, such as 1 times the wavelength of the medium.
- the lengths of the two sections of the transmission line differ by 1/4 the wavelength of the medium.
- the power feeding part can realize equal amplitude and reverse current at points A and B. In one embodiment, the directions of currents excited by the power feeding part on the radiator pair 101 are opposite.
- the length of the transmission line is an even multiple of 1/2 the wavelength of the medium, which can be understood as the length of the transmission line is within the range of (even multiples of the wavelength of 1/2 x (1 ⁇ 20%)).
- the length difference between the two sections of the transmission line is 1/4 of the medium wavelength, which can be understood as the difference in length is within the range of (1/4 medium wavelength ⁇ (1 ⁇ 10%)).
- the relationship between the physical length L and the equivalent length Le can satisfy: (1-1/3)Le ⁇ L ⁇ (1 +1/3)Le, or (1-1/4)Le ⁇ L ⁇ (1+1/4)Le.
- the difference in length can be set from 1/8-3 Other ranges of /8 medium wavelengths.
- the antenna 100 can also respectively realize the current phase difference control on the radiator pair 101 , which is beneficial to improve various performances of the antenna 100 .
- the equivalent lengths of sections or transmission lines may also be unequaled in other appropriate ways to realize the phase difference between feeding points.
- the antenna also includes a radiator pair, at least one transmission line and a feed unit.
- At least one transmission line includes two sections.
- the feed unit is coupled to the first feed point of the first radiator and the second feed point of the second radiator via the two sections, respectively.
- the equivalent length of the two segments can also be determined by at least one of the following: capacitance or inductance provided between the corresponding segment and the radiator pair , a phase shifter disposed on a corresponding segment, and a position where the corresponding segment is coupled to the pair of radiators.
- Figure 8 shows that one end of the transmission line 104 is connected to the first radiator 1013 and connected to the vicinity of the ground end of the first radiator 1013, and the other end is connected to the second radiator 1014 and connected to the ground of the second radiator 1014 Schematic diagram near the end.
- the first radiator 1013 may be a radiator working in a low frequency band.
- the second radiator 1014 may be a radiator working in an intermediate frequency band.
- the electrical length of the first radiator 1013 is approximately between one-eighth and three-eighths of the wavelength of the medium corresponding to the first resonant frequency (eg, low frequency) of the antenna.
- the physical length of the low-frequency radiator may be between 45 mm and 70 mm, for example, 58.5 mm.
- the electrical length of the second radiator 1014 is between one-eighth and three-eighths of the wavelength of the medium corresponding to the second resonant frequency (eg, intermediate frequency) of the antenna.
- the physical length of the mid-frequency radiator may be between 22 mm and 35 mm, for example, 27.5 mm.
- the transmission line 104 adopts a microstrip line structure, and its electrical length corresponds to about half of the wavelength of the first transmission line resonant frequency (eg, low frequency).
- the physical length of the low frequency transmission line is approximately between 65 mm and 75 mm, such as 70 mm.
- a gap may be provided between the first radiator 1013 and the second radiator 1014 and other parts of the frame, and the width of the gap may be within 3mm, for example, in some embodiments, the width may be within 2mm, such as about 1mm.
- the gap may be filled with a non-conductive material.
- the antenna with this arrangement can excite 2 modes at low frequency, intermediate frequency and high frequency respectively to achieve the coverage of 6 resonant frequencies in the whole frequency band.
- the reflection coefficient S11 and efficiency curve are shown in Fig. 9(A ) and Figure 9(B), and the current distribution for each mode is shown in Figure 10.
- the two resonant frequencies of the low-frequency band of the antenna are mainly composed of the low-frequency resonant frequency of the first radiator 1013 and the low-frequency resonant frequency of the transmission line 104 (corresponding to the 1/2 medium wavelength mode) accomplish.
- the two resonance frequencies of the intermediate frequency band are mainly composed of the low frequency resonance frequency of the second radiator 1014 and the intermediate frequency resonance frequency of the transmission line 104 (corresponding to 1 times the medium wavelength) mode.
- the two resonant frequencies of the high-frequency band are mainly composed of the high-frequency resonant frequency of the first radiator 1013 and the high-frequency resonant frequency of the transmission line 104 (corresponding to 1.5 times the medium wavelength mode) accomplish.
- the efficiency and bandwidth of the antenna structure shown in Fig. 8 is significantly increased compared to the case of a single radiator.
- the radiator shown in FIG. 8 can also be combined into a T radiator structure by combining two IFA radiators.
- the first radiator 1013 and the second radiator 1014 share a ground terminal, and a similar transmission line 104 is also used to connect and feed, as shown in FIG. 11 .
- the electrical length of the first radiator 1013 is approximately between one-eighth and three-eighths of the wavelength of the medium corresponding to the first resonant frequency (eg, low frequency) of the antenna.
- the physical length of the low-frequency radiator may be between 45 mm and 70 mm, for example, 50 mm.
- the electrical length of the second radiator 1014 is between one-eighth and three-eighths of the wavelength of the medium corresponding to the second resonant frequency (eg, intermediate frequency) of the antenna.
- the physical length of the mid-frequency radiator may be between 22 mm and 35 mm, for example, 30 mm.
- the transmission line 104 adopts a microstrip line structure, and its electrical length corresponds to about half of the wavelength of the first transmission line resonant frequency (eg, low frequency). In one embodiment, the physical length of the low frequency transmission line is approximately between 65 mm and 75 mm, such as 70 mm.
- the antenna with this structure can also achieve mode expansion at low frequency, intermediate frequency and high frequency, and its reflection coefficient S11 and efficiency curves are shown in Figure 12(A) and (B). The current distributions of the six modes are shown in Fig. 13(A) to Fig. 13(F) respectively.
- the first antenna is directly fed to the T antenna, and the antenna shown in Fig. 11 is the second antenna.
- Fig. 14 (A) and (B) respectively show the S11 curve and the efficiency curve of the two antennas.
- only one feeding point is set on the T-shaped radiator of the first antenna, and the specific position of the feeding point is not limited. It can be found from Fig. 14 that the first antenna excites at most three modes of the radiator, and the mode excitation is not sufficient, and the efficiency bandwidth is insufficient.
- the above-mentioned transmission line 104 of about 1/2 medium wavelength is used to couple to the ground terminal of the radiator for feeding to form the second antenna, the efficiency and bandwidth of the second antenna can be significantly improved.
- the transmission line 104 structure of the present application can also be applied to two radiators working in the same frequency band. In some embodiments, the structure of the transmission line 104 of the present application can also be applied to two radiators of comparable size.
- the T antenna structure in which two IFA radiator structures are combined is connected to the vicinity of the ground terminal by the transmission line 104 mentioned above for feeding, as shown in FIG. 15 .
- the electrical lengths of the first radiator 1013 and the second radiator 1014 are about one-eighth to three-eighths of the wavelength of the medium corresponding to the first resonance frequency (for example, low frequency) of the antenna. between.
- the physical length of the low-frequency radiator may be between 45 mm and 70 mm, for example, 52.5 mm.
- the transmission line 104 adopts a microstrip line structure, and its electrical length corresponds to about half of the wavelength of the first transmission line resonant frequency (eg, low frequency).
- the physical length of the low frequency transmission line is approximately between 65 mm and 75 mm, such as 74 mm.
- Fig. 16(A) shows the S11 curve and impedance circle diagram of this antenna, and Fig. 16(B) shows its efficiency curve.
- this antenna structure can excite three modes in the low frequency band, and the two modes of the antenna generated by the radiator (to be further explained below) and the first transmission line resonant frequency mode of the transmission line 104 are common form. 17(A) to (C) show the current distributions of these three modes.
- FIG. 18 shows a transmission line 104 design with different dielectric loadings for the embodiment shown in FIG. 15 .
- Fig. 18 (A) shows the first antenna, wherein in the case that the dielectric constant is 4.4, the physical length of the transmission line 104 corresponding to 1/2 of the medium wavelength corresponding to the lowest resonance frequency is about 75mm;
- Fig. 18( B) shows the second antenna, where the physical length of the transmission line 104 corresponding to 1/2 of the medium wavelength corresponding to the lowest resonance frequency is about 32mm when the dielectric constant is 16; and
- FIG. 18 shows a transmission line 104 design with different dielectric loadings for the embodiment shown in FIG. 15 .
- Fig. 18 (A) shows the first antenna, wherein in the case that the dielectric constant is 4.4, the physical length of the transmission line 104 corresponding to 1/2 of the medium wavelength corresponding to the lowest resonance frequency is about 75mm;
- Fig. 18( B) shows the second antenna, where the physical length of the transmission line 104 corresponding to 1/2 of the medium wavelength
- the transmission line 104 may also have multiple meandering winding forms.
- FIG. Transmission line 104 transmission line as the first antenna
- FIG. 19(B) shows the transmission line 104 (transmission line as the second antenna) in the same case using a multiple meandering structure.
- Figures 19(C) and (D) show the S11 curves and efficiency curves of these two antenna structures, respectively. It can be seen that, by adopting the transmission line 104 with multiple meandering structures, the antenna mode and the efficiency bandwidth have little influence, thereby facilitating further miniaturization of the antenna and electronic equipment while maintaining high bandwidth and efficiency.
- the embodiment of miniaturizing the transmission line 104 by adopting different dielectric constants or multiple meandering structures is only illustrative, and is not intended to limit the protection scope of the present disclosure.
- This approach to miniaturization of the transmission line 104 can be applied to any suitable embodiment, including but not limited to the embodiment shown in FIG. 6, the embodiment shown in FIG. 8, the embodiment shown in FIG. In the various examples mentioned. These will not be described in detail below.
- the structure of the transmission line 104 can also be combined with the impedance matching circuit at the radiator end to further increase the number of resonant frequencies, thereby increasing the bandwidth.
- the embodiment shown in FIG. 20(A) is similar to the structure shown in FIG. 15, except that the embodiment shown in FIG. 20(A) adds an impedance matching circuit with series capacitors and parallel inductors at the connection point between the transmission line 104 and the radiator.
- Figure 20(B) and Figure 20(C) show the S11 and efficiency curves of this antenna structure, respectively.
- the embodiment shown in FIG. 20(A) can excite 5 modes in the target frequency band (for example, low frequency band), such as mode1 to mode5 as shown in FIG. 20(B), and its current distribution is shown in FIG. 21 (A) to (E) shown.
- Figure 22 (A) As the first antenna, the antenna shown in Figure 15 as the second antenna, and the antenna shown in Figure 20 as the third antenna, Figure 22 (B) and Figure 22 (C) respectively show The S11 curves and efficiency curves of these three antennas are shown, and Fig. 23(A) and (B) show the efficiency diagrams of these three antennas in left-hand mode and right-hand mode, respectively.
- the -4dB efficiency bandwidth of the antenna structure (second antenna) shown in Figure 15 is increased About doubling, the -4dB efficiency bandwidth of the antenna structure (the third antenna) shown in Fig. 20(A) is more than doubled.
- the antenna structure shown in Figure 20(A) has both left-hand and right-hand grip efficiencies of over -8.5dB in the entire low frequency band (700-1200MHz).
- the impedance matching circuit is applied between the transmission line 104 and the low-frequency radiator to increase the bandwidth of the low-frequency band, and the above-mentioned embodiments are only illustrative and not intended to limit the protection scope of the present disclosure.
- the impedance matching circuit can be applied between the transmission line 104 and the radiator of any appropriate frequency band to improve the bandwidth of the corresponding radiation frequency band. These will not be described in detail below.
- both ends of the transmission line 104 are grounded (directly grounded or connected to the ground near the radiator) in conjunction with the accompanying drawings.
- both ends of the transmission line 104 may also be in an open state, that is, open end.
- FIG. 24 shows the case where both ends of the transmission line 104 are open.
- the length T of the transmission line 104 is set to be about 1/2 ⁇ , where ⁇ is the medium wavelength corresponding to the lowest resonance among the resonances generated by the antenna when it is fed.
- ⁇ is the medium wavelength corresponding to the lowest resonance among the resonances generated by the antenna when it is fed.
- the open end for example, in the current strong point or the current strong area
- it can also be 1/2 of the medium wavelength, 1 time, 3/2 times, etc. 1/2 Resonances occur at natural multiples, which excite transmission line modes.
- FIG. 25(A) and (B) respectively show the S11 parameters and efficiency diagrams of the transmission line 104 itself when it is excited. Similarly, since the environment of the transmission line 104 is relatively closed, its radiation efficiency is very low and basically negligible.
- FIG. 26 shows a schematic diagram of the current electric field distribution of the transmission line 104 itself when it is excited. It can be seen from FIG. 25 and FIG. 26 that the transmission line 104 shown in FIG. 24 can excite transmission line modes with resonant frequencies corresponding to 1 GHz, 2.03 GHz and 3.02 GHz when fed.
- the resonance frequency of the transmission line mode can be adjusted.
- the conditioning circuit may include capacitance and/or inductance. Specifically, if a grounded capacitor can be installed at the current strength point of the half-wavelength mode and the electric field strength point of the 1-times and 1.5-times wavelength mode, the resonance frequency of the medium and high frequencies can be shifted to a lower level. If the inductance can be set at the above position, the resonant frequency of the medium and high frequencies can be shifted to a higher level.
- one end thereof is connected to the vicinity of the open end of the first composite left-handed radiator, and the other end is open (as shown in FIG. 28(A)).
- the connection point of the transmission line 104 structure to the composite left and right hand radiator is between the center point and the open end of the radiator.
- the length of the radiator is set to be a quarter of the wavelength of the medium corresponding to the first resonant frequency of the antenna.
- one end of the transmission line 104 is connected to the vicinity of the open end of the second composite left-hand radiator, and the other end is open (as shown in FIG. 28(B) ).
- the length of the radiator is a quarter of the wavelength of the medium corresponding to the second resonance frequency of the antenna. Since the connection points between the transmission line 104 and the radiator are close to the open end of the radiator, at this time, the transmission line 104 is similar to the case where both ends are open.
- the first composite left-hand radiator may be a low-frequency radiator, and its working frequency band is a low-frequency band.
- the second compound left-hand radiator may be an intermediate-frequency radiator, and its working frequency band is an intermediate-frequency band.
- the radiator 1013 shown in FIG. 28 is designed with a metal frame at any position of the frame of the electronic device.
- the transmission line 104 when feeding power, the transmission line 104 (the length of which is about 1/4 of the medium wavelength corresponding to the low frequency resonant frequency of the antenna) can generate three resonances at low frequency and medium and high frequency respectively to form a transmission line mode.
- the radiator When the antenna structure shown in FIG. 28(A) and FIG. 28(B) is fed, the radiator will resonate at low frequency, medium frequency and high frequency respectively to form a radiator mode.
- the transmission line mode and the radiator mode can be superimposed in their respective frequency bands, thereby effectively improving efficiency and bandwidth.
- the transmission line 104 is connected near the open end of the radiator, which can satisfy the boundary conditions of the transmission line mode.
- Figure 29 (A) and (B ) show the S11 curves and efficiency plots of these three antennas, respectively.
- the structure of the transmission line 104 realizes mode expansion for both the low-frequency and high-frequency bands of the low-frequency radiator (second antenna), and also realizes mode expansion for the low-frequency band of the intermediate-frequency radiator (third antenna), which greatly improves the efficiency bandwidth .
- this bandwidth expansion method does not need to increase the size of the radiator, which is beneficial to the miniaturization of antennas and electronic equipment.
- both ends of the transmission line 104 may also be respectively connected to radiators working in the same or different frequency bands.
- Figure 30 shows that one end of the transmission line 104 is connected to the first radiator 1013 and connected to the vicinity of the open end of the first radiator 1013 through a capacitor, and the other end is connected to the second radiator 1014 and connected to the second radiator through a capacitor.
- the first radiator 1013 may be a low frequency radiator, and its operating frequency band is a low frequency band; the second radiator 1014 may be an intermediate frequency radiator, and its operating frequency band is an intermediate frequency band. In the example shown in FIG.
- the electrical length of the first radiator 1013 is approximately between one-eighth and three-eighths of the wavelength of the medium corresponding to the first resonant frequency (eg, low-frequency resonant frequency) of the antenna.
- the physical length of the low-frequency radiator may be between 38 mm and 60 mm, for example, 41 mm.
- the electrical length of the second radiator 1014 is between one-eighth and three-eighths of the wavelength of the medium corresponding to the second resonant frequency (for example, the resonant frequency of the intermediate frequency) of the antenna.
- the physical length of the mid-frequency radiator may be between 12 mm and 35 mm, for example, 16 mm.
- the transmission line 104 adopts a microstrip line structure, and its electrical length corresponds to about half of the wavelength of the low-frequency resonance frequency.
- the physical length of the low-frequency transmission line is approximately between 70 mm and 90 mm, such as 80 mm.
- the first radiator 1013 and the second radiator 1014 form a slot antenna structure.
- the gaps of the slot antenna structure may be filled with non-conductive material.
- the antenna with this arrangement can achieve the coverage of five resonant frequencies in the whole frequency band, and the reflection coefficient S11 and efficiency curves are shown in Figure 31 (A) and (B).
- 32(A) to (E) show current distribution diagrams for 5 modes.
- the two resonant frequencies of the low-frequency band of the antenna are mainly realized by the low-frequency resonant frequency of the first radiator 1013 and the low-frequency resonant frequency of the transmission line 104 (corresponding to 1/2 medium wavelength).
- the resonant frequency is mainly realized by the medium and high frequency resonant frequencies of the second radiator 1014 and the transmission line 104 (corresponding to 1 times and 1.5 times the medium wavelength).
- the efficiency and bandwidth of the antenna structure shown in Fig. 30 is doubled.
- this transmission line 104 structure can also be applied to two radiators with the same working frequency band.
- the structure of the transmission line 104 can also be applied to two radiators of comparable size.
- two CRLH radiator structures form a slot antenna structure, and the transmission line 104 mentioned above is connected to the vicinity of the open end for feeding, as shown in FIG. 33 .
- the two CRLH radiators can both work in the low frequency band. In the example shown in FIG.
- the electrical lengths of the first radiator 1013 and the second radiator 1014 are between one-eighth and three-eighths of the wavelength of the medium corresponding to the low-frequency resonance frequency of the antenna, for example, the The physical length may be between 38mm and 60mm, for example, 41mm.
- the transmission line 104 adopts a microstrip line structure, its electrical length corresponds to about half of the wavelength of the low-frequency resonance frequency, and its physical length is about 70 mm to 90 mm, such as 80 mm.
- Fig. 34(A) shows the S11 graph and the impedance circle diagram of this antenna.
- Fig. 34(B) shows an efficiency graph of such an antenna.
- this antenna structure can excite three modes in the low frequency band, and the two modes of the antenna formed by the radiator (to be further described below) and the low frequency resonant frequency mode of the transmission line 104 are jointly formed.
- Figure 35(A) and (B) show the current distribution and electric field distribution of these three modes, respectively.
- Figure 36 (A) shows the S11 curves and impedance circle diagrams of these two antennas
- Figure 36 ( C) shows the efficiency graphs of these two antennas
- Fig. 37(A) and (B) show the efficiency graphs of these two antennas in left-hand mode and right-hand mode, respectively.
- the second antenna can excite one more resonance, thus significantly improving the efficiency and bandwidth of the antenna.
- the improvement of the second antenna efficiency and bandwidth is more obvious. That is to say, the antenna according to the embodiments of the present disclosure can improve the performance of hand models and head-hand models.
- both ends of the transmission line 104 are grounded (directly grounded or connected to the ground near the radiator) or both ends are open.
- one of the two ends of the transmission line 104 can be ground, while the other end is open.
- FIG. 38 shows a case where one of both ends of the transmission line 104 is grounded and the other end is open.
- the length T of the transmission line 104 is set to be about 1/4 ⁇ , where ⁇ is the medium wavelength corresponding to the lowest resonance among the resonances generated by the antenna when it is fed.
- resonance when feeding power close to the ground terminal (for example, in the current strong area), resonance can also be generated at natural multiples of 1/4, 3/4, etc.
- FIG. 40 shows a schematic diagram of the current electric field distribution of the transmission line 104 itself when it is excited.
- one end of the transmission line 104 is connected near the ground end of the first IFA radiator, and the other end is open (as shown in FIG. 41(A)).
- the length of the first IFA radiator is about a quarter of the wavelength of the medium corresponding to the first resonant frequency of the antenna.
- the first IFA radiator operates in a low frequency band.
- one end of the transmission line 104 is connected to the vicinity of the open end of the second CRLH radiator, and the other end is directly grounded (as shown in FIG. 41(B) ).
- the length of the second CRLH radiator is about a quarter of the wavelength of the medium corresponding to the second resonant frequency of the antenna.
- the second CRLH radiator works in an intermediate frequency band.
- Figure 43 shows that one end of the transmission line 104 is connected to the first radiator 1013 and connected to the vicinity of the ground end of the first radiator 1013, and the other end is connected to the second radiator 1014 and connected to the second radiator 1014 through a capacitor Schematic near the open end of the .
- the first radiator 1013 may be an IFA radiator
- the second radiator 1014 may be a CRLH radiator.
- the electrical length of the first radiator 1013 is approximately between one-eighth and three-eighths of the wavelength of the medium corresponding to the first resonant frequency of the antenna.
- the first resonant frequency is a frequency in the low frequency band
- the physical length of the first radiator 1013 may be between 50 mm and 75 mm, for example, 63 mm.
- the electrical length of the second radiator 1014 is between one-eighth and three-eighths of the wavelength of the medium corresponding to the second resonant frequency of the antenna.
- the second resonance frequency is the frequency of the intermediate frequency band
- the physical length of the second radiator 1014 may be between 12 mm and 35 mm, for example, 14.56 mm.
- the transmission line 104 adopts a microstrip line structure, and its electrical length corresponds to about a quarter of the wavelength of the third resonant frequency.
- the third resonant frequency is a frequency of a low frequency band
- the physical length of the transmission line is approximately between 30 mm and 50 mm, for example, 38 mm.
- the gap may be filled with a non-conductive material.
- the two ends close to each other of the first radiator 1013 and the second radiator 1014 may be the ground end of the first radiator 1013 and the ground end or open end of the second radiator 1014, or may be the second The open end of the first radiator 1013 and the ground or open end of the second radiator 1014 .
- the antenna shown in Figure 43 can achieve the coverage of five resonant frequencies in the whole frequency band, the reflection coefficient S11 and the efficiency curve are shown in Figure 44 (A) and (B), and the current pattern of each mode is shown in Figure 45 (A ) to (E).
- the two resonant frequencies of the low-frequency band of the antenna are mainly realized by the low-frequency resonant frequency of the first radiator 1013 and the low-frequency resonant frequency of the transmission line 104 (corresponding to 1/4 medium wavelength).
- the resonant frequency is mainly realized by the high frequency resonant frequency of the second radiator 1014, the first radiator 1013 and the high frequency resonant frequency of the transmission line 104 (corresponding to 3/4 medium wavelength).
- the efficiency and bandwidth of the antenna structure shown in Fig. 43 is doubled.
- the transmission line 104 may adopt a structure with a gap in the middle. That is, the transmission line 104 includes two separate sections, and a capacitor is arranged between the two separate sections, as shown in FIG. 46 .
- the microstrip line is designed on the upper and lower surfaces of the PCB, and its design parameters are similar to those of the microstrip line mentioned above. Similar to the feeding method of the slot antenna, feeding near the gap can excite two modes of the transmission line 104 .
- a capacitor is fed in series near the gap, and the working frequency band of the two modes of the excited transmission line 104 is a low frequency band.
- the reflection coefficient S11, efficiency, and current and electric field distribution of the embodiment shown in FIG. 46 are respectively shown in FIGS. 47(A) to (D). Since the environment of the transmission line 104 is relatively closed, its radiation efficiency is very low.
- FIG. 48(B) shows the variation of the S11 curves of the two antennas. It can be seen that, similar to the design of the slot antenna, a capacitor is connected in series at the open end of the transmission line 104, and at the same time, the feed point is moved to a place close to the ground point (for example, a strong current area) for direct feeding, which can lower the excited two resonant frequencies .
- one end thereof is connected to the vicinity of the ground end of the low-frequency IFA radiator, and the other end is directly grounded (as shown in FIG. 49(A) ).
- the length of the radiator is a quarter of the wavelength of the medium corresponding to the low-frequency resonance frequency of the antenna.
- one end of the transmission line 104 is connected to the vicinity of the ground end of the low-frequency IFA radiator, and the other end is directly grounded (as shown in FIG. 49(B) ).
- the length of the radiator is a quarter of the wavelength of the medium corresponding to the low-frequency resonance frequency of the antenna.
- Figure 48 (A) As the first antenna, the structure shown in Figure 49 (A) as the second antenna and the structure shown in Figure 49 (B) as the third antenna, Figure 49 (C) and (D) show the S11 curves and efficiency plots of these three antennas, respectively. It can be found that by adopting the transmission line 104 structure shown in FIG. 48(A), the efficiency bandwidth of the radiator is greatly improved.
- Figure 50 shows that the two ends of the transmission line 104 are respectively connected to two low-frequency radiators (hereinafter referred to as the first radiator 1013 and the second radiator 1014), and connected to the ground of the first radiator 1013 and the second radiator 1014 Schematic near the end where two radiators form a T-antenna structure.
- the electrical lengths of the first radiator 1013 and the second radiator 1014 are between one-eighth and three-eighths of the wavelength of the medium corresponding to the low-frequency resonance frequency of the antenna, for example, the The physical length may be between 45mm and 70mm, for example, 54mm.
- the transmission line 104 adopts a microstrip line structure, and the total electrical length of its two sections corresponds to about half of the wavelength of the low-frequency resonance frequency, and the physical length is about 65mm-85mm, for example, 75mm.
- a gap may be provided between the first radiator 1013 and the second radiator 1014 and other parts of the frame, and the width of the gap may be within 3mm, for example, in some embodiments, the width may be within 2mm, such as about 1mm.
- the gap may be filled with a non-conductive material.
- the antenna with this arrangement can excite 4 modes in the low-frequency band, thereby achieving bandwidth improvement in the low-frequency band.
- the reflection coefficient S11 and efficiency curves of this antenna are shown in Fig. 51(A) and (B) respectively, and the current patterns of each mode are shown in Fig. 51(C) to (F).
- the four resonant frequencies in the low frequency band of the antenna are mainly realized by the two modes of the radiator and the two modes of the transmission line 104 . Compared with a single radiator, the efficiency bandwidth is significantly increased.
- the transmission line 104 may also take other forms.
- the transmission line 104 may be changed from a microstrip line to a stent line.
- the antenna formed with the transmission line 104 as the bracket routing is the first antenna
- the antenna formed with the transmission line 104 as the microstrip line is the second antenna, as shown in FIG. 52(A) and FIG. 52(B)
- the S11 curves and efficiency curves of the two antennas are shown. It can be seen from FIG. 52(A) and FIG. 52(B) that when the transmission line 104 is routed by a bracket, the height of the transmission line 104 increases, and the radiation efficiency improves. After connecting with the radiator, the radiation efficiency of the antenna can be further improved.
- the transmission lines and radiators mentioned in the various embodiments above may be made of any suitable conductive material.
- the transmission line and the radiator can also be made integrally.
- the transmission line and the radiator can be designed using Laser-Direct-structuring (LDS) technology and directly arranged on the frame or bracket of the electronic device, so as to further improve the integration level.
- LDS Laser-Direct-structuring
- the above mainly describes the situation that the transmission line is coupled to two radiators to improve the performance of the antenna. It should be understood that this is only illustrative and not intended to limit the protection scope of the present disclosure.
- the transmission line can also be coupled with more radiators, so as to further improve the bandwidth and efficiency of the antenna.
- Figure 53 shows an embodiment where a transmission line is coupled with three radiators to extend the bandwidth and efficiency of the antenna.
- the transmission line mode and the radiator mode can be superimposed, thereby improving the efficiency and bandwidth of the antenna.
- the above-mentioned embodiments can be regarded as single-antenna embodiments.
- two or more radiators that are spaced apart or electrically connected can be fed to achieve distributed feeding.
- the distributed feed antenna structure has the characteristics of multi-mode and wide frequency band.
- the coupling point (or feeding point) at which the feeding unit of the antenna structure is coupled with the transmission line deviates from the midpoint of the transmission line, that is, adopts an asymmetrical feeding design.
- the first end of the transmission line is coupled to the ground end of the first radiator, and the second end is grounded or coupled to the ground end of the second radiator, wherein the coupling point where the feeding unit is coupled with the transmission line ( Alternatively, the feeding point) is located near the first end or the second end.
- the first end of the transmission line is coupled to the open end of the first radiator, and the second end is open or coupled to the open end of the second radiator, wherein the coupling point (or, feed point) is located near the midpoint of the transmission line.
- the first end of the transmission line is coupled to the ground end of the first radiator, and the second end is open or coupled to the open end of the second radiator, wherein the coupling point (or, feed point) is located near the first end.
- the coupling point (or feeding point) where the feed unit is coupled with the transmission line is "located near the midpoint of the first end/second end/transmission line" should be understood as the distance between the coupling point and the first end /second end/midpoint of the transmission line, within 5mm, or within 3mm.
- an embodiment of the present application further provides an antenna, which implements a multi-mode broadband antenna based on an asymmetric feed design, and at the same time, can implement an antenna pair with a high degree of isolation.
- an antenna which implements a multi-mode broadband antenna based on an asymmetric feed design, and at the same time, can implement an antenna pair with a high degree of isolation.
- the antenna 100 includes a radiator pair 101 , at least one transmission line and a feeding unit.
- the radiator pair 101 includes two radiators, namely, a first radiator 1013 and a second radiator 1014 .
- Each radiator includes a ground end 1011 and an open end 1012 .
- Each radiator in the radiator pair 101 is grounded at the ground end 1011 , and the radiator is not electrically connected to other radiators at the open end 1012 .
- each radiator in the radiator pair 101 may include a continuous section of the frame.
- the first radiator 1013 and the second radiator 1014 respectively include continuous sections of the frame, but the sections where the two are located are separated.
