WO2021169405A1 - 一种多向衍射扩展光波导镜片及增强现实显示装置 - Google Patents

一种多向衍射扩展光波导镜片及增强现实显示装置 Download PDF

Info

Publication number
WO2021169405A1
WO2021169405A1 PCT/CN2020/127979 CN2020127979W WO2021169405A1 WO 2021169405 A1 WO2021169405 A1 WO 2021169405A1 CN 2020127979 W CN2020127979 W CN 2020127979W WO 2021169405 A1 WO2021169405 A1 WO 2021169405A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
diffractive structure
exposure
waveguide
functional area
Prior art date
Application number
PCT/CN2020/127979
Other languages
English (en)
French (fr)
Inventor
罗明辉
乔文
李瑞彬
陈林森
Original Assignee
苏州苏大维格科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格科技集团股份有限公司 filed Critical 苏州苏大维格科技集团股份有限公司
Publication of WO2021169405A1 publication Critical patent/WO2021169405A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams

Definitions

  • the invention relates to virtual reality display technology, in particular to a multi-directional diffraction extended optical waveguide lens and an augmented reality display device.
  • Augmented reality (AR) technology is a new technology that "seamlessly" integrates real world information and virtual world information. It not only displays real world information, but also displays virtual information at the same time. The two kinds of information complement each other, Overlay.
  • the first aspect of the present invention provides a multi-directional diffraction expansion optical waveguide lens, which can realize multi-directional diffraction expansion of image light, and its specific technical solutions are as follows:
  • a multi-directional diffraction extended optical waveguide lens which comprises:
  • the incident functional area is provided with an in-coupling diffractive structure that couples external image light to the waveguide and realizes the multi-directional diffraction and expansion of the image light, and the in-coupling diffractive structure is composed of multiple groups of array structures;
  • the outgoing functional area is provided with an out-coupling diffractive structure that couples the image light transmitted in the waveguide out of the waveguide and realizes the multi-directional expansion of the image light.
  • the out-coupling diffractive structure is composed of multiple arrays Structure and composition.
  • the in-coupling diffractive structure and the out-coupling diffractive structure have the same structure, which is easy to manufacture and reduces process difficulty.
  • the coupling-in diffractive structure and the array structure of the coupling-out diffractive structure are periodically distributed in a lattice shape in three directions, providing more propagation paths for light and improving image uniformity.
  • the period of each group of array structures in the coupling-in diffractive structure and the coupling-out diffractive structure is 200-600 nm, and the depth is 50-600 nm.
  • the multiple sets of array structures in the coupling-in diffractive structure and the coupling-out diffractive structure are formed by three superimposed exposures, and the three superimposed exposures are:
  • the exposure light source is kept still, the waveguide is rotated 60° along the center, the second exposure is completed, and a two-dimensional array structure is obtained.
  • the exposure light source does not move, the substrate continues to rotate 60° along the center, and the third exposure is completed to obtain multiple array structures; among them,
  • the exposure light source is composed of two plane light beams, and the two plane light beams form an exposure interference surface.
  • the multiple sets of arrays in the coupling-in diffractive structure and the coupling-out diffractive structure are formed by one exposure, and the exposure light source of the one exposure is composed of six plane waves. Among the six plane waves, each Two plane waves form an exposed interference surface.
  • the array structure is cylindrical, conical or truncated.
  • the refractive index of the waveguide is greater than 1.4, and the thickness does not exceed 2 mm.
  • the incident functional area and the outgoing functional area are arranged separately, which can reduce the light diffraction energy loss in the non-visible area.
  • the incident functional area and the exit functional area are integrally formed.
  • the second aspect of the present invention provides an augmented reality display device, which includes:
  • Micro-projection device for generating image light
  • optical waveguide lens which is the multi-directional diffraction extended optical waveguide lens according to any one of the first aspect of the present invention.
  • the present invention has the following technical advantages:
