WO2021169038A1 - 一种深基坑爆破振速风险等级大数据评价方法 - Google Patents

一种深基坑爆破振速风险等级大数据评价方法 Download PDF

Info

Publication number
WO2021169038A1
WO2021169038A1 PCT/CN2020/089026 CN2020089026W WO2021169038A1 WO 2021169038 A1 WO2021169038 A1 WO 2021169038A1 CN 2020089026 W CN2020089026 W CN 2020089026W WO 2021169038 A1 WO2021169038 A1 WO 2021169038A1
Authority
WO
WIPO (PCT)
Prior art keywords
blasting
risk
vibration velocity
foundation pit
factors
Prior art date
Application number
PCT/CN2020/089026
Other languages
English (en)
French (fr)
Inventor
袁长丰
陈秋汝
于广明
李亮
凌贤长
贺可强
路世豹
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2021169038A1 publication Critical patent/WO2021169038A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Definitions

  • the invention belongs to the field of analysis of the impact of deep foundation pit construction on the surrounding environment, and specifically relates to a large data evaluation method for the risk level of deep foundation pit blasting vibration velocity.
  • blasting vibration velocity is mainly determined by comparing the requirements of the blasting specifications. In this way, the vibration velocity determined according to the specifications often has cases of nearby residents petitioning petitions and building damage during actual engineering blasting. The main reason is the blasting wave.
  • the technical problem to be solved by the present invention is that the requirements of the surrounding environment of blasting are different, and it cannot be determined only by referring to the requirements of blasting specifications.
  • the present invention proposes a large data evaluation method for the blasting vibration velocity risk level of foundation pits. Based on the quantification of the surrounding environment information, the risk evaluation of the blasting vibration velocity under various data is considered to finally determine the blasting required for the project. Vibration speed. This method avoids the method of determining the blasting vibration velocity that is only based on the blasting specifications and does not consider the surrounding environment, and the determined blasting vibration velocity is more scientific and reasonable.
  • the present invention is specifically implemented by the following technical solutions, a large data evaluation method for the vibration velocity risk level of deep foundation pit blasting.
  • step (1) is divided into the following steps:
  • blasting vibration velocity energy transmission is mainly related to 8 types of factors, namely: foundation pit wall rock mass grade, rock weathering degree, soil grade, water content of rock and soil, geological survey, single-stage maximum charge, and blasting effect , Distance from blasting center to measuring point.
  • 8 types of factors are represented by symbols, as shown in Table 1.
  • C i represents the influence attribute of the surrounding environment in the factor set C.
  • the determination of the blasting vibration velocity risk assessment set in step (2) is specifically as follows: According to Table 3, the risk assessment level is divided according to the impact of blasting vibration velocity on the surrounding environment. D represents the evaluation set.
  • the membership function and the membership degree are determined separately according to the unquantifiable factors and quantifiable factors.
  • the Karwowski membership function is used for non-quantifiable factors.
  • the Karwowski membership function is an empirical membership function commonly used in engineering and has accuracy.
  • the intermediate quadratic parabolic membership function is adopted, which is simple in form and small in calculation, which can reflect the changing process of the data to the greatest extent; the steeper the shape of the membership function, the higher the resolution, and the degree of discrimination of the calculated results Higher.
  • step (4) is specifically as follows:
  • W i reflects the importance of a certain attribute relative to the overall attribute in the entire evaluation system.
  • the corresponding weight of the influencing factor subset c i is:
  • ⁇ CD (c i ) p(D i
  • the membership matrix is R.
  • step (5) is specifically to obtain the maximum degree of membership according to the principle of maximum degree of membership. According to the maximum degree of membership, judge its scope in the evaluation set and determine its risk level.
  • the present invention considers the risk assessment of blasting vibration velocity under various data, and finally determines the blasting vibration velocity required by the project; avoiding the blasting specification only and without considering the surrounding environment
  • the method for determining the blasting vibration velocity is more scientific and reasonable.
  • Figure 1 is a technical flow chart of the implementation of the present invention.
  • the deep foundation pit of a subway station is 202 meters long and is an underground two-story island station.
  • the standard section has a width of 18.7m and a height of 14.605m.
  • the geology is relatively simple.
  • the buried depth of the vault is 17.8-38.9m, and the overlying rock is 14-36m.
  • Most of the deep foundation pits are located in the slightly weathered rock.
  • the stratum is the 182th layer of slightly weathered fine-grained granite (thickness 25-64m, flesh red, slightly developed-undeveloped joints and fissures, relatively complete hard-hard rock, basic quality grade III, rock saturated).
  • the station belongs to the denuded mound-eroded slope landform, and it is constructed by the underground excavation method.
  • the tunnel traverses mainly the micro-weathered fine-grained granite and the micro-weathered joint development zone of the fine-grained granite and the fine-grained granite (mass broken rock).
  • the groundwater in the site is mainly bedrock fissure water, and the amount of water is relatively small.
  • Select the influencing factor set and the risk evaluation set as shown in Table 1 and Table 2. Calculate information entropy, corresponding importance and normalized weight matrix.
  • a quadratic parabolic distribution is used.
  • the membership matrix is R,
  • the distance between the monitoring point and the blasting center is 50 meters. According to the principle of maximum membership degree, the maximum value is 0.6136. According to Table 5, the corresponding level is relatively safe.
  • the blasting vibration speed is within the range specified in the specification, and it will not cause large-scale damage to the surrounding environment, which is a safer state.
  • the maximum blasting vibration velocity monitored by Yongnian Road Station was 0.95cm/s. According to the monitoring report, the blasting did not cause large-scale damage to surrounding buildings, which was consistent with the assessment results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明属于深基坑施工对周围环境影响分析领域,具体涉及一种深基坑爆破振速风险等级大数据评价方法。是在对周围环境信息进行量化的基础上,考虑多种数据下的爆破振速风险评价,最终确定工程所需的爆破振速。该方法避免了只根据爆破规范来进行的、不考虑周围环境情况的爆破振速确定方法,确定的爆破振速更具科学合理性。

