WO2021168853A1 - 一种dfb激光器 - Google Patents

一种dfb激光器 Download PDF

Info

Publication number
WO2021168853A1
WO2021168853A1 PCT/CN2020/077334 CN2020077334W WO2021168853A1 WO 2021168853 A1 WO2021168853 A1 WO 2021168853A1 CN 2020077334 W CN2020077334 W CN 2020077334W WO 2021168853 A1 WO2021168853 A1 WO 2021168853A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
layer
grating
cavity
substrate
Prior art date
Application number
PCT/CN2020/077334
Other languages
English (en)
French (fr)
Inventor
陈宏民
曹通
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080078384.2A priority Critical patent/CN114731025A/zh
Priority to PCT/CN2020/077334 priority patent/WO2021168853A1/zh
Publication of WO2021168853A1 publication Critical patent/WO2021168853A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Definitions

  • This application relates to the field of lasers, and in particular to a DFB laser.
  • EML Electro-absorption Modulated Laser
  • DFB Distributed Feedback
  • DML Directly Modulated Laser
  • EML Electro-absorption Modulated Laser
  • DML Directly Modulated Laser
  • EML has small chirps and good performance, and is suitable for carrier-grade applications, but has high power consumption
  • DML has small size, low power consumption, and low cost.
  • DML is suitable for data center applications.
  • the increase in DML bandwidth is achieved by reducing the DML cavity length.
  • the shorter the DML cavity length the larger the bandwidth.
  • the mirror loss of the DML itself is proportional to the reciprocal of the cavity length. The shorter the cavity, the greater the mirror loss. If the grating coupling coefficient remains unchanged, the greater the mirror loss, the greater the threshold current of the DML.
  • Figure 1b assuming that the DML has a cavity mirror loss of 10cm-1 and a cavity length of 50 ⁇ m, when the DML is working, if the working current is required to be less than 4 mA, the grating coupling coefficient must be at least greater than 400cm-1. Therefore, the DFB laser in the DML requires an ultra-high coupling coefficient solution.
  • the embodiments of the present application provide a DFB laser, which is used to increase the grating coupling coefficient in the DFB laser, so that the DFB laser is suitable for ultrashort cavity DML.
  • an embodiment of the present application provides a DFB laser.
  • the DFB laser includes a cavity structure in which a substrate, a coated end surface, an active layer, a grating layer, and a cladding layer are provided; the grating layer and The active layers are stacked on each other and are arranged between the substrate and the cladding layer; the coated end surface includes a reflective end surface and an anti-reflection end surface, which are respectively located at two ends of the cavity structure along the cavity length; the grating layer includes a first A region and a second region, wherein the first region and the second region are arranged at intervals, and the refractive index of the first region is greater than the refractive index of the second region.
  • the DFB laser further includes an electrode and other related parts, wherein the electrode is disposed on the cladding layer.
  • the coating layer and the substrate may be of the same material system or different material systems, and the specific circumstances are not limited here.
  • the refractive index of the first region where the grating layer is set is greater than the refractive index of the second region, that is, there is a refractive index difference between the two regions, and the coupling coefficient is proportional to the refractive index difference, so the grating
  • the higher the refractive index difference the greater the coupling coefficient of the grating layer, so that the DFB laser is suitable for ultra-short cavity DML.
  • the first region includes a first material
  • the second region is a cavity, so that the refractive index difference between the second region and the first region is relatively large, so that the grating layer is With the same thickness, it has a higher coupling coefficient, which makes the DFB laser suitable for ultra-short cavity DML.
  • the cavity in the second area is generated by etching the second material in the second area.
  • the second material may be the same as the first material or different from the first material.
  • the cavity can be obtained by directly etching the substrate material, which can reduce the material generation steps on the substrate, thereby reducing the interaction between the materials. Pollution caused by the time.
  • the first material is a substrate material and the second material is a sacrificial layer material
  • the cavity can be obtained by etching the sacrificial layer material, which can be more convenient for etching, as long as the etching solvent is configured, only the etching solvent can be used for etching. It is enough to etch the material of the sacrificial layer, and there is no need to design the etching position.
  • the first material and the second material can have a variety of possible implementation methods, specifically It can be as follows:
  • the first material is an indium phosphide InP material system
  • the second material is a quaternary compound InGaAlAs InGaAlAs, a quaternary compound InGaAsP InGaAsP, a ternary compound InAlAs InAlAs or Any of InGaAs InGaAs.
  • the first material is a gallium arsenide GaAs material system
  • the second material is a ternary compound aluminum gallium arsenide AlGaAs or a quaternary compound aluminum indium gallium phosphate AlInGaP.
  • the structure of the DFB laser may have the following possible implementation modes.
  • the structure of the substrate, the active layer, the grating layer, and the cladding layer may be configured as: the active layer is disposed on the substrate, and the grating layer is disposed on the active layer
  • the cladding layer is arranged on the grating layer (that is, the overall structure is a P-type grating).
  • the structure of the substrate, the active layer, the grating layer, and the cladding layer may be configured as: the grating layer is provided on the substrate, and the active layer is provided on the grating layer
  • the cladding layer is arranged on the active layer (that is, the overall structure is an N-type grating). In this way, the positional relationship between the active layer and the grating layer is not limited, so that the error tolerance rate in the manufacturing process is improved, and the impact on the manufacturing process is smaller, thereby reducing the manufacturing difficulty.
  • an embodiment of the present application provides a mirror, which includes a cavity structure in which a substrate, a coated end face, a passive waveguide region, a grating layer and a cladding layer are provided; the grating layer and The passive waveguide regions are stacked on each other and arranged between the substrate and the cladding layer; the coated end surface includes a reflective end surface and an anti-reflection end surface, which are respectively located at two ends of the cavity structure along the cavity length; the grating layer includes The first area and the second area, the first area and the second area are arranged at intervals, and the refractive index of the first area is greater than the refractive index of the second area.
  • the reflector further includes an electrode and other related parts, wherein the electrode is disposed on the coating layer.
  • the coating layer and the substrate may be of the same material system or different material systems, and the specific circumstances are not limited here.
  • the refractive index of the first region of the grating layer is greater than the refractive index of the second region, that is, there is a refractive index difference between the two regions, and the coupling coefficient is proportional to the refractive index difference, so the thickness of the grating layer.
  • the first region includes a first material
  • the second region is a cavity, so that the refractive index difference between the second region and the first region is relatively large, so that the grating layer is With the same thickness, it has a higher coupling coefficient, and the larger the coupling coefficient, the higher the reflectivity of the passive mirror, so the passive mirror can be suitable for ultra-short cavity length.
  • the cavity in the second area is generated by etching the second material in the second area.
  • the second material may be the same as the first material or different from the first material.
  • the cavity can be obtained by directly etching the substrate material, which can reduce material generation steps, thereby reducing possible contamination between materials .
  • the first material is a substrate material and the second material is a sacrificial layer material
  • the cavity can be obtained by etching the sacrificial layer material, which can be more convenient for etching, as long as the etching solvent is configured, only the etching solvent can be used for etching. It is enough to etch the material of the sacrificial layer, and there is no need to design the etching position.
