WO2021169155A1 - 一种基于全像传递的平面光源光束整形方法及装置 - Google Patents

一种基于全像传递的平面光源光束整形方法及装置 Download PDF

Info

Publication number
WO2021169155A1
WO2021169155A1 PCT/CN2020/103101 CN2020103101W WO2021169155A1 WO 2021169155 A1 WO2021169155 A1 WO 2021169155A1 CN 2020103101 W CN2020103101 W CN 2020103101W WO 2021169155 A1 WO2021169155 A1 WO 2021169155A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
planar light
lens
light sources
seamless
Prior art date
Application number
PCT/CN2020/103101
Other languages
English (en)
French (fr)
Inventor
李德龙
Original Assignee
李德龙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020207056.5U external-priority patent/CN211263967U/zh
Priority claimed from CN202010116770.8A external-priority patent/CN111123532A/zh
Application filed by 李德龙 filed Critical 李德龙
Priority to EP20922216.5A priority Critical patent/EP4113195A4/en
Publication of WO2021169155A1 publication Critical patent/WO2021169155A1/zh
Priority to US17/822,130 priority patent/US11960098B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0916Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
    • G02B27/0922Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers the semiconductor light source comprising an array of light emitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the invention relates to a beam shaping method for a plane light source, and at the same time to a beam shaping device for a plane light source, belonging to the optical field.
  • the primary technical problem to be solved by the present invention is to provide a beam shaping method for a plane light source based on holographic transmission.
  • Another technical problem to be solved by the present invention is to provide a plane light source beam shaping device based on holographic transmission.
  • a method for beam shaping of a planar light source based on holographic transmission which includes the following steps:
  • the distance u between each of the planar light sources and the first lens and the distance v between the first lens and the primary imaging position simultaneously satisfy the following formula:
  • the size of the planar light source is h, the distance between adjacent light sources is d, and the size of the enlarged hologram of the planar light source at the primary imaging position is k;
  • the full divergence angle of the planar light source is ⁇ ;
  • the diameter of the first lens is D, and the focal length of the first lens is f.
  • the method for beam shaping of a planar light source based on holographic transmission further includes the following steps:
  • the second lens is used to reduce and image the beam of the seamless light source obtained in step (2) to obtain a reduced seamless holographic image.
  • the distance u'between the primary imaging position and the second lens and the distance v'between the second lens and the secondary imaging position simultaneously satisfy the following formula:
  • the size of the seamless light source is m
  • the size of the reduced hologram of the seamless light source at the secondary imaging position is m'
  • the full angle of divergence of the seamless light source is ⁇ '
  • the second lens The diameter of is D'
  • the focal length of the second lens is f'.
  • the planar light source used in step (1) is a planar light source that can be spliced after light beams are magnified in equal proportions.
  • the beam shape of the planar light source used in step (1) is a regular pattern that can be periodically and repeatedly arranged.
  • the beam shape of the planar light source used in step (1) is any one or more of a square, a rectangle, an isosceles triangle, a regular triangle, and a regular hexagon.
  • the multiple planar light sources used in step (1) are LED light sources or VCSEL light sources at the same time.
  • a flat light source beam shaping device based on holographic transmission including:
  • a light source array composed of multiple planar light sources, the multiple planar light sources are arranged in the same plane;
  • the distance between the plurality of first lenses and the plurality of planar light sources makes the magnified holograms of the multiple planar light sources seamlessly stitched at the primary imaging position, so that the magnified holograms of the multiple planar light sources are stitched at the primary imaging position. Into a seamless light source.
  • the distance u between each of the planar light sources and the first lens and the distance v between the first lens and the primary imaging position simultaneously satisfy the following formula:
  • the size of the planar light source is h, the distance between adjacent light sources is d, and the size of the enlarged hologram of the planar light source at the primary imaging position is k;
  • the full divergence angle of the planar light source is ⁇ ;
  • the diameter of the first lens is D, and the focal length of the first lens is f.
  • the flat light source beam shaping device based on holographic transmission further includes a second lens, the second lens and the center of the plurality of flat light sources are coaxially arranged, and the second lens is arranged on the seamless On the light-emitting path of the light source; the second lens is used to reduce and image the light beam emitted from the seamless light source to obtain a reduced seamless holographic image.
  • the distance u'between the primary imaging position and the second lens and the distance v'between the second lens and the secondary imaging position simultaneously satisfy the following formula:
  • the size of the seamless light source is m
  • the size of the reduced hologram of the seamless light source at the secondary imaging position is m'
  • the full angle of divergence of the seamless light source is ⁇ '
  • the second lens The diameter of is D'
  • the focal length of the second lens is f'.
  • multiple planar light sources are simultaneously LED light sources or VCSEL light sources.
  • the planar light source is a planar light source that can be spliced after light beams are magnified in equal proportions.
  • the beam shape of the planar light source is a regular pattern that can be periodically and repeatedly arranged.
  • the beam shape of the planar light source is any one or more of a square, a rectangle, an isosceles triangle, a regular triangle, and a regular hexagon.
  • the beam shaping method of a planar light source based on holographic transmission magnifies and image the beams of multiple planar light sources through multiple first lenses to obtain the enlarged holographic images of multiple planar light sources; The position seamlessly splices the enlarged holographic images of multiple planar light sources, so as to obtain a seamless light source in one imaging position.
  • the above-mentioned planar light source beam shaping method achieves elimination of gaps between light sources through holographic transmission and seamless splicing with almost no loss of light power, and further improves the beam quality of the light source as a whole.
  • This optical shaping method is suitable for shaping and processing planar light sources such as VCSELs and LEDs.
  • FIG. 1 is a schematic diagram of the optical path principle of a planar light source beam shaping method based on holographic transmission provided by the present invention
  • Fig. 2 is a schematic diagram of the principle of obtaining a magnified holographic image by multiple planar light sources
  • Fig. 3 is a schematic diagram of the structure of a 2 ⁇ 2 light source array
  • FIG. 4 is a schematic front view of the beam shaping device of a planar light source based on holographic transmission provided by the present invention
  • Fig. 5 is a schematic diagram of the light source array in Fig. 3 and the seamless light source obtained after magnification and imaging;
  • Fig. 6 is a schematic diagram of a seamless light source obtained after splicing in another embodiment.
  • the beam shaping method of a planar light source based on holographic transmission includes the following steps:
  • multiple planar light sources (11, 12, 13, 14, 7) as initial light sources can be LED light sources or VCSEL light sources at the same time, and multiple planar light sources can be chip arrays or separate chip arrays located on the same wafer (For example, as shown in Figure 3).
  • the initial light source adopts a plane light source that can be spliced after the beams are magnified in equal proportions.
  • the shapes and sizes of the multiple initial light sources may be the same or different.
  • the beam shape of the initial light source can be a closed regular shape, or a closed irregular shape composed of straight lines, curves, etc.
  • the beams of multiple plane light sources used for splicing only need to be spliced into a seamless plane after being enlarged in equal proportions.
  • the beam shape of multiple planar light sources is recommended to use regular patterns that can be arranged periodically to facilitate industrial production and the selection of related lenses.
  • the above-mentioned regular patterns can be repeatedly arranged along one, two or even more axes, and the angle between different axes can be any angle.
  • a plane light source whose beam shape is a square, rectangle, isosceles triangle, regular triangle, regular hexagon, regular octagon, etc. can be used as the initial light source.