- the separation here may mean that the two conductive sections are separated by a non-conductive material, or that the two conductive sections are connected by other parts of the frame, so the ground terminals 1011 of the two are separated, or that the first Between the two conductive sections of the radiator 1013 and the second radiator 1014 includes both non-conductive material and other parts of the frame.
- each transmission line includes two sections with different equivalent lengths, for example, two sections with different physical lengths.
- the inventive concept according to the present disclosure will be described mainly by taking the physical length of each transmission line as an example.
- the equivalent length can also be determined by at least one of the following: a capacitance or an inductance provided between the corresponding transmission line and the radiator pair, a phase shifter provided on the corresponding transmission line, and a corresponding transmission line coupled to the The position of the radiator pair, which will be further elaborated later.
- a single reference to "length” herein generally refers to a physical length.
- the feeding unit is respectively coupled to the first radiator 1013 and the second radiator 1014 via these two sections, as shown in FIG. 54 .
- the two sections will hereinafter be referred to as a first section 1021 and a second section 1022, respectively.
- the lengths of the first section 1021 and the second section 1022 are different, so there will be a phase difference when the excitation current provided by the feeding unit is transmitted to the first radiator 1013 and the second radiator 1014 .
- the difference between the lengths of the two sections may be between 1/8-3/8 of the wavelength of the medium, for example approximately 1/4 of the wavelength of the medium.
- the difference in the length of the two sections can be 1cm ⁇ 7cm.
- the difference between the lengths of two sections of a transmission line may be less than 1/8 or less.
- the excitation current passes through the first section 1021 and the second section 1022 to reach the feeding points A and B respectively, with a phase difference ⁇ , and the phase difference is in the range of 90° ⁇ 45° Inside.
- the phase difference between the excitation current passing through the first section 1021 and the second section 1022 and reaching the feeding points A and B respectively is within the range of 90° ⁇ 30°.
- 55 shows that a feeder is coupled to the radiator pair 101 through the first section 1021 and the second section 1022 of a transmission line, the length of which is an odd multiple of 1/2 the wavelength of the medium, for example, 1 /2 medium wavelength.
- the difference between the equivalent lengths of the first section 1021 and the second section 1022 is 1/4 of the medium wavelength.
- the feeder can realize currents with equal amplitude and the same direction at points A and B.
- the directions of currents excited by the power feeding part on the radiator pair 101 are the same.
- the length of the transmission line is an odd multiple of 1/2 the wavelength of the medium, which can be understood as the length of the transmission line is within the range of [odd multiple of 1/2 the wavelength of the medium ⁇ (1 ⁇ 20%)].
- the length difference between the first section 1021 and the second section 1022 is 1/4 medium wavelength, which can be understood as the difference between the length of the first section 1021 and the second section 1022 is [1/4 medium wavelength ⁇ (1 ⁇ 10%)] in the range.
- the relationship between the physical length L and the equivalent length Le can satisfy: (1-1/3)Le ⁇ L ⁇ (1 +1/3)Le, or (1-1/4)Le ⁇ L ⁇ (1+1/4)Le.
- Fig. 56 shows that one feed part of the feed unit is respectively coupled to the radiator pair 101 via feed points C and D via the first section 1021 and the second section 1022 of a longer transmission line, based on
- the excitation current passes through the first section 1021 and the second section 1022 to reach the feeding points C and D respectively, with a phase difference ⁇ , and the phase difference is within the range of 90° ⁇ 45° .
- the phase difference between the excitation current passing through the first section 1021 and the second section 1022 and reaching the feeding points C and D respectively is within the range of 90° ⁇ 30°.
- the length of the transmission line is an even multiple of 1/2 the wavelength of the medium, such as 1 times the wavelength of the medium.
- the length difference between the first section 1021 and the second section 1022 is 1/4 of the medium wavelength.
- the power feeder can realize equal-amplitude and reverse-current intensities at points C and D.
- the directions of currents excited by the power feeding part on the radiator pair 101 are opposite.
- the length of the transmission line is an even multiple of 1/2 the wavelength of the medium, which can be understood as the length of the transmission line is within the range of (even multiples of the wavelength of 1/2 x (1 ⁇ 20%)).
- the difference between the lengths of the first section 1021 and the second section 1022 is 1/4 of the medium wavelength, which can be understood as the difference between the lengths of the first section 1021 and the second section 1022 (1/4 of the medium wavelength ⁇ (1 ⁇ 10%)) range.
- the relationship between the physical length L and the equivalent length Le can satisfy: (1-1/3)Le ⁇ L ⁇ (1 +1/3)Le, or (1-1/4)Le ⁇ L ⁇ (1+1/4)Le.
- FIG. 55 and FIG. 56 respectively show the situation of feeding asymmetrically to the radiator pair 101 through one transmission line when the feeding units each include a feeding part.
- the difference in length can be set from 1/8-3/ 8 Other ranges of medium wavelengths.
- the antenna 100 can also respectively realize the current phase difference control on the radiator pair 101 , which is beneficial to improve various performances of the antenna 100 .
- the antenna also includes a radiator pair, at least one transmission line and a feed unit. At least one transmission line includes two sections. The feed unit is coupled to the first feed point of the first radiator and the second feed point of the second radiator via the two sections, respectively.
- the phase difference between the excitation current provided by the feed unit at the first feed point and the second feed point is within the range of 90° ⁇ 45°, for example, In some embodiments, the phase difference is in the range of 90° ⁇ 30°.
- the equivalent length of the two segments can also be determined by at least one of the following: capacitance or inductance provided between the corresponding segment and the radiator pair , a phase shifter disposed on a corresponding segment, and a position where the corresponding segment is coupled to the pair of radiators.
- the two sections of each transmission line can make the phase difference of the excitation current provided by the feed unit at the feed point within 90° ° ⁇ 45°.
- the first feeding part feeds at the first feeding point and the second feeding point via the first transmission line
- the second feeding part feeds at the third feeding point and the second feeding point via the second transmission line. Feed at four feed points.
- the phase difference between the currents at the first feed point and the adjacent third feed point may be in the range of 180° ⁇ 60°, for example, 180° ⁇ 45°.
- the phase difference between the currents at the second feeding point and the adjacent fourth feeding point may be in the range of 180° ⁇ 60°, for example, 180° ⁇ 45°.
- the equivalent length of the transmission line can be determined by at least one of the following: the capacitance or inductance provided between the corresponding transmission line and the radiator pair, the phase shifter provided on the corresponding transmission line and the corresponding A transmission line is coupled to the location of the radiator pair. This will be discussed further below.
- the performance of the antenna is improved by making the excitation current introduce a phase difference at the feeding point.
- a similar principle can also be used in some antenna structures by means of a matching circuit to improve antenna performance.
- the antenna may further include a matching circuit in addition to a radiator pair, a transmission line, and a feeding unit.
- the first power feeding part of the power feeding unit is coupled approximately in the middle of the transmission line. That is, the transmission line consists of two sections of substantially the same length.
- the total length of the transmission line may be less than or equal to 1/10 of the wavelength corresponding to the frequency band in which the antenna works.
- the difference (T2-T1) between the lengths of the two sections of the first transmission line satisfies 0 ⁇ (T2-T1) ⁇ 8mm, or the ratio of the lengths of the two sections of the first transmission line T/ 1/T2 satisfies 1/2 ⁇ T1/T2 ⁇ 2.
- the transmission line has a shorter length, and the lengths of the two sections of the transmission line can be equal or have a certain deviation.
- the pair of radiators comprises a portion of the bezel of the electronic device
- such transmission lines may conform to the radiators.
- Conformal means that the transmission line may be an integral part of the conductors forming the radiator pairs.
- the middle frame of the electronic device includes a frame and a structural member extending inward from the frame.
- the structural member can be integrally formed on the frame or other parts of the middle frame, so as to Extended inside the device.
- the transmission line can be realized by a protrusion.
- the transmission line can also be coupled to the radiator pair in any other suitable form, for example, implemented by conductive elements on the bracket.
- the matching circuit is coupled between the feed unit and the transmission line, and includes at least one capacitor and one inductor.
- the capacitor and inductor in the matching circuit form an LC resonant circuit.
- the matching circuit may include a capacitor connected in series and an inductor connected in parallel between the feed unit and the transmission line. In this way, the same direction and/or reverse induced current on the radiator pair can be realized without introducing an exciting current with a phase difference to the radiator pair, thereby realizing multiple working modes of the antenna.
- Fig. 57 shows the case where the antenna including the matching circuit adopts a T-antenna structure, and the two ground ends of the radiator pair of the antenna are shared.
- the ground terminals of the T-antenna structure of the antenna using the matching circuit can also be separated by a certain distance. That is to say, the two ground ends of the radiator pair are provided with conductors.
- the conductor provided between the ground terminals may be a part of the frame of the electronic device or any other suitable conductor.
- the antenna including the matching circuit may also adopt a slot antenna structure, as shown in FIG. 58 .
- such an antenna including a matching circuit may further include a second transmission line and a second feeding part in addition to the first transmission line.
- the second transmission line may include two sections through which the second feeder is respectively coupled to the first radiator and the second radiator. This will be further elaborated below.
- the power feeding unit includes one power feeding part (ie, the first power feeding part) is described above with reference to Fig. 54 to Fig. 58 .
- the power feeding unit in the embodiment of the present application may include more than one power feeding part, as shown in FIG. 59 .
- FIG. 59 shows a combination of the two methods in FIG. 55 and FIG. 56 .
- the feeding unit may include two feeding parts, namely, a first feeding part 1031 and a second feeding part 1032 .
- at least one transmission line includes two transmission lines, namely, a first transmission line and a second transmission line.
- the first feeding part 1031 is coupled to the first radiator 1013 and the second radiator 1014 via the first section 1021 and the second section 1022 of the first transmission line, respectively.
- the second feeding part 1032 is respectively coupled to the first radiator 1013 and the second radiator 1014 via the third section 1023 and the fourth section 1024 of the second transmission line.
- the two transmission lines have different equivalent lengths respectively.
- the equivalent length of the first transmission line may be an odd multiple of 1/2 of the wavelength of the first medium in the first frequency band in which the antenna 100 can resonate
- the equivalent length of the second transmission line may be the 1st medium wavelength in which the antenna 100 can resonate.
- the antenna 100 forms an antenna pair of the first antenna fed by the first feeder 1031 and the second antenna fed by the second feeder 1032 .
- the first frequency band and the second frequency band may be at least partially overlapping frequency bands.
- the first frequency band and the second frequency band may be the same frequency band, ie, they completely overlap.
- the first frequency band and the second frequency band may partially overlap, for example, the two are adjacent frequency bands, so as to achieve wider coverage of the radiation frequency band.
- the first frequency band and the second frequency band may also be two frequency bands that do not overlap but are close to each other.
- the equivalent length of the first transmission line can be an odd multiple of the wavelength of 1/2 medium
- the equivalent length of the second transmission line can be an even multiple of the wavelength of 1/2 medium.
- the difference between the equivalent lengths of the two transmission lines is N times 1/2 the wavelength of the medium, and N is an integer greater than 0.
- the difference between the equivalent lengths of the two transmission lines is between 1/4 to 3/4 of the medium wavelength, or (1/4 to 3/4)*N times
- a high isolation of the antenna pair can be achieved between different medium wavelengths, thereby improving the performance of the antenna 100 .
- the length of the first transmission line may be an odd multiple of 1/2 of the wavelength of the first medium corresponding to the first resonance generated by the antenna.
- the actual length of the first transmission line can be in the range of plus or minus 20% of odd multiples of 1/2 the wavelength of the first medium (1/2 odd multiples of the wavelength of the medium ⁇ (1 ⁇ 20%)).
- the length of the second transmission line may be an even multiple of 1/2 of the wavelength of the second medium corresponding to the second resonance generated by the antenna.
- the actual length of the second transmission line can be in the range of plus or minus 20% of an even multiple of the wavelength of 1/2 of the second medium (1/2 even multiple of the wavelength of the medium ⁇ (1 ⁇ 20%)).
- the first resonance and the second resonance may partially coincide or not coincide at all.
- the lengths of the first transmission line and the second transmission line may also be determined by methods other than those described above.
- the resonance generated by the antenna may at least include a first resonance and a second resonance.
- the average value of the center frequency of the first resonance and the center frequency of the second resonance is determined as the first frequency.
- the length of the first transmission line may be an odd multiple of 1/2 of the medium wavelength corresponding to the first frequency point, and the length of the second transmission line may be an even multiple of 1/2 of the medium wavelength corresponding to the first frequency point.
- the length of the first transmission line can be in the range of plus or minus 20% of the odd multiple of 1/2 of the medium wavelength corresponding to the first frequency point (1/2 odd multiple of the medium wavelength ⁇ (1 ⁇ 20%)), the length of the second transmission line can be within the range of plus or minus 20% of the even multiple of 1/2 of the medium wavelength corresponding to the first frequency point (1/2 even multiple of the medium wavelength ⁇ (1 ⁇ 20%)).
- the above-mentioned first resonance is in the first frequency band, and the second resonance is in the second frequency band, wherein the first frequency band and the second frequency band may be the same working frequency band or different working frequency bands.
- the longer transmission line also has a mode suppression effect on the shorter transmission line.
- Figure 60(a) and Figure 60(b) if the same direction current is formed on the shorter transmission line, because the total length of the long transmission line increases by about 1/2 wavelength, no matter which current path is formed on the long transmission line, it is different from that through the short The currents from the transmission line to point B are reversed with equal amplitude and cancel each other out, so that the current cannot be excited on the second radiator 1014, thereby inhibiting the mode of the antenna when the same direction current is formed on the short transmission line.
- the reverse current is formed on the shorter transmission line, as shown in Figure 60(c) and Figure 60(d), no matter what kind of current path is formed on the long transmission line, it is different from the short transmission line arriving at
- the currents at point B have the same amplitude and the same direction, and are superimposed on each other, so that the current can be excited on the second radiator 1014 .
- FIG. 55 to FIG. 57 , FIG. 59 and FIG. 60 respectively show the case where the first transmission line and/or the second transmission line are both coupled to the vicinity of the ground end 1011 of the radiator pair 101 .
- both the first transmission line and the second transmission line are coupled to a position not exceeding 5 mm, or not exceeding 3 mm, from the ground terminal 1011 .
- both the first transmission line and the second transmission line may also be coupled near the open end 1012 of the radiator pair 101 , as shown in FIG. 58 .
- both the first transmission line and the second transmission line are coupled to a location no more than 5 mm from the open end 1012, or no more than 3 mm.
- one end of the first transmission line and the second transmission line is coupled to the vicinity of the open end 1012 of the first radiator 1013 in the radiator pair 101, and the other end is coupled to the vicinity of the ground terminal 1011 of the second radiator 1014, These will be further elaborated in the following text.
- the form of the radiator can be adjusted, and the radiator pair shown in FIG. 61 to FIG. 73 can be in the form of a T antenna.
- the radiator pair in the form of a T antenna generally includes a continuous conductor, and the ground terminal is arranged in the middle of the conductor, and the open ends are located at both ends of the conductor. Wherein, the ground terminals may be shared by the radiator pair, or may be separated from each other (as shown in FIG. 71 ).
- Figures 74 to 94 show that each radiator of a radiator pair can take the form of the IFA antenna mentioned above.
- Figures 95 to 101 show that radiator pairs can take the form of a slot antenna structure.
- connection position of the transmission line and the radiator can have various variations.
- FIG. 59 to FIG. Both the first transmission line and the second transmission line are coupled to a position not exceeding 5 mm, or not exceeding 3 mm, from the ground terminal 1011 .
- 95 to 101 show that the coupling point (or feeding point) of the transmission line and the radiator can be close to the open end, for example, the first transmission line and the second transmission line are coupled to the open end 1012 within 5 mm, or within 5 mm. 3mm.
- the coupling point (or feeding point) of the transmission line and the radiator is close to the open end, which can also be understood as being more than 5mm, or more than 10mm, from the ground end.
- one end of the first transmission line and one end of the second transmission line may be coupled to an open end of one radiator, and the other end of the first transmission line and the other end of the second transmission line may be coupled to an open end of another radiator.
- Ground terminal (as shown in Figure 106).
- the two ends of the first transmission line are respectively coupled to the ground terminals of the first radiator and the second radiator, and the two ends of the second transmission line are respectively capacitively coupled to the openings of the first radiator and the second radiator. terminals or are capacitively coupled between the ground terminals and the open terminals of the first radiator and the second radiator respectively, as shown in FIG. 107 and FIG. 108 .
- FIG. 61 to FIG. 79 and FIG. 94 show the situation where the transmission line is directly connected to the radiator through a connecting piece such as a shrapnel.
- 80 to 93 show the situation that both ends (or any end) of one transmission line (or all the transmission lines) in the transmission lines are connected to the radiator pair through an inductor.
- FIGS. 95 to 100 show the situation that both ends (or any end) of one transmission line (or all the transmission lines) in the transmission lines are connected to the radiator pair through a capacitor.
- connection manner of the feeding unit and the transmission line can be modified in many ways.
- the feed unit may be directly connected to the transmission line.
- the feeding unit can also be connected to the transmission line through a matching circuit (as in the case of the second feeding part 1032 and the second transmission line in FIG. 66 ).
- FIG. 61 to FIG. 109 some exemplary deformations and combinations of deformations that may exist in the antenna according to the embodiments of the present application will be described mainly with reference to FIG. 61 to FIG. 109 .
- some antenna structures are exemplarily described below to describe the concept according to the present application, and the illustrated embodiments are not exhaustive of all possible deformations and combinations of deformations.
- a common application according to the embodiment of the present application is that the radiator pair of the antenna 100 adopts a 1/2 wavelength T antenna structure.
- 61 to 62 exemplarily show an embodiment in which the antenna 100 adopts a T antenna structure.
- the radiator pair 101 is the lower right corner of the metal frame of the electronic device a part of. Certainly, it should be understood that the pair of radiators 101 may be disposed at any other suitable position of the frame, and the present application does not limit this.
- the first radiator 1013 and the second radiator 1014 may form a continuous section of the frame as a whole.
- the ground terminal 1011 of the radiator pair 101 may be shared.
- the ground end 1011 of the radiator pair 101 may also be separated, so that it can be regarded as two inverted F antenna structures, This will be further elaborated below.
- FIG. 61 and FIG. 62 show an embodiment in which the antenna 100 adopting a T antenna structure works in a low frequency band according to an embodiment of the present application.
- the antenna 100 shown in FIG. 61 and FIG. 62 can also work at medium and high frequencies, which will be further elaborated later.
- the antenna 100 may use a feeder to feed the radiator pair 101 through the first transmission line.
- the feeding part adopts the first transmission line to feed the radiator pair 101, and respectively connects the radiator pair 101 at positions on both sides of the ground terminal 1011 through asymmetric feeding.
- the antenna 100 uses two feeders to feed the radiator pair 101 .
- the first feeding part 1031 adopts a shorter first transmission line to feed the radiator pair 101, and respectively connects the radiator pair 101 on both sides of the ground terminal 1011 through asymmetric feeding.
- the second power feeding part 1032 uses a longer second transmission line for asymmetrical power feeding, and the total length of the second transmission line is about 1/2 medium wavelength longer than the length of the first transmission line.
- the total length of the radiator pair 101 can be between 1/4 medium wavelength and 3/4 medium wavelength, for example, between 90mm-130mm, where the first The length of the first radiator 1013 and the length of the second radiator 1014 can be between 40 mm and 70 mm respectively.
- the length L1 of the first radiator 1013 may be approximately 50 mm
- the length L2 of the second radiator 1014 including the corner portion of the frame may be approximately 55 mm.
- the total length of the radiator pair 101 is 105 mm.
- a gap may be provided between the two opening ends of the radiator pair 101 and other parts of the frame, and the width of the gap may be within 3mm, for example, in some embodiments, the width may be 2mm, 1mm, etc.
- the gap may be filled with a non-conductive material.
- FIG. 63 shows the current distribution on the transmission line and the radiator when the first power feeding part 1031 and the second power feeding part 1032 feed power.
- FIG. 64 shows the radiation pattern of the antenna 100 when the first power feeder 1031 and the second power feeder 1032 feed power
- (b) shows the S21 graph of the antenna. It can be seen from Fig. 63 and Fig. 64 that no matter whether the first power feeding part 1031 or the second power feeding part 1032 is feeding power, the first mode and the second mode of the antenna 100 can be excited in the low frequency band.
- the frequency band isolation can reach more than 14dB, as shown in (b) in Figure 64.
- the situation shown in FIG. 61 is used as the first antenna
- the antenna 100 is used as the second antenna when the first feeding part 1031 feeds power in FIG. 62
- the third antenna is used when the second feeding part 1032 feeds power.
- the antenna 100 shown in 65(a) is the fourth antenna
- FIG. 65(b) shows the S11 curves of these four antennas respectively. It can be seen that both the second antenna and the third antenna have two working modes, and achieve high isolation between antenna pairs, while the first antenna can have three working modes.
- Figure 65(c) shows the efficiency diagrams of each antenna 100 in the free space scenario
- Figure 65(d) shows the efficiency diagrams of each antenna 100 in the right hand mode
- Figure 65(e) shows Efficiency plots of individual antennas 100 in left-handed mode.
- the ratio T1/T2 of the lengths of the first section 1021 and the second section 1022 may satisfy 1/4 ⁇ T1/T2 ⁇ 1/2.
- the ratio T1/T2 of the lengths of the first section 1021 and the second section 1022 of the first transmission line can satisfy 1/4 ⁇ T1/T2 ⁇ 1/2
- the ratio T3/T4 of the lengths of the third section 1023 and the fourth section 1024 of the second transmission line may satisfy 1/4 ⁇ T3/T4 ⁇ 1/2.
- the difference between the lengths of the first section 1021 and the second section 1022 can be between 25-45mm.
- the difference between the lengths of the first section and the second section may be between 12-22mm.
- the difference between the lengths of the first transmission line and the second transmission line can be between 60-80mm, when working in a medium-high frequency band such as below 3GHz , the difference between the lengths of the first transmission line and the second transmission line may be between 30-40mm.
- the lengths mentioned above are the equivalent lengths of the transmission lines when there is only a transmission line between the feed unit and the radiator pair. Considering that capacitors, inductors, phase shifters, etc.
- the actual physical length of the transmission line can be in the range of plus or minus 1/3 of the equivalent length (equivalent length ⁇ (1 ⁇ 1/3)), or the actual physical length of the transmission line may be within the range of plus or minus 1/4 of the equivalent length (equivalent length ⁇ (1 ⁇ 1/4)).
- the antenna pairs of this T-antenna structure can also be connected and fed by a shorter transmission line.
- This embodiment is equivalent to a modification of the situation shown in FIG. 57. As shown in FIG. an odd multiple of 1/2 the wavelength of the medium), while the equivalent length of the second transmission line fed by the second feeder 1032 is only about 1/10 the wavelength of the medium or even shorter.
- the power feeding end of the second power feeding part 1032 adopts a broadband matching circuit to realize the double second mode, and the first power feeding part 1031 forms a double first mode through the phase difference design of the asymmetrical power feeding, and its realization effect is the same as that of the above-mentioned embodiment The situation in is similar.
- the ratio T1/T2 of the lengths of the first section 1021 and the second section 1022 of the first transmission line can satisfy 1/4 ⁇ T1/T2 ⁇ 1/2.
- the ratio T3/T4 of the lengths of the third section 1023 and the fourth section 1024 of the second transmission line may satisfy 1/2 ⁇ T3/T4 ⁇ 2.
- the difference between the lengths of the first transmission line and the second transmission line can be between 50-65mm, when working in a medium-high frequency band such as below 3GHz , the difference between the lengths of the first transmission line and the second transmission line may be between 25-35mm.
- the lengths mentioned above are the equivalent lengths of the transmission lines when there is only a transmission line between the feed unit and the radiator pair.
- the actual physical length of the transmission line can be in the range of plus or minus 1/3 of the equivalent length (equivalent length ⁇ (1 ⁇ 1/3)), or the actual physical length of the transmission line may be within the range of plus or minus 1/4 of the equivalent length (equivalent length ⁇ (1 ⁇ 1/4)).
- the antenna 100 according to the embodiment of the present application adopts the T antenna structure and is used as the low-frequency band antenna 100, the isolation between antenna pairs can be significantly improved, and thus the performance of the antenna 100 can be improved.
- the radiator pair of the antenna 100 in the embodiment of the present application adopts a T antenna structure, it can also be used as the mid-high frequency antenna 100 .
- the antenna 100 may also adopt a structure similar to that in FIGS. 61 to 63 .
- the radiator pair 101 may also be arranged on one side of the frame in consideration of factors such as antenna efficiency when being held by hand.
- the total length of the radiator pair 101 when applied to a medium-high frequency band such as 1.85Ghz-2.25Ghz, the total length of the radiator pair 101 can be between 1/4 medium wavelength and 3/4 medium wavelength, for example, at 30mm
- the length of the first radiator 1013 and the length of the second radiator 1014 can be between 15mm and 30mm respectively.
- the length L1 of the first radiator 1013 and the length of the second radiator 1014 may both be the same, which is 21 mm.
- the total length of the radiator pair 101 is 42 mm.
- a gap may be provided between the radiator pair 101 and other parts of the frame, and the width of the gap may be within 3 mm, for example, in some embodiments, the width may be 2 mm, 1 mm, and so on.
- the gap may be filled with a non-conductive material.
- FIG. 67 As a comparison, the situation shown in FIG. 67 is used as the first antenna, the antenna 100 is used as the second antenna when the first feeding part 1031 feeds power in FIG.
- the antenna 100 shown in 69(a) is the fourth antenna, and FIG. 69(b) shows the S11 curves of these four antennas 100 respectively, and FIG. 69(c) shows that in the free space scene, each The efficiency diagram of the antenna 100, and Fig. 69(d) shows the S21 diagram between the second antenna and the third antenna.
- the antenna 100 according to the embodiment of the present application is used as a medium-high frequency antenna, a high isolation degree can be achieved between the antenna pair, and the isolation degree can reach more than 15dB, as shown in FIG.
- Table 1 is a SAR simulation table when the first antenna, the second antenna, the third antenna and the fourth antenna work in a medium-high frequency band such as 1.85Ghz-2.25Ghz. It can be seen from the table that, compared with the fourth antenna, the SAR values of the first antenna and the second antenna are lowered by 1-1.5 dB.
- increasing the radiator distance above and below the ground terminal 1011 of the antenna 100 according to the embodiment of the present application with a T antenna structure can be regarded as forming two IFA structures, and dual antennas 100 can also be designed, which It can be regarded as a modification of the embodiment shown in FIG. 57 , as shown in FIGS. 70 and 71 .
- the antenna structures of Fig. 70 and Fig. 71 are generally similar to the structures of the antenna 100 shown in Fig. 67 and Fig. 68 respectively, except that the ground ends 1011 of the first radiator 1013 and the second radiator 1014 are separated so that they are separated from each other. A certain distance, for example, 5 mm to 30 mm.
- FIG. 70 and FIG. 71 can obtain better impedance matching performance, thereby further improving the performance of the antenna 100 .
- Figure 72 shows the design effect of the dual antenna 100 when the distance between the ground terminals 1011 of the two radiators is 15mm, and compared with the single distributed antenna 100 realized by only using short transmission lines, the efficiency of these three antennas is slightly better In the above T antenna structure.
- FIG. 70 As a comparison, the situation shown in FIG. 70 is used as the first antenna.
- FIG. 72 respectively shows the S11 curves of the three antennas 100 and the efficiency diagram of each antenna 100 in the free space scenario. It can be seen that by increasing the distance between the ground end 1011 of the radiator pair 101 of the T-antenna structure by a certain distance, the efficiency of the antenna can be improved, and thus the performance of the antenna 100 can be further improved.
- two antennas 100 of the embodiments of the present application may also be combined to form a 4 ⁇ MIMO antenna, as shown in FIG. 73 , including two antennas 100 shown in FIG. 68 .
- the combined T antenna can support both low-frequency and medium-high frequency bands, and has a high degree of isolation, enabling the antenna 100 to support an ultra-wideband frequency range, thereby realizing the increasingly widely used MIMO antenna 100 .
- the antenna 100 according to the embodiment of the present application can not only adopt the T antenna structure to support various frequency bands such as low, medium and high frequency, but in some embodiments, the antenna 100 according to the embodiment of the present application can also adopt the IFA antenna structure, as shown in FIG. 74 As shown, this can be regarded as a modification of the antenna structure shown in Figure 55.
- FIG. 74 shows the situation where the first transmission line is divided into a first section 1021 and a second section 1022 with different equivalent lengths to feed the radiator pair 101 respectively.
- the feed points of the two sections coupled with the radiator pair 101 respectively introduce a phase difference ⁇ , and the phase difference is within the range of 90° ⁇ 45°, so as to optimize various performances of the antenna 100 .
- the following will mainly take the antenna 100 adopting the IFA structure working in the low frequency band (such as 0.9Ghz) and the transmission line adopting 50ohm microstrip line as an example to illustrate the improvement of various performances of the antenna 100 by adopting asymmetric feeding.
- the total length of the radiator pair 101 can be between 1/4 medium wavelength and 3/4 medium wavelength, for example, between 90 mm and 135 mm, wherein the length of the first radiator 1013 and the second The lengths of the radiators 1014 may each be between 40 mm and 70 mm.
- the first radiator 1013 and the second radiator 1014 may both include corners of the frame, as shown in FIG. 74 , and the length L1 of the first radiator 1013 and the length of the second radiator 1014 L2 can be the same, roughly 58.5mm.
- the total length of the radiator pair 101 is 115 mm.
- the distance between the ground terminals 1011 of the two radiators may be in the range of 30mm-40mm, for example, may be set to 36mm.
- a gap may be provided between the radiator pair 101 and other parts of the frame, and the width of the gap may be within 3 mm, for example, in some embodiments, the width may be 2 mm, 1 mm, and so on.
- the gap may be filled with a non-conductive material.
- it may be set that the first section 1021 of the first transmission line is shorter than the second section 1022 by 1/4 of the medium wavelength.
- the currents of the first transmission line at the feeding points on the two radiators have a phase difference of 90°.
- the 90° phase difference mentioned herein may allow a certain deviation, rather than the strict 90° in the mathematical sense.