  • the second aspect of the present invention provides an augmented reality display device, which includes: a micro-projection device for generating image light; an optical waveguide lens, the optical waveguide lens adopts the multi-directional diffraction according to any one of the first aspect of the present invention Expand the optical waveguide lens.
  • FIG. 1 is a schematic diagram of the structure of the multi-directional diffraction extended optical waveguide lens of the present invention
  • Fig. 2 is a schematic diagram of the optical path of the multi-directional diffraction extended optical waveguide lens of the present invention
  • Fig. 3 is a schematic diagram of the partial light path of light incident in the functional area
  • Figure 4 is a schematic diagram of the optical path of light entering the functional area and exiting the functional area;
  • Figure 5 is a schematic diagram of the optical path of light in the outcoupling diffractive structure.
  • FIG. 1 is a schematic diagram of the structure of the multi-directional diffraction extended optical waveguide lens of the present invention, which is used as a display screen of an augmented reality display device.
  • the multi-directional diffraction extended optical waveguide lens includes:
  • the functional area with optical diffraction function located on the upper or lower surface of the waveguide 1, as shown in Fig. 2. If the upper surface is defined as the side where the image light enters and exits, the two functional areas in the embodiment of Fig. 2 They are all set on the upper surface of the waveguide.
  • the functional area includes the incident functional area 2 and the outgoing functional area 3. Among them:
  • the incident functional area 2 is provided with an in-coupling diffraction structure that couples external image light to the waveguide 1 and realizes multi-directional diffraction and expansion of the image light.
  • the exit functional area 3 is provided with an out-coupling diffraction structure that couples the image light transmitted in the waveguide out of the waveguide 1 and realizes the multi-directional expansion of the image light.
  • X axis the width direction of the waveguide 1, which is also the connection direction of the user's eyes;
  • Y axis the height direction of the waveguide 1, and also the extension direction of the user's nose bridge;
  • Z axis the direction perpendicular (or orthogonal) to the X-Y plane defined by the X axis and the Y axis.
  • the incident functional area 2 and the outgoing functional area 3 in the present invention are located on the X-Y plane.
  • both the coupling-in diffractive structure and the coupling-out diffractive structure are composed of multiple sets of array structures.
  • the following takes the coupled diffractive structure as an example to introduce the interaction process with light.
  • the image light incident light emitted by the micro-projection device enters the incident functional area 2 along the Z axis
  • the image light interacts with the coupling diffractive structure in the incident functional area 2 and forms multiple directions.
  • the diffracted light, the diffracted light that meets the total reflection condition of the waveguide 1 is transmitted in the waveguide 1 in the form of total reflection.
  • the interaction process forms diffracted light in multiple directions. Among them, part of the light forms a reflection type diffraction, and at the same time changes the azimuth angle, and is transmitted toward the exit functional area 3, and part of the light continues to be transmitted along the original direction at a total reflection angle.
  • the image light incident to the incident functional area 2 can not only be coupled into the waveguide 1 and finally conducted toward the outgoing functional area 3, in addition, it can be coupled into the diffraction grating structure multiple times.
  • the image light can realize multi-directional expansion and stretching in the X-Y plane, so as to realize the expansion of the image, so as to expand the visual field of the image.
  • the image light when the image transmitted from the incident functional region 2 reaches the exit functional region 3 along the waveguide 1, the image light interacts with the outcoupling diffractive structure in the exit functional region 3, and forms multiple directions.
  • Diffracted light in which: part of the diffracted light is diffracted along the Z axis and exits the functional area 3 and is observed, and part of the diffracted light is transmitted in the waveguide 1 in the form of total reflection.
  • the light repeatedly returns to the waveguide 1 , And create a new interaction with the out-coupling diffractive structure.
  • Each interaction process forms diffracted light in multiple directions. Part of the light is diffracted along the Z axis and exits the functional area 3 and is observed, while part of the light continues in Propagation in the waveguide.
