WO2021168986A1 - 一种断丝检测设备及方法 - Google Patents

一种断丝检测设备及方法 Download PDF

Info

Publication number
WO2021168986A1
WO2021168986A1 PCT/CN2020/082583 CN2020082583W WO2021168986A1 WO 2021168986 A1 WO2021168986 A1 WO 2021168986A1 CN 2020082583 W CN2020082583 W CN 2020082583W WO 2021168986 A1 WO2021168986 A1 WO 2021168986A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
detection
signal
coil
tested
Prior art date
Application number
PCT/CN2020/082583
Other languages
English (en)
French (fr)
Inventor
商峰
张国新
杨波
刘毅
Original Assignee
中国水利水电科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国水利水电科学研究院 filed Critical 中国水利水电科学研究院
Priority to US17/426,768 priority Critical patent/US11796507B2/en
Publication of WO2021168986A1 publication Critical patent/WO2021168986A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/87Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields using probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/023Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil
    • G01N27/025Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil a current being generated within the material by induction

Definitions

  • This application relates to the technical field of water conservancy engineering, and specifically to a broken wire detection device and method.
  • steel bars In civil and hydraulic engineering structures, steel bars, prestressed steel bars (steel strands, steel wires), carbon fiber reinforcement, carbon fiber cloth, etc. will form a ring-by-ring closed structure in or on the concrete. These ring-shaped closed structures are subject to external forces, earthquake damage or environmental damage. Corrosion will cause fracture, thus endangering the safety of the structure.
  • PCCP Prestressed Concrete Cylinder Pipe
  • PCP Prestressed Concrete Pipe
  • RCP Reinforced Concrete Pipe
  • PCCP with carbon fiber circumferential reinforcement PCP, RCP, etc.
  • pre-stressed steel bars, steel bars, carbon fiber reinforcement, carbon fiber cloth and other ring structures will break, usually called "broken wires”.
  • the purpose of the embodiments of the present application includes providing a broken wire detection device to improve the technical problem of low accuracy in judging broken wires in the prior art.
  • the embodiment of the present application provides a broken wire detection device, which is used to detect broken wires of a conductive closed structure formed in a ring direction in a pipeline to be tested.
  • the device includes an excitation coil, a detection coil, and a processor; the processor The detection signal input terminal is connected to the detection coil; the excitation coil and the detection coil are respectively located on both sides of the longitudinal section of the inner wall of the pipeline to be tested, wherein the axis of the excitation coil is connected to the axis of the pipeline to be tested The axis is parallel, and the axis of the detection coil is perpendicular to the axis of the pipeline to be measured; the excitation coil is used to generate an alternating magnetic field according to an alternating electromagnetic signal, wherein the to be measured in the alternating magnetic field
  • the pipeline generates the induced current and the electromagnetic field of the induced current; the detection coil is used to generate a detection signal according to the alternating magnetic field and the electromagnetic field; the processor is used to compare the detection signal and the standard signal Yes
  • the axis of the excitation coil is parallel to the axis of the pipeline to be tested, and the axis of the detection coil is perpendicular to the axis of the pipeline to be tested.
  • the excitation coil generates an alternating magnetic field according to the alternating electromagnetic signal.
  • the direction of the alternating magnetic field is simple.
  • the detection coil can receive high-strength detection signals, which is beneficial to improve the signal-to-noise ratio, so that for the case where there are many broken wires in the pipeline to be tested, it can improve the accuracy of identifying broken wires and effectively distinguish double-layer steel pipes. Broken wires in the inner and outer layers.
  • the device further includes an electromagnetic signal generator, the signal output end of the electromagnetic signal generator is connected to the excitation coil; the electromagnetic signal generator is used to generate the alternating electromagnetic signal.
  • the processor is connected to the control terminal of the electromagnetic signal generator; the processor is also used to control the electromagnetic signal generator to generate alternating electromagnetic signals.
  • the axial distance between the center of the excitation coil and the center of the detection coil is equal to a preset distance.
  • the device further includes a shield, which is arranged between the detection coil and the excitation coil, and the influence of direct coupling on the detection result can be reduced by the shield.
  • the embodiment of the present application provides a method for detecting broken wires, the method includes: inputting an alternating electromagnetic signal to an excitation coil, so that the excitation coil generates an alternating magnetic field according to the alternating electromagnetic signal; wherein, the excitation coil and the The detection coils are respectively located on both sides of the longitudinal section of the inner wall of the pipeline to be tested, wherein the pipeline to be tested is formed with a conductive closed structure ring by ring, the axis of the excitation coil is parallel to the axis of the pipeline to be tested, and the detection coil
  • the axis of the test tube is perpendicular to the axis of the pipeline to be tested, and the pipeline to be tested in the alternating magnetic field generates an induced current and an electromagnetic field of the induced current;
  • the detection signal generated by the electromagnetic field; the detection signal is compared with the standard signal, and the wire breakage of the conductive closed structure is determined according to the comparison result.
  • the method further includes: inputting the signal to the excitation coil set in the standard pipeline A variable electromagnetic signal, wherein the excitation coil and the detection coil are respectively located on both sides of the longitudinal section of the inner wall of the standard pipeline, the standard pipeline is formed with a conductive closed structure ring by ring, and the conductive closed structure has no broken wires.
  • the positions of the excitation coil and the detection coil in the standard pipeline are consistent with the positions in the pipeline to be tested; the signal generated by the detection coil is received as the standard signal.
  • the method further includes: acquiring parameters of the excitation coil and the detection coil , The parameters of the alternating electromagnetic signal and the parameters of the pipeline to be tested; construct a simulation model of the pipeline to be tested according to the parameters of the pipeline to be tested; according to the parameters of the excitation coil and the detection coil and the alternating The parameters of the electromagnetic signal simulate the pipeline simulation model to be tested, and the standard signal is determined according to the simulation result.
  • the method before the input of the alternating electromagnetic signal to the excitation coil, the method further includes: inputting different test alternating electromagnetic signals to the excitation coil arranged in the experimental pipeline; wherein the excitation coil and the detection coil are respectively Located on both sides of the longitudinal section of the inner wall of the experimental pipeline, the experimental pipeline is formed with a conductive closed structure ring by ring, and the broken wires of the conductive closed structure are known.
  • the excitation coil and the detection coil are in the experimental
  • the position in the pipeline is consistent with the position in the pipeline to be tested; receives multiple test signals generated by the detection coil; compares the multiple test signals with the standard signal, and determines each test according to the comparison result
  • the signal corresponding to the broken wire of the experimental pipeline when the broken wire is the same as the broken wire of the experimental pipeline, it is determined that the test alternating electromagnetic signal corresponding to the test signal is the alternating electromagnetic input to the excitation coil Signal.
  • the method before the input of the alternating electromagnetic signal to the excitation coil, the method further includes: determining the value for The axial distance between the center of the excitation coil and the center of the detection coil of the pipeline to be tested is detected.
  • the comparing the detection signal with the standard signal, and determining the wire breakage of the pipeline to be tested according to the comparison result includes: controlling the setting of a fixing member of the excitation coil and the detection coil Move axially in the pipeline to be tested, compare the detection signal detected at each position of the movement to the standard signal, and determine the wire breakage of the position currently moved according to the comparison result, where in the axial direction During the movement, the relative positions of the excitation coil and the detection coil on the fixing member are fixed.
  • Figure 1 is a schematic structural diagram of a broken wire detection device provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a pipeline to be tested according to an embodiment of the application
  • FIG. 3 is a schematic structural diagram of another broken wire detection device provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of another broken wire detection device provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of another broken wire detection device provided by an embodiment of the application.
  • Figure 6a is a schematic structural diagram of another broken wire detection device provided by an embodiment of the application.
  • Figure 6b is a schematic structural diagram of another broken wire detection device provided by an embodiment of the application.
  • Figure 7a is a schematic structural diagram of another broken wire detection device provided by an embodiment of the application.
  • Figure 7b is a schematic structural diagram of another broken wire detection device provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of another broken wire detection device provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of a broken wire detection device placed in a cross section of a pipeline according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a double-wound prestressed steel wire pipe reinforced with carbon fiber cloth according to an embodiment of the application
  • FIG. 11 is a diagram of the detection result of a double-wound prestressed steel wire pipeline obtained by using a broken wire detection device provided by an embodiment of the present application;
  • FIG. 12 is a flowchart of a method for detecting broken wires according to an embodiment of the application.
  • Icon 100-broken wire detection equipment; 110-excitation coil; 120-detection coil; 130-processor; 140-electromagnetic signal generator; 150-shielder; 155: working platform; 160: chassis; 170: expansion joint; 180: beam; 185: support rod; 190: distance measuring wheel; 200- pipeline to be tested; 110: excitation coil, 120: receiving coil, 210: structural concrete inside steel cylinder; 220: structural concrete outside steel cylinder; 230: outside Layer prestressed steel wire; 240: inner prestressed steel wire; 250: steel cylinder; 260: mortar protection layer; 270: socket steel ring; 275: socket steel ring; 280: water stop rubber; 290: prestressed steel wire anchor 300: Longitudinal reinforced carbon fiber cloth; 310: Circumferential reinforced carbon fiber cloth; 410: Corresponding curve of intact pipe; 420: Corresponding curve of broken wire pipe; 430: Actual broken wire area.
  • steel bars prestressed steel bars (steel strands, steel wires), carbon fiber reinforcement, carbon fiber cloth, etc. will form a ring-by-ring closed structure in the concrete.
  • These ring-shaped closed structures are subject to external forces, earthquake damage or environmental corrosion. Fractures will occur, thereby endangering the safety of the structure.
  • Prestressed Concrete Cylinder Pipe PCCP
  • Prestressed Concrete Pipe PCP
  • Reinforced Concrete Pipe PCCP
  • PCCP Prestressed Concrete Cylinder Pipe
  • PCP Prestressed Concrete Pipe
  • RCP Reinforced Concrete Pipe
  • PCCP with carbon fiber circumferential reinforcement PCP, RCP, etc.
  • pre-stressed steel bars, steel bars, carbon fiber reinforcement, carbon fiber cloth and other ring structures will break, usually called “broken wires”.
  • pre-stressed steel cylinder concrete pipe is taken as a typical representative among them for discussion.
  • the embodiment of the application provides a broken wire detection device, which can effectively alleviate the above technical problems.
  • the broken wire detection device provided by the embodiment of the application will be described in detail below with reference to the accompanying drawings.
  • an embodiment of the present application provides a broken wire detection device 100 (not clearly marked in FIG. 1), which is used to detect broken wires of a conductive closed structure formed in a ring-wise direction in a pipeline 200 to be tested