  • the first material and the second material can have a variety of possible implementation methods, specifically It can be as follows:
  • the first material is an indium phosphide InP material system
  • the second material is a quaternary compound InGaAlAs InGaAlAs, a quaternary compound InGaAsP InGaAsP, a ternary compound InAlAs InAlAs or Any of InGaAs InGaAs.
  • the first material is a gallium arsenide GaAs material system
  • the second material is a ternary compound aluminum gallium arsenide AlGaAs or a quaternary compound aluminum indium gallium phosphate AlInGaP.
  • the structure in the reflector can have the following possible implementation modes:
  • the structure of the substrate, the passive waveguide region, the grating layer, and the cladding layer may be configured as follows: the passive waveguide region is provided on the substrate, and the grating layer is provided on the passive On the waveguide area, the cladding layer is arranged on the grating layer (that is, the overall structure is a P-type grating).
  • the structure of the substrate, the passive waveguide region, the grating layer, and the cladding layer may be configured as: the grating layer is provided on the substrate, and the passive waveguide region is provided on the grating.
  • the cladding layer is arranged on the passive waveguide area (that is, the overall structure is an N-type grating). In this way, the positional relationship between the passive waveguide area and the grating layer is not limited, so that the error tolerance rate in the production process is improved, and the impact on the production process is smaller, thereby reducing the production difficulty.
  • an embodiment of the present application provides a grating, which specifically includes a first region and a second region.
  • the first region and the second region are arranged at intervals, and the refractive index of the first region is greater than that of the first region.
  • the refractive index of the two regions is greater than that of the first region.
  • the refractive index of the first region of the grating layer is greater than the refractive index of the second region, and the coupling coefficient is proportional to the refractive index difference. Therefore, when the thickness of the grating layer is the same, the refractive index difference is increased. The greater the coupling coefficient of the grating layer.
  • the first region includes a first material
  • the second region is a cavity, so that the refractive index difference between the second region and the first region is relatively large, so that the grating layer is In the case of the same thickness, it has a higher coupling coefficient.
  • the cavity in the second area is generated by etching the second material in the second area.
  • the second material may be the same as the first material or different from the first material.
  • the cavity can be obtained by directly etching the substrate material, which can reduce material generation steps, thereby reducing possible contamination between materials .
  • the first material is a substrate material and the second material is a sacrificial layer material
  • the cavity can be obtained by etching the sacrificial layer material, which can be more convenient for etching, as long as the etching solvent is configured, only the etching solvent can be used for etching. It is enough to etch the material of the sacrificial layer, and there is no need to design the etching position.
  • the first material and the second material can have a variety of possible implementation methods, specifically It can be as follows:
  • the first material is an indium phosphide InP material system
  • the second material is a quaternary compound InGaAlAs InGaAlAs, a quaternary compound InGaAsP InGaAsP, a ternary compound InAlAs InAlAs or Any of InGaAs InGaAs.
  • the first material is a gallium arsenide GaAs material system
  • the second material is a ternary compound aluminum gallium arsenide AlGaAs or a quaternary compound aluminum indium gallium phosphate AlInGaP.
  • an embodiment of the present application provides a method for preparing a grating, which specifically includes: generating a sacrificial layer material on a substrate, thereby using the sacrificial layer material and the substrate material to generate a first grating; and etching the first grating
  • the material of the sacrificial layer generates a cavity; the substrate material in the first grating and the cavity generate the grating.
  • an embodiment of the present application provides an optical transmitter.
  • the optical switching device includes an optical modulation module and the DFB laser described in the first aspect, wherein the DFB laser emits a light source signal and outputs it to the optical modulation module ;
  • the light modulation module modulates the light source signal to generate an optical signal, and output it.
  • an embodiment of the present application provides an optical communication system, which includes an optical switching device, a receiving device, and the optical transmitter described in the fifth aspect;
  • the optical transmitter sends an optical signal to the optical switching device; the optical switching device exchanges the optical signal and sends it to the receiving device; the receiving device receives the optical signal.
  • Figure 1a is a diagram of the relationship between the cavity length and the bandwidth of the DFB laser
  • Figure 1b is a diagram showing the relationship between grating coupling coefficient and threshold gain and threshold current in a DFB laser
  • FIG. 2 is an exemplary structure diagram of a DFB laser in an embodiment of the application
  • FIG. 3 is a comparison diagram of the refractive index of the substrate material and the cavity in the embodiment of the application;
  • FIG. 5 is a schematic diagram of the preparation of the grating in the embodiment of the application.
  • Fig. 6 is a top view along the electrodes of the DFB laser in an embodiment of the application.
  • FIG. 7 is a schematic diagram of a screenshot along the cavity length direction of the DFB laser in an embodiment of the application.
  • FIG. 8 is a schematic diagram of a screenshot of the cavity in the grating layer along the direction perpendicular to the cavity length of the DFB laser in an embodiment of the application;
  • FIG. 9 is a schematic diagram of a screenshot of the cavity length of the DFB laser along the vertical direction and on the substrate of the grating layer in an embodiment of the application;
  • FIG. 10 is another exemplary structure diagram of the DFB laser in the embodiment of the application.
  • FIG. 11 is another exemplary structure diagram of the DFB laser in the embodiment of the application.
  • FIG. 12 is an exemplary structural diagram of the reflector in an embodiment of the application.
  • FIG. 13 is an exemplary structural diagram of an optical switching device in an embodiment of the application.
  • Fig. 14 is an exemplary structural diagram of an optical communication system in an embodiment of the application.
  • the embodiments of the present application provide a DFB laser, which is used to increase the grating coupling coefficient in the DFB laser, so that the DFB laser is suitable for ultrashort cavity DML.
  • the increase of the DML bandwidth is achieved by reducing the DML cavity length.
  • the shorter the DML cavity length the larger the bandwidth.
  • the mirror loss of the DML itself is proportional to the reciprocal of the cavity length. The shorter the cavity, the greater the mirror loss. If the grating coupling coefficient remains unchanged, the greater the mirror loss, the greater the threshold current of the DML. Therefore, in a scenario where a small operating current is required, the DFB laser in the DML requires a solution with an ultra-high coupling coefficient.
  • the DFB laser includes a cavity structure in which a substrate, a coated end surface, an active layer, a grating layer and a cladding layer are provided, as shown in the figure 2 ( Figure 2 is a cross-sectional view with reference to the cavity length direction), the DFB laser includes: a substrate 201, a coated end surface 202, an active layer 203, a grating layer 204 and a cladding layer 205; the grating layer 204 and the The active layer 203 is stacked on each other and is disposed between the substrate 201 and the cladding layer 205; the coated end surface 202 includes a reflective end surface 2021 and an antireflection end surface 2022, which are respectively located at both ends of the cavity structure along the cavity length ( For example, as shown in FIG.
  • the reflective end face (ie HR) 2021 is located at the left end, and the anti-reflection end face (ie AR) 2022 is located at the right end);
  • the grating layer 204 includes a first area and a second area, the first area and the The second regions are arranged at intervals, and the refractive index of the first region is greater than the refractive index of the second region.