- the current at the feeding point of the first transmission line on the two radiators may have 90° ⁇ 45° phase difference, or with 90° ⁇ 30° phase difference.
- the ratio T1/T2 of the lengths of the first section 1021 and the second section 1022 may satisfy 1/4 ⁇ T1/T2 ⁇ 1/2.
- the difference between the lengths of the first section 1021 and the second section 1022 can be between 25-45mm, when working in a low-frequency band such as below 3GHz
- the difference between the lengths of the first section 1021 and the second section 1022 may be between 12-22 mm.
- the lengths mentioned above are the equivalent lengths of the transmission lines when there is only a transmission line between the feed unit and the radiator pair. Considering that capacitors, inductors, phase shifters, etc.
- the actual physical length of the transmission line can be in the range of plus or minus 1/3 of the equivalent length (equivalent length ⁇ (1 ⁇ 1/3)), or the actual physical length of the transmission line may be within the range of plus or minus 1/4 of the equivalent length (equivalent length ⁇ (1 ⁇ 1/4)).
- An antenna pair in the form of IFA is used as an example for description. Specifically, the first radiator 1013 shown in Figure 75(a) is used as the first antenna when it is separately excited, and the second radiator 1014 shown in Figure 75(b) is used as the second antenna when it is separately excited.
- Figure 75(c) shows the S11 curves of each antenna
- Figure 75(d) shows the antenna 100
- the Smith chart of shows the efficiency diagram of each antenna 100 . It can be found that the distributed antenna designed with a 90° phase difference can excite three resonances, and the efficiency bandwidth is more than doubled compared with the one resonance generated by exciting a single radiator.
- Figure 76 also shows the current pattern and radiation pattern corresponding to the three resonant frequency points in a specific frequency band when the asymmetric feeding method shown in Figure 74 is adopted. It can be seen from FIG. 76 that when the antenna 100 works at the resonant frequencies of 0.77Ghz and 1.05Ghz, the maximum radiation direction in the radiation pattern is horizontally distributed, and the antenna 100 works in the first mode at this time. The difference is that at a resonant frequency of 0.77Ghz, the current path passes through the ground terminal 1011 of the radiator, while at a resonant frequency of 1.05Ghz, the current path only passes through the feed point, not through the ground terminal 1011 .
- the antenna 100 works at a resonant frequency of 0.89Ghz, the maximum radiation direction in the radiation pattern is vertically distributed, and at this time the antenna 100 works in the second mode. It can be found that the antenna 100 designed with a phase difference of 90° can excite three resonances, which is one more resonance than stimulating two radiators with separate feeding, so that the efficiency bandwidth is significantly improved.
- the equivalent length of the transmission line can be extended.
- FIG. 77 shows an exemplary modification of the antenna structure according to the embodiment of the present application, which is based on the antenna structure shown in FIG. 74 and extends the first section 1021 and the second section 1022 by 1/ 4 medium wavelengths, the total equivalent length is extended by about 1/2 medium wavelength.
- the phase difference of the guided wave from the feeder to the feed point is still 90°.
- the distance between the first feeding part 1031 and the first radiator 1013 is roughly between 15mm-25mm, for example about 19mm.
- FIG. 78 shows the S11 graph, the Smith chart and the efficiency graph for the antenna 100 employing this arrangement. It can be seen that after distributed feeding, the antenna 100 arranged in this way can still generate three resonance modes in the low frequency band.
- Figure 79 shows the current pattern and radiation pattern corresponding to the resonant frequency point. It can be seen from the figure that when the antenna 100 works at the resonant frequencies of 0.75Ghz and 0.97Ghz, the maximum radiation direction in the radiation pattern is horizontally distributed, and the antenna 100 works in the first mode at this time.
- the antenna 100 works at a resonant frequency of 0.9Ghz, the maximum radiation direction in the radiation pattern is vertically distributed, and the antenna 100 works in the second mode at this time. It can be found that, similar to the case of using a shorter transmission line, in the case of a longer transmission line, the antenna 100 designed with a 90° phase difference can excite three resonances, which can excite one more resonance than the single feeding excitation of two radiators , so that the efficiency bandwidth is significantly improved.
- the two distributed feeding structures are combined to form a dual-antenna 100 system as shown in FIG. 80 .
- the antenna 100 corresponding to the second feeder 1032 is connected to the radiator on the feeder line
- An inductance of predetermined size for example, 2-10nH
- inductance, capacitance, etc. can be used to ensure that the equivalent length is within an appropriate range, which will be further elaborated later.
- the total length of the radiator pair 101 can be between 1/4 medium wavelength and 3/4 medium wavelength, for example, between 90 mm and 135 mm, wherein the first radiator
- the length of 1013 and the length of the second radiator 1014 may be between 40 mm and 70 mm respectively.
- the first radiator 1013 and the second radiator 1014 may both include corners of the frame, as shown in FIG. 80 , and the length L1 of the first radiator 1013 and the length of the second radiator 1014 L2 can be the same, roughly 58.5mm.
- the total length of the radiator pair 101 is 115 mm.
- the distance between the ground terminals 1011 of the two radiators may be in the range of 30mm-40mm, for example, may be set at 36mm.
- a gap may be provided between the radiator pair 101 and other parts of the frame, and the width of the gap may be within 3 mm, for example, in some embodiments, the width may be 2 mm or 1 mm.
- the gap may be filled with a non-conductive material.
- the transmission line structure in FIG. 80 can be applied to any embodiment of the present application.
- a capacitor, an inductor, or even a phase shifter can be set on at least one transmission line while the physical length of the transmission line remains unchanged.
- the actual physical length of the transmission line can be within the range of plus or minus 1/3 of the equivalent length (equivalent length ⁇ (1 ⁇ 1/3)), or within the range of plus or minus 1/4 (e.g. Effective length ⁇ (1 ⁇ 1/4)).
- FIG. 81 shows the S11, Smith chart, and S21 graph and antenna efficiency graph. It can be seen from the figure that in the same frequency band, both the first antenna and the second antenna excite two modes, and the isolation is over 16dB.
- Fig. 82 shows the corresponding current pattern and radiation pattern when the antenna shown in Fig. 80 works at the resonant frequency point. It can be seen from the figure that when the first antenna works at the resonant frequencies of 0.86Ghz and 1.03Ghz, the maximum radiation direction in the radiation pattern is horizontally distributed, and the first antennas all work in the first mode.
- the antenna 100 can achieve broadband coverage and at the same time achieve high isolation between antenna pairs.
- the radiator pair of the antenna shown in FIG. 80 can be moved from the bottom of the mobile phone to the waist of the electronic device, as shown in FIG. 83 . Similar to the previous situation, after the radiator is moved up, the total length of the radiator pair 101 can still be between 1/4 medium wavelength and 3/4 medium wavelength, for example, between 90 mm and 135 mm, where the first The length of the first radiator 1013 and the length of the second radiator 1014 can be between 40 mm and 70 mm respectively.
- the first radiator 1013 and the second radiator 1014 are respectively located on the left side and the right side of the frame, and are parallel to each other, as shown in FIG. 83 , and the length L1 of the first radiator 1013 It may be the same as the length L2 of the second radiator 1014, approximately 55mm.
- the total length of the radiator pair 101 is 110 mm.
- the distance along the frame between the ground terminals 1011 of the two radiators may be in the range of 30mm-200mm, for example, may be set at 145mm.
- a gap may be provided between the radiator pair 101 and other parts of the frame, and the width of the gap may be in the range of 1mm ⁇ 3mm, for example, in some embodiments, the width may be 2mm.
- the gap may be filled with a non-conductive material.
- FIG. 84 shows the S11, Smith chart, and S21 graph and antenna efficiency graph. It can be seen from the figure that the dual antenna 100 arranged in this way can still maintain a high degree of isolation (as shown in the S21 curve).
- FIG. 85 shows the efficiency diagrams of each antenna 100 in a free space scene, in a right-handed mode, and in a left-handed mode, respectively. It can be found that although the efficiency of the second antenna is lower in free space, its efficiency bandwidth is very good in hand-held mode, even surpassing that of the first antenna.
- the structure of the radiator of the antenna 100 shown in FIG. 83 can be further adjusted to further optimize the performance of the antenna 100 .
- the bandwidth of the antenna 100 can be further improved by adding branches of the radiator, as shown in FIG. 86 .
- the radiator of the IFA structure on one side is extended from the ground end 1011 for a length to form a T antenna structure, or as shown in Fig. 86(b), the radiators of the IFA structures on both sides are placed on The ground terminal 1011 extends in a direction to form a T-antenna structure.
- the first feeding part 1031 shown in Figure 83 is used as the first antenna when feeding, and the second feeding part 1032 is used as the second antenna when feeding, and the first feeding part 1031 shown in Figure 86 (a) feeds It is used as the third antenna when powered, the second power feeding part 1032 is used as the fourth antenna when it is fed, and the first power feeding part 1031 shown in Fig. 86(b) is used as the fifth antenna when it is fed.
- FIG. 87 shows the S11, S21 curves and antenna efficiency diagrams of each antenna 100, wherein the S11 curves and antenna efficiency diagrams of the first antenna, the third antenna, and the fifth antenna are not much different. are not marked separately.
- the antenna mode can be increased, and at the same time, the isolation degree is basically not affected.
- the free space performance of the fourth antenna and the sixth antenna can be improved by 2-3dB in some frequency bands.
- the antenna structure shown in Figure 83 can also be used for high-frequency band antennas
- Figure 88 shows the S11, S21 curves and efficiency diagrams of the antenna structure shown in Figure 83 working in the 2.5Ghz-2.9Ghz frequency band , where the antenna 100 shown in FIG. 83 is used as the first antenna when the first feeder 1031 feeds power, and when the second feeder 1032 feeds power as the second antenna. It can be seen that the dual-antenna structure shown in Figure 83 can still achieve an isolation of more than 15dB in the 2.5-2.9GHz frequency band.
- the radiator pair 101 of the antenna 100 can be symmetrically arranged on both sides of the top of the frame of the electronic device, as shown in FIG. 89.
- Figure 89 shows that the transmission line adopts a shorter transmission line (the first transmission line) and a longer transmission line (the second transmission line) with an increase of about 1/2 medium wavelength (for example, based on 2 GHz), and asymmetrically feeds to form a dual antenna 100 system .
- the total length of the radiator pair 101 can be between 1/4 medium wavelength and 3/4 medium wavelength, for example, in the 2Ghz frequency band, between 25 mm and 55 mm, wherein the length of the first radiator 1013 and the length of the second radiator 1014 may be between 12 mm and 30 mm respectively.
- the length L1 of the first radiator 1013 and the length L2 of the second radiator 1014 may be the same, for example, approximately 20mm corresponding to a frequency band of 2Ghz. In this case, the total length of the radiator pair 101 is 40 mm.
- the distance between the ground terminals 1011 of the two radiators may be in the range of 90mm ⁇ 150mm, for example, may be set at 129mm.
- a gap may be provided between the radiator pair 101 and other parts of the frame, and the width of the gap may be in the range of 1mm ⁇ 3mm, for example, in some embodiments, the width may be 2mm.
- the gap may be filled with a non-conductive material.
- the first feeding part 1031 shown in FIG. 89 is used as the first antenna when feeding, and the second feeding part 1032 is used as the second antenna when feeding.
- FIG. 90 shows S11, S21 curve graph and antenna efficiency diagrams in free space mode, right-handed mode, and left-handed mode. It can be seen from the figure that in the frequency band of 1.8-2.4 GHz, each antenna 100 has dual modes, and the isolation degree reaches more than 15 dB. Efficiency plots in free space and handheld mode also show that the performance of the two antennas is very close.
- FIG. 91 also shows the current directions and radiation patterns of the two antennas 100 at different resonant frequencies.
- the ECC of the two antennas is less than 0.1, and it can be found that the first antenna has the same excitation current on the radiator pair 101 , and the second antenna has opposite excitation currents on the radiator pair 101 , so that the two antennas 100 can achieve a higher degree of isolation.
- the first transmission line is basically close to 3/2 of the medium wavelength, ie around 115mm, and the second transmission line is close to double the medium wavelength, ie around 75mm.
- Table 2 below is a SAR simulation table when the first antenna, the second antenna and the single-sided IFA antenna 100 (the third antenna) work in a medium-high frequency band such as 1.8Ghz-2.4Ghz. It can be seen from Table 2 that the first antenna and the second antenna are low SAR antennas. Compared with the third antenna, the SAR value is reduced by 2-3dB.
- the antenna 100 using the IFA structure radiator in some embodiments, especially in the case of application in the middle and high frequency bands, at least a part of the first radiator 1013 and at least a part of the second radiator 1014 are located on different sides of the frame , and the different sides meet at the corners of the bounding box.
- one radiator of the radiator pair 101 may be arranged on the top side or bottom side of the frame of the electronic device, while the other radiator is arranged on the Left side or right side.
- FIG. 92 shows the case where the first radiator 1013 is arranged on the top side and the second radiator 1014 is arranged on the right side. It should be understood that the present application is not limited thereto, and any other arrangements may be adopted. In this manner, the antenna 100 can also implement a broadband dual-antenna design.
- the total length of the radiator pair 101 can be between 1/4 medium wavelength and 3/4 medium wavelength, for example, in the 2Ghz frequency band, between 25 mm and 55 mm, wherein the length of the first radiator 1013 and the length of the second radiator 1014 may be between 12 mm and 30 mm respectively.
- the length L1 of the first radiator 1013 and the length L2 of the second radiator 1014 may be the same, for example, approximately 20mm corresponding to a frequency band of 2Ghz.
- the total length of the radiator pair 101 is 40 mm.
- the distance between the ground terminals 1011 of the two radiators may be in the range of 15mm-40mm, for example, may be set at 23mm.
- the antenna 100 corresponding to the second feeder 1032 is connected in series with an inductance of a predetermined size (for example, 2 ⁇ 10 nH) at the connection between the feeder line and the radiator.
- a clearance gap of at least 1 mm between the radiator and the circuit board.
- a gap may be provided between the radiator pair 101 and other parts of the frame, and the width of the gap may be in the range of 1mm ⁇ 3mm, for example, in some embodiments, the width may be 2mm.
- the gap may be filled with a non-conductive material.
- the first feeder 1031 shown in FIG. 92 is used as the first antenna, and the second feeder 1032 is used as the second antenna.
- FIG. 93 shows the S11 curves of each antenna 100 from top to bottom. Graph, Smith chart and S21 curve. It can be seen from the figure that in the 1.8-2.4 GHz frequency band, each antenna 100 has a dual mode, thereby realizing the broadband dual antenna 100 design.
- Table 3 below is the SAR of the first antenna, the second antenna and the single distributed antenna 100 based on short transmission lines (as shown in Figure 94, the third antenna) working in the middle and high frequency bands such as 1.8Ghz ⁇ 2.4Ghz Simulation table. It can be seen from Table 3 that the first antenna and the third antenna have lower SAR values.
- the antenna 100 may also adopt a slot antenna structure, as shown in FIG. 95 and FIG. 96 . That is, in some embodiments, the open ends 1012 of the radiator pair 101 face each other and form a gap. In one embodiment, the width of the gap may be within 3 mm, such as 2 mm, 1 mm.
- the total length of the radiator pair 101 can be between 1/4 medium wavelength to 3/4 medium wavelength, for example, in the 0.9Ghz frequency band, between 70mm ⁇ 110mm Between, wherein the length of the first radiator 1013 and the length of the second radiator 1014 can be between 35 mm and 60 mm respectively.
- the length L1 of the first radiator 1013 and the length L2 of the second radiator 1014 may be the same, for example, approximately 45mm corresponding to a frequency band of 0.9Ghz. In this case, the total length of the radiator pair 101 is 90 mm.
- a capacitance of a predetermined size (for example, 0.6-0.9 pF) may be set between the transmission line and the radiator. For example, a capacitance of 0.7 pF is set between the first transmission line and the pair of radiators 101, and a capacitance of 0.8 pF is set between the second transmission line and the pair of radiators 101, as shown in FIG. 95 and FIG. 96 .
- the capacitance provided between the transmission line and the radiator can also be used to optimize impedance matching.
- the first feeding part 1031 shown in FIG. 96 is used as the first antenna when feeding, and the second feeding part 1032 is used as the second antenna when feeding.
- FIG. 97 shows S11, Smith chart, S21 plot, and antenna efficiency plot in free space mode. It can be seen from the figure that in the 0.9 GHz frequency band, each antenna 100 has dual modes, and the isolation degree reaches more than 15 dB.
- FIG. 98 also shows the current directions and radiation patterns of the two antennas 100 at different resonant frequencies. It can be found that the excitation currents on the radiator pair 101 of the first antenna are the same, and the excitation currents on the radiator pair 101 of the second antenna are opposite, so that the two antennas 100 can achieve a higher degree of isolation.
- FIG. 99(a) shows the fourth antenna.
- FIG. 99(b) shows the S11 curve diagram and the Smith circle diagram of these four antennas 100 respectively
- FIG. 99(c) respectively Efficiency diagrams of individual antennas 100 are shown in a free space scenario.
- the first antenna and the second antenna are distributed dual-antenna 100 feeding designs with a slot antenna structure, each having two modes
- the third antenna is a distributed single antenna 100 design with a slot antenna structure (only short transmission line feed structure with three modes)
- the fourth antenna is a coupled feed antenna design with two modes. It can be found that, in free space, compared with the fourth antenna, the efficiency bandwidth of the third antenna still has certain advantages.
- the radiator pair 101 of this slot antenna structure can also be fed by a shorter transmission line connection.
- the total equivalent length of the first transmission line fed by the first feeder 1031 is about 1/2 medium wavelength (corresponding to an odd multiple of 1/2 medium wavelength), and the second feeder 1032
- the equivalent length of the feeding second transmission line is only about 1/10 of the medium wavelength or even shorter, which can be regarded as a deformation of the antenna structure shown in Fig. 58 .
- the difference between the equivalent lengths of the two transmission lines is still in the range of 50-65 mm.
- the first feeder 1031 shown in Figure 100 is used as the first antenna when it is fed, and the second feeder 1032 is used as the second antenna when it is fed.
- Figure 101 shows the S11 curves of each antenna from top to bottom , Smith chart, S21 curve, and antenna efficiency plot in free-space mode. It can be seen from the figure that in the 0.9GHz frequency band, the two antenna pairs can achieve high isolation.
- Embodiments of the antenna 100 considered to employ T antenna structures, IFA antenna structures, and slot antenna structures are described above by way of example. It should be understood that the above-mentioned embodiments are described only to illustrate the inventive concepts according to the embodiments of the present application, and are not exhaustive, and there may be any other suitable deformation or structure.
- the equivalent length of the first transmission line and/or the second transmission line in addition to being determined according to the physical length of the respective transmission line, it can also be determined by at least one of the following: the corresponding transmission line and The capacitance or inductance provided between the radiator pair 101, the phase shifter provided on the corresponding transmission line, the position where the transmission line is coupled to the radiator pair 101, and the like.
- the corresponding transmission line and The capacitance or inductance provided between the radiator pair 101, the phase shifter provided on the corresponding transmission line, the position where the transmission line is coupled to the radiator pair 101, and the like for example, in the previous embodiment, it is mentioned that a capacitor is set between the transmission line and the feed point near the open end 1012 of the radiator, and an inductance is set between the transmission line and the feed point near the ground end 1011 of the radiator, which can optimize Impedance matching makes the equivalent length of the transmission line within the range mentioned above.
- 102 shows the situation that a phase shifter is set on one of the transmission lines to make the difference between the equivalent lengths of the two transmission lines by about 1/2 of the medium wavelength.
- a phase shifter is set on one of the transmission lines to make the difference between the equivalent lengths of the two transmission lines by about 1/2 of the medium wavelength.
- the feed point is set near the ground terminal 1011 of the radiator.
- the feeding points where the transmission line and the radiator are connected can also be set near the open end 1012, as shown in FIG. 103 .
- a capacitance of a predetermined size may be provided between the transmission line and the feeding point of the radiator pair 101 to ensure impedance matching while keeping the equivalent length within an appropriate range.
- the feed points connecting the transmission line and the radiator can also be set near the ground terminal 1011 , as shown in FIG.
- an inductance of a predetermined size may be provided between the transmission line and the feeding point of the radiator pair 101 to ensure impedance matching while keeping the equivalent length within an appropriate range.
- the first radiator 1013 and at least a part of the second radiator 1014 are located on different sides of the frame, which may also include the situation shown in FIG. 105 .
- the first radiator 1013 may extend from the left side (or right side) of the frame to the bottom side (or top side) via the corner, and the second radiator 1014 may be located on the right side of the frame (left side).
- the antenna 100 with the IFA structure arranged in this way can still achieve similar performance as described above.
- the two transmission lines can also be coupled to the open end 1012 and the ground end 1011 of the radiator pair 101 respectively, as shown in FIG. 106 and FIG. 107 .
- the first transmission line is inductively coupled to a first feed point near the ground end 1011 of the radiator pair 101
- the second transmission line is capacitively coupled to a feed point near the open end 1012 of the radiator pair 101.
- Second feed point the equivalent length of the second transmission line includes the set capacitance and also includes the length between the first feeding point and the second feeding point of the radiator pair 101 .
- the antenna structure obtained in this way can also obtain performances similar to those of the antenna 100 described in the above embodiments.
- the continuous radiator pairs 101 can also be arranged on different sides of the frame.
- the radiator pairs 101 arranged continuously on the frame may extend from the side of the frame to the bottom or top via the corner.
- Figure 108 and Figure 109 show the situation that the radiator pair 101 extends from the right edge of the frame to the bottom edge or the top edge via the corner.
- the first transmission lines are respectively connected to the vicinity of the ground end of the radiator pair 101 through inductance
- the second transmission lines are respectively connected between the ground end of the radiator pair 101 and the two open ends through capacitance.
- the equivalent length of the first transmission line can be extended by means of broken lines, etc., so that the total equivalent length is about 1/2 medium wavelength (corresponding to an odd multiple of 1/2 medium wavelength), while the second feeder
- the equivalent length of the second transmission line fed by the electrical part 1032 is only about 1/10 of the medium wavelength or even shorter (corresponding to the case where an even number multiple of 1/2 the medium wavelength is 0).
- the difference between the equivalent lengths of the two transmission lines is still about 1/2 the wavelength of the medium, so as to realize the optimization of the antenna performance.
- the existing structure in the frame of the electronic device may also serve as the transmission line or at least a part of the transmission line.
