WO2021166527A1 - 情報処理装置、情報処理方法、および記録媒体、ならびに車両到達時間推定装置 - Google Patents

情報処理装置、情報処理方法、および記録媒体、ならびに車両到達時間推定装置 Download PDF

Info

Publication number
WO2021166527A1
WO2021166527A1 PCT/JP2021/001723 JP2021001723W WO2021166527A1 WO 2021166527 A1 WO2021166527 A1 WO 2021166527A1 JP 2021001723 W JP2021001723 W JP 2021001723W WO 2021166527 A1 WO2021166527 A1 WO 2021166527A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
position information
information
connected car
unconnected
Prior art date
Application number
PCT/JP2021/001723
Other languages
English (en)
French (fr)
Inventor
憲一 海老沢
直 小椋
浩彰 河村
慶介 朝倉
博 大竹
智郎 渡邊
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Publication of WO2021166527A1 publication Critical patent/WO2021166527A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/04Detecting movement of traffic to be counted or controlled using optical or ultrasonic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • G08G1/13Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station the indicator being in the form of a map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to an information processing device, an information processing method, a recording medium, and a vehicle arrival time estimation device.
  • V2X Vehicle to Everythinging
  • a method of detecting a non-connected car there is a method of capturing a non-connected car by using a surveillance camera installed as road equipment or an in-vehicle camera including a drive recorder.
  • the present application has been made in view of the above, and includes an information processing device, an information processing method, and a recording medium capable of estimating the arrival time of an unconnected car to a target position that cannot be detected by a camera. It is an object of the present invention to provide a vehicle arrival time estimation device.
  • One aspect of the information processing apparatus is a first reception in which the first position information and the first speed of the connected car detected by the camera are received from the camera and the third position information is received from the connected car.
  • a unit a calculation unit that calculates the first arrival time from the position indicated by the first position information to the position indicated by the third position information, and the second position information and the second position information of the unconnected car detected by the camera.
  • a second receiver that receives the second speed, and a third from the position indicated by the second position information based on the first speed, the first arrival time, the second position information, and the second speed. It is characterized by including an estimation unit for estimating a second arrival time of the unconnected car to the position indicated by the position information of.
  • FIG. 1 is a diagram showing a configuration example of an information processing system according to an embodiment.
  • FIG. 2 is a diagram showing an example of vehicle recognition of the information processing device 100 according to the embodiment.
  • FIG. 3 is a diagram showing a functional configuration example of the information processing apparatus 100 according to the embodiment.
  • FIG. 4 is a diagram showing an example of information stored in the camera detection information storage unit 121 according to the embodiment.
  • FIG. 5 is a diagram showing an example of information stored in the GNNS position information storage unit 122 according to the embodiment.
  • FIG. 6 is a diagram showing an example of information stored in the notification content information storage unit 123 according to the embodiment.
  • FIG. 7 is a diagram showing an example of learning processing according to the embodiment.
  • FIG. 8 is a diagram showing an example of estimation processing according to the embodiment.
  • FIG. 1 is a diagram showing a configuration example of an information processing system according to an embodiment.
  • FIG. 2 is a diagram showing an example of vehicle recognition of the information processing device 100 according to the embodiment.
  • FIG. 9 is a flowchart showing the flow of the learning process according to the embodiment.
  • FIG. 10 is a flowchart showing the flow of the estimation process according to the embodiment.
  • FIG. 11 is a diagram showing a modified example of the estimation process according to the embodiment.
  • FIG. 12 is a hardware configuration diagram showing an example of a computer that realizes the functions of the information processing device.
  • the embodiment an information processing device, an information processing method, a recording medium, and a mode for implementing the vehicle arrival time estimation device (hereinafter referred to as “the embodiment”) according to the present application will be described in detail with reference to the drawings. .. Note that this embodiment does not limit the information processing device, the information processing method, the recording medium, and the vehicle arrival time estimation device according to the present application. Further, in each of the following embodiments, the same parts are designated by the same reference numerals, and duplicate description is omitted.
  • the present embodiment capable of estimating the arrival time of the unconnected car to the target position that cannot be detected by the camera will be described.
  • FIG. 1 is a diagram showing a configuration example of an information processing system according to an embodiment.
  • the information processing system includes an information processing device 100, one or more surveillance cameras 200-1 to 200-n (n is an arbitrary integer, hereinafter collectively referred to as "surveillance camera 200").
  • Surveillance camera 200 includes connected car 300.
  • the information processing device 100, the surveillance camera 200, and the connected car 300 are connected to each other so as to be able to communicate with each other via the network N.
  • the network N various communication networks such as the Internet can be adopted regardless of whether it is wired or wireless.
  • the information processing device 100 is, for example, a server device managed by a road company that manages road equipment and the like.
  • the information processing device 100 receives the position information and the speed of the unconnected car 400 from the surveillance camera 200, and estimates the arrival time of the non-connected car 400 to the target position. Therefore, the information processing apparatus 100 receives the position information and speed of the connected car 300 from the surveillance camera 200 and the GNNS position information from the connected car 300, and generates a learning model using these information.
  • the information processing device 100 may be a cloud server device or a distributed computing system composed of a plurality of computers.
  • the surveillance camera 200 is, for example, a road facility equipped with a surveillance camera.
  • the surveillance camera 200 detects the connected car 300 and the unconnected car 400, and transmits the position information and the speed of the connected car 300 and the unconnected car 400 to the information processing device 100.
  • the connected car 300 is a car equipped with an in-vehicle camera and a connected function.
  • the connected car 300 also detects another connected car 300 and a non-connected car 400, and transmits the position information and speed of the other connected car 300 and the non-connected car 400 to the information processing device 100.
  • the non-connected car 400 at a position that cannot be detected by the surveillance camera 200. It is possible to estimate the arrival time at the target position of.
  • the unconnected car 400 is a moving body such as a car or a motorcycle that does not have a connected function. If the unconnected car 400 is detected by the surveillance camera 200, it is recognized by the information processing device 100, but the surveillance camera 200 or the like recognizes it. If it is not detected, it will not be recognized.
  • FIG. 2 is a diagram showing an example of vehicle recognition of the information processing device 100 according to the embodiment.
  • the information processing apparatus 100 can recognize those positions. Further, although the connected car 300-2 is not at the position detected by the surveillance camera 200, the information processing device 100 can recognize the position by the GNNS position information transmitted from the connected car 300-2. On the other hand, since the unconnected car 400-2 is not at the position detected by the surveillance camera 200, the information processing apparatus 100 cannot recognize the position. Therefore, the vehicle recognition of the information processing device 100 is shown on the right side of FIG. 2, and not only the position of the unconnected car 400-2 but also its existence cannot be recognized. Therefore, recognizing the existence of such a non-connected car 400 and notifying the connected car 300 leads to accident prevention and the like.
  • FIG. 3 is a diagram showing a functional configuration example of the information processing apparatus 100 according to the embodiment.
  • the information processing device 100 includes a communication unit 110, a storage unit 120, and a control unit 130.
  • the communication unit 110 is realized by, for example, a NIC (Network Interface Card) or the like.
  • the communication unit 110 is connected to various communication networks such as the Internet by wire or wirelessly, and can transmit and receive information to and from the surveillance camera 200, the connected car 300, and the like.
  • the storage unit 120 is realized by, for example, a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk. As shown in FIG. 3, the storage unit 120 includes a camera detection information storage unit 121, a GNNS position information storage unit 122, and a notification content information storage unit 123. Hereinafter, each storage unit included in the storage unit 120 will be described in order.
  • the camera detection information storage unit 121 stores information about the connected car 300 and the unconnected car 400 detected by the surveillance camera 200 and another connected car 300.
  • FIG. 4 is a diagram showing an example of information stored in the camera detection information storage unit 121 according to the embodiment.
  • the camera detection information storage unit 121 stores "vehicle number, detection position, speed, detection date and time, detection device ID" and the like in association with each other.
  • Various types of such camera detection information are transaction data generated by a surveillance camera 200 that has detected a connected car 300 or a non-connected car 400.
  • the information processing device 100 generates various types of camera detection information by performing license plate analysis or speed analysis on the camera image (image) transmitted from the surveillance camera 200 or the connected car 300. You can also.
  • the "vehicle number” is an identifier of each vehicle obtained by analyzing the license plates of the connected car 300 and the non-connected car 400 captured by the surveillance camera 200.
  • the non-connected car 400 is a moving body such as a bicycle that does not have a vehicle number
  • the "vehicle number” is an arbitrary identifier that can uniquely indicate the moving body.
  • the "vehicle number” is used, for example, when the unconnected car 400 is captured by a plurality of surveillance cameras 200 or the connected car 300, and the information processing device 100 recognizes the identity of the unconnected car 400.
  • the "detection position” may be the position (latitude and longitude) of the surveillance camera 200 that has detected the connected car 300 or the unconnected car 400. However, if a more accurate position of the connected car 300 or the unconnected car 400 can be detected from the camera image, it is the latitude and longitude of each vehicle.
  • the "speed” is the speed (for example, speed) of each vehicle when the connected car 300 or the unconnected car 400 is detected.
  • the speed of the connected car 300 and the unconnected car 400 can be calculated based on, for example, the frame interval of the camera image and the moving distance of each vehicle between the frames.
  • the "detection date and time” is, for example, the system date and time of the surveillance camera 200 or the connected car 300 when the surveillance camera 200 or the like detects the connected car 300 or the unconnected car 400. Alternatively, it may be the date and time recorded in association with the camera image.
  • the "detection device ID" is an identifier that uniquely indicates the surveillance camera 200 or another connected car 300 that has detected the connected car 300 or the unconnected car 400.
  • the GNNS position information storage unit 122 stores the position information of the connected car 300.
  • FIG. 5 is a diagram showing an example of information stored in the GNNS position information storage unit 122 according to the embodiment.
  • the GNNS position information storage unit 122 stores "vehicle ID, current position, position reception date and time" and the like in association with each other.
  • the various information of such GNNS position information is transaction data received and generated from the GNSS positioning satellite by, for example, the connected car 300.
  • the "vehicle ID” is an identifier that uniquely indicates the connected car 300.
  • the “vehicle ID” may be the above-mentioned "vehicle number", but in the example of FIG. 5, another identifier is used as an identifier used with the GNSS positioning satellite. Therefore, the storage unit 120 of the information processing device 100 may further store mapping data (not shown) between the "vehicle ID" and the "vehicle number".