  • the image light transmitted from the incident functional area 2 can not only be coupled out of the waveguide 1 to achieve imaging, in addition, during multiple interactions with the outcoupling diffractive structure, the image light It can realize multi-directional expansion and stretching in the X-Y plane, so as to realize the expansion and extension of the field of view image, and further expand the visible area of the image.
  • each interaction point of the outcoupling diffractive structure in the outgoing functional area 3 can couple out image light, the human eye can see a clear image in the entire outgoing functional area 3, thereby Realize panoramic head-up imaging.
  • both the incident functional area 2 and the outgoing functional area 3 are formed with a diffractive structure composed of multiple array structures, which provides more propagation paths for light and improves image uniformity.
  • the structures of the coupling-in diffraction grating structure and the coupling-out diffraction grating structure can be set to be substantially the same, thereby reducing the manufacturing difficulty of the process.
  • the in-coupling diffractive structure and the out-coupling diffractive structure in the present invention are formed by three-directional beam group superimposed exposure, wherein the exposure light source is composed of two plane waves, and the two plane waves form an exposure interference surface.
  • the three-direction beam group superimposed exposure is:
  • the exposure light source remains stationary, the waveguide is rotated 60° along the center, and the second direction exposure is completed to obtain a two-dimensional array structure.
  • the exposure light source does not move, and the waveguide rotates 60° along the center again to complete exposure in the third direction to obtain multiple array structures.
  • the morphology of the formed multi-group array structure can be in various shapes, for example, including but not limited to cylindrical, conical or truncated cone-shaped array structure, and is periodically distributed in a lattice shape in three directions, that is, the multi-group array structure
  • Three grating orientations, the three grating orientations are consistent with the exposure direction of the three-exposure interference surface, as shown in Figure 5, for ease of understanding, set the three grating orientations of the multiple array structure as the first grating orientation N1 and the first grating orientation respectively.
  • the exposure light source is composed of six plane waves. Among the six plane waves, every two plane waves form an exposure interference surface.
  • the propagation path of light in the coupled diffraction grating structure is as follows: after light 1 enters and interacts with the array structure at point A, it is generated perpendicular to the third grating orientation N3 Light 2; After light 2 travels to the array structure at point B and interacts with it, light 3, light 4 and light 5 are generated, and light 5 is coupled out of the waveguide; light 3 travels to the array structure at point D and interacts with it, Light 6, 7 and 8 are generated, and light 6 is coupled out of the waveguide, and so on, until all light 1 is coupled out of the waveguide.
  • the period of each group of array structures in the coupling-in diffractive structure and the out-coupling diffractive structure is set to 200-600 nm, and the depth is set to 50-600 nm.
  • the array structure of each group can select various known cylindrical gratings, conical gratings or frustum gratings.
  • the structures of the coupling-in diffractive structure and the coupling-out diffractive structure are set to be exactly the same, in order to improve production efficiency, the incident functional area 2 and the outgoing functional area 3 can be used at once without distinction. forming.
  • the incident functional area 2 and the outgoing functional area 3 may also be separated from each other. That is, there is a smooth waveguide between the coupling-in extension area and the coupling-out area, without any diffractive array structure on it. Such a setting can maximize the efficiency of the decoupling area viewed by the human eye and avoid unnecessary diffraction attenuation.
  • the waveguide 1 is a glass waveguide with high transmittance, a refractive index greater than 1.4, and a thickness not exceeding 2 mm.
  • the present invention also provides an augmented reality display device, which includes: a micro-projection device for generating image light; an optical waveguide lens, the optical waveguide lens adopts the multi-directional diffraction extended optical waveguide lens provided by any of the above-mentioned embodiments of the present invention .

