WO2021169071A1 - 光路位置校准方法、校准工装及荧光定量检测系统 - Google Patents

光路位置校准方法、校准工装及荧光定量检测系统 Download PDF

Info

Publication number
WO2021169071A1
WO2021169071A1 PCT/CN2020/092300 CN2020092300W WO2021169071A1 WO 2021169071 A1 WO2021169071 A1 WO 2021169071A1 CN 2020092300 W CN2020092300 W CN 2020092300W WO 2021169071 A1 WO2021169071 A1 WO 2021169071A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
sample holes
rows
fiber bundles
Prior art date
Application number
PCT/CN2020/092300
Other languages
English (en)
French (fr)
Inventor
李冬
曹进涛
贺贤汉
Original Assignee
杭州博日科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州博日科技有限公司 filed Critical 杭州博日科技有限公司
Publication of WO2021169071A1 publication Critical patent/WO2021169071A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • This application relates to the field of biological detection technology, and in particular to a method for calibration of optical path positions, calibration tooling, and a fluorescence quantitative detection system.
  • the real-time fluorescence quantitative detection system can effectively realize the real-time quantitative detection of polymerase chain reaction (PCR), and has broad application prospects in the fields of disease prevention and control, genetic modification detection, medical testing, and eugenics.
  • PCR polymerase chain reaction
  • the commonly used real-time fluorescence quantitative detection system uses a large number of optical fibers to guide light, and one end of each optical fiber is aggregated at one end of the detection device, and the detection device performs detection.
  • the conventional technology has the following problems: as the number of sample holes used in the test increases, the number of corresponding optical fibers also increases. If the measurement is performed in a large number of sample holes at the same time, the large number of optical fibers at the detection end and the large number of sample holes carrying the sample The locations cannot be mapped quickly one-to-one. Therefore, the test results of different sample holes are confused, and it is difficult to clearly distinguish the test results of different sample holes.
  • the purpose of this application is to provide an optical path position calibration method, calibration tooling and fluorescence quantitative detection system to solve the problem that the detection results of different sample holes cannot be clearly judged because the large number of optical fibers at the detection end cannot quickly correspond to the positions of a large number of sample holes. There is confusion between the test results of different sample holes.
  • this application provides a light path position calibration method, the method includes:
  • the optical fibers at the detection end are divided into M fiber bundles, and each of the fiber bundles contains N fibers; where M ⁇ 2, N ⁇ 2;
  • the optical path position calibration tool is used to light up the optical fibers corresponding to the sample holes of the N row or the N-1 row in a set sequence, and the position of the N optical fibers of each of the optical fiber bundles is detected by a detection device.
  • the embodiments of the present application provide the first possible implementation manner of the first aspect, wherein the M optical fiber bundles are installed, so that the position of each optical fiber bundle corresponds to a row of the optical fiber bundles.
  • the steps corresponding to the sample hole include:
  • the M optical fiber bundles are sequentially installed in a certain sequence of the M columns of the sample holes, so that the position of each optical fiber bundle corresponds to a row of the sample holes.
  • the embodiments of the present application provide a second possible implementation manner of the first aspect, wherein the optical path position calibration tool is used to set the optical fibers corresponding to the sample holes in rows N or N-1 according to the design
  • the steps of lighting up in a fixed order, and detecting the positions of the N optical fibers of each optical fiber bundle through a detection device include:
  • optical path position calibration tool uses the optical path position calibration tool to light up the optical fibers corresponding to the sample holes in a row at the same time, and detect the position of the optical fiber corresponding to each of the optical fiber bundles through a detection device;
  • the optical path position calibration tool is used to sequentially light up the optical fibers corresponding to the sample holes in the other rows N-1 or N-2, and the position of the N optical fibers of each optical fiber bundle is detected by the detection device.
  • the present application provides a fluorescence quantitative detection system.
  • the system has M optical fiber bundles at the detection end, each of the optical fiber bundles has N optical fibers, and each of the optical fiber bundles corresponds to a row of sample holes.
  • Each of the optical fibers corresponds to one of the sample holes, and there are a total of M columns and N rows of the sample holes; wherein, M ⁇ 2, N ⁇ 2.
  • the embodiments of the present application provide the first possible implementation manner of the second aspect, in which the M optical fiber bundles are transmitted in an optical cable manner at the detection end.
  • the embodiments of the present application provide a second possible implementation manner of the second aspect, in which each of the optical fiber bundles is covered by an outer coating layer.
  • the application provides a light path position calibration tool, including: multiple light sources and switches; multiple light sources are arranged in M rows and N rows or M rows and N-1 rows, and each light source corresponds to A sample hole, the sample hole includes M rows and N rows; the switch is used to control the on or off of a plurality of the light sources; wherein, M ⁇ 2, N ⁇ 2.
  • the embodiments of the present application provide the first possible implementation manner of the third aspect, wherein the switch is used to control the on or off of a certain row or column of light sources, or to individually control a certain light source On or off.
  • the embodiments of the present application provide a second possible implementation manner of the third aspect, wherein a plurality of the light sources are arranged on a flat panel.
  • the embodiments of the present application provide a third possible implementation manner of the third aspect, wherein the light source is an LED lamp or a laser.
  • the optical path position calibration method provided in this application divides the optical fiber at the detection end into M fiber bundles according to the arrangement of the M rows and N rows of the sample holes, and each fiber bundle contains N fibers; the M fiber bundles are installed , So that the position of each fiber bundle corresponds to a row of sample holes; the optical path position calibration tool is used to light the fibers corresponding to the sample holes in rows N or N-1 according to the set sequence, and the detection equipment detects the position of each fiber bundle. The position of N fibers.
  • the above-mentioned optical path position calibration method can realize the corresponding fixation of the positions of a large number of sample holes and the positions of a large number of optical fibers at the detection end after one calibration is completed before the sample testing equipment is officially launched, without the need to perform calibration before each sample testing. , Which simplifies the operation process.
  • the arrangement of optical fibers at the detection end can conveniently correspond each optical fiber bundle to a row of sample holes, so as to facilitate optical path position calibration.
  • the optical path position calibration tool provided by the present application has a simple structure, which reduces structural complexity and operating costs.
  • FIG. 1 is a flowchart of a method for calibrating the position of an optical path according to an embodiment of the application
  • FIG. 3 is a schematic diagram of the optical fiber arrangement of the detection end provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of another optical fiber arrangement at the detection end according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of the position of the sample hole provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a fiber signal at the detection end provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of an optical path position calibration tool provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of another optical path position calibration tool provided by an embodiment of the application.
  • the real-time fluorescence quantitative detection system can effectively realize real-time quantitative detection PCR, and has a wide range of application prospects in the fields of disease prevention and control, genetic modification detection, medical testing, and eugenics.
  • the commonly used real-time fluorescence quantitative detection system uses a large number of optical fibers to guide the light, and one end of a large number of each optical fiber is gathered together at one end of the detection device, and the detection device performs detection.