  • the beam shape of the multiple planar light sources used for splicing can be one or more of the above-mentioned shapes.
  • a plurality of planar light sources (11, 12, 13, 14, 7) form a light source array with a small size and a small pitch, and each planar light source constitutes a unit light source; unit light sources arranged in adjacent rows or columns can be arranged correspondingly, It can also be arranged in a staggered position, as long as the beam can be spliced into a seamless plane after being enlarged in equal proportions.
  • a plurality of first lenses (21, 22, 23, 24, ...) compose the lens group 20, and each first lens composes a unit lens.
  • the plurality of first lenses in the lens group 20 and the plurality of planar light sources in the light source array are arranged in one-to-one correspondence.
  • each first lens is arranged coaxially with a single planar light source, and each first lens and the corresponding planar light source are arranged in parallel along the same main optical axis.
  • the first lens 21 is arranged coaxially with the plane light source 11
  • the first lens 22 is arranged coaxially with the plane light source 12
  • the first lens 23 is arranged coaxially with the plane light source 13
  • the first lens 24 is arranged coaxially with the plane light source 14. And so on.
  • Each first lens is used for magnifying and imaging the light beam emitted by the corresponding planar light source.
  • the selection of each first lens requires its clear aperture D to fully cover all the divergent light of the corresponding unit light source, and the imaging size of the unit light source (that is, the size of the enlarged hologram formed after imaging) should not be smaller than the unit lens and the fixed lens.
  • the maximum cross-section of the device to ensure that multiple holograms can be seamlessly spliced without conflicts in mechanical dimensions.
  • any plane along the main optical axis, the distance u between each planar light source and the first lens, and the distance between the first lens and the primary imaging position 30 satisfies the following formula at the same time:
  • the size of a single planar light source is h
  • the distance between adjacent light sources is d
  • the size of the enlarged hologram of the planar light source at the primary imaging position 30 is k
  • the divergence angle of the planar light source is full angle Is ⁇
  • the diameter of the first lens is D
  • the focal length of the first lens is f. All dimensions and corresponding enlarged holographic dimensions obtained by the planar light source along any facet of the main optical axis satisfy the above four formulas.
  • the image after the above-mentioned splicing can be regarded as an independent planar light source, and the lens can be used again for secondary imaging or other transformations.
  • planar light source beam shaping method may further include the following steps: (3) Use the second lens 40 to reduce and image the light beam of the seamless light source S obtained in step (2) to obtain a reduced seamless holographic image S', thereby Obtain a high-energy density high-power seamless light source.
  • the distance u'between the primary imaging position 30 and the second lens 40, and the second lens 40 and the secondary imaging position 50 The distance between v'satisfies the following formula at the same time:
  • the size of the seamless light source S is m
  • the size of the reduced hologram S'of the seamless light source S at the secondary imaging position is m'
  • the divergence angle of the seamless light source S is ⁇ '
  • the diameter of the second lens 40 is D'
  • the focal length of the second lens 40 is f'. All sizes and corresponding reduced holographic sizes of the seamless light source S obtained along any facet of the main optical axis satisfy the above four formulas.
  • the present invention also provides a device for realizing the beam shaping method of the planar light source.
  • the beam shaping device of a planar light source based on holographic transmission provided by the present invention includes:
  • a light source array composed of multiple planar light sources (11, 12, 13, 14,%), multiple planar light sources (11, 12, 13, 14,%) arranged in the same plane;
  • a lens group 20 composed of a plurality of first lenses (21, 22, 23, 24, ...); a plurality of first lenses and a plurality of planar light sources are coaxially arranged in one-to-one correspondence, and a plurality of first lenses (21, 22, 23, 24, ...) are used to magnify and image the beams of multiple planar light sources (11, 12, 13, 14, ...) to obtain magnified holographic images of multiple planar light sources (31, 32, 33). , 34, ...);
  • the distance between the plurality of first lenses (21, 22, 23, 24, ...) and the plurality of planar light sources (11, 12, 13, 14, ...) makes the magnified holistic image of the plurality of planar light sources (31 , 32, 33, 34,%) are seamlessly stitched at the primary imaging position 30, so that a seamless light source S is stitched at the primary imaging position 30.
  • the second lens 40 is arranged coaxially with the center of the multiple planar light sources, and is also arranged coaxially with the center of the seamless light source S.
  • the second lens 40 is arranged in the light emitting path of the seamless light source S. Above; the second lens 40 is used to reduce and image the light beam emitted from the seamless light source S to obtain a reduced seamless holographic image S'.
  • multiple planar light sources (11, 12, 13, 14, 7) as initial light sources can be LED light sources or VCSEL light sources at the same time, and multiple planar light sources can be chip arrays or separate chip arrays located on the same wafer .
  • the initial light source adopts a plane light source that can be spliced after the beams are magnified in equal proportions.
  • the shapes and sizes of the multiple initial light sources may be the same or different.
  • the shape of the initial light source can be a closed regular shape, or a closed irregular shape composed of straight lines, curves, etc.
  • the multiple plane light sources used for splicing only need to satisfy that the beams can be spliced into a seamless plane after being enlarged in equal proportions.
  • the beam shape of multiple planar light sources is recommended to use regular patterns that can be arranged periodically to facilitate industrial production and the selection of related lenses.
  • regular patterns can be repeatedly arranged along one, two or even more axes, and the angle between different axes can be any angle.
  • a plane light source whose beam shape is any one of a square, a rectangle, an isosceles triangle, a regular triangle, a regular hexagon, etc. can be used as the initial light source.
  • a plurality of planar light sources (11, 12, 13, 14, 7) form a light source array with a small size and a small pitch, and each planar light source constitutes a unit light source; the unit light sources arranged in adjacent rows or columns can be arranged correspondingly, also It can be arranged in a staggered way for splicing.
  • a plurality of first lenses (21, 22, 23, 24, ...) compose the lens group 20, and each first lens composes a unit lens.
  • the plurality of first lenses in the lens group 20 and the plurality of planar light sources in the light source array are arranged in one-to-one correspondence.
  • each first lens and a single planar light source are arranged in parallel along the same main optical axis.
  • the first lens 21 is arranged coaxially with the plane light source 11
  • the first lens 22 is arranged coaxially with the plane light source 12
  • the first lens 23 is arranged coaxially with the plane light source 13
  • the first lens 24 is arranged coaxially with the plane light source 14.
  • Each first lens is used for magnifying and imaging the light beam emitted by the corresponding planar light source.
  • each first lens requires its clear aperture to fully cover all the divergent light of the corresponding unit light source, and the imaging size of the unit light source should not be less than the maximum cross-section of the unit lens and the lens fixing device to ensure that multiple holographic images can be eliminated. Seam splicing without conflicts in mechanical dimensions.
  • any plane along the main optical axis, the distance u between each planar light source and the first lens, and the distance between the first lens and the primary imaging position 30 satisfies the following formula at the same time:
  • the size of a single planar light source is h
  • the distance between adjacent light sources is d
  • the size of the enlarged hologram of the planar light source at the primary imaging position 30 is k
  • the divergence angle of the planar light source is full angle Is ⁇
  • the diameter of the first lens is D
  • the focal length of the first lens is f. All dimensions and corresponding enlarged holographic dimensions obtained by the planar light source along any tangent plane of the main optical axis satisfy the above four formulas.
  • any plane along the main optical axis, the distance u'between the primary imaging position 30 and the second lens 40, and the second lens 40 and the secondary imaging position 50 The distance between v'satisfies the following formula at the same time:
  • the size of the seamless light source S is m
  • the size of the reduced hologram S'of the seamless light source at the secondary imaging position 50 is m'