  • the broken wire detection equipment 100 includes an excitation coil 110, a detection coil 120 and a processor 130; the detection signal input end of the processor 130 is connected to the detection coil 120; the excitation coil 110 and the detection coil 120 are respectively located in the longitudinal direction of the inner wall of the pipeline 200 under test Both sides of the profile.
  • the pipeline 200 to be tested is formed with a conductive closed structure in circumferential directions.
  • the closed structure may be located on the inner wall of the pipeline 200 to be tested, but in some embodiments, it may also be located on the outer wall of the pipeline 200 to be tested.
  • the so-called broken wire detection in the embodiments of the present application is to detect whether the conductive closed structure is broken.
  • the conductive closed structure may be formed of conductive materials such as metal wire, carbon fiber, conductive rubber, or conductive plastic.
  • the prestressed steel wire is the conductive closed structure. It should be understood that in other types of pipelines 200 to be tested, prestress may not be applied to the conductive closed structure.
  • the axis of the excitation coil 110 (that is, the axis perpendicular to the paper surface direction) is parallel to the axis of the pipe 200 to be tested
  • the axis of the detection coil 120 (that is, the axis parallel to the paper surface direction) is perpendicular to the axis of the pipe 200 to be tested.
  • the projections of the axis of the excitation coil 110 and the axis of the detection coil 120 on the cross section of the pipeline 200 to be tested are not required to be perpendicular.
  • the working principle of the broken wire detection device 100 is as follows: the excitation coil 110 receives the alternating electromagnetic signal, and according to the principle of the magnetic effect of the current, when the alternating electromagnetic signal passes through the excitation coil 110, an alternating magnetic field is generated around the excitation coil 110.
  • the conductive closed structure formed by the pipeline 200 to be tested in loops generates an induced current in the alternating magnetic field, and the induced current induces an electromagnetic field;
  • the detection coil 120 can be based on the alternating magnetic field generated by the excitation coil 110 and the above
  • the electromagnetic field induced by the induced current generates a detection signal; if there is a broken wire in the pipeline 200 to be tested, it is equivalent to a sudden change in the number of turns and impedance of the coil in the pipeline to be tested 200, resulting in a sudden change in the induced current in the pipeline 200 to be tested.
  • the processor 130 compares the detection signal with the standard signal, and according to the comparison result The broken wire of the pipeline 200 to be tested can be determined.
  • the comparison result is that the deviation between the detection signal and the standard signal is greater than or equal to the preset deviation, it can be determined that the pipeline 200 to be tested is present.
  • the comparison result is that the deviation between the detection signal and the standard signal is less than the preset deviation, and it can be determined that there is no wire breakage in the pipeline 200 under test, wherein the preset deviation is determined according to the measurement and analysis accuracy of the processor 130.
  • the comparison object mentioned above can include the relative signal amplitude and phase distribution along the pipeline axis.
  • the signal relative amplitude refers to the basic unit of the signal amplitude measured by the receiving coil at the midpoint of each section of the pipeline. When the coil moves to the rest of the pipeline, the measured signal amplitude is compared with the basic unit.
  • the relative phase refers to the difference between the phase of the excitation coil signal and the receiving coil signal.
  • the relative amplitude and phase detected near each point are calculated by the mean and variance, and the preset deviation near that point can be evaluated. For example, it can be set that when the phase between the detection signal and the standard signal is greater than or equal to 0.1 degree, it can be determined that the pipe 200 to be tested has broken wires.
  • the excitation coil 110 and the detection coil 120 in the broken wire detection device 100 can be arranged on a fixed part that moves axially in the pipeline 200 to be tested.
  • the fixed part is a push rod
  • the push rod It can be manually pushed or driven by a guide rail to move along the axial direction of the pipeline 200 to be tested.
  • the relative positions of the excitation coil 110 and the detection coil 120 on the fixed part are fixed to ensure that the detection coil 120 is moved during the movement.
  • the detection signal can be continuously generated, and when the deviation between the detection signal and the standard signal is greater than or equal to the preset deviation, the position where the detection signal is obtained is the position where the wire breakage occurs.
  • the inner axial direction of the pipeline 200 refers to the length direction of the pipeline to be inspected. It should be noted that the axial direction is not necessarily a straight line direction. When the pipeline 200 is not a straight pipeline, the above should be understood as the diameter of the pipeline 200. The connection to the center.
  • the pipe 200 shown in the drawings is a pipe with a circular cross-section, it should be understood that the cross-sectional shape of the pipe 200 in practical applications can be any suitable shape. The shape of the cross-section can be adjusted as long as it can satisfy that the fixed part can be in the pipeline.
  • FIG. 9 is a schematic cross-sectional view of the broken wire detection device 100 provided in an embodiment of the present application when it is placed in a pipeline 200 to be tested for measurement.
  • the axis of the excitation coil 110 is parallel to the length direction of the pipeline 200 to be tested
  • the axis of the detection coil 120 is perpendicular to the length direction of the pipeline 200 to be tested.
  • the above-mentioned fixing member is a wheeled trolley, and the excitation coil 110 and the detection coil 120 can be suspended on the trolley to facilitate its smooth movement along the length of the pipeline 200 to be tested.
  • the above-mentioned trolley includes a working platform 155, a chassis 160, and one or more pairs of distance measuring wheels 190.
  • the working platform 155 is fixedly arranged on the chassis 160 by a support rod 185
  • the beam 180 is fixedly arranged on the working platform 155 and on the beam 180.
  • a plurality of expansion joints 170 are also provided.
  • the excitation coil 110 and the detection coil 120 are respectively arranged at both ends of the cross beam 180.
  • the standard signal is the signal generated by the detection coil 120 in the unbroken wire pipeline.
  • the standard signal can be determined in a variety of ways, including but not limited to the following ways:
  • Method 1 Determine the standard signal by testing the standard pipeline without broken wires.
  • an alternating electromagnetic signal is input to the excitation coil 110 arranged in the standard pipeline, wherein the excitation coil 110 and the detection coil 120 are respectively located on both sides of the longitudinal section of the inner wall of the standard pipeline, and the standard pipeline is formed with a conductive closed structure ring by ring And the conductive closed structure has no broken wires, and the positions of the excitation coil 110 and the detection coil 120 in the standard pipeline are consistent with the positions in the pipeline 200 to be tested; the signal generated by the detection coil 120 is received as the standard signal.
  • the excitation coil 110 and the detection coil 120 used to determine the standard signal can be the excitation coil 110 and the detection coil 120 in the broken wire detection device 100, or coils of the same specifications as the excitation coil 110 and the detection coil 120.
  • the standard pipeline here refers to the pipeline with the same specifications and parameters as the pipeline to be inspected.
  • Method 2 Determine the standard signal by performing simulation simulation on the pipeline 200 to be tested.
  • the parameters of the excitation coil 110 and the detection coil 120, the parameters of the alternating electromagnetic signal, and the parameters of the pipeline 200 to be tested can be acquired first; the pipeline to be tested 200 simulation model is constructed according to the parameters of the pipeline to be tested 200; according to the excitation coil 110 The parameters of the detection coil 120 and the parameters of the alternating electromagnetic signal are simulated on the pipeline 200 simulation model to be tested, and the standard signal is determined according to the simulation result.
  • the above-mentioned signal simulation can be realized by using various conventional modeling and simulation tools in the field, such as general commercial software such as ANSYS MAXWELL and COMSOL.
  • a professional electromagnetic field simulation program written for a specific structure can also be used to realize the above-mentioned signal simulation simulation, which will not be repeated here.
  • the sensitivity of the broken wire detection method can be adjusted in various ways, that is, the voltage amplitude and phase change corresponding to the open circuit of a single closed conductive loop in the pipeline 200 to be tested. By adjusting the sensitivity, the measurement can be obtained. The amplitude and phase changes of the measurement system significantly exceed integer multiples of the minimum resolution of the measurement system, in order to accurately identify the number of broken wires.
  • Adjustment method 1 changing the alternating electromagnetic signal, such as changing the frequency or amplitude of the alternating electromagnetic signal.
  • the embodiment of the present application provides the following method for determining the alternating electromagnetic signal: inputting different test alternating electromagnetic signals to the excitation coil 110 arranged in the experimental pipeline; wherein, the excitation coil 110 And the detection coil 120 are respectively located on both sides of the longitudinal section of the inner wall of the experimental pipeline.
  • the experimental pipeline is formed with a conductive closed structure and the broken wires of the conductive closed structure are known.
  • the positions of the excitation coil 110 and the detection coil 120 in the experimental pipeline are the same The positions in the pipeline 200 to be tested are consistent; receive multiple test signals generated by the detection coil 120; compare the multiple test signals with the standard signal, and determine the disconnection of the experimental pipeline corresponding to each test signal according to the comparison result Wire condition: When the wire broken condition is the same as the wire broken condition of the experimental pipeline, it is determined that the test alternating electromagnetic signal corresponding to the test signal is the alternating electromagnetic signal input to the excitation coil 110. It should be understood that the excitation coil 110 and the detection coil 120 used to determine the alternating electromagnetic signal may be the excitation coil 110 and the detection coil 120 in the broken wire detection device 100, or the same specifications as the excitation coil 110 and the detection coil 120. Coil.
  • the axial distance between the center of the excitation coil 110 and the center of the detection coil 120 is changed.
  • the embodiment of the present application provides a method for determining the axial distance between the center of the excitation coil 110 and the center of the detection coil 120 as follows: First, according to the model of the pipeline 200 to be tested and pre-established The axial distance mapping relationship between the pipe model and the center of the coil is determined, and then the axial distance between the center of the excitation coil 110 and the center of the detection coil 120 for detecting the pipe 200 to be tested is determined.
  • an excitation coil 110 and a detection coil 120 can be arranged in the experimental pipeline, and the same test alternating electromagnetic signal can be input to the excitation coil 110 arranged in the experimental pipeline, by changing the center of the excitation coil 110 and the center of the detection coil 120 Obtain the multiple test signals corresponding to the detection coil 120, and determine the axial distance between the center of each different excitation coil 110 and the center of the detection coil 120 and the corresponding test signal. Establish a mapping relationship.
  • the adjustment method 3 is to add or remove the shield 150.
  • the broken wire detection device 100 may include a shield 150. Please refer to FIG. 4.
  • the shield 150 is disposed between the detection coil 120 and the excitation coil 110. Moreover, the position of the shield 150 can be close to the detection coil 120 or the excitation coil 110, and the influence of the direct coupling on the detection result can be reduced by the shield 150.