  • the conventional technology has the following problems: as the number of sample holes used in the test increases, the number of corresponding optical fibers also increases. If the measurement is performed in a large number of sample holes at the same time, the large number of optical fibers at the detection end and the large number of sample holes carrying the sample The positions cannot be quickly one-to-one correspondence, the test results of different sample holes cannot be clearly judged, or the test results of different sample holes are confused. Based on this, the optical path position calibration method, calibration tool, and fluorescence quantitative detection system provided by the embodiments of the present application can easily and quickly determine the position of a large number of sample holes when detecting multiple holes and high-throughput detection using a large number of optical fibers.
  • Fig. 1 shows a flow chart of a method for calibrating the position of an optical path provided by an embodiment of the present application.
  • the optical path position calibration method includes the following steps:
  • Step S101 according to the arrangement of M rows and N rows of sample holes, the optical fibers at the detection end are divided into M fiber bundles, and each fiber bundle contains N fibers; where M ⁇ 2 and N ⁇ 2;
  • Step S102 installing M optical fiber bundles so that the position of each optical fiber bundle corresponds to a row of sample holes
  • Step S103 Use the optical path position calibration tool to light up the fibers corresponding to the sample holes in rows N or N-1 in a set sequence, and detect the positions of the N fibers in each fiber bundle through the detection device.
  • the optical fibers at the detection end are divided into M optical fiber bundles, and each optical fiber bundle contains N optical fibers; Install the fiber bundle so that the position of each fiber bundle corresponds to a row of sample holes; use the optical path position calibration tool to light the fibers corresponding to the N rows of sample holes in the set order, and detect the N fibers of each fiber bundle through the detection equipment The location of the fiber.
  • the above-mentioned optical path position calibration method can realize the corresponding fixation of the positions of a large number of sample holes and the positions of a large number of optical fibers at the detection end after one calibration is completed before the sample testing equipment is officially launched, without the need to perform calibration before each sample testing. , Which simplifies the operation process.
  • step S102 may be implemented in the following manner: according to a certain order of the M columns of sample holes, the M fiber bundles are installed in sequence , So that the position of each fiber bundle corresponds to a row of sample holes.
  • step S103 may specifically include the following steps:
  • Step S1031 Use the optical path position calibration tool to simultaneously light up the optical fibers corresponding to a certain row of sample holes, and detect the position of the optical fiber corresponding to each optical fiber bundle through the detection device;
  • Step S1032 Use the optical path position calibration tool to sequentially light up the optical fibers corresponding to the sample holes of the other rows N-1 or N-2, and detect the positions of the N optical fibers of each optical fiber bundle through the detection device.
  • the detection device detects the signal of the lighted fiber at the detection end, thereby determining the position of the lighted fiber, that is, determining which sample hole corresponds to.
  • each row of light sources of the optical path position calibration tool can be lit at the same time, thereby improving efficiency. Of course, they can also be lit one by one, and there is no restriction on the lighting method here.
  • Fig. 3 shows a schematic diagram of the optical fiber arrangement at the detection end provided by an embodiment of the present application
  • Fig. 4 shows a schematic diagram of another optical fiber arrangement at the detection end provided by an embodiment of the present application
  • the sample hole is 96 holes
  • the position of the sample holes is shown in FIG. 5, the arrangement is 12 rows and 8 rows, the 12 rows are respectively C1, C2...C12, and the 8 rows are respectively R1...R8.
  • the above-mentioned M is 12 and N is 8.
  • the number of sample wells is not limited, such as 12 wells, 24 wells, 48 wells, 96 wells, 192 wells or 384 wells and so on.
  • the arrangement method is not limited.
  • the sample hole is 96 holes.
  • it can also be 8*12, 16*6, 6*16 and other specifications.
  • the sample hole is 8*12 size
  • the above M is 8 and N is 12; when the sample hole is 16*6 size, the above M is 16, N is 6; when the sample hole is 6*16 size, the above M Is 6, and N is 16.
  • the optical fibers at the detection end can be divided into 12 fiber bundles, each of which contains 8 optical fibers, and multiple optical fibers at the detection end can be shown in Figure 3. Or arranged in the manner shown in Figure 4, there are a total of 12 fiber bundles A, B..., and each fiber bundle contains 8 fibers A1...A8, B1...B8 (not shown in Figures B1 to B8) and so on.
  • the position of each fiber bundle corresponds to a row of sample holes.
  • the 8 fibers A1...A8 of the fiber bundle A in Fig. 3 or Fig. 4 correspond to the R1...R8 of the C1 column in Fig. 5, or the 8 fibers A1...A8 of the fiber bundle A respectively correspond to the other columns.
  • R1...R8, here does not limit which column of sample holes a certain fiber bundle corresponds to.
  • the 8 fibers in each fiber bundle are scattered into 8 branch fibers on the sample side, so that the position of each branch fiber corresponds to each sample hole in a row of sample holes, that is, A1...A8 to detect 8 of a row of sample holes.
  • a total of 96 holes can be detected with 12 fiber bundles.
  • the above-mentioned 12 optical fiber bundles may be 12 groups of optical fiber bundles covered by an outer coating layer, as shown in FIG. 3; or they may be in the form of optical fiber bundles without a coating layer, as shown in FIG. 4.
  • the arrangement of the optical fibers at the detection end only needs to be able to distinguish between different optical fiber bundles.
  • the 12 optical fiber bundles can be transmitted by optical cables at a distance beyond the detection end, which can reduce the volume of multiple optical fibers, and then disperse multiple optical fibers on the sample side to form branch optical fibers for each branch
  • the optical fiber corresponds to the position of a sample hole.
  • 12*8 optical fibers can be aggregated together instead of diverging from the port. In this way, the volume and arrangement complexity of the overall optical fiber can be greatly reduced.
  • the ultimate goal of the optical path position calibration is to determine which optical fiber corresponds to each sample hole, for example, which optical fiber corresponds to the 1st to 96th hole positions in FIG. 5. Since each optical fiber bundle corresponds to a row of sample holes, and each optical fiber bundle includes 8 optical fibers, each optical fiber can be made to correspond to one sample hole. Among them, one fiber bundle detects the first column of holes C1, the second fiber bundle detects the second column of holes C2, the third fiber bundle detects the third column of holes C3, and so on, the 12th fiber bundle detects the 12th column of holes C12.
  • the 12 optical fiber bundles can be installed in a certain order in the 12 rows of sample holes, so that the position of each optical fiber bundle corresponds to a row of sample holes.
  • the positions of the 8 optical fibers in each of the above-mentioned optical fiber bundles correspond to the positions of the 8 sample holes in each column of the sample holes, which are realized by the optical path position calibration tool.
  • the light path position calibration tool can have multiple light sources corresponding to the number of sample holes, and each light source corresponds to a sample hole. Taking sample holes with 12 rows and 8 rows as an example, multiple light sources can be 12 rows and 8 rows, as shown in Figure 7. It can also be one row less than the sample hole, that is, 12 rows and 7 rows, as shown in Figure 8.
  • the optical path position calibration tool is equipped with a switch, which can control the on or off of a certain row or column of light sources as a whole, or individually control the on or off of a certain light source.
  • the above-mentioned light source may be an LED lamp or a laser, and may be a light source of various wavelengths.
  • the number of sample holes is not limited, the number of upper light sources of the optical path position calibration tool is not limited.
  • the number of sample holes can be 12, 24, 48, 96, 192, or 384. Holes, etc., the number of light sources can also be 12, 24, 48, 96, 192, or 384; the arrangement of light sources is also not limited, for example, sample holes are 8*12, 12*8, In 16*6, 6*16 and other specifications, the light source can also be arranged in 8*12, 12*8, 16*6, 6*16, etc.
