WO2021168897A1 - 减振装置和方法 - Google Patents

减振装置和方法 Download PDF

Info

Publication number
WO2021168897A1
WO2021168897A1 PCT/CN2020/078162 CN2020078162W WO2021168897A1 WO 2021168897 A1 WO2021168897 A1 WO 2021168897A1 CN 2020078162 W CN2020078162 W CN 2020078162W WO 2021168897 A1 WO2021168897 A1 WO 2021168897A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
signal
acceleration
damping
voltage signal
Prior art date
Application number
PCT/CN2020/078162
Other languages
English (en)
French (fr)
Inventor
郑亚军
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021168897A1 publication Critical patent/WO2021168897A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means

Definitions

  • the invention relates to the technical field of precision control, in particular to a vibration damping device and method.
  • the commonly used vibration reduction technologies include structural optimization and vibration source control. These methods will bring about cost increase and performance sacrifice. Moreover, these methods are all static optimization methods with large limitations in applicable conditions and limited effects. Therefore, it is necessary to propose an efficient and low-cost method and device for damping vibration, which can be widely used in numerous precision control application fields.
  • the invention provides a vibration damping device and method, which generates a vibration damping voltage signal through active vibration monitoring of a vibration source, and realizes an efficient and accurate vibration damping effect.
  • the present invention provides a vibration damping device, which includes:
  • An acceleration sensor, a signal processing system, and a shock absorber where the signal processing system and the acceleration sensor and the shock absorber are respectively connected in communication through a data line;
  • the acceleration sensor is used to collect an acceleration signal generated by a vibration source; the acceleration signal is transmitted to the signal processing system through a data line;
  • the signal processing system is used to process the acceleration signal to obtain a damping voltage signal; the damping voltage signal is used to drive the shock absorber to vibrate; the damping voltage signal is transmitted through the data line Give the shock absorber;
  • the vibration absorber receives the vibration reduction voltage signal and generates vibration according to the vibration reduction voltage signal to achieve vibration reduction.
  • the vibration damping device and the vibration source are fixed on the same installation platform.
  • the acceleration sensor and the vibration source are fixed on the same installation platform.
  • the shock absorber is a linear motor.
  • the present invention also provides a vibration reduction method, which is applied to the aforementioned vibration reduction device to achieve a vibration reduction effect, and the method includes:
  • Step S10 Collect the acceleration signal of the acceleration sensor, and send the acceleration signal to the signal processing system;
  • Step S20 processing the acceleration signal by the signal processing system to obtain a vibration damping voltage signal
  • Step S30 output the vibration damping voltage signal to the vibration damper, where the vibration damping voltage signal is used to drive the vibration damper to vibrate.
  • step S20 includes:
  • Step S210 The signal processing system receives the acceleration signal to obtain an acceleration signal value
  • Step S220 Invert the acceleration signal value to obtain a reverse acceleration signal value
  • Step S230 According to the reverse acceleration signal value, the vibration reduction voltage signal is obtained by solving the structural system model.
  • the acceleration sensor is used to collect an acceleration signal generated by a vibration source, and the damping voltage signal is used to drive the vibration damper to generate an acceleration in a direction opposite to that of the acceleration generated by the vibration source.
  • the vibration reduction device and method provided by the present invention accurately record the vibration movement state of the vibration source through active vibration monitoring of the vibration source, and perform the vibration reduction voltage based on the vibration movement state of the vibration source.
  • the signal generation can achieve high-efficiency and accurate damping effects.
  • Figure 1 is a schematic diagram of the deployment of a vibration damping device provided by an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a vibration reduction method provided by an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of step S20 in FIG. 2;
  • Fig. 4 is a schematic diagram of vibration when the vibration damping device in Fig. 1 is not turned on;
  • Fig. 5 is a schematic diagram of the vibration of the vibration damping device in Fig. 1 in an open state.
  • the vibration damping device 10 includes an acceleration sensor 11, a signal processing system 12, and a shock absorber 13, and the signal processing system 12 is in communication connection with the acceleration sensor 11 and the shock absorber 13 through data lines;