  • the test signal and the first test broken wire result corresponding to the test signal can be obtained when the shield 150 is set, and then obtained when the shield 150 is not set.
  • the test signal and the second test broken wire result corresponding to the test signal compare the first test result and the second test result, and judge which case the actual broken wire corresponds to the higher resolution accuracy, and the higher resolution accuracy is based on The situation determines whether the shield 150 needs to be added or removed.
  • the number of shields 150 in the figure is one, it should be understood that in practical applications, the number and positions of shields 150 can be adjusted according to the requirements of the actual detection environment.
  • the shield 150 can be selected as a thin plate made of a high magnetic permeability material, and the thin plate can be multilayered and have a grid-like structure. It should be noted that the above-mentioned shielding device 150 is not necessary, and in actual applications, it is possible to choose whether to select the shielding device 150 according to the specific conditions of the application scenario.
  • the fourth adjustment method is to adjust the angle formed between the axis of the detection coil 120 and the connecting line between the center of the detection coil 120 and the center of the excitation coil 110.
  • the axis of the detection coil 120 and the center of the detection coil 120 and the center connection line of the excitation coil 110 can be parallel, as shown in Figure 6a and Figure 7a, and can also form an angle.
  • the angle is shown in Figure 6b and Figure 7b. Shown.
  • the detection signal detected by the detection coil 120 mainly comes from the indirect coupling signal that passes through the pipe wall of the pipeline 200 to be tested twice and returns to the inside of the pipe, when the axis of the detection coil 120 is parallel to the normal direction of the pipe wall, the signal sensitivity is the highest However, the signal strength of the detection signal received may not be the highest. Therefore, the signal strength of the detection signal received by the detection coil 120 can be adjusted by the above-mentioned included angle to adjust the appropriate sensitivity.
  • FIG. 11 is a detection result diagram of a double-wrapped prestressed steel wire pipe 200 obtained by using the broken wire detection device 100 provided in an embodiment of the present application; wherein, the abscissa in the figure is the measurement position relative to the pipe to be tested 200 The distance between the attached sockets, the ordinate in the figure is the phase of the test signal and the standard signal as a control.
  • the lower curve 410 corresponds to the intact pipe (ie the standard signal), and the upper curve 420 corresponds to the broken wire.
  • Pipeline ie, test signal
  • the center of the excitation coil 110 and the center of the detection coil 120 may be located on the same cross section of the pipeline 200 to be tested (as shown in FIG. 3), or may be located on different cross sections (as shown in FIG. 5). ). Wherein, when the centers of the excitation coil 110 and the detection coil 120 are located at different cross-sections of the pipeline 200 to be tested, there can be a larger detection range in the pipeline 200 to be tested, so that the broken wire detection device 100 provided in the present application performs detection More flexible, the operator can set the relative positions of the excitation coil 110 and the detection coil 120 according to their different detection requirements.
  • the axis of the excitation coil 110 is parallel to the axis of the pipeline 200 to be tested
  • the axis of the detection coil 120 is perpendicular to the axis of the pipeline 200 to be tested
  • the direction of the excitation coil 110 to generate the alternating magnetic field according to the alternating electromagnetic signal is simple.
  • the detection coil 120 provided in the measuring pipeline 200 can receive a high-strength detection signal, which is beneficial to improve the signal-to-noise ratio, so that the accuracy of identifying broken wires in the pipeline 200 to be tested can be improved when there are many broken wire areas.
  • an electromagnetic signal generator 140 may be integrated in the broken wire detection device 100.
  • the signal output end of the electromagnetic signal generator 140 is electrically connected to the excitation coil 110; the electromagnetic signal generator 140 is used to generate alternating electromagnetic signals.
  • the electromagnetic signal generator 140 may adopt a standard DDS sinusoidal signal generator with an output voltage of 20-40V and a frequency of 30-80Hz.
  • processing The processor 130 is electrically connected to the control terminal of the electromagnetic signal generator 140; the processor 130 controls the electromagnetic signal generator 140 to generate an alternating electromagnetic signal.
  • the alternating electromagnetic signal can be a sine signal or a cosine signal.
  • the alternating electromagnetic signal has Stable amplitude and frequency.
  • the broken wire detection device 100 may not integrate an electromagnetic signal generator 140, but instead receives an alternating electromagnetic signal from an external electromagnetic signal generator 140.
  • the broken wire detection device 100 further includes a memory, and the memory is used to store the standard signal and the detection signal generated by the detection coil 120; the processor 130 is specifically configured to obtain the standard signal and the detection signal from the memory, and according to the detection signal And the standard signal obtains the broken wire situation of the pipeline 200 to be tested.
  • the detection signal is stored in the memory, and the processor 130 reads the detection signal from the memory for processing, which can relieve the computational pressure of the processor 130.
  • the processor 130 may also store the processing result in the memory.
  • the broken wire detection device 100 may also include a display, which is electrically connected to the processor 130.
  • the display will display the processing result, so that the staff can intuitively view the final detection result.
  • the display may not be integrated in the broken wire detection device 100, but is connected to the broken wire detection device 100 remotely, so as to realize the remote judgment of the broken wire detection result.
  • the device may also include a communication module, which is electrically connected to the processor 130.
  • the processing result can be sent to the remote user terminal through the communication module to realize remote viewing of the detection result or
  • the communication module may be a wireless communication module or a wired communication module.
  • the wireless communication module can use various suitable communication modules in the prior art, and can communicate with the remote client terminal through the mobile communication network using protocols such as TDM and FSK. Common protocols in the Internet of Things (IoT) field, such as Zigbee, Bluetooth, etc., can also be used.
  • IoT Internet of Things
  • each pipeline is regarded as a pipeline with a simple structure and its specific structure is not shown in detail. It can be understood that, as shown in Figure 10, in the actual project, each pipeline actually has a multi-layer structure of different materials, including the steel cylinder inner structural concrete 210, the steel cylinder 250, the steel cylinder outer structural concrete 220, and the outer prestressed steel wire 230. , The inner prestressed steel wire 240, the mortar protective layer 260, the longitudinally reinforced carbon fiber cloth 300, the circumferentially reinforced carbon fiber cloth 310, etc.
  • various components are provided on the pipeline, such as a socket steel ring 270, a socket steel ring 275, a water-stop rubber 280, a prestressed steel wire anchor 290, etc., which will not be repeated here.
  • a socket steel ring 270 a socket steel ring 275
  • a water-stop rubber 280 a prestressed steel wire anchor 290
  • the “pipes” described herein include various concrete pipes commonly used in engineering, which are not listed here.
  • this application also provides a broken wire detection method. Please refer to Figure 12.
  • the method includes the following steps:
  • Step S110 Input an alternating electromagnetic signal to the excitation coil, so that the excitation coil generates an alternating magnetic field according to the alternating electromagnetic signal; wherein the excitation coil and the detection coil are respectively located on both sides of the longitudinal section of the inner wall of the pipeline to be tested, and the pipeline to be tested A conductive closed structure is formed ring by ring, the axis of the excitation coil is parallel to the axis of the pipeline to be tested, and the axis of the detection coil is perpendicular to the axis of the pipeline to be tested.
  • the pipeline to be tested in an alternating magnetic field generates induced currents and electromagnetic fields of induced currents .
  • Step S120 Receive the detection signal generated by the detection coil according to the alternating magnetic field and the electromagnetic field; compare the detection signal with the standard signal, and determine the wire breakage of the pipeline to be tested according to the comparison result.
  • the method further includes:
  • the detection signal before comparing the detection signal with the standard signal, and determining the wire breakage of the pipeline to be tested according to the comparison result, it also includes:
  • the simulation model of the pipeline to be tested is simulated according to the parameters of the excitation coil and the detection coil and the parameters of the alternating electromagnetic signal, and the standard signal is determined according to the simulation result.
  • the method before inputting the alternating electromagnetic signal to the excitation coil, the method further includes:
  • test alternating electromagnetic signal corresponding to the test signal is the alternating electromagnetic signal input to the excitation coil.
  • the method before inputting the alternating electromagnetic signal to the excitation coil, the method further includes: determining the excitation for detecting the pipeline to be tested based on the model of the pipeline to be tested and the pre-established mapping relationship between the pipeline model and the axial distance between the center of the coil The axial distance between the center of the coil and the center of the detection coil.
  • the detection signal is compared with the standard signal, and the wire breakage of the pipeline to be tested is determined according to the comparison result, including:
  • the fixed part that controls the setting of the excitation coil and the detection coil moves axially in the pipeline to be tested, compares the detection signal detected at each position moved to with the standard signal, and determines the disconnection of the current position according to the comparison result.
  • the relative position of the excitation coil and the detection coil on the fixed member is fixed.
  • this application provides a broken wire detection device and method.
  • the device includes an excitation coil, a detection coil, and a processor; the detection signal input end of the processor is connected to the detection coil; the excitation coil and the detection coil are located in the pipeline to be tested At the inner wall, the pipeline to be tested is wound with a prestressed wire, the axis of the excitation coil is parallel to the axis of the pipeline to be tested, and the axis of the detection coil is perpendicular to the axis of the pipeline to be tested; the excitation coil is used to generate alternating electromagnetic signals Alternating magnetic field, in which the pipeline to be tested in the alternating magnetic field generates induced current and electromagnetic field of induced current; the detection coil is used to generate detection signals according to the alternating magnetic field and electromagnetic field; the processor is used to generate detection signals according to the detection signals and standard signals Obtain the broken wire status of the pipeline to be tested.
  • the axis of the excitation coil is parallel to the axis of the pipeline to be tested, and the axis of the detection coil is perpendicular to the axis of the pipeline to be tested.
  • the excitation coil generates the alternating magnetic field according to the alternating electromagnetic signal.
  • the direction of the alternating magnetic field is simple.
  • the detection coil set in the pipeline to be tested can receive the intensity A higher detection signal is beneficial to improve the signal-to-noise ratio, so that for the case where there are many broken wire areas in the pipeline to be tested, the accuracy of identifying broken wires can be improved.
  • the present application provides a broken wire detection device, which can effectively improve the technical problem of low accuracy in judging broken wires in the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种断丝检测设备(100)及方法,涉及水利工程技术领域,断丝检测设备(100)包括激励线圈(110)、检测线圈(120)以及处理器(130);处理器(130)的检测信号输入端与检测线圈(120)连接;激励线圈(110)与检测线圈(120)分别位于待测管道(200)内壁的纵剖面两侧,其中,待测管道(200)逐环向形成有导电闭合结构,激励线圈(110)的轴线与待测管道(200)的轴线平行,检测线圈(120)的轴线与待测管道(200)的轴线垂直;激励线圈(110),用于根据交变电磁信号产生交变磁场,其中,处于交变磁场中的待测管道(200)产生感应电流以及感应电流的电磁场;待测管道(200)中设置的检测线圈(120)能够接收到强度较高的检测信号,有利于提高信噪比,从而对于待测管道(200)断丝区域较多的情况,能够更有效的识别双层或多层断丝情况。