  • the DFB laser further includes an electrode and other related parts, wherein the electrode is disposed on the cladding layer 205.
  • the coating layer 205 and the substrate 201 may be of the same material system or different material systems, and the specific structure is not limited here.
  • the substrate 201 may be a semiconductor substrate.
  • the first area in order to achieve a larger refractive index difference between the second area and the first area, the first area may be configured to include a first material, and the second area may be a cavity.
  • the first material is a substrate material
  • the refractive index of the substrate material and the cavity can be as shown in FIG. 3 (FIG. 3 is a cross-sectional view with reference to the cavity length direction), and L in FIG. 3 represents For the chip length of the DFB laser, n represents the effective refractive index.
  • the refractive index of the substrate material is greater than the refractive index of the cavity region.
  • the substrate material forms a high refractive index area, and the cavity forms a low refractive index area, and the refractive index difference is large, so as to improve the coupling coefficient of the grating.
  • the ratio of the grating coupling coefficients under the same grating thickness obtained from the experimental results can be shown in Fig. 4. From Fig. 4, it can be seen that the coupling coefficients of the grating provided by the embodiment of this application are There is a significant improvement.
  • the cavity in the second area is generated by etching the second material in the second area.
  • the second material may be the same as the first material or different from the first material.
  • the cavity can be obtained by directly etching the substrate material, which can reduce material generation steps, thereby reducing possible contamination between materials .
  • the first material is a substrate material and the second material is a sacrificial layer material
  • the cavity can be obtained by etching the sacrificial layer material, which can be more convenient for etching, as long as the etching solvent is configured, only the etching solvent can be used for etching. It is enough to etch the material of the sacrificial layer, and there is no need to design the etching position.
  • the specific process of the grating can be shown in Figure 5 ( Figure 5 is a cross-sectional view with reference to the cavity length).
  • the sacrificial layer material is generated on the substrate in the manner of preparing the grating (that is, the grating is generated from the sacrificial layer material and the substrate material), and then the sacrificial layer material is etched away to form a cavity (in this case, the substrate material and the cavity Generate the raster).
  • the cavity may be an area containing air or a vacuum area, and the specific structure is not limited here.
  • the substrate material and the sacrificial layer material may have multiple possible implementation modes, which may be specifically as follows:
  • the substrate material is an InP material system
  • the sacrificial layer material is any one of InGaAlAs, InGaAsP, InAlAs or InGaAs.
  • the substrate material is a GaAs material system
  • the sacrificial layer material is AlGaAs or AlInGaP.
  • Figures 6 to 9 the specific schematic diagrams of the DFB laser can be shown in Figures 6 to 9, where Figure 6 is a top view of the slave electrode of the DFB laser; Figure 7 is a schematic diagram of a screenshot along the cavity length direction of the DFB laser; Figure 8 Fig. 9 is a schematic diagram of a screenshot taken along the cavity length direction of the DFB laser perpendicular to the cavity of the grating layer; Fig. 9 is a schematic diagram of a screenshot taken perpendicular to the cavity length of the DFB laser and on the substrate of the grating layer.
  • the structure of the DFB laser may have the following possible implementation modes.
  • the structure of the substrate 201, the active layer 203, the grating layer 204, and the cladding layer 205 is that the substrate 201 is provided with the active layer 203, The active layer 203 is provided with the grating layer 204, and the grating layer 204 is provided with the cladding layer 205 (that is, the overall structure is a P-type grating).
  • the preparation process can be as follows: first generate the active layer 203 on the substrate 201, then use the sacrificial layer material to generate the grating layer according to the grating preparation process; then etch the sacrificial layer material to generate the grating layer 204; and finally generate the grating layer 204 on the grating layer.
  • the cladding layer 205 is formed on 204.
  • the structure of the substrate 201, the active layer 203, the grating layer 204, and the cladding layer 205 is that the substrate 201 is provided with the grating layer 204, The active layer 203 is provided on the grating layer 204, and the cladding layer 205 is provided on the active layer 203 (that is, the overall structure is an N-type grating).
  • the preparation process may be: first use the sacrificial layer material on the substrate 201 to generate a grating layer according to the grating preparation process, then etch the sacrificial layer material to generate the grating layer 204; then generate the active layer 203; finally generate the cladding layer 205.
  • the positional relationship between the active layer and the grating layer is not limited in the above-mentioned preparation process, so that the error tolerance rate in the manufacturing process is improved, the influence on the manufacturing process is smaller, and the manufacturing difficulty is reduced. It is understandable that the above preparation process is only one possible implementation, and the specific preparation process is not limited here. However, as long as the grating or DR laser provided in this embodiment is produced and generated, it is included in the protection scope of this application file.
  • the active layer 203 can also be replaced with a passive waveguide region 206, which creates a kind of mirror. Since the refractive index of the first region of the grating layer 204 is greater than the refractive index of the second region, that is, two There is a refractive index difference between the regions, and the coupling coefficient is proportional to the refractive index difference. Therefore, when the thickness of the grating layer is the same, the refractive index difference is increased. The greater the coupling coefficient of the grating layer, and the greater the coupling coefficient, the greater the The reflectivity of the mirror is higher, so the passive mirror can be suitable for ultra-short cavity length (it is understandable that this mirror has a higher reflectivity than other mirrors under the same other conditions) .
  • the reflector may be as shown in FIG. 12, and the passive waveguide region 206, the grating layer 204, the substrate 201 and the cladding layer 205 are arranged in order by placing the passive waveguide on the substrate 201.
  • Area 206, the grating layer 204 is disposed on the passive waveguide area 206, and the cladding layer 205 is disposed on the grating layer 204 (that is, the overall structure is a P-type grating).
  • the preparation process can be as follows: first generate the passive waveguide region 206 on the substrate 201, then use the sacrificial layer material to generate the grating layer according to the grating preparation process; then etch the sacrificial layer material to generate the grating layer 204; The cladding layer 205 is formed on the layer 204.
  • the grating layer 204 has all the functions of the grating layer 204 in FIG. 2 to FIG. 11, and the preparation process is also the same. I won't repeat them here.
  • the preparation process and structure of the grating layer 204 and the passive waveguide region 206 are the same as the preparation process and structure of the grating layer 204 and the active layer 203, and will not be repeated here.
  • the present application provides an optical transmitter 1300.
  • the optical transmitter 1300 includes a DFB laser 1301 and an optical modulation module 1302. Describe the structure and function of DFB laser;
  • the DFB laser 1301 emits a light source signal and outputs it to the light modulation module 1302; the light modulation module 1302 modulates the light source signal to generate an optical signal, and outputs it.
  • the present application provides an optical communication system 1400.
  • the optical communication system includes an optical transmitter 1401, an optical switching device 1402, and a receiving device 1403. Describe the structure and function of the optical transmitter;
  • the optical transmitter sends an optical signal to the optical switching device; the optical switching device exchanges the optical signal and sends it to the receiving device; the receiving device receives the optical signal.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which can be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes. .