  • the acceleration sensor 11 is used to collect the acceleration signal generated by the vibration source 20; the acceleration signal is transmitted to the signal processing system 12 through a data line; the signal processing system 12 is used to process the acceleration signal to obtain The damping voltage signal; the damping voltage signal is used to drive the shock absorber 13 to vibrate; the damping voltage signal is transmitted to the shock absorber 13 through the data line; the shock absorber 13 Receiving the damping voltage signal and generating vibration according to the damping voltage signal to achieve vibration reduction.
  • the communication connection of the data line may also include a standard wired or wireless (such as WI-FI) connection.
  • the acceleration sensor 11 is installed near the vibration source 20 and fixed on the same installation platform 1. The acceleration sensor 11 is used to collect the acceleration signal generated by the vibration source 20; when the acceleration sensor 11 collects the When the vibration state of the vibration source 20 is recorded, the vibration state of the vibration source 20 is accurately recorded.
  • the signal processing system 12 is used to process the acceleration signal to obtain the damping voltage signal.
  • the damping voltage signal is sent to the damper 13, and the damping voltage signal is used to drive the damper to vibrate.
  • the damper 13 is a linear motor that generates directional vibration.
  • the damper 13 and the vibration source 20 is fixed on the same installation platform 1, and the vibration damping voltage signal drives the vibration damper 13 to generate directional vibration.
  • the present invention also provides a vibration damping method, which is applied to the above-mentioned vibration damping device to achieve a vibration damping effect, and the method includes:
  • Step S10 Collect the acceleration signal of the acceleration sensor and send the acceleration signal to the signal processing system; specifically, the acceleration sensor senses the vibration of the vibration source to obtain the acceleration signal of the vibration source.
  • the vibration source is fixed on the same installation platform, so that the acceleration sensor can sense the vibration of the vibration source.
  • Step S20 Process the acceleration signal by the signal processing system to obtain a vibration damping voltage signal.
  • the step S20 includes:
  • Step S210 The signal processing system receives the acceleration signal to obtain an acceleration signal value
  • Step S220 Invert the acceleration signal value to obtain a reverse acceleration signal value
  • Step S230 According to the reverse acceleration signal value, the vibration reduction voltage signal is obtained by solving the structural system model.
  • the structural system model is a numerical model that characterizes a real vibration system, and the model includes one of mathematical expressions and numerical values.
  • the mathematical expression is derived from the differential equation of motion of the vibration system; the value establishes a corresponding characterization system according to the input and output of the vibration system.
  • the acceleration signal is used as the input of the structural system model, and the vibration reduction voltage signal is obtained after calculation by the structural system model.
  • Step S30 output the damping voltage signal to a vibration damper, where the damping voltage signal is used to drive the vibration damper to vibrate.
  • the vibration generated by the vibration source excitation of the vibration source 20 is the original vibration, which is relatively severe and has no vibration damping effect.
  • the vibration reduction device 10 is turned on, the vibration generated by the excitation of the vibration source 20 is collected by the acceleration sensor 11 and transmitted to the signal processing system 12 for processing to generate a vibration reduction voltage signal, which drives The shock absorber 13 generates directional vibration, and the directional vibration is a vibration damping excitation, and the magnitude is the same as the vibration of the vibration source 20, but the direction is opposite. Therefore, an efficient and accurate vibration damping effect can be achieved.
  • the vibration reduction device and method provided by the present invention accurately record the vibration movement state of the vibration source through active vibration monitoring of the vibration source, and perform the vibration reduction voltage based on the vibration movement state of the vibration source.
  • the signal generation can achieve high-efficiency and accurate damping effect; at the same time, only need to increase the damping device to achieve high-efficiency and accurate damping effect, simple deployment and low cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种减振装置(10),包括:加速度传感器(11)、信号处理系统(12)和减振器(13),信号处理系统(12)与加速度传感器(11)、减振器(13)分别通过数据线进行通信连接;加速度传感器(11)用于采集由振源产生的加速度信号;信号处理系统(12)用于对加速度信号进行处理,以得到减振电压信号;减振电压信号用于驱动所述减振器(13)振动。还包括应用减振装置(10)的减振方法。该减振装置和方法,通过对振源的主动振动监控,准确的记录振源的振动运动状态,基于所述振源的振动运动状态,进行减振电压信号的生成,从而能够实现高效精确的减振效果。