Description

一种断丝检测设备及方法
相关申请交叉引用
本申请要求于2020年02月28日提交中国专利局的申请号为202010134251.4、名称为“一种断丝检测设备及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及水利工程技术领域,具体而言,涉及一种断丝检测设备及方法。
背景技术
土木水利工程结构中由钢筋、预应力钢筋(钢绞线、钢丝)、碳纤维筋、碳纤维布等会在混凝土内或者表面形成逐环闭合结构,这些环形闭合结构由于受到外力作用、地震破坏或者环境腐蚀作用会发生断裂,从而危及结构安全。
典型的例子如预应力钢筒混凝土管(Prestressed Concrete Cylinder Pipe,PCCP)、预应力混凝土管(Prestressed Concrete Pipe,PCP)、钢筋混凝土管(Reinforced Concrete Pipe,RCP),以及进行碳纤维环向加固的PCCP、PCP、RCP等,这些管道中预应力钢筋、钢筋、碳纤维筋、碳纤维布等环形结构会出现断裂,通常称之为“断丝”。
对“断丝”进行定期检测,对受损的工程结构进行安全评估,从而进行适时适当的加固,直至废弃,是工程安全维护的常见策略。在现有技术中,常通过电磁感应的方法检测是否发生断丝,但是由于现有技术中采用的线圈布置方式、信号解读方法、标准信号生成方法等原因,实际工程中对大面积断丝检测准确率不高。这里的“大面积断丝”是指断丝沿管道轴向分布的距离超过1m以上。
另一方面,为了抵抗深层覆土压力,工程上常采用双层或者多层预应力钢丝缠绕的输水管道。这种管道受到水锤和环境腐蚀的共同作用,预应力钢丝会逐层发生断裂。通常,外层钢丝会先发生断裂,环境中的有害物质渗透到内层钢丝所在的位置,会进一步诱发内层钢丝的断裂。现有技术对双层或者多层预应力钢丝缠绕管道的断丝检测准确率不高,难以区分断丝发生在内层还是外层,或是两层都发生断裂。
发明内容
本申请实施例的目的包括提供一种断丝检测设备,用以改善现有技术中判断断丝情况准确度较低的技术问题。
本申请实施例提供了一种断丝检测设备,用于检测待测管道中逐环向形成的导电闭合结构的断丝情况,所述设备包括激励线圈、检测线圈以及处理器;所述处理器的检测信号输入端与所述检测线圈连接;所述激励线圈与所述检测线圈分别位于所述待测管道内壁的纵剖面两侧,其中,所述激励线圈的轴线与所述待测管道的轴线平行,所述检测线圈的轴线与所述待测管道的轴线垂直;所述激励线圈,用于根据交变电磁信号产生交变磁场,其中,处于所述交变磁场中的所述待测管道产生感应电流以及所述感应电流的电磁场;所述检测线圈,用于根据所述交变磁场以及所述电磁场产生检测信号;所述处理器,用于对所述检测信号以及标准信号进行比对,并根据比对结果确定所述导电闭合结构的断丝情况。
在上述实现过程中,激励线圈的轴线与待测管道的轴线平行,检测线圈的轴线与待测管道的轴线垂直,激励线圈根据交变电磁信号产生交变磁场方向简单,待测管道中设置的检测线圈能够接收到强度较高的检测信号,有利于提高信噪比,从而对于待测管道断丝区域较多的情况,能够提高识别断丝情况的准确度,并能有效区分双层钢丝管道中内外层分别断丝的现象。
可选地,设备还包括电磁信号发生器,所述电磁信号发生器的信号输出端与所述激励线圈连接;所述电磁信号发生器,用于产生所述交变电磁信号。
可选地,所述处理器与所述电磁信号发生器的控制端连接;所述处理器,还用于控制所述电磁信号发生器产生交变电磁信号。
可选地,所述激励线圈的中心与所述检测线圈的中心之间的轴向距离等于预设距离。
可选地,所述设备还包括屏蔽器,所述屏蔽器设置于所述检测线圈与所述激励线圈之间,可以通过屏蔽器减小直接耦合对检测结果的影响。
本申请实施例提供了一种断丝检测方法,所述方法包括:向激励线圈输入交变电磁信号,以使所述激励线圈根据交变电磁信号产生交变磁场;其中,所述激励线圈与检测线圈分别位于待测管道内壁的纵剖面两侧,其中,所述待测管道逐环向形成有导电闭合结构,所述激励线圈的轴线与所述待测管道的轴线平行,所述检测线圈的轴线与所述待测管道的轴线垂直,处于所述交变磁场中的所述待测管道产生感应电流以及所述感应电流的电磁场;接收所述检测线圈根据所述交变磁场以及所述电磁场产生的检测信号;对所述检测信号以及标准信号进行比对,并根据比对结果确定所述导电闭合结构的断丝情况。
可选地,在所述对所述检测信号以及标准信号进行比对,并根据比对结果确定所述待测管道的断丝情况之前,还包括:向设置于标准管道内的激励线圈输入交变电磁信号,其中,所述激励线圈与检测线圈分别位于所述标准管道内壁的纵剖面两侧,所述标准管道逐环向形成有导电闭合结构 且所述导电闭合结构无断丝,所述激励线圈以及所述检测线圈在所述标准管道内的位置与在所述待测管道内的位置一致;接收所述检测线圈产生的信号作为所述标准信号。
可选地,所述对所述检测信号以及标准信号进行比对,并根据比对结果确定所述待测管道的断丝情况之前,还包括:获取所述激励线圈和所述检测线圈的参数、所述交变电磁信号的参数以及所述待测管道的参数;根据所述待测管道的参数构建待测管道仿真模型;根据所述激励线圈和所述检测线圈的参数以及所述交变电磁信号的参数对所述待测管道仿真模型进行仿真,根据仿真结果确定所述标准信号。
可选地,在所述向激励线圈输入交变电磁信号之前,还包括:向设置于实验管道内的所述激励线圈输入不同的测试交变电磁信号;其中,所述激励线圈与检测线圈分别位于所述实验管道内壁的纵剖面两侧,所述实验管道逐环向形成有导电闭合结构且所述导电闭合结构的断丝情况已知,所述激励线圈以及所述检测线圈在所述实验管道内的位置与在所述待测管道内的位置一致;接收所述检测线圈产生的多个测试信号;分别将多个测试信号与标准信号进行比对,并根据比对结果确定每个测试信号对应的所述实验管道的断丝情况;当断丝情况与所述实验管道的断丝情况相同时,确定该测试信号对应的测试交变电磁信号为向所述激励线圈输入的交变电磁信号。
可选地,在所述向激励线圈输入交变电磁信号之前,所述方法还包括:根据所述待测管道的型号以及预建立的管道型号与线圈中心间轴向距离映射关系,确定用于检测所述待测管道的所述激励线圈的中心与所述检测线圈的中心之间的轴向距离。
可选地,所述对所述检测信号以及标准信号进行比对,并根据比对结果确定所述待测管道的断丝情况,包括:控制设置所述激励线圈与所述检测线圈的固定件在所述待测管道内轴向移动,对移动至的每一位置处检测的检测信号与标准信号进行比对,根据比对结果确定当前移动至的位置的断丝情况,其中,在轴向移动过程中,所述激励线圈与所述检测线圈在所述固定件上的相对位置固定。
本申请的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人 员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的一种断丝检测设备结构示意图;
图2为本申请实施例提供的一种待测管道的结构示意图;
图3为本申请实施例提供的另一种断丝检测设备的结构示意图;
图4为本申请实施例提供的另一种断丝检测设备的结构示意图;
图5为本申请实施例提供的另一种断丝检测设备的结构示意图;
图6a为本申请实施例提供的另一种断丝检测设备的结构示意图;
图6b为本申请实施例提供的另一种断丝检测设备的结构示意图;
图7a为本申请实施例提供的另一种断丝检测设备的结构示意图;
图7b为本申请实施例提供的另一种断丝检测设备的结构示意图;
图8为本申请实施例提供的另一种断丝检测设备的结构示意图;
图9为本申请实施例提供的一种断丝检测设备在管道横截面中放置示意图;
图10为本申请实施例提供的一种碳纤维布加固的双层缠绕预应力钢丝管道的结构示意图
图11为使用本申请实施例提供的一种断丝检测设备得到的双层缠绕预应力钢丝管道的检测结果图;
图12为本申请实施例提供的一种断丝检测方法的流程图。
图标:100-断丝检测设备;110-激励线圈;120-检测线圈;130-处理器;140-电磁信号发生器;150-屏蔽器;155:工作平台;160:底盘;170:伸缩节;180:横梁;185:支撑杆;190:测距轮;200-待测管道;110:激励线圈,120:接收线圈,210:钢筒内侧结构混凝土;220:钢筒外侧结构混凝土;230:外层预应力钢丝;240:内层预应力钢丝;250:钢筒;260:砂浆保护层;270:插口钢环;275:承口钢环;280:止水橡胶;290:预应力钢丝锚具;300:纵向加固碳纤维布;310:环向加固碳纤维布;410:完好管道对应曲线;420:断丝管道对应曲线;430:实际断丝区域。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在此,还需要说明的一点是,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与根据本公开内容的方案密切相关的装置结构,而省略了与本公开关系不大的其他细节。
应理解的是,本公开内容并不会由于如下参照附图的描述而只限于所描述的实施形式。在本文中,在可行的情况下,实施方式可以相互组合、不同实施方式之间的特征替换或借用、在一个实施方式中省略一个或多个特征。
土木水利工程结构中由钢筋、预应力钢筋(钢绞线、钢丝)、碳纤维筋、碳纤维布等会在混凝土内形成逐环闭合结构,这些环形闭合结构由于受到外力作用、地震破坏或者环境腐蚀作用会发生断裂,从而危及结构安全。
典型的例子如预应力钢筒混凝土管(Prestressed Concrete Cylinder Pipe,PCCP)、预应力混凝土管(Prestressed Concrete Pipe,PCP)、钢筋混凝土管(Reinforced Concrete Pipe,RCP),以及进行碳纤维环向加固的PCCP、PCP、RCP等,这些管道中预应力钢筋、钢筋、碳纤维筋、碳纤维布等环形结构会出现断裂,通常称之为“断丝”。下文中以“预应力钢筒混凝土管”作为其中的典型代表,加以论述。