  • the divergence angle of the seamless light source S is ⁇ '
  • the diameter of the second lens 40 is D'
  • the focal length of the second lens 40 is f'. All sizes and corresponding reduced holographic sizes obtained by the seamless light source along any tangent plane of the main optical axis satisfy the above four formulas.
  • a 2 ⁇ 2 light source array composed of 4 square planar light sources (11, 12, 13, 14) is taken as an example, and the corresponding planar light source beam shaping device is specifically introduced.
  • the 2 ⁇ 2 light source array shown in Figure 3 consists of 4 square planar light sources (11, 12, 13, 14), and the planar light sources (11, 12, 13, 14) are both LED light sources or VCSEL light sources, 4
  • the planar light source can be a chip array located on the same wafer or a separate chip array located in the same plane.
  • the initial light source adopts a square structure to facilitate the stitching of its imaging.
  • 4 plane light sources (11, 12, 13, 14) form a 2 ⁇ 2 light source array with a size of h'and a spacing of d', and the 4 unit light sources are vertically and uniformly arranged in the same plane into a "Tian" shape.
  • the beam shape of each planar light source is square, and the light-emitting area is h' ⁇ h'.
  • first lenses 21, 22, 23, 24 form the lens group 20.
  • the first lens 21 is arranged coaxially with the planar light source 11
  • the first lens 22 is arranged coaxially with the planar light source 12
  • the first lens 23 is arranged coaxially with the planar light source 13
  • the first lens 24 and the planar light source 14 are arranged coaxially.
  • Each first lens is used for magnifying and imaging the light beam emitted by the corresponding planar light source.
  • each first lens requires its clear aperture D to fully cover all the divergent light of the corresponding unit light source, and the image size of the unit light source should not be less than the maximum cross-section of the unit lens and the lens fixing device to ensure that multiple holographic images can be Seamless splicing without conflicts in mechanical dimensions.
  • the lens group 20 can be made into a micro lens array (fly-eye lens).
  • the first lens in the lens group 20 may be a spherical convex lens, an aspheric lens, a Fresnel lens, or the like.
  • the primary imaging position 30, the second lens 40, and the secondary imaging position 50 are all arranged coaxially with the center line of the light source array.
  • the selection of the second lens 40 requires that its clear aperture D'fully covers all the divergent light of the seamless light source S.
  • the diagonal The size is the largest. Therefore, in the following, the size of the first lens and the second lens, the distance between the first lens and the primary imaging position 30, the primary imaging position 30 and the second The distance between the lenses 40, the distance between the second lens 40 and the secondary imaging position 50.
  • the distance u between each square planar light source and the first lens and the distance v between the first lens and the primary imaging position 20 simultaneously satisfy the following formula:
  • the side length of the square planar light source is h'
  • the diagonal length is L
  • the distance between adjacent light sources on the diagonal is L0
  • the full angle of divergence of the planar light source is ⁇
  • the diameter of the first lens is D
  • the focal length of the first lens is f.
  • the distance u'between the primary imaging position 30 and the second lens 40 and the distance v'between the second lens 40 and the secondary imaging position 50 satisfy both The following formula:
  • the size of the seamless light source S is m
  • the size of the reduced hologram S'of the seamless light source at the secondary imaging position is m'
  • the divergence angle of the seamless light source S is ⁇ '
  • the diameter of the second lens 40 is D'
  • the focal length of the second lens is f'.
  • the initial light source itself consists of 4 square light sources, a single spherical lens or a single spherical reflector cannot eliminate the gap between the 4 light sources.
  • four first lenses that is, the lens group 20
  • the lens group 20 is used to form enlarged holographic images of the four unit light sources, respectively.
  • the enlarged holograms of the 4 unit light sources are stitched at the primary imaging position 30, so that a seamlessly stitched hologram S can be obtained from the 4 flat light sources with slits.
  • the four unit light sources are plane light sources 11, 12, 13, and 14, respectively, and the enlarged holograms 31, 32, 33, and 34 of the 4 unit light sources are obtained after magnification and imaging.
  • the enlarged holograms 31, 32, 33, and 34 of the 4 unit light sources can be seamlessly stitched at the primary imaging position 30, so as to obtain as shown in FIG. 5 Seamless light source S.
  • FIG. 5 Seamless light source S.
  • the splicing boundary of the magnified hologram of the four unit light sources is shown by dashed lines, and in the actual seamless light source S, the gap between the multiple planar light sources and the lens group 20
  • the four enlarged holograms have been seamlessly spliced to form a whole at the imaging position 30 at one time by adjusting the spacing between the two. Therefore, there is no visible boundary as shown in the figure.
  • the four enlarged holographic images that have been spliced can be regarded as a uniform seamless light source S, and subsequent imaging transformations can be performed again.
  • a second lens 40 with a larger aperture can be used to perform secondary reduction imaging (holographic imaging) of the holographic image, and a reduced seamless holographic image S'can be obtained.
  • the beam quality of the initial light source and the seamless light source S obtained after stitching and magnifying the holographic image is evaluated.
  • the dimension in the diagonal direction is the largest. Therefore, the beam quality is evaluated based on the size of the light source array in the diagonal direction.
  • the side length of the square planar light source is h', and the light-emitting area of the planar light source is h' ⁇ h'; the diagonal length of the square planar light source is L, and the distance between adjacent light sources in the diagonal direction is L0; the planar light source The full angle of divergence is ⁇ .
  • the planar light source of the unit is a Gaussian beam.
  • the optical product parameters of the unit light source remain basically unchanged when passing through the thin lens.
  • the beam waist here is approximated by the size of the initial light source; and the far-field divergence angle is approximated by the full angle ⁇ of the divergence angle of the initial light source.
  • this beam shaping method not only eliminates the gaps in the light source, but also eliminates the interference of the gaps on the beam quality, improves the overall beam quality, and facilitates those application scenarios that require high beam quality.
  • the above only uses a 2 ⁇ 2 square light source array as an example to compare the beam quality of the seamless light source obtained after holographic transfer and seamless splicing with the beam quality of the original light source.
  • the above evaluation method can also be understood as an evaluation of the beam quality of a light source array with two light sources along any section along the main optical axis. It can be concluded that the above beam shaping method not only eliminates the gaps in the light source, but also eliminates the gap pairs. The interference of beam quality improves the overall beam quality to facilitate those application scenarios that require high beam quality. For a light source array composed of more than 4 planar light sources, the same conclusion can be obtained, which will not be repeated here.
  • FIG. 6 shows a schematic structural diagram of a seamless light source 60 obtained by splicing enlarged holographic images of a plurality of equilateral triangular planar light sources.
  • the splicing boundary of the enlarged hologram of multiple unit light sources is shown by dashed lines.
  • the beam shaping method of a planar light source based on holographic transmission magnifies and image the beams of multiple planar light sources through multiple first lenses to obtain enlarged holographic images of the multiple planar light sources; , By stitching the enlarged holographic images of multiple planar light sources, a seamless light source can be obtained in one imaging position.
  • the above-mentioned planar light source beam shaping method achieves elimination of gaps between light sources through holographic transmission and seamless splicing with almost no loss of light power, and further improves the beam quality of the light source as a whole.
  • This optical shaping method is suitable for shaping and processing planar light sources such as VCSELs and LEDs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种基于全像传递的平面光源(11,12,13,14)光束整形方法及装置。其中,通过多个第一透镜(21,22,23,24)分别对多个平面光源(11,12,13,14)发出的光束进行放大成像,获得多个平面光源(11,12,13,14)的放大全像(31,32,33,34);然后,在一次成像位置(30)对多个平面光源(11,12,13,14)的放大全像(31,32,33,34)进行无缝拼接,从而在一次成像位置(30)获得无缝光源(S)。上述平面光源(11,12,13,14)光束整形方法,在几乎不损失光功率的情况下,通过全像传递和无缝拼接,实现了对光源间空隙的剔除,并进一步改善了作为整体的光源的光束质量。这种光学整形方法,适用于VCSEL、LED等平面光源(11,12,13,14)的整形和处理。