Description

减振装置和方法 技术领域
本发明涉及精密控制技术领域,尤其涉及一种减振装置和方法。
背景技术
从工业生产到大众用户日常应用,精密控制应用需求越来越广。精密控制的实现对设备平台提出了较高的稳定要求,所以减振技术的应用及创新备受关注。大到工业生产的机床的减振需求,小到普通用户的稳定摄影设备的减振需求,都对精密控制技术提出很大的挑战。
目前常用的减振技术,包括结构优化,振源控制两个方面着手,这些方式会带来成本增加及性能牺牲的问题。且这些方式都属于一种静态的优化方式,适用条件局限性大,且效果有限。因此,有必要提出一种高效的低成本的减振的方法和装置,能够在众多的精密控制应用领域中广泛应用。
技术问题
本发明提供一种减振装置和方法,通过对振源的主动振动监控生成减振电压信号,实现高效精确的减振效果。
技术解决方案
本发明提供一种减振装置,所述减振装置包括:
加速度传感器、信号处理系统和减振器,所述信号处理系统与所述加速度传感器、所述减振器分别通过数据线进行通信连接;
所述加速度传感器用于采集由振源产生的加速度信号;所述加速度信号通过数据线传送给所述信号处理系统;
所述信号处理系统用于对所述加速度信号进行处理,以得到减振电压信号;所述减振电压信号用于驱动所述减振器振动;所述减振电压信号通过所述数据线传送给所述减振器;
所述减振器接收所述减振电压信号并根据所述减振电压信号产生振动实现减振。
优选地,所述减振装置与所述振源固定于相同的安装平台。
优选地,所述加速度传感器与所述振源固定于相同的安装平台。
优选地,所述减振器为线性电机。
本发明同时提供一种减振方法,所述减振方法应用于上述的减振装置,以实现减振效果,所述方法包括:
步骤S10:采集所述加速度传感器的加速度信号,并将所述加速度信号发送至所述信号处理系统;
步骤S20:通过所述信号处理系统对所述加速度信号进行处理,以得到减振电压信号;
步骤S30:将所述减振电压信号输出至所述减振器,所述减振电压信号用于驱动所述减振器振动。
进一步地,所述步骤S20包括:
步骤S210:所述信号处理系统接收所述加速度信号,以获得加速度信号值;
步骤S220:对所述加速度信号值取反,得到反向加速度信号值;
步骤S230:根据所述反向加速度信号值通过结构系统模型求解得到所述减振电压信号。
进一步地,所述加速度传感器用于采集由振源产生的加速度信号,所述减振电压信号用于驱动所述减振器振动时产生的加速度与所述振源产生的加速度的方向相反。
有益效果
与现有技术相比,本发明提供的减振装置和方法,通过对振源的主动振动监控,准确的记录振源的振动运动状态,基于所述振源的振动运动状态,进行减振电压信号的生成,从而能够实现高效精确的减振效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明一实施例提供的减振装置的部署示意图;
图2为本发明一实施例提供的减振方法的流程示意图;
图3为图2中步骤S20的流程示意图;
图4为图1中减振装置未开启时的振动示意图;
图5为图1中减振装置开启状态的振动示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种减振装置10,所述减振装置10与振源20固定安装于相同的安装平台1上。所述减振装置10包括加速度传感器11、信号处理系统12和减振器13,所述信号处理系统12与所述加速度传感器11、所述减振器13分别通过数据线进行通信连接;所述加速度传感器11用于采集由振源20产生的加速度信号;所述加速度信号由通过数据线传送给所述信号处理系统12;所述信号处理系统12用于对所述加速度信号进行处理,以得到所述减振电压信号;所述减振电压信号用于驱动所述减振器13振动;所述减振电压信号通过所述数据线传送给所述减振器13;所述减振器13接收所述减振电压信号并根据所述减振电压信号产生振动实现减振。在其他实施例中,所述数据线进行通信连接也可以包括标准的有线、无线(如WI-FI)连接。所述加速度传感器11安装于所述振源20附近并固定于相同的安装平台1上,所述加速度传感器11用于采集由振源20产生的加速度信号;当所述加速度传感器11收集到所述振源20的振动状态时,准确记录所述振源20的振动状态。
所述信号处理系统12用于对所述加速度信号进行处理,以得到所述减振电压信号。
所述减振电压信号发送给减振器13,所述减振电压信号用于驱动所述减振器振动,所述减振器13为产生定向振动的线性电机,减振器13与振源20固定于相同的安装平台1,所述减振电压信号驱动所述减振器13产生定向振动。
请参阅图2,本发明同时提供一种减振方法,所述减振方法应用于上述的减振装置,以实现减振效果,所述方法包括:
步骤S10:采集加速度传感器的加速度信号,并将所述加速度信号发送至信号处理系统;具体地,所述加速度传感器感应振源的振动而获取所述振源的加速度信号,所述加速度传感器与所述振源固定于同一安装平台,使所述加速度传感器能够感应所述振源的振动。
步骤S20:通过所述信号处理系统对所述加速度信号进行处理,以得到减振电压信号。
请参阅图3,具体地,所述步骤S20包括:
步骤S210:所述信号处理系统接收所述加速度信号,以获得加速度信号值;
步骤S220:对所述加速度信号值取反,得到反向加速度信号值;
步骤S230:根据所述反向加速度信号值通过结构系统模型求解得到所述减振电压信号。
具体地,所述结构系统模型是一种表征真实振动系统的数值模型,该模型包括有数学表达式和数值中的一种。其中,所述数学表达式根据振动系统运动微分方程推导得到;所述数值根据振动系统的输入与输出建立对应的表征系统。通过将加速度信号作为所述结构系统模型的输入,通过所述结构系统模型计算后,得到所述减振电压信号。
步骤S30:将所述减振电压信号输出至减振器,所述减振电压信号用于驱动所述减振器振动。
请一并参阅图4和图5,当所述减振装置10未开启时,振源20的振源激励产生的振动为原始振动,相对振动剧烈,没有减振效果。当所述减振装置10开启时,振源20的振源激励产生的振动,由所述加速度传感器11采集传送给信号处理系统12进行处理,生成减振电压信号,所述减振电压信号驱动减振器13产生定向振动,所述定向振动为减振激励,大小与振源20的振动相同,但方向相反,因此可以实现高效精确的减振效果。
与现有技术相比,本发明提供的减振装置和方法,通过对振源的主动振动监控,准确的记录振源的振动运动状态,基于所述振源的振动运动状态,进行减振电压信号的生成,从而能够实现高效精确的减振效果;同时,只需要增加减振装置即可以实现高效精确的减振效果,部署简单、成本低。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (7)