- the transmission line is short (for example, less than or equal to 1/10 of the medium wavelength)
- the inwardly protruding protrusion integrally formed with the conductive frame can be used as the transmission line or a part of the transmission line, Therefore, it is possible to optimize the performance of the antenna while improving the integration degree of the electronic device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Waveguide Aerials (AREA)
Abstract
根据本申请的实施例提供一种天线和电子设备。该天线包括第一辐射体; 传输线,具有第一端和第二端,所述第一端耦合至所述第一辐射体的接地端附近或开放端附近,并且所述传输线的长度T被设置为T=1/4λ或T=1/2λ,其中λ为所述天线在被馈电时所产生的谐振中的一个谐振所对应的介质波长; 馈电单元,耦合至所述传输线的耦合点并经由所述传输线而向所述第一辐射体馈电。通过设置预定长度的传输线,在满足边界条件的情况下,能够将传输线模式和辐射体模式叠加,从而提升天线的效率和带宽。
Description
本申请的实施例主要涉及天线领域。更具体地,本申请的实施例涉及一种天线和包括该天线的电子设备。
随着曲面屏柔性屏等关键技术的快速发展,诸如手机等的终端电子设备的轻薄化、极致屏占比设计已成为一种趋势,这种设计大大压缩了天线空间。同时,用户对诸如手机的电子设备的诸如拍摄等的需求越来越高,导致摄像头数量和体积逐渐增加,加大了整机天线设计的复杂度。此外,手机通信频段在很长时间内还将出现3G、4G、5G频段共存的局面,天线数量越来越多,频段覆盖越来越广,相互影响越来越严重。在这种环境下,设计满足通信要求如高效率带宽的天线越来越难,采用传统天线难以满足要求。当前状态下,基于这些情况,在手机上实现宽频段、高效率、小型化的新型天线成为当务之急。
此外,随着移动系统的发展,多频段、多天线系统已经成为移动通信发展的重要趋势。然而,空间小的天线单元之间容易发生强烈的相互耦合,扭曲阵列天线的性能。例如,多输入多输出(Multi-input Multi-output,MIMO)技术作为提高系统信道容量、提升频谱资源利用率的主要技术,极大地拓展了数据传输速率上升的空间,是当前无线通信领域的研究热点。天线作为无线系统不可或缺的终端组件,其性能优劣决定了系统整体的表现。随着无线系统不断向着小型化方向发展,MIMO系统中多天线间的距离不断减小,天线单元间的互耦不断增强,使得多天线性能急剧下降,严重削弱了MIMO系统所具有的优势。提高多天线间的隔离度,同时保持天线系统尺寸的小型化是天线领域的研究热点。
发明内容
为了提供一种多模式宽频天线或者提供具有高隔离度的天线对,本申请的实施例提供了一种天线和相关的电子设备。
在本公开的第一方面,提供了一种天线。该天线包括第一辐射体,包括接地端和开放端;传输线,具有第一端和第二端,所述第一端耦合至所述第一辐射体的接地端或开放端,所述第二端开放或接地;馈电单元,耦合至所述传输线的耦合点并经由所述传输线而向所述第一辐射体馈电,其中,所述馈电单元馈电时,所述第一辐射体用于产生第一谐振,所述传输线用于产生与所述第一谐振相邻频段的谐振。
在一种实现方式中,耦合点偏离所述传输线的中点。
在一种实现方式中,天线还包括第二辐射体,包括接地端和开放端;其中所述传输线的所述第二端耦合至所述第二辐射体的接地端或开放端,且其中,所述馈电单元馈电时,所述第二辐射体用于产生第二谐振,所述传输线还用于产生与所述第二谐振相邻频段的谐振。在一种实现方式中,所述传输线的所述第一端耦合至所述第一辐射体的接地端,所述第二端接地或者耦合至所述第二辐射体的接地端,所述耦合点位于所述第一端或所述第二端的附近。
在一种实现方式中,所述传输线的所述第一端耦合至所述第一辐射体的开放端,所述第 二端开放或者耦合至所述第二辐射体的开放端,并且所述耦合点位于所述中点附近。
在一种实现方式中,所述传输线的所述第一端耦合至所述第一辐射体的接地端,所述第二端开放或者耦合至所述第二辐射体的开放端,并且所述耦合点位于所述第一端附近。
在一种实现方式中,所述传输线的长度T满足1/2λ1≤T≤1/2λ2,其中λ1和λ2分别为所述馈电单元在馈电时,所述天线所产生的最低谐振所对应的工作频段的最小介质波长和最大介质波长。
在一种实现方式中,所述传输线的长度T满足1/4λ1≤T≤1/4λ2,其中λ1和λ2分别为所述馈电单元在馈电时,所述天线所产生的最低谐振所对应的工作频段的最小介质波长和最大介质波长。
在一种实现方式中,所述传输线包括通过电容连接的两个区段,并且所述耦合点位于所述两个区段中的一个区段上。
在一种实现方式中,所述传输线经由第一匹配电路耦合至所述第一辐射体,和/或所述传输线经由第二匹配电路耦合至所述第二辐射体。
在一种实现方式中,所述传输线可以包括以下项中的任一项:微带线、同轴线、液晶聚合物材料、支架天线体、玻璃天线体、以及前述项的任意组合。
在一种实现方式中,该天线还包括:调节电路105,耦合在所述传输线的预定位置和地之间,并且包括电容和电感中的至少一个。
在本申请的第二方面,提供了一种天线。该天线包括辐射体对,所述辐射体对中的第一辐射体和第二辐射体均包括接地端和开放端;至少一条传输线,耦合至所述辐射体对,所述至少一条传输线包括第一传输线,所述第一传输线包括长度不等的第一区段和第二区段;以及馈电单元所述馈电单元包括第一馈电部,所述第一馈电部经由所述第一区段和所述第二区段而分别耦合至所述第一辐射体和所述第二辐射体。
通过采用长度不等的两个区段耦合至馈电单元来为辐射体对馈电,根据本申请的实施例提供了一种不对称馈电的天线,从而能够在辐射体对之间引入具有相位差的激励电流。以此方式,可以形成多模式宽频天线,同时还可以构成具有高隔离度的天线对。
在一种实现方式中,天线还包括匹配电路,耦合在所述第一馈电部和所述第一传输线之间,所述匹配电路包括电容和/或电感,其中所述第一传输线的长度小于或等于所述天线的最低工作频段所对应的介质波长的1/10。
在一种实现方式中,所述第一传输线的两个区段长度的差值(T2-T1)满足0≤(T2-T1)≤8mm,或者所述第一传输线的两个区段长度的比值T1/T2满足1/2≤T1/T2≤2。
在一种实现方式中,所述至少一条传输线还包括第二传输线,所述第二传输线包括长度不等的第三区段和第四区段,并且所述馈电单元包括第二馈电部,所述第二馈电部经由所述第三区段和所述第四区段而分别耦合至所述辐射体对。以此方式,可以以简单有效的方式实现具有高隔离度的天线对。
在一种实现方式中,第一馈电部和所述第二馈电部均耦合至第一辐射体的所述接地端或均耦合至第一辐射体的所述开放端,且第一馈电部和所述第二馈电部均耦合至所述第二辐射体的开放端或均耦合至第二辐射体的接地端;或者,第一馈电部和第二馈电部分别耦合至第一辐射体的接地端和第一辐射体的开放端,且第一馈电部和第二馈电部分别耦合至第二辐射体的开放端和第二辐射体的接地端。以上几种实现方式使得天线的布置方式更加灵活,以满足各种场合的不同需求。在一种实现方式中,所述第一馈电部馈电时,所述天线用于产生第 一谐振,并且所述第二馈电部馈电时,所述天线用于产生第二谐振,并且第一谐振和所述第二谐振至少部分地位于同一频段,或者所述第一谐振和所述第二谐振至少部分地位于两个不同的频段。以此方式,使得天线对所支持的频段可以是同频段、不同频段或相邻频段,从而获得具有较宽适用范围的天线。
在一种实现方式中,所述第一传输线的所述第一区段和所述第二区段的长度比例T1/T2满足:1/4≤T1/T2≤1/2。
在一种实现方式中,第二传输线的所述第三区段和所述第四区段的长度比例T3/T4满足:1/4≤T3/T4≤1/2。
在一种实现方式中,第二传输线的长度T6和所述第一传输线的长度T5的差(T6-T5)与所述第一谐振的第一介质波长λ1或第二谐振的第二介质波长λ1满足:1/4λ1≤(T6-T5)≤3/4λ1或者1/4λ2≤(T6-T5)≤3/4λ2。例如,在有些实现方式中,长度的差可以为1/2介质波长左右,从而确保通过第一传输线和第二传输线而在馈电到辐射体对的激励电流存在约180°的相位差,从而实现多模式宽频天线的同时实现了高隔离度的天线对。
在一种实现方式中,在第一谐振和第二谐振小于1.2GHz的低频频段下,所述第二传输线和所述第一传输线的长度的差值(T6-T5)满足:50mm≤(T6-T5)≤80mm;或者在第一谐振和第二谐振小于3GHz的中高频段下,所述第二传输线和所述第一传输线的长度的差值(T6-T5)满足25mm≤(T6-T5)≤40mm。以此方式,可以使得第二传输线和所述第一传输线的长度的差值在1/2介质波长左右,从而允许激励电流的相位差处于1~180°的范围内。
在一种实现方式中,第一传输线或所述第二传输线的等效长度通过以下方式中的至少一项来确定:对应传输线和辐射体对之间设置的电容或电感、对应传输线上设置的移相器和对应传输线耦合至所述辐射体对的位置。以此方式,可以针对不同型号的电子设备来设置不同的等效长度,从而能更有针对性地获得具有改进性能的天线的电子设备。
在一种实现方式中,至少一条传输线可以包括以下项中的任一项:微带线、同轴线、液晶聚合物材料、支架天线体、玻璃天线体、以及前述项的任意组合。以此方式,使得传输线能够根据不同的需要来选用适当的材料制成,从而可以以具有成本效益的方式提高天线性能。
根据本申请实施例的第三方面提供了一种天线。该天线包括辐射体对,所述辐射体对中的第一辐射体和第二辐射体均包括接地端和开放端;第一传输线,耦合至所述辐射体对,所述第一传输线包括两个区段;以及第一馈电部,经由所述第一传输线的两个区段而分别耦合至所述第一辐射体的第一馈电点和所述第二辐射体的第二馈电点,并且所述第一馈电部提供的激励电流在所述第一馈电点和所述第二馈电点处的相位差在90°±45°的范围内。在一个实施例中,所述第一馈电部提供的激励电流在所述第一馈电点和所述第二馈电点处的相位差在90°±30°的范围内。以此方式,天线可以以任意适当的手段来使得激励电流在所述第一馈电点和所述第二馈电点处的相位差满足上述要求,从而提高了天线制造的灵活度的同时提升了天线的性能。
在一种实现方式中,天线还包括第二传输线和第二馈电部,所述第二传输线包括两个区段,所述第二馈电部经由所述第二传输线的两个区段分别耦合至所述第一辐射体的第三馈电点和所述第二辐射体的第四馈电点,并且所述第一馈电点和所述第三馈电点处电流的相位差在180°±60°的范围内,所述第二馈电点和所述第四馈电点处电流的相位差在180°±60°的范围内。在一个实施例中,所述第一馈电点和所述第三馈电点处电流的相位差在180°±45°的范围内。在一个实施例中,所述第二馈电点和所述第四馈电点处电流的相位差在180°±45°的范 围内。
根据本申请实施例的第四方面提供了一种电子设备。该电子设备包括壳体,包括边框;电路板,布置在所述壳体中并且包括馈电单元;以及根据前文中第一、第二或第三方面所述的天线。通过使用前文中所提到的天线,使得电子设备能够实现多模式宽频覆盖,从而提高了电子设备的性能。
在一些实现方式中,天线的第一辐射体包括所述边框的第一连续区段,所述第二辐射体包括所述边框的第二连续区段。该布置方式更加有利于提高天线在电子设备中的布置的灵活度。
在一种实现方式中,所述第一辐射体和所述第二辐射体在所述边框上分离;或者所述第一辐射体和所述第二辐射体在所述边框上连续。
在一种实现方式中,所述辐射体对布置在所述壳体的内侧。以上几种实现方式都使得天线在电子设备中的布置方式更加灵活,从而促进了宽频多模式天线以及具有高隔离度的天线对在电子设备中的布置。在一种实现方式中,天线布置在所述壳体的内侧。该布置方式进一步提高了天线在电子设备中布置的灵活度。
在一种实现方式中,第一辐射体和所述第二辐射体的接地端是共用的接地端。
在一种实现方式中,第一辐射体的开放端和所述第二辐射体的开放端相对设置并形成缝隙,所述缝隙的宽度小于3mm。
结合附图并参考以下详细说明,本申请各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标注表示相同或相似的元素,其中:
图1示出了根据本申请实施例的电子设备的示意分解视图;
图2示出了微带线的示意性截面视图;
图3示出了根据本申请实施例的传输线的示意图;
图4示出了根据本申请实施例两端接地的传输线的示意图以及其在被馈电时的S11曲线、效率曲线、电流方向和电场分布图;
图5示出了根据本申请实施例两端接地的传输线在增加调节电路后的示意图以及其与未加调节电路时的S11曲线对比图;
图6示出了根据本申请实施例两端接地的传输线其中一端耦合至辐射体所形成的天线的示意图;
图7示出了图5和图6中示出的传输线和天线的S11曲线和效率曲线示意图;
图8示出了根据本申请实施例两端接地的传输线的两端耦合至辐射体所形成的天线的示意图;
图9示出了图8所示的天线的S11曲线和效率曲线示意图;
图10示出了图8所示的天线在不同谐振频率下的电流方向、电场分布以及辐射方向图;
图11示出了根据本申请实施例两端接地的传输线的两端耦合至辐射体所形成的一种变型天线的示意图;
图12示出了图11所示的天线的S11曲线和效率曲线示意图;
图13示出了图11所示的天线在不同谐振频率下的电流分布图;
图14示出了图11所示的天线和直接馈电的T天线的S11曲线和效率曲线对比示意图;
图15示出了将根据本申请实施例的两端接地的传输线应用于尺寸相当的两个辐射体所形成的天线的示意图;
图16示出了图15所示的天线的S11曲线和效率曲线示意图;
图17示出了图15所示的天线在不同谐振频率下的电流分布图;
图18示出了图15所示的天线中的传输线可以通过提高介电常数来缩小占地面积的示意图以及对应的S11曲线和效率曲线对比图;
图19示出了图15所示的天线中的传输线可以通过传输线的曲折结构来缩小占地面积的示意图以及对应的S11曲线和效率曲线对比图;
图20示出了图15所示的天线中传输线和辐射体之间设置阻抗匹配电路后形成的天线以及对应的S11曲线和效率曲线示意图;
图21示出了图20所示的天线在不同谐振频率下的电流方向图;
图22示出了直接馈电的T天线以及该天线与前面所提到的几种天线的S11曲线和效率曲线示意图;
图23示出了图22中所示的天线以及前面提到的几种天线在左手模式和右手模式下的效率曲线图;
图24示出了根据本申请实施例的两端开放的传输线的示意图;
图25示出了根据本申请实施例两端开放的传输线在被馈电时的S11曲线、效率曲线示意图;
图26示出了根据本申请实施例两端开放的传输线在被馈电时的电流方向图和电场分布图;
图27示出了根据本申请实施例两端开放的传输线在增加调节电路后的示意图以及其与未加调节电路时的S11曲线对比图;
图28示出了根据本申请实施例两端开放的传输线其中一端耦合至辐射体所形成的天线的示意图;
图29示出了图27和图28中示出的传输线和天线的S11曲线和效率曲线示意图;
图30示出了根据本申请实施例两端开放的传输线的两端耦合至辐射体所形成的天线的示意图;
图31示出了图30所示的天线的S11曲线和效率曲线示意图;
图32示出了图30所示的天线在不同谐振频率下的电流方向、电场分布以及辐射方向图;
图33示出了将根据本申请实施例的两端开放的传输线应用于尺寸相当的两个辐射体所形成的天线的示意图;
图34示出了图33所示的天线的S11曲线和效率曲线示意图;
图35示出了图33所示的天线在不同谐振频率下的电流方向和电场分布示意图;
图36示出了直接馈电的槽天线以及其与前文中提到的几种天线的S11曲线、效率曲线对比示意图;
图37示出了图36所示的天线以及前面提到的几种天线在左手模式和右手模式下的效率曲线图;
图38示出了根据本申请实施例的一端开放一端接地的传输线的示意图;
图39示出了根据本申请实施例一端开放一端接地的传输线在被馈电时的S11曲线、效率曲线示意图;
图40示出了根据本申请实施例一端开放一端接地的传输线在被馈电时的电流方向图和电场分布图;
图41示出了根据本申请实施例一端开放一端接地的传输线其中一端耦合至辐射体所形成的天线的示意图;
图42示出了图38和图41中示出的传输线和天线的S11曲线和效率曲线示意图;
图43示出了根据本申请实施例一端开放一端接地的传输线的两端耦合至辐射体所形成的天线的示意图;
图44示出了图43所示的天线的S11曲线和效率曲线示意图;
图45示出了图43所示的天线在不同谐振频率下的电流方向示意图;
图46示出了根据本申请实施例两端接地的传输线在中间断开形成两个区段结构的传输线的示意图;
图47示出了图46所示的传输线结构在被馈电时的S11曲线和效率曲线图、电流分布和电场分布示意图;
图48示出了与图46所示的传输线采用不同馈电方式的传输线的示意图以及两种传输线的S11曲线图;
图49示出了图48所示的传输线其中一端耦合至辐射体所形成的天线的示意图以及对应的S11曲线和效率曲线图;
图50示出了示出了图48所示的传输线的两端耦合至T辐射体所形成的天线的示意图;
图51示出了图50所示的天线的S11曲线和效率曲线示意图、以及在不同谐振频率下的电流方向示意图;
图52示出了传输线由微带线改为支架走线的天线的示意图以及其与微带线作为传输线的天线的S11曲线和效率曲线示意图;
图53示出了根据本申请实施例连接三个辐射体所形成的天线的示意图;
图54示出了根据本申请实施例的天线采用一个馈电部馈电时的简化结构示意图;
图55示出了图54所示的天线在工作时的电流方向图以及电流相位示意图;
图56示出了根据本申请实施例的一个馈电部采用较长传输线馈电时的简化结构示意图、电流方向图以及电流相位示意图;
图57示出了根据本申请实施例的传输线和馈电单元之间设置有匹配电路的T天线的简化结构示意图;
图58示出了根据本申请实施例的传输线和馈电单元之间设置有匹配电路的槽天线的简化结构示意图
图59示出了根据本申请实施例的天线采用两个馈电部以及不同等效长度的传输线对辐射体对馈电时的简化结构示意图;
图60示出了图59所示的天线结构在不同工作模式下的电流方向图;
图61和图62示出了根据本申请实施例的采用T天线结构的天线的简化结构示意图;
图63示出了图62所示的天线在不同工作模式下的电流方向图;
图64示出了图62所示的天线在不同工作模式下的辐射方向图;
图65示出了图62所示的天线的S11曲线、自由空间模式、右手模式以及左手模式下的效率曲线;
图66示出了根据本申请实施例的采用一种变形的T天线结构的天线的简化结构示意图;
图67和图68示出了根据本申请实施例的采用另一种T天线结构的天线的简化结构示意图;
图69(a),(b)和(c)分别示出了单分布式T天线、图66中所示的天线工作在不同模式的情况下与单分布式T天线的S11曲线以及自由空间模式下的天线效率图,图69(d)示出了第二天线和第三天线之间的S21图;
图70和图71示出了根据本申请实施例的图65和图66所示的天线变形成IFA天线结构的简化结构示意图;
图72示出了图71所示的天线的S11曲线以及自由空间模式下的天线效率图;
图73示出了对图66所示的天线进一步改进以形成能够工作在MIMO模式的天线的简化结构示意图;
图74示出了根据本申请实施例的采用另一种IFA天线结构的天线的简化结构示意图;
图75示出了采用单端馈电的两种不同的天线以及这两种天线和图72所示的天线的S11曲线图以及天线效率图;
图76示出了图74所示的天线工作在不同谐振频率时的电流方向图和辐射方向图;
图77示出了根据本申请实施例的采用IFA天线结构以及较长传输线的天线的简化结构示意图;
图78示出了图77所示的天线的S11曲线图以及天线效率图;
图79示出了图77所示的天线工作在不同谐振频率时的电流方向图和辐射方向图;
图80示出了根据本申请实施例的采用IFA天线结构以及不同传输线馈电的天线的简化结构示意图;
图81示出了图80所示的天线工作在不同模式下的S11、S21曲线图以及天线效率图;
图82示出了图80所示的天线工作在不同谐振频率时的电流方向图和辐射方向图;
图83示出了采用一种变形的IFA天线结构的天线的简化结构示意图;
图84示出了图83所示的天线工作在不同模式下的S11、S21曲线图;
图85示出了图83所示的天线在自由空间模式下、右手模式下、左手模式下的天线效率图;
图86示出了采用另外几种变形的IFA天线结构的天线的简化结构示意图;
图87示出了图86所示的天线工作在不同模式下的S11、S21曲线图以及天线效率图;
图88示出了图83中所示的天线结构工作在2.5Ghz~2.9Ghz频段下的S11、S21曲线图和效率图;
图89示出了传输线分别采用较短传输线和较长传输线并作不对称馈电形成双天线系统的简化结构示意图;
图90自上而下示出了图89中的各个天线的S11、S21曲线图以及自由空间模式、右手手持模式、左手手持模式下的天线效率图;
图91示出了图89中的天线在不同谐振频率下的电流方向图及辐射方向图;
图92示出了第一辐射体设置在电子设备的边框的顶侧边而第二辐射体设置在右侧边的天线的简化结构示意图;
图93自上而下示出了图90中的天线的S11曲线图、Smith圆图以及S21曲线图;
图94示出了基于短传输线的单分布式天线的简化结构示意图;
图95和图96示出了采用槽天线结构的天线的简化结构示意图;
图97自上而下示出了图95和图96中的各个天线的S11、S21曲线图以及自由空间模式下的天线效率图;
图98示出了图96中的天线在不同谐振频率下的电流方向图及辐射方向图;
图99(a),(b)和(c)分别示出了单分布式槽天线、图93和图94中所示的天线工作在不同模式的情况下与单分布式槽天线的S11曲线以及自由空间模式下的天线效率图;
图100示出了采用另一种变形槽天线结构的天线的简化结构示意图;
图101自上而下示出了图98中的天线的S11、S21曲线图以及自由空间模式下的天线效率图;
图102示出了根据本申请实施例的传输线设置有调相器的天线的简化结构示意图;
图103示出了根据本申请实施例的在开放端附近馈电的天线的简化结构示意图;
图104示出了根据本申请实施例的传输线与辐射体连接的馈电点都设置在接地端附近从而形成槽天线和IFA天线组合结构的天线的简化结构示意图;
图105示出了根据本申请实施例的第一辐射体的至少一部分和第二辐射体的至少一部分位于边框的不同边上的天线的简化结构示意图;
图106和图107分别示出了根据本申请实施例的两条传输线分别耦合至辐射体对的开放端和接地端的天线的简化结构示意图;以及
图108和图109示出了根据本申请实施例的辐射体对从边框的右侧边经由拐角部延伸至底的天线的简化结构示意图。
下面将参照附图更详细地描述本申请的实施例。虽然附图中显示了本申请的某些实施例,然而应当理解的是,本申请可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本申请。应当理解的是,本申请的附图及实施例仅用于示例性作用,并非用于限制本申请的保护范围。
在本申请的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
应理解,在本申请中,“连接”、“相连”均可以指一种机械连接关系或物理连接关系,即A与B连接或A与B相连可以指,A与B之间存在紧固的构件(如螺钉、螺栓、铆钉等),或者A与B相互接触且A与B难以被分离。
应理解,在本申请中,“耦合”可理解为直接耦合和/或间接耦合。直接耦合又可以称为“电连接”,理解为元器件物理接触并电导通;也可理解为线路构造中不同元器件之间通过印制电路板(printed circuit board,PCB)铜箔或导线等可传输电信号的实体线路进行连接的形式;“间接耦合”可理解为两个导体通过隔空/不接触的方式电导通。在一个实施例中,间接耦合也可以称为电容耦合,例如通过两个导电件间隔的间隙之间的耦合形成等效电容来实现信号传输。
辐射体:是天线中用于接收/发送电磁波辐射的装置。在某些情况下,狭义来理解“天线”即为辐射体,其将来自发射机的导波能量较变为无线电波,或者将无线电波转换为导波能量,用来辐射和接收无线电波。发射机所产生的已调制的高频电流能量(或导波能量)经馈电线 传输到发射辐射体,通过辐射体将其转换为某种极化的电磁波能量,并向所需方向辐射出去。接收辐射体将来自空间特定方向的某种极化的电磁波能量又转换为已调制的高频电流能量,经馈电线输送到接收机输入端。
辐射体可以是具有特定形状和尺寸的导体,例如线天线。线天线是由线径远比波长小,长度可与波长相比的一根或多根金属导线构成的天线,可作为发射或接收天线。线天线的主要形式有偶极子天线、半波振子天线、单极子天线、环天线、倒F天线(又称IFA,Inverted F Antenna)、平面倒F天线(又称PIFA,Planar Inverted F Antenna)、槽天线或缝隙天线、天线阵等。例如,对于偶极子天线而言,每个偶极子天线通常包括两个辐射枝节,每个枝节由馈电部从辐射枝节的馈电端进行馈电。例如,倒F天线(Inverted-F Antenna,IFA)可以看作是由单极子天线增加一个接地路径得到。IFA天线具有一个馈电点和一个接地点,馈电点和接地点都远离开放端设置,由于其侧视图为倒F形,所以被称为倒F天线。又例如,复合左右手(composite right/left handed,CRLH)可以看作是由左手天线和单极子天线组合得到。复合左右手天线具有一个串联电容的馈电点和一个接地点,馈电点远离接地点设置,由于其同时具有左手传输线和右手传输线的特性,所以被称为复合左右手天线。还例如,对于槽天线或缝隙天线而言,可以包括单个辐射枝节,枝节的两端接地形成槽或缝隙。
本申请中的“倒F辐射体/IFA辐射体”可以理解为,具有一个馈电点和一个接地点的辐射体,其中接地点位于该辐射体的一端,辐射体的另一端为开放端,馈电点设置于开放端与接地点之间。在一个实施例中,IFA辐射体的馈电点设置于辐射体的中心点与接地点之间。在一个实施例中,接地点位于IFA辐射体的一端,可以理解为接地点距离该端的端部5mm以内,例如2mm以内。在一个实施例中,IFA辐射体的开放端,可以理解为该端的端部5mm以内不接地。IFA辐射体从接地点到开放端之间用于产生谐振。在一个实施例中,IFA辐射体从接地点到开放端的电长度为谐振对应波长的1/4左右。
本申请中的“复合左右手辐射体/CRLH辐射体”可以理解为,具有一个馈电点和一个接地点的辐射体,其中接地点位于该辐射体的一端,辐射体的另一端为开放端,馈电点设置于开放端与接地点之间,且馈电点与馈源之间串联电容。在一个实施例中,串联的电容容值小于或等于1pF。在一个实施例中,复合左右手辐射体的馈电点设置于辐射体的中心点与开放端之间。在一个实施例中,接地点位于复合左右手辐射体的一端,可以理解为距离该端的端部5mm以内,例如2mm以内。CRLH辐射体从接地点到馈电点之间的部分用于产生第一谐振。在一个实施例中,CRLH辐射体从接地点到馈电点的电长度为该第一谐振对应波长的1/8左右,例如,电长度介于1/4波长和1/8波长之间或者小于1/8波长。在一个实施例中,CRLH辐射体从馈电点到开放端之间的部分用于产生第二谐振。在一个实施例中,CRLH辐射体从馈电点到开放端的电长度为该第二谐振对应波长的1/4左右。应理解,馈电点与馈源之间串联电容的容值可以理解为等效容值,例如,若串联两个电容时,可以计算两个电容串联后的等效容值。
辐射体也可以是形成在导体上的槽或者缝隙。例如,在导体面上开缝形成的天线,也可以被称为缝隙天线或开槽天线。在一些实施例中,缝隙形状是长条形的。在一些实施例中,缝隙的长度约为半个波长。在一些实施例中,缝隙可用跨接在它的一边或两边上的传输线馈电,也可由波导或谐振腔馈电。缝隙上激励有射频电磁场,并向空间辐射电磁波。
馈电单元,是用于射频波的接收和发射目的的天线所有组件的组合。在接收天线的情况下,馈电单元可以被认为是从第一放大器到前端发射机的天线部分。在发射天线中,馈电单 元可以看作是最后一个功率放大器之后的部分。在某些情况下,狭义来理解“馈电单元”即为射频芯片,或者包括射频芯片到辐射体或传输线上馈电点的传输路径。馈电单元具有将无线电波转换为电信号并将其发送到接收器组件的功能。通常,它被认为是天线的一部分,用于将无线电波转换为电信号,反之亦然。天线设计时应考虑最大的功率传输可能性和效率。为此,天线馈入阻抗必须与负载电阻匹配。天线馈电阻抗是电阻,电容和电感的组合。为了确保最大功率传输条件,两个阻抗(负载电阻和馈电阻抗)应匹配。可以通过考虑频率要求和天线的设计参数(例如增益,方向性和辐射效率)来完成匹配。
馈入阻抗包括两个电阻元件,分别是损耗电阻和辐射电阻。损耗电阻是天线实际组件提供的电阻,馈电阻抗是天线输入信号时提供的电阻。因此,损耗和馈电阻抗必须一起工作才能获得适当的工作天线馈电。辐射电阻是天线提供的对辐射功率的电阻,换句话说,它表示耗散的辐射功率。
传输线,又叫馈电线,指天线的收发机与辐射体之间的连接线。传输线可随频率和形式不同,直接传输电流波或电磁波。辐射体上与传输线相连的连接处通常称为馈电点。传输线包括导线传输线、同轴线传输线、波导、或微带线等。传输线根据实现形式不同可以包括支架天线体、或玻璃天线体等。传输线根据载体不同可以由LCP(Liquid Crystal Polymer,液晶聚合物材料)、FPC(Flexible Printed Circuit,柔性印刷电路板)、或PCB(Printed Circuit Board,印刷电路板)等来实现。
地/地板:可泛指电子设备内任何接地层、或接地板、或接地金属层等的至少一部分,或者上述任何接地层、或接地板、或接地部件等的任意组合的至少一部分,“地/地板”可用于电子设备内元器件的接地。一个实施例中,“地/地板”可以是电子设备的电路板的接地层,也可以是电子设备中框形成的接地板或屏幕下方的金属薄膜形成的接地金属层。一个实施例中,电路板可以是印刷电路板(printed circuit board,PCB),例如具有8、10、12、13或14层导电材料的8层、10层或12至14层板,或者通过诸如玻璃纤维、聚合物等之类的介电层或绝缘层隔开和电绝缘的元件。一个实施例中,电路板包括介质基板、接地层和走线层,走线层和接地层通过过孔进行电连接。一个实施例中,诸如显示器、触摸屏、输入按钮、发射器、处理器、存储器、电池、充电电路、片上系统(system on chip,SoC)结构等部件可以安装在电路板上或连接到电路板;或者电连接到电路板中的走线层和/或接地层。例如,射频源设置于走线层。
上述任何接地层、或接地板、或接地金属层由导电材料制得。一个实施例中,该导电材料可以采用以下材料中的任一者:铜、铝、不锈钢、黄铜和它们的合金、绝缘基片上的铜箔、绝缘基片上的铝箔、绝缘基片上的金箔、镀银的铜、绝缘基片上的镀银铜箔、绝缘基片上的银箔和镀锡的铜、浸渍石墨粉的布、涂覆石墨的基片、镀铜的基片、镀黄铜的基片和镀铝的基片。本领域技术人员可以理解,接地层/接地板/接地金属层也可由其它导电材料制得。
谐振频率:谐振频率又叫共振频率。谐振频率可以指天线输入阻抗虚部为零处的频率。谐振频率可以有一个频率范围,即,发生共振的频率范围。共振最强点对应的频率就是中心频率-点频率。中心频率的回波损耗特性可以小于-20dB。