Description

一种基于全像传递的平面光源光束整形方法及装置 技术领域
本发明涉及一种平面光源光束整形方法,同时涉及一种平面光源光束整形装置,属于光学领域。
背景技术
在大功率激光器、照明等应用领域,需要使用多个发光器件拼接大尺寸的光源或整合出大功率的光源。然而,受光源封装等诸多方面的限制,处于同一平面的多个平面光源之间总是具有一定的空隙。而在很多应用中,为了实现更为均匀的光强分布,需要剔除初始光源中不发光的空隙的影响。
发明内容
本发明所要解决的首要技术问题在于提供一种基于全像传递的平面光源光束整形方法。
本发明所要解决的另一技术问题在于提供一种基于全像传递的平面光源光束整形装置。
为了实现上述技术目的,本发明采用下述技术方案:
基于本发明所提供的实施例的第一方面,提供一种基于全像传递的平面光源光束整形方法,包括如下步骤:
(1)使用多个第一透镜分别对多个平面光源发出的光束进行放大成像,获得多个平面光源的放大全像;
(2)将多个平面光源的放大全像在一次成像位置进行拼接,多个平面光源的放大全像拼接成无缝光源。
其中较优地,沿主光轴任一切面,每个所述平面光源和所述第一透镜之间的距离u以及所述第一透镜和所述一次成像位置之间的距离v同时满足下列公式:
Figure PCTCN2020103101-appb-000001
Figure PCTCN2020103101-appb-000002
Figure PCTCN2020103101-appb-000003
k-h=d;
其中,沿主光轴任一切面,所述平面光源的尺寸为h,相邻光源之间的间距为d,所述平面光源在所述一次成像位置的放大全像的尺寸为k;所述平面光源的发散角全角为θ;所述第一透镜的直径为D,所述第一透镜的焦距为f。
其中较优地,所述基于全像传递的平面光源光束整形方法还包括如下步骤:
(3)使用第二透镜对步骤(2)获得的无缝光源的光束进行缩小成像,获得缩小的无缝全像。
其中较优地,沿主光轴任一切面,一次成像位置和第二透镜之间的距离u’以及第二透镜和二次成像位置之间的距离v’同时满足下列公式:
Figure PCTCN2020103101-appb-000004
Figure PCTCN2020103101-appb-000005
Figure PCTCN2020103101-appb-000006
m>m’;
其中,沿主光轴任一切面,无缝光源的尺寸为m,无缝光源在二次成像位置的缩小全像的尺寸为m’;无缝光源的发散角全角为θ’;第二透镜的直径为D’,第二透镜的焦距为f’。
其中较优地,在步骤(1)中所使用的平面光源是光束经等比例放大后可拼接的平面光源。
其中较优地,在步骤(1)中所使用的平面光源的光束形状是可周期性重复排列的规则图形。例如,在步骤(1)中所使用的平面光源的光束形状为正方形、矩形、等腰三角形、正三角形、正六边形中的任意一种或多种形状。
其中较优地,在步骤(1)中所使用的多个平面光源同时为LED光源或者VCSEL光源。
基于本发明所提供的实施例的第二方面,提供一种基于全像传递 的平面光源光束整形装置,包括:
由多个平面光源组成的光源阵列,多个平面光源设置在同一平面内;
由多个第一透镜组成的透镜组;多个第一透镜和多个平面光源一一对应地同轴设置,多个所述第一透镜分别用于对多个平面光源发出的光束进行放大成像,获得多个平面光源的放大全像;
多个所述第一透镜和多个所述平面光源之间的距离,使得多个平面光源的放大全像在一次成像位置无缝拼接,从而多个平面光源的放大全像在一次成像位置拼接成无缝光源。
其中较优地,沿主光轴任一切面,每个所述平面光源和所述第一透镜之间的距离u以及所述第一透镜和所述一次成像位置之间的距离v同时满足下列公式:
Figure PCTCN2020103101-appb-000007
Figure PCTCN2020103101-appb-000008
Figure PCTCN2020103101-appb-000009
k-h=d;
其中,沿主光轴任一切面,所述平面光源的尺寸为h,相邻光源之间的间距为d,所述平面光源在所述一次成像位置的放大全像的尺寸为k;所述平面光源的发散角全角为θ;所述第一透镜的直径为D,所述第一透镜的焦距为f。
其中较优地,所述基于全像传递的平面光源光束整形装置还包括第二透镜,所述第二透镜和多个平面光源的中心同轴设置,所述第二透镜设置在所述无缝光源的发光路径上;所述第二透镜用于对从所述无缝光源发出的光束进行缩小成像,获得缩小的无缝全像。
其中较优地,沿主光轴任一切面,一次成像位置和第二透镜之间的距离u’以及第二透镜和二次成像位置之间的距离v’同时满足下列公式:
Figure PCTCN2020103101-appb-000010
Figure PCTCN2020103101-appb-000011
Figure PCTCN2020103101-appb-000012
m>m’;
其中,沿主光轴任一切面,无缝光源的尺寸为m,无缝光源在二次成像位置的缩小全像的尺寸为m’;无缝光源的发散角全角为θ’;第二透镜的直径为D’,第二透镜的焦距为f’。
其中较优地,多个平面光源同时为LED光源或者VCSEL光源。
其中较优地,所述平面光源是光束经等比例放大后可拼接的平面光源。
其中较优地,所述平面光源的光束形状为可周期性重复排列的规则图形。例如,所述平面光源的光束形状为正方形、矩形、等腰三角形、正三角形、正六边形中的任意一种或多种形状。
本发明所提供的基于全像传递的平面光源光束整形方法,通过多个第一透镜分别对多个平面光源的光束进行放大成像,获得多个平面光源的放大全像;然后,通过在一次成像位置对多个平面光源的放大全像进行无缝拼接,从而在一次成像位置获得无缝光源。上述平面光源光束整形方法,在几乎不损失光功率的情况下,通过全像传递和无缝拼接,实现了对光源间空隙的剔除,并进一步改善了作为整体的光源的光束质量。这种光学整形方法,适用于VCSEL、LED等平面光源的整形和处理。
附图说明
图1是本发明所提供的基于全像传递的平面光源光束整形方法的光路原理示意图;
图2是多个平面光源获得放大全像的原理示意图;
图3是2×2光源阵列的结构示意图;
图4是本发明所提供的基于全像传递的平面光源光束整形装置的正视结构示意图;
图5是图3中的光源阵列及其放大成像后获得的无缝光源的示意图;
图6是另一实施例中经过拼接后获得的无缝光源的示意图。
具体实施方式
下面结合附图和具体的实施例对本发明的技术方案进行进一步地详细描述。
如图1所示,本发明所提供的基于全像传递的平面光源光束整形方法,包括如下步骤:
(1)使用多个第一透镜(被标记为:21,22,23,24,……)分别对多个平面光源(被标记为:11,12,13,14,……)发出的光束进行放大成像,获得多个平面光源的放大全像(31,32,33,34,……);
(2)将多个平面光源的放大全像(31,32,33,34,……)在一次成像位置30进行拼接,多个平面光源的放大全像(31,32,33,34,……)在一次成像位置30拼接成无缝光源S。
其中,作为初始光源的多个平面光源(11,12,13,14,……)可以同时为LED光源或者VCSEL光源,多个平面光源可以是位于同一片晶圆的芯片阵列或者分立的芯片阵列(例如,如图3所示)。
初始光源采用光束经等比例放大后可拼接的平面光源。多个初始光源的形状和尺寸可以相同,也可以不相同。初始光源的光束形状可以是封闭的规则形状,也可以是由直线、曲线等组成的封闭的不规则形状。用于拼接的多个平面光源的光束只要满足经等比例放大后可拼接成一个无缝平面即可。
较优地,多个平面光源的光束形状推荐使用可周期性重复排列的规则图形,以便于工业生产及相关透镜的选择。上述规则图形可以沿一个、两个甚至更多轴线重复排列,不同轴线之间的夹角可以为任意角度。例如,可以使用光束形状为正方形、矩形、等腰三角形、正三角形、正六边形、正八边形等形状的平面光源作为初始光源。用于拼接的多个平面光源的光束形状可以使上述形状中的一种或多种。