  1. 一种减振装置,其特征在于,所述减振装置包括:
    加速度传感器、信号处理系统和减振器,所述信号处理系统与所述加速度传感器、所述减振器分别通过数据线进行通信连接;
    所述加速度传感器用于采集由振源产生的加速度信号;所述加速度信号通过数据线传送给所述信号处理系统;
    所述信号处理系统用于对加速度信号进行处理,以得到减振电压信号;所述减振电压信号用于驱动所述减振器振动;所述减振电压信号通过所述数据线传送给所述减振器;
    所述减振器接收所述减振电压信号并根据所述减振电压信号产生振动实现减振。
  2. 根据权利要求1所述的减振装置,其特征在于,所述减振装置与所述振源固定于相同的安装平台。
  3. 根据权利要求1所述的减振装置,其特征在于,所述加速度传感器与所述振源固定于相同的安装平台。
  4. 根据权利要求1所述的减振装置,其特征在于,所述减振器为线性电机。
  5. 一种减振方法,应用于权利要求1至4任一项所述的减振装置实现减振效果,其特征在于,所述方法包括:
    步骤S10:采集所述加速度传感器的加速度信号,并将所述加速度信号发送至所述信号处理系统;
    步骤S20:通过所述信号处理系统对所述加速度信号进行处理,以得到减振电压信号;
    步骤S30:将所述减振电压信号输出至所述减振器,所述减振电压信号用于驱动所述减振器振动。
  6. 根据权利要求5所述的减振方法,其特征在于,所述步骤S20包括:
    步骤S210:所述信号处理系统接收所述加速度信号,以获得加速度信号值;
    步骤S220:对所述加速度信号值取反,得到反向加速度信号值;
    步骤S230:根据所述反向加速度信号值通过结构系统模型求解得到所述减振电压信号。
  7. 根据权利要求6所述的减振方法,其特征在于,所述加速度传感器用于采集由振源产生的加速度信号,所述减振电压信号用于驱动所述减振器振动时产生的加速度与所述振源产生的加速度的方向相反。
PCT/CN2020/078162 2020-02-24 2020-03-06 减振装置和方法 WO2021168897A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010112488.2A CN111309067A (zh) 2020-02-24 2020-02-24 减振装置和方法
CN202010112488.2 2020-02-24

Publications (1)

Publication Number Publication Date
WO2021168897A1 true WO2021168897A1 (zh) 2021-09-02

Family

ID=71149148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078162 WO2021168897A1 (zh) 2020-02-24 2020-03-06 减振装置和方法

Country Status (2)