  • the "current position” indicates, for example, the latitude and longitude at which the connected car 300 is currently located (strictly speaking, the latitude and longitude at the "position reception date and time”).
  • the "position reception date and time” is, for example, the system date and time of the connected car 300 when the connected car 300 receives the position information from the GNSS positioning satellite.
  • the notification content information storage unit 123 stores information regarding the notification content for notifying the existence of the unconnected car 400 detected by the surveillance camera 200 or the connected car 300.
  • FIG. 6 is a diagram showing an example of information stored in the notification content information storage unit 123 according to the embodiment.
  • the notification content information storage unit 123 stores the "notification destination vehicle ID, notification content" and the like in association with each other.
  • the various information of such notification content information is transaction data generated by the information processing apparatus 100.
  • the "notification destination vehicle ID” is an identifier that uniquely indicates the connected car 300 that is the notification destination of the notification content.
  • the “notification destination vehicle ID” may be the above-mentioned “vehicle ID” or the “vehicle number”.
  • the "notification content” is the notification content notified to the connected car 300. Based on the estimated position of the unconnected car 400, the arrival time to the position, and the like, it may be natural languageized so that the driver of the connected car 300 and the like can easily understand it.
  • the control unit 130 is a processing unit that controls the entire information processing device 100, and is, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like (so-called processor).
  • the control unit 130 expands and executes various programs (for example, the information processing program according to the present application) stored in the storage unit 120 in a RAM serving as a work area.
  • the control unit 130 is realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array), for example.
  • control unit 130 has a reception unit 131, a calculation unit 132, a learning unit 133, an estimation unit 134, and a notification unit 135, and realizes or executes each function and operation described below.
  • the internal configuration of the control unit 130 is not limited to the configuration shown in FIG. 3, and may be any other configuration as long as it executes the learning process and the estimation process described later.
  • connection relationship of each processing unit included in the control unit 130 is not limited to the connection relationship shown in FIG. 3, and may be another connection relationship.
  • the information processing apparatus 100 generates a learning model based on the position and speed of the connected car 300 and the arrival time to the target position (learning phase), and inputs the position and speed of the unconnected car 400 into the learning model.
  • the arrival time of the unconnected car 400 to the target position in other words, the position of the unconnected car 400 at a certain point in time is estimated (estimation phase, also called prediction / recognition phase). Therefore, the processing executed by each configuration of the information processing apparatus 100 is also divided into a learning phase process (learning process) and an estimation phase process (estimation process).
  • the "target position" to be estimated is mainly a position where there is no surveillance camera 200 in the vicinity, which can be a blind spot for the connected car 300. Accurate identification of the target position is performed by receiving the GNSS position information of the connected car 300 at the target position during the learning phase.
  • the receiving unit 131 receives the position information and the speed of the connected car 300 detected by the surveillance camera 200 or another connected car 300 and stored in the camera detection information storage unit 121. Further, the receiving unit 131 receives the GNSS position information of the connected car 300 received from the GNSS and stored in the GNNS position information storage unit 122.
  • the receiving unit 131 receives the position information and the speed of the non-connected car 400 detected by the surveillance camera 200 and the connected car 300 and stored in the camera detection information storage unit 121.
  • the GNSS position information (“second GNSS position information”) of the connected car 300 (corresponding to the “third connected car”) detected by the surveillance camera 200 and the like together with the non-connected car 400. It is also possible to estimate the arrival time of the unconnected car 400 to the target position based on (corresponding to). Therefore, the receiving unit 131 receives the second GNSS position information of the third connected car 300 detected by the surveillance camera 200 and the connected car 300 from the GNNS position information storage unit 122 together with the non-connected car 400.
  • the calculation unit 132 calculates the arrival time from the position indicated by the position information of the connected car 300 detected by the camera to the position indicated by the GNSS position information.
  • the arrival time is, for example, the difference time between the "detection date and time" of the camera detection information (FIG. 4) and the "position reception date and time” of the GNNS position information (FIG. 5).
  • the learning unit 133 inputs the position information (corresponding to the "first position information") and the speed (corresponding to the "first speed") of the connected car 300 detected by the surveillance camera 200 or another connected car 300. In addition, the teacher data whose correct answer is the arrival time to the target position is learned, and a learning model is generated. Therefore, the learning unit 133 calculates the arrival time from the position indicated by the position information of the connected car 300 to the target position.
  • the learning unit 133 provides the attribute information of the connected car 300 as the size of the connected car 300, the vehicle type, the composition of the occupants, the state of the winker, the state of the hazard lamp, and the environmental information of the place where the connected car 300 is located.
  • the learning model can be further trained using at least one of the surrounding signal conditions, congestion conditions, and the presence or absence of construction or events as input of teacher data.
  • the estimation unit 134 includes the speed of the connected car 300 detected by the surveillance camera 200 and the arrival time to the target position, and the position information of the non-connected car 400 detected by the surveillance camera 200 and the like (“second position information”).
  • the arrival time of the unconnected car 400 from the position indicated by the second position information to the target position (corresponding to the "second arrival time") based on the speed (corresponding to the "second speed") and the speed (corresponding to the "second arrival time”).
  • the estimation unit 134 can estimate the arrival time output by inputting the position information and the speed of the unconnected car 400 into the learning model as the arrival time of the unconnected car 400 to the target position.
  • the estimation unit 134 uses the attribute information of the unconnected car 400 as the second size of the unconnected car 400, the second vehicle type, the composition of the second occupant, the state of the second winker, and the second hazard.
  • Second humidity as peripheral information of the unconnected car 400, the presence or absence of a second vehicle in front of the unconnected car 400, the state of the second signal around the place where the unconnected car 400 is located, the second congestion situation, And the arrival time output by further inputting at least one of the presence or absence of the second construction and the second event into the above-mentioned learning model learned by the learning unit 133 is the arrival of the unconnected car 400 to the target position. It can be estimated as time.
  • the estimation unit 134 further bases the GNSS position information of the connected car 300 detected by the surveillance camera 200 and the like together with the non-connected car 400 up to the position of the non-connected car 400 and the target position. Arrival time can be estimated.
  • the notification unit 135 requires notification based on at least the target position and the arrival time of the unconnected car 400 estimated by the estimation unit 134 to the target position of the unconnected car 400 (corresponding to the "fourth connected car"). To notify the connected car 300 of information about the unconnected car 400.
  • the target position can be specified from the GNSS position information of the connected car 300 during the learning phase. Therefore, for example, the notification unit 135 notifies the connected car 300 in the vicinity of the target position (for example, within 300 m from the target position) of the existence of the non-connected car 400 at the time when the non-connected car 400 reaches the target position. Information can be notified.
  • Such a connected car 300 that is around the target position at the time of reaching the target position can also be estimated by the estimation unit 134 inputting the position information and the speed of each connected car 300 into the learning model.
  • the notification unit 135 can also exclude the connected car 300, which is in the vicinity of the target position but is away from the target position, from the notification target. In this way, by notifying the connected car 300, which needs to be notified, of the information regarding the unconnected car 400, it is possible to prevent an accident caused by the unconnected car 400.
  • FIG. 7 is a diagram showing an example of learning processing according to the embodiment.
  • the monitoring cameras 200-1 detects Konekuteddoka 300-1 at time t 1, the position information of the detected Konekuteddoka 300-1, and the speed, to the information processing apparatus 100.
  • the information processing apparatus 100 receives position information of Konekuteddoka 300-1 at time t 1, which is detected by the monitoring cameras 200-1, and speed.
  • the information processing apparatus 100 receives GNSS position information at time t 4 when sent from Konekuteddoka 300-1.
  • the position there are Konekuteddoka 300-1 at time t 4 is the intersection X of the monitoring camera 200 is not installed, the position can not be the vehicle recognized by the information processing apparatus 100.
  • this position is set as the target position estimated by the estimation unit 134.
  • the information processing apparatus 100, position information of Konekuteddoka 300-1 at time t 1, and the input speed, and teachers to correct the arrival time to the target position (the difference between time t 1 and time t 4) Train the data and generate a learning model.
  • the information processing apparatus 100 position information of Konekuteddoka 300-1 at time t 2, which is detected by another Konekuteddoka 300-2, and speed and, at time t 3 when detected by the monitoring camera 200-2 It is possible to generate a learning model by learning the teacher data in which the position information and the speed of the connected car 300-1 are input and the respective arrival times to the target position are the correct answers.
  • the information processing device 100 collates the GNSS position information of each of the times t 1 , t 2 , and t 3 transmitted from the connected car 300-1 with the respective position information detected by the surveillance camera 200-1 and the like. However, the location information can be made consistent.
  • the information processing device 100 repeatedly learns the position information and speed of the connected car 300 that reaches the target position detected by each camera such as the surveillance camera 200, and the arrival time to the target position.
  • a training model can be generated.
  • the information processing device 100 further inputs various conditions (such as the size and model of the connected car 300 described above) for learning. This makes it possible to generate a learning model for more accurately estimating the arrival time of the unconnected car 400 under various conditions.
  • the learning model of the present embodiment is an input layer into which the position information and speed of the non-connected car 400 are input, an output layer, and any layer from the input layer to the output layer, which is a layer other than the output layer.
  • a non-connected car that includes a first element belonging to, and a second element whose value is calculated based on the weights of the first element and the first element, according to the position information and speed input to the input layer.
  • the information processing apparatus 100 is made to function so that the arrival time to the target position of 400 is output from the output layer.
  • the generation device (for example, the information processing device 100 such as the server device) that generates the learning model of the present embodiment may use any learning algorithm to generate the above-mentioned learning model.
  • the generation device may generate the learning model of the present embodiment by using a learning algorithm such as a neural network (NN: Neural Network), a support vector machine (SVM: Support Vector Machine), clustering, and reinforcement learning.
  • NN Neural Network
  • SVM Support Vector Machine
  • the first element learning model contains corresponds to the input data such as x 1 and x 2 (x i).
  • the weight of the first component corresponds to the coefficients a i corresponding to x i.
  • the regression model can be regarded as a simple perceptron having an input layer and an output layer.
  • the first element corresponds to any node of the input layer
  • the second element can be regarded as the node of the output layer.
  • the learning model according to the present embodiment is realized by an NN having one or more intermediate layers such as a DNN (Deep Neural Network).
  • the first element included in the learning model corresponds to either the node of the input layer or the intermediate layer.
  • the second element corresponds to a node in the next stage, which is a node to which a value is transmitted from a node corresponding to the first element.
  • the weight of the first element corresponds to a connection coefficient which is a weight considered for the value transmitted from the node corresponding to the first element to the node corresponding to the second element.