多个平面光源(11,12,13,14,……)组成尺寸、间距微小的光源阵列,每个平面光源构成一个单元光源;在相邻行或相邻列排列的单元光源可以对应排列,也可以错位排列,只要满足光束经等比例放大后可拼接成无缝的平面即可。
多个第一透镜(21,22,23,24,……)组成透镜组20,每个第一透镜构成一个单元透镜。透镜组20中的多个第一透镜和光源阵列中 的多个平面光源一一对应设置。其中,每个第一透镜与单个的平面光源同轴设置,每个第一透镜与对应的平面光源沿同一主光轴平行设置。例如,第一透镜21与平面光源11同轴设置,第一透镜22与平面光源12同轴设置,第一透镜23与平面光源13同轴设置,第一透镜24与平面光源14同轴设置,以此类推。每个第一透镜用于对对应的平面光源所发出的光束进行放大成像。每个第一透镜的选择要求其通光口径D要全面覆盖对应单元光源的所有发散光,并且对单元光源成像尺寸(即成像后形成的放大全像的尺寸)应当不小于单元透镜及透镜固定装置的最大截面,以保证多个全像可以无缝拼接而不会产生机械尺寸上的冲突。
如图2所示,在使用透镜组20对光源阵列进行放大成像时,沿主光轴任一切面,每个平面光源和第一透镜之间的距离u以及第一透镜和一次成像位置30之间的距离v同时满足下列公式:
Figure PCTCN2020103101-appb-000013
Figure PCTCN2020103101-appb-000014
Figure PCTCN2020103101-appb-000015
k-h=d;    (4)
其中,沿主光轴任一切面,单个平面光源的尺寸为h,相邻光源之间的间距为d,平面光源在一次成像位置30的放大全像的尺寸为k;平面光源的发散角全角为θ;第一透镜的直径为D,第一透镜的焦距为f。所述平面光源沿主光轴任一切面获得的所有尺寸及对应放大全像尺寸均满足上述四个公式。
经过上述拼接后的像,可以看成一个独立的平面光源,可以再次使用透镜进行二次成像或其他变换。
具体地,平面光源光束整形方法还可以包括如下步骤:(3)使用第二透镜40对步骤(2)获得的无缝光源S的光束进行缩小成像,获得缩小的无缝全像S’,从而得到高能量密度的大功率无缝光源。
在使用第二透镜40对无缝光源S进行缩小成像时,沿主光轴任一切面,一次成像位置30和第二透镜40之间的距离u’以及第二透镜40和二次成像位置50之间的距离v’同时满足下列公式:
Figure PCTCN2020103101-appb-000016
Figure PCTCN2020103101-appb-000017
Figure PCTCN2020103101-appb-000018
m>m’;     (8)
其中,沿主光轴任一切面,无缝光源S的尺寸为m,无缝光源S在二次成像位置的缩小全像S’的尺寸为m’;无缝光源S的发散角全角为θ’;第二透镜40的直径为D’,第二透镜40的焦距为f’。所述无缝光源S沿主光轴任一切面获得的所有尺寸及对应缩小全像尺寸均满足上述四个公式。
本发明同时提供了用于实现上述平面光源光束整形方法的装置。如图3至图5所示,本发明所提供的基于全像传递的平面光源光束整形装置,包括:
由多个平面光源(11,12,13,14,……)组成的光源阵列,多个平面光源(11,12,13,14,……)设置在同一平面内;
由多个第一透镜(21,22,23,24,……)组成的透镜组20;多个第一透镜和多个平面光源一一对应地同轴设置,多个第一透镜(21,22,23,24,……)分别用于对多个平面光源(11,12,13,14,……)的光束进行放大成像,获得多个平面光源的放大全像(31,32,33,34,……);
多个第一透镜(21,22,23,24,……)和多个平面光源(11,12,13,14,……)之间的距离,使得多个平面光源的放大全像(31,32,33,34,……)在一次成像位置30无缝拼接,从而在一次成像位置30拼接出无缝光源S。
同时,还包括第二透镜40,第二透镜40和多个平面光源的中心同轴设置,也给与无缝光源S的中心同轴设置,第二透镜40设置在无缝光源S的发光路径上;第二透镜40用于对从无缝光源S发出的光束进行缩小成像,获得缩小的无缝全像S’。
其中,作为初始光源的多个平面光源(11,12,13,14,……)可以同时为LED光源或者VCSEL光源,多个平面光源可以是位于同一片晶圆的芯片阵列或者分立的芯片阵列。
初始光源采用光束经等比例放大后可拼接的平面光源。多个初始光源的形状和尺寸可以相同,也可以不相同。初始光源的形状可以是封闭的规则形状,也可以是由直线、曲线等组成的封闭的不规则形状。用于拼接的多个平面光源只要满足光束经等比例放大后可拼接成一个无缝平面即可。
较优地,多个平面光源的光束形状推荐使用可周期性重复排列的规则图形,以便于工业生产及相关透镜的选择。上述规则图形可以沿一个、两个甚至更多轴线重复排列,不同轴线之间的夹角可以为任意角度。例如,可以使用光束形状为正方形、矩形、等腰三角形、正三角形、正六边形等形状中任意一者的平面光源作为初始光源。
多个平面光源(11,12,13,14,……)组成尺寸、间距微小的光源阵列,每个平面光源构成一个单元光源;,在相邻行或列排列的单元光源可以对应排列,也可以错位排列,以便拼接。
多个第一透镜(21,22,23,24,……)组成透镜组20,每个第一透镜构成一个单元透镜。透镜组20中的多个第一透镜和光源阵列中的多个平面光源一一对应设置。其中,每个第一透镜与单个的平面光源沿同一主光轴平行设置。例如,第一透镜21与平面光源11同轴设置,第一透镜22与平面光源12同轴设置,第一透镜23与平面光源13同轴设置,第一透镜24与平面光源14同轴设置,以此类推。每个第一透镜用于对对应的平面光源所发出的光束进行放大成像。每个第一透镜的选择要求其通光口径要全面覆盖对应单元光源的所有发散光,并且对单元光源成像尺寸应当不小于单元透镜及透镜固定装置的最大截面,以保证多个全像可以无缝拼接而不会产生机械尺寸上的冲突。
如图2所示,在使用透镜组20对光源阵列进行放大成像时,沿主光轴任一切面,每个平面光源和第一透镜之间的距离u以及第一透镜和一次成像位置30之间的距离v同时满足下列公式:
Figure PCTCN2020103101-appb-000019
Figure PCTCN2020103101-appb-000020
Figure PCTCN2020103101-appb-000021
k-h=d;     (4)
其中,沿主光轴任一切面,单个平面光源的尺寸为h,相邻光源之间的间距为d,平面光源在一次成像位置30的放大全像的尺寸为k;平面光源的发散角全角为θ;第一透镜的直径为D,第一透镜的焦距为f。所述平面光源沿主光轴任一切面所获得的所有尺寸及对应放大全像尺寸均满足上述四个公式。
在使用第二透镜40对无缝光源S进行缩小成像时,沿主光轴任一切面,一次成像位置30和第二透镜40之间的距离u’以及第二透镜40和二次成像位置50之间的距离v’同时满足下列公式:
Figure PCTCN2020103101-appb-000022
Figure PCTCN2020103101-appb-000023
Figure PCTCN2020103101-appb-000024
m>m’;     (8)
其中,沿主光轴任一切面,无缝光源S的尺寸为m,无缝光源在二次成像位置50的缩小全像S’的尺寸为m’;无缝光源S的发散角全角为θ’;第二透镜40的直径为D’,第二透镜40的焦距为f’。所述无缝光源沿主光轴任一切面所获得的所有尺寸及对应缩小全像尺寸均满足上述四个公式。
在下文中,结合图3至图5,以由4个正方形的平面光源(11、12、13、14)组成2×2光源阵列为例,对相应的平面光源光束整形装置进行具体介绍。
如图3所示的2×2光源阵列由4个正方形的平面光源(11,12,13,14)组成,平面光源(11,12,13,14)同时为LED光源或者VCSEL光源,4个平面光源可以是位于同一片晶圆上的芯片阵列或者位于同一平面内的分立的芯片阵列。初始光源采用正方形结构,以方便其成像的拼接。4个平面光源(11,12,13,14)组成尺寸为h’、间距为d’的2×2光源阵列,4个单元光源在同一平面内垂直均匀排列成“田”字型。每个平面光源的光束形状为正方形,发光面积为h’×h’。