对“断丝”进行定期检测,对受损的工程结构进行安全评估,从而进行适时适当的加固,直至废弃,是工程安全维护的常见策略。在现有技术中,常通过电磁感应的方法检测是否发生断丝,但是由于现有技术中采用的线圈布置方式、信号解读(标准信号生成方法)等原因,实际工程中断丝检测准确率不高。
本申请实施例提供了一种断丝检测设备,能够有效地缓解上述技术问题,以下将结合附图对本申请实施例提供的断丝检测设备进行详细介绍。
请参看图1,本申请实施例提供了一种断丝检测设备100(图1中未明确标出),该设备用于检测待测管道200中逐环向形成的导电闭合结构的断丝情况,该断丝检测设备100包括激励线圈110、检测线圈120以及处理器130;处理器130的检测信号输入端与检测线圈120连接;激励线圈110与检测线圈120分别位于待测管道200内壁的纵剖面两侧。参照图3,待测管道200逐环向形成有导电闭合结构,该闭合结构可以位于待测管道200的内壁,但在一些实施例中,也可以位于待测管道200的外壁。本申请实施例中所谓的断丝检测,即为检测该导电闭合结构是否发生断裂。该导电闭合结构可以由金属丝、碳纤维、导电橡胶或导电塑料等导电材料形成,例如,该待测管道200为预应力钢筒混凝土管(Prestressed Concrete Cylinder Pipe,PCCP)时,PCCP上缠绕的环向预应力钢丝即为该导电闭合结构。 应理解,在其他种类的待测管道200中,导电闭合结构上也可以不施加预应力。另外,该激励线圈110的轴线(即垂直于纸面方向的轴线)与待测管道200的轴线平行,检测线圈120的轴线(即平行于纸面方向的轴线)与待测管道200的轴线垂直。但激励线圈110的轴线与检测线圈120的轴线在待测管道200横截面上的投影不要求垂直。
断丝检测设备100工作原理如下:激励线圈110接收交变电磁信号,根据电流的磁效应原理,激励线圈110中通过交变电磁信号时,激励线圈110周围产生交变磁场。根据电磁感应原理,待测管道200逐环向形成的导电闭合结构在交变磁场中产生感应电流,进而该感应电流会感应出电磁场;检测线圈120能够根据激励线圈110产生的交变磁场以及上述感应电流感应出的电磁场产生检测信号;若待测管道200中出现断丝,则等效于待测管道200中线圈的匝数和阻抗发生了突变,导致待测管道200中产生感应电流突变,因此待测管道200周围产生的电磁场也骤变,最终检测线圈120检测到的检测信号根据骤变的电磁场发生变化,因此,处理器130将该检测信号与标准信号进行比对,根据比对结果即可确定待测管道200的断丝情况,可选地,若进行比对后,比对结果为检测信号与标准信号之间的偏差大于或等于预设偏差,则可确定待测管道200出现断丝情况,比对结果为检测信号与标准信号之间的偏差小于预设偏差,则可确定待测管道200未出现断丝情况,其中,预设偏差根据处理器130的测量分析精度确定。其中,上文所述的比对的对象可以包括信号相对幅值和相位沿管道轴线的分布,信号相对幅值是指以每节管道中点接收线圈所测的信号幅值为基本单位,接收线圈运动到管道其余部位测得信号幅值与基本单位求比值,相对相位是指以激励线圈信号与接收线圈信号相位之差。
受信号电源、发射装置、接收装置以及数据处理的精度和稳定性的影响,以及管道检测车前进速度、管道周边干扰源的影响,检测到的各点信号相对幅值和相位的数值存在微小的变动,这种变动会干扰对断丝区域定位的判断,从而影响断丝检测精度。
针对特定的信号检测设备、管道检测车前进速度、管道周边干扰源,对各点附近检测到的相对幅值和相位求取均值和方差,即可评估出该点附近的预设偏差。例如,可以设定当检测信号与标准信号之间的相位大于或等于0.1度时,即可确定待测管道200出现了断丝情况。
此外,断丝检测设备100中的激励线圈110与检测线圈120可以设置于一固定件上,该固定件在待测管道200内轴向移动,例如,该固定件为推杆,则该推杆可以通过人工推动或导轨驱动的方式沿待测管道200的轴线方向移动,在轴向移动过程中,激励线圈110与检测线圈120在固定件上的相对位置固定,保证在移动过程中检测线圈120可以不断地生成检测信号,进而在检测信号与标准信号之间的偏差大于或等于预设偏差时,获取该检测信号的位置则为出现断丝的位置。上述管道200内轴向指的是待 检测管道的长度方向,需要注意的是,所述轴向并不一定为一直线方向,当管道200不是直线管道时,上述则应理解为管道200的径向中心的连线。此外,虽然附图所示的管道200为截面为圆形的管道,应当理解的是,在实际应用中管道200的截面形状可以为任何适合的形状,相应的,固定件的形状也可随管道截面的形状进行调整,只要能满足固定件可以在管道中即可。
参见图9,图9为将本申请实施例提供的断丝检测设备100放置在一待测管道200中测量时的横截面示意图。从图中可以看出,该激励线圈110的轴线与待测管道200的长度方向平行,检测线圈120的轴线与待测管道200的长度方向垂直。其中,上述固定件为带轮的小车,激励线圈110与检测线圈120可以采用悬挂的方式设置于该小车上,以方便其沿着待测管道200的长度方向平稳移动。上述小车包括工作平台155,底盘160,以及一对或多对测距轮190,其中工作平台155通过支撑杆185固定设置在底盘160上,横梁180通过固定设置在工作平台155上并且横梁180上还设置有多个伸缩节170。可选地,激励线圈110与检测线圈120分别设置在横梁180的两端。
其中,标准信号为无断丝管道中检测线圈120所产生的信号,本申请实施例中,可以通过多种方式确定该标准信号,包括但不限于以下方式:
方式一:通过对无断丝的标准管道进行测试的方式确定标准信号。可选地,向设置于标准管道内的激励线圈110输入交变电磁信号,其中,激励线圈110与检测线圈120分别位于标准管道内壁的纵剖面两侧,标准管道逐环向形成有导电闭合结构且导电闭合结构无断丝,激励线圈110以及检测线圈120在标准管道内的位置与在待测管道200内的位置一致;接收检测线圈120产生的信号作为标准信号。应理解,此处用于确定标准信号的激励线圈110与检测线圈120可以为断丝检测设备100中的激励线圈110、检测线圈120,或者为与激励线圈110、检测线圈120同规格的线圈。另外,此处的标准管道指的是与待检测管道的规格参数相同的管道。
方式二:通过对待测管道200进行模拟仿真确定标准信号。可选地,可以先获取激励线圈110和检测线圈120的参数、交变电磁信号的参数以及待测管道200的参数;根据待测管道200的参数构建待测管道200仿真模型;根据激励线圈110和检测线圈120的参数以及交变电磁信号的参数对待测管道200仿真模型进行仿真,根据仿真结果确定标准信号。
其中,上述的信号模拟仿真可以通过使用各种本领域常规的建模仿真工具来实现,例如ANSYS MAXWELL、COMSOL等通用型商业软件等。此外,也可以使用针对特定结构编写的专业电磁场仿真程序来实现上述的信号模拟仿真,具体在此不再赘述。另外,本申请实施例中,可以采用多种方式调节断丝检测方法的灵敏度,即指待测管道200中单根闭合导电环断路对应的电压幅值和相位变化,通过调节灵敏度,使得测量得到的幅值 和相位变化显著超过测量系统最小分辨量的整数倍,以便精确识别断丝的根数。下面介绍调节断丝检测检测的灵敏度的几种方式:
调节方式1,改变交变电磁信号,如改变交变电磁信号的频率或者幅度。
为了使得断丝检测设备100具有适合的灵敏度,本申请实施例提供如下确定交变电磁信号的方法:向设置于实验管道内的激励线圈110输入不同的测试交变电磁信号;其中,激励线圈110和检测线圈120分别位于实验管道内壁的纵剖面两侧,实验管道逐环向形成有导电闭合结构且导电闭合结构的断丝情况已知,激励线圈110和检测线圈120在实验管道内的位置与在待测管道200内的位置一致;接收检测线圈120产生的多个测试信号;分别将多个测试信号与标准信号进行比对,并根据比对结果确定每个测试信号对应的实验管道的断丝情况;当断丝情况与实验管道的断丝情况相同时,确定该测试信号对应的测试交变电磁信号为向激励线圈110输入的交变电磁信号。应理解,此处用于确定交变电磁信号的激励线圈110和检测线圈120可以为断丝检测设备100中的激励线圈110、检测线圈120,或者为与激励线圈110、检测线圈120同规格的线圈。
调节方式2,改变激励线圈110的中心与检测线圈120的中心之间的轴向距离。
为了使得断丝检测设备100具有适合的灵敏度,本申请实施例提供如下确激励线圈110的中心与检测线圈120的中心之间的轴向距离的方法:先根据待测管道200的型号以及预建立的管道型号与线圈中心间轴向距离映射关系,然后确定用于检测待测管道200的激励线圈110的中心与检测线圈120的中心之间的轴向距离。可选地,可以在实验管道内设置激励线圈110和检测线圈120,向设置于实验管道内的激励线圈110输入相同的测试交变电磁信号,通过改变激励线圈110的中心与检测线圈120的中心之间的轴向距离,获取检测线圈120对应产生的多个测试信号,并将每个不同的激励线圈110的中心与检测线圈120的中心之间的轴向距离以及与其对应的测试信号之间建立映射关系。