Description

一种深基坑爆破振速风险等级大数据评价方法 技术领域:
本发明属于深基坑施工对周围环境影响分析领域,具体涉及一种深基坑爆破振速风险等级大数据评价方法。
背景技术:
随着国家基础设施建设的快速发展,深大基坑不断出现。在基坑施工过程中经常需要岩石爆破,爆破振动会对周围环境产生影响,特别是在人群拥挤的城市中,周围都是建筑物和居民,对爆破要求更高。合理评估爆破振速对周围环境影响是关系民生的工程实际问题,具有重要意义。目前,爆破振速的实施主要通过对照爆破规范要求来确定,这样按照规范确定的振速在实际工程爆破时,经常出现附近居民上访和建筑物损伤的案例,究其原因,主要是爆破波这种能量在不同地层组合的介质中的传播能耗不同,同时,爆破所处的不同周围环境要求也不同。因此,需要综合考虑各种影响因素,对规范要求的爆破振速进行周围环境风险等级评价后在最终爆破振速,这样才能够更科学开展施工。
发明内容:
本发明要解决的技术问题是爆破所处的周围环境要求不同,不能仅对照爆破规范要求来确定。
为解决上述问题,本发明提出基坑爆破振速风险等级大数据评价方法,在对周围环境信息进行量化的基础上,考虑多种数据下的爆破振速风险评价,最终确定工程所需的爆破振速。该方法避免了只根据爆破规范来进行的、不考虑周围环境情况的爆破振速确定方法,确定的爆破振速更具科学合理性。
为达到上述目的,本发明具体通过以下技术方案实现,一种深基坑爆破振速风险等级大数据评价方法,如图1所示,以地铁车站深基坑爆破为例,包括以下步骤:
(1)确定爆破工程周围环境影响因素,划分因素的风险等级,采用集合方法公约量化因素;
(2)确定风险评价集合,把对爆破振速对周围环境影响风险评价划分等级,为后期评价确定标准;
(3)根据公约量化因素确定隶属度函数以及隶属度;
(4)计算各影响因素信息熵,确定考虑信息熵的各影响因素权重,得到影响因素权重矩阵,然后建立周围环境风险评价初级矩阵,即隶属度矩阵,进一步得到爆破振速对周围环境 影响风险评价终极矩阵;
(5)搜索风险评价终极矩阵隶属度,根据步骤(2)的标准确定因素所在评价集中的等级,得出风险评价结果。
进一步的,步骤(1)分为以下步骤:
(1-1)选取爆破振速影响因素:
爆破振速能量传输的范围主要和8类因素相关,分别是:基坑壁岩体级别、岩体风化程度、土体等级、岩土体含水性、地质勘察、单段最大药量、爆破效果、爆破中心至测点距离。把这8类因素用符号表示,如表1所示。建立因素集C。
影响爆破振速的因素很多,不同的因素或者相同的因素中不同的等级都会对爆破振速产生不同的影响。这八个因素是从工程地质因素,水文地质因素和设计施工因素三个方面考虑的。其中基坑壁岩体级别、岩体风化程度、土体等级是从工程地质因素考虑;岩土体含水性是从水文地质因素考虑;地质勘察、单段最大药量、爆破效果、爆破中心至测点距离是从设计施工因素方面考虑。这八个因素是影响爆破振速的主要因素,研究他们对研究爆破振速来说更全面,更有意义。
表1 爆破振速影响因素对应符号
Figure PCTCN2020089026-appb-000001
C i表示因素集C中周围环境影响属性。
(1-2)对这8类因素进行等级划分。由于因素的等级划分按照因素特点,有的是定性划分,有的是定量划分,划分结果如表2所示。其中,基坑壁岩体级别是根据岩体的坚硬程度和完整性将稳定性相似的一些岩体划分为一类。
表2 8类因素等级划分
Figure PCTCN2020089026-appb-000002
Figure PCTCN2020089026-appb-000003
进一步的,步骤(2)中爆破振速风险评价集合确定具体为:根据表3按照爆破振速对周围环境影响给出了风险评价等级划分。D表示评价集合。
表3 爆破振速评价集合D等级划分
Figure PCTCN2020089026-appb-000004
