WO2021168706A1 - 电力线通信的发送模式确定方法及相关装置 - Google Patents
电力线通信的发送模式确定方法及相关装置 Download PDFInfo
- Publication number
- WO2021168706A1 WO2021168706A1 PCT/CN2020/076838 CN2020076838W WO2021168706A1 WO 2021168706 A1 WO2021168706 A1 WO 2021168706A1 CN 2020076838 W CN2020076838 W CN 2020076838W WO 2021168706 A1 WO2021168706 A1 WO 2021168706A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- frequency band
- detection frame
- mode
- transmission mode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/46—Monitoring; Testing
- H04B3/48—Testing attenuation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/54—Systems for transmission via power distribution lines
Definitions
- This application relates to the field of communication technology, and in particular to a method and related devices for determining a transmission mode of power line communication.
- PLC power line carrier communication
- power line network which refers to a communication method that uses power line as an information transmission medium for voice or data transmission.
- the sending end of PLC technology loads the high-frequency signal carrying information on the electric current, and then transmits it by the power line, and the receiving end separates the high-frequency signal from the electric current and transmits it to a computer or phone to realize information transmission.
- power line noise here mainly refers to electrical appliances connected to the line (such as brush motors, switching power supplies, fluorescent lamps, halogens) Lights or other various household appliances) noise caused by changes in working conditions or plugging and unplugging) interference. Therefore, in the frequency band below 100
- the embodiment of the application provides a method and related device for determining the transmission mode of power line communication.
- a 200M SISO mode is added, and the mode is selected according to different services and scenarios to improve the performance and stability of the PLC system.
- large-bandwidth system transmission is realized.
- an embodiment of the present application provides a method for determining a transmission mode of power line communication.
- the method is suitable for a receiving end of power line communication.
- the method includes: the transmitting end sends a first detection frame including a first frequency band on a first channel.
- the receiving end receives the first detection frame on the first channel, and determines the first channel capacity of the first channel in the first frequency band based on the first detection frame; the receiving end obtains the reference bandwidth, and The first transmission mode is determined according to the first channel capacity and the reference bandwidth; the receiving end sends first indication information including the first transmission mode to the sending end; after receiving the first indication information, the sending end uses the first transmission The mode communicates with the receiving end.
- the first channel can be the channel with the smallest target power adjustment value among the two channels. Since the target power adjustment value can reflect the attenuation on the channel, the smaller the target power adjustment value, the smaller the attenuation on the channel, so the first channel It is also a channel with a small attenuation.
- the first sending mode is a sending mode determined by the receiving end to be adopted by the sending end, and the first indication information is used to instruct the sending end to use the first sending mode to communicate with the receiving end.
- the first indication information may be bandwidth (bandplan) information, and the first indication information may be carried in the frame header of the confirmation frame or the link control data unit frame.
- the first frequency band may be 100MHz-200MHz.
- the receiving end in this embodiment of the present application determines the first channel capacity in the first frequency band through the first detection frame, and compares the size relationship between the first channel capacity and the reference bandwidth to determine which transmission mode the transmitting end should use, and informs the transmitting end Which transmission mode the terminal uses for communication can be selected according to different services and scenarios to improve the performance and stability of the PLC system.
- the aforementioned reference bandwidth is a preset service bandwidth.
- the receiving end determines the first transmission mode according to the first channel capacity and the reference bandwidth, specifically: if the first channel capacity is greater than or equal to the preset service bandwidth, it indicates that the stable first channel capacity meets the stability required by the service
- the first transmission mode determined by the receiving end is the single-input single-output SISO mode of the second frequency band.
- the second frequency band includes the first frequency band and the third frequency band
- the first frequency band, the second frequency band, and the third frequency band are all continuous frequency bands, and the minimum value in the first frequency band is greater than or equal to the third frequency band.
- the maximum value of the frequency band, the minimum value of the second frequency band is less than or equal to the minimum value of the third frequency band, and the maximum value of the second frequency band is greater than or equal to the maximum value of the first frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the preset service bandwidth may be a stable bandwidth set according to different service requirements.
- the embodiment of the application selects the mode by comparing the channel capacity in the first frequency band (ie, the first channel capacity) and the preset service bandwidth, and provides a solution for selecting the mode according to the service realization.
- the method further includes: the receiving end receives the sending end The second detection frame sent on the second channel, and the third detection frame sent by the sending end on the first channel and the fourth detection frame sent on the second channel at the same time are received; the receiving end is based on the above-mentioned first detection frame Determine the first signal-to-noise ratio of the first channel in the third frequency band, determine the second signal-to-noise ratio of the second channel in the third frequency band based on the second detection frame, and determine the second signal-to-noise ratio of the second channel in the third frequency band based on the third detection frame and the The fourth detection frame determines the third signal-to-noise ratio of the dual channel formed by the first channel and the second channel in the third frequency band; if the first signal-to-noise ratio is greater than or equal to the third signal-to-noise ratio,
- the second frequency band includes the first frequency band and the third frequency band, the first frequency band, the second frequency band, and the third frequency band are all continuous frequency bands, and the minimum value in the first frequency band is greater than or equal to that of the third frequency band.
- the maximum value, the minimum value of the second frequency band is less than or equal to the minimum value of the third frequency band, and the maximum value of the second frequency band is greater than or equal to the maximum value of the first frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the receiving end of the embodiment of the application separately determines the signal-to-noise ratio of a single channel (i.e. the first signal-to-noise ratio and the second signal-to-noise ratio) and the signal-to-noise ratio of the two channels (i.e. the third signal-to-noise ratio) according to the different detection frames sent by the transmitting end. Ratio), compare the relationship between the signal-to-noise ratio of a single channel and the signal-to-noise ratio of a dual channel.
- the target power adjustment value of the first channel is smaller than the target power adjustment value of the second channel, indicating that the attenuation on the first channel is smaller than the attenuation on the second channel.
- the target power adjustment value of the first channel is determined based on the preamble symbol included in the first detection frame
- the target power adjustment value of the second channel is determined based on the preamble symbol included in the second detection frame.
- the method further includes: when the first sending mode is the SISO mode of the second frequency band, the receiving end sends second indication information to the sending end, and the second indication information Used to instruct the sending end to communicate with the receiving end through the first channel.
- the receiving end may send the second indication information before the receiving end sends the first indication information, or after the receiving end sends the first indication information, the first indication information and the second indication information may also be sent at the same time.
- the embodiment does not limit this.
- the second indication information may be channel information, and the second indication information may be carried in the frame header of the confirmation frame or the link control data unit frame.
- the receiving end of the embodiment of the present application informs the transmitting end to use the first channel with the least attenuation among the dual channels for communication, which can further improve the performance and stability of the PLC system.
- the first indication information is first bandwidth information corresponding to the first transmission mode.
- the first bandwidth information is 200 MHz; if the first transmission mode is the MIMO mode of 100M, the first bandwidth information is 100 MHz.
- the aforementioned reference bandwidth is a preset minimum bandwidth.
- the receiving end determines the first transmission mode according to the first channel capacity and the reference bandwidth, specifically: if the first channel capacity is less than the preset minimum bandwidth, it means that the high frequency (that is, within 100MHz-200MHz) attenuation is large, and it cannot be obtained. If the high-frequency gain is good, the attenuation limited scenario is at this time, and the first transmission mode determined by the receiving end is the multiple-input multiple-output MIMO mode of the third frequency band.
- the second frequency band includes the first frequency band and the third frequency band
- the first frequency band, the second frequency band, and the third frequency band are all continuous frequency bands
- the minimum value in the first frequency band is greater than or equal to the third frequency band.
- the maximum value of the frequency band, the minimum value of the second frequency band is less than or equal to the minimum value of the third frequency band
- the maximum value of the second frequency band is greater than or equal to the maximum value of the first frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the preset minimum bandwidth may be the minimum required bandwidth in the first frequency band (100MHz-200MHz) or the second frequency band (0-200MHz).
- the embodiment of the application selects the mode by comparing the channel capacity in the first frequency band (that is, the first channel capacity) and the preset minimum bandwidth, and provides an implementation mode according to the scene (attenuation limited scene) The chosen plan.
- the aforementioned reference bandwidth includes a preset service bandwidth and a preset minimum bandwidth.
- the receiving end determines the first transmission mode according to the first channel capacity and the reference bandwidth, and specifically: if the first channel capacity is greater than or equal to the preset minimum bandwidth, and the first channel capacity is less than the preset service bandwidth, then The receiving end determines the second channel capacity of the first channel in the second frequency band based on the first signal-to-noise ratio; the receiving end determines the dual channel formed by the first channel and the second channel based on the third signal-to-noise ratio The third channel capacity in the third frequency band; if the second channel capacity is greater than or equal to the third channel capacity, it means that the gain of 100M MIMO is less than the gain of 200M SISO due to the influence of noise.
- the first sending mode determined by the receiving end is the SISO mode of the second frequency band.
- the second frequency band includes the first frequency band and the third frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the single-channel system capacity (i.e., the second channel capacity) is further compared with the dual-channel capacity.
- the relationship between the channel system capacity (that is, the third channel capacity), when the single-channel system capacity is greater than or equal to the dual-channel system capacity, that is, due to noise, the gain of 100M MIMO is less than the gain of 200M SISO, or when the noise is limited can improve the stability of the PLC system.
- the method further includes: if the second channel capacity is less than the third channel capacity, and the second channel capacity is greater than or equal to the preset service bandwidth, indicating that the first The channel capacity of the channel in the second frequency band (0-200MHz) can provide the stable bandwidth required by the service, and the receiving end determines that the first transmission mode is the SISO mode of the second frequency band.
- the receiving end of the embodiment of the application chooses to use a single channel when the single-channel system capacity (that is, the second channel capacity) is less than the dual-channel system capacity (that is, the third channel capacity), and the single-channel system capacity meets the stable bandwidth required by the business Communication can improve the stability of the PLC system and realize large-bandwidth system transmission.
- the single-channel system capacity that is, the second channel capacity
- the dual-channel system capacity that is, the third channel capacity
- the method further includes: if the second channel capacity is less than the third channel capacity and/or the preset service bandwidth, indicating that the first channel is in the second frequency band (0 If the channel capacity within 200MHz) cannot provide the stable bandwidth required by the service, the receiving end determines the second transmission mode, which is the MIMO mode of the third frequency band; the receiving end sends third indication information to the transmitting end, The third indication information is used to instruct the sending end to use the second sending mode to communicate with the receiving end.
- the receiving end of the embodiment of the application chooses to use dual Communication through the channel can ensure the performance of the PLC system.
- the embodiments of the present application provide another method for determining the transmission mode of power line communication.
- the method is applicable to the receiving end of power line communication.
- the method includes: the transmitting end sends a first probe including a first frequency band on a first channel. Frame; the sending end receives the first indication information; the sending end uses the first sending mode indicated by the first indication information to communicate with the receiving end according to the first indication information.
- the first detection frame is used to determine the first channel capacity of the first channel in the first frequency band.
- the first indication information is used to indicate a first transmission mode, and the first transmission mode is determined according to the first channel capacity and the reference bandwidth.
- the first channel can be the channel with the smallest target power adjustment value among the two channels. Since the target power adjustment value can reflect the attenuation on the channel, the smaller the target power adjustment value, the smaller the attenuation on the channel, so the first channel It is also a channel with a small attenuation.
- the first sending mode is a sending mode determined by the receiving end to be adopted by the sending end, and the first indication information is used to instruct the sending end to use the first sending mode to communicate with the receiving end.
- the first indication information may be bandwidth (bandplan) information, and the first indication information may be carried in the frame header of the confirmation frame or the link control data unit frame.
- the first frequency band may be 100MHz-200MHz.
- the sending end of the embodiment of the present application sends the first detection frame to the receiving end, so that the receiving end determines the first channel capacity in the first frequency band based on the first detection frame, and compares the size relationship between the first channel capacity and the reference bandwidth To determine which transmission mode the sender should use, and tell the sender which transmission mode to use for communication, the sender uses the sending mode notified by the receiver to communicate with the receiver, and the mode can be selected according to different services and scenarios. Improve the performance and stability of the PLC system.
- the aforementioned reference bandwidth is a preset service bandwidth.
- the first channel capacity is greater than or equal to the preset service bandwidth, it indicates that the stable first channel capacity meets the stable bandwidth requirements required by the service, and the first transmission mode indicated by the first indication information received by the sending end It is the SISO mode of the second frequency band.
- the second frequency band includes the first frequency band and the third frequency band.
- the second frequency band includes the first frequency band and the third frequency band, the first frequency band, the second frequency band, and the third frequency band are all continuous frequency bands, and the minimum value in the first frequency band is greater than or equal to the third frequency band.
- the maximum value of the frequency band, the minimum value of the second frequency band is less than or equal to the minimum value of the third frequency band, and the maximum value of the second frequency band is greater than or equal to the maximum value of the first frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the preset service bandwidth may be a stable bandwidth set according to different service requirements.
- the first detection frame is used to determine the first signal-to-noise ratio of the first channel in the third frequency band.
- the method further includes: the sending end sends a second detection frame of the second frequency band on the second channel, and the second detection frame is used to determine the The second signal-to-noise ratio of the second channel in the third frequency band; the sending end simultaneously sends the third detection frame in the third frequency band on the first channel and the second channel sends the first signal in the third frequency band on the second channel
- the third detection frame and the fourth detection frame are used to determine the third signal-to-noise ratio of the dual channel formed by the first channel and the second channel in the third frequency band;
- the second frequency band includes the first frequency band and the third frequency band, the first frequency band, the second frequency band, and the third frequency band are all continuous frequency bands, and the minimum value in the first frequency band is greater than or equal to the third frequency band.
- the minimum value of the second frequency band is less than or equal to the minimum value of the third frequency band, and the maximum value of the second frequency band is greater than or equal to the maximum value of the first frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the target power adjustment value of the first channel is greater than the target power adjustment value of the second channel, indicating that the attenuation on the first channel is smaller than the attenuation on the second channel.
- the target power adjustment value of the first channel is determined based on the preamble symbol included in the first detection frame
- the target power adjustment value of the second channel is determined based on the preamble symbol included in the second detection frame.
- the method further includes: the sending end receives second indication information; the sending end communicates with the receiving end on the first channel according to the second indication information.
- the second indication information may be channel information, and the second indication information may be carried in the frame header of the confirmation frame or the link control data unit frame.
- the first indication information is first bandwidth information corresponding to the first transmission mode.
- the first bandwidth information is 200 MHz; if the first transmission mode is the MIMO mode of 100M, the first bandwidth information is 100 MHz.
- the aforementioned reference bandwidth is a preset minimum bandwidth.
- the capacity of the first channel is less than the preset minimum bandwidth, it means that the high frequency (ie within 100MHz-200MHz) attenuation is large, and better high frequency gain cannot be obtained.
- the transmitting end receives
- the first transmission mode indicated by the first indication information is the multiple-input multiple-output MIMO mode of the third frequency band.
- the second frequency band includes the first frequency band and the third frequency band, the first frequency band, the second frequency band, and the third frequency band are all continuous frequency bands, and the minimum value in the first frequency band is greater than or equal to the third frequency band.
- the maximum value of the frequency band, the minimum value of the second frequency band is less than or equal to the minimum value of the third frequency band, and the maximum value of the second frequency band is greater than or equal to the maximum value of the first frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the preset minimum bandwidth may be the minimum required bandwidth in the first frequency band (100MHz-200MHz) or the second frequency band (0-200MHz).
- the first signal-to-noise ratio is used to determine the second channel capacity of the first channel in the second frequency band
- the third signal-to-noise ratio is used to determine the second channel capacity.
- the second frequency band includes the first frequency band and the third frequency band.
- the second frequency band includes the first frequency band and the third frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the second channel received by the sending end is The first transmission mode indicated by the indication information is the SISO mode of the second frequency band.
- the method further includes: when the second channel capacity is less than the third channel capacity and/or the preset service bandwidth, the sending end receives third indication information
- the third indication information is used to indicate the second transmission mode, and the second transmission mode is the MIMO mode of the third frequency band; the transmitting end uses the second transmission mode to communicate with the receiving end according to the second indication information.
- an embodiment of the present application provides a device for determining a transmission mode, and the device for determining a transmission mode includes a device for executing the power line communication transmission provided by the foregoing first aspect and/or any one of the possible implementation manners of the first aspect.
- the unit and/or module of the mode determination method can therefore also achieve the beneficial effects (or advantages) of the power line communication transmission mode determination method provided in the first aspect.
- an embodiment of the present application provides another device for determining a transmission mode, and the device for determining a transmission mode includes a power line communication device configured to execute the power line communication provided by the foregoing second aspect and/or any one of the possible implementation manners of the second aspect.
- the unit and/or module of the method for determining the transmission mode can therefore also achieve the beneficial effects (or advantages) provided by the method for determining the transmission mode of power line communication provided in the second aspect.
- inventions of the present application provide a receiving device.
- the receiving device may include a processor, a transceiver, and a memory, where the memory is used to store a computer program, and the transceiver is used to send and receive various information, detection frames, or data.
- Frame the computer program includes program instructions, and when the processor runs the program instructions, the receiving device executes the power line communication transmission mode determination method of the first aspect or any one of the possible implementations of the first aspect.
- the transceiver may be a radio frequency module in the receiving device, or a combination of a radio frequency module and an antenna, or an input/output interface of a chip or circuit.
- a sending device which may include a processor, a transceiver, and a memory, where the memory is used to store a computer program, and the transceiver is used to send and receive various information, detection frames or data.
- the computer program includes program instructions, and when the processor runs the program instructions, the sending device executes the power line communication sending mode determination method of the second aspect or any one of the possible implementations of the second aspect.
- the transceiver may be a radio frequency module in the transmitting device, or a combination of a radio frequency module and an antenna, or an input/output interface of a chip or circuit.
- an embodiment of the present application provides a communication system, including a receiving device and a sending device, where: the receiving device is the sending mode determining apparatus described in the third aspect or the receiving device described in the fifth aspect, the sending device It is the transmission mode determining apparatus described in the foregoing fourth aspect or the transmission device described in the foregoing sixth aspect.
- embodiments of the present application provide a computer-readable storage medium with computer program instructions stored on the computer-readable storage medium, which when run on a computer, cause the computer to execute the first aspect or the first aspect described above. Any one of the possible implementations describes the method for determining the transmission mode of power line communication.
- the embodiments of the present application provide another computer-readable storage medium with computer program instructions stored on the computer-readable storage medium, which when run on a computer, cause the computer to execute the above-mentioned second aspect or the second aspect Any one of the possible implementations describes the method for determining the transmission mode of power line communication.
- an embodiment of the present application provides a program product containing instructions that, when it runs, causes the power line communication transmission mode determination method described in the first aspect or any one of the possible implementations of the first aspect to be executed .
- an embodiment of the present application provides a program product containing instructions that, when it runs, causes the power line communication transmission mode determination method described in the second aspect or any one of the possible implementations of the second aspect to be implement.
- an embodiment of the present application provides a chip including a processor.
- the processor is configured to read and execute a program stored in the memory to execute one or more of the foregoing first aspect or second aspect, or, in any possible implementation manner of the foregoing first aspect or the foregoing second aspect
- One or more of the provided methods for determining the transmission mode of power line communication is configured to determine the transmission mode of power line communication.
- the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
- the chip further includes a communication interface, and the processor is connected to the communication interface.
- the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
- the communication interface can be an input and output interface.
- processors and memory may be physically independent units, or the memory may also be integrated with the processor.
- a 200M SISO mode can be added to the 100M MIMO mode, and the mode can be selected according to different services and scenarios, so as to improve the performance and stability of the PLC system, while realizing large-bandwidth system transmission.
- Figure 1 is a schematic diagram of the physical layer frame format defined by the G.hn standard
- Figure 2 is a system architecture diagram of a power line communication system provided by an embodiment of the present application.
- FIG. 3 is a schematic flowchart of a method for determining a transmission mode of power line communication provided by an embodiment of the present application
- FIG. 4 is a schematic diagram of a first sending mode determination process provided by an embodiment of the present application.
- FIG. 5 is a data interaction flowchart of power line communication provided by an embodiment of the present application.
- FIG. 6 is a schematic structural diagram of a transmission mode determining apparatus provided by an embodiment of the present application.
- FIG. 7 is another schematic diagram of the structure of the apparatus for determining a transmission mode provided by an embodiment of the present application.
- Fig. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the G.hn standard is a set of protocol specifications for power lines (power lines), telephone lines, and coaxial cables. It can integrate existing twisted-pair cables, coaxial cables, and power lines to achieve unified transmission, thereby significantly reducing Installation and operating costs.
- the frame format defined by the G.hn standard includes preamble, header, channel estimation (additional channel estimation symbol (ACE symbol)), and one or more valid Payload.
- the frame header includes 1 to 2 symbols
- the channel estimation includes 1 to 7 ACE symbols.
- the preamble symbol is used for frame synchronization and target power adjustment
- the ACE symbol is used for channel estimation
- the payload is used for carrying user data.
- the payload of the data frame carries valid user data.
- the payload of the detection frame carries a pseudo-random binary sequence, and the pseudo-random binary sequence carried on the payload symbol of the detection frame is used to estimate the signal-to-noise ratio.
- the frame format provided by the embodiments of the present application is compatible with the physical layer frame format defined by the G.hn standard.
- the frame format provided in the embodiment of this application adds 2 valid bits to the frame header of the frame format defined by the G.hn standard.
- One valid bit is used to indicate bandwidth (bandplan) information or transmission mode information, and the other valid bit Bits are used to indicate channel information.
- Signal-to-noise ratio (signal-to-noise ratio, SNR)
- the signal-to-noise ratio refers to the ratio of signal to noise in an electronic device or electronic system.
- the signal here refers to the electronic signal from the outside of the device that needs to be processed by this device, and the noise refers to the irregular extra signal (or information) that does not exist in the original signal generated after passing through the device, and this extra signal is not Does not change with changes in the original signal.
- the unit of measurement of SNR is decibel (dB), which satisfies the calculation method of formula (1-1):
- Vs represents the "effective value” of the signal voltage
- Vn represents the "effective value” of the noise voltage.
- Channel capacity refers to the maximum information rate at which the channel can transmit information without errors, in units of bits per second (bit/s) or bits per symbol (bit/symbol). According to Shannon's channel capacity formula, Shannon's formula for short, the channel capacity C satisfies the formula (1-2):
- B represents the channel bandwidth
- SNR represents the signal-to-noise ratio
- the method for determining the transmission mode of power line communication can be applied to a power line communication system.
- the power line communication system usually uses the existing power lines and sockets in the home or office to build a network, connect personal computers, broadband Internet access equipment, set-top boxes, audio equipment, monitoring equipment and other smart electrical equipment, etc., and transmit data, voice or video through the power line Wait.
- the power line communication system includes at least two power line communication modems (the power line communication modem 100 and the power line communication modem 200 of FIG. 2).
- the power line communication modem refers to a modem (Modem) for broadband Internet access through a power line, commonly known as a power modem.
- Each of the at least two power line communication modems can be connected via a power line.
- the power line includes live (L), neutral (N), and protective earth (PE).
- the live and neutral can form a digital differential channel, and the live and protective earth can form another digital differential channel.
- the power line communication modem 100 and the power line communication modem 200 can communicate using dual channels.
- power line communication uses the power line as a medium for communication
- the noise in the power line is an important factor affecting data transmission.
- Typical noise sources of power line communication systems are electrical appliances connected to the line, such as brush motors, switching power supplies, fluorescent lamps, halogen lamps, or various other household appliances. Due to changes in the working state of electrical appliances or the plugging and unplugging of electrical appliances, the noise in the power line will continue to change throughout the power line cycle, resulting in continuous changes in channel capacity. Under the influence of large interference electrical appliances, it may even cause the PLC equipment to be disconnected or unable to connect to the network. Studies have shown that the noise on power lines is frequency-selective. Power line noise interference is large in the 0-100MHz frequency band, and the frequency band above 100MHz is almost free from power line noise interference.
- the embodiment of the present application provides a method for determining the transmission mode of power line communication.
- the 200M SISO mode is added, and the mode is selected according to different services and scenarios, so as to improve the performance and stability of the PLC system. Realize large bandwidth system transmission.
- the maximum system capacity of MIMO PLC can reach twice that of SISO PLC under the same bandwidth, and the storage resources of the required chips are also twice that of SISO PLC.
- dual-channel 100M MIMO PLC mode dual-channel storage resources can be spliced to achieve compatibility with the 200M SISO PLC mode, so as to support the 200M SISO mode without adding memory chips.
- the transmitter and receiver provided in the embodiments of this application support both 100M MIMO PLC mode and 200M SISO PLC mode; at the same time, the transmitter can only choose one mode to communicate with the receiver.
- there are two channels between the sending end and the receiving end in the embodiments of the present application which are respectively a digital differential channel formed by a live wire and a neutral wire, and a digital differential channel formed by a live wire and a protective ground wire.
- the two channels between the sending end and the receiving end are described as the first channel and the second channel, respectively.
- the channel mentioned in the embodiment of the present application refers to the power line channel for transmitting data.
- the embodiment of the present application uses the channel to describe the power line channel for transmitting data.
- FIG. 3 is a schematic flowchart of a method for determining a transmission mode of power line communication according to an embodiment of the present application.
- the sending end in the embodiment of the present application may be the power line communication modem 100 in FIG. 2 and the receiving end may be the power line communication modem 200 in FIG. 2; or the sending end in the embodiment of the present application may be the power line communication modem in FIG. 2 200.
- the receiving end may be the power line communication modem 100 in FIG. 2, which is not limited in the embodiment of the present application.
- the method for determining the transmission mode of the power line communication includes but is not limited to the following steps:
- the sending end sends a first detection frame of the second frequency band on the first channel.
- the receiving end receives the first detection frame of the second frequency band on the first channel.
- S102 The sending end sends a second detection frame of the second frequency band on the second channel.
- the receiving end receives the second detection frame of the second frequency band on the second channel.
- S103 The sending end simultaneously sends a third detection frame of the third frequency band on the first channel and a fourth detection frame of the third frequency band on the second channel.
- the receiving end simultaneously receives the third detection frame of the third frequency band on the first channel and the fourth detection frame of the third frequency band on the second channel.
- the receiving end determines the first signal-to-noise ratio of the first channel in the third frequency band based on the first detection frame.
- the receiving end determines a second signal-to-noise ratio of the second channel in the third frequency band based on the second detection frame.
- the receiving end determines a third signal-to-noise ratio in the third frequency band of the dual channel formed by the first channel and the second channel based on the third detection frame and the fourth detection frame.
- the second frequency band is 0 to 200 MHz
- the third frequency band is 0 to 100 MHz.
- the second frequency band includes a first frequency band and a third frequency band.
- the first frequency band, the second frequency band, and the third frequency band are all continuous frequency bands, and the minimum value of the first frequency band is greater than or equal to the maximum value of the third frequency band.
- the minimum value of the second frequency band is less than or equal to the minimum value of the third frequency band, and the maximum value of the second frequency band is greater than or equal to the maximum value of the first frequency band.
- the first frequency band is 100MHz to 200MHz.
- the sending end sends the first detection frame of the second frequency band on the first channel, and does not send the detection frame on the second channel.
- the receiving end receives the first detection frame of the second frequency band on the first channel, and does not receive any detection frame on the second channel.
- the receiving end analyzes the payload in the received first detection frame, and estimates the single-stream signal-to-noise ratio (first signal-to-noise ratio) of the first channel in the third frequency band (within 0-100MHz) ).
- the first signal-to-noise ratio SNR sgl_1 satisfies formula (2-1):
- N is the total number of subcarriers in the third frequency band (0-100MHz)
- the interval between each sub-carrier of the N sub-carriers is 24.414 KHz.
- the sending end sends the second detection frame of the second frequency band on the second channel, and does not send the detection frame on the first channel.
- the receiving end receives the second detection frame of the second frequency band on the second channel, and does not receive any detection frame on the first channel.
- the receiving end analyzes the payload in the received second detection frame, and estimates the single-stream signal-to-noise ratio (second signal-to-noise ratio) of the second channel in the third frequency band (within 0-100MHz) ). It can be understood that the sending time of the first detection frame and the second detection frame are different.
- the second signal-to-noise ratio SNR sgl_2 satisfies formula (2-2):
- N is the total number of subcarriers in the third frequency band (0-100MHz)
- the interval between each sub-carrier of the N sub-carriers is 24.414 KHz.
- the transmitting end sends 100M MIMO detection frames on the dual channel formed by the first channel and the second channel, that is, simultaneously sends the third detection frame of the third frequency band and the second channel on the first channel.
- the fourth detection frame of the third frequency band is sent on.
- the receiving end simultaneously receives the third detection frame of the third frequency band on the first channel and the fourth detection frame of the third frequency band on the second channel.
- the receiving end analyzes the received payload in the third detection frame and the fourth detection frame, and estimates the dual-stream signal-to-noise ratio (the first) of the dual-channel in the third frequency band (within 0-100MHz). Three signal-to-noise ratio).
- the third signal-to-noise ratio SNR dul satisfies formula (2-3):
- N is the total number of subcarriers in the third frequency band (0-100MHz), It is the signal-to-noise ratio corresponding to the k-th sub-carrier among the N sub-carriers on the dual channel formed by the first channel and the second channel.
- the interval between each sub-carrier of the N sub-carriers is 24.414 KHz.
- the signal-to-noise ratio corresponding to the k-th sub-carrier among the N sub-carriers on the dual channel Meet the formula (2-4):
- the single-stream SNR of a channel in MIMO mode is not equal to the single-stream SNR of this channel in SISO mode, that is
- the bandwidth (bandplan) information of the first detection frame and the second detection frame are both 200M
- the bandwidth information of the third detection frame and the fourth detection frame are both 100M
- the header of the detection frame in the embodiment of the present application includes a valid bit for indicating bandplan information and a valid bit for indicating channel information.
- the effective bit used to indicate bandplan information in the header is 1, it means that the bandplan information is 100M or 100M MIMO mode; the effective bit used to indicate bandplan information is 0, which means that the bandplan information is 200M or 200M SISO model.
- the effective bit used to indicate channel information in the header is 1, it indicates the first channel; if the effective bit used to indicate channel information is 0, it indicates the second channel.
- the sender can periodically send a probe frame (probe frame), or send a probe frame when the sender is powered on for the first time, or when the receiver detects the signal-to-noise ratio in the channel. When it changes, trigger the sender to send a detection frame.
- probe frame probe frame
- the receiver detects the signal-to-noise ratio in the channel.
- the receiving end determines that the first transmission mode is the SISO mode of the second frequency band.
- the second frequency band is 0 to 200 MHz
- the third frequency band is 0 to 100 MHz
- the first frequency band is 100 MHz to 200 MHz.
- the second frequency band includes the first frequency band and the third frequency band, the first frequency band, the second frequency band, and the third frequency band are all continuous frequency bands, and the minimum value of the first frequency band is greater than or equal to that of the third frequency band.
- the maximum value, the minimum value of the second frequency band is less than or equal to the minimum value of the third frequency band, and the maximum value of the second frequency band is greater than or equal to the maximum value of the first frequency band.
- the receiving end may compare the first signal-to-noise ratio SNR sgl_1 , The magnitude relationship between the second signal-to-noise ratio SNR sgl_2 and the above-mentioned third signal-to-noise ratio SNR dul.
- the first signal-to-noise ratio is greater than or equal to the third signal-to-noise ratio (ie SNR sgl_1 ⁇ SNR dul ), or the second signal-to-noise ratio is greater than or equal to the third signal-to-noise ratio (ie SNR sgl_2 ⁇ SNR dul ), It means that the system gain (or system capacity, or channel capacity) of the single channel is better than the system gain of the dual channel at this time. That is, the dual channel cannot provide the system multiplexing gain.
- the SISO mode of the two frequency bands is the first transmission mode.
- the receiving end can directly determine the MIMO mode using the third frequency band, that is, the third frequency band
- the MIMO mode is the first transmission mode.
- the sending end does not switch the sending mode and still uses the current sending mode to communicate with the receiving end. If the first sending mode determined by the receiving end based on the detection frame is different from the currently adopted sending mode, that is, the sending end switches from the currently adopted sending mode to the first sending mode to communicate with the receiving end.
- the receiving end can obtain the preset target power.
- the receiving end estimates the target power adjustment value of the first channel based on the preamble symbols included in the first detection frame, and may estimate the target power adjustment of the second channel based on the preamble symbols included in the second detection frame value.
- the receiving end can compare the target power adjustment value of the first channel with the target power adjustment value of the second channel. If the target power adjustment value of the first channel is less than the target power adjustment value of the second channel, indicating that the attenuation on the first channel is less than the attenuation on the second channel, the receiving end determines that the transmission channel in the 200M SISO mode is the first channel. aisle.
- the receiving end determines that the transmission channel in the 200M SISO mode is the second channel. aisle.
- the receiving end will return an acknowledgement (ACK) frame for each received data frame. Since the detection frame is a broadcast frame, there is no need to return an ACK frame. It is fed back through the link control data unit (LCDU) frame information.
- the receiving end may send the first indication information and the second indication information to the sending end through an ACK frame or an LCD frame.
- the first indication information may be bandwidth information corresponding to the SISO mode of the second frequency band.
- the sender parses the received ACK or LCDU frame to obtain the first indication information and the second indication information, and uses the second frequency band indicated by the first indication information on the first channel indicated by the second indication information
- the SISO mode communicates with the receiving end.
- the header of the ACK or LCDU frame also includes a valid bit for indicating bandplan information and a valid bit for indicating channel information.
- the effective bit used to indicate the bandplan information in the frame header is referred to as the first bit
- the effective bit used to indicate the channel information in the frame header is referred to as the second bit.
- the receiving end writes the first indication information into the first bit of the ACK frame
- the sending end parses the frame header of the ACK frame to obtain the first indication information and the second indication information.
- the first indication information is 0, which is used to indicate the 200M SISO mode
- the second indication information is 1, which is used to indicate that the channel information is the first channel.
- the receiving end writes the first indication information into the first bit of the LCDU frame
- writes the second indication information into the second bit of the LCDU frame and returns to the sending end for each detection frame received above The LCDU frame.
- the sending end parses the frame header of the LCDU frame to obtain the first indication information and the second indication information.
- the sending end determines that the second indication information is valid, that is, the sending end adopts the 200M SISO mode on the channel indicated by the second indication information Communicate with the receiving end. If the first indication information parsed by the sending end is 1 (used to indicate 100M MIMO mode), the sending end determines that the second indication information is invalid, indicating that the sending end uses dual channels by default, that is, the sending end uses 100M on dual channels MIMO mode communicates with the receiving end.
- the receiving end before the receiving end sends the first indication information and the second indication information to the sending end through the ACK frame, receives the 100M MIMO sent by the sending end on the dual channel formed by the first channel and the second channel
- the data frame that is, the first data frame of the third frequency band is received on the first channel and the second data frame of the third frequency band is received on the second channel at the same time.
- the receiving end writes the first indication information into the first bit of the ACK frame, and writes the second indication information into the second bit of the ACK frame, and respectively direct the first data frame and the second data frame to the
- the sender returns the ACK frame.
- the first bit included in the frame header of the first data frame and the second data frame is 1, indicating a 100M MIMO transmission mode.
- the target power adjustment value AGC sgl_1 of the first channel satisfies formula (2-5)
- the target power adjustment value AGC sgl_2 of the second channel satisfies formula (2-6):
- AGC sgl_1 P tag /P sgl_1 , (2-5)
- AGC sgl_2 P tag /P sgl_2 , (2-6)
- Received signal power wherein the received signal power, P tag preset target power, P sgl_1 upper frame comprises a first passage of the first detection of the preamble symbol, P sgl_2 for the second channel of the second sounding frame comprising preamble symbols .
- the sending end uses the 200M SISO mode to communicate with the receiving end on the first channel
- the second channel of the dual channel formed by the first channel and the second channel remains connected, but does not transmit data
- the receiving end determines the target power adjustment value of the first channel based on the preamble symbol included in the first detection frame, and based on the second The preamble symbol included in the detection frame determines the target power adjustment value of the second channel.
- the receiving end determines the first channel capacity of the first channel in the first frequency band based on the first detection frame.
- the first signal-to-noise ratio and the second signal-to-noise ratio are both smaller than the third signal-to-noise ratio (ie SNR sgl_1 ⁇ SNR dul and SNR sgl_2 ⁇ SNR dul ), it means that the single channel
- the system gain or system capacity, or channel capacity
- the dual-channel system gain that is, dual-channel can provide system multiplexing gain, but because the channel capacity within 100MHz is greatly affected by noise and unstable, it needs to be further combined with the scene And the business determines which transmission mode to use.
- the receiving end determines the first receiver on the first channel based on the preamble symbol included in the first detection frame.
- the signal power that is, P sgl_1 in formula (2-5)
- the second received signal power on the second channel is determined based on the preamble symbol included in the second detection frame (that is, in formula (2-6) P sgl_2 ).
- the receiving end can obtain the preset target power (that is, P tag in formula (2-5) and formula (2-6)), and can determine the ratio between the target power and the first received signal power as the
- the target power adjustment value of the first channel may be determined as the target power adjustment value of the second channel by a ratio between the target power and the second received signal power.
- the receiving end can compare the target power adjustment value of the first channel with the target power adjustment value of the second channel.
- the target power adjustment value of the first channel is less than the target power adjustment value of the second channel, it means that the attenuation on the first channel is less than the attenuation on the second channel, and the receiving end can check the received first detection frame Analyze the payload of the first channel based on the results of the analysis, and determine the signal-to-noise ratio of the first channel in the first frequency band (100MHz-200MHz) based on the Shannon’s formula.
- the first channel capacity is the target power adjustment value of the second channel.
- the receiving end can check the received second detection frame Analyze the payload of the second channel based on the results of the analysis, determine the signal-to-noise ratio of the second channel in the first frequency band (100MHz-200MHz), and determine the second channel in the first frequency band according to Shannon’s formula One channel capacity.
- the embodiment of the present application takes an example that the target power adjustment value of the first channel is smaller than the target power adjustment value of the second channel.
- the first channel capacity C st satisfies formula (2-7):
- M is the total number of subcarriers in the first frequency band (100MHz-200MHz), Is the signal-to-noise ratio corresponding to the k-th sub-carrier among the M sub-carriers on the first channel.
- the interval between the sub-carriers of the M sub-carriers is 24.414 KHz.
- the channel capacity in the 100MHz-200MHz frequency band is basically not interfered by changes in the working state of electrical appliances or the plugging and unplugging of electrical appliances, and once the network positions of the sending end and the receiving end are determined, the line attenuation remains stable.
- the bandwidth in the 100MHz-200MHz frequency band is a stable bandwidth. That is, when the line attenuation is stable, the aforementioned first channel capacity C st is also stable.
- the sending end sends the first detection frame of the third frequency band on the first channel, and does not send the detection frame on the second channel.
- the receiving end receives the first detection frame of the third frequency band on the first channel, and does not receive any detection frame on the second channel.
- the receiving end estimates the single-stream signal-to-noise ratio (first signal-to-noise ratio) of the first channel in the third frequency band based on the first detection frame.
- the sending end sends the second detection frame of the third frequency band on the second channel, and does not send the detection frame on the first channel.
- the receiving end receives the second detection frame of the third frequency band on the second channel, and does not receive any detection frame on the first channel.
- the receiving end pair estimates the single-stream signal-to-noise ratio (second signal-to-noise ratio) of the second channel in the third frequency band based on the second detection frame.
- the sending end sends 100M MIMO detection frames on the dual channel formed by the first channel and the second channel, that is, simultaneously sends the third detection frame of the third frequency band on the first channel and sends the third detection frame on the second channel.
- the fourth detection frame of the frequency band correspondingly, the receiving end simultaneously receives the third detection frame of the third frequency band on the first channel and the fourth detection frame of the third frequency band on the second channel.
- the receiving end estimates the dual-stream signal-to-noise ratio (third signal-to-noise ratio) of the dual channel in the third frequency band based on the third detection frame and the fourth detection frame.
- the receiving end determines that the first transmission mode is the SISO mode of the second frequency band. If the first signal-to-noise ratio and the second signal-to-noise ratio are both less than the third signal-to-noise ratio, the receiving end determines the target power adjustment value of the first channel based on the preamble symbol included in the first detection frame, and The target power adjustment value of the second channel is determined based on the preamble symbol included in the second detection frame.
- the receiving end may send indication information for indicating the first channel to the sending end. After receiving the indication information for indicating the first channel, the sending end sends the fifth detection frame of the second frequency band on the first channel. Correspondingly, the receiving end receives the fifth detection frame of the second frequency band on the first channel.
- the receiving end determines the first channel capacity of the first channel in the first frequency band based on the fifth detection frame.
- the second frequency band includes the first frequency band and the third frequency band.
- the receiving end determines a first transmission mode according to the first channel capacity and the reference bandwidth.
- the aforementioned reference bandwidth may include a preset minimum bandwidth.
- the preset minimum bandwidth may be the minimum required bandwidth in the first frequency band (100MHz-200MHz) or the second frequency band (0-200MHz).
- the aforementioned reference bandwidth may also include a preset service bandwidth.
- the preset service bandwidth may be a stable bandwidth set according to different service requirements. For example, ordinary high-definition video requires a stable bandwidth of 10M to 20M, and 4K (ultra-high-definition) video requires a stable bandwidth of 40M to 50M.
- FIG. 4 is a schematic diagram of a first sending mode determination process provided by an embodiment of the present application.
- the determination of the first transmission mode may include the following steps:
- the receiving end determines that the first transmission mode is the MIMO mode of the third frequency band.
- the receiving end may obtain the preset minimum bandwidth C min , and may compare the magnitude relationship between the foregoing first channel capacity C st and the preset minimum bandwidth C min. If the capacity of the first channel is less than the preset minimum bandwidth (ie C st ⁇ C min ), it means that the high frequency (ie within 100MHz-200MHz) has a large attenuation, and a better high frequency gain cannot be obtained. At this time, the attenuation is limited. Scenario, the receiving end may determine to adopt the 100M MIMO mode, that is, determine that the first transmission mode is the MIMO mode of the third frequency band.
- the receiving end can directly determine to adopt the 200M SISO mode , That is, it is determined that the first transmission mode is the SISO mode of the second frequency band.
- the receiving end can obtain the preset service bandwidth C nd and compare the first channel The size relationship between the capacity C st and the preset service bandwidth C nd. If the first channel capacity is greater than or equal to the preset service bandwidth (ie C st ⁇ C nd ), indicating that the stable first channel capacity meets the stable bandwidth requirements required by the service, the receiving end can determine to adopt the 200M SISO mode , That is, it is determined that the first transmission mode is the SISO mode of the second frequency band.
- the receiving end can identify the service type based on the LAN Switch (LSW), data link layer (DLL), and physical (physical, PHY) layer, and obtain The preset service bandwidth corresponding to the service type.
- LSW cooperates with upper-layer software to identify service packets, adds service packets to different priority queues, and schedules service packets in different priority queues and sends them to DLL for processing; DLL allocates time slots for different services, Round-robin scheduling; the PHY layer distinguishes the preset service bandwidth set by the service stream sent by the DLL. For example, if the service type is ordinary high-definition video, the preset service bandwidth is 10M; if the service type is 4K (ultra-high-definition) video, the preset service bandwidth is 40M.
- the receiving end can directly determine The 100M MIMO mode is adopted, that is, the first transmission mode is determined to be the MIMO mode of the third frequency band.
- the receiving end determines the second channel capacity of the first channel in the second frequency band based on the first signal-to-noise ratio.
- S1104 The receiving end determines the third channel capacity of the dual channel in the third frequency band based on the third signal-to-noise ratio.
- the receiving end may determine the sum of the channel capacity corresponding to the first signal-to-noise ratio and the first channel capacity as the second channel capacity of the first channel in the second frequency band (0-200 MHz).
- the receiving end can calculate the third channel capacity corresponding to the third signal-to-noise ratio (that is, the channel capacity of the dual channel formed by the first channel and the second channel in the third frequency band) according to the Shannon formula.
- step S1103 can be replaced with: if the capacity of the first channel is greater than or equal to the preset minimum bandwidth and the first channel If the channel capacity is less than the above preset service bandwidth (ie C min ⁇ C st ⁇ C nd ), the receiving end can calculate the channel capacity corresponding to the above second signal-to-noise ratio according to Shannon’s formula (ie, the channel capacity of the second channel in the third frequency band) capacity). The receiving end may determine the sum of the channel capacity corresponding to the second signal-to-noise ratio and the first channel capacity as the second channel capacity of the second channel in the second frequency band (0-200 MHz). Wherein the second channel signal to noise ratio C sgl_2 SNR sgl_2 capacity corresponding to satisfy equation (2-10):
- N is the total number of subcarriers in the third frequency band (0-100MHz).
- the receiving end may compare the magnitude relationship between the second channel capacity C 200 and the third channel capacity C dul. If the capacity of the second channel is greater than or equal to the capacity of the third channel (ie C 200 ⁇ C dul ), it means that the gain of 100M MIMO is less than the gain of 200M SISO due to the influence of noise. At this time, it is a noise-limited scenario, and the receiving end can The 200M SISO mode is determined to be adopted, that is, the first transmission mode is determined to be the SISO mode of the second frequency band.
- the receiving end can directly determine to adopt the 100M MIMO mode, that is, determine the first A transmission mode is the MIMO mode of the third frequency band mentioned above.
- S1106 If the second channel capacity is less than the third channel capacity, and the second channel capacity is greater than or equal to the preset service bandwidth, the receiving end determines that the first transmission mode is the SISO mode of the second frequency band.
- the receiving end can compare the second channel capacity C 200 with the preset service bandwidth C nd .
- the receiver The terminal may determine to adopt the 100M MIMO mode, that is, determine that the second transmission mode is the MIMO mode of the third frequency band.
- the receiving end determines the scenario where the PLC system is located (such as the attenuation-limited scenario or the noise-limited scenario), and determines whether the single-channel channel capacity can provide the stable bandwidth required by the service, thereby
- the transmission mode can be adaptively and flexibly selected based on the scenario and the business, which improves the performance and stability of the PLC system, and at the same time realizes the system transmission with a large bandwidth.
- S111 The receiving end sends first indication information to the sending end. Correspondingly, the sending end receives the first indication information.
- the sending end uses the first sending mode to communicate with the receiving end according to the first instruction information.
- the above-mentioned first indication information may be carried in the frame header of the ACK or LCDU frame.
- the first indication information may be used to indicate the foregoing first sending mode.
- the receiving end may send the first indication information to the sending end through an ACK or LCDU frame.
- the first indication information is bandwidth information corresponding to the 100M MIMO mode.
- the sending end analyzes the received ACK or LCDU frame to obtain the first indication information, and can communicate with the receiving end in the 100M MIMO mode on the dual channel formed by the first channel and the second channel. Specifically, the receiving end writes the first indication information into the first bit of the ACK or LCDU frame, and sends the ACK or LCDU frame to the sending end.
- the sending end parses the frame header of the ACK or LCDU frame to obtain the first indication information.
- the sending end uses the first sending mode indicated by the first indication information to communicate with the receiving end on the dual channel.
- the first indication information is 1, which is used to indicate 100M MIMO mode, and dual channels are used by default.
- the receiving end may send the first indication information and the second indication information to the transmission through an ACK or LCDU frame. end.
- the first indication information is bandwidth information corresponding to the 200M SISO mode
- the second indication information is used to indicate the first channel.
- the sender parses the received ACK or LCDU frame to obtain the first indication information and the second indication information, and uses the second frequency band indicated by the first indication information on the first channel indicated by the second indication information
- the SISO mode communicates with the receiving end.
- the receiving end writes the first indication information into the first bit of the ACK or LCDU frame, writes the second indication information into the second bit of the ACK or LCDU frame, and sends the ACK or the second bit to the sending end.
- LCDU frame The sending end parses the frame header of the ACK or LCDU frame to obtain the first indication information and the second indication information.
- the sending end uses the first sending mode indicated by the first indication information to communicate with the receiving end on the channel indicated by the second indication information.
- the first indication information is 0, which is used to indicate the 200M SISO mode
- the second indication information is 1, which is used to indicate that the channel information is the first channel.
- the third indication information may be sent to the sending end through an ACK or LCDU frame.
- the third indication information is used to indicate the MIMO mode of the third frequency band.
- the sending end parses the received ACK or LCDU frame to obtain the third indication information, and can communicate with the receiving end in the 100M MIMO mode on the dual channel formed by the first channel and the second channel.
- the receiving end determines the channel capacity of single channel, dual channel or single channel at high frequency based on different detection frames sent by the sending end, based on the channel capacity of single channel, dual channel or single channel at high frequency
- the capacity judges the scenario where the PLC system is located (such as the attenuation restricted scene or the noise restricted scene), and judges whether the channel capacity of a single channel can provide the stable bandwidth required by the service, so as to select the transmission mode. If the sending mode determined by the receiving end is the same as the initial sending mode, the mode switching is not performed; if the sending mode determined by the receiving end is different from the initial sending mode, the mode switching is triggered.
- the embodiment of the application can add a 200M SISO mode in addition to the 100M MIMO mode, and adaptively and flexibly select the transmission mode based on scenarios and services, improve the performance and stability of the PLC system, and realize large-bandwidth system transmission.
- the receiving end may estimate the block error rate (BLER) and the signal-to-noise ratio based on the data frame sent by the sending end. If the BLER of the PLC system increases or the SNR changes frequently, it means that the PLC system is subject to greater electrical interference at this time, and the receiving end directly determines to adopt the 200M SISO mode.
- the receiving end can feed back the 200M SISO mode to the sending end. After receiving the 200M SISO mode fed back by the receiving end, the sending end can send a 200M SISO detection frame. After receiving the 200M SISO detection frame, the receiving end estimates the channel capacity based on the 200M SISO detection frame.
- the block error rate refers to the percentage of error code blocks in all transmitted code blocks.
- the child nodes where the sending end and the receiving end are located can be registered to their corresponding parent nodes.
- the parent node can monitor the online or offline of the registered child node through the heartbeat mechanism, and can monitor whether the child node is successfully registered. If the node where the sender or receiver is located (here the physical entity corresponding to the node is the power cat) frequently goes online or fails to register, it means that the PLC system is interfered with by electrical appliances at this time, and the receiver directly determines to adopt the 200M SISO mode.
- the receiving end can feed back the 200M SISO mode to the sending end. After receiving the 200M SISO mode fed back by the receiving end, the sending end can send a 200M SISO detection frame. After receiving the 200M SISO detection frame, the receiving end estimates the channel capacity based on the 200M SISO detection frame.
- the current transmission mode of the PLC system as the 100M MIMO mode as an example, the data interaction between the transmitting end and the receiving end in the power line communication process is described.
- FIG. 5 is a data exchange flowchart of power line communication provided by an embodiment of the present application. As shown in Figure 5, the data exchange flowchart includes but not limited to the following steps:
- the sender sends 100M MIMO data frames on dual channels.
- the receiving end receives 100M MIMO data frames.
- the receiving end analyzes the frame header of the 100M MIMO data frame to obtain the first bandwidth information.
- the receiving end analyzes the payload of the 100M MIMO data frame according to the mode indicated by the first bandwidth information to obtain the first user data carried on the payload of the 100M MIMO data frame.
- the receiving end determines the sending mode.
- the receiving end If the sending mode determined by the receiving end is different from the current sending mode, the receiving end writes the second bandwidth information of the determined sending mode into the header of the ACK or LCDU frame, and writes the channel information into the ACK Or in the frame header of the LCDU frame.
- the receiving end returns an ACK or LCDU frame to the sending end on the dual channel.
- the sender receives the ACK or LCDU frame.
- the sender parses the frame header of the ACK or LCDU frame to obtain the second bandwidth information.
- the sending end uses the mode indicated by the second bandwidth information to communicate with the receiving end on the channel indicated by the communication information.
- the above-mentioned dual channel refers to the first channel and the second channel.
- the frame header of the data frame, ACK or LCDU frame all includes a valid bit (ie, the first bit) for indicating bandplan information and a valid bit (ie, the second bit) for indicating channel information.
- the first bit in the frame header of the 100M MIMO data frame is 1, which is used to indicate 100M or 100M MIMO mode, and dual channels are used by default.
- the first bit in the frame header of the ACK or LCDU frame is 0, which is used to indicate 200M or 200M SISO mode; the second bit is 1, which is used to indicate the first channel.
- the first bandwidth information is 100M, and the second bandwidth information is 200M.
- the channel information is used to indicate the first channel, and the target power adjustment value of the first channel is smaller than the target power adjustment value of the second channel.
- step S4 reference may be made to the method for determining the transmission mode of the power line communication shown in FIG. 3, which will not be repeated here.
- steps S5 to S7 are: if the transmission mode determined by the receiving end is different from the current transmission mode, the receiving end will determine the transmission mode.
- the second bandwidth information of the sending mode is written into the frame header of the LCDU frame, and the channel information is written into the frame header of the LCDU frame; the receiver is in the channel for the received detection frame (the channel here can be dual-channel or If it is the first channel or the second channel), the LCDU frame is returned.
- the sending end receives the LCDU frame; the sending end parses the frame header of the LCDU frame to obtain the second bandwidth information.
- steps S5-step S7 are: if the transmission mode determined by the receiving end is different from the current transmission mode, the receiving end will determine The second bandwidth information of the sent transmission mode is written into the frame header of the ACK frame, and the channel information is written into the frame header of the ACK frame; the receiving end returns the ACK frame on the dual channel for the 100M MIMO data frame, and sends it accordingly.
- the end receives the ACK frame; the sender parses the frame header of the ACK frame to obtain the second bandwidth information.
- step S6 is specifically: the receiving end sends an ACK or LCDU frame including the second bandwidth information on the first channel and the second channel respectively.
- the foregoing step S8 is specifically: the sending end sends a 200M SISO data frame on the first channel.
- the receiving end receives 200M SISO data frames.
- the receiving end parses the frame header of the 200M SISO data frame to obtain the second bandwidth information.
- the receiving end analyzes the payload of the 200M SISO data frame according to the mode indicated by the second bandwidth information to obtain the second user data carried on the payload of the 200M SISO data frame.
- the receiving end directly returns an ACK frame on the dual channel for the 100M MIMO data frame, or the receiving end returns on the channel for the received detection frame LCDU frame.
- the first bit in the frame header of the ACK or LCDU frame is 1, indicating that the current transmission mode is 100M MIMO mode.
- the ACK or LCDU frame is used to confirm the continued use of the current transmission mode for communication.
- the embodiment of the present application also provides corresponding devices or equipment.
- the sending mode determining apparatus 1 may include:
- the transceiver module 11 is configured to receive the first detection frame sent by the transmitting end on the first channel; the first determining module 12 is configured to determine that the first channel is in the first frequency band based on the first detection frame received by the transceiver module 11
- the second determining module 13 is used to determine the first transmission mode according to the first channel capacity and the reference bandwidth determined by the first determining module 12; the transceiver module 11 is also used to send First indication information, where the first indication information is used to instruct the sending end to use the first sending mode to communicate with the sending mode determining apparatus 1.
- the sending end and the sending mode determining device 1 there are two channels between the sending end and the sending mode determining device 1, which are the digital differential channel formed by the live wire and the neutral wire, and the digital differential channel formed by the live wire and the protective ground wire.
- the first channel can be the channel with the smallest target power adjustment value among the two channels. Since the target power adjustment value can reflect the attenuation on the channel, the smaller the target power adjustment value, the smaller the attenuation on the channel, so the first channel It is also a channel with a small attenuation.
- the first sending mode is the sending mode that the sending end needs to use determined by the sending mode determining apparatus 1, and the first indication information is used to instruct the sending end to use the first sending mode to communicate with the sending mode determining apparatus 1.
- the first indication information may be bandwidth (bandplan) information, and the first indication information may be carried in the frame header of the confirmation frame or the link control data unit frame.
- the first frequency band may be 100MHz-200MHz.
- the reference bandwidth is a preset service bandwidth; the second determining module 13 is specifically configured to: when the first channel capacity determined by the first determining module 12 is greater than or equal to the preset service When bandwidth, the determined first transmission mode is the single-input single-output SISO mode of the second frequency band, and the second frequency band includes the first frequency band and the third frequency band, the first frequency band, the second frequency band, and the third frequency band.
- the frequency bands are all continuous frequency bands, the minimum value in the first frequency band is greater than or equal to the maximum value of the third frequency band, the minimum value of the second frequency band is less than or equal to the minimum value of the third frequency band, and the maximum value of the second frequency band The value is greater than or equal to the maximum value of the first frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the preset service bandwidth may be a stable bandwidth set according to different service requirements.
- the preset service bandwidth may be a stable bandwidth set according to different service requirements.
- the foregoing sending mode determining apparatus 1 further includes a third determining module 14 and a fourth determining module 15.
- the above-mentioned transceiver module 11 is also used for receiving the second detection frame sent by the sending end on the second channel, and receiving the third detection frame sent by the sending end on the first channel and the fourth detection frame sent on the second channel at the same time.
- the transmission time of the first detection frame is different from the transmission time of the second detection frame;
- the third determining module 14 is configured to determine that the first channel is in the first detection frame based on the first detection frame received by the transceiver module 11 Determine the second signal-to-noise ratio of the second channel in the third frequency band based on the second detection frame received by the transceiver module 11, and determine the second signal-to-noise ratio of the second channel in the third frequency band based on the first signal-to-noise ratio received by the transceiver module 11.
- the three detection frames and the fourth detection frame determine the third signal-to-noise ratio of the dual channel formed by the first channel and the second channel in the third frequency band; the fourth determination module 15 is used for determining the third signal-to-noise ratio
- the first signal-to-noise ratio determined by the module 14 is greater than or equal to the third signal-to-noise ratio determined by the third determining module 14, or the second signal-to-noise ratio determined by the third determining module 14 is greater than or equal to the third signal-to-noise ratio
- the first transmission mode is the SISO mode of the second frequency band.
- the second frequency band includes the first frequency band and the third frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the target power adjustment value of the first channel is smaller than the target power adjustment value of the second channel, and the target power adjustment value of the first channel is determined based on the preamble symbol included in the first detection frame
- the target power adjustment value of the second channel is determined based on the preamble symbol included in the second detection frame.
- the above-mentioned transceiver module 11 is further configured to send second indication information to the sending end, and the second indication information is used to instruct the sending end to communicate with the sending mode determining apparatus 1 through the first channel.
- the foregoing first indication information is first bandwidth information corresponding to the foregoing first transmission mode.
- the aforementioned reference bandwidth is a preset minimum bandwidth.
- the second determining module 13 is specifically configured to determine the first transmission mode to be the multiple-input multiple-output MIMO mode of the third frequency band when the first channel capacity determined by the first determining module 12 is less than the preset minimum bandwidth.
- the aforementioned reference bandwidth includes a preset service bandwidth and a preset minimum bandwidth.
- the above-mentioned second determining module 13 includes a first determining unit 131, a second determining unit 132, and a third determining unit 133.
- the first determining unit 131 is configured to determine the first channel based on the first signal-to-noise ratio when the first channel capacity is greater than or equal to the preset minimum bandwidth and the first channel capacity is less than the preset service bandwidth
- the second determining unit 132 is configured to determine the dual channel formed by the first channel and the second channel based on the third signal-to-noise ratio determined by the third determining module 14
- the third determining unit 133 is configured to: when the second channel capacity determined by the first determining unit 131 is greater than or equal to the third channel determined by the second determining unit 132 In the case of capacity, the determined first transmission mode is the SISO mode of the second frequency band.
- the second frequency band includes the first frequency band and the third frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the preset service bandwidth may be a stable bandwidth set according to different service requirements.
- the third determining unit 133 is further configured to: when the second channel capacity determined by the first determining unit 131 is smaller than the third channel capacity of the second determining unit 132, and the second channel capacity When the bandwidth is greater than or equal to the preset service bandwidth, it is determined that the first transmission mode is the SISO mode of the second frequency band.
- the foregoing sending mode determining apparatus 1 further includes a fifth determining module 16.
- the fifth determining module 16 is configured to determine the second channel capacity determined by the first determining unit 131 is less than the third channel capacity determined by the second determining unit 132 and/or the preset service bandwidth.
- Transmission mode, the second transmission mode is the MIMO mode of the third frequency band; the above transceiver module 11 is also used to send third indication information to the sending end, and the third indication information is used to instruct the sending end to adopt the second transmission mode Communication with this transmission mode determination device 1 is performed.
- the first determining module 12, the second determining module 13, the third determining module 14, the fourth determining module 15, and the fifth determining module 16 may be one module: a processing module.
- each module or unit can also refer to the corresponding description of the receiving end in the embodiments shown in FIGS. 3 to 5 to execute the methods and functions performed by the receiving end in the foregoing embodiments.
- the sending mode determining device 1 determines the channel capacity of a single channel, dual channel or single channel at high frequency based on different detection frames sent by the sending end.
- the current channel capacity determines the scenario where the PLC system is located (such as the attenuation limited scenario or the noise limited scenario), and determines whether the channel capacity of a single channel can provide the stable bandwidth required by the service, so as to select the transmission mode.
- the 200M SISO mode can be added to the 100M MIMO mode, and the transmission mode can be adaptively and flexibly selected based on the scenario and business, which improves the performance and stability of the PLC system, while realizing large-bandwidth system transmission.
- FIG. 7 is another schematic structural diagram of the sending mode determining apparatus provided by an embodiment of the present application.
- the sending mode determining device 2 may include:
- the transceiver module 21 is configured to send a first detection frame including a first frequency band on a first channel, and the first detection frame is used to determine the first channel capacity of the first channel in the first frequency band; the above-mentioned transceiver module 21 , Is also used to receive first indication information, the first indication information is used to indicate a first transmission mode, and the first transmission mode is determined according to the first channel capacity and the reference bandwidth; the communication module 22 is configured to according to the The first indication information received by the transceiver module 21 uses the first sending mode to communicate with the receiving end.
- the first channel can be the channel with the smallest target power adjustment value among the two channels. Since the target power adjustment value can reflect the attenuation on the channel, the smaller the target power adjustment value, the smaller the attenuation on the channel, so the first channel It is also a channel with a small attenuation.
- the first transmission mode is a transmission mode determined by the receiving end that the transmission mode determining apparatus 2 needs to use, and the first indication information is used to instruct the transmission mode determining apparatus 2 to use the first transmission mode to communicate with the receiving end.
- the first indication information may be bandwidth (bandplan) information, and the first indication information may be carried in the frame header of the confirmation frame or the link control data unit frame.
- the first frequency band may be 100MHz-200MHz.
- the aforementioned reference bandwidth is a preset service bandwidth.
- the first transmission mode indicated by the first indication information received by the transceiver module 21 is the SISO mode of the second frequency band.
- the second frequency band includes the first frequency band and the third frequency band, the first frequency band, the second frequency band, and the third frequency band are all continuous frequency bands, and the minimum value in the first frequency band is greater than or equal to that of the third frequency band.
- the maximum value, the minimum value of the second frequency band is less than or equal to the minimum value of the third frequency band, and the maximum value of the second frequency band is greater than or equal to the maximum value of the first frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the preset service bandwidth may be a stable bandwidth set according to different service requirements.
- the foregoing first detection frame is used to determine the first signal-to-noise ratio of the first channel in the third frequency band.
- the above-mentioned transceiver module 21 is further configured to send a second detection frame of the second frequency band on the second channel, and the second detection frame is used to determine the second signal-to-noise ratio of the second channel in the third frequency band.
- the sending time of a detection frame is different from the sending time of the second detection frame; the transceiver module 21 is also used to simultaneously send the third detection frame in the third frequency band on the first channel and the second channel
- the fourth detection frame in the third frequency band is sent, and the third detection frame and the fourth detection frame are used to determine the third signal-to-noise ratio of the dual channel formed by the first channel and the second channel in the third frequency band ;
- the first indication information received by the transceiver module 21 indicates The first sending mode of is the SISO mode of the second frequency band.
- the second frequency band includes the first frequency band and the third frequency band.
- the second frequency band may be 0-200MHz
- the first frequency band may be 100MHz-200MHz
- the third frequency band may be 0-100MHz.
- the target power adjustment value of the first channel is greater than the target power adjustment value of the second channel, and the target power adjustment value of the first channel is determined based on the preamble symbol included in the first detection frame.
- the target power adjustment value of the second channel is determined based on the preamble symbol included in the second detection frame.
- the transceiver module 21 is further configured to receive second indication information; the communication module 22 is further configured to communicate with the receiving end on the first channel according to the second indication information.
- the foregoing first indication information is first bandwidth information corresponding to the foregoing first transmission mode.
- the aforementioned reference bandwidth is a preset minimum bandwidth.
- the first transmission mode indicated by the first indication information received by the transceiver module 21 is the multiple-input multiple-output MIMO mode of the third frequency band.
- the first signal-to-noise ratio is used to determine the second channel capacity of the first channel in the second frequency band
- the third signal-to-noise ratio is used to determine the first channel and the second channel.
- the third channel capacity of the dual channel formed by the channel in the third frequency band in the case that the second channel capacity is greater than or equal to the third channel capacity, the first transmission indicated by the first indication information received by the transceiver module 21
- the mode is the SISO mode of the second frequency band, and the second frequency band includes the first frequency band and the third frequency band.
- the first indication information received by the transceiver module 21 indicates The first sending mode of is the SISO mode of the second frequency band.
- the above-mentioned transceiver module 21 is further configured to receive third indication information when the capacity of the second channel is less than the capacity of the third channel and/or the preset service bandwidth.
- the information is used to indicate the second transmission mode, and the second transmission mode is the MIMO mode of the third frequency band; the communication module 22 is further configured to use the second transmission mode to communicate with the receiving end according to the second indication information.
- each module or unit can also refer to the corresponding description of the sending end in the embodiments shown in FIG. 3 to FIG. 5 to execute the methods and functions performed by the sending end in the foregoing embodiments.
- the sending mode determining device 2 sends a first detection frame to the receiving end, so that the receiving end determines the first channel capacity in the first frequency band based on the first detection frame, and compares the first channel capacity with Refer to the size relationship of the bandwidth to determine which transmission mode the transmission mode determination device 2 should use, and inform the transmission mode determination device 2 which transmission mode to use for communication, and the transmission mode determination device 2 uses the transmission mode notified by the receiving end to communicate with the receiving end.
- a 200M SISO mode can be added to the 100M MIMO mode, and the mode can be selected according to different services and scenarios to improve the performance and stability of the PLC system.
- FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the communication device 1000 provided in the embodiment of the present application includes a processor 1001, a memory 1002, a transceiver 1003, and a bus system 1004.
- the communication device provided in the embodiment of the present application may be any one of a receiving device and a sending device.
- processor 1001, memory 1002, and transceiver 1003 are connected through a bus system 1004.
- the aforementioned memory 1002 is used to store programs. Specifically, the program may include program code, and the program code includes computer operation instructions.
- the memory 1002 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM). Only one memory is shown in FIG. 8. Of course, the memory can also be set to multiple as required.
- the memory 1002 may also be a memory in the processor 1001, which is not limited here.
- the memory 1002 stores the following elements, executable units or data structures, or their subsets, or their extended sets:
- Operating instructions including various operating instructions, used to implement various operations.
- Operating system Including various system programs, used to implement various basic services and process hardware-based tasks.
- the aforementioned processor 1001 controls the operation of the communication device 1000.
- the processor 1001 may be one or more central processing units (CPU).
- CPU central processing units
- the CPU may be a single-core CPU. It can also be a multi-core CPU.
- bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
- bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
- various buses are marked as the bus system 1004 in FIG. 8.
- FIG. 8 is only schematically drawn.
- the method at the sending end of the example can be applied to the processor 1001 or implemented by the processor 1001.
- the processor 1001 may be an integrated circuit chip with signal processing capabilities.
- the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 1001 or instructions in the form of software.
- the above-mentioned processor 1001 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
- DSP digital signal processing
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
- the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
- the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
- the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002, and executes the method steps at the receiving end described in any one of FIGS. 3 to 5 in combination with its hardware; or executes the steps in FIGS. 3 to 5 in combination with its hardware Any of the described method steps at the sending end.
- the embodiments of the present application also provide a computer program product, the computer program product includes computer program code, when the computer program code runs on a computer, the computer executes the method steps of the receiving end described in FIG. 3 to FIG. 5; or When the computer program code runs on the computer, the computer executes the method steps of the sending end described in FIGS. 3 to 5.
- the embodiment of the present application also provides a device, which may be a chip.
- the chip includes a processor.
- the processor is used to read and execute the computer program stored in the memory to execute the method for determining the transmission mode of the power line communication in any possible implementation manner of FIG. 3.
- the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
- the chip further includes a communication interface, and the processor is connected to the communication interface.
- the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
- the communication interface can be an input and output interface.
- processors and memory may be physically independent units, or the memory may also be integrated with the processor.
- a communication system in another embodiment of the present application, includes a receiving device and a sending device.
- the receiving device may be the receiving end in the embodiment shown in FIGS. 3 to 5
- the sending device may be the sending end in the embodiment shown in FIGS. 3 to 5.
- the process can be completed by a computer program instructing relevant hardware.
- the program can be stored in a computer readable storage medium. , May include the processes of the above-mentioned method embodiments.
- the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical disks and other media that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
本申请实施例公开了一种电力线通信的发送模式确定方法及相关装置,该方法包括:发送端在第一通道上发送包括第一频段的第一探测帧,相应地,接收端在该第一通道上接收该第一探测帧,并基于该第一探测帧确定该第一通道在该第一频段内的第一信道容量;接收端获取参考带宽,并根据该第一信道容量和该参考带宽确定第一发送模式;接收端向发送端发送包括该第一发送模式的第一指示信息;发送端接收到该第一指示信息之后,采用该第一发送模式与接收端进行通信。采用本申请实施例,在100M MIMO模式之外增加200M SISO模式,并根据不同的业务、场景进行模式的选择,提升PLC系统的性能和稳定性,同时实现大带宽的系统传输。
Description
本申请涉及通信技术领域,尤其涉及一种电力线通信的发送模式确定方法及相关装置。
电力线通信(power line communication,PLC)的全称是电力线载波通信,又称电力线网络,指利用电力线作为信息传输媒介进行语音或数据传输的一种通信方式。PLC技术的发送端把载有信息的高频信号加载于电流,然后用电力线传输,接收端把高频信号从电流中分离出来,并传送到计算机或电话以实现信息传递。
现有PLC技术,均为100MHz带宽。为提升PLC的传输能力,近些年来在100MHz带宽的单输入单输出(single input single output,SISO)PLC的基础上,提出利用保护地(protecting earthing,PE)线实现两通道的多输入多输出(multi input multi output,MIMO)PLC。相同带宽(这里指100MHz)下MIMO PLC的最大系统容量可达到SISO PLC的两倍,同样其所需芯片的存储资源也为SISO PLC的两倍。
在PLC中,电力线噪声对信道容量的影响随着频率的提升而减小,且100MHz以上频段几乎不受电力线噪声(这里主要指连接在线路上的电器(例如电刷电机、开关电源、荧光灯、卤素灯或其他各种家电)工作状态变化或插拔等原因造成的噪声)干扰。因此,在100MHz以下频段,由于电器工作状态的变化或电器插拔等原因,会导致电力线噪声在整个电力线周期内不断发生变化,从而导致电力线的信道容量不断发生变化。在受大干扰电器的影响时,甚至会导致PLC设备掉线或无法组网,PLC系统的稳定性差。
发明内容
本申请实施例提供一种电力线通信的发送模式确定方法及相关装置,在100M MIMO模式之外增加200M SISO模式,并根据不同的业务、场景进行模式的选择,提升PLC系统的性能和稳定性,同时实现大带宽的系统传输。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请实施例提供一种电力线通信的发送模式确定方法,该方法适用于电力线通信的接收端,该方法包括:发送端在第一通道上发送包括第一频段的第一探测帧,相应地,接收端在该第一通道上接收该第一探测帧,并基于该第一探测帧确定该第一通道在该第一频段内的第一信道容量;接收端获取参考带宽,并根据该第一信道容量和该参考带宽确定第一发送模式;接收端向发送端发送包括该第一发送模式的第一指示信息;发送端接收到该第一指示信息之后,采用该第一发送模式与接收端进行通信。
其中,发送端与接收端之间存在2个通道,分别为火线和零线形成的数字差分通道、以及火线和保护地线形成的数字差分通道,为便于描述,分别用第一通道和第二通道描述。该第一通道可以为2个通道中目标功率调整值最小的通道,由于目标功率调整值可以反映 通道上的衰减情况,目标功率调整值越小,通道上的衰减越小,所以该第一通道也是衰减小的通道。该第一发送模式为接收端确定出的发送端需要采用的发送模式,该第一指示信息用于指示发送端采用该第一发送模式与接收端进行通信。该第一指示信息可以为带宽(bandplan)信息,该第一指示信息可以携带于确认帧或链路控制数据单元帧的帧头中。该第一频段可以为100MHz-200MHz。
本申请实施例的接收端通过第一探测帧确定第一频段内的第一信道容量,并比较该第一信道容量和参考带宽的大小关系来判断发送端该采用何种发送模式,并告知发送端采用何种发送模式进行通信,可以根据不同的业务、场景进行模式的选择,提升PLC系统的性能和稳定性。
结合第一方面,在一种可能的实施方式中,上述参考带宽为预设业务带宽。接收端根据该第一信道容量和参考带宽确定第一发送模式,具体为:若该第一信道容量大于或等于该预设业务带宽,说明稳定不变的第一信道容量满足业务所需的稳定带宽要求,则接收端确定的第一发送模式为第二频段的单输入单输出SISO模式。其中,该第二频段包括该第一频段和第三频段,该第一频段、该第二频段以及该第三频段均为连续的频段,该第一频段中的最小值大于或等于该第三频段的最大值,该第二频段的最小值小于或等于该第三频段的最小值,该第二频段的最大值大于或等于该第一频段的最大值。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。该预设业务带宽可以为根据不同业务需求所设定的稳定带宽。
本申请实施例通过比较第一频段内的信道容量(即第一信道容量)与预设业务带宽之间的大小,来进行模式的选择,提供了一种根据业务实现模式选择的方案。
结合第一方面,在一种可能的实施方式中,接收端在基于该第一探测帧确定该第一通道在第一频段内的第一信道容量之前,该方法还包括:接收端接收发送端在第二通道上发送的第二探测帧,并接收发送端同时在该第一通道上发送的第三探测帧和该第二通道上发送的第四探测帧;接收端基于上述第一探测帧确定该第一通道在第三频段内的第一信噪比,基于该第二探测帧确定该第二通道在该第三频段内的第二信噪比,并基于该第三探测帧和该第四探测帧确定该第一通道和该第二通道形成的双通道在该第三频段内的第三信噪比;若该第一信噪比大于或等于该第三信噪比、或该第二信噪比大于或等于该第三信噪比,说明此时单通道的系统增益比双通道的系统增益好,即双通道无法提供系统复用增益,则接收端确定第一发送模式为第二频段的SISO模式。
其中,该第一探测帧的发送时间与该第二探测帧的发送时间不相同。该第二频段包括该第一频段和第三频段,该第一频段、该第二频段以及该第三频段均为连续的频段,该第一频段中的最小值大于或等于该第三频段的最大值,该第二频段的最小值小于或等于该第三频段的最小值,该第二频段的最大值大于或等于该第一频段的最大值。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。
本申请实施例的接收端根据发送端发送的不同探测帧分别确定单通道的信噪比(即第一信噪比、第二信噪比)和双通道的信噪比(即第三信噪比),比较单通道的信噪比与双通道的信噪比之间的大小关系,在单通道的信噪比大于或等于双通道的信噪比时,即在单通道的系统增益比双通道的系统增益好时,使用单通道进行通信,可以在100M MIMO模式 之外增加200M SISO模式,实现大带宽的系统传输。
结合第一方面,在一种可能的实施方式中,上述第一通道的目标功率调整值小于上述第二通道的目标功率调整值,说明第一通道上的衰减小于第二通道上的衰减。该第一通道的目标功率调整值基于该第一探测帧包括的前导码preamble符号确定,该第二通道的目标功率调整值基于该第二探测帧包括的前导码preamble符号确定。
结合第一方面,在一种可能的实施方式中,该方法还包括:当上述第一发送模式为第二频段的SISO模式时,接收端向发送端发送第二指示信息,该第二指示信息用于指示发送端通过该第一通道与接收端进行通信。可选的,接收端发送第二指示信息可以在接收端发送第一指示信息之前,也可以在接收端发送第一指示信息之后,还可以同时发送第一指示信息和第二指示信息,本申请实施例对此不做限定。其中,该第二指示信息可以为通道信息,该第二指示信息可以携带于确认帧或链路控制数据单元帧的帧头中。
本申请实施例的接收端在确定第一发送模式为第二频段的SISO模式后,告知发送端采用双通道中衰减最小的第一通道进行通信,可以进一步提升PLC系统的性能和稳定性。
结合第一方面,在一种可能的实施方式中,上述第一指示信息为与上述第一发送模式对应的第一带宽信息。可选的,如果第一发送模式为200M的SISO模式,则第一带宽信息为200MHz;如果第一发送模式为100M的MIMO模式,则第一带宽信息为100MHz。
结合第一方面,在一种可能的实施方式中,上述参考带宽为预设最小带宽。接收端根据该第一信道容量和参考带宽确定第一发送模式,具体为:若该第一信道容量小于该预设最小带宽,说明高频(即100MHz-200MHz内)衰减较大,无法获得较好的高频增益,此时为衰减受限场景,则接收端确定的第一发送模式为第三频段的多输入多输出MIMO模式。其中,该第二频段包括该第一频段和第三频段,该第一频段、该第二频段以及该第三频段均为连续的频段,该第一频段中的最小值大于或等于该第三频段的最大值,该第二频段的最小值小于或等于该第三频段的最小值,该第二频段的最大值大于或等于该第一频段的最大值。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。该预设最小带宽可以为上述第一频段(100MHz-200MHz)或上述第二频段(0-200MHz)内最低要求的带宽。
本申请实施例通过比较第一频段内的信道容量(即第一信道容量)与预设最小带宽之间的大小,来进行模式的选择,提供了一种根据场景(衰减受限场景)实现模式选择的方案。
结合第一方面,在一种可能的实施方式中,上述参考带宽包括预设业务带宽和预设最小带宽。接收端根据该第一信道容量和参考带宽确定第一发送模式,还具体为:若该第一信道容量大于或等于该预设最小带宽、且该第一信道容量小于该预设业务带宽,则接收端基于该第一信噪比确定该第一通道在该第二频段内的第二信道容量;接收端基于该第三信噪比确定该第一通道和该第二通道形成的双通道在该第三频段内的第三信道容量;若该第二信道容量大于或等于该第三信道容量,说明由于噪声影响使得100M MIMO的增益小于200M SISO的增益,此时为噪声受限场景,则接收端确定的第一发送模式为第二频段的SISO模式。其中,该第二频段包括该第一频段和该第三频段。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。
本申请实施例的接收端在第一频段内的信道容量(即第一信道容量)大于预设最小带宽且小于预设业务带宽时,进一步比较单通道系统容量(即第二信道容量)和双通道系统容量(即第三信道容量)之间的大小关系,在单通道系统容量大于或等于双通道系统容量时,即由于噪声影响使得100M MIMO的增益小于200M SISO的增益,或在噪声受限场景中,使用单通道进行通信,可以提升PLC系统的稳定性。
结合第一方面,在一种可能的实施方式中,该方法还包括:若上述第二信道容量小于上述第三信道容量、且该第二信道容量大于或等于上述预设业务带宽,说明第一通道在第二频段(0-200MHz)内的信道容量可以提供业务所需的稳定带宽,则接收端确定第一发送模式为第二频段的SISO模式。
本申请实施例的接收端在单通道系统容量(即第二信道容量)小于双通道系统容量(即第三信道容量),且单通道系统容量满足业务所需的稳定带宽时,选择使用单通道进行通信,可以提升PLC系统的稳定性,实现大带宽的系统传输。
结合第一方面,在一种可能的实施方式中,该方法还包括:若上述第二信道容量小于上述第三信道容量和/或上述预设业务带宽,说明第一通道在第二频段(0-200MHz)内的信道容量不能提供业务所需的稳定带宽,则接收端确定第二发送模式,该第二发送模式为该第三频段的MIMO模式;接收端向发送端发送第三指示信息,该第三指示信息用于指示发送端采用该第二发送模式与接收端进行通信。
本申请实施例的接收端在单通道系统容量(即第二信道容量)小于双通道系统容量(即第三信道容量),且单通道系统容量不满足业务所需的稳定带宽时,选择使用双通道进行通信,可以保证PLC系统的性能。
第二方面,本申请实施例提供另一种电力线通信的发送模式确定方法,该方法适用于电力线通信的接收端,该方法包括:发送端在第一通道上发送包括第一频段的第一探测帧;发送端接收第一指示信息;发送端根据该第一指示信息采用该第一指示信息所指示的第一发送模式与接收端进行通信。其中,该第一探测帧用于确定该第一通道在该第一频段内的第一信道容量。该第一指示信息用于指示第一发送模式,该第一发送模式为根据该第一信道容量和参考带宽确定得到的。
其中,发送端与接收端之间存在2个通道,分别为火线和零线形成的数字差分通道、以及火线和保护地线形成的数字差分通道,为便于描述,分别用第一通道和第二通道描述。该第一通道可以为2个通道中目标功率调整值最小的通道,由于目标功率调整值可以反映通道上的衰减情况,目标功率调整值越小,通道上的衰减越小,所以该第一通道也是衰减小的通道。该第一发送模式为接收端确定出的发送端需要采用的发送模式,该第一指示信息用于指示发送端采用该第一发送模式与接收端进行通信。该第一指示信息可以为带宽(bandplan)信息,该第一指示信息可以携带于确认帧或链路控制数据单元帧的帧头中。该第一频段可以为100MHz-200MHz。
本申请实施例的发送端向接收端发送第一探测帧,以使接收端基于该第一探测帧确定第一频段内的第一信道容量,并比较该第一信道容量和参考带宽的大小关系来判断发送端该采用何种发送模式,并告知发送端采用何种发送模式进行通信,发送端采用接收端告知的发送模式与接收端进行通信,可以根据不同的业务、场景进行模式的选择,提升PLC系 统的性能和稳定性。
结合第二方面,在一种可能的实施方式中,上述参考带宽为预设业务带宽。在该第一信道容量大于或等于该预设业务带宽的情况下,说明稳定不变的第一信道容量满足业务所需的稳定带宽要求,发送端接收的第一指示信息指示的第一发送模式为第二频段的SISO模式。其中,该第二频段包括所述第一频段和第三频段。其中,该第二频段包括该第一频段和第三频段,该第一频段、该第二频段以及该第三频段均为连续的频段,该第一频段中的最小值大于或等于该第三频段的最大值,该第二频段的最小值小于或等于该第三频段的最小值,该第二频段的最大值大于或等于该第一频段的最大值。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。该预设业务带宽可以为根据不同业务需求所设定的稳定带宽。
结合第二方面,在一种可能的实施方式中,上述第一探测帧用于确定上述第一通道在第三频段内的第一信噪比。发送端在第一通道上发送包括第一频段的第一探测帧之后,该方法还包括:发送端在第二通道上发送第二频段的第二探测帧,该第二探测帧用于确定该第二通道在该第三频段内的第二信噪比;发送端同时在该第一通道上发送该第三频段内的第三探测帧和该第二通道上发送该第三频段内的第四探测帧,该第三探测帧和该第四探测帧用于确定该第一通道和该第二通道形成的双通道在该第三频段内的第三信噪比;在该第一信噪比大于或等于该第三信噪比、或该第二信噪比大于或等于该第三信噪比的情况下,发送端接收到的第一指示信息指示的第一发送模式为第二频段的SISO模式。
其中,该第一探测帧的发送时间和该第二探测帧的发送时间不相同。该第二频段包括该第一频段和该第三频段,该第一频段、该第二频段以及该第三频段均为连续的频段,该第一频段中的最小值大于或等于该第三频段的最大值,该第二频段的最小值小于或等于该第三频段的最小值,该第二频段的最大值大于或等于该第一频段的最大值。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。
结合第二方面,在一种可能的实施方式中,上述第一通道的目标功率调整值大于上述第二通道的目标功率调整值,说明第一通道上的衰减小于第二通道上的衰减。该第一通道的目标功率调整值基于该第一探测帧包括的前导码preamble符号确定,该第二通道的目标功率调整值基于该第二探测帧包括的前导码preamble符号确定。
结合第二方面,在一种可能的实施方式中,该方法还包括:发送端接收第二指示信息;发送端根据该第二指示信息在该第一通道上与接收端进行通信。其中,该第二指示信息可以为通道信息,该第二指示信息可以携带于确认帧或链路控制数据单元帧的帧头中。
结合第二方面,在一种可能的实施方式中,上述第一指示信息为与上述第一发送模式对应的第一带宽信息。可选的,如果第一发送模式为200M的SISO模式,则第一带宽信息为200MHz;如果第一发送模式为100M的MIMO模式,则第一带宽信息为100MHz。
结合第二方面,在一种可能的实施方式中,上述参考带宽为预设最小带宽。在上述第一信道容量小于上述预设最小带宽的情况下,说明高频(即100MHz-200MHz内)衰减较大,无法获得较好的高频增益,此时为衰减受限场景,发送端接收的第一指示信息指示的第一发送模式为第三频段的多输入多输出MIMO模式。其中,该第二频段包括该第一频段 和第三频段,该第一频段、该第二频段以及该第三频段均为连续的频段,该第一频段中的最小值大于或等于该第三频段的最大值,该第二频段的最小值小于或等于该第三频段的最小值,该第二频段的最大值大于或等于该第一频段的最大值。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。该预设最小带宽可以为上述第一频段(100MHz-200MHz)或上述第二频段(0-200MHz)内最低要求的带宽。
结合第二方面,在一种可能的实施方式中,上述第一信噪比用于确定上述第一通道在上述第二频段内的第二信道容量,上述第三信噪比用于确定该第一通道和上述第二通道形成的双通道在上述第三频段内的第三信道容量;在该第二信道容量大于或等于该第三信道容量的情况下,说明由于噪声影响使得100M MIMO的增益小于200M SISO的增益,此时为噪声受限场景,发送端接收的第一指示信息指示的第一发送模式为第二频段的SISO模式。该第二频段包括该第一频段和该第三频段。其中,该第二频段包括该第一频段和该第三频段。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。
结合第二方面,在一种可能的实施方式中,在上述第二信道容量小于上述第三信道容量、且该第二信道容量大于或等于上述预设业务带宽的情况下,发送端接收的第一指示信息指示的第一发送模式为第二频段的SISO模式。
结合第二方面,在一种可能的实施方式中,该方法还包括:在上述第二信道容量小于上述第三信道容量和/或上述预设业务带宽的情况下,发送端接收第三指示信息,该第三指示信息用于指示第二发送模式,该第二发送模式为该第三频段的MIMO模式;发送端根据该第二指示信息采用该第二发送模式与接收端进行通信。
第三方面,本申请实施例提供一种发送模式确定装置,该发送模式确定装置包括用于执行上述第一方面和/或第一方面的任意一种可能的实现方式所提供的电力线通信的发送模式确定方法的单元和/或模块,因此也能实现第一方面提供的电力线通信的发送模式确定方法所具备的有益效果(或优点)。
第四方面,本申请实施例提供另一种发送模式确定装置,该发送模式确定装置包括用于执行上述第二方面和/或第二方面的任意一种可能的实现方式所提供的电力线通信的发送模式确定方法的单元和/或模块,因此也能实现第二方面提供的电力线通信的发送模式确定方法所具备的有益效果(或优点)。
第五方面,本申请实施例提供一种接收设备,该接收设备可以包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该收发器用于收发各种信息、探测帧或数据帧,该计算机程序包括程序指令,当该处理器运行该程序指令时,使得该接收设备执行上述第一方面或第一方面的任意一种可能的实现方式的电力线通信的发送模式确定方法。其中,收发器可以为接收设备中的射频模块,或,射频模块和天线的组合,或,芯片或电路的输入输出接口。
第六方面,本申请实施例提供一种发送设备,该发送设备可以包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该收发器用于收发各种信息、探测帧或数据帧,该计算机程序包括程序指令,当该处理器运行该程序指令时,使得该发送设备执行 上述第二方面或第二方面的任意一种可能的实现方式的电力线通信的发送模式确定方法。其中,收发器可以为发送设备中的射频模块,或,射频模块和天线的组合,或,芯片或电路的输入输出接口。
第七方面,本申请实施例提供一种通信系统,包括接收设备和发送设备,其中:该接收设备为上述第三方面描述的发送模式确定装置或上述第五方面描述的接收设备,该发送设备为上述第四方面描述的发送模式确定装置或上述第六方面描述的发送设备。
第八方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的实现方式描述的电力线通信的发送模式确定方法。
第九方面,本申请实施例提供另一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的实现方式描述的电力线通信的发送模式确定方法。
第十方面,本申请实施例提供一种包含指令的程序产品,当其运行时,使得上述第一方面或第一方面的任意一种可能的实现方式描述的电力线通信的发送模式确定方法被执行。
第十一方面,本申请实施例提供一种包含指令的程序产品,当其运行时,使得上述第二方面或第二方面的任意一种可能的实现方式描述的电力线通信的发送模式确定方法被执行。
第十二方面,本申请实施例提供一种芯片,包括处理器。该处理器用于读取并执行存储器中存储的程序,以执行上述第一方面或第二方面中的一项或多项,或,上述第一方面或上述第二方面的任意可能的实现方式中的一项或多项提供的电力线通信的发送模式确定方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信息,该处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
实施本申请实施例,可以在100M MIMO模式之外增加200M SISO模式,并根据不同的业务、场景进行模式的选择,提升PLC系统的性能和稳定性,同时实现大带宽的系统传输。
图1是G.hn标准定义的物理层帧格式的示意图;
图2是本申请实施例提供的电力线通信系统的系统架构图;
图3是本申请实施例提供的电力线通信的发送模式确定方法的示意流程图;
图4是本申请实施例提供的第一发送模式确定流程示意图;
图5是本申请实施例提供的电力线通信的数据交互流程图;
图6是本申请实施例提供的发送模式确定装置的一结构示意图;
图7是本申请实施例提供的发送模式确定装置的另一结构示意图;
图8是本申请实施例提供的通信装置的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为便于更好地理解本申请实施例所提供的电力线通信的发送模式确定方法,下面将对本申请实施例提供的帧格式、信噪比以及信道容量进行简单说明:
一、帧格式
G.hn标准是关于电源线(电力线)、电话线和同轴电缆的一套协议规范,可以把现有的双绞线,同轴电缆以及电源线进行资源整合,实现统一传输,从而显著降低安装和运营成本。
参见图1,图1是G.hn标准定义的物理层帧格式的示意图。如图1所示,G.hn标准定义的帧格式包括前导码(preamble)、帧头(header)、信道估计(附加信道估计符号(additional channel estimation symbol,ACE symbol))以及一个或多个有效负荷(payload)。其中,帧头包括1至2个符号,信道估计包括1至7个ACE符号。preamble符号用于帧同步和目标功率的调整,ACE符号用于信道估计,payload用于承载用户数据。
可选的,数据帧的payload上承载有效的用户数据。探测帧的payload上承载伪随机二进制序列,该探测帧的payload符号上承载的伪随机二进制序列用于估计信噪比。
本申请实施例提供的帧格式兼容G.hn标准定义的物理层帧格式。本申请实施例提供的帧格式在G.hn标准定义的帧格式的帧头中增加2个有效bit位,其中一个有效bit位用于指示带宽(bandplan)信息或发送模式信息,另外一个有效bit位用于指示通道信息。
二、信噪比(signal-to-noise ratio,SNR)
信噪比是指一个电子设备或者电子系统中信号与噪声的比值。这里的信号指来自设备外部需要通过这台设备进行处理的电子信号,噪声是指经过该设备后产生的原信号中并不存在的无规则的额外信号(或信息),并且该种额外信号并不随原信号的变化而变化。信噪比SNR的计量单位是分贝(dB),满足公式(1-1)的计算方法:
SNR=10lg(Ps/Pn),(1-1)
其中Ps表示信号的有效功率,Pn表示噪声的有效功率,lg(x)表示以10为底的对数。在一些可行的实施方式中,公式(1-1)也可以换算成电压幅值的比率关系,即SNR=20lg(Vs/Vn)。Vs表示信号电压的“有效值”,Vn表示噪声电压的“有效值”。
三、信道容量(channel capacity)
信道容量指信道无差错传输信息的最大信息速率,单位是比特每秒(bit/s)或比特每符号(bit/symbol)。根据香农(Shannon)信道容量公式,简称香农公式,信道容量C满足公式(1-2):
C=Blog
2(1+SNR),(1-2)
其中,B表示信道带宽,SNR表示信噪比。
上述内容简要阐述了本申请实施例提供的帧格式、信噪比以及信道容量,下面将对本申请实施例提供的电力线通信的发送模式确定方法的系统架构进行简要说明。
本申请实施例提供的电力线通信的发送模式确定方法可以应用于电力线通信系统中。电力线通信系统通常使用家庭或办公室现有的电力线和插座来组建网络,连接个人计算机、宽带上网设备、机顶盒、音频设备、监控设备以及其他的智能电器设备等,并通过电力线传输数据、语音或视频等。
参见图2,图2是本申请实施例提供的电力线通信系统的系统架构图。如图2所示,该电力线通信系统包括至少2个电力线通讯调制解调器(图2的电力线通讯调制解调器100和电力线通讯调制解调器200)。其中,电力线通讯调制解调器是指通过电力线进行宽带上网的调制解调器(Modem),俗称电力猫。该至少2个电力线通讯调制解调器中的各个电力线通讯调制解调器可通过电力线连接。电力线包括火线(live,L)、零线(neutral,N)以及保护地线(protecting earthing,PE),火线和零线可以形成一个数字差分通道,火线和保护地线可以形成另一个数字差分通道。电力线通讯调制解调器100和电力线通讯调制解调器200可以使用双通道进行通信。
由于电力线通信是通过电力线作为介质进行通信的,所以电力线中的噪声是影响数据传输的重要因素。电力线通信系统的典型噪声源是连接在线路上的电器,例如电刷电机、开关电源、荧光灯、卤素灯或其他各种家电等。由于电器工作状态的变化或电器插拔等原因,会导致电力线中的噪声在整个电力线周期内不断发生变化,从而导致信道容量不断发生变化。在受大干扰电器的影响时,甚至会导致PLC设备掉线或无法组网。研究表明,电力线路上的噪声是具备频率选择性的,在0-100MHz频段电力线噪声干扰大,100MHz以上频段几乎不受电力线噪声干扰。
因此,本申请实施例提供一种电力线通信的发送模式确定方法,在100M MIMO模式之外增加200M SISO模式,并根据不同的业务、场景进行模式的选择,提升PLC系统的性能和稳定性,同时实现大带宽的系统传输。
在一些可行的实施方式中,相同带宽下MIMO PLC的最大系统容量可达到SISO PLC的两倍,同样其所需芯片的存储资源也是SISO PLC的两倍。基于双通道的100M MIMO PLC模式,可以将双通道的存储资源拼接,实现兼容200M SISO PLC模式,从而实现在不增加存储芯片的情况下,支持200M SISO模式。本申请实施例提供的发送端和接收端既支持100M MIMO PLC模式,也支持200M SISO PLC模式;同一时刻,发送端只能选择一种模式与接收端进行通信。
在一些可行的实施方式中,本申请实施例的发送端与接收端之间存在2个通道,分别为火线和零线形成的数字差分通道、以及火线和保护地线形成的数字差分通道。为便于描述,发送端与接收端之间的2个通道分别用第一通道和第二通道描述。
可以理解的,本申请实施例所提及的通道指传输数据的电力线信道,为便于与模拟通信系统中的信道区分,本申请实施例用通道来描述传输数据的电力线信道。
参见图3,图3是本申请实施例提供的电力线通信的发送模式确定方法的示意流程图。本申请实施例中的发送端可以为图2中的电力线通讯调制解调器100,接收端可以为图2 中的电力线通讯调制解调器200;或者本申请实施例中的发送端可以为图2中的电力线通讯调制解调器200,接收端可以为图2中的电力线通讯调制解调器100,本申请实施例对此不作限定。如图3所示,该电力线通信的发送模式确定方法包括但不限于以下步骤:
S101,发送端在第一通道上发送第二频段的第一探测帧。相应地,接收端在第一通道上接收第二频段的第一探测帧。
S102,发送端在第二通道上发送第二频段的第二探测帧。相应地,接收端在第二通道上接收第二频段的第二探测帧。
S103,发送端同时在第一通道上发送第三频段的第三探测帧和第二通道上发送第三频段的第四探测帧。相应地,接收端同时在第一通道上接收第三频段的第三探测帧和第二通道上接收第三频段的第四探测帧。
S104,接收端基于第一探测帧确定第一通道在第三频段内的第一信噪比。
S105,接收端基于第二探测帧确定第二通道在第三频段内的第二信噪比。
S106,接收端基于第三探测帧和第四探测帧确定第一通道和第二通道形成的双通道在第三频段内的第三信噪比。
在一些可行的实施方式中,第二频段为0至200MHz,第三频段为0至100MHz。该第二频段包括第一频段和该第三频段,该第一频段、该第二频段以及该第三频段均为连续的频段,该第一频段的最小值大于或等于该第三频段的最大值,该第二频段的最小值小于或等于该第三频段的最小值,该第二频段的最大值大于或等于该第一频段的最大值。该第一频段为100MHz至200MHz。
在一些可行的实施方式中,发送端在第一通道上发送第二频段的第一探测帧,在第二通道上不发探测帧。相应地,接收端在该第一通道上接收该第二频段的第一探测帧,在第二通道上未接收到任何探测帧。接收端对接收到的该第一探测帧中的有效负荷(payload)进行解析,估计该第一通道在该第三频段内(0-100MHz内)的单流信噪比(第一信噪比)。可选的,第一信噪比SNR
sgl_1满足公式(2-1):
同理,发送端在第二通道上发送该第二频段的第二探测帧,在第一通道上不发探测帧。相应地,接收端在该第二通道上接收该第二频段的第二探测帧,在第一通道上未接收到任何探测帧。接收端对接收到的该第二探测帧中的有效负荷(payload)进行解析,估计该第二通道在该第三频段内(0-100MHz内)的单流信噪比(第二信噪比)。可以理解的,上述第一探测帧与上述第二探测帧的发送时间不相同。
可选的,第二信噪比SNR
sgl_2满足公式(2-2):
再同理,发送端在该第一通道和该第二通道形成的双通道上发送100M MIMO的探测帧,即同时在该第一通道上发送第三频段的第三探测帧和该第二通道上发送第三频段的第四探测帧。相应地,接收端同时在该第一通道上接收到该第三频段的第三探测帧和该第二通道上接收该第三频段的第四探测帧。接收端对接收到的该第三探测帧和该第四探测帧中的有效负荷(payload)进行解析,估计该双通道在该第三频段内(0-100MHz内)的双流信噪比(第三信噪比)。
可选的,第三信噪比SNR
dul满足公式(2-3):
其中,
为MIMO信道下第一通道的第k个子载波所对应的信噪比,
为MIMO信道下第二通道的第k个子载波所对应的信噪比。由于MIMO信道下有串扰的影响,所以MIMO模式下某个通道的单流SNR不等于SISO模式下这个通道的单流SNR,即
需要说明的是,第一探测帧和第二探测帧的带宽(bandplan)信息均为200M,第三探测帧和第四探测帧的带宽信息均为100M。具体地,本申请实施例的探测帧的帧头(header)中包括一个用于指示bandplan信息的有效bit位和一个用于指示通道信息的有效bit位。例如,header中用于指示bandplan信息的有效bit位为1,则表示bandplan信息为100M或表示100M MIMO模式;用于指示bandplan信息的有效bit位为0,则表示bandplan信息为200M或表示200M SISO模式。又如,header中用于指示通道信息的有效bit位为1,则表示第一通道;用于指示通道信息的有效bit位为0,则表示第二通道。
在一些可行的实施方式中,发送端可以周期性发送探测帧(probe帧),也可以在发送端第一次上电时发送探测帧,还可以当接收端检测到通道内的信噪比发生变化时,触发发送端发送探测帧。
S107,若第一信噪比大于或等于第三信噪比、或第二信噪比大于或等于第三信噪比,则接收端确定第一发送模式为第二频段的SISO模式。
在一些可行的实施方式中,第二频段为0至200MHz,第三频段为0至100MHz,第一频段为100MHz至200MHz。该第二频段包括该第一频段和该第三频段,该第一频段、该第二频段以及该第三频段均为连续的频段,该第一频段的最小值大于或等于该第三频段的最大值,该第二频段的最小值小于或等于该第三频段的最小值,该第二频段的最大值大于或等于该第一频段的最大值。
在一些可行的实施方式中,接收端在得到上述第一信噪比SNR
sgl_1、上述第二信噪比SNR
sgl_2以及上述第三信噪比SNR
dul之后,可以比较该第一信噪比SNR
sgl_1、第二信噪比SNR
sgl_2以及上述第三信噪比SNR
dul之间的大小关系。如果该第一信噪比大于或等于该第 三信噪比(即SNR
sgl_1≥SNR
dul),或者该第二信噪比大于或等于该第三信噪比(即SNR
sgl_2≥SNR
dul),说明此时单通道的系统增益(或系统容量、或信道容量)比双通道的系统增益好,即双通道无法提供系统复用增益,则接收端确定采用第二频段的SISO模式,即该第二频段的SISO模式为第一发送模式。接收端在单通道的系统增益比双通道的系统增益好时,使用单通道进行通信,可以实现大带宽的系统传输。
在一些可行的实施方式中,如果上述第一信噪比和上述第二信噪比均小于上述第三信噪比(即SNR
sgl_1<SNR
dul且SNR
sgl_2<SNR
dul),说明此时单通道的系统增益(或系统容量、或信道容量)比双通道的系统增益差,即双通道可以提供系统复用增益,则接收端可以直接确定采用第三频段的MIMO模式,即该第三频段的MIMO模式为第一发送模式。如果接收端基于探测帧确定出的第一发送模式与当前采用的发送模式相同,即发送端不切换发送模式,仍然采用当前的发送模式与接收端进行通信。如果接收端基于探测帧确定出的第一发送模式与当前采用的发送模式不相同,即发送端从当前采用的发送模式切换到该第一发送模式与接收端进行通信。
在一些可行的实施方式中,接收端确定采用第二频段的SISO模式之后,接收端可以获取预设的目标功率。接收端基于上述第一探测帧包括的前导码preamble符号,估计上述第一通道的目标功率调整值,并可以基于上述第二探测帧包括的前导码preamble符号,估计上述第二通道的目标功率调整值。接收端可以比较该第一通道的目标功率调整值与该第二通道的目标功率调整值之间的大小。如果该第一通道的目标功率调整值小于该第二通道的目标功率调整值,说明第一通道上的衰减小于第二通道上的衰减,则接收端确定200M SISO模式的传输通道为该第一通道。如果该第一通道的目标功率调整值大于该第二通道的目标功率调整值,说明第二通道上的衰减小于第一通道上的衰减,则接收端确定200M SISO模式的传输通道为该第二通道。
接收端针对接收到的每个数据帧都会返回确认(acknowledgement,ACK)帧,由于探测帧是广播帧,所以不需要返回ACK帧,通过链路控制数据单元(link control data unit,LCDU)帧反馈信息。接收端可以通过ACK帧或LCDU)帧将第一指示信息和第二指示信息发送给发送端。该第一指示信息可以为与第二频段的SISO模式对应的带宽信息。发送端对接收到的ACK或LCDU帧进行解析得到该第一指示信息和该第二指示信息,并在该第二指示信息指示的第一通道上采用该第一指示信息指示的该第二频段的SISO模式与接收端进行通信。具体地,ACK或LCDU帧的帧头(header)也包括一个用于指示bandplan信息的有效bit位和一个用于指示通道信息的有效bit位。为便于描述,下面将帧头中用于指示bandplan信息的有效bit位称为第一bit位,将帧头中用于指示通道信息的有效bit位称为第二bit位。接收端将第一指示信息写入ACK帧的第一bit位中,将第二指示信息写入该ACK帧的第二bit位中,并针对接收到的数据帧向发送端发送该ACK帧。发送端解析该ACK帧的帧头,得到该第一指示信息和该第二指示信息。例如,第一指示信息为0,用于指示200M SISO模式,第二指示信息为1,用于指示通道信息为第一通道。或者,接收端将第一指示信息写入LCDU帧的第一bit位中,将第二指示信息写入该LCDU帧的第二bit位中,并针对上述接收到的各个探测帧向发送端返回该LCDU帧。发送端解析该LCDU帧的帧头,得到该第一指示信息和该第二指示信息。
如果发送端解析出来的该第一指示信息为0(用于指示200M SISO模式),则发送端确定该第二指示信息有效,即发送端在该第二指示信息指示的通道上采用200M SISO模式与接收端通信。如果发送端解析出来的该第一指示信息为1(用于指示100M MIMO模式),则发送端确定该第二指示信息无效,说明发送端默认使用双通道,即发送端在双通道上采用100M MIMO模式与接收端通信。
可选的,接收端通过ACK帧将第一指示信息和第二指示信息发送给发送端之前,接收端接收到发送端在该第一通道和该第二通道形成的双通道上发送的100M MIMO数据帧,即同时在该第一通道上接收到第三频段的第一数据帧和该第二通道上接收到第三频段的第二数据帧。接收端将第一指示信息写入ACK帧的第一bit位中,将第二指示信息写入该ACK帧的第二bit位中,并分别针对该第一数据帧和该第二数据帧向发送端返回该ACK帧。其中,该第一数据帧和该第二数据帧的帧头包括的第一bit位为1,指示100M MIMO发送模式。
可选的,上述第一通道的目标功率调整值AGC
sgl_1满足公式(2-5),上述第二通道的目标功率调整值AGC
sgl_2满足公式(2-6):
AGC
sgl_1=P
tag/P
sgl_1,(2-5)
AGC
sgl_2=P
tag/P
sgl_2,(2-6)
其中,P
tag为预设的目标功率,P
sgl_1为第一通道上第一探测帧包括的preamble符号的接收信号功率,P
sgl_2为第二通道上第二探测帧包括的preamble符号的接收信号功率。
在一些可行的实施方式中,发送端在第一通道上采用200M SISO模式与接收端进行通信时,第一通道和第二通道形成的双通道中的第二通道保持连接,但不传输数据。
S108,若第一信噪比和第二信噪比均小于第三信噪比,则接收端基于第一探测帧包括的前导码preamble符号确定第一通道的目标功率调整值,并基于第二探测帧包括的前导码preamble符号确定第二通道的目标功率调整值。
S109,若第一通道的目标功率调整值小于第二通道的目标功率调整值,则接收端基于第一探测帧确定第一通道在第一频段内的第一信道容量。
在一些可行的实施方式中,如果上述第一信噪比和上述第二信噪比均小于上述第三信噪比(即SNR
sgl_1<SNR
dul且SNR
sgl_2<SNR
dul),说明此时单通道的系统增益(或系统容量、或信道容量)比双通道的系统增益差,即双通道可以提供系统复用增益,但是由于100MHz以内的信道容量受噪声影响大,不稳定,故需要进一步结合场景和业务判断采用哪种发送模式。
因此,当该第一信噪比和该第二信噪比均小于该第三信噪比时,接收端基于上述第一探测帧包括的前导码preamble符号确定该第一通道上的第一接收信号功率(即公式(2-5)中的P
sgl_1),并基于上述第二探测帧包括的前导码preamble符号确定该第二通道上的第二接收信号功率(即公式(2-6)中的P
sgl_2)。接收端可以获取预设的目标功率(即公式(2-5)和公式(2-6)中的P
tag),并可以将该目标功率与该第一接收信号功率之间的比值确定为该第一通道的目标功率调整值,可以将该目标功率与该第二接收信号功率之间的比值确定为该第二通道的目标功率调整值。接收端可以比较该第一通道的目标功率调整值与该第二通道的目标功率调整值之间的大小。如果该第一通道的目标功率调整值小于该第二通道的目 标功率调整值,说明第一通道上的衰减小于第二通道上的衰减,则接收端可以对上述接收到的第一探测帧中的有效负荷(payload)进行解析,基于解析的结果确定该第一通道在第一频段(100MHz-200MHz)内的信噪比,并根据香农公式,确定该第一通道在该第一频段内的第一信道容量。
如果该第一通道的目标功率调整值大于该第二通道的目标功率调整值,说明第二通道上的衰减小于第一通道上的衰减,则接收端可以对上述接收到的第二探测帧中的有效负荷(payload)进行解析,基于解析的结果确定该第二通道在第一频段(100MHz-200MHz)内的信噪比,并根据香农公式,确定该第二通道在该第一频段内第一信道容量。
为便于描述,本申请实施例以第一通道的目标功率调整值小于第二通道的目标功率调整值为例进行说明。
可选的,第一信道容量C
st满足公式(2-7):
可以理解的,由于电力线噪声的特点,在100MHz-200MHz频段内信道容量基本不受电器工作状态变化或电器插拔的干扰,且一旦发送端和接收端的组网位置确定后,线路衰减稳定不变,则100MHz-200MHz频段内的带宽为稳定不变带宽。即在线路衰减稳定不变时,上述第一信道容量C
st也稳定不变。
作为一个可选实施例,发送端在第一通道上发送第三频段的第一探测帧,在第二通道上不发探测帧。相应地,接收端在该第一通道上接收该第三频段的第一探测帧,在第二通道上未接收到任何探测帧。接收端基于该第一探测帧估计该第一通道在该第三频段内的单流信噪比(第一信噪比)。发送端在第二通道上发送该第三频段的第二探测帧,在第一通道上不发探测帧。相应地,接收端在该第二通道上接收该第三频段的第二探测帧,在第一通道上未接收到任何探测帧。接收端对基于该第二探测帧估计该第二通道在该第三频段内的单流信噪比(第二信噪比)。发送端在该第一通道和该第二通道形成的双通道上发送100M MIMO的探测帧,即同时在该第一通道上发送第三频段的第三探测帧和该第二通道上发送第三频段的第四探测帧。相应地,接收端同时在该第一通道上接收到该第三频段的第三探测帧和该第二通道上接收该第三频段的第四探测帧。接收端基于该第三探测帧和该第四探测帧估计该双通道在该第三频段内的双流信噪比(第三信噪比)。
若该第一信噪比大于或等于该第三信噪比、或该第二信噪比大于或等于该第三信噪比,则接收端确定第一发送模式为第二频段的SISO模式。若该第一信噪比和该第二信噪比均小于该第三信噪比,则接收端基于该第一探测帧包括的前导码preamble符号确定该第一通道的目标功率调整值,并基于该第二探测帧包括的前导码preamble符号确定该第二通道的目标功率调整值。若该第一通道的目标功率调整值小于该第二通道的目标功率调整值,则接收端可以向发送端发送用于指示该第一通道的指示信息。发送端接收到用于指示该第一通 道的该指示信息之后,在该第一通道上发送上述第二频段的第五探测帧。相应地,接收端在该第一通道上接收该第二频段的第五探测帧。
接收端基于该第五探测帧确定第一通道在第一频段内的第一信道容量。该第二频段包括该第一频段和该第三频段。
S110,接收端根据第一信道容量和参考带宽确定第一发送模式。
在一些可行的实施方式中,上述参考带宽可以包括预设最小带宽。该预设最小带宽可以为上述第一频段(100MHz-200MHz)或上述第二频段(0-200MHz)内最低要求的带宽。上述参考带宽还可以包括预设业务带宽。该预设业务带宽可以为根据不同业务需求所设定的稳定带宽。例如,普通高清视频需要的稳定带宽为10M至20M,4K(超高清)视频需要的稳定带宽为40M至50M。
在一些可行的实施方式中,请一并参见图4,图4是本申请实施例提供的第一发送模式确定流程示意图。在上述步骤S110中,第一发送模式的确定可包括如下步骤:
S1101,若第一信道容量小于预设最小带宽,则接收端确定第一发送模式为第三频段的MIMO模式。
在一些可行的实施方式中,接收端可以获取预设最小带宽C
min,并可以比较上述第一信道容量C
st与该预设最小带宽C
min之间的大小关系。如果该第一信道容量小于该预设最小带宽(即C
st<C
min),说明高频(即100MHz-200MHz内)衰减较大,无法获得较好的高频增益,此时为衰减受限场景,则接收端可以确定采用100M MIMO模式,即确定第一发送模式为上述第三频段的MIMO模式。
可选的,如果该第一信道容量大于或等于该预设最小带宽(即C
st≥C
min),说明高频衰减较小,可以获得高频收益,则接收端可以直接确定采用200M SISO模式,即确定该第一发送模式为第二频段的SISO模式。
需要说明的是,接收端确定出第一发送模式之后,则不再进行模式选择,即不执行后续步骤,如不执行步骤S1102-步骤S1107。
S1102,若第一信道容量大于或等于预设最小带宽、且第一信道容量大于或等于预设业务带宽,则接收端确定第一发送模式为第二频段的SISO模式。
在一些可行的实施方式中,如果上述第一信道容量大于或等于上述预设最小带宽(即C
st≥C
min),则接收端可以获取预设业务带宽C
nd,并可以比较该第一信道容量C
st与该预设业务带宽C
nd之间的大小关系。如果该第一信道容量大于或等于该预设业务带宽(即C
st≥C
nd),说明稳定不变的第一信道容量满足业务所需的稳定带宽要求,则接收端可以确定采用200M SISO模式,即确定该第一发送模式为第二频段的SISO模式。
可选的,接收端在获取预设业务带宽时,可以基于局域网交换机(LAN Switch,LSW)、数据链路层(data link layer,DLL)以及物理(physical,PHY)层识别业务类型,并获取该业务类型对应的预设业务带宽。在一个实施例中,LSW配合上层软件做业务包的识别,将业务包加入不同优先级队列,并对不同优先级队列的业务包进行调度后送入DLL处理;DLL为不同业务分配时隙、轮询调度;PHY层区分DLL送入的业务流所设定的预设业务带宽。例如,业务类型为普通高清视频,则预设业务带宽为10M;业务类型为4K(超高清)视频,则预设业务带宽为40M。
可选的,如果该第一信道容量小于该预设业务带宽(即C
st<C
nd),说明稳定不变的第一信道容量不满足业务所需的稳定带宽要求,则接收端可以直接确定采用100M MIMO模式,即确定第一发送模式为上述第三频段的MIMO模式。
S1103,若第一信道容量大于或等于预设最小带宽、且第一信道容量小于预设业务带宽,则接收端基于第一信噪比确定第一通道在第二频段内的第二信道容量。
S1104,接收端基于第三信噪比确定双通道在第三频段内的第三信道容量。
在一些可行的实施方式中,如果上述第一信道容量大于或等于上述预设最小带宽、且该第一信道容量小于上述预设业务带宽(即C
min≤C
st<C
nd),则接收端可以根据香农公式计算上述第一信噪比对应的信道容量(即第一通道在第三频段内的信道容量)。接收端可以将该第一信噪比对应的信道容量与该第一信道容量之和确定为该第一通道在该第二频段(0-200MHz)内的第二信道容量。接收端可以根据香农公式计算上述第三信噪比对应的第三信道容量(即第一通道和第二通道形成的双通道在第三频段内的信道容量)。
可选的,第一信噪比SNR
sgl_1对应的信道容量C
sgl_1满足公式(2-8),第三信噪比SNR
dul对应的第三信道容量C
dul满足公式(2-9):
其中,N为第三频段(0-100MHz)内的总子载波数。上述第二信道容量C
200为第一信噪比SNR
sgl_1对应的信道容量C
sgl_1与第一信道容量C
st之和,即C
200=C
sgl_1+C
st。
可以理解的,如果上述第一通道的目标功率调整值大于上述第二通道的目标功率调整值,步骤S1103可以替换为:如果上述第一信道容量大于或等于上述预设最小带宽、且该第一信道容量小于上述预设业务带宽(即C
min≤C
st<C
nd),则接收端可以根据香农公式计算上述第二信噪比对应的信道容量(即第二通道在第三频段内的信道容量)。接收端可以将该第二信噪比对应的信道容量与该第一信道容量之和确定为该第二通道在该第二频段(0-200MHz)内的第二信道容量。其中,第二信噪比SNR
sgl_2对应的信道容量C
sgl_2满足公式(2-10):
N为第三频段(0-100MHz)内的总子载波数。上述第二信道容量C
200为第二信噪比SNR
sgl_2对应的信道容量C
sgl_2与第一信道容量C
st之和,即C
200=C
sgl_2+C
st。
S1105,若第二信道容量大于或等于第三信道容量,则接收端确定第一发送模式为第二频段的SISO模式。
在一些可行的实施方式中,接收端在确定出上述第二信道容量和上述第三信道容量之后,可以比较该第二信道容量C
200与该第三信道容量C
dul之间的大小关系。如果该第二信道容量大于或等于该第三信道容量(即C
200≥C
dul),说明由于噪声影响使得100M MIMO的增益小于200M SISO的增益,此时为噪声受限场景,则接收端可以确定采用200M SISO模式,即确定第一发送模式为上述第二频段的SISO模式。
可选的,如果该第二信道容量小于该第三信道容量(即C
200<C
dul),说明100M MIMO的增益大于200M SISO的增益,则接收端可以直接确定采用100M MIMO模式,即确定第一发送模式为上述第三频段的MIMO模式。
S1106,若第二信道容量小于第三信道容量、且第二信道容量大于或等于预设业务带宽,则接收端确定第一发送模式为第二频段的SISO模式。
S1107,若第二信道容量小于第三信道容量、且第二信道容量小于预设业务带宽,则接收端确定第二发送模式为第三频段的MIMO模式。
在一些可行的实施方式中,如果上述第二信道容量小于上述第三信道容量(即C
200<C
dul),则接收端可以比较该第二信道容量C
200与上述预设业务带宽C
nd之间的大小关系。如果该第二信道容量大于或等于该预设业务带宽(C
200≥C
nd),说明上述第一通道在上述第二频段(0-200MHz)内的信道容量可以提供业务所需的稳定带宽,则接收端可以确定采用200M SISO模式,即确定该第一发送模式为该第二频段的SISO模式。如果该第二信道容量小于该预设业务带宽(C
200<C
nd),说明上述第一通道在上述第二频段(0-200MHz)内的信道容量不能提供业务所需的稳定带宽,则接收端可以确定采用100M MIMO模式,即确定第二发送模式为上述第三频段的MIMO模式。
接收端基于单通道和/或双通道的信道容量,判断PLC系统所处场景(如衰减受限场景或噪声受限场景),以及判断单通道的信道容量是否能够提供业务所需稳定带宽,从而进行发送模式的选择,可以基于场景和业务自适应地灵活选择发送模式,提高PLC系统的性能和稳定性,同时实现大带宽的系统传输。
S111,接收端向发送端发送第一指示信息。相应地,发送端接收第一指示信息。
S112,发送端根据第一指示信息采用第一发送模式与接收端进行通信。
在一些可行的实施方式中,上述第一指示信息可以携带于ACK或LCDU帧的帧头中。该第一指示信息可以用于指示上述第一发送模式。
在一些可行的实施方式中,如果该第一指示信息所指示的第一发送模式为100M MIMO模式,则接收端可以通过ACK或LCDU帧将该第一指示信息发送给发送端。该第一指示信息为100M MIMO模式对应的带宽信息。发送端对接收到的ACK或LCDU帧进行解析得到该第一指示信息,并可以在上述第一通道和上述第二通道形成的双通道上采用100M MIMO模式与接收端进行通信。具体地,接收端将第一指示信息写入ACK或LCDU帧的第一bit位中,向发送端发送该ACK或LCDU帧。发送端解析该ACK或LCDU帧的帧头,得到该第一指示信息。发送端在双通道上采用该第一指示信息指示的第一发送模式与接收端进行通信。例如,第一指示信息为1,用于指示100M MIMO模式,默认使用双通道。
在另一些可行的实施方式中,如果该第一指示信息所指示的第一发送模式为200M SISO模式,则接收端可以通过ACK或LCDU帧将该第一指示信息和第二指示信息发送给发送端。该第一指示信息为200M SISO模式对应的带宽信息,该第二指示信息用于指示第一通道。发送端对接收到的ACK或LCDU帧进行解析得到该第一指示信息和该第二指示信息,并在该第二指示信息指示的第一通道上采用该第一指示信息指示的该第二频段的SISO模式与接收端进行通信。具体地,接收端将第一指示信息写入ACK或LCDU帧的第一bit位中,将第二指示信息写入该ACK或LCDU帧的第二bit位中,并向发送端发送该 ACK或LCDU帧。发送端解析该ACK或LCDU帧的帧头,得到该第一指示信息和该第二指示信息。发送端在该第二指示信息指示的通道上采用该第一指示信息指示的第一发送模式与接收端进行通信。例如,第一指示信息为0,用于指示200M SISO模式;第二指示信息为1,用于指示通道信息为第一通道。
在一些可行的实施方式中,接收端确定出上述第二发送模式之后,可以通过ACK或LCDU帧将第三指示信息发送给发送端。该第三指示信息用于指示上述第三频段的MIMO模式。发送端对接收到的ACK或LCDU帧进行解析得到该第三指示信息,并可以在上述第一通道和上述第二通道形成的双通道上采用100M MIMO模式与接收端进行通信。
在本申请实施例中,接收端基于发送端发送的不同探测帧,确定单通道、双通道或单通道在高频时的信道容量,基于单通道、双通道或单通道在高频时的信道容量判断PLC系统所处场景(如衰减受限场景或噪声受限场景),以及判断单通道的信道容量是否能够提供业务所需稳定带宽,从而进行发送模式的选择。如果接收端确定出的发送模式与初始发送模式相同,则不进行模式切换;如果接收端确定出的发送模式与初始发送模式不相同,则触发模式切换。本申请实施例可以在100M MIMO模式之外增加200M SISO模式,基于场景和业务自适应地灵活选择发送模式,提高PLC系统的性能和稳定性,同时实现大带宽的系统传输。
作为一个可选实施例,接收端可以基于发送端发送的数据帧进行误块率(block error rate,BLER)和信噪比的估计。如果PLC系统的BLER增大或SNR频繁变化,说明此时PLC系统受电器干扰较大,则接收端直接确定采用200M SISO模式。接收端可以将200M SISO模式反馈给发送端,发送端接收到接收端反馈的200M SISO模式之后,可以发送200M SISO探测帧。接收端接收到该200M SISO探测帧后,基于该200M SISO探测帧估计信道容量。其中,误块率是指出错的码块在所有发送的码块中所占的百分比。
作为另一个可选实施例,发送端和接收端所在的子节点可以注册到其对应的母节点上。母节点可以通过心跳机制监控已注册的子节点的上线或下线,并可以监控子节点是否注册成功。如果发送端或接收端所在的节点(这里节点对应的物理实体为电力猫)频繁上下线或注册失败,说明此时PLC系统受电器干扰较大,则接收端直接确定采用200M SISO模式。接收端可以将200M SISO模式反馈给发送端,发送端接收到接收端反馈的200M SISO模式之后,可以发送200M SISO探测帧。接收端接收到该200M SISO探测帧后,基于该200M SISO探测帧估计信道容量。
作为又一个可选实施例,以PLC系统当前的发送模式为100M MIMO模式为例,对发送端和接收端在电力线通信过程中的数据交互进行描述。
参见图5,图5是本申请实施例提供的电力线通信的数据交互流程图。如图5所示,该数据交互流程图包括但不限于以下步骤:
S1、发送端在双通道上发送100M MIMO数据帧。相应地,接收端接收100M MIMO数据帧。
S2、接收端解析100M MIMO数据帧的帧头得到第一带宽信息。
S3、接收端根据第一带宽信息指示的模式对100M MIMO数据帧的有效负荷进行解析, 得到100M MIMO数据帧的有效负荷上承载的第一用户数据。
S4、接收端确定发送模式。
S5、若接收端确定出的发送模式与当前的发送模式不相同,则接收端将确定出的发送模式的第二带宽信息写入ACK或LCDU帧的帧头中,并将通道信息写入ACK或LCDU帧的帧头中。
S6、接收端在双通道上向发送端返回ACK或LCDU帧。相应地,发送端接收ACK或LCDU帧。
S7、发送端解析ACK或LCDU帧的帧头得到第二带宽信息。
S8、发送端在通信信息指示的通道上采用第二带宽信息指示的模式与接收端进行通信。
其中,上述双通道是指第一通道和第二通道。数据帧、ACK或LCDU帧的帧头均包括一个用于指示bandplan信息的有效bit位(即第一bit位)和一个用于指示通道信息的有效bit位(即第二bit位)。该100M MIMO数据帧的帧头中第一bit位为1,用于指示100M或表示100M MIMO模式,默认使用双通道。该ACK或LCDU帧的帧头中第一bit位为0,用于指示200M或表示200M SISO模式;第二bit为1,用于指示第一通道。该第一带宽信息为100M,该第二带宽信息为200M。该通道信息用于指示该第一通道,该第一通道的目标功率调整值小于该第二通道的目标功率调整值。
上述步骤S4可以参考图3所示电力线通信的发送模式确定方法,在此不再赘述。
可选的,如果上述步骤S4中接收端基于探测帧确定出发送模式,则步骤S5-步骤S7为:若接收端确定出的发送模式与当前的发送模式不相同,则接收端将确定出的发送模式的第二带宽信息写入LCDU帧的帧头中,并将通道信息写入LCDU帧的帧头中;接收端针对接收到的探测帧在通道(这里的通道可以是双通道,也可以是第一通道或第二通道)上返回LCDU帧,相应地,发送端接收LCDU帧;发送端解析LCDU帧的帧头得到第二带宽信息。如果上述步骤S4中接收端基于100M MIMO数据帧的BLER或SNR确定出发送模式,则步骤S5-步骤S7为:若接收端确定出的发送模式与当前的发送模式不相同,则接收端将确定出的发送模式的第二带宽信息写入ACK帧的帧头中,并将通道信息写入ACK帧的帧头中;接收端针对100M MIMO数据帧在双通道上返回ACK帧,相应地,发送端接收ACK帧;发送端解析ACK帧的帧头得到第二带宽信息。
上述步骤S6具体为:接收端分别在第一通道和第二通道上发送包括第二带宽信息的ACK或LCDU帧。
上述步骤S8具体为:发送端在第一通道上发送200M SISO数据帧。相应地,接收端接收200M SISO数据帧。接收端解析该200M SISO数据帧的帧头得到第二带宽信息。接收端根据该第二带宽信息指示的模式对该200M SISO数据帧的有效负荷进行解析,得到该200M SISO数据帧的有效负荷上承载的第二用户数据。
可选的,若接收端确定出的发送模式与当前的发送模式相同,则接收端直接针对该100M MIMO数据帧在双通道上返回ACK帧,或接收端针对接收到的探测帧在通道上返回LCDU帧。该ACK或LCDU帧的帧头中第一bit位为1,指示当前的发送模式为100M MIMO模式。该ACK或LCDU帧用于确认继续使用当前的发送模式进行通信。
上述详细阐述了本申请实施例的电力线通信的发送模式确定方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
参见图6,图6是本申请实施例提供的发送模式确定装置的一结构示意图。如图6所示,该发送模式确定装置1可包括:
收发模块11,用于接收发送端在第一通道上发送的第一探测帧;第一确定模块12,用于基于该收发模块11接收到的第一探测帧确定该第一通道在第一频段内的第一信道容量;第二确定模块13,用于根据该第一确定模块12确定出的第一信道容量和参考带宽确定第一发送模式;该收发模块11,还用于向发送端发送第一指示信息,该第一指示信息用于指示发送端采用该第一发送模式与该发送模式确定装置1进行通信。
其中,发送端与该发送模式确定装置1之间存在2个通道,分别为火线和零线形成的数字差分通道、以及火线和保护地线形成的数字差分通道,为便于描述,分别用第一通道和第二通道描述。该第一通道可以为2个通道中目标功率调整值最小的通道,由于目标功率调整值可以反映通道上的衰减情况,目标功率调整值越小,通道上的衰减越小,所以该第一通道也是衰减小的通道。该第一发送模式为该发送模式确定装置1确定出的发送端需要采用的发送模式,该第一指示信息用于指示发送端采用该第一发送模式与该发送模式确定装置1进行通信。该第一指示信息可以为带宽(bandplan)信息,该第一指示信息可以携带于确认帧或链路控制数据单元帧的帧头中。该第一频段可以为100MHz-200MHz。
在一些可行的实施方式中,所述参考带宽为预设业务带宽;上述第二确定模块13,具体用于当上述第一确定模块12确定出的第一信道容量大于或等于所述预设业务带宽时,确定的第一发送模式为第二频段的单输入单输出SISO模式,所述第二频段包括所述第一频段和第三频段,该第一频段、该第二频段以及该第三频段均为连续的频段,该第一频段中的最小值大于或等于该第三频段的最大值,该第二频段的最小值小于或等于该第三频段的最小值,该第二频段的最大值大于或等于该第一频段的最大值。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。该预设业务带宽可以为根据不同业务需求所设定的稳定带宽。该预设业务带宽可以为根据不同业务需求所设定的稳定带宽。
在一些可行的实施方式中,上述发送模式确定装置1还包括第三确定模块14和第四确定模块15。上述收发模块11还用于接收发送端在第二通道上发送的第二探测帧,并接收发送端同时在该第一通道上发送的第三探测帧和该第二通道上发送的第四探测帧,该第一探测帧的发送时间与该第二探测帧的发送时间不相同;该第三确定模块14,用于基于该收发模块11接收到的第一探测帧确定该第一通道在第三频段内的第一信噪比,基于该收发模块11接收到的第二探测帧确定该第二通道在该第三频段内的第二信噪比,并基于该收发模块11接收到的第三探测帧和该第四探测帧确定该第一通道和该第二通道形成的双通道在该第三频段内的第三信噪比;该第四确定模块15,用于当该第三确定模块14确定出的第一信噪比大于或等于该第三确定模块14确定出的第三信噪比、或该第三确定模块14确定出的第二信噪比大于或等于该第三信噪比时,确定第一发送模式为第二频段的SISO模式。该第二频段包括该第一频段和该第三频段。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。
在一些可行的实施方式中,上述第一通道的目标功率调整值小于上述第二通道的目标功率调整值,该第一通道的目标功率调整值基于该第一探测帧包括的前导码preamble符号确定,该第二通道的目标功率调整值基于该第二探测帧包括的前导码preamble符号确定。
在一些可行的实施方式中,上述收发模块11还用于向发送端发送第二指示信息,该第二指示信息用于指示发送端通过该第一通道与该发送模式确定装置1进行通信。
在一些可行的实施方式中,上述第一指示信息为与上述第一发送模式对应的第一带宽信息。
在一些可行的实施方式中,上述参考带宽为预设最小带宽。上述第二确定模块13,具体用于当上述第一确定模块12确定出的第一信道容量小于该预设最小带宽时,确定的第一发送模式为第三频段的多输入多输出MIMO模式。
在一些可行的实施方式中,上述参考带宽包括预设业务带宽和预设最小带宽。上述第二确定模块13,包括第一确定单元131、第二确定单元132以及第三确定单元133。该第一确定单元131,用于当该第一信道容量大于或等于该预设最小带宽、且该第一信道容量小于该预设业务带宽时,基于该第一信噪比确定该第一通道在该第二频段内的第二信道容量;该第二确定单元132,用于基于上述第三确定模块14确定出的第三信噪比确定该第一通道和该第二通道形成的双通道在该第三频段内的第三信道容量;该第三确定单元133,用于当该第一确定单元131确定出的第二信道容量大于或等于该第二确定单元132确定出的第三信道容量时,确定的第一发送模式为第二频段的SISO模式。该第二频段包括该第一频段和该第三频段。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。该预设业务带宽可以为根据不同业务需求所设定的稳定带宽。
在一些可行的实施方式中,上述第三确定单元133还用于:当上述第一确定单元131确定出的第二信道容量小于上述第二确定单元132第三信道容量、且该第二信道容量大于或等于该预设业务带宽时,确定第一发送模式为第二频段的SISO模式。
在一些可行的实施方式中,上述发送模式确定装置1还包括第五确定模块16。该第五确定模块16,用于当上述第一确定单元131确定出的第二信道容量小于上述第二确定单元132确定出的第三信道容量和/或该预设业务带宽时,确定第二发送模式,该第二发送模式为该第三频段的MIMO模式;上述收发模块11,还用于向发送端发送第三指示信息,该第三指示信息用于指示发送端采用该第二发送模式与该发送模式确定装置1进行通信。
其中,上述第一确定模块12、上述第二确定模块13、上述第三确定模块14、上述第四确定模块15以及上述第五确定模块16可以为一个模块:处理模块。
具体实现中,各个模块或单元的实现还可以对应参照图3-图5所示的实施例中接收端的相应描述,执行上述实施例中接收端所执行的方法和功能。
在本申请实施例中,发送模式确定装置1基于发送端发送的不同探测帧,确定单通道、双通道或单通道在高频时的信道容量,基于单通道、双通道或单通道在高频时的信道容量判断PLC系统所处场景(如衰减受限场景或噪声受限场景),以及判断单通道的信道容量是否能够提供业务所需稳定带宽,从而进行发送模式的选择。可以在100M MIMO模式之外增加200M SISO模式,基于场景和业务自适应地灵活选择发送模式,提高PLC系统的性 能和稳定性,同时实现大带宽的系统传输。
参见图7,图7是本申请实施例提供的发送模式确定装置的另一结构示意图。如图7所示,该发送模式确定装置2可包括:
收发模块21,用于在第一通道上发送包括第一频段的第一探测帧,该第一探测帧用于确定该第一通道在该第一频段内的第一信道容量;上述收发模块21,还用于接收第一指示信息,该第一指示信息用于指示第一发送模式,该第一发送模式为根据该第一信道容量和参考带宽确定得到的;通信模块22,用于根据该收发模块21接收到的第一指示信息采用该第一发送模式与接收端进行通信。
其中,该发送模式确定装置2与接收端之间存在2个通道,分别为火线和零线形成的数字差分通道、以及火线和保护地线形成的数字差分通道,为便于描述,分别用第一通道和第二通道描述。该第一通道可以为2个通道中目标功率调整值最小的通道,由于目标功率调整值可以反映通道上的衰减情况,目标功率调整值越小,通道上的衰减越小,所以该第一通道也是衰减小的通道。该第一发送模式为接收端确定出的该发送模式确定装置2需要采用的发送模式,该第一指示信息用于指示该发送模式确定装置2采用该第一发送模式与接收端进行通信。该第一指示信息可以为带宽(bandplan)信息,该第一指示信息可以携带于确认帧或链路控制数据单元帧的帧头中。该第一频段可以为100MHz-200MHz。
在一些可行的实施方式中,上述参考带宽为预设业务带宽。在该第一信道容量大于或等于该预设业务带宽的情况下,上述收发模块21接收的第一指示信息指示的第一发送模式为第二频段的SISO模式。该第二频段包括该第一频段和第三频段,该第一频段、该第二频段以及该第三频段均为连续的频段,该第一频段中的最小值大于或等于该第三频段的最大值,该第二频段的最小值小于或等于该第三频段的最小值,该第二频段的最大值大于或等于该第一频段的最大值。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。该预设业务带宽可以为根据不同业务需求所设定的稳定带宽。
在一些可行的实施方式中,上述第一探测帧用于确定该第一通道在第三频段内的第一信噪比。上述收发模块21,还用于在第二通道上发送第二频段的第二探测帧,该第二探测帧用于确定该第二通道在该第三频段内的第二信噪比,该第一探测帧的发送时间和该第二探测帧的发送时间不相同;该收发模块21,还用于同时在该第一通道上发送该第三频段内的第三探测帧和该第二通道上发送该第三频段内的第四探测帧,该第三探测帧和第四探测帧用于确定该第一通道和该第二通道形成的双通道在该第三频段内的第三信噪比;在该第一信噪比大于或等于该第三信噪比、或该第二信噪比大于或等于该第三信噪比的情况下,该收发模块21接收到的第一指示信息指示的第一发送模式为第二频段的SISO模式。该第二频段包括该第一频段和该第三频段。可选的,该第二频段可以为0-200MHz,该第一频段可以为100MHz-200MHz,该第三频段可以为0-100MHz。
在一些可行的实施方式中,上述第一通道的目标功率调整值大于上述第二通道的目标功率调整值,该第一通道的目标功率调整值基于该第一探测帧包括的前导码preamble符号确定,该第二通道的目标功率调整值基于该第二探测帧包括的前导码preamble符号确定。
在一些可行的实施方式中,上述收发模块21还用于接收第二指示信息;上述通信模块22还用于根据该第二指示信息在该第一通道上与接收端进行通信。
在一些可行的实施方式中,上述第一指示信息为与上述第一发送模式对应的第一带宽信息。
在一些可行的实施方式中,上述参考带宽为预设最小带宽。在该第一信道容量小于该预设最小带宽的情况下,上述收发模块21接收的第一指示信息指示的第一发送模式为第三频段的多输入多输出MIMO模式。
在一些可行的实施方式中,上述第一信噪比用于确定该第一通道在该第二频段内的第二信道容量,上述第三信噪比用于确定该第一通道和该第二通道形成的双通道在该第三频段内的第三信道容量;在该第二信道容量大于或等于该第三信道容量的情况下,上述收发模块21接收的第一指示信息指示的第一发送模式为第二频段的SISO模式,该第二频段包括该第一频段和该第三频段。
在一些可行的实施方式中,在该第二信道容量小于该第三信道容量、且该第二信道容量大于或等于该预设业务带宽的情况下,上述收发模块21接收的第一指示信息指示的第一发送模式为第二频段的SISO模式。
在一些可行的实施方式中,上述收发模块21,还用于在该第二信道容量小于该第三信道容量和/或该预设业务带宽的情况下,接收第三指示信息,该第三指示信息用于指示第二发送模式,该第二发送模式为该第三频段的MIMO模式;上述通信模块22还用于根据该第二指示信息采用该第二发送模式与接收端进行通信。
具体实现中,各个模块或单元的实现还可以对应参照图3-图5所示的实施例中发送端的相应描述,执行上述实施例中发送端所执行的方法和功能。
在本申请实施例中,发送模式确定装置2向接收端发送第一探测帧,以使接收端基于该第一探测帧确定第一频段内的第一信道容量,并比较该第一信道容量和参考带宽的大小关系来判断发送模式确定装置2该采用何种发送模式,并告知发送模式确定装置2采用何种发送模式进行通信,发送模式确定装置2采用接收端告知的发送模式与接收端进行通信,可以在100M MIMO模式之外增加200M SISO模式,根据不同的业务、场景进行模式的选择,提升PLC系统的性能和稳定性。
参见图8,图8是本申请实施例提供的通信装置的结构示意图。如图8所示,本申请实施例提供的通信装置1000包括处理器1001、存储器1002、收发器1003和总线系统1004。本申请实施例提供的通信装置可以为接收设备和发送设备中的任意一种。
其中,上述处理器1001、存储器1002和收发器1003通过总线系统1004连接。
上述存储器1002用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器1002包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。图8中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器1002也可以是处理器1001中的存储器,在此不做限制。
存储器1002存储了如下的元素,可执行单元或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
上述处理器1001控制通信装置1000的操作,处理器1001可以是一个或多个中央处理器(central processing unit,CPU),在处理器1001是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
具体的应用中,通信装置1000的各个组件通过总线系统1004耦合在一起,其中总线系统1004除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图8中将各种总线都标为总线系统1004。为便于表示,图8中仅是示意性画出。
上述本申请实施例提供的图3-图5中任一种,或者上述各个实施例揭示的接收端的方法;或者上述本申请实施例提供的图3-图5中任一种,或者上述各个实施例的发送端的方法可以应用于处理器1001中,或者由处理器1001实现。处理器1001可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1001可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件执行图3-图5中任一种所描述的接收端的方法步骤;或者结合其硬件执行图3-图5中任一种所描述的发送端的方法步骤。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3-图5所描述的接收端的方法步骤;或者当该计算机程序代码在计算机上运行时,使得该计算机执行图3-图5所描述的发送端的方法步骤。
本申请实施例还提供一种装置,该装置可以为芯片。该芯片包括处理器。该处理器用于读取并执行存储器中存储的计算机程序,以执行图3的任意可能的实现方式中的电力线通信的发送模式确定方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信息,该处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以 和处理器集成在一起。
本申请的另一实施例中,还提供一种通信系统,该通信系统包括接收设备和发送设备。示例性的,接收设备可以为图3-图5所示实施例中的接收端,发送设备可以为图3-图5所示实施例中的发送端。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (45)
- 一种电力线通信的发送模式确定方法,其特征在于,包括:接收端接收发送端在第一通道上发送的第一探测帧,并基于所述第一探测帧确定所述第一通道在第一频段内的第一信道容量;所述接收端根据所述第一信道容量和参考带宽确定第一发送模式;所述接收端向所述发送端发送第一指示信息,所述第一指示信息用于指示所述发送端采用所述第一发送模式与所述接收端进行通信。
- 根据权利要求1所述的方法,其特征在于,所述参考带宽为预设业务带宽;所述接收端根据所述第一信道容量和参考带宽确定第一发送模式,包括:若所述第一信道容量大于或等于所述预设业务带宽,则所述接收端确定的第一发送模式为第二频段的单输入单输出SISO模式,所述第二频段包括所述第一频段和第三频段。
- 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:所述接收端接收所述发送端在第二通道上发送的第二探测帧,并接收所述发送端同时在所述第一通道上发送的第三探测帧和所述第二通道上发送的第四探测帧,所述第一探测帧的发送时间与所述第二探测帧的发送时间不相同;所述接收端基于所述第一探测帧确定所述第一通道在第三频段内的第一信噪比,基于所述第二探测帧确定所述第二通道在所述第三频段内的第二信噪比,并基于所述第三探测帧和所述第四探测帧确定所述第一通道和所述第二通道形成的双通道在所述第三频段内的第三信噪比;若所述第一信噪比大于或等于所述第三信噪比、或所述第二信噪比大于或等于所述第三信噪比,则所述接收端确定第一发送模式为第二频段的SISO模式,所述第二频段包括所述第一频段和所述第三频段。
- 根据权利要求3所述的方法,其特征在于,所述第一通道的目标功率调整值小于所述第二通道的目标功率调整值,所述第一通道的目标功率调整值基于所述第一探测帧包括的前导码preamble符号确定,所述第二通道的目标功率调整值基于所述第二探测帧包括的前导码preamble符号确定。
- 根据权利要求4所述的方法,其特征在于,所述方法还包括:所述接收端向所述发送端发送第二指示信息,所述第二指示信息用于指示所述发送端通过所述第一通道与所述接收端进行通信。
- 根据权利要求1-5任一项所述的方法,其特征在于,所述第一指示信息为与所述第一发送模式对应的第一带宽信息。
- 根据权利要求1所述的方法,其特征在于,所述参考带宽为预设最小带宽;所述接收端根据所述第一信道容量和预设参考带宽确定第一发送模式,包括:若所述第一信道容量小于所述预设最小带宽,则所述接收端确定的第一发送模式为第三频段的多输入多输出MIMO模式。
- 根据权利要求4所述的方法,其特征在于,所述参考带宽包括预设业务带宽和预设最小带宽;所述接收端根据所述第一信道容量和参考带宽确定第一发送模式,包括:若所述第一信道容量大于或等于所述预设最小带宽、且所述第一信道容量小于所述预设业务带宽,则所述接收端基于所述第一信噪比确定所述第一通道在所述第二频段内的第二信道容量;所述接收端基于所述第三信噪比确定所述第一通道和所述第二通道形成的双通道在所述第三频段内的第三信道容量;若所述第二信道容量大于或等于所述第三信道容量,则所述接收端确定的第一发送模式为第二频段的SISO模式,所述第二频段包括所述第一频段和所述第三频段。
- 根据权利要求8所述的方法,其特征在于,所述方法还包括:若所述第二信道容量小于所述第三信道容量、且所述第二信道容量大于或等于所述预设业务带宽,则所述接收端确定第一发送模式为第二频段的SISO模式。
- 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:若所述第二信道容量小于所述第三信道容量和/或所述预设业务带宽,则所述接收端确定第二发送模式,所述第二发送模式为所述第三频段的MIMO模式;所述接收端向所述发送端发送第三指示信息,所述第三指示信息用于指示所述发送端采用所述第二发送模式与所述接收端进行通信。
- 一种电力线通信的发送模式确定方法,其特征在于,包括:发送端在第一通道上发送包括第一频段的第一探测帧,所述第一探测帧用于确定所述第一通道在所述第一频段内的第一信道容量;所述发送端接收第一指示信息,所述第一指示信息用于指示第一发送模式,所述第一发送模式为根据所述第一信道容量和参考带宽确定得到的;所述发送端根据所述第一指示信息采用所述第一发送模式与接收端进行通信。
- 根据权利要求11所述的方法,其特征在于,所述参考带宽为预设业务带宽;在所述第一信道容量大于或等于所述预设业务带宽的情况下,所述发送端接收的第一指示信息指示的第一发送模式为第二频段的SISO模式,所述第二频段包括所述第一频段和第三频段。
- 根据权利要求11或12所述的方法,其特征在于,所述第一探测帧用于确定所述第一通道在第三频段内的第一信噪比;所述方法还包括:所述发送端在第二通道上发送第二频段的第二探测帧,所述第二探测帧用于确定所述第二通道在所述第三频段内的第二信噪比,所述第一探测帧的发送时间和所述第二探测帧的发送时间不相同;所述发送端同时在所述第一通道上发送所述第三频段内的第三探测帧和所述第二通道上发送所述第三频段内的第四探测帧,所述第三探测帧和所述第四探测帧用于确定所述第一通道和所述第二通道形成的双通道在所述第三频段内的第三信噪比;在所述第一信噪比大于或等于所述第三信噪比、或所述第二信噪比大于或等于所述第三信噪比的情况下,所述发送端接收到的第一指示信息指示的第一发送模式为第二频段的SISO模式,所述第二频段包括所述第一频段和所述第三频段。
- 根据权利要求13所述的方法,其特征在于,所述第一通道的目标功率调整值大于所述第二通道的目标功率调整值,所述第一通道的目标功率调整值基于所述第一探测帧包括的前导码preamble符号确定,所述第二通道的目标功率调整值基于所述第二探测帧包括的前导码preamble符号确定。
- 根据权利要求14所述的方法,其特征在于,所述方法还包括:所述发送端接收第二指示信息;所述发送端根据所述第二指示信息在所述第一通道上与所述接收端进行通信。
- 根据权利要求11-15任一项所述的方法,其特征在于,所述第一指示信息为与所述第一发送模式对应的第一带宽信息。
- 根据权利要求11所述的方法,其特征在于,所述参考带宽为预设最小带宽;在所述第一信道容量小于所述预设最小带宽的情况下,所述发送端接收的第一指示信息指示的第一发送模式为第三频段的多输入多输出MIMO模式。
- 根据权利要求14所述的方法,其特征在于,所述第一信噪比用于确定所述第一通道在所述第二频段内的第二信道容量,所述第三信噪比用于确定所述第一通道和所述第二通道形成的双通道在所述第三频段内的第三信道容量;在所述第二信道容量大于或等于所述第三信道容量的情况下,所述发送端接收的第一指示信息指示的第一发送模式为第二频段的SISO模式,所述第二频段包括所述第一频段和所述第三频段。
- 根据权利要求18所述的方法,其特征在于,在所述第二信道容量小于所述第三信道容量、且所述第二信道容量大于或等于所述预设业务带宽的情况下,所述发送端接收的 第一指示信息指示的第一发送模式为第二频段的SISO模式。
- 根据权利要求18或19所述的方法,其特征在于,所述方法还包括:在所述第二信道容量小于所述第三信道容量和/或所述预设业务带宽的情况下,所述发送端接收第三指示信息,所述第三指示信息用于指示第二发送模式,所述第二发送模式为所述第三频段的MIMO模式;所述发送端根据所述第二指示信息采用所述第二发送模式与接收端进行通信。
- 一种发送模式确定装置,其特征在于,包括:收发模块,用于接收发送端在第一通道上发送的第一探测帧;第一确定模块,用于基于所述收发模块接收到的第一探测帧确定所述第一通道在第一频段内的第一信道容量;第二确定模块,用于根据所述第一确定模块确定出的第一信道容量和参考带宽确定第一发送模式;所述收发模块,还用于向所述发送端发送第一指示信息,所述第一指示信息用于指示所述发送端采用所述第一发送模式与所述发送模式确定装置进行通信。
- 根据权利要求21所述的装置,其特征在于,所述参考带宽为预设业务带宽;所述第二确定模块,具体用于当所述第一确定模块确定出的第一信道容量大于或等于所述预设业务带宽时,确定的第一发送模式为第二频段的单输入单输出SISO模式,所述第二频段包括所述第一频段和第三频段。
- 根据权利要求21或22所述的装置,其特征在于,所述收发模块还用于接收所述发送端在第二通道上发送的第二探测帧,并接收所述发送端同时在所述第一通道上发送的第三探测帧和所述第二通道上发送的第四探测帧,所述第一探测帧的发送时间与所述第二探测帧的发送时间不相同;所述装置还包括:第三确定模块,用于基于所述收发模块接收到的第一探测帧确定所述第一通道在第三频段内的第一信噪比,基于所述收发模块接收到的第二探测帧确定所述第二通道在所述第三频段内的第二信噪比,并基于所述收发模块接收到的第三探测帧和所述第四探测帧确定所述第一通道和所述第二通道形成的双通道在所述第三频段内的第三信噪比;第四确定模块,用于当所述第三确定模块确定出的第一信噪比大于或等于所述第三确定模块确定出的第三信噪比、或所述第三确定模块确定出的第二信噪比大于或等于所述第三信噪比时,确定第一发送模式为第二频段的SISO模式,所述第二频段包括所述第一频段和所述第三频段。
- 根据权利要求23所述的装置,其特征在于,所述第一通道的目标功率调整值小于所述第二通道的目标功率调整值,所述第一通道的目标功率调整值基于所述第一探测帧包 括的前导码preamble符号确定,所述第二通道的目标功率调整值基于所述第二探测帧包括的前导码preamble符号确定。
- 根据权利要求24所述的装置,其特征在于,所述收发模块还用于向所述发送端发送第二指示信息,所述第二指示信息用于指示所述发送端通过所述第一通道与所述发送模式确定装置进行通信。
- 根据权利要求21-25任一项所述的装置,其特征在于,所述第一指示信息为与所述第一发送模式对应的第一带宽信息。
- 根据权利要求21所述的装置,其特征在于,所述参考带宽为预设最小带宽;所述第二确定模块,具体用于当所述第一确定模块确定出的第一信道容量小于所述预设最小带宽时,确定的第一发送模式为第三频段的多输入多输出MIMO模式。
- 根据权利要求24所述的装置,其特征在于,所述参考带宽包括预设业务带宽和预设最小带宽;所述第二确定模块,包括:第一确定单元,用于当所述第一信道容量大于或等于所述预设最小带宽、且所述第一信道容量小于所述预设业务带宽时,基于所述第一信噪比确定所述第一通道在所述第二频段内的第二信道容量;第二确定单元,用于基于所述第三确定模块确定出的第三信噪比确定所述第一通道和所述第二通道形成的双通道在所述第三频段内的第三信道容量;第三确定单元,用于当所述第一确定单元确定出的第二信道容量大于或等于所述第二确定单元确定出的第三信道容量时,确定的第一发送模式为第二频段的SISO模式,所述第二频段包括所述第一频段和所述第三频段。
- 根据权利要求28所述的装置,其特征在于,所述第三确定单元还用于:当所述第一确定单元确定出的第二信道容量小于所述第二确定单元第三信道容量、且所述第二信道容量大于或等于所述预设业务带宽时,确定第一发送模式为第二频段的SISO模式。
- 根据权利要求28或29所述的装置,其特征在于,所述装置还包括:第五确定模块,用于当所述第一确定单元确定出的第二信道容量小于所述第二确定单元确定出的第三信道容量和/或所述预设业务带宽时,确定第二发送模式,所述第二发送模式为所述第三频段的MIMO模式;所述收发模块,还用于向所述发送端发送第三指示信息,所述第三指示信息用于指示所述发送端采用所述第二发送模式与所述发送模式确定装置进行通信。
- 一种发送模式确定装置,其特征在于,包括:收发模块,用于在第一通道上发送包括第一频段的第一探测帧,所述第一探测帧用于确定所述第一通道在所述第一频段内的第一信道容量;所述收发模块,还用于接收第一指示信息,所述第一指示信息用于指示第一发送模式,所述第一发送模式为根据所述第一信道容量和参考带宽确定得到的;通信模块,用于根据所述收发模块接收到的第一指示信息采用所述第一发送模式与接收端进行通信。
- 根据权利要求31所述的装置,其特征在于,所述参考带宽为预设业务带宽;在所述第一信道容量大于或等于所述预设业务带宽的情况下,所述收发模块接收的第一指示信息指示的第一发送模式为第二频段的SISO模式,所述第二频段包括所述第一频段和第三频段。
- 根据权利要求31或32所述的装置,其特征在于,所述第一探测帧用于确定所述第一通道在第三频段内的第一信噪比;所述收发模块,还用于在第二通道上发送第二频段的第二探测帧,所述第二探测帧用于确定所述第二通道在所述第三频段内的第二信噪比,所述第一探测帧的发送时间和所述第二探测帧的发送时间不相同;所述收发模块,还用于同时在所述第一通道上发送所述第三频段内的第三探测帧和所述第二通道上发送所述第三频段内的第四探测帧,所述第三探测帧和所述第四探测帧用于确定所述第一通道和所述第二通道形成的双通道在所述第三频段内的第三信噪比;在所述第一信噪比大于或等于所述第三信噪比、或所述第二信噪比大于或等于所述第三信噪比的情况下,所述收发模块接收到的第一指示信息指示的第一发送模式为第二频段的SISO模式,所述第二频段包括所述第一频段和所述第三频段。
- 根据权利要求33所述的装置,其特征在于,所述第一通道的目标功率调整值大于所述第二通道的目标功率调整值,所述第一通道的目标功率调整值基于所述第一探测帧包括的前导码preamble符号确定,所述第二通道的目标功率调整值基于所述第二探测帧包括的前导码preamble符号确定。
- 根据权利要求34所述的装置,其特征在于,所述收发模块还用于接收第二指示信息;所述通信模块还用于根据所述第二指示信息在所述第一通道上与所述接收端进行通信。
- 根据权利要求31-35任一项所述的装置,其特征在于,所述第一指示信息为与所述第一发送模式对应的第一带宽信息。
- 根据权利要求31所述的装置,其特征在于,所述参考带宽为预设最小带宽;在所述第一信道容量小于所述预设最小带宽的情况下,所述收发模块接收的第一指示信息指示的第一发送模式为第三频段的多输入多输出MIMO模式。
- 根据权利要求34所述的装置,其特征在于,所述第一信噪比用于确定所述第一通道在所述第二频段内的第二信道容量,所述第三信噪比用于确定所述第一通道和所述第二通道形成的双通道在所述第三频段内的第三信道容量;在所述第二信道容量大于或等于所述第三信道容量的情况下,所述收发模块接收的第一指示信息指示的第一发送模式为第二频段的SISO模式,所述第二频段包括所述第一频段和所述第三频段。
- 根据权利要求38所述的装置,其特征在于,在所述第二信道容量小于所述第三信道容量、且所述第二信道容量大于或等于所述预设业务带宽的情况下,所述收发模块接收的第一指示信息指示的第一发送模式为第二频段的SISO模式。
- 根据权利要求38或39所述的装置,其特征在于,所述收发模块,还用于在所述第二信道容量小于所述第三信道容量和/或所述预设业务带宽的情况下,接收第三指示信息,所述第三指示信息用于指示第二发送模式,所述第二发送模式为所述第三频段的MIMO模式;所述通信模块还用于根据所述第二指示信息采用所述第二发送模式与接收端进行通信。
- 一种接收设备,其特征在于,包括处理器、收发器和存储器,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述接收设备执行如权利要求1-10任一项所述的方法。
- 一种发送设备,其特征在于,包括处理器、收发器和存储器,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述发送设备执行如权利要求11-20任一项所述的方法。
- 一种通信系统,包括接收设备和发送设备,其中:所述接收设备为权利要求21-30任一项所述的装置;所述发送设备为权利要求31-40任一项所述的装置。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储计算机程序指令,当所述计算机程序指令在所述计算机上运行时,使得所述计算机执行如权利要求1-10任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储计算机程序指令,当所述计算机程序指令在所述计算机上运行时,使得所述计算机执行如权利要求11-20任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/076838 WO2021168706A1 (zh) | 2020-02-26 | 2020-02-26 | 电力线通信的发送模式确定方法及相关装置 |
CN202080091877.XA CN114930731B (zh) | 2020-02-26 | 2020-02-26 | 电力线通信的发送模式确定方法及相关装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/076838 WO2021168706A1 (zh) | 2020-02-26 | 2020-02-26 | 电力线通信的发送模式确定方法及相关装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021168706A1 true WO2021168706A1 (zh) | 2021-09-02 |
Family
ID=77490567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/076838 WO2021168706A1 (zh) | 2020-02-26 | 2020-02-26 | 电力线通信的发送模式确定方法及相关装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114930731B (zh) |
WO (1) | WO2021168706A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220006578A1 (en) * | 2020-07-01 | 2022-01-06 | c/o SAGEMCOM ENERGY & TELECOM SAS | Wide band transmission process between two neighboring devices of a network |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102404089A (zh) * | 2010-09-08 | 2012-04-04 | 兰蒂克德国有限责任公司 | 用于多输入多输出的帧结构 |
WO2013007391A1 (en) * | 2011-07-14 | 2013-01-17 | Lantiq Deutschland Gmbh | Probe frame for single-input single-output and multi-input multi-output |
CN106575980A (zh) * | 2014-07-23 | 2017-04-19 | 高通股份有限公司 | 用于mimo电力线设备的动态模式选择 |
CN109391289A (zh) * | 2017-08-14 | 2019-02-26 | 波音公司 | 通过地面电力线在交通工具与地面航站楼之间的通信 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103491048A (zh) * | 2013-09-25 | 2014-01-01 | 北京感通科技有限公司 | 一种在宽带电力线载波通信中实现高速广播的方法 |
-
2020
- 2020-02-26 CN CN202080091877.XA patent/CN114930731B/zh active Active
- 2020-02-26 WO PCT/CN2020/076838 patent/WO2021168706A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102404089A (zh) * | 2010-09-08 | 2012-04-04 | 兰蒂克德国有限责任公司 | 用于多输入多输出的帧结构 |
WO2013007391A1 (en) * | 2011-07-14 | 2013-01-17 | Lantiq Deutschland Gmbh | Probe frame for single-input single-output and multi-input multi-output |
CN106575980A (zh) * | 2014-07-23 | 2017-04-19 | 高通股份有限公司 | 用于mimo电力线设备的动态模式选择 |
CN109391289A (zh) * | 2017-08-14 | 2019-02-26 | 波音公司 | 通过地面电力线在交通工具与地面航站楼之间的通信 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220006578A1 (en) * | 2020-07-01 | 2022-01-06 | c/o SAGEMCOM ENERGY & TELECOM SAS | Wide band transmission process between two neighboring devices of a network |
US11916814B2 (en) * | 2020-07-01 | 2024-02-27 | Sagemcom Energy & Telecom Sas | Method for transmission in an extended band between two neighbouring devices of a network |
Also Published As
Publication number | Publication date |
---|---|
CN114930731B (zh) | 2023-09-22 |
CN114930731A (zh) | 2022-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2651042B1 (en) | System and method for power control in a physical layer device | |
AU2014231407B2 (en) | System and method for determining a pilot signal | |
US9531619B2 (en) | Channel assessment in an information network | |
US20060209712A1 (en) | Wireless communication system, wireless communication apparatus, wireless communication method, and computer program | |
WO2020164590A1 (zh) | 传输资源检测方法、传输资源确定方法和通信设备 | |
US8792567B2 (en) | Preamble sequence extension | |
US20140307660A1 (en) | Method for device-to-device communication, terminal for device-to-device communication and base station | |
US8958464B2 (en) | PHY payload over multiple tone masks using single tone mask PHY header information | |
JP2006129470A (ja) | 電力線通信システム用の動的周波数領域(fd)共存方法 | |
JP2020039156A (ja) | 物理層プロトコルデータユニットを送信するための方法および装置 | |
US8885505B2 (en) | Non-beacon network communications using frequency subbands | |
US9749100B2 (en) | Multiband Ethernet over Coax system | |
WO2020238190A1 (zh) | 传输数据的方法、节点和存储介质 | |
WO2021168706A1 (zh) | 电力线通信的发送模式确定方法及相关装置 | |
CN115642934A (zh) | 一种通信方法及装置 | |
CN105191160A (zh) | 电力线通信系统中的选择分集 | |
CN116527088A (zh) | 无线帧的发送与接收方法与装置 | |
WO2023236890A1 (zh) | 一种网络设备、设备通信方法以及通信系统 | |
CN105723670A (zh) | 一种自干扰信道估计方法及装置 | |
TWI474648B (zh) | 射頻傳送方法及其射頻傳送系統 | |
CN116233776B (zh) | 多链路终端建立直连链路的方法、装置、设备及存储介质 | |
KR101486148B1 (ko) | 무선 통신 시스템의 부반송파간 간섭 제거 방법 및 이를 수행하는 장치 | |
CN112436929B (zh) | 一种混合双通道热冗余近场通信的方法及装置 | |
US9060332B2 (en) | Method and device for selecting the resource processing manner | |
US11063813B2 (en) | Method and apparatus for configurating transmission mode in copper wire based network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20921327 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20921327 Country of ref document: EP Kind code of ref document: A1 |