  • the arrival time to the target position of the unconnected car 400 is calculated. More specifically, the learning model is set with a coefficient so as to output the arrival time to the target position of the unconnected car 400 when the position information and the speed of the unconnected car 400 are input.
  • the learning model according to the present embodiment may be a model generated based on the result obtained by repeating the input / output of data.
  • the learning model according to the present embodiment outputs the arrival time to the target position of the non-connected car 400 when the position information and the speed of the non-connected car 400 are input (model A).
  • model A An example is shown.
  • the learning model according to the present embodiment may be a model generated based on the result obtained by repeating the input / output of data to the model A.
  • the learning model according to the present embodiment is a learning model (with model B) that inputs the position information and speed of the non-connected car 400 and outputs the arrival time to the target position of the non-connected car 400 output by the model A. ) May be.
  • the learning model according to the present embodiment may be a learning model in which the position information and speed of the non-connected car 400 are input and the arrival time to the target position of the non-connected car 400 output by the model B is output. good.
  • FIG. 8 is a diagram showing an example of estimation processing according to the embodiment.
  • a monitoring camera 200-1 has detected a non Konekuteddoka 400 at time t 11.
  • the surveillance camera 200-1 transmits the detected position information and speed of the unconnected car 400 to the information processing device 100.
  • the information processing apparatus 100 receives information of the non Konekuteddoka 400 time t 11, which is detected by the monitoring cameras 200-1, and speed.
  • the information processing apparatus 100 information of the non Konekuteddoka 400 at time t 11, and the arrival time that is outputted by inputting the learning model speed, target from the position-Konekuteddoka 400 time t 11 was at Estimated time to reach the position.
  • the target position for example, an intersection X of the monitoring camera 200 is not installed, the position can not be the vehicle recognized by the information processing apparatus 100 (in FIG. 8, position non Konekuteddoka 400 is in the time t 14 Is).
  • the information processing apparatus 100 information of the non Konekuteddoka 400 at time t 12 which is detected by the Konekuteddoka 300, and speed and, non Konekuteddoka 400 time t 13, which is detected by the monitoring cameras 200-2 position information, and by inputting the speed learning model, the arrival time from the position-Konekuteddoka 400 was at the time t 12 and time t 13 to the target position can be estimated, respectively.
  • the information processing device 100 estimates the arrival time to the target position by inputting the position information and the speed of the unconnected car 400 detected by each camera such as the surveillance camera 200 into the learning model. Can be done. In other words, the time when the unconnected car 400 is at the target position is estimated. Further, by increasing the target position, it is possible to estimate the position (behavior) of the unconnected car 400 while it is not detected by each camera such as the surveillance camera 200.
  • the information processing apparatus 100 has a learning model trained under various conditions (size, vehicle type, etc. of the connected car 300 described above), whereas the information processing device 100 has various conditions of the unconnected car 400 (size of the non-connected car 400 described above). , Vehicle type, etc.) This makes it possible to more accurately estimate the arrival time of the unconnected car 400 under various conditions.
  • FIG. 9 is a flowchart showing the flow of the learning process according to the embodiment. This process is executed by the information processing apparatus 100 in order to generate a learning model for estimating the arrival time of the unconnected car 400 at the target position. Further, the information processing apparatus 100 is started by receiving, for example, the position information and the speed of the connected car 300 detected by the surveillance camera 200 or another connected car 300.
  • the receiving unit 131 of the information processing device 100 receives the position information and the speed of the connected car 300 stored in the camera detection information storage unit 121 (step S101). As described above, these position information and speed are information detected by the surveillance camera 200 or another connected car 300 and transmitted to the information processing device 100 by the detected surveillance camera 200 or another connected car 300.
  • the receiving unit 131 receives the GNSS position information of the connected car 300 stored in the GNNS position information storage unit 122 (step S102).
  • This GNSS position information is information received from the GNSS positioning satellite by the connected car 300 and transmitted to the information processing device 100 by the connected car 300.
  • the learning unit 133 of the information processing device 100 calculates the arrival time from the position indicated by the position information of the connected car 300 received by the receiving unit 131 to the position (target position) indicated by the GNSS position information (step S103). ).
  • the arrival time can be calculated from, for example, the difference between the date and time when the position information of the connected car 300 is detected by the surveillance camera 200 or another connected car 300 and the date and time when the GNSS position information is received by the GNSS positioning satellite. can.
  • the learning unit 133 inputs the position information and the speed of the connected car 300 received by the receiving unit 131, learns the teacher data whose correct answer is the calculated arrival time, and generates a learning model (step S104). ..
  • the learning unit 133 may further learn various conditions (such as the size and model of the connected car 300) as described above as input of teacher data. After step S104, this process ends, but the learning unit 133 can further perform repetitive learning by changing the position, speed, and the like of the connected car 300.
  • FIG. 10 is a flowchart showing the flow of the estimation process according to the embodiment.
  • the information processing device 100 is used to estimate the arrival time of the unconnected car 400 at the target position using the learning model generated by the learning process described above, and to notify the connected car 300 that needs to be notified. Is executed by. Further, the information processing apparatus 100 is started by receiving, for example, the position information and the speed of the unconnected car 400 detected by the surveillance camera 200 or the connected car 300.
  • the receiving unit 131 of the information processing device 100 receives the position information and speed of the unconnected car 400 stored in the camera detection information storage unit 121 (step S201). As described above, these position information and speed are information detected by the surveillance camera 200 or the connected car 300 and transmitted to the information processing device 100 by the detected surveillance camera 200 or the connected car 300.
  • the estimation unit 134 of the information processing device 100 inputs the position information and the speed of the unconnected car 400 received by the reception unit 131 into the learning model generated by the above-mentioned learning process. Then, the estimation unit 134 estimates the arrival time output from the learning model as the arrival time of the unconnected car 400 to the target position (step S202).
  • the notification unit 135 of the information processing device 100 searches for the connected car 300 that needs to be notified based on at least the target position and the arrival time of the non-connected car 400 estimated by the estimation unit 134 to the target position.
  • the connected car 300 that needs to be notified is, for example, a connected car 300 that is within 300 m from the target position at the time when the non-connected car 400 reaches the target position.
  • the notification unit 135 notifies the connected car 300, which needs to be notified, of information notifying the existence of, for example, the unconnected car 400 (step S204). After step S204, this process ends.
  • FIG. 11 is a diagram showing a modified example of the estimation process according to the embodiment.
  • the information processing device 100 sets the arrival time output by inputting the GNSS position information transmitted from the connected car 300-1 and the speed of the connected car 300-1 into the learning model, and the unconnected car 400 determines the arrival time.
  • the information processing apparatus 100 includes a receiving unit 131, a calculating unit 132, and an estimating unit 134.
  • the receiving unit 131 receives the first position information and the first speed of the connected car 300 detected by the camera (surveillance camera 200 and / or another connected car 300) from the camera.
  • the receiving unit 131 receives the third position information from the connected car 300.
  • the calculation unit 132 calculates the first arrival time from the position indicated by the first position information to the position indicated by the third position information.
  • the receiving unit 131 receives the second position information and the second speed of the unconnected car 400 detected by the camera.
  • the estimation unit 134 moves from the position indicated by the second position information to the position indicated by the third position information based on the first speed, the first arrival time, the second position information, and the second speed. Estimate the second arrival time of the unconnected car 400.
  • the information processing apparatus 100 has the speed of the connected car 300, the arrival time from the position of the connected car 300 detected by the camera to the target position, and the position of the non-connected car 400 detected by the camera. Based on the information and speed, the arrival time to the target position of the unconnected car 400 is estimated. This makes it possible to estimate the arrival time of the unconnected car 400 to the target position that cannot be detected by the camera.
  • the information processing apparatus 100 inputs the first position information and the first speed, and learns the teacher data having the first arrival time as the correct answer, and generates a learning unit 133 to generate a learning model. Further, the estimation unit 134 of the information processing apparatus 100 inputs the second position information and the second speed into the learning model, and estimates the output arrival time as the second arrival time.
  • the information processing apparatus 100 inputs the position information and the speed of the connected car 300 detected by the camera, and uses the learning model based on the teacher data in which the arrival time to the target position of the connected car 300 is the correct answer. It is used to estimate the arrival time to the target position of the unconnected car 400. This makes it possible to more accurately estimate the arrival time of the unconnected car 400 to the target position that cannot be detected by the camera.
  • the learning unit 133 of the information processing apparatus 100 provides at least one of the first attribute information of the connected car 300, the first environmental information of the place where the connected car 300 is located, and the first peripheral information. Further learning as input of teacher data, the estimation unit 134 obtains at least one of the second attribute information of the unconnected car 400 and the second environmental information and the second peripheral information of the place where the unconnected car 400 is located. The arrival time output by further inputting to the learning model is estimated as the second arrival time.
  • the information processing apparatus 100 can more accurately estimate the arrival time of the unconnected car 400 under various conditions by further inputting various conditions into the learning model for learning. can.
  • the learning unit 133 of the information processing apparatus 100 has, as the first attribute information of the connected car 300, the first size of the connected car 300, the first vehicle type, the configuration of the first occupant, and the first.
  • 1 weather, 1st temperature, and 1st humidity as the 1st peripheral information of the connected car 300, the presence or absence of the 1st preceding vehicle with respect to the connected car 300, and the 1st around the place where the connected car 300 is located.
  • the estimation unit 134 further learns the second attribute of the unconnected car 400.
  • the second size of the unconnected car 400, the second vehicle type, the composition of the second occupant, the state of the second winker, and the state of the second hazard lamp as the environmental information of the unconnected car 400.
  • the arrival time output by further inputting at least one into the training model is estimated as the second arrival time.
  • the information processing apparatus 100 can more accurately estimate the arrival time of the unconnected car 400 under various conditions by further inputting various conditions into the learning model for learning. can.
  • the cameras according to the embodiment are a plurality of cameras having different positions.
  • the information processing apparatus 100 estimates the arrival time at the target position by using the position information and the speed of the connected car 300 and the non-connected car 400 detected by a plurality of cameras having different positions. .. This makes it possible to more accurately estimate the arrival time of the unconnected car 400 to the target position that cannot be detected by the camera.
  • the camera is an in-vehicle camera of the second connected car 300.
  • the information processing apparatus 100 estimates the arrival time at the target position by using the position information and the speed of the connected car 300 and the non-connected car 400 detected by the vehicle-mounted camera. As a result, it is possible to estimate the arrival time of the unconnected car 400 at a position where the surveillance camera 200 is not installed and cannot be detected.