  • the number of light sources can also be one row less than the sample holes.
  • the following specifically introduces the calibration process through the optical path position calibration tool.
  • Each light source on the optical path position calibration tool corresponds to a sample hole, that is, the position of the sample hole corresponding to each light source is known. Still taking 96 sample holes as an example, since each branch fiber on the sample side (each fiber bundle is dispersed into 8 branch fibers on the sample side) corresponds to a sample hole, when the optical path position calibration is performed, the optical path position calibration tool is installed The side with the light source faces the branch optical fiber on the sample side, so that the light source corresponding to a certain sample hole is aligned with the branch optical fiber corresponding to the sample hole.
  • the light sources of a certain row of the optical path position calibration tool are lighted at the same time, so as to light up the optical fibers corresponding to the sample holes corresponding to the row of light sources. For example, light up a row of light sources corresponding to the sample holes in row R1, so that the 12 optical fibers corresponding to the sample holes in row R1 are lit, and the detection equipment detects the corresponding optical fiber in each of the 12 optical fiber bundles. The position of the sample hole in row R1.
  • each row of light sources of the optical path position calibration tool can be lit at the same time, thereby improving efficiency. Of course, it can also be lit one by one, and there is no restriction on the lighting method here.
  • the aforementioned detection device may use a camera to detect optical fiber signals, such as a charge coupled device (CCD) camera.
  • CCD charge coupled device
  • the detection device can detect the optical fiber.
  • Figure 6 shows a schematic diagram of the optical fiber signal detected by the detection device.
  • the order of illuminating the optical fibers corresponding to the sample holes in rows R1-R8 is not limited, for example, the R2 row can also be illuminated first.
  • the optical fibers corresponding to the sample holes are then sequentially lighted on the fibers corresponding to the other rows of sample holes.
  • the lighting order of the fibers corresponding to the other rows of sample holes can also be arbitrary, such as R4, R6, R3, R1, R5, R7, R8 The sequence lights up. As long as the positions of R1-R8 corresponding to the 8 fibers of each fiber bundle can be determined in sequence.
  • the number of light sources can be the same as the number of sample holes, but can also be one row less than the number of sample holes.
  • the optical path position calibration tool as shown in Figure 8, where the optical path position calibration tool has multiple light sources one row less than the sample hole, that is, there are 12 rows of 7 rows of light sources, and each light source corresponds to a sample hole.
  • the 7 rows of light sources can light up the fibers corresponding to the sample holes in the first 7 rows, that is, the fibers corresponding to the sample holes in rows R1-R7, thereby determining 7 of the 8 fibers in each fiber bundle.
  • the remaining fiber can naturally be determined as the fiber corresponding to the remaining sample hole in a row of sample holes.
  • the light sources of a certain row of the light path position calibration tool are turned on, thereby illuminating a row of sample holes corresponding to the row of light sources. For example, light up a row of light sources corresponding to the sample holes in row R1, so that the 12 optical fibers corresponding to the sample holes in row R1 are lit, and the detection equipment detects the corresponding optical fiber in each of the 12 optical fiber bundles. The position of the sample hole in row R1. Then, sequentially light up the other 6 rows of light sources on the optical path position calibration tool, thereby sequentially light up the optical fibers in the 12 fiber bundles corresponding to each of the R2-R7 rows of sample holes. The position of the 7 fibers of each fiber bundle corresponding to R2-R7 is detected by the detection device.
  • the order of illuminating the sample holes of rows R1-R7 is not limited, for example, the optical fiber corresponding to the sample holes of row R2 can be lighted first, and then the others can be lighted in sequence.
  • the lighting sequence of the optical fibers corresponding to the sample holes in a row and the optical fibers corresponding to the sample holes in other rows may also be arbitrary, for example, lighting in the order of R4, R6, R3, R1, R5, and R7. As long as the positions of R1-R7 corresponding to the 7 fibers of each fiber bundle can be determined in turn.
  • the structure of the optical path position calibration tool is simple, which reduces the complexity of the structure and the operation cost.
  • the embodiment of the application also provides a fluorescence quantitative detection system.
  • the system has M fiber bundles at the detection end, each fiber bundle has N fibers, and each fiber bundle corresponds to a row of sample holes, and each fiber corresponds to A sample hole, the sample hole has M columns and N rows; among them, M ⁇ 2, N ⁇ 2.
  • the M optical fiber bundles can be transmitted by means of optical cables at a distance beyond the detection end. In this way, the volume of multiple optical fibers can be reduced. On the sample side, each optical fiber bundle will disperse N fibers to form N branch fibers, so that each branch fiber corresponds to the position of a sample hole.
  • M*N optical fibers can be aggregated together instead of diverging from the port, which can greatly reduce the overall optical fiber volume and arrangement complexity.
  • the above-mentioned M optical fiber bundles may be M groups of optical fiber bundles covered by an outer coating layer, as shown in FIG. 3; or they may be in the form of an optical fiber bundle without a coating layer, as shown in FIG. It should be noted that the arrangement of the optical fibers at the detection end only needs to be able to distinguish between different optical fiber bundles. Each fiber bundle is covered by an outer coating layer.
  • the arrangement of the optical fibers at the detection end can conveniently correspond each optical fiber bundle to a row of sample holes, so as to facilitate optical path position calibration.
  • FIG. 7 shows a schematic diagram of an optical path position calibration tool provided by an embodiment of the present application
  • FIG. 8 shows a schematic diagram of another optical path position calibration tool provided by an embodiment of the present application.
  • An optical path position calibration tool provided by an embodiment of the present application includes: multiple light sources and switches; multiple light sources can be arranged in M rows and N rows, or in M rows and N-1 rows, each Each light source corresponds to one sample hole, and the sample hole includes M columns and N rows; the switch is used to control the on or off of multiple light sources; wherein, M ⁇ 2, N ⁇ 2.
  • the multiple light sources can be arranged in 12 rows and 8 rows, as shown in FIG. 7, or they can be arranged in 12 rows and 7 rows, as shown in FIG.
  • the number of sample holes is not limited, the number of upper light sources of the optical path position calibration tool is not limited.
  • the number of sample holes can be 12, 24, 48, 96, 192, or 384. Holes, etc., the number of light sources can also be 12, 24, 48, 96, 192, or 384; the arrangement of light sources is also not limited, for example, sample holes are 8*12, 12*8, In 16*6, 6*16 and other specifications, the light source can also be arranged in 8*12, 12*8, 16*6, 6*16, etc.
  • the number of light sources can also be one row less than the sample holes.
  • the above switch can be used to control the on or off of a certain row or column of light sources, or to individually control the on or off of a certain light source, so as to facilitate lighting of sample holes in different positions.
  • the above-mentioned optical path position calibration tool may have a flat panel on which a plurality of light sources are arranged, and the above-mentioned switch may be arranged on the flat panel.
  • the above-mentioned light source may be an LED lamp or a laser, and may be a light source of various wavelengths.
  • the optical path position calibration tool provided by the embodiment of the present application has a simple structure, can conveniently calibrate a large number of sample holes, and reduces structural complexity and operating costs.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation.
  • multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some communication interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • connection should be interpreted broadly, for example, it may be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installation should be interpreted broadly, for example, it may be a fixed connection or a detachable connection. , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be the internal communication between two components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)