Abstract

一种多向衍射扩展光波导镜片及增强现实显示装置,多向衍射扩展光波导镜片包括:波导(1);位于波导(1)上表面或下表面的具有光学衍射功能的功能性区域,功能性区域至少包括:入射功能性区域(2),入射功能性区域(2)内设置有将外部图像光耦合至波导(1),并实现图像光的多向衍射扩展的耦入衍射结构,耦入衍射结构由多组阵列结构组成;出射功能性区域(3),出射功能性区域(3)内设置有将波导(1)内传输过来的图像光耦合出波导(1),并实现图像光的多向扩展的耦出衍射结构,耦出衍射结构由多组阵列结构组成。能够实现对图像光的多向衍射扩展,从而增大成像视角。

Description

一种多向衍射扩展光波导镜片及增强现实显示装置 技术领域
本发明涉及虚拟现实显示技术,具体涉及一种多向衍射扩展光波导镜片及增强现实显示装置。
背景技术
增强现实(AR)技术,是一种将真实世界信息和虚拟世界信息“无缝”集成的新技术,不仅展现了真实世界的信息,而且将虚拟的信息同时显示出来,两种信息相互补充、叠加。
现有技术US20160231568中公开了一种采用耦入-转折-耦出的光栅波导结构,图像光从耦入区域进入,经转折区域扩展及弯折,最终经耦出区域扩展及输出。这种采用三个分离区域的解决方案需要配置大面积波导,在微型显示系统(如AR眼镜)并不适用,此外,三个分离区域的光栅周期、取向等参数设置要求极高,从而加工工艺难度很大。另一问题是,这种单向衍射扩展的方式需要大量的衍射交互(每个衍射交互均会导致散射损失),从而造成图像光能量的大幅降低。
发明内容
为解决上述技术问题,本发明第一方面提供了一种多向衍射扩展光波导镜片,其能够实现对图像光的多向衍射扩展,其具体技术方案如下:
一种多向衍射扩展光波导镜片,其包括:
波导;
位于波导上表面或下表面的具有光学衍射功能的功能性区域,所述功能性区域至少包括:
入射功能性区域,所述入射功能性区域内设置有将外部图像光耦合至波导,并实现图像光的多向衍射扩展的耦入衍射结构,所述耦入衍射结构由多组阵列结构组成;
出射功能性区域,所述出射功能性区域内设置有将波导内传输过来的 图像光耦合出波导,并实现图像光的多向扩展的耦出衍射结构,所述耦出衍射结构由多组阵列结构组成。
在一些实施例中,所述耦入衍射结构与所述耦出衍射结构的结构相同,便于制作,降低工艺难度。
在一些实施例中,所述耦入衍射结构及所述耦出衍射结构的阵列结构在三个方向上呈点阵状周期分布,为光线提供更多的传播路径,提高图像均匀度。
在一些实施例中,所述耦入衍射结构及所述耦出衍射结构中的各组阵列结构的周期为200~600nm,深度为50~600nm。
在一些实施例中,所述耦入衍射结构及所述耦出衍射结构中的所述多组阵列结构经三次叠加曝光形成,所述三次叠加曝光为:
固定曝光光源与波导位置,完成第一次曝光,获得一维光栅结构,
曝光光源保持不动,波导沿中心旋转60°,完成第二次曝光,获得二维阵列结构,
曝光光源不动,基片沿中心继续旋转60°,完成第三次曝光,获得多组阵列结构;其中,
所述曝光光源由两束平面光束构成,两束平面光束形成一曝光干涉面。
在一些实施例中,所述耦入衍射结构及所述耦出衍射结构中的所述多组阵列经一次曝光形成,所述一次曝光的曝光光源由六束平面波构成,六束平面波中,每两束平面波形成一曝光干涉面。
在一些实施例中,所述阵列结构为圆柱形、圆锥形或圆台形。
在一些实施例中,所述波导的折射率大于1.4,厚度不超过2mm。
在一些实施例中,所述入射功能性区域和所述出射功能性区域隔开设置,可以降低非可视区域的光线衍射能量损失。
在一些实施例中,所述入射功能性区域和所述出射功能性区域一体成型。
本发明第二方面提供了一种增强现实显示装置,其包括:
微投影装置,用于产生图像光;
光波导镜片,所述光波导镜片为本发明的第一方面任一项所述的多向衍射扩展光波导镜片。
与现有技术相比,本发明具有如下技术优势:
1、只需要设置入射功能性区域和出射功能性区域两个功能区域即能实现图像光的衍射扩展,从而降低了对波导的面积需求,适合微型显示系统,同时由于入射功能性区域和出射功能性区域的结构相同,因此便于制作,降低工艺难度。
2、实现图像光多向衍射扩展,在增加了可视区域面积;
3、相比于传统的二维光栅结构,减弱了沿光栅取向的两条光柱亮度,增加了观察区域的图像均匀度。
本发明第二方面提供了一种增强现实显示装置,其包括:微投影装置,用于产生图像光;光波导镜片,该光波导镜片采用本发明第一方面任一项所述的多向衍射扩展光波导镜片。
附图说明
图1为本发明的多向衍射扩展光波导镜片的结构示意图;
图2本发明的多向衍射扩展光波导镜片的光路示意图;
图3为光线在入射功能性区域内的局部光路示意图;
图4为光线在入射功能性区域、出射功能性区域件的光路示意图;
图5为光线在耦出衍射结构中的光路示意图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的抬头显示系统及汽车的具体实施方式、结构、特征及其功效,详细说明如下:
有关本发明的前述及其它技术内容、特点及功效,在以下配合参考图式的较佳实施例的详细说明中将可清楚呈现。通过具体实施方式的说明,当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的了解,然而所附图式仅是提供参考与说明之用,并非用来对本发明加以限制。
图1为本发明的多向衍射扩展光波导镜片的结构示意图,该多向衍射扩展光波导镜片用作增强现实显示装置的显示屏。如图1及图2所示,该多向衍射扩展光波导镜片包括:
波导1;
位于波导1的上表面或下表面的具有光学衍射功能的功能性区域,如图2所 示,如果定义图像光入射及出射的一面为上表面,则图2实施例中,两个功能性区域均设置在波导的上表面。
功能性区域包括入射功能性区域2和出射功能性区域3,其中:
入射功能性区域2内设置有将外部图像光耦合至波导1,并实现图像光的多向衍射扩展的耦入衍射结构。
出射功能性区域3内设置有将波导内传输过来的图像光耦合出波导1,并实现图像光的多向扩展的耦出衍射结构。
下文将对本发明的多向衍射扩展光波导镜片的光学原理进行介绍,在此之间,我们定义如下坐标轴:
X轴:波导1的宽度方向,同时也是用户的双眼连线方向;
Y轴:波导1的高度方向,同时也是用户的鼻梁的延伸方向;
Z轴:与X轴、Y轴限定的X—Y平面垂直(或正交)的方向。
可见,本发明中的入射功能性区域2、出射功能性区域3位于X—Y平面上。
请参考图3至图4,本发明中,耦入衍射结构、耦出衍射结构均由多组阵列结构组成。下面以耦入衍射结构为例,介绍其与光线的相互作用过程。
如图3所示,微投影装置发出的图像光入射光线沿Z轴入射至入射功能性区域2时,图像光与入射功能性区域2内的耦入衍射结构产生交互,并形成多个方向的衍射光,满足波导1的全反射条件的衍射光以全反射形态在波导1内传导,全反射过程中,光线反复多次回到波导1内,并与耦入衍射结构产生新的交互,每次交互过程均形成多个方向的衍射光,其中:部分光线形成反射式衍射,同时改变了方位角,朝向出射功能性区域3传导,部分光线则继续沿原方向以全反射角传导。
可见,通过与耦入衍射结构的交互,入射至入射功能性区域2的图像光不仅能够被耦合至波导1内并最终朝向出射功能性区域3传导,此外,在与耦入衍射光栅结构多次交互过程中,图像光能够实现在X—Y平面内的多向扩展、拉伸,从而实现对图像的扩展,以扩大图像的视场角可视区域。
如图4所示,自入射功能性区域2传导来的图像沿波导1到达出射功能性区域3时,图像光与出射功能性区域3内的耦出衍射结构产生交互,并形成多个方向的衍射光,其中:部分衍射光沿Z轴被衍射出出射功能性区域3并被观 察到,部分衍射光以全反射形态在波导1内传导,全反射过程中,光线反复多次回到波导1内,并与耦出衍射结构产生新的交互,每次交互过程均形成多个方向的衍射光,其中的部分光线沿Z轴被衍射出出射功能性区域3并被观察到,部分光线则继续在波导中传播。