  • the receiving unit 131 of the information processing apparatus 100 according to the embodiment receives the fourth position information of the third connected car 300 detected by the camera together with the non-connected car 400, and the information processing apparatus 100 according to the embodiment receives the fourth position information.
  • the estimation unit 134 estimates the second arrival time based on the fourth position information.
  • the information processing apparatus 100 estimates the arrival time of the non-connected car 400 to the target position based on the position information of the connected car 300 detected by the camera together with the non-connected car 400. This makes it possible to estimate the position of the unconnected car 400 more accurately than using the position information detected by the camera of the unconnected car 400.
  • the receiving unit 131 of the information processing apparatus 100 receives the first GNSS position information received by the connected car 300 from the global navigation satellite system (GNSS) as the third position information, and the first GNSS position information is received.
  • the third connected car 300 receives the second GNSS position information received from the GNSS.
  • the arrival time of the non-connected car 400 to the target position can be estimated more accurately.
  • the information processing apparatus 100 searches for the fourth connected car 300 that needs to be notified based on at least the third position information and the second arrival time, and is not the fourth connected car 300.
  • a notification unit 135 for notifying information about the connected car 400 is further provided.
  • the information processing apparatus 100 can prevent an accident caused by the unconnected car 400 by searching for the connected car 300 that needs to be notified and notifying the information about the unconnected car 400. ..
  • the information processing device 100 has a receiving unit 131 and an estimating unit 134.
  • the receiving unit 131 receives the second position information and the second speed of the unconnected car 400 detected by the camera (surveillance camera 200 and / or another connected car 300) from the camera.
  • the estimation unit 134 indicates the third position information received from the connected car 300 from the first position information and the first speed of the connected car 300 detected by the camera, and the position indicated by the first position information.
  • the second arrival time of the unconnected car 400 from the position indicated by the second position information to the position indicated by the third position information can be determined. presume.
  • the information processing apparatus 100 has the speed of the connected car 300, the arrival time from the position of the connected car 300 detected by the camera to the target position, and the position of the non-connected car 400 detected by the camera. Using a learning model generated based on information and velocity, the arrival time to the target position of the unconnected car 400 is estimated. This makes it possible to estimate the arrival time of the unconnected car 400 to the target position that cannot be detected by the camera.
  • FIG. 12 is a hardware configuration diagram showing an example of a computer that realizes the functions of each device.
  • the computer 1000 has a CPU 1100, a RAM 1200, a ROM 1300, an HDD 1400, a communication interface (I / F) 1500, an input / output interface (I / F) 1600, and a media interface (I / F) 1700.
  • the CPU 1100 operates based on the program stored in the ROM 1300 or the HDD 1400, and controls each part.
  • the ROM 1300 stores a boot program executed by the CPU 1100 when the computer 1000 is started, a program that depends on the hardware of the computer 1000, and the like.
  • the HDD 1400 stores a program executed by the CPU 1100, data used by the program, and the like.
  • the communication interface 1500 receives data from another device via the network N and sends it to the CPU 1100, and transmits the data collected by the CPU 1100 to the other device via the network N.
  • the CPU 1100 controls an output device such as a display or a printer and an input device such as a keyboard or a mouse via the input / output interface 1600.
  • the CPU 1100 inputs data from the input device via the input / output interface 1600. Further, the CPU 1100 outputs the collected data to the output device via the input / output interface 1600.
  • the media interface 1700 reads the program or data stored in the recording medium 1800 and provides the program or data to the CPU 1100 via the RAM 1200.
  • the CPU 1100 loads the program from the recording medium 1800 onto the RAM 1200 via the media interface 1700, and executes the loaded program.
  • the recording medium 1800 is an optical recording medium such as a DVD (Digital Paris Disc) or PD (Phase change rewritable Disc), a magneto-optical recording medium such as an MO (Magnet-Optical disc), a tape medium, a magnetic recording medium, or a semiconductor memory. And so on.
  • the CPU 1100 of the computer 1000 realizes the function of the control unit 130 by executing the program loaded on the RAM 1200.
  • the CPU 1100 of the computer 1000 reads and executes these programs from the recording medium 1800, but as another example, these programs may be received from another device via the network N.
  • each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of the device is functionally or physically dispersed / physically distributed in any unit according to various loads and usage conditions. Can be integrated and configured.
  • the above-mentioned “part (section, module, unit)” can be read as “means” or “circuit”.
  • the receiving unit can be read as a receiving means or a receiving circuit.