Country Link
CN (1) CN111309067A (zh)
WO (1) WO2021168897A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB704224A (en) * 1952-03-17 1954-02-17 Erie Mining Co Improvements in or relating to the production of indurated pellets of finely dividedore material
CN103867633A (zh) * 2014-04-02 2014-06-18 苏州泰斯特测控科技有限公司 新型动力吸振方法及系统
CN107061613A (zh) * 2017-05-03 2017-08-18 武汉理工大学 多维主动控制减振装置和方法
CN110259877A (zh) * 2019-05-22 2019-09-20 长安大学 一种复合型动力吸振器及其控制方法
CN110439959A (zh) * 2019-07-30 2019-11-12 珠海格力电器股份有限公司 一种机器人及其振动抑制方法
CN110486562A (zh) * 2019-08-26 2019-11-22 浙江工业大学 一种管道振动主动控制装置
CN110745187A (zh) * 2019-11-29 2020-02-04 江苏徐工工程机械研究院有限公司 车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039299A1 (ja) * 2010-09-24 2012-03-29 シンフォニアテクノロジー株式会社 アクティブ制振装置、車両、アクティブ制振装置の制御方法
CN106774486B (zh) * 2016-12-08 2018-06-08 天津理工大学 一种可实现变刚度的强非线性吸振器
CN107357326B (zh) * 2017-06-21 2019-10-18 西安电子科技大学 一种冲击振动主被动复合控制稳定平台及稳定控制方法
CN207867360U (zh) * 2017-12-08 2018-09-14 北京海月星科技有限公司 一种减振装置
CN207968276U (zh) * 2018-02-11 2018-10-12 瑞声科技(新加坡)有限公司 振动电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB704224A (en) * 1952-03-17 1954-02-17 Erie Mining Co Improvements in or relating to the production of indurated pellets of finely dividedore material
CN103867633A (zh) * 2014-04-02 2014-06-18 苏州泰斯特测控科技有限公司 新型动力吸振方法及系统
CN107061613A (zh) * 2017-05-03 2017-08-18 武汉理工大学 多维主动控制减振装置和方法
CN110259877A (zh) * 2019-05-22 2019-09-20 长安大学 一种复合型动力吸振器及其控制方法
CN110439959A (zh) * 2019-07-30 2019-11-12 珠海格力电器股份有限公司 一种机器人及其振动抑制方法
CN110486562A (zh) * 2019-08-26 2019-11-22 浙江工业大学 一种管道振动主动控制装置
CN110745187A (zh) * 2019-11-29 2020-02-04 江苏徐工工程机械研究院有限公司 车辆

Also Published As

Publication number Publication date
CN111309067A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
CN102638736B (zh) 扬声器输出的控制
US20190222939A1 (en) Nonlinear control of vented box or passive radiator loudspeaker systems
CN1951148B (zh) 用于限制扬声器位移的系统
JP5744795B2 (ja) CANとModbusとの相互通信を支援するゲートウェイ装置の通信方法及びこれを利用したゲートウェイ装置
JP4802839B2 (ja) アクティブ制振装置及びアクティブ制振装置の制御方法
CN204948356U (zh) 用于检测扬声器振动位移的结构和声电互转的双效装置
Kim Lumped element modeling of a flexible manipulator system
JP2007285429A (ja) アクティブ制振装置及びアクティブ制振装置の制御方法
CN103506299A (zh) 一种自动追踪固频的振动激励方法与装置
JPWO2011101897A1 (ja) 並列駆動システム
CN105242678A (zh) 一种舵机抖动抑制电路及舵机系统
WO2021168897A1 (zh) 减振装置和方法
TW202010239A (zh) 線性振動馬達的控制系統及振動控制方法
JP4516053B2 (ja) 制御装置
Yan et al. Adaptive control of MEMS gyroscope based on global terminal sliding mode controller
JP2018005729A (ja) サーボ制御装置、サーボ制御方法、及びサーボ制御用プログラム
CN1654173B (zh) 利用加速计控制振动的方法和设备
JP2005063362A (ja) サーボ制御装置
JP2005512828A5 (zh)
CN102799125B (zh) 一种抑制磁力轴承系统高频振荡的控制方法及系统
Van Amerongen The role of control in mechatronics
Hosaka et al. Vibration control of flexible arm by multiple observer structure
JPH01289644A (ja) 駆動装置
JP2005073476A (ja) 機械の特性抽出方法
반발력 et al. Input-shaping methods for a linear motor motion stage with a passive RFC (reaction force compensation) mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921156

Country of ref document: EP

Kind code of ref document: A1