谐振频段/通信频段/工作频段:无论何种类型的天线,总是在一定的频率范围(频段宽度)内工作。例如,支持B40频段的天线,其工作频段包括2300MHz~2400MHz范围内的频率,或者是说,该天线的工作频段包括B40频段。满足指标要求的频率范围可以看作天线的工作频段。工作频段的宽度称为工作带宽。全向天线的工作带宽可能达到中心频率的3-5%。定向 天线的工作带宽可能达到中心频率的5-10%。带宽可以认为是中心频率(例如,偶极子的谐振频率)两侧的一段频率范围,其中天线特性在中心频率的可接受值范围内。
阻抗和阻抗匹配:天线的阻抗一般是指天线输入端的电压与电流的比值。天线阻抗是天线中对电信号的电阻的量度。一般而言,天线的输入阻抗是复数,实部称为输入电阻,以Ri表示;虚部称为输入电抗,以Xi表示。电长度远小于工作波长的天线,其输入电抗很大,例如短偶极天线具有很大的容抗;电小环天线具有很大的感抗。直径很细的半波振子输入阻抗约为73.1+j42.5欧。在实际应用中,为了便于匹配,一般希望对称振子的输入电抗为零,这时的振子长度称为谐振长度。谐振半波振子的长度比自由空间中的半个波长略短一些,工程上一般估计缩短5%。天线的输入阻抗与天线的几何形状、尺寸、馈电点位置、工作波长和周围环境等因素有关。线天线的直径较粗时,输入阻抗随频率的变化较平缓,天线的阻抗带宽较宽。
研究天线阻抗的主要目的是为实现天线和传输线间的匹配。欲使发射天线与传输线相匹配,天线的输入阻抗应该等于传输线的特性阻抗。欲使接收天线与接收机相匹配,天线的输入阻抗应该等于负载阻抗的共轭复数。通常接收机具有实数的阻抗。当天线的阻抗为复数时,需要用匹配电路来除去天线的电抗部分并使它们的电阻部分相等。
当天线与传输线匹配时,由发射机向天线或由天线向接收机传输的功率最大,这时在传输线上不会出现反射波,反射系数S11等于零,驻波系数等于1。天线与传输线匹配的好坏程度用天线输入端的反射系数S11或驻波比的大小来衡量。对于发射天线来说,如果匹配不好,则天线的辐射功率就会减小,传输线上的损耗会增大,传输线的功率容量也会下降,严重时还会出现发射机频率“牵引”现象,即振荡频率发生变化。
系统效率:指天线向空间辐射出去的功率(即有效地转换电磁波部分的功率)和天线的输入功率之比。系统效率是考虑天线端口匹配后的实际效率,即天线的系统效率为天线的实际效率(即效率)。
辐射效率:指天线向空间辐射出去的功率(即有效地转换电磁波部分的功率)和输入到天线的有功功率之比。其中,输入到天线的有功功率=天线的输入功率-损耗功率;损耗功率主要包括回波损耗功率和金属的欧姆损耗功率和/或介质损耗功率。辐射效率是衡量天线辐射能力的值,金属损耗、介质损耗均是辐射效率的影响因素。
本领域技术人员可以理解,效率一般是用百分比来表示,其与dB之间存在相应的换算关系,效率越接近0dB,表征该天线的效率越优。
dB:就是分贝,是一个以十为底的对数概念。分贝只用来评价一个物理量和另一个物理量之间的比例关系,它本身并没有物理量纲。两个量之间的比例每增加10倍,则它们的差可以表示为10个分贝。比如说:A="100",B="10",C="5",D="1",则,A/D=20dB;B/D=10dB;C/D=7dB;B/C=3dB。也就是说,两个量差10分贝就是差10倍,差20分贝就是差100倍,依此类推。差3dB就是两个量之间差2倍。
天线回波损耗:可以理解为经过天线电路反射回天线端口的信号功率与天线端口发射功率的比值。反射回来的信号越小,说明通过天线向空间辐射出去的信号越大,天线的辐射效率越大。反射回来的信号越大,说明通过天线向空间辐射出去的信号越小,天线的辐射效率越小。
天线回波损耗可以用S11参数来表示,S11属于S参数中的一种。S11表示反射系数,此参数能够表征天线发射效率的优劣。S11参数通常为负数,S11参数越小,表示天线回波损耗 越小,天线本身反射回来的能量越小,也就是代表实际上进入天线的能量就越多,天线的系统效率越高;S11参数越大,表示天线回波损耗越大,天线的系统效率越低。
需要说明的是,工程上一般以S11值为-6dB作为标准,当天线的S11值小于-6dB时,可以认为该天线可正常工作,或可认为该天线的发射效率较好。
隔离度:是指一个天线发射信号,通过另一个天线接收的信号与该发射天线信号的比值。隔离度是用来衡量天线互耦程度大小的物理量。假定两个天线构成一个双端口网络,那么两个天线之间的隔离度就是天线之间的S21、S12。天线隔离度可以用S21、S12参数表示。S21、S12参数通常为负数。S21、S12参数越小,表示天线之间的隔离度越大,天线互耦程度越小;S21、S12参数越大,表示天线之间的隔离度越小,天线互耦程度越大。天线的隔离度取决于天线辐射方向图、天线的空间距离、天线增益等。
史密斯(Smith)圆图是在反射系散平面上标绘有归一化输入阻抗(或导纳)等值圆族的计算图。Smith圆图主要用于传输线的阻抗匹配上。图表中的圆形线代表电抗的实数值,即电阻值,中间的横线与向上和向下散出的线则代表电阻抗力的虚数值,即由电容或电感在高频下所产生的阻值,当中向上的是正数,向下的是负数。图表最中间的点(1+j0)代表一个已阻抗匹配的电阻数值,同时其反射系数S11的值会是零。图表的边缘代表其反射系数S11的长度是1,即100%反射。在图边的数字代表反射系数S11的角度(0-180度)和波长(由零至半个波长)。
电长度:电长度可以是指,物理长度(即,机械长度或几何长度)乘以电或电磁信号在媒介中的传输时间与这一信号在自由空间中通过跟媒介物理长度一样的距离时所需的时间的比来表示,电长度可以满足以下公式:
其中,L为物理长度,a为电或电磁信号在媒介中的传输时间,b为在自由空间中的中传输时间。
或者,电长度也可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比,电长度可以满足以下公式:
其中,L为物理长度,λ为电磁波的波长。
在一个实施例中,辐射体的物理长度,可以设置为辐射体的电长度±10%,例如±5%。
本申请中的波长,可以是谐振频率的中心频率对应的在介质中的波长,或者天线所支持的工作频段的中心频率对应的在介质中的波长。例如,假设B1上行频段(谐振频率为1920MHz至1980MHz)的中心频率为1955MHz,那波长可以为利用1955MHz这个频率计算出来的波长,或计算出来的在介质中的波长(简称为介质波长)。不限于中心频率,“波长/介质波长”也可以是指谐振频率或工作频段的非中心频率对应的波长/介质波长。为便于理解,本申请实施例中提到的介质波长可以简单地理解为波长。
本申请提及的电流同向/反向分布,应理解为在同一侧的导体上主要电流的方向为同向/反向的。例如,在呈环状的导体上激励同向分布电流(例如,电流路径也是环状的)时,应可理解,环状导体中两侧的导体上(例如围绕一缝隙的导体,在该缝隙两侧的导体上)激励的主要电流虽然从方向上看为反向的,其仍然属于本申请中对于同向分布电流的定义。
等效长度:由于传输距离、所设置的电容和/或电感以及辐射阻抗等因素,电磁波在传输介质上传输时会引起相位差。如果所引起的相位差与导波在预定长度的、具有预定介电常数并且不具备辐射能力的传输线传输时所引起的相位差相同,则在传输介质所传输的等效长度等于传输线的预定长度。等效长度可以受传输介质中对应传输线的物理长度、传输介质中所设置的电容和/或电感、所设置的移相器以及传输线耦合至辐射体的位置等的影响。具体而言,通过设置电容或电感,可以在等效长度基本不变的情况下缩短物理长度。例如,通过设置电容或者电感等器件,物理长度L和等效长度Le的关系可以满足:(1-1/3)Le≤L≤(1+1/3)Le、或(1-1/4)Le≤L≤(1+1/4)Le。
比吸收率(Specific Absorption Ration,SAR),指单位时间内单位质量的物质吸收的电磁辐射能量。国际上通常使用SAR值来衡量终端辐射的热效应。以手机辐射为例,SAR可以指辐射被人体(例如,头部)吸收的比率,SAR值越低,辐射被人体吸收的量越少。
包络相关系数(Envelope Correlation Coefficient,ECC)表示两个天线的辐射方向图的独立程度。如果一个天线完全水平极化,而另一个完全垂直极化,则两个天线的相关性基本为零。类似地,如果一个天线只向天空辐射能量,而另一个只向地面辐射能量,则这些天线的ECC也基本为0。因此,包络相关系数考虑了天线的辐射方向图形状、极化和甚至是两个天线之间场的相对相位。ECC一般表征的是两个天线之间的关系,对于MIMO天线系统而言,可以用多组ECC来表征天线之间的独立性。例如,ECC低于0.5的MIMO天线能够“比较好”的工作。
本申请中的“馈电端”、“馈电点”、“接地端”、“开放端”和“一端”中的“点”或“端”,并不能狭义的理解为一定是一个点,还可以认为是天线辐射体上包括第一端点的一段辐射体,或者还可以认为是传输线和辐射体的连接处的一段辐射体,第一端点是该天线辐射体上第一端的端点。例如,天线辐射体的第一端为馈电端,可以认为是距离该第一端点八分之一个第一波长范围内的一段辐射体,其中,第一波长可以是天线结构的工作频段对应的波长,可以是工作频段的中心频率对应的波长,或者,谐振点对应的波长。例如,天线辐射体的第一端为馈电端,还可以认为是距离该第一端点5mm以内的一段辐射体,或者3mm以内的一段辐射体。例如,天线辐射体的第一端为接地端,可以认为是距离该第一端点5mm以内的一段辐射体,或3mm以内的一段辐射体。又例如,天线辐射体的第一端为开放端,应做两种理解,一种是对于IFA辐射体,IFA辐射体的“开放端”可以认为是距离该第一端点5mm以内的一段辐射体,或3mm以内的一段辐射体;一种是对于CRLH辐射体,CRLH辐射体的“开放端”可以认为是离CRLH辐射体的接地端的端点距离5mm以上的一段辐射体,或距离10mm以上的一段辐射体。在一个实施例中,CRLH辐射体的开放端为馈电端,从馈电端远离接地端的方向电连接一单极子辐射体,该单极子辐射体也可以看做是CRLH辐射体的开放端,应理解,该单极子辐射体可以看作CRLH辐射体的一部分。
本申请中的“耦合至接地端”,应理解为与上述“接地端”电连接或间接耦合,电连接点或间接耦合的点应位于上述“接地端”上。
本申请中的“耦合至开放端”,应理解为与上述“开放端”电连接或间接耦合,电连接点或间接耦合的点应位于上述“开放端”上。
本申请中的“附近”、“邻近”、“靠近”是指两个具有上述关系(即,“附近”、“邻近”、“靠近”)的点或者部分(例如馈电点和接地端或开放端)之间的距离不超过特定距离值,该距离值可以采用了介质波长的1/16或介质波长的1/8或其他值来约束,但这两个值也仅用于示 例。在一个实施例中,“附近”、“邻近”、“靠近”是指两个具有上述关系(即,“附近”、“邻近”、“靠近”)的点或者部分(例如馈电点和接地端或开放端)之间的距离不超过10mm,例如不超过5mm,或例如不超过3mm。在一个实施例中,“附近”、“邻近”、“靠近”是指两个具有上述关系(即,“附近”、“邻近”、“靠近”)的点或者部分(例如馈电点和接地端或开放端)至少局部重叠,或者看作其之间的距离为0mm。本申请以上内容中提及的馈电点、馈电端可以是指传输线与辐射体的连接区域(又可称为连接处)中的任一点,例如中心点。点(如馈电点、连接点、接地点等)到缝隙或者缝隙到点的距离可以是指点到该缝隙的中点的距离,也可以是指点到该缝隙的两端的距离。
本申请提供的技术方案适用于采用以下一种或多种通信技术的电子设备:蓝牙(blue-tooth,BT)通信技术、全球定位系统(global positioning system,GPS)通信技术、无线保真(wireless fidelity,WiFi)通信技术、全球移动通讯系统(global system for mobile communications,GSM)通信技术、宽频码分多址(wideband code division multiple access,WCDMA)通信技术、长期演进(long term evolution,LTE)通信技术、5G通信技术以及未来其他通信技术等。本申请实施例中的电子设备可以是手机、平板电脑、笔记本电脑、智能家居、智能手环、智能手表、智能头盔、智能眼镜等。电子设备还可以是具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备,5G网络中的电子设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的电子设备等,本申请实施例对此并不限定。图1示例性示出了本申请提供的电子设备,以电子设备为手机进行说明。
如图1所示,电子设备200可以包括:盖板(cover)201、显示屏/模组(display)202、印刷电路板(printed circuit board,PCB)203、中框(middle frame)204和后盖(rear cover)205。应理解,在一些实施例中,盖板201可以是玻璃盖板(cover glass),也可以被替换为其他材料的盖板,例如超薄玻璃材料盖板,PET(Polyethylene terephthalate,聚对苯二甲酸乙二酯)材料盖板等。
其中,盖板201可以紧贴显示模组202设置,可主要用于对显示模组202起到保护、防尘作用。
在一个实施例中,显示模组202可以包括液晶显示面板(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示面板或者有机发光半导体(organic light-emitting diode,OLED)显示面板等,本申请对此并不做限制。
中框204主要起整机的支撑作用。图1中示出PCB203设于中框204与后盖205之间,应可理解,在一个实施例中,PCB203也可设于中框204与显示模组202之间,本申请对此并不做限制。其中,印刷电路板PCB203可以采用耐燃材料(FR-4)介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板是一种高频板。PCB203上承载电子元件,例如,馈电单元等。在一个实施例中,印刷电路板PCB203上可以设置一金属层。该金属层可用于印刷电路板PCB203上承载的电子元件接地,也可用于其他元件接地,例如支架天线、边框天线等,该金属层可以称为地板,或接地板,或接地层。在一个实施例中,该金属层可以通过在PCB203中的任意一层介质板的表面蚀刻金属形成。在一个实施例中,用于接地的该金属层可以设置在印刷电路板PCB203上靠近中框204的一侧。在一个实施例中,印刷电路板PCB203的边缘可以看作其接地层的边缘。可以在一个实施例中,金属中框204也可用于上述元件的 接地。电子设备200还可以具有其他地板/接地板/接地层,如前所述,此处不再赘述。
其中,电子设备200还可以包括电池(图中未示出)。电池可以设置于设于中框204与后盖205之间,或者可设于中框204与显示模组202之间,本申请对此并不做限制。在一些实施例中,PCB203分为主板和子板,电池可以设于所述主板和所述子板之间,其中,主板可以设置于中框204和电池的上边沿之间,子板可以设置于中框204和电池的下边沿之间。
电子设备200还可以包括边框2041,边框2041可以至少部分地由金属等导电材料形成。边框2041可以设于显示模组202和后盖205之间并绕电子设备200的外围周向延伸。边框2041可以具有包围显示模组202的四个侧边,帮助固定显示模组202。在一种实现方式中,金属材料制成的边框2041可以直接用作电子设备200的金属边框,形成金属边框的外观,适用于金属工业设计(industrial design,ID)。在另一种实现方式中,边框2041的外表面还可以为非金属材料,例如塑料边框,形成非金属边框的外观,适用于非金属ID。
中框204可以包括边框2041,包括边框2041的中框204作为一体件,可以对整机中的电子器件起支撑作用。盖板201、后盖205分别沿边框的上下边沿盖合从而形成电子设备的外壳或壳体(housing)。在一个实施例中,盖板201、后盖205、边框2041和/或中框204,可以统称为电子设备200的外壳或壳体。应可理解,“外壳或壳体”可以用于指代盖板201、后盖205、边框2041或中框204中任一个的部分或全部,或者指代盖板201、后盖205、边框2041或中框204中任意组合的部分或全部。
中框204上的边框2041可以至少部分地作为天线辐射体以收/发射频信号,作为辐射体的这一部分边框,与中框204的其他部分之间可以存在间隙,从而保证天线辐射体具有良好的辐射环境。在一个实施例中,中框204在作为辐射体的这一部分边框处可以设置孔径,以利于天线的辐射。
或者,可以不将边框2041看作中框204的一部分。在一个实施例中,边框2041可以和中框204连接并一体成型。在另一实施例中,边框2041可以包括向内延伸的突出件,以与中框204相连,例如,通过弹片、螺丝、焊接等方式相连。边框2041的突出件还可以用来接收馈电信号,使得边框2041的至少一部分作为天线的辐射体收/发射频信号。作为辐射体的这一部分边框,与中框204之间可以存在间隙,从而保证天线辐射体具有良好的辐射环境,使得天线具有良好的信号传输功能。下文中将主要以边框2041的侧边作为辐射体的一部分来描述本申请的实施例。应当理解的是,其他情况也是类似的,在下文中将不再分别赘述。
其中,后盖205可以是金属材料制成的后盖;也可以是非导电材料制成的后盖,如玻璃后盖、塑料后盖等非金属后盖;还可以是同时包括导电材料和非导电材料制成的后盖。
电子设备200的天线还可以设置于壳体的内侧,更具体地,设置在边框2041内侧。当电子设备200的边框2041为非导电材料时,天线辐射体可以位于电子设备200内并延边框2041设置。例如,天线辐射体贴靠边框2041设置,以尽量减小天线辐射体占用的体积,并更加的靠近电子设备200的外部,实现更好的信号传输效果。需要说明的是,天线辐射体贴靠边框2041设置是指天线辐射体可以紧贴边框2041设置,也可以为靠近边框2041设置,例如天线辐射体与边框2041之间能够具有一定的微小缝隙。
电子设备200的天线还可以设置于壳体内的其他任意适当的位置,例如支架天线、毫米波模组等,设置于壳体内的天线的净空可以由中框204、和/或边框2041、和/或后盖205、和/或显示屏202中任一个上的开缝/开孔来得到,或者由任几个之间形成的非导电缝隙/孔径来得到,天线的净空设置可以保证天线的辐射性能。应可理解,天线的净空可以是由电子设备 200内的任意导电元器件来形成的非导电区域,天线通过该非导电区域向外部空间辐射信号。在一个实施例中,天线的形式可以为基于柔性主板(Flexible Printed Circuit,FPC)的天线形式,基于激光直接成型(Laser-Direct-structuring,LDS)的天线形式或者微带天线(Microstrip Disk Antenna,MDA)等天线形式。在一个实施例中,天线也可采用嵌设于电子设备200的屏幕内部的透明结构,使得该天线为嵌设于电子设备200的屏幕内部的透明天线单元。
当然,应当理解的是,图1中所示出的这种电子设备的结构和布置只是示意性的,而不旨在限制本申请的保护范围。只要适用,其他任意适当结构或者布置的电子设备也是可能的。下文中将主要以图1中所示出的结构为例来描述根据本申请实施例的电子设备200,应当理解的是,应用于其他电子设备200也是类似的。在下文中将不再分别赘述。
在电子设备的轻薄化、极致屏占比等大趋势的影响下,如何设计电子设备200的天线以满足宽频带天线的要求越来越具有挑战性。电子设备200上的宽频段天线,为达到较好的手握性能,可以采用分布式馈电。例如对位于手机上方的两个单极天线通过分布式馈电连接,同时在两个天线上引入相位差约为90°的信号/导波,呈现双谐振宽带匹配的效果。还可以对位于手机上方的两个单极天线以及右下方的第三个单极天线实现分布式馈电,同时在三个天线上依次引入约60°、约120°的相位差,呈现三谐振宽带匹配的效果。因此,通过增加辐射体数量,可以实现单天线的带宽拓展。
在一种实施例中,可以采用分布式天线设计,例如,采用对称和反对称馈电,激励对称结构的辐射体,实现正交模式的MIMO天线对。在这种实施例中,辐射体对称设计于手机两侧,通过具有宽带匹配电路的对称、反对称馈电连接,实现低频的双模天线对,同时这两个天线均具有一定的带宽,隔离度较高。
本申请实施例还提供了一种天线,该天线采用具有预定长度传输线104来为辐射体进行馈电。馈电单元103在辐射体上馈电时,激励辐射体模式以形成谐振的同时,也能够在传输线104上激励传输线模式以形成谐振。传输线模式能够与辐射体模式叠加,从而能够有效地提升天线的效率和带宽。下面将结合附图来描述这种天线的示例性实施例。
本申请中所提到的传输线104可以包括但不限于:微带线、带状线、同轴线、或其他线状导电体、以及前述项的任意组合。其中,线状导电体可以是以下一种或多种的组合:形成LCP、FPC、和/或PCB的线状导电材体;形成于绝缘介质上的线状导电体(例如LDS天线体、玻璃/陶瓷天线体)。在一个实施例中,线状导电体可以理解为长度大于2倍宽度的条形或弯曲形的导电体。由于传输线能够采用各种适当的材料或线材制成,使得设计和结构自由度高,能够被设计在电子设备的任意适当的位置,从而更加有利于天线和电子设备的设计灵活性。下文中将主要以常用的微带线作为传输线104为例来描述根据本公开实施例的发明构思。应当理解的是,对于传输线104由其他方式构成的情况也是类似的,在下文中将不再分别赘述。
微带线是由支在介质基片上的单一导体带构成的传输线104。微带线是由介质基片,和介质基片上的导体条以及介质底部的金属地板构成。图2示出了50ohm微带线沿垂直于导体条的延伸方向截取的示例性截面图。如图2所示,导体条的宽度W约为1mm~1.4mm的范围内,例如约1.2mm,介质基片的高度h在0.6mm~0.8mm之间,例如约0.7mm。介质基片的介电常数ε约为4.4。当该传输线104应用于天线中时,其长度T被设置为T≈1/4λ或T≈1/2λ,其中λ为所述天线在被馈电时所产生的谐振中的一个谐振所对应的介质波长,下文中将结合不同的实施来分别进行描述。
图3示出了传输线104的示例性结构。如图3所示,传输线104包括两端,即,第一端和第二端。根据本公开实施例的传输线104的这两端可以接地或开放。在一些实施例中,传输线104的一端或两端可以直接接地,该端可以称为接地端。在一些实施例中,接地端也可以通过耦合至天线的辐射体的接地端附近而接地。在一些实施例中,传输线104在一端的端部附近5mm以内直接或耦合接地,例如,距离端部2mm左右接地。在一些实施例中,传输线104的一端或两端可以通过不接地而实现开放,该端可以称为开放端。在一些实施例中,该端也可以通过耦合至天线的辐射体的开放端附近而开放。在一些实施例中,传输线104在一端的端部附近的5mm以内不接地,例如,距离端部2mm以内不接地。
下文中将分别结合传输线104是否接地的不同情况来描述根据本公开的构思。图4(A)示出了传输线104两端均接地的情况。在这种情况下,传输线104形成loop辐射体类型的传输线104,并且传输线104的长度T约为1/2λ,其中λ为所述天线在被馈电时所产生的谐振中最低谐振所对应的介质波长。本申请中的“长度T约为1/2λ”可以理解为传输线的长度T满足1/2λ1≤T≤1/2λ2,其中λ1和λ2分别为所述馈电单元在馈电时,所述天线所产生的最低谐振所对应的工作频段的最小介质波长和最大介质波长。应当理解的是,本公开中所提到的介质波长是指一个波长范围。传输线104作为导体结构,在馈电单元103耦合至其耦合点(或者,馈入点)以进行激励时,也能够分别在介质波长的1/2、1倍、3/2倍等1/2的自然数倍处产生谐振,从而激励出传输线模式。图4(B)和(C)分别示出了传输线104本身在被激励时的S11参数和效率示意图。由于传输线104环境较为封闭,其辐射效率很低,基本可以忽略不计。图4(D)示出了传输线104本身在被激励时的电流电场分布示意图。结合图4(B)至图4(D)可以看出,图4(A)中所示的传输线104在被馈电时可以激励出三个传输线模式。图4(D)示出这三个传输线模式的谐振频率可以分别对应于1.05GHz、2.14GHz和3.2GHz。
在本申请的实施例中,在馈电单元馈电至传输线,并通过传输线耦合馈电至第一辐射体和第二辐射体时,第一辐射体用于产生第一谐振,传输线用于产生与所述第一谐振邻近的谐振;第二辐射体用于产生第二谐振,传输线还用于产生与所述第二谐振邻近的谐振。在一个实施例中“邻近的谐振”应理解为,两个谐振均包括同一工作频段的频率;或者,两个谐振分别包括相邻工作频段的频率;或者,两个谐振的在天线结构的S11曲线图中为相邻的谐振且在-2dB以下的区间有重叠区域。
与loop辐射体的设计类似,如果在传输线104的预定位置设置接地调节电路,能够调节传输线模式的谐振频率。调节电路可以包括电容和/或电感。具体而言,如果能够在半波长模式的电流强点、1倍和1.5倍波长模式的电场强点设置接地的电容,能够将中高频的谐振频率往低偏移。如果能够在上述位置设置电感,能够将中高频的谐振频率往高偏移。例如,在一些实施例中,如果在1/2波长模式(对应于图4(D)中1.05GHz)的电流强区、1倍(对应于图4(D)中2.14GHz)和3/2波长模式(对应于图4(D)中3.2GHz)的电场强区加载电容,如图5(A)所示,能够使低频模式(例如1/2波长模式)基本不变,中频(例如1倍波长模式)和高频模式(例如1.5倍波长模式)往低偏移,如图5(B)所示,这样能够调节低频及中高频模式从而接近所需的设计频段,来进一步提升天线的各项性能。
如前文中所提到的,传输线104的电长度对应于某一谐振频率(例如最低谐振频率)对应的介质波长的约1/2或者约1/4。在一个实施例中,传输线104的电长度对应于某一谐振频率(例如最低谐振频率)对应的介质波长的约1/2,其中,传输线的长度T满足1/2λ1≤T≤1/2λ2,其中λ1和λ2分别为所述馈电单元在馈电时,所述天线所产生的最低谐振所对应的工作频段 的最小介质波长和最大介质波长。在一个实施例中,传输线104的电长度对应于某一谐振频率(例如最低谐振频率)对应的介质波长的约1/4,其中,传输线的长度T满足1/4λ1≤T≤1/4λ2,其中λ1和λ2分别为所述馈电单元在馈电时,所述天线所产生的最低谐振所对应的工作频段的最小介质波长和最大介质波长。不同于辐射体,传输线104设计可以不依赖空间,因此其结构可以充分小型化。在一些实施例中,传输线104电长度可以通过提高介质的介电系数等方式而缩短,以此方式,物理长度也会相应地缩短。例如,在对应于介电常数为4.4的情况下,最低谐振频率对应的介质波长的1/2所对应的物理长度约为75mm,在对应于介电常数为16的情况下,最低谐振频率对应的介质波长的1/2所对应的物理长度约为32mm,在对应于介电常数为33的情况下,最低谐振频率对应的介质波长的1/2所对应的物理长度约为22mm。以此方式,可以通过采用较高介电常数的介质来缩小传输线104的长度,从而缩小传输线104所占用的面积,并由此有利于天线和电子设备的小型化。
在一些实施例中,传输线104也可以通过采用曲折结构来减小占地面积,从而利于天线和电子设备的小型化。
基于上述传输线104结构,将其一端连接至IFA辐射体的接地端附近,另一端直接接地(如图6(A)所示)。在这种情况下,辐射体的长度约为天线的谐振频率对应的介质波长的四分之一。在图6(A)所示的实施例中,IFA辐射体形成低频天线,其所产生的谐振可以覆盖低频频段。在一些替代的实施例中,传输线104一端连接至IFA辐射体的接地端附近,另一端直接接地(如图6(B)所示)。在这种情况下,辐射体的长度约为天线的谐振频率对应的介质波长的四分之一。在图6(B)所示的实施例中,IFA辐射体形成中频天线,其所产生的谐振可以覆盖中频频段。由于传输线104与辐射体的连接点均靠近辐射体的接地点,此时,传输线104类似于两端接地的情况。在图6所示的实施例中,辐射体采用金属边框设置在电子设备边框的任意位置一个角部。
通过前述的分析,在馈电时,传输线104(长度约为天线的谐振频率对应的介质波长的二分之一)能够在低频和中高频分别产生三个谐振,以形成传输线模式。在图6(A)和图6(B)所示的天线结构中的传输线104上进行馈电时,辐射体在低频、中频和高频分别产生谐振,以形成辐射体模式。通过将传输线104的长度设置约为低频谐振频率对应的介质波长的二分之一,传输线模式和辐射体模式在相应的频段叠加,从而使效率和带宽得到有效提升。在一个实施例中,传输线104连接至辐射体的接地端附近,可以满足满足传输线模式的边界条件。
以图5(A)中示出的结构为第一天线,图6(A)中示出的结构为第二天线并且图6(B)所示的结构为第三天线,图7(A)和(B)分别示出了这三种天线的S11曲线图和效率图。可以发现,传输线104结构对第二天线的低频和高频频段均实现模式扩展,对第三天线的低频频段也实现了模式扩展,极大地改善了效率带宽。
图6(A)和(B)分别示出了传输线104的一端连接至辐射体一端的情况,在一些实施例中,也可以使传输线104的两端分别连接工作于相同或不同频段的辐射体。在一些实施例中,传输线104的两端分别连接的辐射体可以包括边框的一个连续的区段。这可以包含两种情况,一种情况就是与传输线连接的第一辐射体和第二辐射体相连并包括边框的一个连续的区段;另一种情况就是第一辐射体和第二辐射体分别包括边框的连续的区段,但两者所在的区段是分离的。这里的分离可以是指两个导电区段之间通过不导电材料隔离,或者指两个导电区段之间通过边框的其他部分连接,因此两者的接地端是分离的,或者指第一辐射体和第 二辐射体的两个导电区段之间既包括不导电材料也包括边框的其他部分。这些情况将在后文中做进一步阐述。
传输线104的两端分别连接工作于相同或不同频段的辐射体,可例如,下文的图8示出了传输线104的一端与第一辐射体1013连接,另一端与第二辐射体1014连接,第一辐射体1013和第二辐射体1014工作于不同的频段,例如分别工作于低频频段和中频频段。还可例如,后文在图54示出了天线100的一种示例性结构。图54示出的天线100包括工作于相同频段的辐射体对101(包括第一辐射体1013和第二辐射体1014)、传输线102和馈电单元1031。在图8和图54所示的实施例中,传输线分别连接于第一辐射体1013和第二辐射体1014的接地端附近。应可理解,传输线也可以分别连接于第一辐射体1013和第二辐射体1014的开放端附近,或者传输线的一端连接于其中一个辐射体的接地端,另一端连接于另一辐射体的开放端。
连接工作于相同或不同频段的辐射体的传输线均包括等效长度不等的两个区段,例如物理长度不等的两个区段。在下文中将主要以传输线的物理长度为例来描述根据本公开的发明构思。应可理解,连接工作于相同或不同频段的辐射体的传输线可以是一个或者多个,例如两个传输线,每一个传输线的两端分别连接至该相同或不同频段的辐射体上,且每一个传输线均包括等效长度不等的两个区段,例如物理长度不等的两个区段。
除了物理长度外,还可以通过以下中的至少一种来确定等效长度:对应传输线和辐射体对之间设置的电容或电感、对应传输线上设置的移相器、和对应传输线耦合至所述辐射体对的位置,这将在后文中做进一步阐述。本文中单独提到“长度”一般是指物理长度。馈电单元经由这两个区段而分别耦合至第一辐射体1013和第二辐射体1014,如图8或图54所示。两个区段的等效长度不同,从而馈电单元所提供的激励电流传输到第一辐射体1013和第二辐射体1014上时会存在相位差。在一些实施例中,两个区段之间的长度之间的差可以在介质波长的1/8~3/8之间,例如大致在介质波长的1/4。例如,对应于谐振频率为1920MHz至1980MHz的频段而言,该频段的中心频率1955MHz对应的介质波长为15cm,由此计算得出在一些实施例中,两个区段的长度的差可以在1cm~7cm之间。在一些替代的实施例中,一条传输线的两个区段之间的长度之间的差可以小于1/8或者更小。这些情况将在后文中做进一步阐述。此外,还应当说明的是,本文中所提到的范围都是包括端点值。例如,长度的差D可以在1cm~7cm之间表示1cm≤D≤7cm。其他关于比例和/或角度的范围也是类似的。基于不对称馈电的辐射体对101(例如,包括第一辐射体1013和第二辐射体1014),激励电流通过传输线的两个区段分别到达馈电点A、B点(例如,传输线与两个辐射体的电连接点),具有相位差Ф,相位差在90°±45°的范围内。例如,在一些实施例中,激励电流通过两个区段分别到达馈电点A、B点的相位差在90°±30°的范围内。