如图4所示,4个第一透镜(21,22,23,24)组成透镜组20。其中,第一透镜21与平面光源11同轴设置,第一透镜22与平面光源 12同轴设置,第一透镜23与平面光源13同轴设置,第一透镜24与平面光源14同轴设置。每个第一透镜用于对对应的平面光源所发出的光束进行放大成像。每个第一透镜的选择要求其通光口径D要全面覆盖对应单元光源的所有发散光,并且对单元光源成像尺寸应当不小于单元透镜及透镜固定装置的最大截面,以保证多个全像可以无缝拼接而不会产生机械尺寸上的冲突。
对于尺寸、间距微小的平面光源阵列,如对于规律排列的VCSEL光源,透镜组20可以做成微透镜阵列(复眼透镜)。透镜组20中的第一透镜可以采用球面凸透镜、非球面透镜或者菲涅尔透镜等。
一次成像位置30、第二透镜40及二次成像位置50均与光源阵列的中心线同轴设置。第二透镜40的选择要求其通光口径D’要全面覆盖无缝光源S的所有发散光。
如图3所示,对于由4个正方形的平面光源(11,12,13,14)组成的光源阵列来说,在沿主光轴的任一切面获得的所有尺寸中,以对角线方向的尺寸为最大。因此,下文中,以光源阵列的对角线方向的尺寸为准,计算第一透镜、第二透镜的尺寸,以及第一透镜和一次成像位置30之间的间距、一次成像位置30和第二透镜40之间的间距、第二透镜40和二次成像位置50之间的间距。
具体来说,在使用透镜组20对光源阵列进行放大成像时,每个正方形平面光源和第一透镜之间的距离u以及第一透镜和一次成像位置20之间的距离v同时满足下列公式:
Figure PCTCN2020103101-appb-000025
Figure PCTCN2020103101-appb-000026
Figure PCTCN2020103101-appb-000027
L’-L=L0;      (11)
其中,正方形平面光源的边长为h’,对角线长度为L,对角线上相邻光源之间的间距为L0,正方形平面光源在一次成像位置30的放大全像的对角线尺寸为L’;平面光源的发散角全角为θ;第一透镜的直径为D,第一透镜的焦距为f。
在一次成像位置30位置,无缝光源S沿光源阵列的对角线方向的 尺寸,即无缝光源S的原始尺寸为m,m=2×L’。     (12)
在使用第二透镜40对无缝光源S进行缩小成像时,一次成像位置30和第二透镜40之间的距离u’以及第二透镜40和二次成像位置50之间的距离v’同时满足下列公式:
Figure PCTCN2020103101-appb-000028
Figure PCTCN2020103101-appb-000029
Figure PCTCN2020103101-appb-000030
m’<m;     (8)
其中,沿主光轴任一切面,无缝光源S的尺寸为m,无缝光源在二次成像位置的缩小全像S’的尺寸为m’;无缝光源S的发散角全角为θ’;第二透镜40的直径为D’,第二透镜的焦距为f’。
对于图3所示的光源阵列,因为初始光源自身由4个正方形光源构成,因此使用单一球面透镜或者单一球面反射镜,都无法剔除4个光源之间的空隙。在本发明所提供的平面光源光束整形装置中,使用4个第一透镜(即,透镜组20)对4个单元光源分别成扩大的全像。然后在一次成像位置30对4个单元光源的放大的全像进行拼接,这样,就可以从4个有缝的平面光源,得到了无缝拼接的全像S。如图5所示,4个单元光源分别为平面光源11、12、13和14,经过放大成像后获得4个单元光源的放大的全像31、32、33和34。通过对光源阵列和透镜组20之间的设置距离进行调整,使得4个单元光源的放大的全像31、32、33和34可以在一次成像位置30无缝拼接,从而获得如图5所示的无缝光源S。其中,在图5中,为了便于理解,以虚线示出了4个单元光源的放大全像的拼接边界,而在实际的无缝光源S中,通过对多个平面光源与透镜组20之间的间距进行调整,4个放大全像在一次成像位置30经过无缝拼接已形成一个整体,因此,并不存在如图所示的可见的边界。上述被拼接的4个放大全像可以被视作一个均匀的无缝光源S,进而可以再次进行后续成像变换。比如可以使用更大口径的第二透镜40对此全像进行二次缩小成像(全像成像),就可以得到缩小的无缝全像S’。
为了评估上述光束整形方法对光束质量的影响,本发明使用光积 参数(Beam Paramet er Product,简称BPP)来评估初始光源及扩大的无缝全像的光束质量,BPP=束腰半径×远场发散角。
下面以由4个正方形平面光源组成2×2光源阵列为例,对初始光源及拼接放大全像后获得的无缝光源S的光束质量进行评估。对于由4个正方形的平面光源(11,12,13,14)组成的光源阵列,在沿主光轴的任一切面获得的所有尺寸中,以对角线方向的尺寸为最大。因此,以光源阵列的对角线方向的尺寸为准对光束质量进行评估。
正方形平面光源的边长为h’,平面光源的发光面积为h’×h’;正方形平面光源的对角线长度为L,对角线方向上相邻光源之间的间距为L0;平面光源的发散角全角为θ。
假定单元平面光源为高斯光束。根据高斯光束的传输特性,其单元光源的光积参数在通过薄透镜时基本保持不变。这里的束腰,我们用初始光源的尺寸来近似;而远场发散角,以初始光源的发散角全角θ来近似。
初始光源被视为一个整体,对角线方向的光积参数
Figure PCTCN2020103101-appb-000031
拼接后的全像S中,每个单元像在对角线方向的光积参数BPP 1=单元光源的光积参数
Figure PCTCN2020103101-appb-000032
因此,拼接后全像在垂直方向的光积参数
Figure PCTCN2020103101-appb-000033
小于初始光源整体的光积参数BPP 0
由此可见,这种光束整形方法不仅剔除了光源中的空隙,同样剔除了空隙对光束质量的干扰,提高了整体的光束质量,以方便那些对光束质量要求高的应用场景。
上述仅以2×2方形光源阵列为例对经过全像传递和无缝拼接后获得的无缝光源的光束质量与初始光源的光束质量进行了对比。上述评估方式还可以理解为对沿主光轴任意切面均为两个光源的光源阵列的光束质量的评估,可以得出结论,上述光束整形方法不仅剔除了光源中的空隙,同样剔除了空隙对光束质量的干扰,提高了整体的光束质量,以方便那些对光束质量要求高的应用场景。而对于由4个以上的平面光源组成的光源阵列,也可以得到同样的结论,在此不再赘述。
换句话说,本发明所提供的基于全像传递的平面光源光束整形方法及装置还可应用于更多光束形状经等比例放大后可拼接成平面的平面光源。例如,在图6中示出了多个正三角形平面光源的放大全像拼接后获得的无缝光源60的结构示意图。其中,为了便于理解,以虚线示出了多个单元光源的放大全像的拼接边界,而在实际的无缝光源60中,通过对透镜组20及一次成像位置30之间的间距进行调整,多个放大全像经过无缝拼接已形成一个整体,因此,并不存在如图所示的可见的边界。对于其他形状的等比例放大后可拼接的平面光源,其全像传递和无缝拼接的原理与上述的实施例类似,在此不再详细阐述。
综上所述,本发明所提供的基于全像传递的平面光源光束整形方法,通过多个第一透镜分别对多个平面光源的光束进行放大成像,获得多个平面光源的放大全像;然后,通过对多个平面光源的放大全像进行拼接,可以在一次成像位置获得无缝光源。上述平面光源光束整形方法,在几乎不损失光功率的情况下,通过全像传递和无缝拼接,实现了对光源间空隙的剔除,并进一步改善了作为整体的光源的光束质量。这种光学整形方法,适用于VCSEL、LED等平面光源的整形和处理。
以上对本发明所提供的一种基于全像传递的平面光源光束整形方法及装置进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (16)