Abstract

一种光路位置校准方法、方法中使用的校准工装以及荧光定量检测系统,在光路位置校准方法中,根据样品孔的M列N排的排布方式,将检测端的光纤分为M个光纤束,每个光纤束中包含N根光纤(S101);将M个光纤束进行安装,使得每个光纤束的位置与一列样品孔对应(S102);利用光路位置校准工装将N排或者N-1排的样品孔对应的光纤按照设定顺序点亮,通过检测设备检测出每个光纤束的N根光纤的位置(S103)。在多孔检测、用到光纤数量庞大的高通量检测时,能够容易快速的将大量样品孔的位置与检测端的大量光纤的位置一一对应,从而使检测结果准确,防止产生混乱。

Description

光路位置校准方法、校准工装及荧光定量检测系统
本申请要求于2020年02月25日提交中华人民共和国国家知识产权局、申请号为202010115546.7、申请名称为“光路位置校准方法、校准工装及荧光定量检测系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及生物检测技术领域,尤其是涉及一种光路位置校准方法、校准工装及荧光定量检测系统。
背景技术
实时荧光定量检测系统可以有效地实现实时定量检测聚合酶链反应(Polymerase Chain Reaction,PCR),在疾病防治、转基因检测、医学检验、优生优育等领域有着广泛的应用前景。
为了实现高通量的检测,常用的实时荧光定量检测系统使用大量光纤来引导光,其中每个光纤的一端在检测设备的一端聚合在一起,由检测设备进行检测。常规技术存在以下问题:随着在检测中使用的样品孔的数量增加,对应的光纤数量也在增加,如果在大量样品孔中同时进行测量,则检测端大量光纤与承载样品的大量样品孔的位置无法快速一一对应。因此,不同样品孔的检测结果之间较为混乱,难以明确辨别不同样品孔的检测结果。
发明内容
本申请的目的在于提供光路位置校准方法、校准工装及荧光定量检测系统,以解决因检测端的大量光纤与大量样品孔的位置无法快速一一对应,导致的不同样品孔的检测结果无法明确判断或者不同样品孔的检测结果之间产生混乱的问题。
第一方面,本申请提供了光路位置校准方法,所述方法包括:
根据样品孔的M列N排的排布方式,将检测端的光纤分为M个光纤束,每个所述光纤束中包含N根光纤;其中,M≥2,N≥2;
将M个所述光纤束进行安装,使得每个所述光纤束的位置与一列所述样品孔对应;
利用光路位置校准工装将N排或者N-1排的所述样品孔对应的光纤按照设定顺序点亮,通过检测设备检测出每个所述光纤束的N根光纤的位置。
结合第一方面,本申请实施例提供了第一方面的第一种可能的实施方式,其中,所述将M个所述光纤束进行安装,使得每个所述光纤束的位置与一列所述样品孔对应的步骤,包括:
按照所述样品孔M列的某一顺序将M个所述光纤束按顺序安装,使得每个所述光纤束的位置与一列所述样品孔对应。
结合第一方面,本申请实施例提供了第一方面的第二种可能的实施方式,其中,所述利用光路位置校准工装将N排或者N-1排的所述样品孔对应的光纤按照设定顺序点亮,通过检测设备检测出每个所述光纤束的N根光纤的位置的步骤,包括:
利用所述光路位置校准工装将某一排的所述样品孔对应的光纤同时点亮,通过检测设备检测出每个所述光纤束对应的光纤的位置;
利用所述光路位置校准工装按顺序点亮其他N-1排或者N-2排的所述样品孔对应的光纤,通过所述检测设备检测出每个所述光纤束的N根光纤的位置。
第二方面,本申请提供了荧光定量检测系统,所述系统在检测端处有M个光纤束,每个所述光纤束中分别有N根光纤,每个所述光纤束对应一列样品孔,每根所述光纤对应一个所述样品孔,所述样品孔共有M列N排;其中,M≥2,N≥2。
结合第二方面,本申请实施例提供了第二方面的第一种可能的实施方式,其中,M个所述光纤束在所述检测端以光缆的方式传输。
结合第二方面,本申请实施例提供了第二方面的第二种可能的实施方式,其中,每个所述光纤束通过外部的包覆层包覆起来。
第三方面,本申请提供了光路位置校准工装,包括:多个光源以及开关;多个所述光源以M列N排或者M列N-1排的方式排布,每个所述光源对应于一个样品孔,所述样品孔包括M列N排;所述开关用于控制多个所述光源的开或者关;其中,M≥2,N≥2。
结合第三方面,本申请实施例提供了第三方面的第一种可能的实施方式,其中,所述开关用于控制某一排或某一列的光源的开或者关,或者单独控制某一个光源的开或者关。
结合第三方面,本申请实施例提供了第三方面的第二种可能的实施方式,其中,多个所述光源设置在平面面板上。
结合第三方面,本申请实施例提供了第三方面的第三种可能的实施方式,其中,所述光源为LED灯或者激光。
本申请提供的光路位置校准方法,根据样品孔的M列N排的排布方式,将检测端的光纤分为M个光纤束,每个光纤束中包含N根光纤;将M个光纤束进行安装,使得每个光纤束的位置与一列样品孔对应;利用光路位置校准工装将N排或者N-1排的样品孔对应的光纤按照设定顺序点亮,通过检测设备检测出每个光纤束的N根光纤的位置。在多孔检测、用到光纤数量庞大的高通量检测时(如24、48、96、192、384孔以及更多孔时),能够容易快速的将大量样品孔的位置与检测端的大量光纤的位置一一对应,从而使检测结果准确,不会产生混乱的情况,而且当样品孔数量越多时,上述效果越明显。
另外,上述的光路位置校准方法,在样品检测设备正式启用前,一次校准完成之后即可实现大量样品孔的位置与检测端的大量光纤的位置的对应固定,无需在每次样品检测前都进行校准,简化了操作流程。
本申请提供的荧光定量检测系统中,检测端光纤的排布方式,可以方便地将每一个光纤束与一列样品孔对应,以便于进行光路位置校准。
本申请提供的光路位置校准工装结构简单,降低结构复杂度和操作成本。
本申请的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种光路位置校准方法流程图;
图2为本申请实施例提供的另一种光路位置校准方法流程图;
图3为本申请实施例提供的检测端光纤排布的示意图;
图4为本申请实施例提供的另一检测端光纤排布的示意图;
图5为本申请实施例提供的样品孔位置示意图;
图6为本申请实施例提供的检测端光纤信号的示意图;