可见,通过与耦出衍射结构的交互,自入射功能性区域2传导过来的图像光不仅能够被耦合出波导1以实现成像,此外,在与耦出衍射结构的多次交互过程中,图像光能够实现在X—Y平面内的多向扩展、拉伸,从而实现对视场图像的扩展、拉升,并进一步扩大图像的可视区域。
由于,在本发明中,出射功能性区域3内的耦出衍射结构的各个交互点均能耦出图像光线,因此,人眼在整个出射功能性区域3内均能看到清晰的图像,从而实现了全景平视成像。
此外,相比于传统的二维光栅结构,入射功能性区域2和出射功能性区域3内均形成有由多组阵列结构构成的衍射结构,为光线提供更多的传播路径,提高图像均匀度。
本发明中,优选的,耦入衍射光栅结构和耦出衍射光栅结构的结构可以设置为基本相同,从而降低了工艺制作难度。
如本领域一般技术人员所熟知,现阶段,一般采用干涉曝光工艺在波导上制备各种一维光栅、二维阵列光栅。在一些实施例中,本发明中的耦入衍射结构及所述耦出衍射结构经三个方向光束组叠加曝光形成,其中的曝光光源由两束平面波构成,两束平面波形成一曝光干涉面。
具体的,三个方向光束组叠加曝光为:
固定曝光光源与波导位置,完成第一个方向曝光,获得一维光栅结构。
曝光光源保持不动,波导沿中心旋转60°,完成第二个方向曝光,获得二维阵列结构。
曝光光源不动,波导再次沿中心旋转60°,完成第三个方向曝光,获得多组阵列结构。
形成的多组阵列结构的形貌可以是各种形状,例如包括但不限于圆柱形、圆锥形或圆台形阵列结构,并在三个方向上呈点阵状周期分布,即多组阵列结构的三个光栅取向,该三个光栅取向与三次曝光干涉面的曝光方向一致,如图5 所示,为了便于理解,设定多组阵列结构的三个光栅取向分别为第一光栅取向N1、第二光栅取向N2及第三光栅取向N3。
在另外一些实施里中,为了提高生产效率,耦入衍射光栅结构及耦出衍射光栅结构中的多组阵列结构经一次曝光形成。在这些实施例中,曝光光源由六束平面波构成,六束平面波中,每两束平面波形成一曝光干涉面。
继续参考图5所述,以耦入衍射光栅结构为例,光线在耦入衍射光栅结构中的传播路径如下:光线1入射并与点A处阵列结构交互后,产生与第三光栅取向N3垂直的光线2;光线2传播至点B处阵列结构并与之交互后,产生光线3、光线4和光线5,光线5被耦出波导;光线3传播至点D处阵列结构并与之交互,产生光线6、光线7和光线8,光线6被耦出波导,如此往复,直至光线1全部被耦出波导。
在一些实施例中,耦入衍射结构和耦出衍射结构中的各组阵列结构的周期设置为200~600nm,深度设置为50~600nm。各组阵列结构可以选择已知的各种圆柱形光栅、圆锥形光栅或圆台形光栅。
由于本发明的一些实施例中,耦入衍射结构和耦出衍射结构的结构设置为完全相同,因此,为了提高生产效率,可以将入射功能性区域2和出射功能性区域3无区别地一次性成型。
当然,也可以将入射功能性区域2和出射功能性区域3隔开设置。即耦入扩展区域和耦出区域中间有一段光滑的波导,其上无任何衍射阵列结构。如此设置可以使人眼观看的耦出区域的效率最大化,避免不必要的衍射衰减。
进一步的,本发明的一些实施例中,波导1的为具有高透过率的、折射率大于1.4、厚度不超出2mm的玻璃波导。
本发明还提供了一种增强现实显示装置,其包括:微投影装置,用于产生图像光;光波导镜片,该光波导镜片采用本发明上述任一实施例提供的多向衍射扩展光波导镜片。
上文对本发明进行了足够详细的具有一定特殊性的描述。所属领域内的普通技术人员应该理解,实施例中的描述仅仅是示例性的,在不偏离本发明的真实精神和范围的前提下做出所有改变都应该属于本发明的保护范围。本发明所要求保护的范围是由所述的权利要求书进行限定的,而不是由实施例中的上述 描述来限定的。