在一个实施例中,传输线的长度是1/2介质波长的奇数倍,例如1/2介质波长。传输线的两个区段的等效长度相差1/4介质波长。在一个实施例中,馈电部能够在A、B点上实现等幅同向的电流。在一个实施例中,馈电部在辐射体对101上激励出的电流方向相同。
在一个实施例中,传输线的长度是1/2介质波长的奇数倍,可以理解为传输线的长度在[1/2介质波长的奇数倍×(1±20%)]的范围内。在一个实施例中,传输线的两个区段的长度相差1/4介质波长,可以理解为长度相差[1/4介质波长×(1±10%)]的范围内。对于等效长度,考虑到传输线所设置的电容、电感等,如前文中所提到的,物理长度L和等效长度Le的关系可以满足:(1-1/3)Le≤L≤(1+1/3)Le,或者(1-1/4)Le≤L≤(1+1/4)Le。
在一个实施例中,传输线的长度是1/2介质波长的偶数倍,例如1倍介质波长。传输线的两个区段的长度相差1/4介质波长。在一个实施例中,馈电部能够在A、B点上实现等幅反向的电流。在一个实施例中,馈电部在辐射体对101上激励出的电流方向相反。
在一个实施例中,传输线的长度是1/2介质波长的偶数倍,可以理解为传输线的长度在(1/2介质波长的偶数倍×(1±20%))的范围内。在一个实施例中,传输线的两个区段的长度相差1/4介质波长,可以理解为长度相差(1/4介质波长×(1±10%))的范围内。对于等效长度,考虑到传输线所设置的电容、电感等,如前文中所提到的,物理长度L和等效长度Le的关系可以满足:(1-1/3)Le≤L≤(1+1/3)Le,或者(1-1/4)Le≤L≤(1+1/4)Le。
本申请的实施例,通过使得传输线的两个区段之间的长度不等,例如,根据在辐射体对101上所需的相位差,可以将其长度的差设置为从1/8-3/8介质波长的其他范围。以此方式,天线100也能够分别实现辐射体对101上电流相位差控制,从而有利于改善天线100的各种性能。
在一些替代的实施例中,除了物理长度不等外,也可以通过其他适当的方式来使区段或者传输线的等效长度不等来实现馈电点之间相位差。在这样的实施例中,天线也是包括辐射体对、至少一条传输线和馈电单元。至少一条传输线包括两个区段。馈电单元分别经由这两个区段而耦合到第一辐射体的第一馈电点和第二辐射体的第二馈电点。通过使得两个区段的等效长度不等,使得馈电单元所提供的激励电流在第一馈电点和第二馈电点处的相位差在90°±45°的范围内,例如,在一些实施例中,相位差在90°±30°的范围内。在一些实施例中,除了两个区段的物理长度外,两个区段的等效长度还可以通过以下中的至少一项来确定:对应区段和辐射体对之间设置的电容或电感、对应区段上设置的移相器、和对应区段耦合至所述辐射体对的位置。
图8示出了传输线104的一端与第一辐射体1013连接,并连接至第一辐射体1013的接地端附近,另一端与第二辐射体1014连接,并连接至第二辐射体1014的接地端附近的示意图。在一个实施例中,第一辐射体1013可以是工作于低频频段的辐射体。在一个实施例中,第二辐射体1014可以是工作于中频频段的辐射体。在图8所示的示例中,第一辐射体1013的电长度约在天线的第一谐振频率(例如,低频)对应的介质波长的八分之一到八分之三之间。在一个实施例中,低频辐射体的物理长度可以在45mm~70mm之间,例如,58.5mm。第二辐射体1014的电长度在天线的第二谐振频率(例如,中频)对应的介质波长的八分之一到八分之三之间。在一个实施例中,中频辐射体的物理长度可以在22mm~35mm之间,例如,27.5mm。传输线104采用微带线结构,其电长度对应于第一传输线谐振频率(例如,低频)的波长的二分之一左右。在一个实施例中,低频传输线的物理长度约在65mm~75mm之间,例如70mm。第一辐射体1013和第二辐射体1014与边框的其他部分之间可以设置有缝隙,缝隙的宽度可以在3mm以内,例如,在一些实施例中,该宽度可以为2mm以内,例如约1mm。缝隙中可以填充有不导电材料。
在这种情况下,基于上述分析,此种布置的天线能够在低频、中频、高频各激励出2个模式实现全频段6个谐振频率的覆盖,反射系数S11及效率曲线如图9(A)和图9(B)所示,每个模式的电流分布如图10所示。如图9和图10的(A-B)所示,天线的低频频段的两个谐振频率主要由第一辐射体1013的低频谐振频率和传输线104的低频谐振频率(对应于1/2介质波长模式)实现。如图9和图10的(C-D)所示,中频频段的两个谐振频率主要由第二辐射体1014的低频谐振频率和传输线104的中频谐振频率(对应于1倍介质波长)模式。如图 9和图10的(E-F)所示,高频频段的两个谐振频率主要由第一辐射体1013的高频谐振频率和传输线104的高频谐振频率(对应于1.5倍介质波长模式)实现。相比单个辐射体的情况,图8所示的天线结构的效率和带宽显著增加。在一些实施例中,也可以将图8中所示的辐射体由两个IFA辐射体合并为T辐射体结构。可以看作是第一辐射体1013和第二辐射体1014共用接地端,并同样采用类似的传输线104连接馈电,如图11所示。在图11所示的示例中,第一辐射体1013的电长度约在天线的第一谐振频率(例如,低频)对应的介质波长的八分之一到八分之三之间。在一个实施例中,低频辐射体的物理长度可以在45mm~70mm之间,例如,50mm。第二辐射体1014的电长度在天线的第二谐振频率(例如,中频)对应的介质波长的八分之一到八分之三之间。在一个实施例中,中频辐射体的物理长度可以在22mm~35mm之间,例如,30mm。传输线104采用微带线结构,其电长度对应于第一传输线谐振频率(例如,低频)的波长的二分之一左右。在一个实施例中,低频传输线的物理长度约在65mm~75mm之间,例如70mm。采用这种结构的天线同样可以在低频、中频及高频实现模式扩展,其反射系数S11和效率曲线如图12(A)和(B)所示。6个模式的电流分布分别如图13(A)至图13(F)所示。
以直接对T天线进行馈电为第一天线,图11所示的天线为第二天线,图14(A)和(B)分别示出了两种天线的S11曲线和效率曲线。其中,第一天线的T型辐射体上仅设置一个馈电点,而不限制其馈电点的具体位置。通过图14可以发现,第一天线最多激励处辐射体的3个模式,而且模式激励不充分,效率带宽不足。在采用上述约为1/2介质波长的传输线104耦合至辐射体的接地端附近馈电,以形成第二天线时,第二天线的效率和带宽都能够得到显著地提升。
在一些实施例中,本申请的传输线104结构也可应用在工作于相同频段的两个辐射体上。在一些实施例中,本申请的传输线104结构也可应用在尺寸相当的两个辐射体上。如图15所示,两个IFA辐射体结构合并的T天线结构,采用如前文中所提到的传输线104连接至接地端附近进行馈电,如图15所示。在图15所示的示例中,第一辐射体1013和第二辐射体1014的电长度约在天线的第一谐振频率(例如,低频)对应的介质波长的八分之一到八分之三之间。在一个实施例中,低频辐射体的物理长度可以在45mm~70mm之间,例如,52.5mm。传输线104采用微带线结构,其电长度对应于第一传输线谐振频率(例如,低频)的波长的二分之一左右。在一个实施例中,低频传输线的物理长度约在65mm~75mm之间,例如74mm。图16(A)示出了这种天线的S11曲线和阻抗圆图,图16(B)示出了其效率曲线图。从图中可以看粗,这种天线结构可以在低频段激励三个模式,由辐射体所产生的天线的两个模式(将在下文中做进一步阐述)和传输线104的第一传输线谐振频率模式共同形成。图17(A)至(C)显示了这三个模式的电流分布。
如前文中所提到的,传输线104的小型化可以通过介电常数的电介质来实现。图18示出了图15所示的实施例中采用不同电介质加载的传输线104设计。图18(A)示出了第一天线,其中在对应于介电常数为4.4的情况下,最低谐振频率对应的介质波长的1/2所对应的传输线104物理长度约为75mm;图18(B)示出了第二天线,其中在对应于介电常数为16的情况下,最低谐振频率对应的介质波长的1/2所对应的传输线104物理长度约为32mm;以及图18(C)示出了第三天线,其中在对应于介电常数为33的情况下,最低谐振频率对应的介质波长的1/2所对应的传输线104物理长度约为22mm。图18(D)示出了这几种天线的S11和阻抗圆图,图18(E)示出了这几种天线的效率曲线图。可以看出,随着介电常数的升高 传输线104长度下降了2/3以上,但仍然满足1/2介质波长的电长度要求。因此前文中所提到的天线模式和效率带宽能够保持。
在一些实施例中,替代地或者附加地,传输线104也可以具有多次曲折绕线形式,图19(A)示出了在对应于介电常数为33的情况下,采用最少次曲折结构的传输线104(作为第一天线的传输线);图19(B)示出了同样情况下采用多次曲折结构的传输线104(作为第二天线的传输线)。图19(C)和(D)分别示出了这两种天线结构的S11曲线和效率曲线图。可以看出,通过采用多次曲折结构的传输线104,天线模式和效率带宽影响很小,从而利于保持高带宽和效率的情况下进一步使天线和电子设备小型化。
当然,应当理解的是,采用不同介电常数或多次曲折结构来使传输线104小型化的实施例只是示意性的,并不旨在限制本公开的保护范围。这种方式来使传输线104小型化可以应用于任意适当的实施例中,包括但不限于图6所示的实施例、图8所示的实施例、图11所示的实施例以及下文中将要提到的各种实施例中。这些在下文中将不再分别赘述。
在一些实施例中,传输线104结构还可以和辐射体端的阻抗匹配电路组合,进一步增加谐振频率数目,从而提高带宽。图20(A)所示实施例与图15的结构类似,不同在于,图20(A)所示实施例在传输线104和辐射体的连接点增加串联电容并联电感的阻抗匹配电路。图20(B)和图20(C)分别示出了该天线结构的的S11和效率曲线图。在一个实施例中,图20(A)所示实施例可在目标频段(例如,低频频段)激励出5个模式,如图20(B)所示的mode1至mode5,其电流分布如图21的(A)至(E)所示。
以图22(A)所示的天线为第一天线,图15所示的天线为第二天线,图20所示的天线为第三天线,图22(B)和图22(C)分别示出了这三种天线的S11曲线和效率曲线图,图23(A)和(B)分别示出了这三种天线的左手模式和右手模式下的效率图。如图22和图23所示,自由空间下,相比于图22(A)所示的天线结构(第一天线),图15所示的天线结构(第二天线)的-4dB效率带宽增加一倍左右,图20(A)所示的天线结构(第三天线)的-4dB效率带宽增加两倍以上。在手持场景下,图20(A)所示的天线结构在整个低频段(700~1200MHz)的左手持握和右手持握效率均达到-8.5dB以上。
应当理解的是,阻抗匹配电路应用于传输线104和低频辐射体之间以提高低频频段的带宽,上述实施例只是示意性的,并不旨在限制本公开的保护范围。该阻抗匹配电路可以应用于传输线104与任意适当频段的辐射体之间以提高对应辐射频段的带宽。这些在下文中将不再分别赘述。
上文结合附图描述了传输线104的两端都接地(直接接地或者连接至辐射体的接地端附近)的情况,在一些实施例中,传输线104的两端也可以呈开放状态,即,为开放端。图24示出了传输线104两端均开放的情况。在这种情况下,传输线104长度T被设置约为1/2λ,其中λ为所述天线在被馈电时所产生的谐振中最低谐振所对应的介质波长。在这种情况下,当在远离开放端(例如,在电流强点或电流强区)馈电时,也能够分别在介质波长的1/2、1倍、3/2倍等1/2的自然数倍处产生谐振,从而激励出传输线模式。图25(A)和(B)分别示出了传输线104本身在被激励时的S11参数和效率示意图。类似地,由于传输线104环境较为封闭,其辐射效率很低,基本可以忽略不计。图26示出了传输线104本身在被激励时的电流电场分布示意图。结合图25和图26可以看出,图24中所示的传输线104在被馈电时可以激励出谐振频率分别对应于1GHz、2.03GHz和3.02GHz的传输线模式。
在这种情况下,如果在传输线104的预定位置设置接地调节电路,能够调节传输线模式 的谐振频率。调节电路可以包括电容和/或电感。具体而言,如果能够在半波长模式的电流强点、1倍和1.5倍波长模式的电场强点设置接地的电容,能够将中高频的谐振频率往低偏移。如果能够在上述位置设置电感,能够将中高频的谐振频率往高偏移。在一些实施例中,如果在1/2波长模式(对应于图26中1GHz)的电流强区、1倍(对应于图26中2.03GHz)和3/2波长模式(对应于图26中3.02GHz)的电场强区加载电容(作为第二天线),如图27(A)所示,与图24中所示的传输线104的情况(作为第一天线)相比,能够使低频模式基本不变,中频和高频模式往低偏移,如图27(B)所示,这样能够调节低频及中高频模式从而接近所需的设计频段,来进一步提升天线的各项性能。
基于上述传输线104结构,将其一端连接至第一复合左右手辐射体的开放端附近,另一端为开放状态(如图28(A)所示)。在一个实施例中,传输线104结构与复合左右手辐射体的连接点在辐射体的中心点与开放端之间。在这种情况下,辐射体的长度设置为天线的第一谐振频率对应的介质波长的四分之一。在一些替代的实施例中,传输线104一端连接至第二复合左右手辐射体的开放端附近,另一端为开放状态(如图28(B)所示)。在这种情况下,辐射体的长度为天线的第二谐振频率对应的介质波长的四分之一。由于传输线104与辐射体的连接点均靠近辐射体的开放端,此时,传输线104类似于两端开放的情况。在图28所示的实施例中,第一复合左右手辐射体可以是低频辐射体,其工作频段为低频频段。在一个实施例中,第二复合左右手辐射体可以是中频辐射体,其工作频段为中频频段。在一个实施例中,图28中示出的辐射体1013采用金属边框设计在电子设备边框的任意位置。
通过前述的分析,在馈电时,传输线104(长度约为天线的低频谐振频率对应的介质波长的四分之一)能够在低频和中高频分别产生三个谐振,以形成传输线模式。在图28(A)和图28(B)所示的天线结构在被馈电时,辐射体上会在低频、中频和高频分别产生谐振,以形成辐射体模式。通过将传输线104的长度设置为低频谐振频率对应的介质波长的二分之一左右,传输线模式和辐射体模式在各自的频段能够叠加,从而使效率和带宽得到有效提升。在一个实施例中,传输线104连接至辐射体的开放端附近,可以满足传输线模式的边界条件。以图27中示出的结构为第一天线,图28(A)中示出的结构为第二天线并且图28(B)所示的结构为第三天线,图29(A)和(B)分别示出了这三种天线的S11曲线图和效率图。可以发现,传输线104结构对低频辐射体(第二天线)的低频和高频频段均实现模式扩展,对中频辐射体(第三天线)的低频频段也实现了模式扩展,极大地改善了效率带宽。此外,这种带宽扩展方式不需要增加辐射体的尺寸,从而有利于天线以及电子设备的小型化。
图28(A)和(B)分别示出了传输线104的一端辐射体1013,一端开放。在一些实施例中,也可以使传输线104的两端分别连接工作于相同或不同频段的辐射体。图30示出了传输线104的一端与第一辐射体1013连接,并通过电容连接至第一辐射体1013的开放端附近,另一端与第二辐射体1014连接,并通过电容连接至第二辐射体1014的开放端附近的示意图。在一个实施例中,第一辐射体1013可以是低频辐射体,其工作频段为低频频段;第二辐射体1014可以是中频辐射体,其工作频段为中频频段。在图30所示的示例中,第一辐射体1013的电长度约在天线的第一谐振频率(例如,低频谐振频率)对应的介质波长的八分之一到八分之三之间。在一个实施例中,低频辐射体的物理长度可以在38mm~60mm之间,例如,41mm。第二辐射体1014的电长度在天线的第二谐振频率(例如,中频谐振频率)对应的介质波长的八分之一到八分之三之间。在一个实施例中,中频辐射体的物理长度可以在12mm~35mm之间,例如,16mm。传输线104采用微带线结构,其电长度对应于低频谐振频率的波长的二分 之一左右。在一个实施例中,低频传输线的物理长度约在70mm~90mm之间,例如80mm。在一个实施例中,第一辐射体1013和第二辐射体1014相互靠近的开放端之间具有缝隙,且缝隙的宽度在3mm以内,例如,在一些实施例中,该宽度可以为2mm以内、例如约1mm。在此实施例中,第一辐射体1013和第二辐射体1014形成槽天线结构。槽天线结构的缝隙中可以填充有不导电材料。
在这种情况下,基于上述分析,此种布置的天线能够实现全频段5个谐振频率的覆盖,反射系数S11及效率曲线如图31(A)和(B)所示。图32(A)至(E)示出了5个模式的电流分布图。如图31所示,天线的低频频段的两个谐振频率主要由第一辐射体1013的低频谐振频率和传输线104的低频谐振频率(对应于1/2介质波长)实现,中高频频段的三个谐振频率主要由第二辐射体1014和传输线104的中高频谐振频率(对应于1倍和1.5倍介质波长)实现。相比单个辐射体的情况,图30所示的天线结构的效率和带宽获得成倍增加。
在一些实施例中,这种传输线104结构也可应用在工作频段相同的两个辐射体上。在一些实施例中,这种传输线104结构还可应用在尺寸相当的两个辐射体上。如图33所示,两个CRLH辐射体结构构成槽天线结构,采用如前文中所提到的传输线104连接至开放端附近进行馈电,如图33所示。在一个实施例中,两个CRLH辐射体可以均工作在低频频段。在图33所示的示例中,第一辐射体1013和第二辐射体1014的电长度约在天线的低频谐振频率对应的介质波长的八分之一到八分之三之间,例如,其物理长度可以在38mm~60mm之间,例如,41mm。传输线104采用微带线结构,其电长度对应于低频谐振频率的波长的二分之一左右,物理长度约在70mm~90mm之间,例如80mm。图34(A)示出了这种天线的S11曲线图和阻抗圆图。图34(B)示出了这种天线的效率曲线图。从图中可以看出,这种天线结构可以在低频段激励三个模式,由辐射体形成的天线的两个模式(将在下文中做进一步阐述)和传输线104的低频谐振频率模式共同形成。图35(A)和(B)分别显示了这三个模式的电流分布和电场分布。
以图36(A)所示的天线为第一天线,图33所示的天线为第二天线,图36(B)示出了这两种天线的S11曲线图和阻抗圆图,图36(C)示出了这两种天线的效率曲线图,图37(A)和(B)分别示出了这两种天线的左手模式和右手模式下的效率图。如图36和图37所示,自由空间下,第二天线能够多激励出一个谐振,由此显著提高了天线的效率和带宽。在手持场景下,第二天线效率和带宽的提升更加明显。也就是说,根据本公开实施例的天线能够带来手模、头手模的性能提升。
上述描述结合附图描述了传输线104的两端都接地(直接接地或者连接至辐射体的接地端附近)或者两端都开放的情况,在一些实施例中,传输线104的两端中的一端可以接地,而另一端开放。图38示出了传输线104两端中的一端接地,而另一端开放的情况。在这种情况下,传输线104长度T被设置为约1/4λ,其中λ为所述天线在被馈电时所产生的谐振中最低谐振所对应的介质波长。在这种情况下,当在靠近接地端(例如,在电流强区)馈电时,也能够分别在介质波长的1/4、3/4等1/4的自然数倍处产生谐振,从而激励出传输线模式。图39(A)和(B)分别示出了传输线104本身在被激励时的S11参数和效率示意图。类似于之前的实施例,由于传输线104环境较为封闭,其辐射效率很低,基本可以忽略不计。图40示出了传输线104本身在被激励时的电流电场分布示意图。
基于上述传输线104结构,将传输线104的一端连接至第一IFA辐射体的接地端附近,另一端为开放状态(如图41(A)所示)。在这种情况下,第一IFA辐射体的长度为天线的第 一谐振频率对应的介质波长的四分之一左右。在一些实施例中,第一IFA辐射体工作在低频频段。在一些实施例中,传输线104一端连接至第二CRLH辐射体的开放端附近,另一端直接接地(如图41(B)所示)。在这种情况下,第二CRLH辐射体的长度为天线的第二谐振频率对应的介质波长的四分之一左右。在一些实施例中,第二CRLH辐射体工作在中频频段。以图38中示出的结构为第一天线,图41(A)中示出的结构为第二天线并且图41(B)所示的结构为第三天线,图42(A)和(B)分别示出了这三种天线的S11曲线图和效率图。可以发现,传输线104结构能够对IFA辐射体和CRLH辐射体实现模式扩展,极大地改善了效率带宽。
图43示出了传输线104的一端与第一辐射体1013连接,并连接至第一辐射体1013的接地端附近,另一端与第二辐射体1014连接,并通过电容连接至第二辐射体1014的开放端附近的示意图。在一个实施例中,第一辐射体1013可以是IFA辐射体,第二辐射体1014可以是CRLH辐射体。在图43所示的示例中,第一辐射体1013的电长度约在天线的第一谐振频率对应的介质波长的八分之一到八分之三之间。在一个实施例中,第一谐振频率为低频频段的频率,第一辐射体1013的物理长度可以在50mm~75mm之间,例如,63mm。第二辐射体1014的电长度在天线的第二谐振频率对应的介质波长的八分之一到八分之三之间。在一个实施例中,第二谐振频率为中频频段的频率,第二辐射体1014的物理长度可以在12mm~35mm之间,例如,14.56mm。传输线104采用微带线结构,其电长度对应于第三谐振频率的波长的四分之一左右。在一个实施例中,第三谐振频率为低频频段的频率,传输线的物理长度约在30mm~50mm之间,例如38mm。在一个实施例中,第一辐射体1013和第二辐射体1014相互靠近的两端之间具有缝隙,缝隙的宽度可以在3mm以内,例如,在一些实施例中,该宽度可以为2mm以内,例如约为1mm。缝隙中可以填充有不导电材料。在一个实施例中,第一辐射体1013和第二辐射体1014相互靠近的两端,可以是第一辐射体1013的接地端和第二辐射体1014的接地端或开放端,或者可以是第一辐射体1013的开放端和第二辐射体1014的接地端或开放端。
图43中示出的的天线能够实现全频段5个谐振频率的覆盖,反射系数S11及效率曲线如图44(A)和(B)所示,每个模式的电流方向图如图45(A)至(E)所示。如图44所示,天线的低频频段的两个谐振频率主要由第一辐射体1013的低频谐振频率和传输线104的低频谐振频率(对应于1/4介质波长)实现,中高频频段的三个谐振频率主要由第二辐射体1014、第一辐射体1013的高频谐振频率和传输线104的高频谐振频率(对应于3/4介质波长)实现。相比单个辐射体的情况,图43所示的天线结构的效率和带宽获得成倍增加。
前文中结合附图描述了传输线104采用一条连续的微带线来实现的不同实施例。对于传输线104的两端都接地的实施例,传输线104可以采用中间设置间隙的结构。也就是说,传输线104包括两个分开的区段,两个分开的区段之间设置有电容,如图46所示。通过微带线设计在PCB的上下表面,其设计参数与前文中所提到的微带线的设计参数类似。类似槽天线的馈电方式,在靠近间隙处馈电,可以激励出传输线104的两个模式。在一个实施例中,在靠近间隙处串联电容馈电,激励出的传输线104的两个模式的工作频段为低频频段。图46所示实施例的反射系数S11、效率、电流电场分布分别如图47(A)至(D)所示,由于传输线104环境较封闭,其辐射效率很低。
以图46所示的天线为第一天线,图48(A)所示的天线为第二天线,图48(B)示出了两种天线的S11曲线变化情况。可以看出,与槽天线设计类似,在传输线104开放端串联电 容,同时将馈点移至靠近接地点处(例如,电流强区)直接馈电,可以将激励出的两种谐振频率调低。
基于图48(A)所示的传输线104结构,将其一端连接至低频IFA辐射体的接地端附近,另一端直接接地(如图49(A)所示)。在这种情况下,辐射体的长度为天线的低频谐振频率对应的介质波长的四分之一。在一些替代的实施例中,传输线104一端连接至低频IFA辐射体的接地端附近,另一端直接接地(如图49(B)所示)。在这种情况下,辐射体的长度为天线的低频谐振频率对应的介质波长的四分之一。以图48(A)中示出的结构为第一天线,图49(A)中示出的结构为第二天线并且图49(B)所示的结构为第三天线,图49(C)和(D)分别示出了这三种天线的S11曲线图和效率图。可以发现,通过采用图48(A)所示的传输线104结构,极大地改善了辐射体的效率带宽。
图50示出了传输线104的两端分别与两个低频辐射体(下称第一辐射体1013和第二辐射体1014)连接,并连接至第一辐射体1013和第二辐射体1014的接地端附近的示意图,其中两个辐射体形成T天线结构。在图50所示的示例中,第一辐射体1013和第二辐射体1014的电长度约在天线的低频谐振频率对应的介质波长的八分之一到八分之三之间,例如,其物理长度可以在45mm~70mm之间,例如,54mm。传输线104采用微带线结构,其两个区段总的电长度对应于低频谐振频率的波长的二分之一左右,物理长度约在65mm~85mm之间,例如75mm。第一辐射体1013和第二辐射体1014与边框的其他部分之间可以设置有缝隙,缝隙的宽度可以在3mm以内,例如,在一些实施例中,该宽度可以为2mm以内,例如约1mm。缝隙中可以填充有不导电材料。
在这种情况下,基于上述分析,此种布置的天线能够在低频频段激励出4个模式,从而实现低频频段的带宽提升。这种天线的反射系数S11及效率曲线分别如图51(A)和(B)所示,每个模式的电流方向图如图51(C)至(F)所示。如图51所示,天线的低频频段的四个谐振频率主要由辐射体的两种模式以及传输线104的两种模式来实现。相比单个辐射体,效率带宽获得明显增加。
在一些实施例中,传输线104也可以采用其他形式。在一个实施例中,可以将传输线104由微带线形式变为支架走线。图50所示的天线中,以传输线104为支架走线形成的天线为第一天线,以传输线104为微带线形成的天线为第二天线,图52(A)和图52(B)示出了两种天线的S11曲线和效率曲线。通过图52(A)和图52(B)可以看出,当传输线104为支架走线时,传输线104高度增加,辐射效率提升,与辐射体连接后,天线的辐射效率能进一步得到提升。
当然,应当理解的是,上文中各个实施例所提到的传输线和辐射体可以采用任意适当的导电材料制成。在一些实施例中,传输线和辐射体还可以是一体地制成。例如,传输线和辐射体可以采用激光直接成型技术(Laser-Direct-structuring,LDS)设计而直接设置在电子设备的边框或者支架上,从而进一步提高集成度。上文中主要描述了传输线耦合至两条辐射体来提升天线的性能的情况。应当理解的是,这个只是示意性的,并不旨在限制本公开的保护范围。在一些替代的实施例中,传输线还可以和更多辐射体耦合,从而进一步提升天线的带宽和效率。例如,图53示出了传输线和三个辐射体耦合从而来扩展天线的带宽和效率的实施例。
可以看出,上文中通过设置传输线,能够将传输线模式和辐射体模式叠加,从而提升天线的效率和带宽。前文所提到的实施例可以看作是单天线的实施例,通过设置于传输线结构的单馈电点,为间隔开或电连接的两段或多段辐射体馈电,从而实现分布式馈电天线结构。 分布式馈电天线结构具有多模式和宽频带的特点。在一个实施例中,天线结构的馈电单元与传输线耦合的耦合点(或者,馈入点)偏离于传输线的中点,即,采用不对称的馈电设计。在一个实施例中,传输线的所述第一端耦合至第一辐射体的接地端,第二端接地或者耦合至第二辐射体的接地端,其中,馈电单元与传输线耦合的耦合点(或者,馈入点)位于所述第一端或所述第二端的附近。在一个实施例中,传输线的第一端耦合至第一辐射体的开放端,第二端开放或者耦合至第二辐射体的开放端,其中,馈电单元与传输线耦合的耦合点(或者,馈入点)位于传输线的中点附近。在一个实施例中,传输线的第一端耦合至第一辐射体的接地端,第二端开放或者耦合至第二辐射体的开放端,其中,馈电单元与传输线耦合的耦合点(或者,馈入点)位于所述第一端附近。在本申请的实施例中,馈电单元与传输线耦合的耦合点(或者,馈入点)“位于第一端/第二端/传输线的中点附近”应理解为,耦合点距离第一端/第二端/传输线的中点,5mm以内的距离,或者3mm以内的距离。
基于上述内容,本申请实施例还提供了一种天线,该天线基于不对称馈电设计,实现了多模式宽频天线,同时能够实现具有较高的隔离度的天线对。应可理解,前述任一单天线实施例都可以应用于天线对中的其中一个天线结构中;下文任一天线对的实施例所拆分的单天线也都可以各自作为单天线的实施例看待。
下面将结合附图来描述本申请中的天线100的示例性实施例。图54示出了天线100的一种示例性结构。如图54所示,总体上,根据本申请实施例的天线100包括辐射体对101、至少一条传输线和馈电单元。辐射体对101包括两个辐射体,即,第一辐射体1013和第二辐射体1014。每个辐射体均包括接地端1011和开放端1012。辐射体对101中的每个辐射体在接地端1011接地,并且辐射体在开放端1012不与其他辐射体电连接。在一些实施例中,对应于前文中所描述的电子设备的边框至少部分地由导电材料制成的情况,辐射体对101中的每个辐射体可以包括边框的一个连续的区段。这可以包含两种情况,一种情况就是辐射体对101中的第一辐射体1013和第二辐射体1014相连并包括边框的一个连续的区段;另一种情况就是辐射体对101中的第一辐射体1013和第二辐射体1014分别包括边框的连续的区段,但两者所在的区段是分离的。这里的分离可以是指两个导电区段之间通过不导电材料隔离,或者指两个导电区段之间通过边框的其他部分连接,因此两者的接地端1011是分离的,或者指第一辐射体1013和第二辐射体1014的两个导电区段之间既包括不导电材料也包括边框的其他部分。这些情况将在下文中做进一步阐述。
馈电单元经由至少一条传输线耦合至辐射体对101。具体而言,每条传输线均包括等效长度不等的两个区段,例如物理长度不等的两个区段。在下文中将主要以每条传输线的物理长度为例来描述根据本公开的发明构思。除了物理长度外,还可以通过以下中的至少一种来确定等效长度:对应传输线和辐射体对之间设置的电容或电感、对应传输线上设置的移相器、和对应传输线耦合至所述辐射体对的位置,这将在后文中做进一步阐述。本文中单独提到“长度”一般是指物理长度。馈电单元经由这两个区段而分别耦合至第一辐射体1013和第二辐射体1014,如图54所示。两个区段下文中将分别被称为第一区段1021和第二区段1022。第一区段1021和第二区段1022的长度的不同,从而馈电单元所提供的激励电流传输到第一辐射体1013和第二辐射体1014上时会存在相位差。在一些实施例中,两个区段之间的长度之间的差可以在介质波长的1/8~3/8之间,例如大致在介质波长的1/4。例如,对应于谐振频率为1920MHz至1980MHz的频段而言,该频段的中心频率1955MHz对应的介质波长为15cm,由此计算得出在一些实施例中,两个区段的长度的差可以在1cm~7cm之间。在一些替代的实 施例中,一条传输线的两个区段之间的长度之间的差可以小于1/8或者更小。这些情况将在后文中做进一步阐述。此外,还应当说明的是,本文中所提到的范围都是包括端点值。例如,长度的差D可以在1cm~7cm之间表示1cm≤D≤7cm。其他关于比例和/或角度的范围也是类似的。基于不对称馈电的辐射体对101,激励电流通过第一区段1021和第二区段1022分别到达馈电点A、B点,具有相位差Ф,相位差在90°±45°的范围内。例如,在一些实施例中,激励电流通过第一区段1021和第二区段1022分别到达馈电点A、B点的相位差在90°±30°的范围内。图55中示出了一个馈电部通过一条传输线的第一区段1021和第二区段1022分别耦合至辐射体对101,该条传输线的长度是1/2介质波长的奇数倍,例如1/2介质波长。第一区段1021和第二区段1022的等效长度相差1/4介质波长。在图55所示的情况下,馈电部能够在A、B点上实现等幅同向的电流。在一个实施例中,馈电部在辐射体对101上激励出的电流方向相同。