图7为本申请实施例提供的一种光路位置校准工装的示意图;
图8为本申请实施例提供的另一光路位置校准工装的示意图。
具体实施方式
下面将结合实施例对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实时荧光定量检测系统,可以有效地实现实时定量检测PCR,在疾病防治、转基因检测、医学检验、优生优育等领域有着广泛的应用前景。为了实现高通量的检测,常用的实时荧光定量检测系统,使用大量光纤来引导光,大量的每个光纤的一端在检测设备的一端聚合在一起,由检测设备进行检测。
常规技术存在以下问题:随着在检测中使用的样品孔的数量增加,对应的光纤数量也在增加,如果在大量样品孔中同时进行测量,则检测端大量光纤与承载样品的大量样品孔的位置无法快速一一对应,不同样品孔的检测结果无法明确判断或者不同样品孔的检测结果之间产生混乱。基于此,本申请实施例提供的一种光路位置校准方法、校准工装及荧光定量检测系统,在多孔检测、用到光纤数量庞大的高通量检测时,能够容易快速的将大量样品孔的位置与检测端的大量光纤的位置一一对应,从而使检测结果准确,不会产生混乱的情况。当样品孔数量越多时,本申请技术方案的实现效果越明显。
为便于理解本实施例的技术方案,下面首先对本申请实施例公开的一种光路位置校准方法进行详细介绍。
图1示出了本申请实施例提供的一种光路位置校准方法流程图。
如图1所示,光路位置校准方法包括以下步骤:
步骤S101,根据样品孔的M列N排的排布方式,将检测端的光纤分为M个光纤束,每个光纤束中包含N根光纤;其中,M≥2,N≥2;
步骤S102,将M个光纤束进行安装,使得每个光纤束的位置与一列样品孔对应;
步骤S103,利用光路位置校准工装将N排或者N-1排的样品孔对应的光纤按照设定顺序点亮,通过检测设备检测出每个光纤束的N根光纤的位置。本申请实施例提供的上述光路位置校准方法,根据样品孔的M列N排的排布方式,将检测端的光纤分为M个光纤束,每个光纤束中包含N根光纤;将M个光纤束进行安装,使得每个光纤束的位置与一列样品孔对应;利用光路位置校准工装将N排的样品孔对应的光纤按照设定顺序点亮,通过检测设备检测出每个光纤束的N根光纤的位置。在多孔检测、用到光纤数量庞大的高通量检测时(例如24、48、96、192、384孔以及更多孔时),能够容易快速的将大量样品孔的位置 与检测端的大量光纤的位置一一对应,从而使检测结果准确,不会产生混乱的情况,而且当样品孔数量越多时,上述效果越明显。
另外,上述的光路位置校准方法,在样品检测设备正式启用前,一次校准完成之后即可实现大量样品孔的位置与检测端的大量光纤的位置的对应固定,无需在每次样品检测前都进行校准,简化了操作流程。
在可选的实施方式中,为了方便地将每个光纤束的位置与一列样品孔对应,步骤S102具体可以采用以下方式实现:按照样品孔M列的某一顺序将M个光纤束按顺序安装,使得每个光纤束的位置与一列样品孔对应。
本实施例中,如图2所示,步骤S103具体可以包括以下步骤:
步骤S1031,利用光路位置校准工装将某一排的样品孔对应的光纤同时点亮,通过检测设备检测出每个光纤束对应的光纤的位置;
步骤S1032,利用光路位置校准工装按顺序点亮其他N-1排或者N-2排的样品孔对应的光纤,通过检测设备检测出每个光纤束的N根光纤的位置。
具体的,检测设备在检测端检测到被点亮光纤的信号,从而确定被点亮光纤的位置,即确定对应哪一个样品孔。需要说明的是,光路位置校准工装的每一排光源可以同时点亮,从而提高效率。当然也可以一个一个点亮,在此不对点亮方式做限制。
图3示出了本申请实施例提供的检测端光纤排布的示意图;图4示出了本申请实施例提供的另一检测端光纤排布的示意图;图5示出了本申请实施例提供的样品孔位置示意图。
示例性的,样品孔以96孔为例,样品孔位置如图5所示,排布方式为12列8排,12列分别为C1、C2…C12,8排分别为R1…R8。此时,上述M为12,N为8。需要说明的是,样品孔的数量不限定,例如12孔、24孔、48孔、96孔、192孔或384孔等等。对于某一数量的样品孔,排布方式也不限定,例如样品孔为96孔,除了上述的12*8规格外,还可以为8*12、16*6、6*16等规格。当样品孔为8*12规格时,上述M为8,N为12;当样品孔为16*6规格时,上述M为16,N为6;当样品孔为6*16规格时,上述M为6,N为16。
因此,当样品孔为96孔以12列8排进行排布时,可以将检测端的光纤分为12个光纤束,每个光纤束中包含8根光纤,多根光纤在检测端可以是图3或者图4所示的方式排布,共有12个光纤束A、B…,每个光纤束中都包含8根光纤A1…A8,B1…B8(B1~B8图中未示出)等。将12个光纤束进行安装后,使得每个光纤束的位置与一列样品孔对应。例如,图3或者图4中的光纤束A的8根光纤A1…A8,分别对应图5中的C1列的R1…R8,或者光纤束A的8根光纤A1…A8,分别对应其他列的R1…R8,在此不限定某个光纤束对应是的哪一列样品孔。
每个光纤束中的8根光纤在样品侧分散为8根分支光纤,使得每个分支光纤的位置与一列样品孔中的每个样品孔对应,即A1…A8来对应检测一列样品孔的8个孔位,12个光纤束总共可以检测96个孔位。
其中,上述12个光纤束可以是通过外部的包覆层包覆起来的12组光纤束,如图3所示;也可以是没有包覆层,如图4所示的光纤束形式。需要说明的是,检测端光纤的排布方式只要能够将不同的光纤束之间区分开就可以。另外,12个光纤束在检测端以外的一段 距离可以通过光缆的方式进行传输,这样可以减小多根光纤的体积,在样品侧再将多根光纤分散开,形成分支光纤,以便每个分支光纤与一个样品孔的位置相对应。通过光缆的方式在检测端以外的一段距离传输,可以将12*8根光纤聚合在一起,而不是从端口出来就发散。这样,能够大大减小整体光纤的体积和排布复杂度。
本实施例中,光路位置校准的最终目的是确定每个样品孔对应的是哪根光纤,例如,图5中的第1-96个孔位分别对应哪根光纤。由于每个光纤束对应一列样品孔,而每个光纤束又包括8根光纤,因此,可以使得每根光纤对应一个样品孔。其中,一个光纤束检测第1列孔C1,第二个光纤束检测第2列孔C2,第三个光纤束检测第3列孔C3,以此类推,第12个光纤束检测第12列孔C12。
在光纤装配时,可以按照样品孔12列的某一顺序将12个光纤束按顺序安装,使得每个光纤束的位置与一列样品孔对应。例如,可以在光纤装配时按12列C1、C2…C12的顺序安装光纤束;这里,光纤束的安装顺序不以此为限,比如也可以在光纤装配时按12列C2、C1…C12的顺序安装光纤束等等。只要能够实现通过安装顺序可以保证每一个光纤束与样品孔每列之间的位置关系对应的目的就可以。
上述的每一个光纤束中的8根光纤与样品孔每一列中的8个样品孔的位置对应,是通过光路位置校准工装实现的。光路位置校准工装可以具有与样品孔对应数量的多个光源,每一个光源与一个样品孔对应,以12列8排的样品孔为例,多个光源可以为12列8排,如图7所示,也可以比样品孔少一排,即12列7排,如图8所示。另外,光路位置校准工装上具备开关,该开关可以整体控制某一排或某一列的光源开或者关,也可以单独控制某一个光源的开或者关。其中,上述光源可以是LED灯也可以是激光,可以是各种波长的光源。
本实施例中,由于样品孔的数量不限定,所以光路位置校准工装的上光源的数量不限定,例如,样品孔的数量可以为12孔、24孔、48孔、96孔、192孔或384孔等等,光源的数量也可以为12个、24个、48个、96个、192个或384个等;光源的排布方式也不限定,例如样品孔为8*12、12*8、16*6、6*16等规格时,光源也可以是8*12、12*8、16*6、6*16等排布方式。当然,光源的数量也可以比样品孔少一排。
下面具体介绍通过光路位置校准工装进行校准的过程。
光路位置校准工装上每个光源与一个样品孔对应,即每个光源对应的样品孔的位置是已知的。仍以96个样品孔为例,由于样品侧的每根分支光纤(每个光纤束在样品侧分散成8根分支光纤)对应一个样品孔,在进行光路位置校准时,将光路位置校准工装上具有光源的一面对着样品侧的分支光纤,使得某个样品孔对应的光源对准该样品孔对应的分支光纤。首先将光路位置校准工装的某一排的光源同时点亮,从而点亮该排光源对应的样品孔所对应的光纤。例如,点亮R1排样品孔所对应的一排光源,使得R1排样品孔对应的12根光纤被点亮,通过检测设备检测到12个光纤束中每个光纤束的一根光纤所对应的R1排样品孔的位置。然后,依次点亮光路位置校准工装上的其他7排光源,从而依次点亮R2-R8排样品孔各自所对应的12个光纤束中的光纤,进而,通过检测设备检测出每个光纤束的8根光纤对应的R2-R8的位置。
需要说明的是,光路位置校准工装的每一排光源可以同时点亮,从而提高效率。当然 也可以一个一个点亮,在此不对点亮方式做限制。
具体的,上述检测设备可以采用相机来检测光纤信号,例如电荷耦合器件(charge coupled device,CCD)相机。当某根光纤对应的样品孔被点亮后,检测设备可以检测到该根光纤。图6所示为检测设备检测到的光纤信号示意图。
需要说明的是,使用光路位置校准工装点亮样品孔对应的光纤的顺序不做限制,即点亮R1-R8排样品孔对应的光纤的顺序不限定,例如,还可以是先点亮R2排样品孔对应的光纤,然后依次点亮其他排样品孔对应的光纤,其他排样品孔对应的光纤的点亮顺序也可以是任意的,例如以R4、R6、R3、R1、R5、R7、R8的顺序点亮。只要能够依次将每个光纤束8根光纤对应的R1-R8的位置确定就可以。
由上述可知,光源的数量除了可以与样品孔的数量相同,还可以比样品孔少一排。如图8所示的光路位置校准工装,这里光路位置校准工装具有与比样品孔少一排数量的多个光源,即有12列7排光源,每一个光源与一个样品孔对应。通过7排光源可以点亮前7排的样品孔对应的光纤,即R1-R7排的样品孔对应的光纤,从而确定每一个光纤束的8根光纤中的7根。剩下的一根光纤自然就可以确定为一列样品孔中剩余的一个样品孔对应的光纤。
具体的,首先将光路位置校准工装的某一排的光源点亮,从而点亮该排光源对应的一列样品孔。例如,点亮R1排样品孔所对应的一排光源,使得R1排样品孔对应的12根光纤被点亮,通过检测设备检测到12个光纤束中每个光纤束的一根光纤所对应的R1排样品孔的位置。然后,依次点亮光路位置校准工装上的其他6排光源,从而依次点亮R2-R7排样品孔各自所对应的12个光纤束中的光纤。通过检测设备检测出每个光纤束的7根光纤对应R2-R7的位置。
使用光路位置校准工装点亮样品孔的顺序不做限制,即点亮R1-R7排样品孔的顺序不限定,例如,还可以是先点亮R2排样品孔对应的光纤,然后依次点亮其他排样品孔对应的光纤,其他排样品孔对应的光纤的点亮顺序也可以是任意的,例如以R4、R6、R3、R1、R5、R7的顺序点亮。只要能够依次将每个光纤束的7个光纤对应的R1-R7的位置确定就可以。
本申请实施例提供的光路位置校准方法具有以下优点:
1、在多孔检测、用到光纤数量庞大的高通量检测时(如24、48、96、192、384孔以及更多孔时),能够容易快速的将大量样品孔的位置与检测端大量光纤的位置一一对应,从而使检测结果准确,不会产生混乱的情况,而且当样品孔数量越多时,上述效果越明显。
2、上述的光路位置校准方法及校准工装在检测设备正式启用前,一次校准完成之后即可实现大量样品孔的位置与检测端大量光纤的位置的对应固定,无需在每次样品检测前都进行校准,简化了操作流程。
3、光路位置校准工装的结构简单,降低结构复杂度和操作成本。
在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
本申请实施例还提供了一种荧光定量检测系统,该系统在检测端处有M个光纤束,每个光纤束中分别有N根光纤,每个光纤束对应一列样品孔,每根光纤对应一个样品孔,样 品孔共有M列N排;其中,M≥2,N≥2。
具体的,M个光纤束在检测端以外的一段距离可以通过光缆的方式传输。这样可以减小多根光纤的体积,在样品侧每个光纤束再将N跟光纤分散开,形成N根分支光纤,以便每根分支光纤与一个样品孔的位置相对应。通过光缆的方式在检测端以外的一段距离传输,可以将M*N根光纤聚合在一起,而不是从端口出来就发散,这样,能够大大减小整体光纤的体积和排布复杂度。
另外,上述M个光纤束可以是通过外部的包覆层包覆起来的M组光纤束,如图3所示;也可以是没有包覆层,如图4所示的光纤束形式。需要说明的是,检测端光纤的排布方式只要能够将不同的光纤束之间区分开就可以。每个光纤束通过外部的包覆层包覆起来。
本申请实施例提供的荧光定量检测系统中,检测端光纤的排布方式,可以方便地将每一个光纤束与一列样品孔对应,以便于进行光路位置校准。
图7示出了本申请实施例提供的一种光路位置校准工装的示意图;图8示出了本申请实施例提供的另一光路位置校准工装的示意图。
本申请实施例提供的一种光路位置校准工装,包括:多个光源以及开关;多个光源可以以M列N排的方式排布,也可以以M列N-1排的方式排布,每个光源对应于一个样品孔,样品孔包括M列N排;开关用于控制多个光源的开或者关;其中,M≥2,N≥2。
当样品孔为12列8排时,多个光源可以以12列8排的方式排布,如图7所示,也可以以12列7排的方式排布,如图8所示。
本实施例中,由于样品孔的数量不限定,所以光路位置校准工装的上光源的数量不限定,例如,样品孔的数量可以为12孔、24孔、48孔、96孔、192孔或384孔等等,光源的数量也可以为12个、24个、48个、96个、192个或384个等;光源的排布方式也不限定,例如样品孔为8*12、12*8、16*6、6*16等规格时,光源也可以是8*12、12*8、16*6、6*16等排布方式。当然,光源的数量也可以比样品孔少一排。
在这里示出和描述的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
在可选的实施方式中,上述开关可以用于控制某一排或某一列的光源的开或者关,或者单独控制某一个光源的开或者关,从而便于点亮不同位置的样品孔。
上述光路位置校准工装可以具有一个平面面板,将多个光源设置在该平面面板上,并且,上述开关可以设置在平面面板上。
上述光源可以是LED灯或者激光,并且可以是各种波长的光源。
本申请实施例提供的光路位置校准工装结构简单,可以方便地校准大量的样品孔,降低结构复杂度和操作成本。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述系统和装置实施例的具体工作过程,可以参考前述方法实施例中的具体实施过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论 的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
另外,在本申请实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,需要说明的是,术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种光路位置校准方法,其特征在于,所述方法包括:
    根据样品孔的M列N排的排布方式,将检测端的光纤分为M个光纤束,每个所述光纤束中包含N根光纤;其中,所述M≥2,所述N≥2;
    将M个所述光纤束进行安装,使得每个所述光纤束的位置与一列所述样品孔对应;
    利用光路位置校准工装将N排或者N-1排的所述样品孔对应的光纤按照设定顺序点亮,通过检测设备检测出每个所述光纤束的N根光纤的位置。
  2. 根据权利要求1所述的光路位置校准方法,其特征在于,所述将M个所述光纤束进行安装,使得每个所述光纤束的位置与一列所述样品孔对应的步骤,包括:
    按照所述样品孔M列的某一顺序将M个所述光纤束按顺序安装,使得每个所述光纤束的位置与一列所述样品孔对应。
  3. 根据权利要求1所述的光路位置校准方法,其特征在于,所述利用光路位置校准工装将N排或者N-1排的所述样品孔对应的光纤按照设定顺序点亮,通过检测设备检测出每个所述光纤束的N根光纤的位置的步骤,包括:
    利用所述光路位置校准工装将某一排的所述样品孔对应的光纤同时点亮,通过检测设备检测出每个所述光纤束对应的光纤的位置;
    利用所述光路位置校准工装按顺序点亮其他N-1排或者N-2排的所述样品孔对应的光纤,通过所述检测设备检测出每个所述光纤束的N根光纤的位置。
  4. 一种荧光定量检测系统,其特征在于,所述系统在检测端处有M个光纤束,每个所述光纤束中分别有N根光纤,每个所述光纤束对应一列样品孔,每根所述光纤对应一个所述样品孔,所述样品孔共有M列N排;其中,所述M≥2,所述N≥2。
  5. 根据权利要求4所述的荧光定量检测系统,其特征在于,M个所述光纤束在所述检测端以光缆的方式传输。
  6. 根据权利要求4或5所述的荧光定量检测系统,其特征在于,每个所述光纤束通过外部的包覆层包覆起来。
  7. 一种光路位置校准工装,其特征在于,包括:多个光源以及开关;多个所述光源以M列N排或者M列N-1排的方式排布,每个所述光源对应于一个样品孔,所述样品孔包括M列N排;所述开关用于控制多个所述光源的开或者关;其中,所述M≥2,所述N≥2。
  8. 根据权利要求7所述的光路位置校准工装,其特征在于,所述开关用于控制某一排或某一列的所述光源的开或者关,或者单独控制某一个所述光源的开或者关。
  9. 根据权利要求7所述的光路位置校准工装,其特征在于,多个所述光源设置在平面面板上。
  10. 根据权利要求7所述的光路位置校准工装,其特征在于,所述光源为LED灯或者激光。
PCT/CN2020/092300 2020-02-25 2020-05-26 光路位置校准方法、校准工装及荧光定量检测系统 WO2021169071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010115546.7A CN111289434B (zh) 2020-02-25 2020-02-25 光路位置校准方法、校准工装及荧光定量检测系统
CN202010115546.7 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021169071A1 true WO2021169071A1 (zh) 2021-09-02

Family

ID=71022917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092300 WO2021169071A1 (zh) 2020-02-25 2020-05-26 光路位置校准方法、校准工装及荧光定量检测系统

Country Status (2)

Country Link
CN (1) CN111289434B (zh)
WO (1) WO2021169071A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113295652A (zh) * 2021-05-19 2021-08-24 中央民族大学 一种高通量阵列扫描式lspr传感检测系统
CN113503814B (zh) * 2021-07-06 2022-09-27 上海飞博激光科技股份有限公司 一种光纤束中间臂居中检测装置和检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028585A2 (en) * 2004-09-01 2006-03-16 Applera Corporation Optical fiber bundle for detecting binding of chemical species
CN2766238Y (zh) * 2004-12-07 2006-03-22 中山大学达安基因股份有限公司 核酸扩增实时荧光检测装置
CN104614351A (zh) * 2015-01-21 2015-05-13 南京中科神光科技有限公司 一种快速、多通道实时荧光定量检测装置
CN105190287A (zh) * 2013-03-14 2015-12-23 简·探针公司 用于检测来自多个荧光源的信号发射的装置
CN206362706U (zh) * 2017-01-06 2017-07-28 北京盛通创新科技有限公司 一种实时荧光pcr扩增仪的光学检测装置
CN107083426A (zh) * 2017-03-30 2017-08-22 杭州晶格科学仪器有限公司 一种荧光定量检测方法
CN107649228A (zh) * 2012-07-31 2018-02-02 简·探针公司 用于自动温育的系统、方法和设备
CN107741400A (zh) * 2017-11-15 2018-02-27 苏州雅睿生物技术有限公司 一种ivd体外检测设备的样本检测系统
CN109507158A (zh) * 2018-11-19 2019-03-22 上海贝晶生物技术有限公司 荧光信号检测装置及方法
CN110218647A (zh) * 2019-06-27 2019-09-10 杭州安塔生物科技有限公司 一种pcr反应装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203981586U (zh) * 2014-05-26 2014-12-03 杭州安杰思生物科技有限公司 一种用于荧光检测的分叉光纤装置
CN204924944U (zh) * 2015-08-07 2015-12-30 苏州合惠生物科技有限公司 一种荧光检测装置
CN107102129A (zh) * 2017-05-31 2017-08-29 上海理工大学 一种酶标仪
SG10201801853WA (en) * 2018-03-02 2019-10-30 Delta Electronics Int’L Singapore Pte Ltd Portable multi-color fluorescence detection device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028585A2 (en) * 2004-09-01 2006-03-16 Applera Corporation Optical fiber bundle for detecting binding of chemical species
CN2766238Y (zh) * 2004-12-07 2006-03-22 中山大学达安基因股份有限公司 核酸扩增实时荧光检测装置
CN107649228A (zh) * 2012-07-31 2018-02-02 简·探针公司 用于自动温育的系统、方法和设备
CN105190287A (zh) * 2013-03-14 2015-12-23 简·探针公司 用于检测来自多个荧光源的信号发射的装置
CN104614351A (zh) * 2015-01-21 2015-05-13 南京中科神光科技有限公司 一种快速、多通道实时荧光定量检测装置
CN206362706U (zh) * 2017-01-06 2017-07-28 北京盛通创新科技有限公司 一种实时荧光pcr扩增仪的光学检测装置
CN107083426A (zh) * 2017-03-30 2017-08-22 杭州晶格科学仪器有限公司 一种荧光定量检测方法
CN107741400A (zh) * 2017-11-15 2018-02-27 苏州雅睿生物技术有限公司 一种ivd体外检测设备的样本检测系统
CN109507158A (zh) * 2018-11-19 2019-03-22 上海贝晶生物技术有限公司 荧光信号检测装置及方法
CN110218647A (zh) * 2019-06-27 2019-09-10 杭州安塔生物科技有限公司 一种pcr反应装置

Also Published As

Publication number Publication date
CN111289434B (zh) 2020-12-15
CN111289434A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2021169071A1 (zh) 光路位置校准方法、校准工装及荧光定量检测系统
CN202048987U (zh) 基于光纤束的尿液分析仪的颜色采集器
WO2021169069A1 (zh) Pcr检测装置及方法
WO2014137069A1 (ko) 다중 진단용 병렬식 라인형 바이오칩
CN103045469A (zh) 多通道环介导核酸等温扩增定量检测器
WO2019066454A1 (ko) 패치코드용 극성감지기
CN202217045U (zh) 可同时测试多个灯具的led照明灯具发光维持率测试装置
CN203365436U (zh) 多通道定量检测系统
CN112334756A (zh) 用于检查微量滴定板的腔体中的样品的透射装置和借助于透射检查微量滴定板的腔体中的样品的方法
US20130250548A1 (en) Light beam guided liquid delivery device
CN102067489B (zh) 音频混频控制台
WO2017116037A1 (ko) 다중 분자진단을 위한 칩 구조
CN205353414U (zh) 一种新型光纤分线盒
CN103261858A (zh) 定量样品中的核酸
CN2766238Y (zh) 核酸扩增实时荧光检测装置
WO2019098680A1 (ko) 조립형 블롯 스트립 디바이스
CN206556819U (zh) 多通道气体监测仪老化测试装置
CN205826513U (zh) 一种血液样品提供装置及其血小板聚集功能检测仪
CN1328580C (zh) 荧光光谱仪外设组合试样库发光性能的测试方法及装置
CN101777326B (zh) 一种vga显卡测试工装及方法
US20060220987A1 (en) Active flowchart label
CN206339491U (zh) 采用颜色传感器对试纸进行一对一检测的装置
CN216669739U (zh) 一种数字微流控荧光检测系统
WO2023018055A1 (ko) 다채널 광학 진단 장치
CN201348617Y (zh) 难燃性试验数据采集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921629

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20921629

Country of ref document: EP

Kind code of ref document: A1