调节方式3,增加或去除屏蔽器150。该断丝检测设备100可以包括屏蔽器150,请参看图4,屏蔽器150设置于检测线圈120与激励线圈110之间。且屏蔽器150的位置可以靠近检测线圈120,也可以靠近激励线圈110,可以通过屏蔽器150减小直接耦合对检测结果的影响。为了确定是否需要设置屏蔽器150以调节断丝检测检测的灵敏度,可以先在设置屏蔽器150时获取测试信号以及测试信号对应的第一次测试断丝结果,然后在不设置屏蔽器150时获取测试信号以及测试信号对应的第二次测试断丝结果,比较第一次测试结果和第二次测试结果,判断哪种情况下实际断丝情况对应的分辨精度更高,并根据分辨精度更高的情况确定是否需要增加或者去除屏蔽器150。其中,虽然在附图中屏蔽器150的数量为1个,应当理解,在实际应用中,可以根据实际的检测环境的要求调整屏蔽器150的数量和位 置。其中,屏蔽器150可以选用为高磁导率材质的薄板,该薄板可以为多层并具有栅格状结构的形式。需要说明的是,上述屏蔽器150并不是必需的,在实际应用中可以根据应用场景的具体情况选择是否选用屏蔽器150。
调节方式4,调节检测线圈120的轴线与检测线圈120的中心与激励线圈110的中心连接线之间形成的夹角。检测线圈120的轴线与检测线圈120的中心与激励线圈110的中心连接线之间可以平行,如图6a以及图7a所示,也可以成一夹角,成夹角的情形如图6b以及图7b所示。由于检测线圈120检测到的检测信号主要来自于两次穿过待测管道200的管壁回到管内的间接耦合信号,所以当检测线圈120的轴线平行于管壁法线方向时,信号灵敏度最高,但是其接收到的检测信号的信号强度不一定最高,因此,可以通过上述夹角来调整检测线圈120接收到的检测信号的信号强度,以调整的适合的灵敏度。
应当注意的是,针对以上描述的四种调节断丝检测检测的灵敏度的方式,在实际应用中,可以将以上各方式单独使用,也可将它们结合使用以得到最优的调节效果,各调节方式的编号仅为示例性的,并不代表对其选择的优先性顺序。
参见图11,图11为使用本申请实施例提供的断丝检测设备100得到的双层缠绕预应力钢丝管道200的检测结果图;其中,图中的横坐标为测量位置相对于待测管道200所附接的插口的距离,图中的纵坐标为测试信号和作为对照的标准信号的相位,其中靠下的曲线410对应于完好管道(即标准信号),靠上的曲线420对应于断丝管道(即测试信号)。从图中可以看出,虚线区域430,测试信号和标准信号出现了明显的相位差,由此可以判断出在该区域出现了断丝的情况。
此外,本申请实施例中,激励线圈110的中心与检测线圈120的中心可以位于待测管道200的同一横截面上(如图3所示),也可以位于不同横截面(如图5所示)。其中,当激励线圈110和检测线圈120的中心位于待测管道200的不同横截面时,能够在待测管道200中有更大的检测范围,从而本申请提供的断丝检测设备100在检测时更加灵活,操作人员能够根据其不同的检测需求设置激励线圈110和检测线圈120的相对位置。
在上述方案中,激励线圈110的轴线与待测管道200的轴线平行,检测线圈120的轴线与待测管道200的轴线垂直,激励线圈110根据交变电磁信号产生交变磁场的方向简单,待测管道200中设置的检测线圈120能够接收到强度较高的检测信号,有利于提高信噪比,从而对于待测管道200断丝区域较多的情况,能够提高识别断丝情况的准确度。
请参看图8,断丝检测设备100中可以集成有电磁信号发生器140,电磁信号发生器140的信号输出端与激励线圈110电连接;电磁信号发生器140,用于产生交变电磁信号。例如,该电磁信号发生器140可以采用输出电压为20-40V,频率30-80Hz的标准DDS正弦信号发生器。其中,可以采 用直接通过手动打开电磁信号发生器140开关产生交变电磁信号的方式,还可以采用处理器130控制电磁信号发生器140产生交变电磁信号的方式,在后一种方式中,处理器130与电磁信号发生器140的控制端电连接;处理器130控制电磁信号发生器140产生交变电磁信号,该交变电磁信号可以为正弦信号,也可以为余弦信号,交变电磁信号具有稳定的幅值和频率。
应理解,断丝检测设备100也可以不集成电磁信号发生器140,而是从外部的电磁信号发生器140接收交变电磁信号。
作为一种可实施的方式,断丝检测设备100还包括存储器,存储器用于存储标准信号以及检测线圈120产生的检测信号;处理器130具体用于从存储器获取标准信号以及检测信号,根据检测信号以及标准信号获取待测管道200的断丝情况。在本实施方式中,通过存储器存储检测信号,处理器130再从存储器中读取检测信号进行处理,可以缓解处理器130的运算压力。另外,处理器130也可以将处理结果存储在存储器中保存。
可选的,该断丝检测设备100还可以包括显示器,显示器与处理器130电连接,当处理器130得到处理结果后,显示器将处理结果显示出来,便于工作人员直观的进行查看最终的检测结果。其中,显示器可以不集成在断丝检测设备100中,而是与断丝检测设备100远程连接,以实现对断丝检测的结果进行远程判断。
可选的,该设备还可以包括通信模块,通信模块与处理器130电连接,当处理器130得到处理结果后,可以通过通信模块将处理结果发送至远程用户终端,实现远程查看检测结果或者进行存储检测结果的操作,该通信模块可以为无线通信模块或者有线通信模块。其中,当该模块为无线通信模块时,可选地,该无线通信模块可以选用各种现有技术中的适合通信模块,并可以通过移动通信网络使用TDM、FSK等协议与远程客户终端通信,也可以采用物联网(IoT)领域的常用协议,例如Zigbee、Bluetooth等。需要说明的是,出于方便说明的目的,在本申请的说明书和附图中,将各管道均视作一结构简单的管道而不将其具体结构详细示出。可以理解,如图10所示,在实际工程当中,各管道实际具有多层不同材料的结构,包括钢筒内侧结构混凝土210、钢筒250、钢筒外侧结构混凝土220、外层预应力钢丝230、内层预应力钢丝240、砂浆保护层260、纵向加固碳纤维布300、环向加固碳纤维布310等。此外,管道上还设置有各种构件,如插口钢环270、承口钢环275、止水橡胶280、预应力钢丝锚具290等,在此不一一赘述。本领域技术人员应当理解,本文所述的“管道”包括各种在工程中常用的混凝土管,在此不一一列出。
基于同一发明构思,本申请还提供了一种断丝检测方法,请参看图12,方法包括如下步骤:
步骤S110:向激励线圈输入交变电磁信号,以使激励线圈根据交变电磁信号产生交变磁场;其中,激励线圈与检测线圈分别位于待测管道内壁 的纵剖面两侧,其中,待测管道逐环向形成有导电闭合结构,激励线圈的轴线与待测管道的轴线平行,检测线圈的轴线与待测管道的轴线垂直,处于交变磁场中的待测管道产生感应电流以及感应电流的电磁场。
步骤S120:接收检测线圈根据交变磁场以及电磁场产生的检测信号;对检测信号以及标准信号进行比对,并根据比对结果确定待测管道的断丝情况。
可选地,在对检测信号以及标准信号进行比对,并根据比对结果确定待测管道的断丝情况之前,还包括:
向设置于标准管道内的激励线圈输入交变电磁信号,其中,激励线圈和检测线圈分别位于标准管道内壁的纵剖面两侧,标准管道逐环向形成有导电闭合结构且导电闭合结构无断丝,激励线圈以及检测线圈在标准管道内的位置与在待测管道内的位置一致。
接收检测线圈产生的信号作为标准信号。
可选地,对检测信号以及标准信号进行比对,并根据比对结果确定待测管道的断丝情况之前,还包括:
获取激励线圈和检测线圈的参数、交变电磁信号的参数以及待测管道的参数;
根据待测管道的参数构建待测管道仿真模型;
根据激励线圈和检测线圈的参数以及交变电磁信号的参数对待测管道仿真模型进行仿真,根据仿真结果确定标准信号。
可选地,在向激励线圈输入交变电磁信号之前,还包括:
向设置于实验管道内的激励线圈输入不同的测试交变电磁信号;其中,激励线圈与检测线圈分别位于实验管道内壁的纵剖面两侧,实验管道逐环向形成有导电闭合结构且导电闭合结构的断丝情况已知,激励线圈以及检测线圈在实验管道内的位置与在待测管道内的位置一致;
接收检测线圈产生的多个测试信号;
分别将多个测试信号与标准信号进行比对,并根据比对结果确定每个测试信号对应的实验管道的断丝情况;
当断丝情况与实验管道的断丝情况相同时,确定该测试信号对应的测试交变电磁信号为向激励线圈输入的交变电磁信号。
可选地,在向激励线圈输入交变电磁信号之前,方法还包括:根据待测管道的型号以及预建立的管道型号与线圈中心间轴向距离映射关系,确定用于检测待测管道的激励线圈的中心与检测线圈的中心之间的轴向距离。
可选地,对检测信号以及标准信号进行比对,并根据比对结果确定待测管道的断丝情况,包括:
控制设置激励线圈与检测线圈的固定件在待测管道内轴向移动,对移动至的每一位置处检测的检测信号与标准信号进行比对,根据比对结果确 定当前移动至的位置的断丝情况,其中,在轴向移动过程中,激励线圈与检测线圈在固定件上的相对位置固定。
综上所述,本申请提供了一种断丝检测设备及方法,设备包括激励线圈、检测线圈以及处理器;处理器的检测信号输入端与检测线圈连接;激励线圈与检测线圈位于待测管道内壁处,其中,待测管道缠绕有预应力金属丝,激励线圈的轴线与待测管道的轴线平行,检测线圈的轴线与待测管道的轴线垂直;激励线圈,用于根据交变电磁信号产生交变磁场,其中,处于交变磁场中的待测管道产生感应电流以及感应电流的电磁场;检测线圈,用于根据交变磁场以及电磁场产生检测信号;处理器,用于根据检测信号以及标准信号获取待测管道的断丝情况。激励线圈的轴线与待测管道的轴线平行,检测线圈的轴线与待测管道的轴线垂直,激励线圈根据交变电磁信号产生交变磁场方向简单,待测管道中设置的检测线圈能够接收到强度较高的检测信号,有利于提高信噪比,从而对于待测管道断丝区域较多的情况,能够提高识别断丝情况的准确度。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本申请提供了一种断丝检测设备,能够有效改善现有技术中判断断丝情况准确度较低的技术问题。

Claims (15)

  1. 一种断丝检测设备,其特征在于,用于检测待测管道中逐环向形成的导电闭合结构的断丝情况;所述设备包括激励线圈、检测线圈以及处理器;所述处理器的检测信号输入端与所述检测线圈连接;
    所述激励线圈与所述检测线圈分别位于所述待测管道内壁的纵剖面两侧,其中,所述激励线圈的轴线与所述待测管道的轴线平行,所述检测线圈的轴线与所述待测管道的轴线垂直;
    所述激励线圈,用于根据交变电磁信号产生交变磁场,其中,处于所述交变磁场中的所述待测管道产生感应电流以及所述感应电流的电磁场;
    所述检测线圈,用于根据所述交变磁场以及所述电磁场产生检测信号;
    所述处理器,用于对所述检测信号以及标准信号进行比对,并根据比对结果确定所述导电闭合结构的断丝情况。
  2. 根据权利要求2所述的设备,其特征在于,所述导电闭合结构由金属丝、碳纤维、导电橡胶或导电塑料等导电材料形成,还包括双层或多层导电材料形成的环向闭合结构。
  3. 根据权利要求1或2所述的设备,其特征在于,所述设备还包括电磁信号发生器,其信号输出端与所述激励线圈连接,用于产生所述交变电磁信号。
  4. 根据权利要求1至3中任一项所述的设备,其特征在于,所述激励线圈与所述检测线圈设置于一固定件上,所述固定件在所述待测管道内轴向移动,其中,在轴向移动过程中,所述激励线圈与所述检测线圈在所述固定件上的相对位置固定,从而在移动过程中所述检测线圈能够不断地生成检测信号。
  5. 根据权利要求1至4中任一项所述的设备,其特征在于,所述激励线圈的轴线与所述待测管道的轴线平行,所述检测线圈的轴线与所述待测管道的轴线垂直。
  6. 根据权利要求1至5中任一项所述的设备,其特征在于,所述断丝检测设备集成有电磁信号发生器,所述电磁信号发生器的信号输出端与所述激励线圈连接,所述电磁信号发生器,配置为产生交变电磁信号。
  7. 根据权利要求1至6中任一项所述的设备,其特征在于,所述处理器与所述电磁信号发生器的控制端连接;
    所述处理器,还用于控制所述电磁信号发生器产生交变电磁信号。
  8. 根据权利要求7所述的设备,其特征在于,所述处理器配置为从存储器获取所述标准信号以及所述检测信号,根据所述检测信号以及所述标准信号获取所述待测管道的断丝情况。
  9. 根据权利要求1至8中任一项所述的设备,其特征在于,所述设备包括屏蔽器,所述屏蔽器设置于所述检测线圈与所述激励线圈之间。
  10. 一种断丝检测方法,其特征在于,所述方法包括:
    向激励线圈输入交变电磁信号,以使所述激励线圈根据交变电磁信号产生交变磁场;其中,所述激励线圈与检测线圈分别位于待测管道内壁的纵剖面两侧,其中,所述待测管道逐环向形成有导电闭合结构,所述激励线圈的轴线与所述待测管道的轴线平行,所述检测线圈的轴线与所述待测管道的轴线垂直,处于所述交变磁场中的所述待测管道产生感应电流以及所述感应电流的电磁场;
    接收所述检测线圈根据所述交变磁场以及所述电磁场产生的检测信号;
    对所述检测信号以及标准信号进行比对,并根据比对结果确定所述导电闭合结构的断丝情况。
  11. 根据权利要求10所述的方法,其特征在于,在所述对所述检测信号以及标准信号进行比对,并根据比对结果确定所述待测管道的断丝情况之前,还包括:
    向设置于标准管道内的激励线圈输入交变电磁信号,其中,所述激励线圈与检测线圈分别位于所述标准管道内壁的纵剖面两侧,所述标准管道逐环向形成有导电闭合结构且所述导电闭合结构无断丝,所述激励线圈以及所述检测线圈在所述标准管道内的位置与在所述待测管道内的位置一致;
    接收所述检测线圈产生的信号作为所述标准信号。
  12. 根据权利要求10或11所述的方法,其特征在于,所述对所述检测信号以及标准信号进行比对,并根据比对结果确定所述待测管道的断丝情况之前,还包括:
    获取所述激励线圈和所述检测线圈的参数、所述交变电磁信号的参数以及所述待测管道的参数;
    根据所述待测管道的参数构建待测管道仿真模型;
    根据所述激励线圈和所述检测线圈的参数以及所述交变电磁信号的参数对所述待测管道仿真模型进行仿真,根据仿真结果确定所述标准信号。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,在所述向激励线圈输入交变电磁信号之前,还包括:
    向设置于实验管道内的所述激励线圈输入不同的测试交变电磁信号;其中,所述激励线圈与检测线圈分别位于所述实验管道内壁的纵剖面两侧,所述实验管道逐环向形成有导电闭合结构且所述导电闭合结构的断丝情况已知,所述激励线圈以及所述检测线圈在所述实验管道内的位置与在所述待测管道内的位置一致;
    接收所述检测线圈产生的多个测试信号;
    分别将多个测试信号与标准信号进行比对,并根据比对结果确定每个测试信号对应的所述实验管道的断丝情况;
    当断丝情况与所述实验管道的断丝情况相同时,确定该测试信号对应 的测试交变电磁信号为向所述激励线圈输入的交变电磁信号。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,在所述向激励线圈输入交变电磁信号之前,所述方法还包括:
    根据所述待测管道的型号以及预建立的管道型号与线圈中心间轴向距离映射关系,确定用于检测所述待测管道的所述激励线圈的中心与所述检测线圈的中心之间的轴向距离。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述对所述检测信号以及标准信号进行比对,并根据比对结果确定所述待测管道的断丝情况,包括:
    控制设置所述激励线圈与所述检测线圈的固定件在所述待测管道内轴向移动,对移动至的每一位置处检测的检测信号与标准信号进行比对,根据比对结果确定当前移动至的位置的断丝情况,其中,在轴向移动过程中,所述激励线圈与所述检测线圈在所述固定件上的相对位置固定。
PCT/CN2020/082583 2020-02-28 2020-03-31 一种断丝检测设备及方法 WO2021168986A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/426,768 US11796507B2 (en) 2020-02-28 2020-03-31 Device and method for detecting wire breakage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010134251.4A CN111272862B (zh) 2020-02-28 2020-02-28 一种断丝检测设备及方法
CN202010134251.4 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021168986A1 true WO2021168986A1 (zh) 2021-09-02