Claims (17)

  1. 一种多向衍射扩展光波导镜片,其特征在于,其包括:
    波导;
    位于波导上表面或下表面的具有光学衍射功能的功能性区域,所述功能性区域至少包括:
    入射功能性区域,所述入射功能性区域内设置有将外部图像光耦合至波导,并实现图像光的多向衍射扩展的耦入衍射结构,所述耦入衍射结构由多组阵列结构组成;
    出射功能性区域,所述出射功能性区域内设置有将波导内传输过来的图像光耦合出波导,并实现图像光的多向扩展的耦出衍射结构,所述耦出衍射结构由多组阵列结构组成。
  2. 如权利要求1所述的多向衍射扩展光波导镜片,其特征在于,所述耦入衍射结构与所述耦出衍射结构的结构相同。
  3. 如权利要求2所述的多向衍射扩展光波导镜片,其特征在于,所述耦入衍射结构及所述耦出衍射结构的阵列结构在三个方向上呈点阵状周期分布。
  4. 如权利要求2所述的多向衍射扩展光波导镜片,其特征在于,所述耦入衍射结构及所述耦出衍射结构中的各组阵列结构的周期为200~600nm,深度为50~600nm。
  5. 如权利要求1所述的多向衍射扩展光波导镜片,其特征在于,所述耦入衍射结构及所述耦出衍射结构中的所述多组阵列结构经三次叠加曝光形成,所述三次叠加曝光为:
    固定曝光光源与波导位置,完成第一次曝光,获得一维光栅结构,
    曝光光源保持不动,波导沿中心旋转60°,完成第二次曝光,获得二维阵列结构,
    曝光光源不动,基片沿中心继续旋转60°,完成第三次曝光,获得多组阵列结构;其中,
    所述曝光光源由两束平面波构成,两束平面波形成一曝光干涉面。
  6. 如权利要求1所述的多向衍射扩展光波导镜片,其特征在于,所述耦入 衍射结构及所述耦出衍射结构中的所述多组阵列结构经一次曝光形成,所述一次曝光的曝光光源由六束平面波构成,六束平面波中,每两束平面波形成一曝光干涉面。
  7. 如权利要求1所述的多向衍射扩展光波导镜片,其特征在于,所述阵列结构为圆柱形、圆锥形或圆台形阵列结构。
  8. 如权利要求1所述的多向衍射扩展光波导镜片,其特征在于,所述波导的折射率大于1.4,厚度不超过2mm。
  9. 如权利要求1所述的多向衍射扩展光波导镜片,其特征在于,所述入射功能性区域和所述出射功能性区域隔开设置。
  10. 如权利要求1所述的多向衍射扩展光波导镜片,其特征在于,所述入射功能性区域和所述出射功能性区域一体成型。
  11. 一种增强现实显示装置,其特征在于:其包括:
    微投影装置,用于产生图像光;
    光波导镜片,所述光波导镜片为多向衍射扩展光波导镜片,
    所述多向衍射扩展光波导镜片包括:波导和位于波导上表面或下表面的具有光学衍射功能的功能性区域,
    所述功能性区域至少包括:
    入射功能性区域,所述入射功能性区域内设置有将外部图像光耦合至波导,并实现图像光的多向衍射扩展的耦入衍射结构,所述耦入衍射结构由多组阵列结构组成;
    出射功能性区域,所述出射功能性区域内设置有将波导内传输过来的图像光耦合出波导,并实现图像光的多向扩展的耦出衍射结构,所述耦出衍射结构由多组阵列结构组成。
  12. 如权利要求11所述的增强现实显示装置,其特征在于,所述耦入衍射结构与所述耦出衍射结构的结构相同,
    所述耦入衍射结构及所述耦出衍射结构的阵列结构在三个方向上呈点阵状周期分布,
    所述耦入衍射结构及所述耦出衍射结构中的各组阵列结构的周期为200~600nm,深度为50~600nm。
  13. 如权利要求11所述的增强现实显示装置,其特征在于,所述耦入衍射结构及所述耦出衍射结构中的所述多组阵列结构经三次叠加曝光形成,所述三次叠加曝光为:
    固定曝光光源与波导位置,完成第一次曝光,获得一维光栅结构,
    曝光光源保持不动,波导沿中心旋转60°,完成第二次曝光,获得二维阵列结构,
    曝光光源不动,基片沿中心继续旋转60°,完成第三次曝光,获得多组阵列结构;其中,
    所述曝光光源由两束平面波构成,两束平面波形成一曝光干涉面。
  14. 如权利要求11所述的增强现实显示装置,其特征在于,所述耦入衍射结构及所述耦出衍射结构中的所述多组阵列结构经一次曝光形成,所述一次曝光的曝光光源由六束平面波构成,六束平面波中,每两束平面波形成一曝光干涉面。
  15. 如权利要求11所述的增强现实显示装置,其特征在于,所述阵列结构为圆柱形、圆锥形或圆台形阵列结构,
    所述波导的折射率大于1.4,厚度不超过2mm。
  16. 如权利要求11所述的增强现实显示装置,其特征在于,所述入射功能性区域和所述出射功能性区域隔开设置。
  17. 如权利要求11所述的增强现实显示装置,其特征在于,
    所述入射功能性区域和所述出射功能性区域一体成型。
PCT/CN2020/127979 2020-02-28 2020-11-11 一种多向衍射扩展光波导镜片及增强现实显示装置 WO2021169405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010129378.7 2020-02-28
CN202010129378.7A CN113325501A (zh) 2020-02-28 2020-02-28 一种多向衍射扩展光波导镜片及增强现实显示装置

Publications (1)

Publication Number Publication Date
WO2021169405A1 true WO2021169405A1 (zh) 2021-09-02

Family

ID=77412709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127979 WO2021169405A1 (zh) 2020-02-28 2020-11-11 一种多向衍射扩展光波导镜片及增强现实显示装置

Country Status (2)