在一个实施例中,传输线的长度是1/2介质波长的奇数倍,可以理解为传输线的长度在[1/2介质波长的奇数倍×(1±20%)]的范围内。在一个实施例中,第一区段1021和第二区段1022的长度相差1/4介质波长,可以理解为第一区段1021和第二区段1022的长度相差[1/4介质波长×(1±10%)]的范围内。对于等效长度,考虑到传输线所设置的电容、电感等,如前文中所提到的,物理长度L和等效长度Le的关系可以满足:(1-1/3)Le≤L≤(1+1/3)Le,或者(1-1/4)Le≤L≤(1+1/4)Le。
类似地,图56示出了馈电单元的一个馈电部通过一条较长传输线的第一区段1021和第二区段1022经由馈电点C、D点分别耦合至辐射体对101,基于不对称馈电的辐射体对101,激励电流通过第一区段1021和第二区段1022分别到达馈电点C、D点,具有相位差Ф,相位差在90°±45°的范围内。例如,在一些实施例中,激励电流通过第一区段1021和第二区段1022分别到达馈电点C、D点的相位差在90°±30°的范围内。传输线的长度是1/2介质波长的偶数倍,例如1倍介质波长。第一区段1021和第二区段1022的长度相差1/4介质波长。在图56所示的情况下,馈电部能够在C、D点上实现等幅反向的电流强度。在一个实施例中,馈电部在辐射体对101上激励出的电流方向相反。
在一个实施例中,传输线的长度是1/2介质波长的偶数倍,可以理解为传输线的长度在(1/2介质波长的偶数倍×(1±20%))的范围内。在一个实施例中,第一区段1021和第二区段1022的长度相差1/4介质波长,可以理解为第一区段1021和第二区段1022的长度相差(1/4介质波长×(1±10%))的范围内。对于等效长度,考虑到传输线所设置的电容、电感等,如前文中所提到的,物理长度L和等效长度Le的关系可以满足:(1-1/3)Le≤L≤(1+1/3)Le,或者(1-1/4)Le≤L≤(1+1/4)Le。
图55和图56分别示出了馈电单元均包括一个馈电部的情况下,通过一条传输线不对称馈电到辐射体对101的情况。通过使得第一区段1021和第二区段1022之间的长度不等,例如,根据在辐射体对101上所需的相位差,可以将其长度的差设置为从1/8-3/8介质波长的其他范围。以此方式,天线100也能够分别实现辐射体对101上电流相位差控制,从而有利于改善天线100的各种性能。
上述实施例通过结合图54至图56说明了通过引入具有物理长度不等的两个区段的传输线,可以在传输线与辐射体对耦合的馈电点之间引入相位差,并由此可以改善天线100的各种性能。在一些替代的实施例中,除了物理长度不等外,也可以通过其他适当的方式来使区段或者传输线的等效长度不等来实现馈电点之间相位差。在这样的实施例中,天线也是包括 辐射体对、至少一条传输线和馈电单元。至少一条传输线包括两个区段。馈电单元分别经由这两个区段而耦合到第一辐射体的第一馈电点和第二辐射体的第二馈电点。通过使得两个区段的等效长度不等,使得馈电单元所提供的激励电流在第一馈电点和第二馈电点处的相位差在90°±45°的范围内,例如,在一些实施例中,相位差在90°±30°的范围内。在一些实施例中,除了两个区段的物理长度外,两个区段的等效长度还可以通过以下中的至少一项来确定:对应区段和辐射体对之间设置的电容或电感、对应区段上设置的移相器、和对应区段耦合至所述辐射体对的位置。
在一些实施例中,在至少一条传输线包括第一传输线和第二传输线的情况下,每条传输线的两个区段能够使得馈电单元所提供的激励电流在馈电点处的相位差在90°±45°的范围内。在两条传输线的情况下,第一馈电部经由第一传输线在第一馈电点和第二馈电点处馈电,第二馈电部经由第二传输线在第三馈电点和第四馈电点处馈电。在同一个辐射体上,第一馈电点处和相邻的第三馈电点处的电流的相位差可以在180°±60°,例如180°±45°的范围内。同样地,在另一个辐射体上,第二馈电点处和相邻的第四馈电点处的电流的相位差可以在180°±60°,例如180°±45°的范围内。这可以通过使得第一传输线和第二传输线的等效长度不等的方式来实现。类似地,除了传输线的物理长度外,传输线的等效长度可以通过以下中的至少一项来确定:对应传输线和辐射体对之间设置的电容或电感、对应传输线上设置的移相器和对应传输线耦合至所述辐射体对的位置。这将在下文中进一步展开论述。
上述实施例都通过使激励电流在馈电点处引入相位差来实现天线性能的改进。在一些替代的实施例中,也可以通过匹配电路的方式来在一些天线结构中运用类似的原理实现天线性能的改进。如图57所示,在一些实施例中,天线除了包括辐射体对、传输线和馈电单元外,还可以包括匹配电路。此外,还与图54中的实施例不同的是,馈电单元的第一馈电部耦合在传输线的大概中间位置。也就是说,传输线包括长度基本相同的两个区段。在一些实施例中,传输线的总长度可以小于或等于天线所工作的频段对应的波长的1/10。在一些实施例中,第一传输线的两个区段长度的差值(T2-T1)满足0≤(T2-T1)≤8mm,或者所述第一传输线的两个区段长度的比值T/1/T2满足1/2≤T1/T2≤2。
可以看出,在这种实施例中,传输线具有较短的长度,并且传输线的两个区段的长度可以相等或具有一定的偏差。在辐射体对包括电子设备的边框的一部分的实施例中,这样的传输线可以与辐射体共形。共形表示传输线可以是形成辐射体对的导体一体形成的部分。例如,在一些实施例中,电子设备的中框包括边框以及从边框向内部延伸的结构件,该结构件可以在边框上一体地形成,或者在中框的其他部位一体地形成,从而向电子设备内部延伸。在这种情况下,传输线可以由突出部来实现。以此方式,可以有效地利用边框中的既有结构从而提高电子设备的集成度。当然,应当理解的是,这种实施例只是示意性的,并不旨在限制本申请的保护范围。传输线也可以以其他任意适当的形式耦合至辐射体对,例如由支架上的导电件实现。
匹配电路耦合在馈电单元和传输线之间,并且至少包括一个电容和一个电感。在一个实施例中,匹配电路中的电容和电感构成LC谐振电路。例如,图57中示出了匹配电路可以包括在馈电单元和传输线之间串联的电容和并联的电感。以此方式,可以在辐射体对上不引入具有相位差的激励电流的情况下,实现辐射体对上的同向和/或反向的感应电流,从而实现天线的多个工作模态。
图57示出了这种包括匹配电路的天线采用T天线结构的情况,并且天线的辐射体对的两 个接地端是共用的。当然,应当理解的是,采用匹配电路这种天线的T天线结构的接地端也可以间隔开一定的距离。也就是说,辐射体对的两个接地端设置有导体。在一些实施例中,接地端之间设置的导体可以是电子设备的边框的一部分或者其他任意适当的导体。在一些替代的实施例中,包括匹配电路的天线也可以采用槽天线结构,如图58所示。在这种情况下,天线的第一辐射体的开放端和第二辐射体的开放端相对设置并形成间隙。此外,在一些实施例中,除了第一传输线外,这种包括匹配电路的天线还可以包括第二传输线和第二馈电部。第二传输线可以包括两个区段,第二馈电部经由这两个区段而分别耦合至第一辐射体和第二辐射体。这将在下文中进一步阐述。
前文中结合附图54至图58描述了馈电单元包括一个馈电部(即,第一馈电部)的情况。当然,应当理解的是,本申请的实施例中的馈电单元可以包括多于一个馈电部,如图59所示的情况。图59示出了将图55和图56中的两种方式组合的情况。如图59所示,在一些实施例中,馈电单元可以包括两个馈电部,即,第一馈电部1031和第二馈电部1032。对应地,至少一条传输线包括两条传输线,即,第一传输线和第二传输线。第一馈电部1031经由第一传输线的第一区段1021和第二区段1022而分别耦合至第一辐射体1013和第二辐射体1014。第二馈电部1032经由第二传输线的第三区段1023和第四区段1024而分别耦合至第一辐射体1013和第二辐射体1014。
在一些实施例中,类似于上文中图55和图56所示的情况,两条传输线分别具有不同的等效长度。例如,第一传输线的等效长度可以是天线100能够产生谐振的第一频段的第一介质波长的1/2的奇数倍,而第二传输线的等效长度可以是天线100能够产生谐振的第二频段的第二介质波长的1/2的偶数倍。在这种情况下,天线100形成了由第一馈电部1031馈电的第一天线和第二馈电部1032馈电的第二天线的天线对。第一频段和第二频段可以是至少部分的重叠的频段。例如,在一些实施例中,第一频段和第二频段可以是相同的频段,即,两者完全重叠。在一些替代的实施例中,第一频段和第二频段可以部分重叠,例如,两者是相邻频段,从而实现辐射频段的更宽覆盖。在一些替代的实施例中,第一频段和第二频段也可以是不重叠的而是相互靠近的两个频段。
类似于针对图55和图56所分析的情况,在第一馈电部1031进行馈电的情况下,在辐射体对101上能够激励出同向的激励电流。在第二馈电部1032进行馈电的情况下,能够在辐射体对101上激励出反向的激励电流。在辐射体对上电流方向的不同引起辐射方向图的不同。以此方式,实现了第一天线和第二天线组成的天线对的高隔离度,并由此扩展了天线100的频带范围的同时改善了天线100的性能。
第一频段和第二频段是相同的频段时,第一传输线的等效长度可以是1/2介质波长的奇数倍,第二传输线的等效长度可以是1/2介质波长的偶数倍,这也意味着两条传输线的等效长度的差值为1/2介质波长的N倍,N为大于0的整数。但应当理解的是,根据不同的频段等因素,两条传输线的等效长度的差值在1/4~3/4介质波长之间,或者在(1/4~3/4)*N倍的介质波长之间,都可以实现天线对的高隔离度,并由此改善天线100的性能。
在一些实施例中,第一传输线的长度可以是天线所产生的第一谐振对应的第一介质波长的1/2的奇数倍。当然,考虑到制造工艺以及阻抗匹配等因素,第一传输线的实际长度可以在第一介质波长的1/2的奇数倍的正负20%的范围(1/2介质波长奇数倍×(1±20%))内。类似地,第二传输线的长度可以是天线所产生的第二谐振对应的第二介质波长的1/2的偶数倍。当然,考虑到制造工艺以及阻抗匹配等因素,第二传输线的实际长度可以在第二介质波长的 1/2的偶数倍的正负20%的范围(1/2介质波长偶数倍×(1±20%))内。当然,在一些实施例中,第一谐振和第二谐振可以部分重合或完全不重合。
在一些实施例中,第一传输线和第二传输线的长度也可以通过不同于上述方法来确定。具体而言,在一些实施例中,天线所产生的谐振可以至少包括第一谐振和第二谐振。第一谐振的中心频点和第二谐振的中心频点的平均值被确定为第一频点。第一传输线的长度可以是第一频点对应的介质波长的1/2的奇数倍,第二传输线的长度可以是第一频点对应的介质波长的1/2的偶数倍。当然,考虑到制造工艺以及阻抗匹配等因素,第一传输线的长度可以在第一频点对应的介质波长的1/2的奇数倍的正负20%的范围(1/2介质波长奇数倍×(1±20%))内,第二传输线的长度可以在第一频点对应的介质波长的1/2的偶数倍的正负20%的范围(1/2介质波长偶数倍×(1±20%))内。
上述第一谐振处于第一频段,第二谐振处于第二频段,其中,第一频段和第二频段可以是相同的工作频段或者是不同的工作频段时。
在一个实施例中,在这种不对称馈电的天线对设计中,较长传输线对较短传输线还具有模式抑制作用。如图60(a)和图60(b)所示,如果较短传输线上形成同向电流,因为长传输线总长度增加约1/2波长,无论长传输线上形成哪种电流路径,与通过短传输线到达B点的电流均等幅反向,互相抵消,从而不能在第二辐射体1014上激励电流,从而对短传输线上形成同向电流时天线的模式造成抑制。因此,在本申请的一个实施例中,较短传输线上形成反向电流,如图60(c)和图60(d)所示,无论长传输线上形成哪种电流路径,与通过短传输线到达B点的电流均等幅同向,互相叠加,从而能够在第二辐射体1014上激励电流。
图55至图57、图59和图60分别示出了第一传输线和/或第二传输线均耦合至辐射体对101的接地端1011附近的情况下。例如,第一传输线和第二传输线均耦合至距离接地端1011不超过5mm,或不超过3mm的位置。在一些替代的实施例中,第一传输线和第二传输线也可以均耦合至辐射体对101的开放端1012附近,如图58所示。例如,第一传输线和第二传输线均耦合至距离开放端1012不超过5mm,或不超过3mm的位置。在一些实施例中,第一传输线和第二传输线的一端耦合至辐射体对101中的第一辐射体1013的开放端1012附近,而另一端耦合至第二辐射体1014的接地端1011附近,这些将在后文中做进一步阐述。
在结合图55至图59示出的上述实施例描述的天线,可以进行诸多变形。
在一些实施例中,辐射体的形式可以调整,如图61至图73所示的辐射体对可以采用T天线的形式。T天线形式的辐射体对通常包括连续的导体,并且接地端设置在导体的中部,开放端位于导体的两端。其中,接地端可以是辐射体对共用的,也可以是相互分离的(如图71所示的情况)。图74至图94示出了辐射体对中的每个辐射体可以采用前文中所提到的IFA天线的形式。图95至图101示出了辐射体对可以采用槽天线结构的形式。
在一些实施例中,传输线与辐射体的连接位置可以具有多种变形,例如图59至图94示出了传输线和辐射体的耦合点(或者,馈电点)位于接地端附近,例如,第一传输线和第二传输线均耦合至距离接地端1011不超过5mm,或不超过3mm的位置。图95至图101示出了传输线和辐射体的耦合点(或者,馈电点)可以靠近开放端,例如,第一传输线和第二传输线均耦合至距离开放端1012不超过5mm,或不超过3mm。在一个实施例中,传输线和辐射体的耦合点(或者,馈电点)靠近开放端,还可以理解为距离接地端超过5mm,或超过10mm。此外,在一些实施例中,第一传输线一端和第二传输线的一端可以耦合至一个辐射体的开放端,而第一传输线的另一端和第二传输线的另一端可以耦合至另一个辐射体的接地端(如图 106所示出的)。在一些实施例中,第一传输线的两端分别耦合至第一辐射体和第二辐射体的接地端,第二传输线的两端分别通过电容耦合至第一辐射体和第二辐射体的开放端或者分别通过电容耦合至第一辐射体和第二辐射体的接地端和开放端之间,如图107和图108所示。
在一些实施例中,传输线与辐射体的连接方式可以存在多种变形。例如,图61至图79和图94示出了传输线与辐射体通过弹片等连接件直接连接的情况。图80至图93示出了传输线中的一条传输线(也可以是全部传输线)的两端(也可以是任一端)通过电感与辐射体对连接的情况。图95至图100示出了传输线中的一条传输线(也可以是全部传输线)的两端(也可以是任一端)通过电容与辐射体对连接的情况。
在一些实施例中,馈电单元和传输线的连接方式可以存在多种变形。例如,在一些实施例中,馈电单元可以与传输线直接连接。在一些实施例中,馈电单元还可以通过匹配电路与传输线连接(如图66中第二馈电部1032和第二传输线的情况)。
后文中将主要结合图61至图109来描述根据本申请实施例的天线可能存在的一些示例性变形以及变形的结合。应当理解的是,后文示例性地列举一些天线结构来描述根据本申请的构思,其中所示出的实施例并非对所有可能的变形以及变形的组合的穷举。还可能存在不同的变形方式或者各种变形的组合方式,在下文中将不再分别赘述。如前文中所提到的,根据本申请实施例的一种应用常见在于天线100的辐射体对采用1/2波长的T天线结构。这可以包括一个馈电部馈电、两个馈电部馈电、四个馈电部馈电以及甚至其他数量的馈电部馈电的情况,这些情况可以视为图57中所述的实施例的变形。图61至图62示例性地示出了天线100采用T天线结构的实施例。如图61和图62所示,当根据本申请实施例的天线100采用T天线结构并作为低频天线100来使用时,在一些实施例中,辐射体对101是电子设备的金属边框的右下角的一部分。当然,应当理解的是,辐射体对101可以设置在边框的任意其他适当的位置,本申请对此不做限制。第一辐射体1013和第二辐射体1014整体上可以形成边框的一个连续的区段。在这种情况下,辐射体对101的接地端1011可以是共用的。在一些替代的实施例中,根据本申请实施例的天线100的辐射体对采用T天线结构时辐射体对101的接地端1011也可以是分离的,从而可以看作两个倒F天线结构,这将在下文中进一步阐述。
图61和图62示出了根据本申请实施例的采用T天线结构的天线100工作在低频频段的实施例。当然,应当理解的是,图61和图62所示出的天线100也可以工作在中高频,这将在后文中做进一步阐述。如图61所示,在一些实施例中,天线100可以采用一个馈电部通过第一传输线来为辐射体对101馈电。馈电部采用第一传输线为辐射体对101馈电,通过不对称馈电在接地端1011的两侧位置分别连接辐射体对101。在一些替代的实施例中,如图62所示,天线100采用两个馈电部来为辐射体对101馈电。两个馈电部中第一馈电部1031采用较短的第一传输线为辐射体对101馈电,通过不对称馈电在接地端1011两侧位置分别连接辐射体对101。第二馈电部1032采用较长的第二传输线进行不对称馈电,第二传输线的总长度相比于第一传输线的长度长约1/2介质波长。
当工作在诸如0.8Ghz~1.2Ghz的低频频段的情况下,辐射体对101的总长度可以在1/4介质波长到3/4介质波长之间,例如,在90mm~130mm之间,其中第一辐射体1013的长度和第二辐射体1014的长度各自可以在40mm~70mm之间。例如,第一辐射体1013的长度L1可以大致为50mm,而第二辐射体1014包括边框的拐角部,其长度L2可以大致为55mm。在这种情况下,辐射体对101的总长度为105mm。辐射体对101的两个开口端与边框的其他部分之间可以设置有缝隙,缝隙的宽度可以在3mm以内,例如,在一些实施例中,该宽度可 以为2mm、1mm等。缝隙中可以填充有不导电材料。
图63示出了第一馈电部1031和第二馈电部1032馈电时传输线以及辐射体上的电流分布情况。图64中(a)示出了第一馈电部1031和第二馈电部1032馈电时的天线100方向图,并且(b)示出了天线的S21曲线图。通过图63和图64可以看出,不论是在第一馈电部1031馈电还是第二馈电部1032馈电,均可在低频段激励天线100的第一模式和第二模式,其同频段隔离度可以达到14dB以上,如图64中的(b)所示。
作为对比,以图61中所示的情况作为第一天线,图62中第一馈电部1031馈电时天线100作为第二天线,第二馈电部1032馈电时作为第三天线以及图65(a)中所示的天线100为第四天线,图65(b)分别示出了这四种天线的S11曲线图。可以看出,第二天线和第三天线均具有两种工作模式,并实现天线对间较高的隔离度,而第一天线可以具有三种工作模式。图65(c)分别示出了自由空间场景下,各个天线100的效率图,图65(d)示出了在右手模式下,各个天线100的效率图,并且图65(e)示出了在左手模式下,各个天线100的效率图。结合图65(c)至图65(e)可以发现,在自由空间以及手持模式下,第一天线和第二天线相比于第四天线,效率带宽具有显著的提升。
对于图61中的第一传输线,第一区段1021和第二区段1022的长度的比例T1/T2可以满足1/4≤T1/T2≤1/2。类似地,图62中的第一传输线和第二传输线,第一传输线的第一区段1021和第二区段1022的长度的比例T1/T2可以满足1/4≤T1/T2≤1/2,第二传输线的第三区段1023和第四区段1024的长度的比例T3/T4可以满足1/4≤T3/T4≤1/2。当图61中所示的天线工作中诸如1.2GHz以下的低频频段时,第一区段1021和第二区段1022的长度的差值可以在25-45mm之间,当工作中诸如3GHz以下的中高频段时,第一区段和第二区段的长度的差值可以在12-22mm之间。当图62中所示的天线工作中诸如1.2GHz以下的低频频段时,第一传输线和第二传输线的长度的差值可以在60-80mm之间,当工作中诸如3GHz以下的中高频段时,第一传输线和第二传输线的长度的差值可以在30-40mm之间。上面提到的长度均为馈电单元和辐射体对之间只有传输线的情况下的传输线的等效长度。考虑到馈电单元和辐射体对之间除了传输线外还可能会设置电容、电感、移相器等,传输线的实际物理长度可以是在等效长度的正负1/3的范围(等效长度×(1±1/3))内,或者传输线的实际物理长度可以是在等效长度的正负1/4的范围(等效长度×(1±1/4))内。
此外,在一些实施例中,这种T天线结构的天线对也可以用更短的传输线连接馈电。这种实施例相当于对图57所示的情况的一种变形,如图66所示,第一馈电部1031馈电的第一传输线的总等效长度约为1/2介质波长(对应于1/2介质波长的奇数倍),而第二馈电部1032馈电的第二传输线的等效长度仅在1/10介质波长左右甚至更短。此时,第二馈电部1032的馈电端采用宽带匹配电路实现双第二模式,第一馈电部1031通过不对称馈电的相差设计形成双第一模式,其实现效果与上述实施例中的情况类似。
对于图66中的两传输线,第一传输线的第一区段1021和第二区段1022的长度的比例T1/T2可以满足1/4≤T1/T2≤1/2。类似地,第二传输线的第三区段1023和第四区段1024的长度的比例T3/T4可以满足1/2≤T3/T4≤2。当图66中所示的天线工作中诸如1.2GHz以下的低频频段时,第一传输线和第二传输线的长度的差值可以在50-65mm之间,当工作中诸如3GHz以下的中高频段时,第一传输线和第二传输线的长度的差值可以在25-35mm之间。上面提到的长度均为馈电单元和辐射体对之间只有传输线的情况下的传输线的等效长度。考虑到馈电单元和辐射体对之间除了传输线外还可能会设置电容、电感、移相器等,传输线的实 际物理长度可以是在等效长度的正负1/3的范围(等效长度×(1±1/3))内,或者传输线的实际物理长度可以是在等效长度的正负1/4的范围(等效长度×(1±1/4))内。
前面结合图61至图66描述了根据本申请的实施例的天线100采用T天线结构并作为低频频段天线100使用时能够显著提高天线对之间的隔离度,并由此改善天线100的性能。本申请的实施例的天线100的辐射体对采用T天线结构时同样也可以用作中高频天线100。在这种情况下,天线100也可以采用与图61至图63中的类似的结构。在一些替代的实施例中,考虑到手握时的天线效率等因素,辐射体对101也可以设置在边框的一个侧边上。
在这种情况下,当应用于诸如1.85Ghz~2.25Ghz的中高频频段的情况下,辐射体对101的总长度可以在1/4介质波长到3/4介质波长之间,例如,在30mm~55mm之间,其中第一辐射体1013的长度和第二辐射体1014的长度各自可以在15mm~30mm之间。例如,第一辐射体1013的长度L1和第二辐射体1014的长度可以均相同,为21mm。在这种情况下,辐射体对101的总长度为42mm。辐射体对101与边框的其他部分之间可以设置有缝隙,缝隙的宽度可以在3mm以内,例如,在一些实施例中,该宽度可以为2mm、1mm等。缝隙中可以填充有不导电材料。
作为对比,以图67中所示的情况作为第一天线,图68中第一馈电部1031馈电时天线100作为第二天线,第二馈电部1032馈电时作为第三天线以及图69(a)中所示的天线100为第四天线,图69(b)分别示出了这四种天线100的S11曲线图,并且图69(c)分别示出了自由空间场景下,各个天线100的效率图,并且图69(d)示出了第二天线和第三天线之间的S21图。可以看出,当根据本申请实施例的天线100用作中高频天线时,天线对之间能够实现较高的隔离度,隔离度能够达到15dB以上,如图69(d)所示,并且两个天线100的效率差异较小。下面的表1是第一天线、第二天线、第三天线和第四天线工作在诸如1.85Ghz~2.25Ghz的中高频频段的情况下的SAR仿真表。从表中可以看出,第一天线和第二天线相比于第四天线,SAR值降低了1~1.5dB。
表1
在一些实施例中,将采用T天线结构的根据本申请实施例的天线100的接地端1011上下方的辐射体距离加大,可以看作形成两个IFA结构,同样可以设计双天线100,这可以看作是图57所示的实施例的一种变形,如图70和图71所示。图70和图71的天线结构总体上分别与图67和图68中所示的天线100的结构类似,只不过将第一辐射体1013和第二辐射体1014的接地端1011分开,使它们相距一定距离,例如5mm~30mm。在一个实施例中,第一 辐射体1013和第二辐射体1014的分开的接地端1011之间可以设置边框的其他部分,或者设置绝缘缝隙,或者二者均设置。图70和图71中所示的T天线结构,能够获得更优的阻抗匹配性能,从而进一步改进天线100的性能。图72给出了两个辐射体的接地端1011的距离为15mm情况下的双天线100设计效果,并与仅采用短传输线实现的单分布式天线100进行了对比,这三种天线效率略优于上述T天线结构。
作为对比,以图70中所示的情况作为第一天线,图71中第一馈电部1031馈电时天线100作为第二天线以及第二馈电部1032馈电时作为第三天线,图72分别示出了这三种天线100的S11曲线图和自由空间场景下,各个天线100的效率图。可以看出,通过将T天线结构的辐射体对101的接地端1011的距离拉开一定距离,能够使得天线效率更高,并由此进一步提高天线100的性能。
在一些实施例中,还可以将两个本申请实施例的天线100组合,以形成4×MIMO天线,如图73所示,包括两个图68所示的天线100。以此方式,可以使得组合T天线能够同时支持低频和中高频频段,并具有较高的隔离度,使得天线100支持超带宽频带范围,并进而实现应用日趋广泛的MIMO天线100。
根据本申请实施例的天线100不但可以采用T天线结构来支持低、中高频等各种频段,在一些实施例中,根据本申请实施例的天线100还可以采用IFA天线结构,如图74所示,这可以看作是图55所示的天线结构的一种变形。图74示出了采用将第一传输线分成等效长度不等的第一区段1021和第二区段1022来分别为辐射体对101馈电的情况。如前文中提到的,通过将两个区段之间的等效长度之间的差设置在介质波长的1/8~3/8之间,例如大致在介质波长的1/4,可以在两个区段分别与辐射体对101耦合的馈电点引入相位差Ф,相位差在90°±45°的范围内,来优化天线100的各项性能。下文中将主要以采用IFA结构的天线100工作在低频频段(例如0.9Ghz),并且传输线采用50ohm微带线为例来示出通过采用不对称馈电实现天线100各种性能的改进。
在上述特定低频频段下,辐射体对101的总长度可以在1/4介质波长到3/4介质波长之间,例如,在90mm~135mm之间,其中第一辐射体1013的长度和第二辐射体1014的长度各自可以在40mm~70mm之间。例如,在一些实施例中,第一辐射体1013和第二辐射体1014可以均包括边框的拐角部,如图74所示,并且第一辐射体1013的长度L1和第二辐射体1014的长度L2可以相同,大致为58.5mm。在这种情况下,辐射体对101的总长度为115mm。两个辐射体的接地端1011之间的距离可以在30mm~40mm的范围内,例如,可以设置为36mm。辐射体对101与边框的其他部分之间可以设置有缝隙,缝隙的宽度可以在3mm以内,例如,在一些实施例中,该宽度可以为2mm、1mm等。缝隙中可以填充有不导电材料。在本申请的实施例中,可以设置第一传输线的第一区段1021比第二区段1022短1/4介质波长。在一个实施例中,第一传输线在两个辐射体上的馈电点处的电流具有90°的相位差。应可理解,本文中所提到的90°的相位差可以允许一定的偏差,而非数学意义上严格的90°,例如第一传输线在两个辐射体上的馈电点处的电流可以具有90°±45°的相位差,或者具有90°±30°的相位差。例如,第一区段1021和第二区段1022的长度的比例T1/T2可以满足1/4≤T1/T2≤1/2。当图74中所示的天线工作中诸如1.2GHz以下的低频频段时,第一区段1021和第二区段1022的长度的差值可以在25-45mm之间,当工作中诸如3GHz以下的中高频段时,第一区段1021和第二区段1022的长度的差值可以在12-22mm之间。上面提到的长度均为馈电单元和辐射体对之间只有传输线的情况下的传输线的等效长度。考虑到馈电单元和辐射体对之 间除了传输线外还可能会设置电容、电感、移相器等,传输线的实际物理长度可以是在等效长度的正负1/3的范围(等效长度×(1±1/3))内,或者传输线的实际物理长度可以是在等效长度的正负1/4的范围(等效长度×(1±1/4))内。由此可以实现天线性能的显著提升。以IFA形式的天线对为示例进行说明。具体而言,以图75(a)中所示的第一辐射体1013被单独激励时作为第一天线,图75(b)中所示的第二辐射体1014被单独激励时作为第二天线,图74所示的两个辐射体被以90°的相位差同时激励时作为第三天线,图75(c)示出了各个天线的S11曲线图,图75(d)示出了天线100的Smith圆图,并且图75(e)示出了各个天线100的效率图。可以发现通过90°相差设计的分布式天线可激励三个谐振,比激励单辐射体产生的一个谐振,效率带宽获得两倍以上的提升。
图76还示出了采用图74中所示的这种不对称馈电方式的情况下,在特定频段下三个谐振频率点对应的电流方向图和辐射方向图。从图76中可以看出,当天线100工作在0.77Ghz和1.05Ghz谐振频率时,辐射方向图中最大辐射方向为水平分布,此时天线100工作在第一模式。区别在于在0.77Ghz谐振频率时,电流路径会通过辐射体的接地端1011,而在1.05Ghz谐振频率时,电流路径只通过馈电点,而不通过接地端1011。当天线100工作在0.89Ghz谐振频率时,辐射方向图中最大辐射方向为竖直分布,此时天线100工作在第二模式。可以发现,采用90°相位差设计的天线100可以激励三个谐振,比单独馈电激励两个辐射体能够多激励一个谐振,从而使得效率带宽获得显著提升。
在上述不对称分布式馈电的基础上,在一些实施例中,可以将传输线的等效长度延长。例如,图77示出根据本申请实施例的天线结构的一种示例性变形,其是在图74所示的天线结构的基础上将第一区段1021和第二区段1022各延长1/4介质波长,总等效长度延长大概1/2介质波长。馈电部达到馈电点的导波相位差依然是90°。在特定低频频段下(例如,前文中提到的0.9Ghz),第一馈电部1031距离第一辐射体1013的距离大致在15mm~25mm之间,例如约19mm。
图78示出了采用这种布置的天线100的S11曲线图、Smith圆图以及效率图。可以看出,通过分布式馈电后,这种布置的天线100在低频段内依然可产生三个谐振模式。图79显示了谐振频率点对应的电流方向图及辐射方向图。从图中可以看出,当天线100工作在0.75Ghz和0.97Ghz谐振频率时,辐射方向图中最大辐射方向为水平分布,此时天线100工作在第一模式。区别在于在0.75Ghz谐振频率时,电流路径会通过辐射体的接地端1011,而在0.97Ghz谐振频率时,电流路径只通过馈电点,而不通过接地端1011。当天线100工作在0.9Ghz谐振频率时,辐射方向图中最大辐射方向为竖直分布,此时天线100工作在第二模式。可以发现,类似于采用较短传输线的情况,在采用较长传输线的情况下,采用90°相位差设计的天线100可以激励三个谐振,比单独馈电激励两个辐射体能够多激励一个谐振,从而使得效率带宽获得显著提升。