  • Information processing device 110 Communication unit 120 Storage unit 121 Camera detection information storage unit 122 GNNS Position information storage unit 123 Notification content information storage unit 130 Control unit 131 Reception unit 132 Calculation unit 133 Learning unit 134 Estimate unit 135 Notification unit 200 Surveillance camera 300 Connected Car 400 Non-Connected Car N Network

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)

Abstract

非コネクテッドカーを十分に検出するには監視カメラの設置数が不足している。非コネクテッドカーを十分に検出するレベルまで設置数を増やすことを考えると膨大なコストがかかることが予測される。情報処理装置は、カメラで検出されたコネクテッドカーの第1の位置情報および第1の速度をカメラから受信し、カメラで検出された非コネクテッドカーの第2の位置情報および第2の速度を受信し、コネクテッドカーから第3の位置情報を受信する受信部と、第1の位置情報が示す位置から第3の位置情報が示す位置までの第1の到達時間を算出する算出部と、第1の速度、第1の到達時間、第2の位置情報、および第2の速度に基づいて、第2の位置情報が示す位置から第3の位置情報が示す位置までの非コネクテッドカーの第2の到達時間を推定する推定部とを備える。

Description

情報処理装置、情報処理方法、および記録媒体、ならびに車両到達時間推定装置
 本開示は、情報処理装置、情報処理方法、および記録媒体、ならびに車両到達時間推定装置に関する。
 自動車のIT化が進み、ICT(Information and Communication Technology:情報通信技術)端末としての機能を有する自動車(コネクテッドカー)が徐々に普及してきている。コネクテッドカーは、各種センサや通信機能を備え、車両の状態や周囲の状況などを検出し、他の車両、道路設備、歩行者、およびクラウドコンピュータなどと連携すること(いわゆる、V2X(Vehicle to Everything))で新たな価値を生み出すことが期待されている。
 しかしながら、コネクテッドカーの普及率はまだ低く、通信機能を備えていない非コネクテッドカーは多く存在する。また、非コネクテッドカーのすべてがコネクテッドカーに置き換わるような時代が来るのはまだ先であろう。そのため、コネクテッドカーや道路設備などが、いかに非コネクテッドカーの存在を認識するかが、安全かつ安心なクルマ社会にとって重要となってくる。
 とくに、走行中のコネクテッドカーは、前後と比較して、横側の状況を検出し難い。そのため、周囲の別のコネクテッドカーや道路設備などが、対象のコネクテッドカーの死角となり易い部分の非コネクテッドカーを検出し、対象のコネクテッドカーに通知することができれば事故防止に繋がる。なお、現状、非コネクテッドカーの検出方法として、道路設備として設置された監視カメラや、ドライブレコーダを含む車載カメラを用いて、非コネクテッドカーを捉える方法がある。
国際公開第2019/124001号
 しかしながら、あらゆる道路や交差点に監視カメラが設置されているわけではないため、非コネクテッドカーを十分に検出するには監視カメラの設置数が不足している。そのため、監視カメラの設置数を増やすことが考えられるが、非コネクテッドカーを十分に検出するレベルまで設置数を増やすことを考えると膨大なコストがかかることが予測される。また、車載カメラによって非コネクテッドカーを検出するためには、車載カメラを搭載した車両が非コネクテッドカー付近を常に走行している必要があり現実的でない。
 本願は、上記に鑑みてなされたものであって、カメラにより検出することができない対象位置までの非コネクテッドカーの到達時間を推定することができる情報処理装置、情報処理方法、および記録媒体、ならびに車両到達時間推定装置を提供することを目的とする。
 本願に係る情報処理装置の一態様は、カメラで検出されたコネクテッドカーの第1の位置情報および第1の速度をカメラから受信し、コネクテッドカーから第3の位置情報を受信する第1の受信部と、第1の位置情報が示す位置から第3の位置情報が示す位置までの第1の到達時間を算出する算出部と、カメラで検出された非コネクテッドカーの第2の位置情報および第2の速度を受信する第2の受信部と、第1の速度、第1の到達時間、第2の位置情報、および第2の速度に基づいて、第2の位置情報が示す位置から第3の位置情報が示す位置までの非コネクテッドカーの第2の到達時間を推定する推定部とを備えたことを特徴とする。
 実施形態の一態様によれば、カメラにより検出することができない対象位置までの非コネクテッドカーの到達時間を推定することができる。
図1は、実施形態に係る情報処理システムの構成例を示す図である。 図2は、実施形態に係る情報処理装置100の車両認識の例を示す図である。 図3は、実施形態に係る情報処理装置100の機能構成例を示す図である。 図4は、実施形態に係るカメラ検出情報記憶部121に記憶される情報の例を示す図である。 図5は、実施形態に係るGNNS位置情報記憶部122に記憶される情報の例を示す図である。 図6は、実施形態に係る通知内容情報記憶部123に記憶される情報の例を示す図である。 図7は、実施形態に係る学習処理の例を示す図である。 図8は、実施形態に係る推定処理の例を示す図である。 図9は、実施形態に係る学習処理の流れを示すフローチャートである。 図10は、実施形態に係る推定処理の流れを示すフローチャートである。 図11は、実施形態に係る推定処理の変形例を示す図である。 図12は、情報処理装置の機能を実現するコンピュータの一例を示すハードウェア構成図である。
 以下に、本願に係る情報処理装置、情報処理方法、および記録媒体、ならびに車両到達時間推定装置を実施するための形態(以下、「実施形態」と呼ぶ)について図面を参照しつつ詳細に説明する。なお、この実施形態により本願に係る情報処理装置、情報処理方法、および記録媒体、ならびに車両到達時間推定装置が限定されるものではない。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。以下に、カメラにより検出することができない対象位置までの非コネクテッドカーの到達時間を推定することができる本実施形態について説明する。
〔1.情報処理システムの構成〕
 図1を用いて情報処理システムの構成について説明する。図1は、実施形態に係る情報処理システムの構成例を示す図である。図1に示すように、情報処理システムは、情報処理装置100、1つまたは複数の監視カメラ200-1~200-n(nは任意の整数。以下、まとめて「監視カメラ200」という)、コネクテッドカー300を含む。情報処理装置100と、監視カメラ200およびコネクテッドカー300とは、ネットワークNを介して相互に通信可能に接続される。ネットワークNは、有線、無線を問わず、インターネットなどの各種通信網を採用することができる。
 情報処理装置100は、例えば、道路設備などを管理する道路会社によって管理されるサーバ装置である。情報処理装置100は、監視カメラ200から非コネクテッドカー400の位置情報や速度を受信し、対象位置までの非コネクテッドカー400の到達時間を推定する。そのために、情報処理装置100は、監視カメラ200からコネクテッドカー300の位置情報や速度、およびコネクテッドカー300からGNNS位置情報を受信し、これらの情報を用いて学習モデルを生成する。なお、情報処理装置100は、クラウドサーバ装置であってもよいし、複数台のコンピュータで構成される分散型コンピューティングシステムであってもよい。
 監視カメラ200は、例えば、監視カメラを備えた道路設備である。監視カメラ200は、コネクテッドカー300や非コネクテッドカー400を検出し、コネクテッドカー300や非コネクテッドカー400の位置情報や速度を情報処理装置100に送信する。
 コネクテッドカー300は、車載カメラやコネクテッド機能を備えた自動車である。コネクテッドカー300も、他のコネクテッドカー300や非コネクテッドカー400を検出し、他のコネクテッドカー300や非コネクテッドカー400の位置情報や速度を情報処理装置100に送信する。このように、コネクテッドカー300に搭載された車載カメラにより検出されるコネクテッドカー300や非コネクテッドカー400の位置情報や速度を用いることで、監視カメラ200では検出できないような位置にいる非コネクテッドカー400の対象位置への到達時間を推定することができる。
 非コネクテッドカー400は、コネクテッド機能を持たない自動車やバイクなどの移動体である非コネクテッドカー400は、監視カメラ200で検出されれば、情報処理装置100によって認識されるが、監視カメラ200などで検出されない場合は認識されない。
 図2は、実施形態に係る情報処理装置100の車両認識の例を示す図である。図2の左側に示すように、コネクテッドカー300-1や非コネクテッドカー400-1は、監視カメラ200によって検出される位置にいるため、情報処理装置100はそれらの位置を認識することができる。また、コネクテッドカー300-2は、監視カメラ200によって検出される位置にいないが、情報処理装置100は、コネクテッドカー300-2から送信されるGNNS位置情報によってその位置を認識することができる。一方、非コネクテッドカー400-2は、監視カメラ200によって検出される位置にいないため、情報処理装置100はその位置を認識することができない。そのため、情報処理装置100の車両認識は図2の右側に示すようになり、非コネクテッドカー400-2の位置のみならず、その存在すら認識することができない。そのため、このような非コネクテッドカー400の存在を認識し、コネクテッドカー300に通知することが事故防止などに繋がる。
〔2.情報処理装置100の構成〕
 次に、図3を用いて、実施形態に係る情報処理装置100の機能構成について説明する。図3は、実施形態に係る情報処理装置100の機能構成例を示す図である。図3に示すように、情報処理装置100は、通信部110、記憶部120、制御部130を備える。
(通信部110)
 通信部110は、例えば、NIC(Network Interface Card)などによって実現される。通信部110は、インターネットなどの各種通信網と有線または無線で接続され、監視カメラ200やコネクテッドカー300などとの間で情報の送受信を行うことができる。
(記憶部120)
 記憶部120は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)などの半導体メモリ素子、または、ハードディスク、光ディスクなどの記憶装置によって実現される。図3に示すように、記憶部120は、カメラ検出情報記憶部121、GNNS位置情報記憶部122、通知内容情報記憶部123を有する。以下、記憶部120に含まれる各記憶部について順に説明する。
(カメラ検出情報記憶部121)
 カメラ検出情報記憶部121は、監視カメラ200や別のコネクテッドカー300によって検出されたコネクテッドカー300や非コネクテッドカー400に関する情報を記憶する。図4は、実施形態に係るカメラ検出情報記憶部121に記憶される情報の例を示す図である。図4に示す例では、カメラ検出情報記憶部121は、「車両ナンバー、検出位置、速度、検出日時、検出装置ID」などを対応付けて記憶する。このようなカメラ検出情報の各種情報は、コネクテッドカー300や非コネクテッドカー400を検出した監視カメラ200などによって生成されるトランザクションデータである。または、情報処理装置100が、監視カメラ200やコネクテッドカー300から送信されてきたカメラ映像(画像)に対してナンバープレート解析や速度解析をするなどして、カメラ検出情報の各種情報を生成することもできる。
 「車両ナンバー」は、監視カメラ200で捉えたコネクテッドカー300や非コネクテッドカー400のナンバープレートを解析することにより得られる各車両の識別子である。なお、非コネクテッドカー400が自転車など、車両ナンバーを持たない移動体の場合、「車両ナンバー」は、当該移動体を一意に示すことができる任意の識別子である。なお、「車両ナンバー」は、例えば、非コネクテッドカー400を複数の監視カメラ200やコネクテッドカー300で捕捉する場合、情報処理装置100が非コネクテッドカー400の同一性を認識する際に用いられる。
 「検出位置」は、コネクテッドカー300や非コネクテッドカー400を検出した監視カメラ200などの位置(緯度および経度)であってよい。しかしながら、カメラ映像からコネクテッドカー300や非コネクテッドカー400のより正確な位置が検出できる場合は、各車両の緯度および経度である。
 「速度」は、コネクテッドカー300や非コネクテッドカー400を検出した際の、各車両の速度(例えば、時速)である。コネクテッドカー300や非コネクテッドカー400の速度は、例えば、カメラ映像のフレーム間隔と、フレーム間での各車両の移動距離とに基づいて算出することができる。
 「検出日時」は、例えば、監視カメラ200などがコネクテッドカー300や非コネクテッドカー400を検出した時の監視カメラ200やコネクテッドカー300のシステム日時である。または、カメラ映像に関連付けて記録される日時であってもよい。
 「検出装置ID」は、コネクテッドカー300や非コネクテッドカー400を検出した監視カメラ200や別のコネクテッドカー300を一意に示す識別子である。
(GNNS位置情報記憶部122)
 GNNS位置情報記憶部122は、コネクテッドカー300の位置情報を記憶する。図5は、実施形態に係るGNNS位置情報記憶部122に記憶される情報の例を示す図である。図5に示す例では、GNNS位置情報記憶部122は、「車両ID、現在位置、位置受信日時」などを対応付けて記憶する。このようなGNNS位置情報の各種情報は、例えば、コネクテッドカー300によって、GNSS測位衛星から受信され、生成されるトランザクションデータである。
 「車両ID」は、コネクテッドカー300を一意に示す識別子である。「車両ID」は、上述した「車両ナンバー」であってもよいが、図5の例では、GNSS測位衛星との間でも用いる識別子として別の識別子にしている。そのため、情報処理装置100の記憶部120は、「車両ID」と「車両ナンバー」とのマッピングデータ(図示せず)をさらに記憶してもよい。
 「現在位置」は、例えば、コネクテッドカー300が現在いる緯度および経度を示す(厳密には、「位置受信日時」にいた緯度および経度)。
 「位置受信日時」は、例えば、コネクテッドカー300がGNSS測位衛星から位置情報を受信した時のコネクテッドカー300のシステム日時である。
(通知内容情報記憶部123)
 通知内容情報記憶部123は、監視カメラ200やコネクテッドカー300によって検出された非コネクテッドカー400の存在を知らせるための通知内容に関する情報を記憶する。図6は、実施形態に係る通知内容情報記憶部123に記憶される情報の例を示す図である。図6に示す例では、通知内容情報記憶部123は、「通知先車両ID、通知内容」などを対応付けて記憶する。このような通知内容情報の各種情報は、情報処理装置100によって生成されるトランザクションデータである。
 「通知先車両ID」は、通知内容の通知先であるコネクテッドカー300を一意に示す識別子である。「通知先車両ID」は、上述した「車両ID」であってよいし、「車両ナンバー」であってもよい。
 「通知内容」は、コネクテッドカー300に通知される通知内容である。推測された非コネクテッドカー400の位置やその位置までの到達時間などに基づいて、コネクテッドカー300の運転手などが理解し易いように自然言語化されてよい。
(制御部130)
 制御部130は、情報処理装置100全体を司る処理部であり、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)など(いわゆる、プロセッサ)である。制御部130は、記憶部120に記憶されている各種プログラム(例えば、本願に係る情報処理プログラム)を、作業領域となるRAMに展開して実行する。また、制御部130は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの集積回路により実現される。
 図3に示すように、制御部130は、受信部131、算出部132、学習部133、推定部134、通知部135を有し、以下に説明する各機能や作用を実現または実行する。なお、制御部130の内部構成は、図3に示した構成に限られず、後述する学習処理や推定処理を実行する構成であれば他の構成であってもよい。また、制御部130が有する各処理部の接続関係は、図3に示した接続関係に限られず、他の接続関係であってもよい。
 また、情報処理装置100は、コネクテッドカー300の位置、速度、および対象位置までの到達時間を基に学習モデルを生成し(学習フェーズ)、非コネクテッドカー400の位置および速度を当該学習モデルに入力することで非コネクテッドカー400の対象位置までの到達時間、換言するとある時点での非コネクテッドカー400の位置を推定する(推定フェーズ。予測・認識フェーズなどともいう)。そのため、情報処理装置100の各構成で実行される処理も、学習フェーズの処理(学習処理)と推定フェーズの処理(推定処理)にわかれる。なお、推定対象の「対象位置」は、主に、コネクテッドカー300にとって死角となり得る、付近に監視カメラ200が無い位置である。対象位置の正確な特定は、学習フェーズ時に、対象位置でのコネクテッドカー300のGNSS位置情報を受信することによって行われる。
(受信部131)
 まず、受信部131の学習処理について説明する。受信部131は、監視カメラ200や別のコネクテッドカー300によって検出されカメラ検出情報記憶部121に記憶されたコネクテッドカー300の位置情報および速度を受信する。また、受信部131は、GNSSから受信されGNNS位置情報記憶部122に記憶されたコネクテッドカー300のGNSS位置情報を受信する。
 一方、受信部131の推定処理では、受信部131は、監視カメラ200やコネクテッドカー300によって検出されカメラ検出情報記憶部121に記憶された非コネクテッドカー400の位置情報および速度を受信する。
 また、本実施形態の変形例として、非コネクテッドカー400と共に監視カメラ200などによって検出されたコネクテッドカー300(「第3のコネクテッドカー」に相当)のGNSS位置情報(「第2のGNSS位置情報」に相当)にさらに基づいて、非コネクテッドカー400の対象位置までの到達時間を推定することもできる。そのため、受信部131は、非コネクテッドカー400と共に、監視カメラ200やコネクテッドカー300によって検出された第3のコネクテッドカー300の第2のGNSS位置情報をGNNS位置情報記憶部122から受信する。
(算出部132)
 算出部132は、カメラによって検出されたコネクテッドカー300の位置情報が示す位置から、GNSS位置情報が示す位置までの到達時間を算出する。ここで、到達時間は、例えば、カメラ検出情報(図4)の「検出日時」と、GNNS位置情報(図5)の「位置受信日時」との差分時間である。
(学習部133)
 学習部133は、監視カメラ200や別のコネクテッドカー300によって検出されたコネクテッドカー300の位置情報(「第1の位置情報」に相当)および速度(「第1の速度」に相当)を入力、ならびに対象位置までの到達時間を正解とする教師データを学習し、学習モデルを生成する。そのために、学習部133は、コネクテッドカー300の位置情報が示す位置から対象位置までの到達時間を算出する。
 また、学習部133は、コネクテッドカー300の属性情報として、コネクテッドカー300のサイズ、車種、乗員の構成、ウインカーの状態、およびハザードランプの状態、コネクテッドカー300がいる場所の環境情報として、コネクテッドカー300がいるレーンおよび路面状態、ならびにコネクテッドカー300がいる場所の天候、気温、および湿度、コネクテッドカー300がいる場所の周辺情報として、コネクテッドカー300に対する前方車の有無、ならびにコネクテッドカー300がいる場所周辺の信号の状態、渋滞状況、および工事やイベントの有無の少なくとも1つを教師データの入力として学習モデルをさらに学習することができる。
(推定部134)
 推定部134は、監視カメラ200などによって検出されたコネクテッドカー300の速度および対象位置までの到達時間、ならびに監視カメラ200などよって検出された非コネクテッドカー400の位置情報(「第2の位置情報」に相当)および速度(「第2の速度」に相当)に基づいて、第2の位置情報が示す位置から対象位置までの非コネクテッドカー400の到達時間(「第2の到達時間」に相当)を推定する。この推定には、学習部133によって学習された上述の学習モデルを用いることができる。そのため、推定部134は、非コネクテッドカー400の位置情報および速度を当該学習モデルに入力することで出力される到達時間を対象位置までの非コネクテッドカー400の到達時間と推定することができる。
 また、推定部134は、非コネクテッドカー400の属性情報として、非コネクテッドカー400の第2のサイズ、第2の車種、第2の乗員の構成、第2のウインカーの状態、および第2のハザードランプの状態、非コネクテッドカー400の環境情報として、非コネクテッドカー400がいる第2のレーンおよび第2の路面状態、ならびに非コネクテッドカー400がいる場所の第2の天候、第2の気温、および第2の湿度、非コネクテッドカー400の周辺情報として、非コネクテッドカー400に対する第2の前方車の有無、ならびに非コネクテッドカー400がいる場所周辺の第2の信号の状態、第2の渋滞状況、および第2の工事や第2のイベントの有無の少なくとも1つを学習部133によって学習された上述の学習モデルにさらに入力することで出力される到達時間を対象位置までの非コネクテッドカー400の到達時間と推定することができる。
 また、推定部134は、本実施形態の変形例として、非コネクテッドカー400と共に監視カメラ200などによって検出されたコネクテッドカー300のGNSS位置情報にさらに基づいて、非コネクテッドカー400の位置や対象位置までの到達時間を推定することができる。
(通知部135)
 通知部135は、対象位置、および推定部134によって推定された非コネクテッドカー400の対象位置までの到達時間に少なくとも基づいて、通知が必要なコネクテッドカー300(「第4のコネクテッドカー」に相当)を検索し、当該コネクテッドカー300に非コネクテッドカー400に関する情報を通知する。なお、対象位置は、学習フェーズ時にコネクテッドカー300のGNSS位置情報から特定することができる。そのため、通知部135は、例えば、非コネクテッドカー400が対象位置に到達する時刻に、対象位置の周辺(例えば、対象位置から300m以内)にいるコネクテッドカー300に、非コネクテッドカー400の存在を知らせる情報を通知することができる。このような、対象位置に到達する時刻に対象位置の周辺にいるコネクテッドカー300も、推定部134が各コネクテッドカー300の位置情報や速度を学習モデルに入力することによって推定することができる。なお、通知部135は、対象位置の周辺にはいるが、対象位置から遠ざかっているようなコネクテッドカー300を、通知対象から除外することもできる。このように、通知が必要なコネクテッドカー300に非コネクテッドカー400に関する情報を通知することにより、非コネクテッドカー400による事故を未然に防ぐことができる。
〔3.学習処理の詳細〕
 次に、図7を用いて、本実施形態の学習処理についてより具体的に説明する。図7は、実施形態に係る学習処理の例を示す図である。図7に示すように、監視カメラ200-1は、時刻tにコネクテッドカー300-1を検出し、検出したコネクテッドカー300-1の位置情報、および速度を、情報処理装置100に送信する。次に、情報処理装置100は、監視カメラ200-1によって検出された時刻tのコネクテッドカー300-1の位置情報、および速度を受信する。そして、情報処理装置100は、コネクテッドカー300-1から送信された時刻tのGNSS位置情報を受信する。なお、時刻tにコネクテッドカー300-1がいる位置は、監視カメラ200が設置されていない交差点Xであり、情報処理装置100によって車両認識ができない位置である。例えば、この位置を推定部134によって推定される対象位置とする。そして、情報処理装置100は、時刻tのコネクテッドカー300-1の位置情報、および速度を入力、ならびに対象位置までの到達時間(時刻tと時刻tとの差分)を正解とする教師データを学習し、学習モデルを生成する。
 同様に、情報処理装置100は、別のコネクテッドカー300-2によって検出された時刻tのコネクテッドカー300-1の位置情報、および速度や、監視カメラ200-2によって検出された時刻tのコネクテッドカー300-1の位置情報、および速度を入力とし、対象位置までのそれぞれの到達時間を正解とする教師データを学習し、学習モデルを生成することができる。
 なお、情報処理装置100は、コネクテッドカー300-1から送信された、時刻t、t、tそれぞれのGNSS位置情報を、監視カメラ200-1などによって検出されたそれぞれの位置情報と照合し、位置情報の整合性をとることができる。
 このように、情報処理装置100は、監視カメラ200などの各カメラによって検出された、対象位置に到達するコネクテッドカー300の位置情報および速度と、対象位置までの到達時間とを繰り返し学習させて、学習モデルを生成することができる。なお、情報処理装置100は、さらに様々な条件(上述したコネクテッドカー300のサイズや車種など)を入力して学習させる。これにより、様々な条件下でより正確に非コネクテッドカー400の到達時間を推定するための学習モデルを生成することができる。
 また、本実施形態の学習モデルは、非コネクテッドカー400の位置情報および速度が入力される入力層と、出力層と、入力層から出力層までのいずれかの層であって出力層以外の層に属する第1要素と、第1要素と第1要素の重みとに基づいて値が算出される第2要素と、を含み、入力層に入力された位置情報および速度に応じて、非コネクテッドカー400の対象位置までの到達時間を出力層から出力するよう、情報処理装置100を機能させる。
 なお、本実施形態の学習モデルを生成する生成装置(例えば、サーバ装置などの情報処理装置100)は、いかなる学習アルゴリズムを用いて上述の学習モデルを生成してもよい。例えば、生成装置は、ニューラルネットワーク(NN:Neural Network)、サポートベクターマシン(SVM:Support Vector Machine)、クラスタリング、強化学習などの学習アルゴリズムを用いて本実施形態の学習モデルを生成してもよい。一例として、生成装置がNNを用いて本実施形態の学習モデルを生成するとする。この場合、学習モデルは、1つ以上のニューロンを含む入力層と、1つ以上のニューロンを含む中間層と、1つ以上のニューロンを含む出力層とを有していてもよい。
 ここで、本実施形態に係る学習モデルが「y=a*x+a*x+・・・+a*x」で示す回帰モデルで実現されるとする。この場合、学習モデルが含む第1要素は、xやxなどといった入力データ(x)に対応する。また、第1要素の重みは、xに対応する係数aに対応する。ここで、回帰モデルは、入力層と出力層とを有する単純パーセプトロンとみなすことができる。各モデルを単純パーセプトロンとみなした場合、第1要素は、入力層が有するいずれかのノードに対応し、第2要素は、出力層が有するノードとみなすことができる。
 また、本実施形態に係る学習モデルがDNN(Deep Neural Network)など、1つまたは複数の中間層を有するNNで実現されるとする。この場合、学習モデルが含む第1要素は、入力層または中間層が有するいずれかのノードに対応する。また、第2要素は、第1要素と対応するノードから値が伝達されるノードである次段のノードに対応する。また、第1要素の重みは、第1要素と対応するノードから第2要素と対応するノードに伝達される値に対して考慮される重みである接続係数に対応する。
 上述した回帰モデルやNNなど、任意の構造を有する学習モデルを用いて、非コネクテッドカー400の対象位置までの到達時間を算出する。より具体的には、学習モデルは、非コネクテッドカー400の位置情報および速度が入力された場合に、当該非コネクテッドカー400の対象位置までの到達時間を出力するように係数が設定される。本実施形態に係る学習モデルは、データの入出力を繰り返すことで得られる結果に基づいて生成されるモデルであってもよい。
 なお、上記例では、本実施形態に係る学習モデルが、非コネクテッドカー400の位置情報および速度が入力された場合に、当該非コネクテッドカー400の対象位置までの到達時間を出力するモデル(モデルAとする)である例を示した。しかしながら、本実施形態に係る学習モデルは、モデルAに対しデータの入出力を繰り返すことで得られる結果に基づいて生成されるモデルであってもよい。例えば、本実施形態に係る学習モデルは、非コネクテッドカー400の位置情報および速度を入力とし、モデルAが出力する非コネクテッドカー400の対象位置までの到達時間を出力とする学習モデル(モデルBとする)であってもよい。または、本実施形態に係る学習モデルは、非コネクテッドカー400の位置情報および速度を入力とし、モデルBが出力する非コネクテッドカー400の対象位置までの到達時間を出力とする学習モデルであってもよい。
〔4.推定処理の詳細〕
 次に、図8を用いて、本実施形態の推定処理についてより具体的に説明する。図8は、実施形態に係る推定処理の例を示す図である。図8に示すように、例えば、監視カメラ200-1が時刻t11に非コネクテッドカー400を検出したとする。監視カメラ200-1は、検出した非コネクテッドカー400の位置情報および速度を情報処理装置100に送信する。次に、情報処理装置100は、監視カメラ200-1によって検出された時刻t11の非コネクテッドカー400の位置情報、および速度を受信する。そして、情報処理装置100は、時刻t11の非コネクテッドカー400の位置情報、および速度を学習モデルに入力することで出力される到達時間を、非コネクテッドカー400が時刻t11にいた位置から対象位置までの到達時間と推定する。なお、対象位置とは、例えば、監視カメラ200が設置されていない交差点Xであり、情報処理装置100によって車両認識ができない位置である(図8では、時刻t14に非コネクテッドカー400がいる位置である)。
 同様に、情報処理装置100は、コネクテッドカー300によって検出された時刻t12の非コネクテッドカー400の位置情報、および速度や、監視カメラ200-2によって検出された時刻t13の非コネクテッドカー400の位置情報、および速度を学習モデルに入力することで、非コネクテッドカー400が時刻t12や時刻t13にいた位置から対象位置までの到達時間をそれぞれ推定することができる。
 このように、情報処理装置100は、監視カメラ200などの各カメラによって検出された、非コネクテッドカー400の位置情報および速度を学習モデルに入力することで、対象位置までの到達時間を推定することができる。換言すると、対象位置に非コネクテッドカー400がいる時刻が推定される。さらに、対象位置を増やすことで、監視カメラ200などの各カメラに検出されない間の非コネクテッドカー400の位置(挙動)を推定することができる。なお、情報処理装置100は、さらに様々な条件(上述したコネクテッドカー300のサイズや車種など)で学習させた学習モデルに対し、非コネクテッドカー400の様々な条件(上述した非コネクテッドカー400のサイズや車種など)をさらに入力する。これにより、様々な条件下でより正確に非コネクテッドカー400の到達時間を推定することができる。
〔5.学習処理の手順〕
 次に、図9を用いて、実施形態に係る学習処理の手順について説明する。図9は、実施形態に係る学習処理の流れを示すフローチャートである。本処理は、非コネクテッドカー400の対象位置への到達時間を推定する学習モデルを生成するために、情報処理装置100によって実行される。また、情報処理装置100が、例えば、監視カメラ200や別のコネクテッドカー300によって検出されたコネクテッドカー300の位置情報および速度を受信することをトリガーに開始される。
 まず、図9に示すように、情報処理装置100の受信部131は、カメラ検出情報記憶部121に記憶されたコネクテッドカー300の位置情報および速度を受信する(ステップS101)。これら位置情報および速度は、上述したように、監視カメラ200または別のコネクテッドカー300によって検出され、検出した監視カメラ200または別のコネクテッドカー300によって情報処理装置100に送信される情報である。
 次に、受信部131は、GNNS位置情報記憶部122に記憶されたコネクテッドカー300のGNSS位置情報を受信する(ステップS102)。このGNSS位置情報は、コネクテッドカー300によってGNSS測位衛星から受信され、コネクテッドカー300によって情報処理装置100に送信される情報である。
 次に、情報処理装置100の学習部133は、受信部131によって受信されたコネクテッドカー300の位置情報が示す位置からGNSS位置情報が示す位置(対象位置)までの到達時間を算出する(ステップS103)。当該到達時間は、例えば、コネクテッドカー300の位置情報が監視カメラ200または別のコネクテッドカー300によって検出された日時と、GNSS測位衛星によってGNSS位置情報が受信された日時との差分から算出することができる。
 次に、学習部133は、受信部131によって受信されたコネクテッドカー300の位置情報および速度を入力、ならびに算出した到達時間を正解とする教師データを学習し、学習モデルを生成する(ステップS104)。また、学習部133は、教師データの入力として、上述したような様々な条件(コネクテッドカー300のサイズや車種など)をさらに学習してもよい。ステップS104の後、本処理は終了するが、学習部133はさらに、コネクテッドカー300の位置や速度などを変えて繰り返し学習を行うことができる。
〔6.推定処理の手順〕
 次に、図10を用いて、実施形態に係る推定処理の手順について説明する。図10は、実施形態に係る推定処理の流れを示すフローチャートである。本処理は、上述した学習処理により生成された学習モデルを用いて非コネクテッドカー400の対象位置への到達時間を推定し、通知が必要なコネクテッドカー300に通知を行うために、情報処理装置100によって実行される。また、情報処理装置100が、例えば、監視カメラ200やコネクテッドカー300によって検出された非コネクテッドカー400の位置情報および速度を受信することをトリガーに開始される。
 まず、図10に示すように、情報処理装置100の受信部131は、カメラ検出情報記憶部121に記憶された非コネクテッドカー400の位置情報および速度を受信する(ステップS201)。これら位置情報および速度は、上述したように、監視カメラ200またはコネクテッドカー300によって検出され、検出した監視カメラ200またはコネクテッドカー300によって情報処理装置100に送信される情報である。
 次に、情報処理装置100の推定部134は、受信部131によって受信された非コネクテッドカー400の位置情報および速度を、上述した学習処理により生成された学習モデルに入力する。そして、推定部134は、当該学習モデルから出力される到達時間を対象位置までの非コネクテッドカー400の到達時間と推定する(ステップS202)。
 次に、情報処理装置100の通知部135は、対象位置、および推定部134によって推定された非コネクテッドカー400の対象位置までの到達時間に少なくとも基づいて、通知が必要なコネクテッドカー300を検索する(ステップS203)。通知が必要なコネクテッドカー300とは、上述したように、例えば、非コネクテッドカー400が対象位置に到達する時刻に対象位置から300m以内にいるコネクテッドカー300である。
 次に、通知部135は、通知が必要なコネクテッドカー300に、例えば、非コネクテッドカー400の存在を知らせる情報を通知する(ステップS204)。ステップS204の後、本処理は終了する。
〔7.変形例〕
 次に、実施形態に係る情報処理装置100の推定処理の変形例について説明する。図11は、実施形態に係る推定処理の変形例を示す図である。図11に示すように、例えば、監視カメラ200-1が時刻t21に非コネクテッドカー400と共に、例えば、非コネクテッドカー400の前後を走るコネクテッドカー300-1を検出したとする。この場合、情報処理装置100は、コネクテッドカー300-1から送信されてくるGNSS位置情報およびコネクテッドカー300-1の速度を学習モデルに入力することで出力される到達時間を、非コネクテッドカー400が時刻t21にいた位置から対象位置(例えば、時刻t24に非コネクテッドカー400がいる位置)までの到達時間と推定する。当該推定は、非コネクテッドカー400の位置の特定にコネクテッドカー300-1のGNSS位置情報を用いるため、監視カメラ200で検出された非コネクテッドカー400の位置情報を用いるよりも正確な推定を行うことができる。
〔8.効果〕
 上述してきたように、実施形態に係る情報処理装置100は、受信部131、算出部132、および推定部134を有する。受信部131は、カメラ(監視カメラ200および/または別のコネクテッドカー300)で検出されたコネクテッドカー300の第1の位置情報および第1の速度をカメラから受信する。また、受信部131は、コネクテッドカー300から第3の位置情報を受信する。算出部132は、第1の位置情報が示す位置から第3の位置情報が示す位置までの第1の到達時間を算出する。また、受信部131は、カメラで検出された非コネクテッドカー400の第2の位置情報および第2の速度を受信する。推定部134は、第1の速度、第1の到達時間、第2の位置情報、および第2の速度に基づいて、第2の位置情報が示す位置から第3の位置情報が示す位置までの非コネクテッドカー400の第2の到達時間を推定する。
 このように、実施形態に係る情報処理装置100は、コネクテッドカー300の速度、カメラで検出されたコネクテッドカー300の位置から対象位置までの到達時間、ならびにカメラで検出された非コネクテッドカー400の位置情報および速度に基づいて、非コネクテッドカー400の対象位置までの到達時間を推定する。これにより、カメラにより検出することができない対象位置までの非コネクテッドカー400の到達時間を推定することができる。
 また、実施形態に係る情報処理装置100は、第1の位置情報および第1の速度を入力、ならびに第1の到達時間を正解とする教師データを学習し、学習モデルを生成する学習部133をさらに備え、情報処理装置100の推定部134は、第2の位置情報および第2の速度を学習モデルに入力し、出力される到達時間を第2の到達時間と推定する。
 このように、実施形態に係る情報処理装置100は、カメラで検出されたコネクテッドカー300の位置情報および速度を入力、コネクテッドカー300の対象位置までの到達時間を正解とする教師データによる学習モデルを用いて非コネクテッドカー400の対象位置までの到達時間を推定する。これにより、カメラにより検出することができない対象位置までの非コネクテッドカー400の到達時間をより正確に推定することができる。