Abstract

一种DFB激光器,用于提高该DFB激光器中光栅耦合系数,使得DFB激光器可适用于超短腔DML。DFB激光器包括腔体结构,腔体结构中设置有衬底(201)、镀膜端面、有源层(203)、光栅层(204)和覆层(205);光栅层(204)和有源层(203)相互层叠,并设置于衬底(201)和覆层(205)之间;镀膜端面包括反射端面(2021)和增透端面(2022),分别位于腔体结构沿腔长方向的两端;光栅层(204)包括第一区域与第二区域,第一区域与第二区域间隔排列,第一区域的折射率大于与第二区域的折射率。

Description

一种DFB激光器 技术领域
本申请涉及激光器领域,尤其涉及一种DFB激光器。
背景技术
随着无线终端、高清视频、云计算、大数据等互联技术和服务的持续性涌现,全球通信容量呈现出爆炸式的增长。数据流量的这种持续增长使得有必要增加以太网数据速率,因此需要更高的速度光网络系统的光源。100Gb以太网在2010年实现了标准化,400Gb以太网也在蓬勃发展,其中对光源提出了高速工作能力和多通道集成的灵活性要求。
目前光源发展有两种典型技术路线:一种是与分布式反馈(Distributed Feedback,DFB)激光器集成的电吸收调制器(Electlro-absorption Modulated Laser,EML),另一种是直接调制激光器(Directly Modulated Laser,DML)。EML啁啾小,性能好,适合用于电信级应用,但功耗较大;DML尺寸小、功耗小、成本低,DML适合用于数据中心应用。
但是DML带宽提升是通过减小DML腔长来实现,如图1a所示,DML的腔长越短,带宽越大。但是DML本身的镜损耗和腔长倒数成正比,腔越短,镜损耗越大。如果光栅耦合系数保持不变的话,镜损耗越大,DML的阈值电流会显著增加。如图1b图所示,假设DML的腔内镜损耗为10cm-1,腔长为50μm,在该DML工作时,若要求工作电流小于4毫安,则光栅耦合系数至少要大于400cm-1。因此DML中的DFB激光器需要超高耦合系数的解决方案。
发明内容
本申请实施例提供了一种DFB激光器,用于提高该DFB激光器中光栅耦合系数,使得该DFB激光器可适用于超短腔DML。
第一方面,本申请实施例提供一种DFB激光器,该DFB激光器包括腔体结构,该腔体结构构中设置有衬底、镀膜端面、有源层、光栅层和覆层;该光栅层和该有源层相互层叠,夸设置于该衬底与该覆层之间;该镀膜端面包括反射端面和增透端面,分别位于该腔体结构沿腔长方向的两端;该光栅层包括第一区域和第二区域,其中,该第一区域与该第二区域间隔排列,且该第一区域的折射率大于与该第二区域的折射率。
本实施例中,该DFB激光器还包括电极等相关的部分,其中,该电极设置于该覆层之上。该覆层与该衬底可以是相同的材料体系也可以是不相同的材料体系,具体情况此处不做限定。
本实施例中,设置该光栅层的第一区域的折射率大于该第二区域的折射率,即两个区域之间存在折射率差,而耦合系数与该折射率差成正比关系,因此光栅层厚度相同的情况下,提高折射率差,该光栅层的耦合系数越大,从而使得该DFB激光器可适用于超短腔DML。
可选的,本实施例中,该第一区域包括第一材料,该第二区域为空腔,这样该第二区域与该第一区域之间的折射率差较大,使得该光栅层在同等厚度的情况下具有较高耦合系数,从而使得该DFB激光器可适用于超短腔DML。
同时,该第二区域的空腔是通过刻蚀该第二区域的第二材料生成。本实施例中,该第 二材料可以与该第一材料相同,也可以与该第一材料不同。比如,在该第一材料与该第二材料均为衬底材料时,该空腔可以是直接刻蚀该衬底材料得到,这样可以减少在衬底上进行材料生成步骤,进而减少材料相互之间可能造成的污染。在该第一材料为衬底材料,而该第二材料为牺牲层材料时,该空腔可以是刻蚀该牺牲层材料得到,这样可以更方便刻蚀,只要配置的刻蚀溶剂只可以刻蚀牺牲层材料即可,不用再设计刻蚀位置。
在设计该第一材料与该第二材料采用不同材料体系时,为了更方便进行刻蚀,该第一材料与该第二材料(或称为牺牲层材料)可以有多种可能实现方式,具体可以如下:
一种可能实现方式中,该第一材料为磷化铟InP材料体系,该第二材料为四元化合物铟镓铝砷InGaAlAs、四元化合物铟镓砷磷InGaAsP、三元化合物铟铝砷InAlAs或铟镓砷InGaAs中的任意一项。
另一种可能实现方式中,该第一材料为砷化镓GaAs材料体系,该第二材料为三元化合物铝镓砷AlGaAs或四元化合物铝铟镓磷AlInGaP。这样提供多样化的材料体系,可以为制作DR激光器的提供更多选择,降低材料来源难度。
可选的,由于并不限定该光栅层的制作流程,因此该DFB激光器的结构可以有如下几种可能实现方式。
一种可能实现方式中,该衬底、该有源层、该光栅层和该覆层的结构可以设置为:该有源层设置于该衬底上,该光栅层设置于该有源层上,该覆层设置于该光栅层上(即整体结构为P型光栅)。
另一种可能实现方式中,该衬底、该有源层、该光栅层和该覆层的结构可以设置为:该光栅层设置于该衬底上,该有源层设置于该光栅层上,该覆层设置于该有源层上(即整体结构为N型光栅)。这样不限定有源层与光栅层的位置关系,使得制作流程中的容错率提高,对于制作流程的影响更小,从而降低了制作难度。
第二方面,本申请实施例提供一种反射镜,该反射镜包括腔体结构,该腔体结构中设置有衬底、镀膜端面、无源波导区、光栅层和覆层;该光栅层和该无源波导区相互层叠,并设置于该衬底和该覆层之间;该镀膜端面包括反射端面和增透端面,分别位于该腔体结构沿腔长方向的两端;该光栅层包括第一区域与第二区域,该第一区域与该第二区域间隔排列,该第一区域的折射率大于与该第二区域的折射率。
本实施例中,该反射镜还包括电极等相关的部分,其中,该电极设置于该覆层之上。该覆层与该衬底可以是相同的材料体系也可以是不相同的材料体系,具体情况此处不做限定。
本实施例中,该光栅层的第一区域折射率大于该第二区域的折射率,即两个区域之间存在折射率差,而耦合系数与该折射率差成正比关系,因此光栅层厚度相同的情况下,提高折射率差,该光栅层的耦合系数越大,而耦合系数越大,无源反射镜的反射率越高,因此该无源反射镜可以适用于超短腔长。
可选的,本实施例中,该第一区域包括第一材料,该第二区域为空腔,这样该第二区域与该第一区域之间的折射率差较大,使得该光栅层在同等厚度的情况下具有较高耦合系数,而耦合系数越大,无源反射镜的反射率越高,因此该无源反射镜可以适用于超短腔长。
同时,该第二区域的空腔是通过刻蚀该第二区域的第二材料生成。本实施例中,该第二材料可以与该第一材料相同,也可以与该第一材料不同。比如,在该第一材料与该第二材料均为衬底材料时,该空腔可以是直接刻蚀该衬底材料得到,这样可以减少材料生成步骤,从而减少材料相互之间可能造成的污染。在该第一材料为衬底材料,而该第二材料为牺牲层材料时,该空腔可以是刻蚀该牺牲层材料得到,这样可以更方便刻蚀,只要配置的刻蚀溶剂只可以刻蚀牺牲层材料即可,不用再设计刻蚀位置。
在设计该第一材料与该第二材料采用不同材料体系时,为了更方便进行刻蚀,该第一材料与该第二材料(或称为牺牲层材料)可以有多种可能实现方式,具体可以如下:
一种可能实现方式中,该第一材料为磷化铟InP材料体系,该第二材料为四元化合物铟镓铝砷InGaAlAs、四元化合物铟镓砷磷InGaAsP、三元化合物铟铝砷InAlAs或铟镓砷InGaAs中的任意一项。
另一种可能实现方式中,该第一材料为砷化镓GaAs材料体系,该第二材料为三元化合物铝镓砷AlGaAs或四元化合物铝铟镓磷AlInGaP。这样提供多样化的材料体系,可以为制作DR激光器的提供更多选择,降低材料来源难度。
可选的,由于并不限定该光栅层的制作流程,因此该反射镜中的结构可以有如下几种可能实现方式:
一种可能实现方式中,该衬底、该无源波导区、该光栅层和该覆层的结构可以设置为:该无源波导区设置于该衬底上,该光栅层设置于该无源波导区上,该覆层设置于该光栅层上(即整体结构为P型光栅)。
另一种可能实现方式中,该衬底、该无源波导区、该光栅层和该覆层的结构可以设置为:该光栅层设置于该衬底上,该无源波导区设置于该光栅层上,该覆层设置于该无源波导区上(即整体结构为N型光栅)。这样不限定无源波导区与光栅层的位置关系,使得制作流程中的容错率提高,对于制作流程的影响更小,从而降低了制作难度。
第三方面,本申请实施例提供一种光栅,具体包括第一区域与第二区域,所述第一区域与所述第二区域间隔排列,所述第一区域的折射率大于与所述第二区域的折射率。
本实施例中,该光栅层的第一区域折射率大于该第二区域的折射率,而耦合系数与该折射率差成正比关系,因此光栅层厚度相同的情况下,提高折射率差,该光栅层的耦合系数越大。
可选的,本实施例中,该第一区域包括第一材料,该第二区域为空腔,这样该第二区域与该第一区域之间的折射率差较大,使得该光栅层在同等厚度的情况下具有较高耦合系数。
同时,该第二区域的空腔是通过刻蚀该第二区域的第二材料生成。本实施例中,该第二材料可以与该第一材料相同,也可以与该第一材料不同。比如,在该第一材料与该第二材料均为衬底材料时,该空腔可以是直接刻蚀该衬底材料得到,这样可以减少材料生成步骤,从而减少材料相互之间可能造成的污染。在该第一材料为衬底材料,而该第二材料为牺牲层材料时,该空腔可以是刻蚀该牺牲层材料得到,这样可以更方便刻蚀,只要配置的刻蚀溶剂只可以刻蚀牺牲层材料即可,不用再设计刻蚀位置。
在设计该第一材料与该第二材料采用不同材料体系时,为了更方便进行刻蚀,该第一材料与该第二材料(或称为牺牲层材料)可以有多种可能实现方式,具体可以如下:
一种可能实现方式中,该第一材料为磷化铟InP材料体系,该第二材料为四元化合物铟镓铝砷InGaAlAs、四元化合物铟镓砷磷InGaAsP、三元化合物铟铝砷InAlAs或铟镓砷InGaAs中的任意一项。
另一种可能实现方式中,该第一材料为砷化镓GaAs材料体系,该第二材料为三元化合物铝镓砷AlGaAs或四元化合物铝铟镓磷AlInGaP。这样提供多样化的材料体系,可以为制作DR激光器的提供更多选择,降低材料来源难度。
第四方面,本申请实施例提供一种光栅的制备方法,具体包括:在衬底上生成牺牲层材料,从而利用该牺牲层材料与衬底材料生成第一光栅;刻蚀该第一光栅中的牺牲层材料生成空腔;第一光栅中的衬底材料和所述空腔生成所述光栅。这样在实现光栅的高耦合系数的情况下,也可以有效的降低光栅的加工难度。
可以理解的是,也可以直接刻蚀该衬底中预先设置的位置使该位置为空腔,这样衬底与该空腔也可以构成本申请实施例中需要的光栅。
第五方面,本申请实施例提供一种光发射机,该光交换设备包括光调制模块以及上述第一方面所描述的DFB激光器,其中,该DFB激光器发射光源信号,并输出至该光调制模块;该光调制模块对该光源信号进行调制生成光信号,并输出。
第六方面,本申请实施例提供一种光通信系统,该光通信系统包括光交换设备、接收设备以及上述第五方面描述的光发射机;
其中,该光发射机发送光信号至该光交换设备;该光交换设备对该光信号进行交换,并发送给该接收设备;该接收设备接收该光信号。
附图说明
图1a为DFB激光器的腔长与带宽之间的关系图;
图1b为DFB激光器中的光栅耦合系数与阈值增益和阈值电流的关系图;
图2为本申请实施例中DFB激光器的一种示例性结构图;
图3为本申请实施例中衬底材料与空腔的折射率对比图;
图4为本申请实施例中同等光栅厚度下,光栅耦合系数对比图;
图5为本申请实施例中光栅的一个制备示意图;
图6为本申请实施例中沿DFB激光器的电极处的俯视图;
图7为本申请实施例中沿该DFB激光器的腔长方向的截图示意图;
图8为本申请实施例中沿垂直该DFB激光器的腔长方向且在光栅层的空腔的截图示意图;
图9为本申请实施例中沿垂直该DFB激光器的腔长方面且在光栅层的衬底的截图示意图;
图10为本申请实施例中该DFB激光器的另一种示例性结构图;
图11为本申请实施例中该DFB激光器的另一种示例性结构图;
图12为本申请实施例中该反射镜的一种示例性结构图;
图13为本申请实施例中光交换设备的一个示例性结构图;
图14为本申请实施例中光通信系统的一个示例性结构图。
具体实施方式
本申请实施例提供一种DFB激光器,用于提高该DFB激光器中光栅耦合系数,使得该DFB激光器可适用于超短腔DML。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
随着无线终端、高清视频、云计算、大数据等互联技术和服务的持续性涌现,全球通信容量呈现出爆炸式的增长。数据流量的这种持续增长使得有必要增加以太网数据速率,因此需要更高的速度光网络系统的光源。100Gb以太网在2010年实现了标准化,400Gb以太网也在蓬勃发展,其中对光源提出了高速工作能力和多通道集成的灵活性要求。目前光源发展有两种典型技术路线:一种是与DFB激光器集成的EML,另一种是DML。EML啁啾小,性能好,适合用于电信级应用,但功耗较大;DML尺寸小、功耗小、成本低,DML适合用于数据中心应用。但是DML带宽提升是通过减小DML腔长来实现,DML的腔长越短,带宽越大。但是DML本身的镜损耗和腔长倒数成正比,腔越短,镜损耗越大。如果光栅耦合系数保持不变的话,镜损耗越大,DML的阈值电流会显著增加。因此在要求工作电流小的场景下,DML中的DFB激光器需要超高耦合系数的解决方案。
为了解决这一问题,本申请实施例提供如下DFB激光器,该DFB激光器包括腔体结构,该腔体结构构中设置有衬底、镀膜端面、有源层、光栅层和覆层,具体如图2所示(图2是以腔长方向为参考的截面图),该DFB激光器包括:衬底201、镀膜端面202、有源层203、光栅层204和覆层205;该光栅层204和该有源层203相互层叠,并设置于该衬底201和该覆层205之间;该镀膜端面202包括反射端面2021和增透端面2022,分别位于该腔体结构沿腔长方向的两端(比如,如图2所示反射端面(即HR)2021位于左端,增透端面(即AR)2022位于右端);该光栅层204包括第一区域与第二区域,所述第一区域与所述第二区域间隔排列,所述第一区域的折射率大于与所述第二区域的折射率。本实施例中,该DFB激光器还包括电极等相关部分,其中,该电极设置于该覆层205之上。该覆层205与该衬底201可以是相同的材料体系也可以是不相同的材料体系,具体结构此处不做限定。该衬底201可以是半导体衬底。
本实施例中,为了实现该第二区域与该第一区域之间的折射率差较大,则可以设置该第一区域包括第一材料,该第二区域为空腔。其中,在该第一材料为衬底材料时,该衬底材料与该空腔的折射率可以如图3(图3是以腔长方向为参考的截面图)所示,图3中L 代表该DFB激光器的芯片长度,n代表有效折射率,在对应于该图3所示的光栅中,可以明显看到衬底材料的折射率大于该空腔区域的折射率。即该衬底材料形成了高折射率区域,而该空腔形成了低折射区域,且折射率差较大,从而实现提高该光栅的耦合系数。在此方案下,实验结果得出的同等光栅厚度下的光栅耦合系数之比可以如图4所示,由图4可以看出同等光栅厚度的情况下,本申请实施例提供的光栅的耦合系数有明显的提高。
而该第二区域的空腔是通过刻蚀该第二区域的第二材料生成。该第二材料可以与该第一材料相同,也可以与该第一材料不同。比如,在该第一材料与该第二材料均为衬底材料时,该空腔可以是直接刻蚀该衬底材料得到,这样可以减少材料生成步骤,从而减少材料相互之间可能造成的污染。在该第一材料为衬底材料,而该第二材料为牺牲层材料时,该空腔可以是刻蚀该牺牲层材料得到,这样可以更方便刻蚀,只要配置的刻蚀溶剂只可以刻蚀牺牲层材料即可,不用再设计刻蚀位置。
在该第一材料为衬底材料,而该第二材料为牺牲层材料时,该光栅的具体过程可以如图5所示(图5是以腔长方向为参考的截面图),首先在该衬底上按照制备光栅的方式生成牺牲层材料(即由牺牲层材料和衬底材料生成光栅),然后再将该牺牲层材料刻蚀掉形成空腔(此时是由衬底材料和空腔生成该光栅)。可选的,该空腔可以是包含了空气的区域也可以是真空区域,具体结构此处不做限定。
本实施例中,该衬底材料与该牺牲层材料可以有多种可能实现方式,具体可以如下:
一种可能实现方式中,所述衬底材料为InP材料体系,所述牺牲层材料为InGaAlAs、InGaAsP、InAlAs或InGaAs中的任意一项。
另一种可能实现方式中,所述衬底材料为GaAs材料体系,所述牺牲层材料为AlGaAs或AlInGaP。这样提供多样化的材料体系,可以为制作DR激光器的提供更多选择,降低材料来源难度。
基于上述方案,该DFB激光器的具体示意图可以如图6至图9所示,其中图6为DFB激光器的从电极处的俯视图;图7为沿该DFB激光器的腔长方向的截图示意图;图8为沿垂直该DFB激光器的腔长方向且在光栅层的空腔的截图示意图;图9为沿垂直该DFB激光器的腔长方面且在光栅层的衬底的截图示意图。
本实施例中,由于并不限定该光栅层204的制作流程,因此该DFB激光器的结构可以有如下几种可能实现方式。
一种示例性方案中,如图10所示:该衬底201、该有源层203、该光栅层204、该覆层205的结构依次为该衬底201上设置有该有源层203、该有源层203上设置有该光栅层204、该光栅层204上设置有该覆层205(即整体结构为P型光栅)。该制备流程可以为:先在该衬底201生成有源层203,然后再利用该牺牲层材料根据光栅制备流程生成光栅层;再刻蚀该牺牲层材料生成该光栅层204;最后在光栅层204上生成该覆层205。
另一种示例性结构中,如图11所示:该衬底201、该有源层203、该光栅层204、该覆层205的结构依次为该衬底201上设置有该光栅层204、该光栅层204上设置有该有源层203、该有源层203上设置有该覆层205(即整体结构为N型光栅)。该制备流程可以为:先在该衬底201利用该牺牲层材料根据光栅制备流程生成光栅层,再刻蚀该牺牲层材料生 成该光栅层204;再生成有源层203;最后生成该覆层205。
上述制备流程中不限定有源层与光栅层的位置关系,使得制作流程中的容错率提高,对于制作流程的影响更小,从而降低了制作难度。可以理解的是,上述制备流程仅为一种可能实现方式,具体的制备流程此处不做限定。但只要制作生成本实施例中提供的光栅或DR激光器,均包含在本申请文件的保护范围内。
可选的,该有源层203也可以替换成无源波导区206,这样生成了一种反射镜,由于该光栅层204的第一区域折射率大于该第二区域的折射率,即两个区域之间存在折射率差,而耦合系数与该折射率差成正比关系,因此光栅层厚度相同的情况下,提高折射率差,该光栅层的耦合系数越大,而耦合系数越大,该反射镜的反射率越高,因此该无源反射镜可以适用于超短腔长(可以理解的是,该反射镜与其他反射镜在其他条件相同的情况下相比具有较高的反射率)。一种示例性方案中,该反射镜可以如图12所示,该无源波导区206,光栅层204、该衬底201和覆层205的结构依次为该衬底201上设置该无源波导区206、该无源波导区206上设置该光栅层204,该光栅层204上设置该覆层205(即整体结构为P型光栅)。该制备流程可以为:先在该衬底201生成无源波导区206,然后再利用该牺牲层材料根据光栅制备流程生成光栅层;再刻蚀该牺牲层材料生成该光栅层204;最后在光栅层204上生成该覆层205。可以理解的是,该光栅层204具备图2至图11中的光栅层204的全部功能,其制备流程也相同。此处不再赘述。同时,该光栅层204与该无源波导区206的制备流程以及结构与该光栅层204与有源层203的制备流程以及结构相同,此处不再赘述。
具体请参阅图13所示,本申请提供一种光发射机1300,其中,该光发射机1300包括DFB激光器1301和光调制模块1302,该DFB激光器1301具备上述图2至图11中任一项所述DFB激光器的结构与功能;
其中,该DFB激光器1301发射光源信号,并输出至该光调制模块1302;该光调制模块1302对该光源信号进行调制生成光信号,并输出。
具体请参阅图14所示,本申请提供一种光通信系统1400,其中,该光通信系统包括光发射机1401、光交换设备1402以及接收设备1403,其中,该光发射机1401具备图13所述光发射机的结构与功能;
其中,该光发射机发送光信号至该光交换设备;该光交换设备对该光信号进行交换,并发送给该接收设备;该接收设备接收该光信号。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (21)

  1. 一种分布反馈式DFB激光器,其特征在于,所述DFB激光器包括腔体结构,所述腔体结构中设置有衬底、镀膜端面、有源层、光栅层和覆层;
    所述光栅层和所述有源层相互层叠,并设置于所述衬底和所述覆层之间;
    所述镀膜端面包括反射端面和增透端面,分别位于所述腔体结构沿腔长方向的两端;
    所述光栅层包括第一区域与第二区域,所述第一区域与所述第二区域间隔排列,所述第一区域的折射率大于与所述第二区域的折射率。
  2. 根据权利要求1所述的激光器,其特征在于,所述第一区域包括第一材料,所述第二区域为空腔。
  3. 根据权利要求2所述的激光器,其特征在于,所述空腔是通过刻蚀所述第二区域的第二材料生成。
  4. 根据权利要求3所述的激光器,其特征在于,所述第一材料为磷化铟InP材料体系,所述第二材料为四元化合物铟镓铝砷InGaAlAs、四元化合物铟镓砷磷InGaAsP、三元化合物铟铝砷InAlAs或铟镓砷InGaAs中的任意一项。
  5. 根据权利要求3所述的激光器,其特征在于,所述第一材料为砷化镓GaAs材料体系,所述第二材料为三元化合物铝镓砷AlGaAs或四元化合物铝铟镓磷AlInGaP。
  6. 根据权利要求1至5中任一项所述的激光器,其特征在于,所述相互层叠用于指示所述有源层设置于所述衬底上,所述光栅层设置于所述有源层上,所述覆层设置于所述光栅层上。
  7. 根据权利要求1至5中任一项所述的激光器,其特征在于,所述相互层叠用于指示所述光栅层设置于所述衬底上,所述有源层设置于所述光栅层上,所述覆层设置于所述有源层上。
  8. 一种反射镜,其特征在于,所述反射镜包括腔体结构,所述腔体结构中设置有衬底、镀膜端面、无源波导区、光栅层和覆层;
    所述光栅层和所述无源波导区相互层叠,并设置于所述衬底和所述覆层之间;
    所述镀膜端面包括反射端面和增透端面,分别位于所述腔体结构沿腔长方向的两端;
    所述光栅层包括第一区域与第二区域,所述第一区域与所述第二区域间隔排列,所述第一区域的折射率大于与所述第二区域的折射率。
  9. 根据权利要求8所述的反射镜,其特征在于,所述第一区域包括第一材料,所述第二区域为空腔。
  10. 根据权利要求9所述的反射镜,其特征在于,所述空腔是通过刻蚀所述第二区域的第二材料生成。
  11. 根据权利要求10所述的反射镜,其特征在于,所述第一材料为InP材料体系,所述第二材料为InGaAlAs、InGaAsP、InAlAs或InGaAs中的任意一项。
  12. 根据权利要求10所述的反射镜,其特征在于,所述第一材料为GaAs材料体系,所述第二材料为AlGaAs或AlInGaP。
  13. 根据权利要求8至12中任一项所述的反射镜,其特征在于,所述相互层叠用于指 示所述无源波导区设置于所述衬底上,所述光栅层设置于所述无源波导区上,所述覆层设置于所述光栅层上。
  14. 根据权利要求8至12中任一项所述的反射镜,其特征在于,所述相互层叠用于指示所述光栅层设置于所述衬底上,所述无源波导区设置于所述光栅层上,所述覆层设置于所述无源波导区上。
  15. 一种光栅,其特征在于,包括:
    第一区域与第二区域,所述第一区域与所述第二区域间隔排列,所述第一区域的折射率大于与所述第二区域的折射率。
  16. 根据权利要求15所述的光栅,其特征在于,所述第一区域包括第一材料,所述第二区域为空腔。
  17. 根据权利要求16所述的光栅,其特征在于,所述空腔是通过刻蚀所述第二区域的第二材料生成。
  18. 根据权利要求17所述的光栅,其特征在于,所述第一材料为磷化铟InP材料体系,所述第二材料为四元化合物铟镓铝砷InGaAlAs、四元化合物铟镓砷磷InGaAsP、三元化合物铟铝砷InAlAs或铟镓砷InGaAs中的任意一项。
  19. 根据权利要求17所述的光栅,其特征在于,所述第一材料为砷化镓GaAs材料体系,所述第二材料为三元化合物铝镓砷AlGaAs或四元化合物铝铟镓磷AlInGaP。
  20. 一种光发射机,其特征在于,包括光调制模块和如权利要求1至7中任一项所述的分布反馈式DFB激光器;
    所述DFB激光器发射光源信号,并输出至所述光调制模块;
    所述光调制模块对所述光源信号进行调制生成光信号,并输出。
  21. 一种光通信系统,其特征在于,包括光交换设备、接收设备以及如权利要求20所述的光发射机;
    所述光发射机发送光信号至所述光交换设备;
    所述光交换设备对所述光信号进行交换,并发送给所述接收设备;
    所述接收设备接收所述光信号。
PCT/CN2020/077334 2020-02-29 2020-02-29 一种dfb激光器 WO2021168853A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080078384.2A CN114731025A (zh) 2020-02-29 2020-02-29 一种dfb激光器
PCT/CN2020/077334 WO2021168853A1 (zh) 2020-02-29 2020-02-29 一种dfb激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077334 WO2021168853A1 (zh) 2020-02-29 2020-02-29 一种dfb激光器

Publications (1)

Publication Number Publication Date
WO2021168853A1 true WO2021168853A1 (zh) 2021-09-02

Family

ID=77492033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077334 WO2021168853A1 (zh) 2020-02-29 2020-02-29 一种dfb激光器

Country Status (2)

Country Link
CN (1) CN114731025A (zh)
WO (1) WO2021168853A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142946A (zh) * 2021-11-29 2022-03-04 中国科学院上海微系统与信息技术研究所 一种集成量子纠缠光源的光量子芯片的制备方法及其结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023354A (en) * 1997-06-26 2000-02-08 Alcatel Semiconductor Bragg reflector and a method of fabricating said reflector
EP1394911A2 (en) * 2002-08-01 2004-03-03 Northrop Grumman Corporation Fabrication process of a semiconductor diffraction grating
CN1983509A (zh) * 2005-12-13 2007-06-20 北京大学 基于聚焦离子束技术深刻蚀一维光子晶体的方法
CN103762136A (zh) * 2014-01-21 2014-04-30 安徽华东光电技术研究所 一种平行光栅的制作方法
CN109449753A (zh) * 2018-11-15 2019-03-08 武汉云岭光电有限公司 Hcg反射镜层、垂直腔面发射激光器以及二者的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023354A (en) * 1997-06-26 2000-02-08 Alcatel Semiconductor Bragg reflector and a method of fabricating said reflector
EP1394911A2 (en) * 2002-08-01 2004-03-03 Northrop Grumman Corporation Fabrication process of a semiconductor diffraction grating
CN1983509A (zh) * 2005-12-13 2007-06-20 北京大学 基于聚焦离子束技术深刻蚀一维光子晶体的方法
CN103762136A (zh) * 2014-01-21 2014-04-30 安徽华东光电技术研究所 一种平行光栅的制作方法
CN109449753A (zh) * 2018-11-15 2019-03-08 武汉云岭光电有限公司 Hcg反射镜层、垂直腔面发射激光器以及二者的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142946A (zh) * 2021-11-29 2022-03-04 中国科学院上海微系统与信息技术研究所 一种集成量子纠缠光源的光量子芯片的制备方法及其结构

Also Published As

Publication number Publication date
CN114731025A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
AU2006285426B2 (en) Optical phase conjugation laser diode
US7760782B2 (en) Distributed bragg reflector type directly modulated laser and distributed feed back type directly modulated laser
CN109088308A (zh) 具有高调制速度的垂直腔面发射激光器
CN115241731A (zh) 具有光束形状和光束方向修改的激光器
Matsuo et al. Photonic crystal lasers using wavelength-scale embedded active region
JP3052552B2 (ja) 面発光型半導体レーザ
US7274720B2 (en) Semiconductor laser element having InGaAs compressive-strained quantum-well active layer
JPH1073736A (ja) 半導体光素子、ファイバ型光アンプおよび光伝送装置
WO2021168853A1 (zh) 一种dfb激光器
Kikuchi et al. III–V gain region/Si waveguide hybrid lasers with InP-based two-storied ridge structure by direct bonding technology
WO2021168851A1 (zh) 一种dr激光器
CN114188819A (zh) 一种1342纳米波长大功率微结构dfb激光器
JP2860666B2 (ja) 光機能素子
JPH06188518A (ja) 波長可変面発光レーザ
CN112821197A (zh) 一种光发射芯片的制作方法和光发射芯片
CN112003125A (zh) 一种采用高阶表面光栅的直接调制半导体激光器
JPH10275960A (ja) 光半導体素子
JPS61265888A (ja) 半導体レ−ザの製造方法
Zhao et al. High Power Indium Phosphide Photonic Integrated Circuit Platform
JPS6297386A (ja) 分布帰還型双安定半導体レ−ザ
JP2001148542A (ja) 光半導体装置及びその製造方法並びに光通信装置
CN110752509B (zh) 一种具有非对称氧化结构vcsel单元
US20240053652A1 (en) Mach-zehnder interferometric optical modulator with shallow ridge waveguide structure and method for manufacturing the same
JPS61176181A (ja) 半導体発光装置
JPH11307874A (ja) 光アイソレータ、分布帰還型レーザ及び光集積素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922327

Country of ref document: EP

Kind code of ref document: A1