基于上述两个设计,将两种分布式馈电结构组合,形成图80所示的双天线100系统。相比于图77中所示的情况不同的是,为了减少第二传输线的物理长度并保证第二传输线的等效长度不变,第二馈电部1032对应的天线100在馈线与辐射体连接处串联了预定大小(例如2~10nH)的电感。事实上,传输线的物理长度受限的情况下,可以通过电感、电容等方式来确保等效长度在适当的范围内,这将在后文中做进一步阐述。对于图80所示的双天线100系统而言,辐射体对101的总长度可以在1/4介质波长到3/4介质波长之间,例如,在90mm~135mm之间,其中第一辐射体1013的长度和第二辐射体1014的长度各自可以在 40mm~70mm之间。例如,在一些实施例中,第一辐射体1013和第二辐射体1014可以均包括边框的拐角部,如图80所示,并且第一辐射体1013的长度L1和第二辐射体1014的长度L2可以相同,大致为58.5mm。在这种情况下,辐射体对101的总长度为115mm。两个辐射体的接地端1011之间的距离可以在30mm~40mm的范围内,例如,可以设置在36mm。辐射体对101与边框的其他部分之间可以设置有缝隙,缝隙的宽度可以在3mm以内,例如,在一些实施例中,该宽度可以为2mm、1mm。缝隙中可以填充有不导电材料。
图80中的传输线结构可以适用于本申请任一实施例。例如,对于图70或图71所示的实施例,为了得到适当的等效长度,可以在传输线物理长度不变的情况下在至少一条传输线上设置电容、电感甚至是移相器等。在这种情况下,传输线的实际物理长度可以是在等效长度的正负1/3的范围(等效长度×(1±1/3))内,或者正负1/4的范围(等效长度×(1±1/4))内。
以图80中所示的第一馈电部1031馈电时作为第一天线,第二馈电部1032馈电时作为第二天线,图81示出了各个天线100的S11、Smith圆图、S21曲线图以及天线效率图。从图中可以看出,在同频段内,第一天线和第二天线均激励两个模式,同时隔离度到16dB以上。图82显示了图80所示的天线工作在谐振频率点时所对应的电流方向图及辐射方向图。从图中可以看出,当第一天线工作在0.86Ghz和1.03Ghz谐振频率时,辐射方向图中最大辐射方向为水平分布,第一天线均工作在第一模式。区别在于在1.03Ghz谐振频率时,电流路径只通过馈电点,而不通过接地端1011。在上述两个谐振频率下,第二天线辐射方向图中最大辐射方向为竖直分布。也就是说,第二天线工作在第二模式。可以发现,通过采用上述布置方式,天线100能够实现宽频带覆盖的同时实现了天线对之间的高隔离度。
在一些实施例中,还可以对天线的辐射体的位置进行各种变形。例如,在一些实施例中,为减小手握影响,可以将图80所示的天线的辐射体对从手机底部往上移动至电子设备的腰部,如图83所示。类似于前文中的情况,在将辐射体上移后,辐射体对101的总长度依然可以在1/4介质波长到3/4介质波长之间,例如,在90mm~135mm之间,其中第一辐射体1013的长度和第二辐射体1014的长度各自可以在40mm~70mm之间。例如,在一些实施例中,第一辐射体1013和第二辐射体1014分别位于边框的左侧边和右侧边,并且相互平行,如图83所示,并且第一辐射体1013的长度L1和第二辐射体1014的长度L2可以相同,大致为55mm。在这种情况下,辐射体对101的总长度为110mm。两个辐射体的接地端1011之间的沿边框的距离可以在30mm~200mm的范围内,例如,可以设置在145mm。辐射体对101与边框的其他部分之间可以设置有缝隙,缝隙的宽度可以在1mm~3mm的范围内,例如,在一些实施例中,该宽度可以为2mm。缝隙中可以填充有不导电材料。
以图83中所示的第一馈电部1031馈电时作为第一天线,第二馈电部1032馈电时作为第二天线,图84示出了各个天线100的S11、Smith圆图、S21曲线图以及天线效率图。从图中可以看出,以此方式布置的双天线100依然可以保持较高隔离度(如S21曲线图所示)。图85分别示出了在自由空间场景下、右手手持模式下、左手手持模式下各个天线100的效率图。可以发现,尽管第二天线自由空间情况下效率较低,但在手持模式下,其效率带宽很好,甚至超过了第一天线。
在一些实施例中,还可以对图83中所示的天线100的辐射体的结构做进一步调整来进一步优化天线100的性能。例如,可以通过增加辐射体的枝节以进一步改善天线100带宽,如图86所示。图86(a)中,将一侧IFA结构的辐射体从接地端1011反向延伸一段长度形成T天线结构,或者在图86(b)所示,将两侧的IFA结构的辐射体均在接地端1011方向延伸以形成 T天线结构。
以图83中所示的第一馈电部1031馈电时作为第一天线,第二馈电部1032馈电时作为第二天线,图86(a)所示的第一馈电部1031馈电时作为第三天线,第二馈电部1032馈电时作为第四天线以及图86(b)所示的第一馈电部1031馈电时作为第五天线,第二馈电部1032馈电时作为第六天线,图87示出了各个天线100的S11、S21曲线图以及天线效率图,其中第一天线、第三天线、第五天线的S11曲线图以及天线效率图区别不大,并没有分别标出。从图中可以看出,通过对辐射体的结构继续调整,可以增加天线模式,同时对隔离度基本没有影响,在单侧T天线100(如图86(a)所示)和双侧T天线结构(如图86(b)所示)下,相比于第二天线,第四天线和第六天线部分频段自由空间性能可提升2~3dB。
此外,图83中所示的天线结构同样也可以用于高频段天线,图88示出了图83中所示的天线结构工作在2.5Ghz~2.9Ghz频段下的S11、S21曲线图和效率图,其中是以图83中所示的天线100中第一馈电部1031馈电时为第一天线,第二馈电部1032馈电时为第二天线。可以看出,图83所示的双天线结构在2.5~2.9GHz频段依然可达到15dB以上隔离度。
此外,当根据本申请实施例的天线100采用IFA结构应用于中高频频段时,在一些实施例中,天线100的辐射体对101可以对称设置在电子设备的边框的顶部两侧区域,如图89所示。图89示出了传输线分别采用较短传输线(第一传输线)和增加约1/2介质波长(例如基于2GHz)的较长传输线(第二传输线),并作不对称馈电形成双天线100系统。
对于图89所示的双天线100系统而言,辐射体对101的总长度可以在1/4介质波长到3/4介质波长之间,例如,在2Ghz频段下,在25mm~55mm之间,其中第一辐射体1013的长度和第二辐射体1014的长度各自可以在12mm~30mm之间。例如,在一些实施例中,第一辐射体1013的长度L1和第二辐射体1014的长度L2可以相同,例如在对应于2Ghz频段下大致为20mm。在这种情况下,辐射体对101的总长度为40mm。两个辐射体的接地端1011之间的距离可以在90mm~150mm的范围内,例如,可以设置在129mm。辐射体对101与边框的其他部分之间可以设置有缝隙,缝隙的宽度可以在1mm~3mm的范围内,例如,在一些实施例中,该宽度可以为2mm。缝隙中可以填充有不导电材料。
以图89中所示的第一馈电部1031馈电时作为第一天线,第二馈电部1032馈电时作为第二天线,图90自上而下示出了各个天线100的S11、S21曲线图以及自由空间模式、右手手持模式、左手手持模式下的天线效率图。从图中可以看出,在1.8~2.4GHz频段内,每个天线100均具有双模式,隔离度达到15dB以上。自由空间及手持模式下的效率曲线图也显示了两个天线性能非常接近。图91还给出了两个天线100在不同谐振频率下的电流方向及辐射方向图。两天线的ECC小于0.1,并且可以发现第一天线在辐射体对101上激励电流相同,第二天线在辐射体对101上激励电流相反,从而两个天线100可以实现较高的隔离度。此外,由于相对高频,第一传输线基本接近3/2介质波长,即,基本在115mm左右,而第二传输线基本接近一倍介质波长,即,基本在75mm左右。
下面的表2是第一天线、第二天线以及单侧IFA天线100(第三天线)工作在诸如1.8Ghz~2.4Ghz的中高频频段的情况下的SAR仿真表。从表2中可以看出,第一天线和第二天线为低SAR天线。相比于第三天线,SAR值降低了2~3dB。
表2
对于采用IFA结构辐射体的天线100,在一些实施例中,特别是应用于中高频频段的情况下,第一辐射体1013的至少一部分和第二辐射体1014的至少一部分位于边框的不同边上,并且不同边在边框的拐角处相接。对于边框基本为矩形形状的电子设备而言,在一些实施例中,辐射体对101中的一个辐射体可以布置在电子设备的边框的顶侧边或底侧边,而另一个辐射体布置在左侧边或者右侧边。图92示出了第一辐射体1013设置在顶侧边而第二辐射体1014设置在右侧边的情况。应当理解的是,本申请不限于此,可以采用任意其他的布置方式。以此方式,也可以使得天线100实现宽频双天线设计。
对于图92所示的双天线100系统而言,辐射体对101的总长度可以在1/4介质波长到3/4介质波长之间,例如,在2Ghz频段下,在25mm~55mm之间,其中第一辐射体1013的长度和第二辐射体1014的长度各自可以在12mm~30mm之间。例如,在一些实施例中,第一辐射体1013的长度L1和第二辐射体1014的长度L2可以相同,例如在对应于2Ghz频段下大致为20mm。在这种情况下,辐射体对101的总长度为40mm。两个辐射体的接地端1011之间的距离可以在15mm~40mm的范围内,例如,可以设置在23mm。为了减少第二传输线的物理长度,第二馈电部1032对应的天线100在馈线与辐射体连接处串联了预定大小(例如2~10nH)的电感。在一个实施例中,辐射体和电路板之间具有至少1mm的净空缝隙。此外,辐射体对101与边框的其他部分之间可以设置有缝隙,缝隙的宽度可以在1mm~3mm的范围内,例如,在一些实施例中,该宽度可以为2mm。缝隙中可以填充有不导电材料。
以图92中所示的第一馈电部1031馈电时作为第一天线,第二馈电部1032馈电时作为第二天线,图93自上而下示出了各个天线100的S11曲线图、Smith圆图以及S21曲线图。从图中可以看出,在1.8~2.4GHz频段内,每个天线100均具有双模式,从而实现了宽频双天线100设计。下面的表3是第一天线、第二天线以及基于短传输线的单分布式天线100(如图94所示,第三天线)工作在诸如1.8Ghz~2.4Ghz的中高频频段的情况下的SAR仿真表。从表3中可以看出,第一天线和第三天线具有更低的SAR值。
表3
除了可以采用上述的T天线结构以及IFA天线结构外,在一些实施例中,根据本申请实施例的天线100还可以采用槽天线的结构,如图95和图96所示。也就是说,在一些实施例中,辐射体对101的开放端1012相对并形成间隙。在一个实施例中,间隙的宽度可以在3mm以内,例如2mm、1mm。对于图95和图96所示的天线100而言,辐射体对101的总长度可以在1/4介质波长到3/4介质波长之间,例如,在0.9Ghz频段下,在70mm~110mm之间,其中第一辐射体1013的长度和第二辐射体1014的长度各自可以在35mm~60mm之间。例如,在一些实施例中,第一辐射体1013的长度L1和第二辐射体1014的长度L2可以相同,例如在对应于0.9Ghz频段下大致为45mm。在这种情况下,辐射体对101的总长度为90mm。为了减少传输线的物理长度,在传输线和辐射体之间可以设置预定大小(例如0.6~0.9pF)的电容。例如,在第一传输线与辐射体对101之间设置0.7pF的电容,在第二传输线和辐射体对101之间设置0.8pF的电容,如图95和图96所示。在一个实施例中,传输线和辐射体之间设置的电容还可以用于优化阻抗匹配。
以图96中所示的第一馈电部1031馈电时作为第一天线,第二馈电部1032馈电时作为第二天线,图97自上而下示出了各个天线100的S11、Smith圆图、S21曲线图以及自由空间模式下的天线效率图。从图中可以看出,在0.9GHz频段内,每个天线100均具有双模式,隔离度达到15dB以上。图98还给出了两个天线100在不同谐振频率下的电流方向及辐射方向图。可以发现第一天线在辐射体对101上激励电流相同,第二天线在辐射体对101上激励电流相反,从而两个天线100可以实现较高的隔离度。
此外,作为对比,以图96中所示的第一馈电部1031馈电时作为第一天线,第二馈电部1032馈电时作为第二天线,以图95中所示的天线100作为第三天线以及图99(a)中所示的天线100为第四天线,图99(b)分别示出了这四种天线100的S11曲线图、Smith圆图,并且图99(c)分别示出了自由空间场景下,各个天线100的效率图。可以看出,第一天线、第二天线是槽天线结构的分布式双天线100馈电设计,各具有两个模式,第三天线是槽天线结构的分布式单天线100设计(仅实现短传输线馈电结构,具有三个模式),第四天线是耦合馈电天线设计,具有两个模式。可以发现,在自由空间下,相比于第四天线,第三天线的效率带宽仍有一定优势。
此外,在一些实施例中,这种槽天线结构的辐射体对101也可以用更短的传输线连接馈电。如图100所示,第一馈电部1031馈电的第一传输线的总等效长度约为1/2介质波长(对应于1/2介质波长的奇数倍),而第二馈电部1032馈电的第二传输线的等效长度仅在1/10介 质波长左右甚至更短,这可以看作是图58中所示的天线结构的一种变形。此时,两条传输线的等效长度差值仍然在50~65mm的范围内。
以图100中所示的第一馈电部1031馈电时作为第一天线,第二馈电部1032馈电时作为第二天线,图101自上而下示出了各个天线的S11曲线图、Smith圆图、S21曲线图以及自由空间模式下的天线效率图。从图中可以看出,在0.9GHz频段内,两个天线对可以实现较高的隔离度。
上文中通过示例的方式描述了被看作是采用T天线结构、IFA天线结构以及槽天线结构的天线100的实施例。应当理解的是,描述上述实施例只是为了阐明根据本申请实施例的发明构思,而并非穷举,可以存在其他任意适当的变形或者结构。
例如,对于第一传输线和/或第二传输线的等效长度,在一些实施例中,除了可以根据各自传输线的物理长度来确定外,还可以通过以下中的至少一种来确定:对应传输线和辐射体对101之间设置的电容或电感、对应传输线上设置的移相器和对应传输线耦合至所述辐射体对101的位置等。例如,前面的实施例中就提到了在传输线与辐射体的开放端1012附近的馈电点之间设置电容,在传输线与辐射体的接地端1011附近的馈电点之间设置电感,可以优化阻抗匹配的同时使得传输线的等效长度在上文中提到的范围内。此外,图102示出了在其中一个传输线上设置移相器来使得两个传输线的等效长度相差大约1/2介质波长的情况。以此方式,可以在物理长度设置受限的情况以其他适当的方式来确保传输线的等效长度在上文中所提到的范围内,从而提高天线乃至电子设备的性能。
此外,对于馈电点相对于辐射体的位置,前面介绍的大部分实施例都是馈电点设置在辐射体的接地端1011附近。当然,应当理解的是,在实际的应用中,根据应用场景的不同,对于IFA天线100而言,传输线与辐射体连接的馈电点也可以都设置在开放端1012附近,如图103所示。在这种情况下,可以在传输线与辐射体对101的馈电点之间设置预定大小的电容以确保阻抗匹配的同时使等效长度处于适当的范围。此外,对于槽天线结构而言,传输线与辐射体连接的馈电点也可以都设置在接地端1011附近,如图104所示,从而形成槽天线100和IFA天线100组合结构。在这种情况下,可以在传输线与辐射体对101的馈电点之间设置预定大小的电感以确保阻抗匹配的同时使等效长度处于适当的范围。
在一些实施例中,对于IFA天线结构的天线100而言,第一辐射体1013的至少一部分和所述第二辐射体1014的至少一部分位于边框的不同边上也可以包括图105所示的情况。在这样的实施例中,第一辐射体1013可以从边框的左侧边(或右侧边)经由拐角延伸至底边(或顶边),而第二辐射体1014可以位于边框的右侧边(左侧边)。这样布置的IFA结构的天线100依然能够实现上述类似的性能。
此外,对于IFA天线结构而言,两条传输线也可以分别耦合至辐射体对101的开放端1012和接地端1011,如图106和图107所示。例如,在一些实施例中,第一传输线经由电感而耦合至辐射体对101的接地端1011附近的第一馈电点,而第二传输线经由电容耦合至辐射体对101的开放端1012附近的第二馈电点。在这种情况下,第二传输线的等效长度包括所设置的电容的同时还包括辐射体对101的第一馈电点和第二馈电点之间的长度。以此获得的天线结构同样能够获得与上述实施例描述的天线100具有类似的性能。
在一些实施例中,对于T天线结构的天线100而言,除了图66所示的情况之外,连续的辐射体对101也可以设置在边框的不同侧边上。例如,连续布置在边框上的辐射体对101可以从边框的侧边经由拐角部延伸至底边或者顶边。图108和图109示出了辐射体对101从边 框的右侧边经由拐角部延伸至底边或顶边的情况。如图108所示,第一传输线分别通过电感连接于辐射体对101的接地端附近,第二传输线分别通过电容连接于辐射体对101的接地端与两个开放端之间。如图109所示,第一传输线可以通过折线等方式来延长等效长度,使其总等效长度约为1/2介质波长(对应于1/2介质波长的奇数倍),而第二馈电部1032馈电的第二传输线的等效长度仅在1/10介质波长左右甚至更短(对应于1/2介质波长的偶数倍,并且该偶数为0的情况)。此时,两条传输线的等效长度差值仍然在1/2介质波长左右,从而实现天线性能的优化。
此外,如前文中所提到的,电子设备的边框中的既有结构也可以作为传输线或者传输线的至少一部分。例如,在一些实施例中,在传输线较短的情况下(例如小于等于1/10介质波长的情况),可以利用与导电边框一体成型的向内凸伸的突出部作为传输线或者传输线的一部分,由此能够提高电子设备集成度的同时优化天线的性能。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
Claims (24)
- 一种天线,包括:第一辐射体,包括接地端和开放端;传输线,具有第一端和第二端,所述第一端耦合至所述第一辐射体的接地端或开放端,所述第二端开放或接地;馈电单元,耦合至所述传输线的耦合点并经由所述传输线而向所述第一辐射体馈电,其中,所述馈电单元馈电时,所述第一辐射体用于产生第一谐振,所述传输线用于产生与所述第一谐振相邻频段的谐振。
- 根据权利要求1所述的天线,其中所述耦合点偏离所述传输线的中点。
- 根据权利要求1-2中任一项所述的天线,还包括:第二辐射体,包括接地端和开放端;其中所述传输线的所述第二端耦合至所述第二辐射体的接地端或开放端,且其中,所述馈电单元馈电时,所述第二辐射体用于产生第二谐振,所述传输线还用于产生与所述第二谐振相邻频段的谐振。
- 根据权利要求3所述的天线,其中所述传输线的所述第一端耦合至所述第一辐射体的接地端,所述第二端接地或者耦合至所述第二辐射体的接地端,所述耦合点位于所述第一端或所述第二端的附近。
- 根据权利要求3所述的天线,其中所述传输线的所述第一端耦合至所述第一辐射体的开放端,所述第二端开放或者耦合至所述第二辐射体的开放端,并且所述耦合点位于所述中点附近。
- 根据权利要求3所述的天线,其中所述传输线的所述第一端耦合至所述第一辐射体的接地端,所述第二端开放或者耦合至所述第二辐射体的开放端,并且所述耦合点位于所述第一端附近。
- 根据权利要求4或5所述的天线,其中所述传输线的长度T满足1/2λ1≤T≤1/2λ2,其中λ1和λ2分别为所述馈电单元在馈电时,所述天线所产生的最低谐振所对应的工作频段的最小介质波长和最大介质波长。
- 根据权利要求6所述的天线,其中所述传输线的长度T满足1/4λ1≤T≤1/4λ2,其中λ1和λ2分别为所述馈电单元在馈电时,所述天线所产生的最低谐振所对应的工作频段的最小介质波长和最大介质波长。
- 根据权利要求4所述的天线,其中所述传输线包括通过电容连接的两个区段,并且所述耦合点位于所述两个区段中的一个区段上。
- 根据权利要求3-9中任一项所述的天线,其中所述传输线经由第一匹配电路耦合至所述第一辐射体,和/或所述传输线经由第二匹配电路耦合至所述第二辐射体。
- 一种天线,包括:辐射体对,所述辐射体对中的第一辐射体和第二辐射体均包括接地端和开放端;至少一条传输线,耦合至所述辐射体对,所述至少一条传输线包括第一传输线,所述第一传输线包括长度不等的第一区段和第二区段;以及馈电单元,所述馈电单元包括第一馈电部,所述第一馈电部经由所述第一区段和所述第二区段而分别耦合至所述第一辐射体和所述第二辐射体。
- 根据权利要求11所述的天线,还包括:匹配电路,耦合在所述第一馈电部和所述第一传输线之间,所述匹配电路包括电容和/或电感,其中所述第一传输线的长度小于或等于所述天线的最低工作频段所对应的介质波长的1/10。
- 根据权利要求11或12所述的天线,其中所述第一传输线的两个区段长度的差值(T2-T1)满足0≤(T2-T1)≤8mm,或者所述第一传输线的两个区段长度的比值T1/T2满足1/2≤T1/T2≤2。
- 根据权利要求11所述的天线,其中所述至少一条传输线还包括第二传输线,所述第二传输线包括长度不等的第三区段和第四区段,并且所述馈电单元包括第二馈电部,所述第二馈电部经由所述第三区段和所述第四区段而分别耦合至所述辐射体对。
- 根据权利要求14所述的天线,其中,所述第一馈电部和所述第二馈电部均耦合至所述第一辐射体的接地端或均耦合至所述第一辐射体的开放端,且所述第一馈电部和所述第二馈电部均耦合至所述第二辐射体的开放端或均耦合至所述第二辐射体的接地端;或者所述第一馈电部和所述第二馈电部分别耦合至所述第一辐射体的接地端和所述第一辐射体的开放端,且所述第一馈电部和所述第二馈电部分别耦合至所述第二辐射体的开放端和所述第二辐射体的接地端。
- 根据权利要求14或15所述的天线,其中所述第一馈电部馈电时,所述天线用于产生第一谐振,并且所述第二馈电部馈电时,所述天线用于产生第二谐振。
- 根据权利要求14-16中任一项所述的天线,其中所述第一传输线的所述第一区段和所述第二区段的长度比例T1/T2满足:1/4≤T1/T2≤1/2;和/或所述第二传输线的所述第三区段和所述第四区段的长度比例T3/T4满足:1/4≤T3/T4≤1/2。
- 根据权利要求16所述的天线,其中所述第二传输线的长度T6和所述第一传输线的 长度T5的差T6-T5与所述第一谐振的第一介质波长λ1或所述第二谐振的第二介质波长λ1满足:1/4λ1≤(T6-T5)≤3/4λ1或者1/4λ2≤(T6-T5)≤3/4λ2。
- 根据权利要求14-18中任一项所述的天线,其中在所述第一谐振和所述第二谐振小于1.2GHz的低频频段下,所述第二传输线和所述第一传输线的长度的差值T6-T5满足:50mm≤(T6-T5)≤80mm,或者在所述第一谐振和所述第二谐振小于3GHz的中高频段下,所述第二传输线和所述第一传输线的长度的差值T6-T5满足25mm≤(T6-T5)≤40mm。
- 一种电子设备,包括:壳体,包括边框;电路板,布置在所述壳体中,并且包括馈电单元;以及根据权利要求1-19中任一项所述的天线。
- 根据权利要求20所述的电子设备,其中所述天线的所述第一辐射体包括所述边框的第一连续区段,所述第二辐射体包括所述边框的第二连续区段。
- 根据权利要求20或21所述的电子设备,其中所述第一辐射体和所述第二辐射体在所述边框上分离;或者所述第一辐射体和所述第二辐射体在所述边框上连续。
- 根据权利要求20-22中的任一项所述的天线,其中所述第一辐射体和所述第二辐射体的接地端是共用的接地端。
- 根据权利要求20-23中的任一项所述的天线,其中所述第一辐射体的开放端和所述第二辐射体的开放端相对设置并形成缝隙,所述缝隙的宽度小于3mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22923536.1A EP4456323A4 (en) | 2022-01-28 | 2022-12-14 | ANTENNA AND ELECTRONIC DEVICE |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210108537 | 2022-01-28 | ||
CN202210108537.4 | 2022-01-28 | ||
CN202210932953.6 | 2022-08-04 | ||
CN202210932953.6A CN116565539A (zh) | 2022-01-28 | 2022-08-04 | 天线和电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023142750A1 true WO2023142750A1 (zh) | 2023-08-03 |
Family
ID=87470373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/139115 WO2023142750A1 (zh) | 2022-01-28 | 2022-12-14 | 天线和电子设备 |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4456323A4 (zh) |
WO (1) | WO2023142750A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130300626A1 (en) * | 2012-05-09 | 2013-11-14 | Lg Electronics Inc. | Antenna apparatus and mobile terminal having the same |
CN112713385A (zh) * | 2020-12-14 | 2021-04-27 | 宇龙计算机通信科技(深圳)有限公司 | 一种天线结构和终端设备 |
CN113328233A (zh) * | 2020-02-29 | 2021-08-31 | 华为技术有限公司 | 电子设备 |
CN113809517A (zh) * | 2020-06-15 | 2021-12-17 | 华为技术有限公司 | 天线装置与电子设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113471665B (zh) * | 2020-03-31 | 2022-09-16 | 华为技术有限公司 | 一种天线及终端 |
-
2022
- 2022-12-14 EP EP22923536.1A patent/EP4456323A4/en active Pending
- 2022-12-14 WO PCT/CN2022/139115 patent/WO2023142750A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130300626A1 (en) * | 2012-05-09 | 2013-11-14 | Lg Electronics Inc. | Antenna apparatus and mobile terminal having the same |
CN113328233A (zh) * | 2020-02-29 | 2021-08-31 | 华为技术有限公司 | 电子设备 |
CN113809517A (zh) * | 2020-06-15 | 2021-12-17 | 华为技术有限公司 | 天线装置与电子设备 |
CN112713385A (zh) * | 2020-12-14 | 2021-04-27 | 宇龙计算机通信科技(深圳)有限公司 | 一种天线结构和终端设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4456323A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4456323A1 (en) | 2024-10-30 |
EP4456323A4 (en) | 2025-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6380903B1 (en) | Antenna systems including internal planar inverted-F antennas coupled with retractable antennas and wireless communicators incorporating same | |
WO2021238347A1 (zh) | 天线和电子设备 | |
CN104396086A (zh) | 一种天线及移动终端 | |
TW202422942A (zh) | 天線模組 | |
CN113871872B (zh) | 一种多天线系统及无线通信设备 | |
CN118232005B (zh) | 一种可折叠电子设备 | |
WO2024222710A1 (zh) | 一种电子设备 | |
CN119181958A (zh) | 一种可折叠电子设备 | |
WO2024183690A1 (zh) | 一种天线结构和电子设备 | |
WO2024046200A1 (zh) | 一种电子设备 | |
WO2024046199A1 (zh) | 一种电子设备 | |
WO2023142750A1 (zh) | 天线和电子设备 | |
US11239560B2 (en) | Ultra wide band antenna | |
CN116565539A (zh) | 天线和电子设备 | |
WO2024114283A1 (zh) | 一种天线结构和电子设备 | |
CN118399075B (zh) | 一种天线系统及电子设备 | |
Lyu et al. | Flexible Ultra-Wideband Antenna for 5G and Beyond Wearable Applications | |
TWI850621B (zh) | 天線結構及具有該天線結構之電子設備 | |
WO2024179404A1 (zh) | 一种天线结构和电子设备 | |
WO2025026088A1 (zh) | 一种电子设备 | |
WO2023109556A1 (zh) | 天线和电子设备 | |
WO2025044936A1 (zh) | 一种电子设备 | |
CN116799483A (zh) | 天线和电子设备 | |
WO2025045205A1 (zh) | 一种天线结构及其电子设备 | |
WO2025139684A1 (zh) | 一种电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22923536 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022923536 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022923536 Country of ref document: EP Effective date: 20240716 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |