WO2021167359A2 - 열교환기 - Google Patents

열교환기 Download PDF

Info

Publication number
WO2021167359A2
WO2021167359A2 PCT/KR2021/002050 KR2021002050W WO2021167359A2 WO 2021167359 A2 WO2021167359 A2 WO 2021167359A2 KR 2021002050 W KR2021002050 W KR 2021002050W WO 2021167359 A2 WO2021167359 A2 WO 2021167359A2
Authority
WO
WIPO (PCT)
Prior art keywords
header tank
heat exchanger
fluid
tube
distribution structure
Prior art date
Application number
PCT/KR2021/002050
Other languages
English (en)
French (fr)
Other versions
WO2021167359A3 (ko
Inventor
정현희
백승수
이상용
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210019404A external-priority patent/KR20210105296A/ko
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Publication of WO2021167359A2 publication Critical patent/WO2021167359A2/ko
Publication of WO2021167359A3 publication Critical patent/WO2021167359A3/ko

Links

Images

Definitions

  • the present invention relates to a heat exchanger, and more particularly, to a heat exchanger capable of controlling a flow rate by separating a fluid flowing in from the outside through a structure inserted into a header tank, and resolving a non-uniform discharge performance.
  • a heat exchanger is a device designed to exchange heat between two or more fluids is called a heat exchanger.
  • the heat exchanger is used to exchange heat of different fluids for the purpose of cooling or heating the fluid, and is typically applied to a vehicle air conditioning system, a refrigerator, an air conditioner, and the like.
  • a heat exchanger applied to a vehicle heating/cooling system is configured in a form in which a plurality of tubes are connected between a pair of header tanks, is installed on a flow path of a cooling or heating system, and the heat exchange fluid supplied through the inlet of the header tank is transferred to the tube.
  • It is an air conditioning device that performs heat exchange with the outside air when passing through the air conditioner and cools or heats the indoor space by guiding the fluid passing through the tube to the flow path pipe through the outlet.
  • the conventional refrigerant radiator 12 includes a plurality of tubes 121 and a plurality of tubes ( A pair of header tanks 122 and 123 are disposed at both ends in the longitudinal direction of 121 and configured to collect or distribute refrigerant flowing through the tube 121 .
  • the heat exchanger exchanges heat throughout the heat exchanger in the process of exchanging the cold air flowing into the room with the hot water heated by the engine, but the flow rate of each tube through which the hot water passes is not the same.
  • the present invention has been devised to solve the above problem, and prevents the flow rate of the fluid introduced through the inlet from being biased on the tube located close to the inlet, thereby solving the problem of flow imbalance between a plurality of tubes. Its purpose is to provide
  • a heat exchanger includes a header tank 200 having an inlet 201 through which a fluid is introduced and an outlet 202 through which a fluid is discharged; One end and the other end in the extension direction are respectively inserted into the plurality of insertion holes formed in the header tank 200, the core portion 300 including a plurality of tubes 310 through which a fluid flows; and a distribution structure 400 inserted into the inner space of the header tank 200 and having a predetermined length along the extension direction of the header tank 200, wherein the distribution structure 400 includes the header tank
  • the inner space of the tube can be divided into a tube communication area (A, B) and a bypass area (C).
  • the tube communication zones (A, B) are zones in which the fluid flowing inside the header tank 200 communicates with the plurality of tubes 310 in the height direction (H), and the bypass zone (C) is It corresponds to a region in which the fluid flowing inside the header tank 200 does not communicate with the plurality of tubes 310 in the height direction (H).
  • the distribution structure 400 is formed to be spaced apart from the plurality of tubes 310 and extends by a predetermined length in the width direction W2 of the header tank 200, and the tube communication areas A and B and It may include a central partition wall 410 separating the bypass region (C).
  • the distribution structure 400 includes a pair of leg portions 420 extending from the central partition wall 410 in a direction opposite to the insertion direction of the plurality of tubes 310 and connected to the inner wall of the header tank 200 . ) may be further included.
  • the bypass region C corresponds to a region surrounded by the central partition wall 410 and the pair of leg portions 420 .
  • the distribution structure 400 may further include an auxiliary partition wall 430 protruding a predetermined length in a direction in which the plurality of tubes 310 are inserted from the central partition wall 410 .
  • the distribution structure 400 protrudes from the auxiliary bulkhead 430 in a direction in which the plurality of tubes 310 are inserted by a predetermined length, and a fixing protrusion 440 that makes surface contact with the inner circumferential surface of the header tank 200 . may further include.
  • the header tank 200 may further include a seating groove portion 210 in which the fixing protrusion 440 is in surface contact and is seated so that the position is fixed.
  • the distribution structure 400 is formed after the central position of the extended length of the header tank 200, and the central partition wall so as to locally communicate the tube communication sections A and B and the bypass section C.
  • One or more communication holes 450 formed in the 410 may be further included.
  • the communication hole 450 may be formed of a plurality of holes having the same shape and spaced apart from each other by a predetermined interval.
  • the communication hole 450 may include a plurality of holes, and the plurality of holes may have a shape that increases in size toward a position opposite to the inlet 201 of the header tank 200, and may be formed to be spaced apart from each other by a predetermined distance. have.
  • the header tank 200 includes a first header tank 200a having an inlet 201 through which a fluid is introduced, and a second header tank 200b having an outlet 202 through which a fluid is discharged to the outside. and the distribution structure 400 may be disposed on the inlet 201 side of the first header tank 200a.
  • the header tank 200 includes a first header tank 200a having an inlet 201 through which a fluid is introduced, and a second header tank 200b having an outlet 202 through which a fluid is discharged to the outside. and the distribution structure 400 may be disposed on the side of the outlet 202 of the second header tank 200b.
  • Each tube 310 of the core part 300 has a plurality of internal flow passages, and the auxiliary partition wall 430 may be formed to be eccentric to one side from the center of the central partition wall 410 in the width direction W2. .
  • Each tube 310 of the core part 300 is a folded tube in which a fold gap 315 is formed in the center, and the auxiliary partition wall 430 is located at the center position in the width direction W2 of the central partition wall 410 .
  • the fold gap 315 and the auxiliary partition wall 430 may contact each other.
  • the fluid introduced through the inlet is separated into two or more zones and introduced into the heater, so that the fluid flowing into a certain zone flows from the inlet side of the header tank to the central position of the extension length of the header tank, , the fluid flowing into another area flows from the central position of the extension length of the header tank to the opposite position of the inlet, and the flow rate is transferred to the opposite position of the inlet, where the fluid did not flow relatively well, and the flow rate imbalance that occurred between the plurality of tubes It is effective in resolving the problem.
  • FIG. 1 is a front view and a side view of a conventional refrigerant radiator.
  • FIG. 2 is a perspective view of a heat exchanger according to the present invention.
  • FIG 3 is a perspective view of a distribution structure according to an embodiment of the present invention.
  • FIG. 4 is a front view showing the distribution structure installed inside the header tank.
  • FIG. 5 is a side cross-sectional view of FIG. 4 viewed from the side.
  • FIG. 6 and 7 are perspective views of a distribution structure according to another example of the present invention.
  • FIG. 8 is a cross-sectional view of a tube according to the present invention.
  • Figure 9 is a side cross-sectional view viewed from the side of the distribution structure according to another example of the present invention is installed.
  • FIG. 2 is a perspective view of a heat exchanger according to the present invention, wherein the heat exchanger 10 according to the present invention largely includes a header tank 200, a core part 300, and a sub-structure 400 inserted into the inner space of the header tank. and may further include supports 500 respectively provided on both sides of the core part 300 .
  • the header tank 200 has an inlet 201 through which a fluid is introduced and an outlet 202 through which the fluid is discharged to provide an internal space through which the fluid can be introduced and discharged.
  • the header tank 200 may be provided in a pair on each of the upper and lower sides of the core unit 300 , and according to an example of the present invention, the inlet 201 is provided at the lower side of the core unit 300 and into which the fluid is introduced. It may be composed of a first header tank 200a in which is formed, and a second header tank 200b provided at the upper side of the core part 300 and having an outlet 202 through which the fluid is discharged.
  • the first header tank 200a and the second header tank 200b have a configuration in which a header and a tank are coupled, and a header and a tank having the same extension length are coupled to each other, so that the first header tank 200a and the second header tank 200b are coupled to each other.
  • An inner space of the header tank 200b is formed.
  • the first header tank 200a and the second header tank 200b may be formed integrally, rather than as a combination of the header and the tank.
  • Both ends of the first header tank 200a and the second header tank 200b in the extension direction W1 are open, and thus may be closed with a cap CAP.
  • a hole is formed so that the inlet 201 or the outlet 202 can pass therethrough.
  • the height direction H of the inner space of the first header tank 200a refers to the extension longitudinal direction of the core part 300
  • the width direction W2 of the inner space of the first header tank 200a is Refers to a direction perpendicular to the height direction (H) of the inner space of the first header tank (200a).
  • header tank 200 when the header tank 200 is referred to as the first header tank 200a, the second header tank 200a, or both the first header tank 200a and the second header tank 200b, it will be used as a term. Hereinafter, it will be described based on the first header tank 200a.
  • the core part 300 is disposed between the first header tank 200a and the second header tank 200b, and the core part 300 includes a plurality of tubes 310 through which a fluid flows therein, and each tube 310 . It may include a plurality of heat dissipation fins 320 interposed therebetween.
  • the plurality of tubes 310 have one end and the other end respectively inserted into a plurality of insertion holes (not shown) formed in the first header tank 200a and the second header tank 200b to form the first header tank 200a and It may be fluidly coupled to the second header tank 200b.
  • Each tube 310 has an internal space so that the fluid introduced from the inlet 201 flows and moves to the outlet 202, and is constant along the extension direction of the first header tank 200a and the second header tank 200b.
  • a plurality of spaced apart distances may be installed to form the core part 300 .
  • the support 500 is a structure corresponding to a housing for increasing the mechanical rigidity of the heat exchanger, and is provided at both ends in the width direction W1 of the core part 300 so that one end and the other end in the longitudinal direction of the support 500 are first It may be coupled to the header tank 200a and the second header tank 200b.
  • the distribution structure 400 is installed on the inlet 201 side of the first header tank 200a to physically separate the fluid flowing into the inlet 201 into each zone. That is, the distribution structure 400 is inserted into the inner space of the first header tank 200a, separates the flow of fluid flowing in from the inlet 201 , and flows into each tube 310 of the core part 300 .
  • the tube communication areas (A, B) by separating the inner space of the first header tank 200a into tube communication areas (A, B) and bypass areas (C), the tube communication areas (A, B)
  • the fluid flowing into the tube 310 directly flows into the tube 310 , and the fluid flowing into the bypass region C may be introduced into the tube 310 after the point at which the distribution structure 400 separates the space.
  • FIG. 3 is a perspective view of a distribution structure according to an example of the present invention
  • FIG. 4 is a front view illustrating that the distribution structure is installed inside the header tank
  • FIG. 5 is a side cross-sectional view of FIG. 4 viewed from the side.
  • the distribution structure 400 of the present invention may include a central partition wall 410 having a predetermined length in the width direction W2 of the first header tank 200a.
  • the central partition wall 410 has a predetermined length in the width direction W2 of the first header tank 200a and has a length extending in the longitudinal direction W1 of the first header tank 200a, and the first header
  • the inner space of the tank 200a is formed in a shape that divides the tube communication zones (A, B) and the bypass zone (C).
  • the central partition wall 410 may be in contact with the inner circumferential surface in the width direction W2 of the first header tank 200a, and may be fitted inside the first header tank 200a.
  • the distribution structure 400 may further include a pair of leg portions 420 protruding a predetermined length in the bypass region C direction at the end of the central partition wall 410 in the width direction W2.
  • the pair of leg portions 420 are configured to support the central partition wall 410, connect the central partition wall 410 and the inside of the first header tank 200a, and the width direction W2 of the central partition wall 410
  • the end of the bypass region (C) is formed to extend and protrude, and may be formed integrally with the central partition wall (410).
  • the fluid flowing inside the header tank 200 in the tube communication zones A and B is the height of the plurality of tubes 310 and
  • the fluid flowing in the first header tank 200a does not communicate in the height direction H with the plurality of tubes 310 in the bypass region C, and thus
  • the flow rate of the fluid to flow into the tube communication zone (A, B) and the flow rate of the fluid to flow into the bypass zone (C) can be determined.
  • the bypass region C corresponds to a region surrounded by the central partition wall 410 and the pair of leg portions 420 .
  • the fluid introduced through the inlet 201 flows to the separated area along the shape of the distribution structure 400, so that the fluid introduced through the inlet 201 is first As a whole in the extension direction W1 of the first header tank 200a, it is evenly distributed inside the first header tank 200a, so that the fluid can be uniformly transmitted to the core part 300 .
  • the distribution structure 400 may further include an auxiliary partition wall 430 that protrudes a predetermined length in the tube communication zone (A, B) direction from the central partition wall (410).
  • Auxiliary bulkhead 430 is formed on the opposite side of the leg portion 420, the tube communication area (A, B) of the tube communication area (A, B) and the bypass area (C) separated by the central partition wall 410 (C) ) is separated into a first tube communication area (A) and a second tube communication area (B), respectively, so that the fluid can be evenly distributed and flowed even inside the core part 300 .
  • the auxiliary bulkhead 430 may come into contact with any one of one end or the other end of the tube inserted into the insertion hole formed in the first header tank 200a, by adjusting the extension protrusion length of the auxiliary bulkhead 430, The insertion depth of the tube can be adjusted.
  • the distribution structure 400 may have a length extending from the inlet 201 to the central position of the extension length of the first header tank 200a. That is, the distribution structure 400 distributes the fluid from the inlet 201 to the central position of the extended length of the first header tank 200a, so that the fluid flowing into the inlet 201 matches the shape of the distribution structure 400 . distributed along the length of the first header tank 200a and after the central position of the extension length of the first header tank 200a, the fluid is transferred to the tube installed after the central position of the extension length of the first header tank 200a, the first header tank 200a Fluid distribution of the front end and the rear end of the extended length can be made.
  • the distribution structure 400 protrudes a predetermined length from the auxiliary bulkhead 430 in the tube communication zone (A, B) direction, and a fixing protrusion 440 that is in surface contact with the inner circumferential surface of the first header tank 200a is further added. can be included.
  • the fixing protrusion 440 is configured to protrude further in the tube communication zone (A, B) direction than the auxiliary bulkhead 430, and is in surface contact with the inner circumferential surface of the first header tank 200a, the first header tank ( It is located between the plurality of insertion holes formed in 200a), it is preferable not to interfere with each tube (310).
  • the fixing protrusion 440 is to fix the distribution structure 400 to the inside of the first header tank 200a so that the position of the distribution structure 400 is not changed by the flow of the fluid flowing in the inner space of the first header tank 200a.
  • the distribution structure 400 is in surface contact with the inner peripheral surface of the first header tank 200a in the height direction H of the first header tank 200a by the pair of leg parts 420 and the fixing protrusions 440 .
  • the distribution structure 400 is fitted inside the first header tank 200a, so that the installation position of the distribution structure 400 can be fixed.
  • the first header tank 200a may further include a seating groove portion 210 that is formed between the plurality of insertion holes so that the fixing protrusion 440 is in surface contact and is seated so that the position is fixed.
  • the fixing protrusion 440 may be inserted into the seating groove 210 to prevent the distribution structure 400 from moving in the extension direction W1 of the first header tank 200a.
  • FIG. 6 and 7 are perspective views of a distribution structure according to another example of the present invention.
  • the distribution structure 400 according to this example may have a length extending from one end to the other end of the first header tank 200a.
  • the distribution structure 400 may further include at least one communication hole 450 formed after the central position of the extended length of the first header tank 200a at the position where the inlet 201 is formed.
  • Each of the core part 300 that is separated by the distribution structure 400 through the communication hole 450 and installed after the central position of the extended length of the first header tank 200a in which the fluid flowing in the bypass region C flows It may be delivered to the tubes 310 .
  • the communication hole 450 may be formed of a plurality of holes having the same shape and spaced apart from each other by a predetermined distance. That is, the fluid flowing in the bypass region C may be evenly distributed through the communication holes 450 formed in a predetermined arrangement, and may be transmitted to the core part 300 through the tube communication regions A and B.
  • the communication hole 450 includes a plurality of holes, and the plurality of holes have a shape that increases in size toward a position opposite to the inlet 201 , and may be formed to be spaced apart from each other by a predetermined distance. That is, the inlet ( 201) so that the flow rate of the fluid introduced into the system can be delivered in a balanced way.
  • FIG. 8 is a cross-sectional view of a tube according to the present invention, wherein the tube 310 has a partition wall formed therein or a plurality of tubes are disposed in one insertion hole, so that the fluid introduced into the first header tank 200a flows through two or more channels. It may have a plurality of internal flow paths to flow into the That is, the tube 310 may be formed of a folded tube including a first channel 301 , a second channel 302 and a fold gap 315 as shown in FIG. 3A , or It may be made of an extruded tube having a first channel 301 , a second channel 302 , a third channel 303 and a partition wall 319 as shown in FIG. 3 ( b ), or as shown in FIG.
  • the first tube 300a and the second tube 300b may be disposed adjacent to each other in two rows.
  • the tube may have a plurality of internal flow paths, and all of the channel internal flow paths may be used as flow paths for the fluid introduced into the first header tank 200a through the inlet 201 .
  • the auxiliary partition wall 430 may be formed at a central position in the width direction W2 of the central partition wall 410 . Since the plurality of tubes 310 constituting the core part 300 have a certain width in the width direction W2 of the first header tank 200a, the distribution of the fluid must occur as a whole within each tube 310 to increase the heat exchange effect. can Therefore, the auxiliary bulkhead 430 is formed in the center of the width direction W2 of the first header tank 200a in order to evenly distribute the fluid entering each tube 310, one side with respect to the auxiliary bulkhead 430. and the fluid distribution of the other side can be made to occur in the same way. In particular, in the case of a folded tube in which each tube 310 is formed by folding a plate material as described above, the fold gap 315 formed in the central portion of the tube 310 and the auxiliary partition wall 430 may be in contact with each other. .
  • auxiliary bulkhead 430 is moved from the center in the width direction W2 of the first header tank 200a to one direction. may be formed biased. That is, as described above, when the tube has a plurality of internal flow paths, the formation position of the auxiliary bulkhead 430 may change depending on its shape or installation location, and in particular, by forming the position of the auxiliary bulkhead to be eccentric, the tube communication zone ( A flow rate of the fluid between the first region (A) and the second region (B) among A and B) may be differently adjusted.
  • the distribution structure 400 having the above-described structure is not limited to being installed inside the first header tank 200a having the inlet 201 formed therein, and is not limited to the second header tank 200b having the outlet 202 formed therein. Of course, it can be installed inside.
  • the distribution structure 400 may be installed on the side of the outlet 202 of the second header tank 200b. This adjusts the internal resistance inside the second header tank, so that the fluid flowing into the second header tank in the height direction (H) through the tube 310 and the outlet 201 in the horizontal direction (W1) inside the second header tank ) can control the flow of the discharged fluid, thereby improving the performance of the heat exchanger and making the discharge temperature uniform.
  • the fluid introduced through the inlet is separated into two or more zones, respectively, and introduced into the heater, so that the fluid flowing into the tube communication zone is transferred to the first header tank 200a.
  • the fluid flowing into the bypass region C is opposite to the inlet at the central position of the extended length of the first header tank 200a
  • the insertion depth of the tube can be managed, thereby increasing the brazing area of the tube. That is, when the tube is adopted as a folded tube, the brazing welding agent fills the fold gap 310 at the portion where the tube and the leg portion 420 abut, thereby preventing the welding agent from spreading, thereby causing a leak. it can be prevented
  • 200a, 200b first header tank, second header tank
  • 310a, 310b first tube, second tube
  • A,B tube communication area

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

본 발명은 열교환기에 관한 것으로, 보다 구체적으로는 유입구를 통해 유입된 유체가 두 개 이상의 구역으로 각각 분리되어 히터로 유입됨으로써, 일정 구역으로 유입되는 유체는 헤더탱크의 유입구 측에서 헤더탱크의 연장 길이의 중심 위치까지 흐르게 하고, 다른 구역으로 유입되는 유체는 헤더탱크의 연장 길이의 중심 위치에서 유입구의 반대편 위치까지 흐르게 하여, 상대적으로 유체가 잘 흐르지 않았던 유입구의 반대편 위치까지 유량이 전달되어, 복수개의 튜브 간에 발생하던 유량 불균형 문제를 해소할 수 있는 열교환기에 관한 것이다.

Description

열교환기
본 발명은 열교환기에 관한 것으로, 더욱 상세하게는 헤더탱크에 삽입되는 구조물을 통해 외부에서 유입되는 유체를 분리 유입시켜 유량 제어가 가능하고, 토출 성능 불균일을 해소할 수 있는 열교환기에 관한 것이다.
일반적으로 열교환기란 두 개 또는 그 이상의 유체 사이에서 열을 교환할 수 있게 고안된 장치를 열교환기라고 한다. 열교환기는 유체의 냉각 또는 난방의 목적으로 서로 다른 유체의 열을 교환할 수 있도록 사용되며, 대표적으로, 차량 냉난방 시스템, 냉장고, 에어컨 등에 적용된다.
일반적으로, 차량용 냉난방 시스템에 적용되는 열교환기는 한쌍의 헤더탱크 사이에 복수개의 튜브가 연결된 형태로 구성되고, 냉방 또는 난방 시스템의 유로상에 설치되어, 헤더탱크의 유입구를 통해 공급된 열교환 유체가 튜브를 지날 때 외부 공기와 열교환을 수행하도록 하고, 튜브를 지난 유체를 배출구를 통해 유로 파이프로 안내하여 실내의 공간을 냉방 또는 난방 시키는 공조기기이다.
한국 공개특허공보 제2013-0107332호를 참조하면, 도 1과 같이, 종래의 냉매 방열기(12)는 압축기(11)로부터 배출된 고온 고압 냉매가 유동하는 복수의 튜브(121) 및 복수의 튜브(121)의 세로 방향 양단측에 배치되어 튜브(121)를 통하여 유동하는 냉매의 집합 또는 분배를 실시하는 한 쌍의 헤더탱크(122, 123)를 포함하여 이루어진다.
이때, 상기 열교환기는 실내로 유입되는 찬 공기와 엔진에 의해 가열된 온수를 열교환 하는 과정에서, 상기 열교환기 전체에 걸쳐서 열은 교환하지만, 온수가 통과하는 각각의 튜브의 유량이 동일하지 않아, 튜브를 통과하는 외부 공기의 난방 정도의 차이가 발생하여, 차량의 실내로 유입된 좌측의 운전석과 우측의 조수석에서 느끼는 온도 차이가 발생하는 문제점이 있었다.
[특허문헌]
한국 공개특허공보 제2013-0107332호(2013.10.01.)
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 유입구를 통해 유입된 유체의 유량이 유입구와 가까운 위치의 튜브에 편중되는 것을 방지하여, 복수개의 튜브 간에 발생하던 유량 불균형 문제를 해소하는 열교환기를 제공하는 데에 그 목적이 있다.
본 발명의 일 예에 따른 열교환기는, 유체가 유입되는 유입구(201)와 유체가 배출되는 배출구(202)가 형성된 헤더탱크(200); 상기 헤더탱크(200)에 형성되는 복수개의 삽입구에 연장방향 일단 및 타단이 각각 삽입되며, 내부에 유체가 흐르는 복수개의 튜브(310)를 포함하는 코어부(300); 및 상기 헤더탱크(200)의 내부공간에 삽입되며, 상기 헤더탱크(200)의 연장방향을 따라 일정 길이를 가지는 분배구조물(400);을 포함하고, 상기 분배구조물(400)은, 상기 헤더탱크의 내부공간을 튜브 연통 구역(A,B)과 바이패스 구역(C)으로 분리할 수 있다.
상기 튜브 연통 구역(A,B)은 상기 헤더탱크(200)의 내부를 유동하는 유체가 상기 복수개의 튜브(310)와 높이방향(H)으로 연통되는 구역이고, 상기 바이패스 구역(C)은 상기 헤더탱크(200)의 내부를 유동하는 유체가 상기 복수개의 튜브(310)와 높이방향(H)으로 연통되지 않는 구역에 해당한다.
상기 분배구조물(400)은, 상기 복수개의 튜브(310)와 이격되도록 형성되고, 상기 헤더탱크(200)의 폭방향(W2)으로 일정 길이만큼 연장되어, 상기 튜브 연통 구역(A,B)과 상기 바이패스 구역(C)을 분리하는 중심격벽(410)을 포함할 수 있다.
상기 분배구조물(400)은, 상기 중심격벽(410)으로부터 상기 복수개의 튜브(310)가 삽입된 방향의 반대방향으로 연장되어 상기 헤더탱크(200)의 내벽과 연결되는 한 쌍의 다리부(420)를 더 포함할 수 있다.
상기 바이패스 구역(C)은, 상기 중심격벽(410)과 상기 한 쌍의 다리부(420)에 의해 둘러싸인 구역에 해당한다.
상기 분배구조물(400)은, 상기 중심격벽(410)에서 상기 복수개의 튜브(310)가 삽입된 방향으로 일정 길이 연장 돌출된 보조격벽(430)을 더 포함할 수 있다.
상기 분배구조물(400)은, 상기 보조격벽(430)에서 상기 복수개의 튜브(310)가 삽입된 방향으로 일정 길이 연장 돌출되어, 상기 헤더탱크(200)의 내주면에 면 접촉하는 고정 돌기부(440)를 더 포함할 수 있다.
상기 헤더탱크(200)는, 상기 고정 돌기부(440)가 면 접촉하며 위치가 고정되도록 안착되는 안착홈부(210)를 더 포함할 수 있다.
상기 분배구조물(400)은, 상기 헤더탱크(200)의 연장 길이의 중심 위치 이후에 형성되며, 상기 튜브 연통 구역(A,B)과 상기 바이패스 구역(C)을 국부적으로 연통하도록 상기 중심격벽(410)에 형성되는 하나 이상의 연통홀(450)을 더 포함할 수 있다.
상기 연통홀(450)은, 동일 형상을 가지는 복수개의 홀로 이루어지되, 서로 일정 간격 이격되어 형성될 수 있다.
상기 연통홀(450)은, 복수개의 홀로 이루어지되, 상기 복수개의 홀은 상기 헤더탱크(200)의 유입구(201)의 반대 위치로 갈수록 크기가 커지는 형상을 가지고, 서로 일정 간격 이격되어 형성될 수 있다.
상기 헤더탱크(200)는, 유체가 유입되는 유입구(201)가 형성되는 제1 헤더탱크(200a)와, 유체가 외부로 배출되는 배출구(202)가 형성되는 제2 헤더탱크(200b)로 이루어지며, 상기 분배구조물(400)은 상기 제1 헤더탱크(200a)의 유입구(201) 측에 배치될 수 있다.
상기 헤더탱크(200)는, 유체가 유입되는 유입구(201)가 형성되는 제1 헤더탱크(200a)와, 유체가 외부로 배출되는 배출구(202)가 형성되는 제2 헤더탱크(200b)로 이루어지며, 상기 분배구조물(400)은 상기 제2 헤더탱크(200b)의 배출구(202) 측에 배치될 수 있다.
상기 코어부(300)의 각 튜브(310)는 내부 유로가 복수개로 이루어지고, 상기 보조격벽(430)은 상기 중심격벽(410)의 폭방향(W2) 중심에서 일측으로 편심되도록 형성될 수 있다.
상기 코어부(300)의 각 튜브(310)는 중앙에 폴드갭(315)이 형성되는 폴디드 튜브이고, 상기 보조격벽(430)은 상기 중심격벽(410)의 폭방향(W2) 중심 위치에 형성되어, 상기 폴드갭(315)과 상기 보조격벽(430)이 서로 접할 수 있다.
본 발명에 따른 열교환기는 유입구를 통해 유입된 유체가 두 개 이상의 구역으로 각각 분리되어 히터로 유입됨으로써, 일정 구역으로 유입되는 유체는 헤더탱크의 유입구 측에서 헤더탱크의 연장 길이의 중심 위치까지 흐르게 하고, 다른 구역으로 유입되는 유체는 헤더탱크의 연장 길이의 중심 위치에서 유입구의 반대편 위치까지 흐르게 하여, 상대적으로 유체가 잘 흐르지 않았던 유입구의 반대편 위치까지 유량이 전달되어, 복수개의 튜브 간에 발생하던 유량 불균형 문제를 해소하는 효과가 있다.
또한, 복수개의 튜브에서 발생하는 유량 불균형으로 인하여, 열교환 성능 저하 및 토출온도 불균일 문제가 해결되는 효과가 있다.
도 1은 종래의 냉매 방열기 정면도 및 측면도이다.
도 2는 본 발명에 따른 열교환기 사시도이다.
도 3은 본 발명의 일 예에 따른 분배구조물의 사시도이다.
도 4는 헤더탱크 내부에 분배구조물이 설치된 것을 나타낸 정면도이다.
도 5는 도 4를 측면에서 바라본 측단면도이다.
도 6, 7은 본 발명의 다른 예에 따른 분배구조물의 사시도이다.
도 8은 본 발명에 따른 튜브 단면도이다.
도 9는 본 발명의 다른 예에 따른 분배구조물이 설치된 것을 측면에서 바라본 측단면도이다.
이하, 본 발명의 기술적 사상을 첨부된 도면을 사용하여 더욱 구체적으로 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 변형 예들이 있을 수 있음을 이해하여야 한다.
이하, 본 발명의 기술적 사상을 첨부된 도면을 사용하여 더욱 구체적으로 설명한다. 첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일예에 불과하므로 본 발명의 기술적 사상이 첨부된 도면의 형태에 한정되는 것은 아니다.
도 2는 본 발명에 따른 열교환기의 사시도로서, 본 발명에 따른 열교환기(10)는 크게 헤더탱크(200), 코어부(300) 및 헤더탱크의 내부공간에 삽입되는 부배구조물(400)을 포함하며, 코어부(300)의 양측에 각각 구비되는 서포트(500)를 더 포함할 수 있다.
헤더탱크(200)는 유체가 유입되는 유입구(201)와 유체가 배출되는 배출구(202)가 형성되어, 유체가 유입되고 배출될 수 있는 내부공간을 제공한다. 헤더탱크(200)는 코어부(300)의 상측과 하측 각각에 한 쌍으로 구비될 수 있으며, 본 발명의 일 예에 따르면 코어부(300)의 하측에 구비되어 유체가 유입되는 유입구(201)가 형성되는 제1 헤더탱크(200a)와, 코어부(300)의 상측에 구비되어 유체가 배출되는 배출구(202)가 형성되는 제2 헤더탱크(200b)로 이루어질 수 있다. 제1 헤더탱크(200a) 및 상기 제2 헤더탱크(200b)는 헤더와 탱크가 결합되어 이루어지는 구성으로, 동일 연장 길이를 갖는 헤더와 탱크가 서로 결합되어, 제1 헤더탱크(200a) 및 제2 헤더탱크(200b)의 내부 공간을 형성한다. 그러나, 제1 헤더탱크(200a) 및 제2 헤더탱크(200b)는 헤더와 탱크의 결합이 아닌 일체형으로 이루어질수도 있다.
제1 헤더탱크(200a) 및 제2 헤더탱크(200b)의 연장방향(W1) 양단은 개방되어있어, 캡(CAP)으로 폐쇄될 수 있으며, 이때, 양단 중 하나의 단을 폐쇄하는 캡에는 관통홀이 형성되어, 유입구(201) 또는 배출구(202)가 관통될 수 있다.
여기에서, 제1 헤더탱크(200a)의 내부 공간의 높이방향(H)은 코어부(300)의 연장 길이방향을 지칭하며, 제1 헤더탱크(200a)의 내부 공간의 폭방향(W2)은 제1 헤더탱크(200a)의 내부 공간의 높이방향(H)에 수직된 방향을 지칭한다.
본 발명에서 헤더탱크(200)라 하면 제1 헤더탱크(200a), 제2 헤더탱크(200a), 또는 제1 헤더탱크(200a)와 제2 헤더탱크(200b) 모두를 이르는 용어로 사용하기로 하며, 이하에서는 제1 헤더탱크(200a)를 기준으로 설명하기로 한다.
코어부(300)는 제1 헤더탱크(200a)와 제2 해더탱크(200b) 사이에 배치되며, 코어부(300)는 내부에 유체가 흐르는 복수개의 튜브(310)와, 각 튜브(310) 사이에 개재되는 복수의 방열핀(320)을 포함하여 이루어질 수 있다. 복수개의 튜브(310)는 제1 헤더탱크(200a)와 제2 헤더탱크(200b)에 형성되는 복수개의 삽입구(미도시)에 연장방향 일단 및 타단이 각각 삽입되어 제1 헤더탱크(200a) 및 제2 헤더탱크(200b)와 유동적으로 결합될 수 있다. 각 튜브(310)는 유입구(201)에서 유입된 유체가 흘러 배출구(202)로 이동하도록 내부 공간이 형성되며, 제1 헤더탱크(200a) 및 제2 헤더탱크(200b)의 연장방향을 따라 일정 거리 이격되어 복수개가 설치되어 코어부(300)를 이룰 수 있다.
서포트(500)는 열교환기의 기계적 강성을 높이기 위한 하우징에 해당하는구조물로서, 코어부(300)의 너비방향(W1) 양단에 각각 구비되어 서포트(500)의 길이방향 일측과 타단이 각각 제1 헤더탱크(200a) 및 제2 헤더탱크(200b)에 결합될 수 있다.
분배구조물(400)은 제1 헤더탱크(200a)의 유입구(201) 측에 설치되어 물리적으로 유입구(201)로 유입되는 유체를 각각의 구역으로 분리 유입시킬 수 있다. 즉, 분배구조물(400)은 제1 헤더탱크(200a)의 내부 공간에 삽입되어, 유입구(201)에서 유입되는 유체의 흐름을 분리시켜 코어부(300)의 각 튜브(310)로 유입되는 유량을 조절하는 구성으로, 분배구조물(400)은 제1 헤더탱크(200a)의 내부공간을 튜브 연통 구역(A,B)와 바이패스 구역(C)로 분리함으로써, 튜브 연통 구역(A,B)으로 유입되는 유체는 바로 튜브(310)로 유입되고, 바이패스 구역(C) 으로 유입되는 유체는 분배구조물(400)이 공간을 분리시키는 지점 이후에 있는 튜브(310)에 유입될 수 있다.
도 3은 본 발명의 일 예에 따른 분배구조물의 사시도이고, 도 4는 헤더탱크 내부에 분배구조물이 설치된 것을 나타낸 정면도이며, 도 5는 도 4를 측면에서 바라본 측단면도이다.
도시된 바와 같이, 본 발명의 분배구조물(400)은 제1 헤더탱크(200a)의 폭방향(W2)으로 일정 길이를 가지는 중심격벽(410)을 포함하여 이루어질 수 있다.
중심격벽(410)은 제1 헤더탱크(200a)의 폭방향(W2)으로 일정 길이를 가지며, 제1 헤더탱크(200a)의 길이방향(W1)으로 연장되는 길이를 가지는 구성으로, 제1 헤더탱크(200a)의 내부공간을 튜브 연통 구역(A,B)와 바이패스 구역(C)을 나누는 형상으로 이루어진다. 또한, 중심격벽(410)은 제1 헤더탱크(200a)의 폭방향 (W2)내주면에 맞닿아, 제1 헤더탱크(200a) 내측에 끼움결합 될 수 있다.
분배구조물(400)은 중심격벽(410)의 폭방향(W2) 끝단에서, 바이패스 구역(C) 방향으로 일정 길이 연장 돌출된 한 쌍의 다리부(420)를 더 포함하여 이루어질 수 있다. 한 쌍의 다리부(420)는 중심격벽(410)을 지지하는 구성으로, 중심격벽(410)과 제1 헤더탱크(200a) 내측을 연결하고, 중심격벽(410)의 폭방향(W2) 양 끝단의 바이패스 구역(C) 방향이 연장 돌출되어 형성되어, 중심격벽(410)과 일체로 형성될 수 있다.
중심격벽(410)이 제1 헤더탱크(200a)의 폭방향(W2) 내주면에 맞닿지 않고, 제1 헤더탱크(200a)에 끼움결합 되지 않는 길이를 갖는 경우, 한 쌍의 다리부(420)가 중심격벽(410)의 위치를 고정시킬 수 있다.
중심격벽(410)과 다리부(420)로 이루어지는 분배구조물(400)에 의해, 튜브 연통 구역(A,B)에서는 헤더탱크(200)의 내부를 유동하는 유체가 복수개의 튜브(310)와 높이방향(H)으로 연통되게 되고, 바이패스 구역(C)에서는 제1 헤더탱크(200a)의 내부를 유동하는 유체가 복수개의 튜브(310)와 높이방향(H)으로 연통되지 않게 되며, 이에 따라 튜브 연통 구역(A,B)으로 흐를 유체의 유량과 바이패스 구역(C) 으로 흐를 유체의 유량이 결정될 수 있다. 여기서 바이패스 구역(C)은 중심격벽(410)과 한 쌍의 다리부(420)에 의해 둘러싸인 구역에 해당되게 된다.
이와 같이 본 발명에 따른 열교환기(10)는, 유입구(201)를 통해 유입된 유체가 분배구조물(400)의 형상을 따라서 분리된 구역으로 흐르게되어, 유입구(201)를 통해 유입되는 유체가 제1 헤더탱크(200a)의 연장방향(W1) 전체적으로 제1 헤더탱크(200a) 내부에서 고르게 분산됨으로써, 코어부(300)에 고르게 유체가 전달될 수 있는 효과가 있다.
한편, 분배구조물(400)은 중심격벽(410)에서 튜브 연통 구역(A,B) 방향으로 일정 길이 연장 돌출된 보조격벽(430)을 더 포함하여 이루어질 수 있다. 보조격벽(430)은 다리부(420)의 반대면에 형성되어, 중심격벽(410)에 의해 분리된 튜브 연통 구역(A,B)과 바이패스 구역(C) 중 튜브 연통 구역(A,B)을 각각 제1 튜브 연통 구역(A)과 제2 튜브 연통 구역(B)으로 분리시켜, 코어부(300) 내부에서도 유체가 고르게 분포되어 흐를 수 있다.
보조격벽(430)은 상기 제1 헤더탱크(200a)에 형성되는 삽입구에 삽입되는 상기 튜브의 일단 또는 타단 중 어느 하나와 맞닿을 수 있어, 상기 보조격벽(430)의 연장 돌출 길이를 조절하여, 상기 튜브의 삽입 깊이를 조절할 수 있다.
도 4를 참조하면, 분배구조물(400)은 유입구(201)에서 제1 헤더탱크(200a)의 연장 길이의 중심 위치까지 연장된 길이를 가질 수 있다. 즉, 분배구조물(400)은 유입구(201)에서 제1 헤더탱크(200a)의 연장 길이의 중심 위치까지의 유체를 분배하여, 유입구(201)로 유입되는 유체가 분배구조물(400)의 형상에 따라 분배되고, 제1 헤더탱크(200a)의 연장 길이의 중심 위치 이후로는 제1 헤더탱크(200a)의 연장 길이의 중심 위치 이후에 설치된 튜브에 유체가 전달되어, 제1 헤더탱크(200a)의 연장 길이 앞단과 뒷단의 유체 분배가 이루어질 수 있다.
또한, 분배구조물(400)은 보조격벽(430)에서 튜브 연통 구역(A,B) 방향으로 일정 길이 연장 돌출되어, 제1 헤더탱크(200a)의 내주면에 면 접촉하는 고정 돌기부(440)를 더 포함하여 이루어질 수 있다.
고정 돌기부(440)는 보조격벽(430)보다 튜브 연통 구역(A,B) 방향으로 더 돌출 연장되어 형성되는 구성으로, 제1 헤더탱크(200a)의 내주면에 면접촉되되, 제1 헤더탱크(200a)에 형성되는 복수개의 삽입구 사이에 위치되어, 각 튜브(310)와 간섭되지 않는 것이 바람직하다.
고정 돌기부(440)는 분배구조물(400)이 제1 헤더탱크(200a)의 내부 공간에 흐르는 유체의 흐름에 의해 위치가 변하지 않도록 분배구조물(400)을 제1 헤더탱크(200a) 내부에 고정시킬 수 있다. 즉, 한 쌍의 다리부(420)와 고정 돌기부(440)에 의해서 분배구조물(400)이 제1 헤더탱크(200a)의 높이방향(H)으로 제1 헤더탱크(200a)의 내주면과 면접촉되어, 분배구조물(400)이 제1 헤더탱크(200a)의 내부에 끼워짐으로써, 분배구조물(400)의 설치 위치가 고정될 수 있다.
여기서 도 3을 참조하면, 제1 헤더탱크(200a)는, 복수개의 삽입구 사이에 형성되어 고정 돌기부(440)가 면 접촉하며 위치가 고정되도록 안착되는 안착홈부(210)를 더 포함하여 이루어질 수 있다. 고정 돌기부(440)는 안착홈부(210)에 끼워져, 분배구조물(400)이 상기 제1 헤더탱크(200a)의 연장방향(W1)으로 움직이는 것을 방지할 수 있다.
도 6, 7은 본 발명의 다른 예에 따른 분배구조물의 사시도로서, 본 예에 따른 분배구조물(400)은 제1 헤더탱크(200a)의 일단에서 타단까지 연장된 길이를 가질 수 있다. 이때, 분배구조물(400)은 유입구(201)가 형성되는 위치에서 제1 헤더탱크(200a)의 연장 길이의 중심 위치 이후에 형성되는 적어도 하나 이상의 연통홀(450)을 더 포함하여 이루어질 수 있다.
연통홀(450)을 통해서 분배구조물(400)에 의해 분리되어 바이패스 구역(C)에서 흐르는 유체가 제1 헤더탱크(200a)의 연장 길이의 중심 위치 이후에 설치되는 코어부(300)의 각 튜브(310)들로 전달될 수 있다.
도 6을 참조하면, 연통홀(450)은 동일 형상을 가지는 복수개의 홀로 이루어지되, 서로 일정 간격 이격되어 형성될 수 있다. 즉, 바이패스 구역(C)에서 흐르는 유체가 일정 배열로 형성되는 연통홀(450)을 통해서 고르게 분포되어 튜브 연통 구역(A,B)을 통과하여 상기 코어부(300)로 전달될 수 있다.
도 7을 참조하면, 연통홀(450)은 복수개의 홀로 이루어지되, 복수개의 홀은 유입구(201)의 반대 위치로 갈수록 크기가 커지는 형상을 가지고, 서로 일정 간격 이격되어 형성될 수 있다. 즉, 제1 헤더탱크(200a)의 연장 길이의 중심 위치에서 멀어질수록 크기가 커지는 연통홀(450)을 통해서, 유입구(201)와 거리가 먼 위치에 설치되는 코어부(300)에서도 유입구(201)로 유입된 유체의 유량 전달이 균형있게 일어날 수 있도록 한다.
한편, 도 8은 본 발명에 따른 튜브 단면도로서, 튜브(310)는 내부에 격벽이 형성되거나 복수개의 튜브가 하나의 삽입구에 배치되어, 제1 헤더탱크(200a)로 유입된 유체가 두 채널 이상으로 흐르도록 다수의 내부유로를 가질 수 있다. 즉, 튜브(310)는 도 3의 (a)와 같이 제1 채널(301), 제2 채널(302) 및 폴드 갭(315)을 포함하는 폴디드 튜브(Folded Tube)로 이루어질 수 있고, 또는 도 3 (b)와 같이 제1 채널(301), 제2 채널(302), 제3 채널(303) 및 격벽(319)을 가지는 압출 튜브로 이루어질 수 있으며, 또는 도 3의 (c)와 같이 제1 튜브(300a) 및 제2 튜브(300b)가 2열로 인접하여 배치될 수 있다. 이와 같이 튜브는 복수의 내부 유로를 가질 수 있으며, 모든 채널 내부 유로는 유입구(201)를 통해서 제1 헤더탱크(200a)로 유입된 유체의 유로로 사용될 수 있다.
이때, 도 5를 다시 참조하면, 보조격벽(430)은 중심격벽(410)의 폭방향(W2) 중심 위치에 형성될 수 있다. 코어부(300)를 이루는 복수개의 튜브(310)는 제1 헤더탱크(200a)의 폭방향(W2)으로 일정 폭을 가지고 있으므로, 각 튜브(310) 내에서도 유체의 분배가 전체적으로 일어나야 열교환 효과를 높일 수 있다. 따라서, 보조격벽(430)은 각 튜브(310) 내로 들어가는 유체의 분배를 고르게 하기 위하여, 제1 헤더탱크(200a)의 폭방향(W2) 중심에 형성되어, 보조격벽(430)을 기준으로 일측 및 타측의 유체 분배가 동일하게 일어나게 할 수 있다. 특히 각 튜브(310)가 상술한 바와 같이 판재를 접어서 형성하는 폴디드 튜브의 경우, 튜브(310)의 중앙부분에 형성되는 폴드 갭(315)과 보조격벽(430)이 접하도록 형성될 수 있다.
도 9는 본 발명의 다른 예에 따른 분배구조물이 설치된 것을 측면에서 바라본 측단면도로서, 본 예에 따르면 보조격벽(430)이 제1 헤더탱크(200a)의 폭방향(W2) 중심에서 한쪽 방향으로 치우쳐 형성될 수 있다. 즉, 상술한 바와 같이 튜브가 복수의 내부 유로를 가질 경우 그의 형상 또는 설치 위치에 따라, 보조격벽(430)의 형성 위치가 변할 수 있으며, 특히 보조격벽의 위치를 편심되도록 형성하여 튜브 연통 구역(A,B) 중 제1 영역(A)와 제2 영역(B) 간 유체의 유량을 상이하게 조절할 수 있다.
한편, 상술한 구조를 가지는 분배구조물(400)은 유입구(201)가 형성된 제1 헤더탱크(200a)의 내부에 설치되는 것에 한정되지 않으며, 배출구(202)가 형성된 제2 헤더탱크(200b)의 내부에 설치될 수 있음은 물론이다. 분배구조물(400)이 제2 헤더탱크(200b)의 내부에 설치되는 경우, 분배구조물(400)은 제2 헤더탱크(200b)의 배출구(202) 측에 설치될 수 있다. 이는 제2 헤더탱크 내부의 내부 저항을 조절하여, 튜브(310)를 통해 높이방향(H)으로 제2 헤더탱크로 유입되는 유체와, 제2 헤더탱크 내부에서 수평방향(W1)으로 배출구(201)로 배출되는 유체의 흐름을 제어할 수 있으며, 이에 따라 열교환기의 성능 개선 및 토출온도를 균일하게 할 수 있다.
이상 설명한 바와 같이, 본 발명에 따른 열교환기(10)는, 유입구를 통해 유입된 유체가 두 개 이상의 구역으로 각각 분리되어 히터로 유입됨으로써, 튜브 연통 구역으로 유입되는 유체는 제1 헤더탱크(200a)의 유입구 측에서 제1 헤더탱크(200a)의 연장 길이의 중심 위치까지 흐르게 하되, 바이패스 구역(C)으로 유입되는 유체는 제1 헤더탱크(200a)의 연장 길이의 중심 위치에서 유입구의 반대편 위치까지 흐르게 하여, 상대적으로 유체가 잘 흐르지 않았던 유입구의 반대편 위치까지 유량이 전달되어, 복수개의 튜브 간에 발생하던 유량 불균형 문제를 해소하할 수 있다.
또한, 코어부(300)에서 발생하는 유량 불균형으로 인하여, 열교환 성능 저하 및 토출온도 불균일 문제를 해결할 수 있다.
또한, 다리부(420)의 높이를 조절하여, 다리부(420)와 튜브를 접촉시킴으로써, 튜브의 삽입 깊이를 관리할 수 있고, 이를 통하여 튜브의 브레이징 면적을 증대시킬 수 있다. 즉, 튜브가 폴디드 튜브로 채택되는 경우, 튜브와 다리부(420)가 맞닿는 부위에서 브레이징 용접제가 폴드갭(310)을 메우도록 하여, 용접제가 퍼짐을 방지함으로써, 리크(Leak)가 발생하는 것을 방지할 수 있다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 다양한 변형 실시가 가능한 것은 물론이다.
[부호의 설명]
10: 열교환기
200: 헤더탱크
200a, 200b: 제1 헤더탱크, 제2 헤더탱크
201: 유입구
202: 배출구
210: 안착홈부
300: 코어부
310: 튜브
311, 312, 313: 제1 채널, 제2채널, 제3채널
310a, 310b: 제1 튜브, 제2 튜브
315: 폴드 갭
319: 격벽
320: 방열핀
400: 분배구조물
410: 중심격벽
420: 다리부
430: 보조격벽
440: 고정 돌기부
450: 연통홀
500: 서포트
A,B: 튜브 연통 구역
A: 제1 튜브 연통 구역
B: 제2 튜브 연통 구역
C: 바이패스 구역

Claims (15)

  1. 유체가 유입되는 유입구와 유체가 배출되는 배출구가 형성된 헤더탱크;
    상기 헤더탱크에 형성되는 복수개의 삽입구에 연장방향 일단 및 타단이 각각 삽입되며, 내부에 유체가 흐르는 복수개의 튜브를 포함하는 코어부; 및
    상기 헤더탱크의 내부공간에 삽입되며, 상기 헤더탱크의 연장방향을 따라 일정 길이를 가지는 분배구조물;을 포함하고,
    상기 분배구조물은,
    상기 헤더탱크의 내부공간을 튜브 연통 구역과 바이패스 구역으로 분리하는 것을 특징으로 하는, 열교환기.
  2. 제1항에 있어서,
    상기 튜브 연통 구역은 상기 헤더탱크의 내부를 유동하는 유체가 상기 복수개의 튜브와 높이방향으로 연통되는 구역이고,
    상기 바이패스 구역은 상기 헤더탱크의 내부를 유동하는 유체가 상기 복수개의 튜브와 높이방향으로 연통되지 않는 구역인 것을 특징으로 하는, 열교환기.
  3. 제2항에 있어서,
    상기 분배구조물은,
    상기 복수개의 튜브와 이격되도록 형성되고, 상기 헤더탱크의 폭방향으로 일정 길이만큼 연장되어, 상기 튜브 연통 구역과 상기 바이패스 구역을 분리하는 중심격벽을 포함하는 것을 특징으로 하는, 열교환기.
  4. 제3항에 있어서,
    상기 분배구조물은,
    상기 중심격벽으로부터 상기 복수개의 튜브가 삽입된 방향의 반대방향으로 연장되어 상기 헤더탱크의 내벽과 연결되는 한 쌍의 다리부를 더 포함하는 것을 특징으로 하는, 열교환기.
  5. 제4항에 있어서,
    상기 바이패스 구역은,
    상기 중심격벽과 상기 한 쌍의 다리부에 의해 둘러싸인 구역인 것을 특징으로 하는, 열교환기.
  6. 제3항에 있어서,
    상기 분배구조물은,
    상기 중심격벽에서 상기 복수개의 튜브가 삽입된 방향으로 일정 길이 연장 돌출된 보조격벽을 더 포함하는 것을 특징으로 하는 열교환기.
  7. 제6항에 있어서,
    상기 분배구조물은,
    상기 보조격벽에서 상기 복수개의 튜브가 삽입된 방향으로 일정 길이 연장 돌출되어, 상기 헤더탱크의 내주면에 면 접촉하는 고정 돌기부를 더 포함하는 것을 특징으로 하는 열교환기.
  8. 제7항에 있어서,
    상기 헤더탱크는,
    상기 고정 돌기부가 면 접촉하며 위치가 고정되도록 안착되는 안착홈부를 더 포함하는 것을 특징으로 하는 열교환기.
  9. 제8항에 있어서.
    상기 분배구조물은,
    상기 헤더탱크의 연장 길이의 중심 위치 이후에 형성되며, 상기 튜브 연통 구역과 상기 바이패스 구역을 국부적으로 연통하도록 상기 중심격벽에 형성되는 하나 이상의 연통홀을 더 포함하는 것을 특징으로 하는, 열교환기.
  10. 제9항에 있어서.
    상기 연통홀은,
    동일 형상을 가지는 복수개의 홀로 이루어지되, 서로 일정 간격 이격되어 형성되는 것을 특징으로 하는 열교환기.
  11. 제9항에 있어서,
    상기 연통홀은,
    복수개의 홀로 이루어지되, 상기 복수개의 홀은 상기 헤더탱크의 유입구의 반대 위치로 갈수록 크기가 커지는 형상을 가지고, 서로 일정 간격 이격되어 형성되는 것을 특징으로 하는 열교환기.
  12. 제1항에 있어서,
    상기 헤더탱크는, 유체가 유입되는 유입구가 형성되는 제1 헤더탱크와, 유체가 외부로 배출되는 배출구가 형성되는 제2 헤더탱크로 이루어지며,
    상기 분배구조물은 상기 제1 헤더탱크의 유입구 측에 배치되는 것을 특징으로 하는 열교환기.
  13. 제1항에 있어서,
    상기 헤더탱크는, 유체가 유입되는 유입구가 형성되는 제1 헤더탱크와, 유체가 외부로 배출되는 배출구가 형성되는 제2 헤더탱크로 이루어지며,
    상기 분배구조물은 상기 제2 헤더탱크의 배출구 측에 배치되는 것을 특징으로 하는 열교환기.
  14. 제6항에 있어서,
    상기 코어부의 각 튜브는 내부 유로가 복수개로 이루어지고,
    상기 보조격벽은 상기 중심격벽의 폭방향 중심에서 일측으로 편심되도록 형성되는 것을 특징으로 하는 열교환기.
  15. 제6항에 있어서,
    상기 코어부의 각 튜브는 중앙에 폴드갭이 형성되는 폴디드 튜브이고,
    상기 보조격벽은 상기 중심격벽의 폭방향 중심 위치에 형성되어, 상기 폴드갭과 상기 보조격벽이 서로 접하는 것을 특징으로 하는 열교환기.
PCT/KR2021/002050 2020-02-18 2021-02-18 열교환기 WO2021167359A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200019895 2020-02-18
KR10-2020-0019895 2020-02-18
KR1020210019404A KR20210105296A (ko) 2020-02-18 2021-02-10 열교환기
KR10-2021-0019404 2021-02-10

Publications (2)

Publication Number Publication Date
WO2021167359A2 true WO2021167359A2 (ko) 2021-08-26
WO2021167359A3 WO2021167359A3 (ko) 2021-10-14

Family

ID=77391104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002050 WO2021167359A2 (ko) 2020-02-18 2021-02-18 열교환기

Country Status (1)

Country Link
WO (1) WO2021167359A2 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5941303A (en) * 1997-11-04 1999-08-24 Thermal Components Extruded manifold with multiple passages and cross-counterflow heat exchanger incorporating same
JP2001255095A (ja) * 2000-03-15 2001-09-21 Zexel Valeo Climate Control Corp 熱交換器
KR101826365B1 (ko) * 2012-05-04 2018-03-22 엘지전자 주식회사 열교환기
CN103148729B (zh) * 2013-03-19 2015-01-21 丹佛斯微通道换热器(嘉兴)有限公司 集流管以及具有集流管的换热器
KR102161528B1 (ko) * 2017-06-05 2020-10-06 한온시스템 주식회사 축냉 열교환기

Also Published As

Publication number Publication date
WO2021167359A3 (ko) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2015009028A1 (en) Heat exchanger
WO2020022738A1 (en) Integrated liquid air cooled condenser and low temperature radiator
WO2017200362A1 (en) Double tube for heat-exchange
MX2007009246A (es) Insercion de tubo y disposicion de doble flujo para un colector de una bomba de calor.
WO2017039174A1 (ko) 열교환기
WO2012002698A2 (ko) 열교환기
WO2021167359A2 (ko) 열교환기
WO2020013506A1 (ko) 특히 전기 자동차용 콤팩트 열 교환기 유닛 및 공기 조화 모듈
WO2020262949A1 (en) Heat exchanger and refrigerator including the same
WO2021177737A1 (ko) 판형 열교환기
KR20210105296A (ko) 열교환기
WO2023101188A1 (ko) 냉매 분배기를 구비하는 공기 조화기
WO2024122870A1 (ko) 열교환기
WO2020050512A1 (en) Radiator for a vehicle
JPH109777A (ja) 多管式熱交換器および空調装置
WO2018221940A1 (ko) 일체형 라디에이터
WO2022131523A1 (ko) 열교환기 및 이를 포함하는 공기조화기
WO2021167320A1 (ko) 열응력 분산을 위한 유량 배분 탱크 구조를 가지는 열교환기
WO2022060160A1 (ko) 열응력 저감수단을 가지는 열교환기
WO2023177100A1 (ko) 쿨링 모듈
WO2023146135A1 (ko) 열교환기
WO2022255812A1 (ko) 복합 열교환기
WO2024122956A1 (ko) 열교환기
WO2021145712A1 (ko) 차량용 공조장치
WO2024128612A1 (ko) 열교환기

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757107

Country of ref document: EP

Kind code of ref document: A2