进一步的,步骤(3)隶属度函数以及隶属度时根据不可量化因素和可量化因素分别确定。对于不可量化因素,采用Karwowski隶属函数,Karwowski隶属函数是工程上常用的经验隶属函数,具有准确性。对于可量化因素,采用中间形二次抛物形隶属度函数,其形式简单,计算量小,能最大程度的反映数据的变化过程;隶属函数的形状越陡,分辨率越高,计算结果区分度越高。
进一步的,步骤(4)中具体为:
(4-1)信息熵的确定:针对基坑爆破,进行6次集合方法公约量化因素,得到公约量化集c={c 1,c 2,c 4,c 5,c 6,c 8},H(D|{c i})表示影响因素集中的因素c i相对于风险评价集合中的D的信息熵,用信息熵表示为:
Figure PCTCN2020089026-appb-000005
(4-2)权重计算:
W i反映在整个评价系统中某一个属性相对于总体属性的重要程度。相应的影响因素子集c i权重为:
Figure PCTCN2020089026-appb-000006
其中,σ CD(c i)=p(D i|c i)。
(4-3)得到终极矩阵:
将上述权重整理成矩阵形式,得到归一化权重后的矩阵,用A表示。
采用二次抛物形分布,求得隶属度矩阵为R。
则得到终极矩阵为B,B=A×R。
进一步的,步骤(5)具体为根据最大隶属度原则,得出隶属度最大值。根据最大隶属度判断其在评价集中的范围,确定其风险等级。
本发明的有益效果为:
本发明在对周围环境信息进行量化的基础上,考虑多种数据下的爆破振速风险评价,最终确定工程所需的爆破振速;避免了只根据爆破规范来进行的、不考虑周围环境情况的爆破振速确定方法,确定的爆破振速更具科学合理性。
附图说明
图1是本发明实施的技术流程图。
具体实施方式:
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
某地铁车站深基坑全长202米,为地下两层岛式车站,标准段宽度18.7m,高度为14.605m。周围有政府服务中心,建筑公司,民房等重要建筑物,地质较为简单,拱顶埋深17.8-38.9m,覆岩14-36m,深基坑大部分位于微风化岩中,车站主体主要通过的地层为第182层微风化细粒花岗岩(厚度25-64m,肉红色,节理裂隙稍发育-不发育,属较完整的较硬-坚硬岩,岩体基本质量等级Ⅲ级,岩石饱和)。工程地质特征:车站属于剥蚀残丘-剥蚀斜坡地貌,采用暗挖法施工,隧道穿越地层主要为细粒花岗岩微风化和细粒花岗岩微风化节理发育带和细粒花 岗岩(块状破碎岩),场区地下水主要为基岩裂隙水,水量较小。选取影响因素集和风险评价集,如表1和表2所示。计算信息熵,相应的重要度和归一化权重矩阵。
表4 归一化权重分配表
Figure PCTCN2020089026-appb-000007
H(D|C)=0.1174。
将表格中归一化权重整理成矩阵形式。
A=[0.1735,0.1643,0.1476,0.1348,0.1938,0.1860]。
采用的是二次抛物形分布。隶属度矩阵为R,
Figure PCTCN2020089026-appb-000008
终极矩阵为B,则
Figure PCTCN2020089026-appb-000009
B=[0.2128,0.5770,0.6136,0.3994,0.0995]
表5 爆破振速等级评价隶属度取值范围
评价等级 安全 较安全 预警 较危险 危险
区域划分 [1,0.8] [0.6,0.8) [0.4,0.6) [0.2,0.4) [0,0.2)
该深基坑施工爆破振动数据进行监测时,监测点距爆破中心距离为50米。根据最大隶属度原则,得出最大值为0.6136,根据表5,对应等级为较安全。爆破振动速度在规范规定的范围内,不会对周围环境造成大规模的破坏,是较安全的状态。永年路站监测所得最大爆破 振速为0.95cm/s,根据监测报告,爆破没有对周围建筑物造成大规模的破坏,与评估结果吻合。

Claims (9)

  1. 一种深基坑爆破振速风险等级大数据评价方法,其特征在于包括以下步骤:
    (1)确定爆破工程周围环境影响因素,划分因素的风险等级,采用集合方法公约量化因素;
    (2)确定风险评价集合,把爆破振速对周围环境影响风险评价划分等级,为后期评价确定标准;
    (3)根据公约量化因素确定隶属度函数以及隶属度;
    (4)计算各影响因素信息熵,确定考虑信息熵的各影响因素权重,得到影响因素权重矩阵,然后建立周围环境风险评价初级矩阵,即隶属度矩阵,进一步得到爆破振速对周围环境影响风险评价终极矩阵;
    (5)搜索风险评价终极矩阵隶属度,根据步骤(2)的标准确定因素所在评价集中的等级,得出风险评价结果。
  2. 如权利要求1所述的一种深基坑爆破振速风险等级大数据评价方法,其特征在于:步骤(1)中选取爆破振速影响因素具体为建立因素集C,包括基坑壁岩体级别C 1、岩体风化程度C 2、土体等级C 3、岩土体含水性C 4、地质勘察C 5、单段最大药量C 6、爆破效果C 7、爆破中心至测点距离C 8
  3. 如权利要求2所述的一种深基坑爆破振速风险等级大数据评价方法,其特征在于:步骤(1)中风险等级的划分,按照下表进行:
    Figure PCTCN2020089026-appb-100001
  4. 如权利要求1所述的一种深基坑爆破振速风险等级大数据评价方法,其特征在于:步骤(2)中爆破振速风险评价集合确定,按照下表进行:
    Figure PCTCN2020089026-appb-100002
  5. 如权利要求1所述的一种深基坑爆破振速风险等级大数据评价方法,其特征在于:步骤(3)隶属度函数以及隶属度时根据不可量化因素和可量化因素分别确定;对于不可量化因素,采用Karwowski隶属函数;对于可量化因素,采用中间形二次抛物形隶属度函数。
  6. 如权利要求1所述的一种深基坑爆破振速风险等级大数据评价方法,其特征在于:步骤(4)中信息熵的确定具体为:针对基坑爆破,进行6次集合方法公约量化因素,得到公约量化集c={c 1,c 2,c 4,c 5,c 6,c 8},H(D|{c i})表示影响因素集中的因素c i相对于风险评价集合中的D的信息熵,用信息熵表示为:
    Figure PCTCN2020089026-appb-100003
  7. 如权利要求6所述的一种深基坑爆破振速风险等级大数据评价方法,其特征在于:步骤(4)中中权重计算具体为:W i反映在整个评价系统中某一个属性相对于总体属性的重要程度;相应的影响因素子集c i权重为:
    Figure PCTCN2020089026-appb-100004
    其中,σ CD(c i)=p(D i|c i)。
  8. 如权利要求7所述的一种深基坑爆破振速风险等级大数据评价方法,其特征在于:步骤(4)中得到终极矩阵具体为:
    将权重整理成矩阵形式,得到归一化权重后的矩阵,用A表示;
    采用二次抛物形分布,求得隶属度矩阵为R;
    则得到终极矩阵为B,B=A×R。
  9. 如权利要求1所述的一种深基坑爆破振速风险等级大数据评价方法,其特征在于:步骤(5)具体为为根据最大隶属度原则,得出隶属度最大值。根据最大隶属度判断其在评价集中的范围,确定其风险等级。
PCT/CN2020/089026 2020-02-28 2020-05-07 一种深基坑爆破振速风险等级大数据评价方法 WO2021169038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010126471.2A CN111339486A (zh) 2020-02-28 2020-02-28 一种深基坑爆破振速风险等级大数据评价方法
CN202010126471.2 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021169038A1 true WO2021169038A1 (zh) 2021-09-02

Family

ID=71183894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089026 WO2021169038A1 (zh) 2020-02-28 2020-05-07 一种深基坑爆破振速风险等级大数据评价方法

Country Status (2)

Country Link
CN (1) CN111339486A (zh)
WO (1) WO2021169038A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793038A (zh) * 2021-09-16 2021-12-14 贵阳市城市轨道交通集团有限公司 一种多因素耦合下岩溶山区地铁隧道工程灾害分区方法
CN114049053A (zh) * 2022-01-12 2022-02-15 国网江西省电力有限公司电力科学研究院 一种洪涝下配电网杆塔风险分布分析方法及装置
CN114595581A (zh) * 2022-03-11 2022-06-07 重庆地质矿产研究院 基于影响因素动态权重的区域地质灾害危险性概率模型
CN114781040A (zh) * 2022-05-10 2022-07-22 青岛理工大学 一种建筑物爆破振动安全评价方法、装置、设备及介质
CN114925508A (zh) * 2022-05-05 2022-08-19 中国路桥工程有限责任公司 一种基于模糊集理论的边坡动力稳定性评价方法
CN115879821A (zh) * 2023-01-03 2023-03-31 北京工业大学 一种基于多源异构数据的基坑工程施工质量评估方法
CN116151933A (zh) * 2023-04-18 2023-05-23 深圳市感恩网络科技有限公司 基于大数据的国际贸易信息数据数字化监管系统及方法
CN117078106A (zh) * 2023-08-31 2023-11-17 兰州理工大学 一种爆破岩体质量综合评价及指标权重敏感性分析方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111709592A (zh) * 2020-08-20 2020-09-25 北京大成国测科技有限公司 基于神经网络与粗糙集分类的深基坑变形预测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU866099A1 (ru) * 1980-01-04 1981-09-23 Тольяттинский политехнический институт Способ проходки скважин в грунте
CN104951615A (zh) * 2015-07-06 2015-09-30 福州大学 一种路堑边坡模糊层次风险评估方法
CN105701345A (zh) * 2016-01-13 2016-06-22 青岛理工大学 一种钻孔灌注桩地基塌孔风险的评价方法与应用
CN110378619A (zh) * 2019-07-26 2019-10-25 中国电建集团成都勘测设计研究院有限公司 基于模糊综合评价的隧道钻爆法施工风险分析方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104452836A (zh) * 2014-12-10 2015-03-25 青岛理工大学 一种深基坑支护结构的稳定性检测预警方法
CN105718668A (zh) * 2016-01-22 2016-06-29 辽宁工程技术大学 一种露天矿抛爆效果分析方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU866099A1 (ru) * 1980-01-04 1981-09-23 Тольяттинский политехнический институт Способ проходки скважин в грунте
CN104951615A (zh) * 2015-07-06 2015-09-30 福州大学 一种路堑边坡模糊层次风险评估方法
CN105701345A (zh) * 2016-01-13 2016-06-22 青岛理工大学 一种钻孔灌注桩地基塌孔风险的评价方法与应用
CN110378619A (zh) * 2019-07-26 2019-10-25 中国电建集团成都勘测设计研究院有限公司 基于模糊综合评价的隧道钻爆法施工风险分析方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793038A (zh) * 2021-09-16 2021-12-14 贵阳市城市轨道交通集团有限公司 一种多因素耦合下岩溶山区地铁隧道工程灾害分区方法
CN113793038B (zh) * 2021-09-16 2023-12-22 贵阳市城市轨道交通集团有限公司 一种多因素耦合下岩溶山区地铁隧道工程灾害分区方法
CN114049053A (zh) * 2022-01-12 2022-02-15 国网江西省电力有限公司电力科学研究院 一种洪涝下配电网杆塔风险分布分析方法及装置
CN114595581A (zh) * 2022-03-11 2022-06-07 重庆地质矿产研究院 基于影响因素动态权重的区域地质灾害危险性概率模型
CN114925508A (zh) * 2022-05-05 2022-08-19 中国路桥工程有限责任公司 一种基于模糊集理论的边坡动力稳定性评价方法
CN114781040A (zh) * 2022-05-10 2022-07-22 青岛理工大学 一种建筑物爆破振动安全评价方法、装置、设备及介质
CN115879821A (zh) * 2023-01-03 2023-03-31 北京工业大学 一种基于多源异构数据的基坑工程施工质量评估方法
CN115879821B (zh) * 2023-01-03 2023-09-19 北京工业大学 一种基于多源异构数据的基坑工程施工质量评估方法
CN116151933A (zh) * 2023-04-18 2023-05-23 深圳市感恩网络科技有限公司 基于大数据的国际贸易信息数据数字化监管系统及方法
CN116151933B (zh) * 2023-04-18 2023-10-24 深圳市感恩网络科技有限公司 基于大数据的国际贸易信息数据数字化监管系统及方法
CN117078106A (zh) * 2023-08-31 2023-11-17 兰州理工大学 一种爆破岩体质量综合评价及指标权重敏感性分析方法
CN117078106B (zh) * 2023-08-31 2024-02-20 兰州理工大学 一种爆破岩体质量综合评价及指标权重敏感性分析方法

Also Published As

Publication number Publication date
CN111339486A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2021169038A1 (zh) 一种深基坑爆破振速风险等级大数据评价方法
Lin et al. A new quantitative method for risk assessment of water inrush in karst tunnels based on variable weight function and improved cloud model
Li et al. Unascertained measure model of water and mud inrush risk evaluation in karst tunnels and its engineering application
Zhang et al. Analytical model for assessing collapse risk during mountain tunnel construction
Zheng et al. Rockburst prediction model based on entropy weight integrated with grey relational BP neural network
CN113570226A (zh) 断层破碎带隧道突涌水灾害发生概率等级评价方法
CN104809345A (zh) 一种泥石流屈服应力和最大淤积厚度计算方法
Dong et al. Quantitative evaluation and case study of risk degree for underground goafs with multiple indexes considering uncertain factors in mines
Yan et al. Fracture propagation and permeability evolution mechanism of jointed rock mass in coastal mines
Yan et al. Study on chain relationship and risk assessment model of coal mine geological disasters
Zhang et al. Evaluation on the Stability of Vertical Mine Shafts below Thick Loose Strata Based on the Comprehensive Weight Method and a Fuzzy Matter‐Element Analysis Model
Dong et al. A GIS-based quantitative geo-environmental evaluation for land-use development in an urban area: Shunyi New City, Beijing, China
Wang et al. Dynamic risk assessment method of tunnel collapse based on attribute interval assessment model and application
Li et al. Disaster risk evaluation of superlong highways tunnel based on the cloud and AHP model
Li et al. Risk early warning evaluation of coal mine water inrush based on complex network and its application
LIANG et al. Stratum identification based on multiple drilling parameters and probability classification
Zhang et al. Comprehensive evaluation of shaped charge blasting effect of rock roadway based on entropy-weighted matter-element extension model
Yu et al. Dynamic Risk Assessment of Karst Tunnel Collapse Based on Fuzzy‐AHP: A Case Study of the LianHuaShan Tunnel, China
Li et al. Assessment of water inrush risk based comprehensive cloud model: a case study in a lead zinc mine, China
Zhang et al. Assessment of the excavation damaged zones in the surrounding rock of an underground powerhouse under high in situ stress using an acoustic velocity detecting method
Zhang et al. Risk Assessment of Rockburst with a LS‐FAHP‐CRITIC Method: A Case in Gaojiapu Coal Mine, North of China
Chen et al. Propagation laws of blasting seismic waves in weak rock mass: a case study of muzhailing tunnel
Zhang et al. Prediction and evaluation of rockburst based on depth neural network
CN107169637A (zh) 一种水电站砂层土质液化评判方法
Wang et al. A new Bayesian network model for the risk assessment of water inrush in karst tunnels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921670

Country of ref document: EP

Kind code of ref document: A1