Country Link
CN (1) CN113325501A (zh)
WO (1) WO2021169405A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885212A (zh) * 2021-11-10 2022-01-04 北京灵犀微光科技有限公司 一种扩瞳装置
CN114280791A (zh) * 2021-12-29 2022-04-05 材料科学姑苏实验室 一种衍射光波导器件及其制备方法
CN114545549A (zh) * 2022-01-13 2022-05-27 嘉兴驭光光电科技有限公司 用于衍射显示的光学波导装置及显示设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114296240A (zh) * 2021-12-31 2022-04-08 珠海莫界科技有限公司 一种光学显示模组以及近眼显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049376A (ja) * 2013-09-02 2015-03-16 セイコーエプソン株式会社 光学デバイス及び画像表示装置
CN104597602A (zh) * 2015-01-24 2015-05-06 上海理湃光晶技术有限公司 高效耦合、结构紧凑的齿形镶嵌平面波导光学器件
CN205003308U (zh) * 2015-09-10 2016-01-27 上海理鑫光学科技有限公司 增强现实反光镜
WO2018213009A1 (en) * 2017-05-17 2018-11-22 Vuzix Corporation Fixed focus image light guide with zoned diffraction gratings
US20180341113A1 (en) * 2016-10-26 2018-11-29 Magic Leap, Inc. Outcoupling grating for augmented reality system
WO2018231754A1 (en) * 2017-06-13 2018-12-20 Vuzix Corporation Image light guide with expanded light distribution overlapping gratings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049376A (ja) * 2013-09-02 2015-03-16 セイコーエプソン株式会社 光学デバイス及び画像表示装置
CN104597602A (zh) * 2015-01-24 2015-05-06 上海理湃光晶技术有限公司 高效耦合、结构紧凑的齿形镶嵌平面波导光学器件
CN205003308U (zh) * 2015-09-10 2016-01-27 上海理鑫光学科技有限公司 增强现实反光镜
US20180341113A1 (en) * 2016-10-26 2018-11-29 Magic Leap, Inc. Outcoupling grating for augmented reality system
WO2018213009A1 (en) * 2017-05-17 2018-11-22 Vuzix Corporation Fixed focus image light guide with zoned diffraction gratings
WO2018231754A1 (en) * 2017-06-13 2018-12-20 Vuzix Corporation Image light guide with expanded light distribution overlapping gratings

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113885212A (zh) * 2021-11-10 2022-01-04 北京灵犀微光科技有限公司 一种扩瞳装置
CN114280791A (zh) * 2021-12-29 2022-04-05 材料科学姑苏实验室 一种衍射光波导器件及其制备方法
CN114280791B (zh) * 2021-12-29 2024-03-05 材料科学姑苏实验室 一种衍射光波导器件及其制备方法
CN114545549A (zh) * 2022-01-13 2022-05-27 嘉兴驭光光电科技有限公司 用于衍射显示的光学波导装置及显示设备
CN114545549B (zh) * 2022-01-13 2023-05-30 嘉兴驭光光电科技有限公司 用于衍射显示的光学波导装置及显示设备

Also Published As

Publication number Publication date
CN113325501A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
WO2021169405A1 (zh) 一种多向衍射扩展光波导镜片及增强现实显示装置
WO2021169406A1 (zh) 一种全息光波导镜片及增强现实显示装置
US10845538B2 (en) Diffraction gratings for beam redirection
WO2023040491A1 (zh) 光学结构和光学装置
CN113495319A (zh) 光学结构和光学装置
WO2021169407A1 (zh) 一种光波导镜片及增强现实显示装置
CN109073909A (zh) 具有反射转向阵列的成像光导
CN114236819B (zh) 一种基于偏振体全息光栅的波导显示二维扩瞳方法
CN111679360A (zh) 一种大视场光栅波导元件及近眼显示装置
CN211928226U (zh) 一种光波导镜片及三维显示装置
WO2021169383A1 (zh) 用于呈现增强现实图像的装置和包含该装置的系统
CN111175971A (zh) 一种近眼光学显示系统、增强现实眼镜
CN115201955A (zh) 二维耦出超表面光栅、二维衍射光波导和近眼显示设备
CN212647164U (zh) 一种近眼显示设备
CN115469389B (zh) 二维耦出光栅、超表面光波导和近眼显示设备
CN114326123B (zh) 一种近眼显示装置
CN114236682A (zh) 一种光学扩展波导
CN112859231A (zh) 一种光栅波导光学器件
CN115079334A (zh) 衍射光波导装置及其方法
CN219349182U (zh) 一种光波导和近眼显示装置
US20240118557A1 (en) Optical structure and optical device
CN219609272U (zh) 一种光波导和近眼显示装置
CN117148594B (zh) 一种显示组件及ar设备
CN217443725U (zh) 光机系统
CN115980906B (zh) 一种几何光波导耦合装置和近眼显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922350

Country of ref document: EP

Kind code of ref document: A1