  1. 一种基于全像传递的平面光源光束整形方法,其特征在于包括如下步骤:
    (1)使用多个第一透镜分别对多个平面光源发出的光束进行放大成像,获得多个平面光源的放大全像;
    (2)将多个平面光源的放大全像在一次成像位置进行拼接,多个平面光源的放大全像拼接成无缝光源。
  2. 如权利要求1所述的平面光源光束整形方法,其特征在于:
    沿主光轴任一切面,每个所述平面光源和所述第一透镜之间的距离u以及所述第一透镜和所述一次成像位置之间的距离v同时满足下列公式:
    Figure PCTCN2020103101-appb-100001
    Figure PCTCN2020103101-appb-100002
    Figure PCTCN2020103101-appb-100003
    k-h=d;
    其中,沿主光轴任一切面,所述平面光源的尺寸为h,相邻光源之间的间距为d,所述平面光源在所述一次成像位置的放大全像的尺寸为k;所述平面光源的发散角全角为θ;所述第一透镜的直径为D,所述第一透镜的焦距为f。
  3. 如权利要求1所述的平面光源光束整形方法,其特征在于还包括如下步骤:
    (3)使用第二透镜对步骤(2)获得的无缝光源的光束进行缩小成像,获得缩小的无缝全像。
  4. 如权利要求3所述的平面光源光束整形方法,其特征在于:
    沿主光轴任一切面,一次成像位置和第二透镜之间的距离u’以及第二透镜和二次成像位置之间的距离v’同时满足下列公式:
    Figure PCTCN2020103101-appb-100004
    Figure PCTCN2020103101-appb-100005
    Figure PCTCN2020103101-appb-100006
    m>m’;
    其中,沿主光轴任一切面,无缝光源的尺寸为m,无缝光源在二次成像位置的缩小全像的尺寸为m’;无缝光源的发散角全角为θ’;第二透镜的直径为D’,第二透镜的焦距为f’。
  5. 如权利要求1所述的平面光源光束整形方法,其特征在于:
    在步骤(1)中所使用的平面光源是光束经等比例放大后可拼接的平面光源。
  6. 如权利要求5所述的平面光源光束整形方法,其特征在于:
    在步骤(1)中所使用的平面光源的光束形状是可周期性重复排列的规则图形。
  7. 如权利要求5所述的平面光源光束整形方法,其特征在于:
    在步骤(1)中所使用的多个平面光源的光束形状是正方形、矩形、等腰三角形、正三角形、正六边形中的任意一种或多种形状。
  8. 如权利要求1所述的平面光源光束整形方法,其特征在于:
    在步骤(1)中所使用的多个平面光源同时为LED光源或者VCSEL光源。
  9. 一种基于全像传递的平面光源光束整形装置,其特征在于包括:
    由多个平面光源组成的光源阵列,多个平面光源设置在同一平面内;
    由多个第一透镜组成的透镜组;多个第一透镜和多个平面光源一一对应地同轴设置,多个所述第一透镜分别用于对多个平面光源发出的光束进行放大成像,获得多个平面光源的放大全像;
    多个第一透镜和多个平面光源之间的距离,使得多个平面光源的放大全像在一次成像位置无缝拼接,从而多个平面光源的放大全像在一次成像位置拼接成无缝光源。
  10. 如权利要求9所述的平面光源光束整形装置,其特征在于:
    沿主光轴任一切面,每个所述平面光源和所述第一透镜之间的距 离u以及所述第一透镜和所述一次成像位置之间的距离v同时满足下列公式:
    Figure PCTCN2020103101-appb-100007
    Figure PCTCN2020103101-appb-100008
    Figure PCTCN2020103101-appb-100009
    k-h=d;
    其中,沿主光轴任一切面,所述平面光源的尺寸为h,相邻光源之间的间距为d,所述平面光源在所述一次成像位置的放大全像的尺寸为k;所述平面光源的发散角全角为θ;所述第一透镜的直径为D,所述第一透镜的焦距为f。
  11. 如权利要求9所述的平面光源光束整形装置,其特征在于还包括:第二透镜,所述第二透镜和多个平面光源的中心同轴设置,所述第二透镜设置在所述无缝光源的发光路径上;所述第二透镜用于对从所述无缝光源发出的光束进行缩小成像,获得缩小的无缝全像。
  12. 如权利要求11所述的平面光源光束整形装置,其特征在于:
    沿主光轴任一切面,一次成像位置和第二透镜之间的距离u’以及第二透镜和二次成像位置之间的距离v’同时满足下列公式:
    Figure PCTCN2020103101-appb-100010
    Figure PCTCN2020103101-appb-100011
    Figure PCTCN2020103101-appb-100012
    m>m’;
    其中,沿主光轴任一切面,无缝光源的尺寸为m,无缝光源在二次成像位置的缩小全像的尺寸为m’;无缝光源的发散角全角为θ’;第二透镜的直径为D’,第二透镜的焦距为f’。
  13. 如权利要求9所述的平面光源光束整形装置,其特征在于:
    多个平面光源同时为LED光源或者VCSEL光源。
  14. 如权利要求9所述的平面光源光束整形装置,其特征在于:
    所述平面光源是光束等比例放大后可拼接的平面光源。
  15. 如权利要求14所述的平面光源光束整形装置,其特征在于:
    所述平面光源的光束形状是可周期性重复排列的规则图形。
  16. 如权利要求14所述的平面光源光束整形装置,其特征在于:
    多个所述平面光源的光束形状是正方形、矩形、等腰三角形、正三角形、正六边形中的任意一种或多种形状。
PCT/CN2020/103101 2020-02-25 2020-07-20 一种基于全像传递的平面光源光束整形方法及装置 WO2021169155A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20922216.5A EP4113195A4 (en) 2020-02-25 2020-07-20 METHOD AND DEVICE FOR BEAM SHAPING USING FULL IMAGE TRANSFER FOR PLANE LIGHT SOURCES
US17/822,130 US11960098B2 (en) 2020-02-25 2022-08-25 Beam shaping method and device employing full-image transfer for planar light sources

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020207056.5 2020-02-25
CN202020207056.5U CN211263967U (zh) 2020-02-25 2020-02-25 一种基于全像传递的平面光源光束整形装置
CN202010116770.8 2020-02-25
CN202010116770.8A CN111123532A (zh) 2020-02-25 2020-02-25 一种基于全像传递的平面光源光束整形方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/822,130 Continuation US11960098B2 (en) 2020-02-25 2022-08-25 Beam shaping method and device employing full-image transfer for planar light sources

Publications (1)

Publication Number Publication Date
WO2021169155A1 true WO2021169155A1 (zh) 2021-09-02

Family

ID=77490651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103101 WO2021169155A1 (zh) 2020-02-25 2020-07-20 一种基于全像传递的平面光源光束整形方法及装置

Country Status (3)

Country Link
US (1) US11960098B2 (zh)
EP (1) EP4113195A4 (zh)
WO (1) WO2021169155A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729331A (en) * 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
CN104166312A (zh) * 2013-05-17 2014-11-26 上海微电子装备有限公司 一种多光源大视场拼接照明系统
CN106933040A (zh) * 2015-12-30 2017-07-07 上海微电子装备有限公司 光刻机拼接照明系统及其调整方法
CN110244516A (zh) * 2018-03-09 2019-09-17 联士光电(深圳)有限公司 一种大视场拼接式曝光机
CN111123532A (zh) * 2020-02-25 2020-05-08 李德龙 一种基于全像传递的平面光源光束整形方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1317717A (zh) * 2000-04-13 2001-10-17 贡晔 数字图像感光成像的方法
US20050151828A1 (en) * 2004-01-14 2005-07-14 Xerox Corporation. Xerographic printing system with VCSEL-micro-optic laser printbar
US20150260830A1 (en) * 2013-07-12 2015-09-17 Princeton Optronics Inc. 2-D Planar VCSEL Source for 3-D Imaging
US20160091786A1 (en) * 2014-09-30 2016-03-31 Google Inc. Screen configuration for display system
US20160377414A1 (en) * 2015-06-23 2016-12-29 Hand Held Products, Inc. Optical pattern projector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729331A (en) * 1993-06-30 1998-03-17 Nikon Corporation Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus
CN104166312A (zh) * 2013-05-17 2014-11-26 上海微电子装备有限公司 一种多光源大视场拼接照明系统
CN106933040A (zh) * 2015-12-30 2017-07-07 上海微电子装备有限公司 光刻机拼接照明系统及其调整方法
CN110244516A (zh) * 2018-03-09 2019-09-17 联士光电(深圳)有限公司 一种大视场拼接式曝光机
CN111123532A (zh) * 2020-02-25 2020-05-08 李德龙 一种基于全像传递的平面光源光束整形方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4113195A4 *

Also Published As

Publication number Publication date
EP4113195A4 (en) 2024-04-03
US11960098B2 (en) 2024-04-16
EP4113195A1 (en) 2023-01-04
US20220404632A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
US20230194877A1 (en) Light flux diameter expanding element and image display device
JP5054026B2 (ja) コリメート光源を組み込んだ照射システム
JP6245994B2 (ja) レーザ光源装置及びプロジェクタ
CN107861253B (zh) 激光投影装置
TW201937230A (zh) 多光束元件式近眼顯示器、系統、與方法
JP7248662B2 (ja) 光ビームフォーマ
JPWO2015182619A1 (ja) マイクロレンズアレイ及びマイクロレンズアレイを含む光学系
JP2020520055A (ja) 微細構造化されたマルチビーム要素の背面照明
CN105182546B (zh) 匀光元件及光源系统
CN114791676A (zh) 一种激光光源装置及激光投影系统
CN114236957A (zh) 激光光源及激光投影设备
WO2021169155A1 (zh) 一种基于全像传递的平面光源光束整形方法及装置
CN211263967U (zh) 一种基于全像传递的平面光源光束整形装置
US9625727B2 (en) Device for homogenizing a laser beam
CN111123532A (zh) 一种基于全像传递的平面光源光束整形方法及装置
JP2021047444A (ja) 照明装置及び方法、露光装置及び方法、並びにデバイス製造方法
US11067800B2 (en) Image display device
CN112180594A (zh) 一种全息波导显示装置
JP2020046632A (ja) スペックル低減モジュール
CN114815298A (zh) 一种用于裸眼三维显示的波导型高均匀度定向背光系统
CN113640903B (zh) 复眼透镜、背光照明系统及其制造方法
CN113625520A (zh) 照明系统和投影设备
US11719947B1 (en) Prism beam expander
JPS5850510A (ja) Icパタ−ン転写装置における照明光学系
CN220691244U (zh) 光源系统和激光投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020922216

Country of ref document: EP

Effective date: 20220926