Family

ID=71003721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082583 WO2021168986A1 (zh) 2020-02-28 2020-03-31 一种断丝检测设备及方法

Country Status (3)

Country Link
US (1) US11796507B2 (zh)
CN (1) CN111272862B (zh)
WO (1) WO2021168986A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116539668A (zh) * 2023-07-06 2023-08-04 北京洞微科技发展有限公司 一种钢轨铝热焊接质量检测装置及方法
WO2024100059A1 (de) * 2022-11-07 2024-05-16 Rosen Ip Ag Inspektionsvorrichtung zur untersuchung des kathodenschutzes sowie verfahren hierzu

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040189289A1 (en) * 2003-03-25 2004-09-30 Atherton David L. Method for testing prestressed concrete pipes
CN109299542A (zh) * 2018-09-25 2019-02-01 中国水利水电科学研究院 基于现场检测与数值仿真相结合的pccp管道断丝的检测方法
CN109506077A (zh) * 2018-12-21 2019-03-22 苏州经贸职业技术学院 一种水下工况的pccp管道钢丝断丝检测装置
CN109958884A (zh) * 2019-04-04 2019-07-02 中国水利水电科学研究院 内衬型pccp管道断丝位置检测系统、方法及电子设备
CN110018228A (zh) * 2019-04-26 2019-07-16 中国水利水电科学研究院 埋置型pccp管道断丝位置检测系统、方法及装置
CN110346838A (zh) * 2019-06-18 2019-10-18 天津精仪精测科技有限公司 一种基于正交电磁原理的pccp管断丝检测设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2361813A1 (en) * 2001-01-29 2002-07-29 Peter O. Paulson Low frequency electromagnetic analysis of prestressed concrete tensioning strands
FR2881826A1 (fr) * 2005-02-04 2006-08-11 Commissariat Energie Atomique Procede de conception et de realisation d'un dispositif de controle a courants de foucault
MA41539A (fr) * 2015-11-25 2017-12-26 Vayyar Imaging Ltd Procédés et appareil de collocation de bobines électromagnétiques et de circuits électroniques
BR112018015243A2 (pt) * 2016-03-07 2018-12-18 Halliburton Energy Services Inc aparelho e sistema de ferramenta de inspeção, e, método para operar um aparelho de ferramenta de inspeção
CA2970509A1 (en) * 2016-09-01 2018-03-01 Maurice Bernard Dusseault System and method for detecting irregularities in rebar in reinforced concrete
US10012615B1 (en) * 2017-07-24 2018-07-03 1440814 Ontario Inc. Impedance probe for detecting breaks in prestressed concrete pipe
CN108956752A (zh) * 2018-05-22 2018-12-07 中国水利水电科学研究院 Pccp管道预应力钢丝断裂数量检测系统及方法
CN112253173B (zh) * 2020-10-21 2022-06-28 中国水利水电科学研究院 一种复杂环境隧洞自适应衬砌结构及施工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040189289A1 (en) * 2003-03-25 2004-09-30 Atherton David L. Method for testing prestressed concrete pipes
CN109299542A (zh) * 2018-09-25 2019-02-01 中国水利水电科学研究院 基于现场检测与数值仿真相结合的pccp管道断丝的检测方法
CN109506077A (zh) * 2018-12-21 2019-03-22 苏州经贸职业技术学院 一种水下工况的pccp管道钢丝断丝检测装置
CN109958884A (zh) * 2019-04-04 2019-07-02 中国水利水电科学研究院 内衬型pccp管道断丝位置检测系统、方法及电子设备
CN110018228A (zh) * 2019-04-26 2019-07-16 中国水利水电科学研究院 埋置型pccp管道断丝位置检测系统、方法及装置
CN110346838A (zh) * 2019-06-18 2019-10-18 天津精仪精测科技有限公司 一种基于正交电磁原理的pccp管断丝检测设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100059A1 (de) * 2022-11-07 2024-05-16 Rosen Ip Ag Inspektionsvorrichtung zur untersuchung des kathodenschutzes sowie verfahren hierzu
CN116539668A (zh) * 2023-07-06 2023-08-04 北京洞微科技发展有限公司 一种钢轨铝热焊接质量检测装置及方法
CN116539668B (zh) * 2023-07-06 2023-08-29 北京洞微科技发展有限公司 一种钢轨铝热焊接质量检测装置及方法

Also Published As

Publication number Publication date
US11796507B2 (en) 2023-10-24
CN111272862B (zh) 2022-06-24
US20220390415A1 (en) 2022-12-08
CN111272862A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
CN113153276B (zh) 铁磁性物体检测装置和检测油管接箍的方法
WO2021168986A1 (zh) 一种断丝检测设备及方法
US8165825B2 (en) Method for electromagnetically measuring physical parameters of a pipe
US9939546B2 (en) Detection method and detection device of buried metal
CN106596715A (zh) 一种阵列式瞬变电磁法多层管柱损伤检测系统及方法
CN108956752A (zh) Pccp管道预应力钢丝断裂数量检测系统及方法
CN104165923A (zh) 金属线材/管材无损探伤装置
CN111896611A (zh) Pccp管的电磁检测系统及检测方法
CN108442915B (zh) 油井距离的确定方法和装置
JPH1172481A (ja) 鉄筋破断検出器及び鉄筋破断検出方法
RU2382357C1 (ru) Интроскоп магнитный скважинный
CN205642245U (zh) 一种电缆敷设弯曲半径的检测装置
CN108982649B (zh) Pccp管道预应力钢丝断丝检测系统及方法
CN104062355B (zh) 涡流线圈中心校准装置及校准方法
Perry et al. Smart self-sensory TRC pipes—proof of concept
CN214887036U (zh) 铁磁性物体检测装置
CN212301419U (zh) 一种pccp管的电磁检测系统
CN209878668U (zh) 一种用于新型输水管道的探伤检测设备
CN211206377U (zh) 检测非铁磁性换热器管束缺陷的灵敏度标定样管
CN203640726U (zh) 一种瞬变电磁发射探头
CN103901099B (zh) 铁磁性锅炉钢管涡流自动检测装置及其方法
JPH0555833B2 (zh)
CN107102038B (zh) 基于等效串联电容测量的拉索锈蚀损伤检测系统及方法
CN114965672B (zh) 一种管道多节球形内检测器
JP4262609B2 (ja) 磁歪感度較正方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922013

Country of ref document: EP

Kind code of ref document: A1