 また、実施形態に係る情報処理装置100の学習部133は、コネクテッドカー300の第1の属性情報、ならびにコネクテッドカー300がいる場所の第1の環境情報および第1の周辺情報の少なくとも1つを教師データの入力としてさらに学習し、推定部134は、非コネクテッドカー400の第2の属性情報、ならびに非コネクテッドカー400がいる場所の第2の環境情報および第2の周辺情報の少なくとも1つを学習モデルにさらに入力することで出力される到達時間を第2の到達時間と推定する。
 このように、実施形態に係る情報処理装置100は、学習モデルにさらに様々な条件を入力して学習させることにより、様々な条件下でより正確に非コネクテッドカー400の到達時間を推定することができる。
 また、実施形態に係る情報処理装置100の学習部133は、コネクテッドカー300の第1の属性情報として、コネクテッドカー300の第1のサイズ、第1の車種、第1の乗員の構成、第1のウインカーの状態、および第1のハザードランプの状態、コネクテッドカー300の第1の環境情報として、コネクテッドカー300がいる第1のレーンおよび第1の路面状態、ならびにコネクテッドカー300がいる場所の第1の天候、第1の気温、および第1の湿度、コネクテッドカー300の第1の周辺情報として、コネクテッドカー300に対する第1の前方車の有無、ならびにコネクテッドカー300がいる場所周辺の第1の信号の状態、第1の渋滞状況、および第1の工事や第1のイベントの有無の少なくとも1つを教師データの入力としてさらに学習し、推定部134は、非コネクテッドカー400の第2の属性情報として、非コネクテッドカー400の第2のサイズ、第2の車種、第2の乗員の構成、第2のウインカーの状態、および第2のハザードランプの状態、非コネクテッドカー400の環境情報として、非コネクテッドカー400がいる第2のレーンおよび第2の路面状態、ならびに非コネクテッドカー400がいる場所の第2の天候、第2の気温、および第2の湿度、非コネクテッドカー400の周辺情報として、非コネクテッドカー400に対する第2の前方車の有無、ならびに非コネクテッドカー400がいる場所周辺の第2の信号の状態、第2の渋滞状況、および第2の工事や第2のイベントの有無の少なくとも1つを学習モデルにさらに入力することで出力される到達時間を第2の到達時間と推定する。
 このように、実施形態に係る情報処理装置100は、学習モデルにさらに様々な条件を入力して学習させることにより、様々な条件下でより正確に非コネクテッドカー400の到達時間を推定することができる。
 また、実施形態に係るカメラは、位置の異なる複数のカメラである。
 このように、実施形態に係る情報処理装置100は、位置の異なる複数のカメラにより検出されたコネクテッドカー300および非コネクテッドカー400の位置情報および速度を用いて、対象位置への到達時間を推定する。これにより、カメラにより検出することができない対象位置までの非コネクテッドカー400の到達時間をより正確に推定することができる。
 また、実施形態に係るカメラは、カメラは、第2のコネクテッドカー300の車載カメラである。
 このように、実施形態に係る情報処理装置100は、車載カメラにより検出されたコネクテッドカー300および非コネクテッドカー400の位置情報および速度を用いて、対象位置への到達時間を推定する。これにより、監視カメラ200が設置されておらず、検出できないような位置にいる非コネクテッドカー400の対象位置への到達時間を推定することができる。
 また、実施形態に係る情報処理装置100の受信部131は、非コネクテッドカー400と共にカメラで検出された第3のコネクテッドカー300の第4の位置情報を受信し、実施形態に係る情報処理装置100の推定部134は、第4の位置情報にさらに基づいて、第2の到達時間を推定する。
 このように、実施形態に係る情報処理装置100は、非コネクテッドカー400と共にカメラで検出されたコネクテッドカー300の位置情報に基づいて、非コネクテッドカー400の対象位置への到達時間を推定する。これにより、非コネクテッドカー400の位置の推定を、非コネクテッドカー400のカメラで検出された位置情報を用いるよりも正確に行うことができる。
 また、実施形態に係る情報処理装置100の受信部131は、第3の位置情報として、コネクテッドカー300が全地球型航法衛星システム(GNSS)から受信した第1のGNSS位置情報を受信し、第4の位置情報として、第3のコネクテッドカー300がGNSSから受信した第2のGNSS位置情報を受信する。
 このように、コネクテッドカー300の位置情報にGNSS位置情報を用いることで、非コネクテッドカー400の対象位置への到達時間をより正確に推定することができる。
 また、実施形態に係る情報処理装置100は、第3の位置情報および第2の到達時間に少なくとも基づいて、通知が必要な第4のコネクテッドカー300を検索し、第4のコネクテッドカー300に非コネクテッドカー400に関する情報を通知する通知部135をさらに備える。
 このように、実施形態に係る情報処理装置100は、通知が必要なコネクテッドカー300を検索し、非コネクテッドカー400に関する情報を通知することにより、非コネクテッドカー400による事故を未然に防ぐことができる。
 また、実施形態に係る情報処理装置100は、受信部131、および推定部134を有する。受信部131は、カメラ(監視カメラ200および/または別のコネクテッドカー300)で検出された非コネクテッドカー400の第2の位置情報および第2の速度をカメラから受信する。推定部134は、カメラで検出されたコネクテッドカー300の第1の位置情報および第1の速度、ならびに第1の位置情報が示す位置から、コネクテッドカー300から受信された第3の位置情報が示す位置までの第1の到達時間に基づいて生成された学習モデルを用いて、第2の位置情報が示す位置から第3の位置情報が示す位置までの非コネクテッドカー400の第2の到達時間を推定する。
 このように、実施形態に係る情報処理装置100は、コネクテッドカー300の速度、カメラで検出されたコネクテッドカー300の位置から対象位置までの到達時間、ならびにカメラで検出された非コネクテッドカー400の位置情報および速度に基づいて生成された学習モデルを用いて、非コネクテッドカー400の対象位置までの到達時間を推定する。これにより、カメラにより検出することができない対象位置までの非コネクテッドカー400の到達時間を推定することができる。
〔9.ハードウェア構成〕
 上述してきた情報処理装置100は、例えば、図12に示すような構成のコンピュータ1000によって実現される。図12は、各装置の機能を実現するコンピュータの一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM1300、HDD1400、通信インターフェイス(I/F)1500、入出力インターフェイス(I/F)1600、およびメディアインターフェイス(I/F)1700を有する。
 CPU1100は、ROM1300またはHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるブートプログラムや、コンピュータ1000のハードウェアに依存するプログラムなどを格納する。
 HDD1400は、CPU1100によって実行されるプログラム、および、プログラムによって使用されるデータなどを格納する。通信インターフェイス1500は、ネットワークNを介して他の機器からデータを受信してCPU1100へ送り、CPU1100が収集したデータを、ネットワークNを介して他の機器へ送信する。
 CPU1100は、入出力インターフェイス1600を介して、ディスプレイやプリンタなどの出力装置、および、キーボードやマウスなどの入力装置を制御する。CPU1100は、入出力インターフェイス1600を介して、入力装置からデータを入力する。また、CPU1100は、収集したデータを、入出力インターフェイス1600を介して出力装置へ出力する。
 メディアインターフェイス1700は、記録媒体1800に格納されたプログラムまたはデータを読み取り、RAM1200を介してCPU1100に提供する。CPU1100は、プログラムを、メディアインターフェイス1700を介して記録媒体1800からRAM1200上にロードし、ロードしたプログラムを実行する。記録媒体1800は、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)などの光学記録媒体、MO(Magneto-Optical disk)などの光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリなどである。
 例えば、コンピュータ1000が情報処理装置100として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、制御部130の機能を実現する。コンピュータ1000のCPU1100は、これらのプログラムを記録媒体1800から読み取って実行するが、他の例として、他の装置からネットワークNを介してこれらのプログラムを受信してもよい。
 以上、本願の実施形態を図面に基づいて詳細に説明したが、これらは例示であり、発明の開示の行に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。
〔10.その他〕
 また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
 また、上述してきた実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
 また、上述してきた「部(section、module、unit)」は、「手段」や「回路」などに読み替えることができる。例えば、受信部は、受信手段や受信回路に読み替えることができる。
 100 情報処理装置
 110 通信部
 120 記憶部
 121 カメラ検出情報記憶部
 122 GNNS位置情報記憶部
 123 通知内容情報記憶部
 130 制御部
 131 受信部
 132 算出部
 133 学習部
 134 推定部
 135 通知部
 200 監視カメラ
 300 コネクテッドカー
 400 非コネクテッドカー
 N   ネットワーク

Claims (20)

  1.  カメラで検出されたコネクテッドカーの第1の位置情報および第1の速度を前記カメラから受信し、
     前記コネクテッドカーから第3の位置情報を受信する第1の受信部と、
     前記第1の位置情報が示す位置から前記第3の位置情報が示す位置までの第1の到達時間を算出する算出部と、
     前記カメラで検出された非コネクテッドカーの第2の位置情報および第2の速度を前記カメラから受信する第2の受信部と、
     前記第1の速度、前記第1の到達時間、前記第2の位置情報、および前記第2の速度に基づいて、前記第2の位置情報が示す位置から前記第3の位置情報が示す位置までの前記非コネクテッドカーの第2の到達時間を推定する推定部と
     を備えたことを特徴とする情報処理装置。
  2.  前記第1の位置情報および前記第1の速度を入力、ならびに前記第1の到達時間を正解とする教師データを学習し、学習モデルを生成する学習部をさらに備え、
     前記推定部は、前記第2の位置情報および前記第2の速度を前記学習モデルに入力し、出力される到達時間を前記第2の到達時間と推定することを特徴とする請求項1に記載の情報処理装置。
  3.  前記学習部は、前記コネクテッドカーの第1の属性情報、ならびに前記コネクテッドカーがいる場所の第1の環境情報および第1の周辺情報の少なくとも1つを前記教師データの入力としてさらに学習し、
     前記推定部は、前記非コネクテッドカーの第2の属性情報、ならびに前記非コネクテッドカーがいる場所の第2の環境情報および第2の周辺情報の少なくとも1つを前記学習モデルにさらに入力することで出力される到達時間を前記第2の到達時間と推定することを特徴とする請求項2に記載の情報処理装置。
  4.  前記学習部は、前記第1の属性情報として、前記コネクテッドカーの第1のサイズ、第1の車種、第1の乗員の構成、第1のウインカーの状態、および第1のハザードランプの状態、前記第1の環境情報として、前記コネクテッドカーがいる第1のレーンおよび第1の路面状態、ならびに前記コネクテッドカーがいる場所の第1の天候、第1の気温、および第1の湿度、前記第1の周辺情報として、前記コネクテッドカーに対する第1の前方車の有無、ならびに前記コネクテッドカーがいる場所周辺の第1の信号の状態、第1の渋滞状況、および第1の工事や第1のイベントの有無の少なくとも1つを前記教師データの入力としてさらに学習し、
     前記推定部は、前記第2の属性情報として、前記非コネクテッドカーの第2のサイズ、第2の車種、第2の乗員の構成、第2のウインカーの状態、および第2のハザードランプの状態、前記第2の環境情報として、前記非コネクテッドカーがいる第2のレーンおよび第2の路面状態、ならびに前記非コネクテッドカーがいる場所の第2の天候、第2の気温、および第2の湿度、前記第2の周辺情報として、前記非コネクテッドカーに対する第2の前方車の有無、ならびに前記非コネクテッドカーがいる場所周辺の第2の信号の状態、第2の渋滞状況、および第2の工事や第2のイベントの有無の少なくとも1つを前記学習モデルにさらに入力することで出力される到達時間を前記第2の到達時間と推定することを特徴とする請求項3に記載の情報処理装置。
  5.  前記カメラは、位置の異なる複数のカメラであることを特徴とする請求項1乃至4のいずれか一項に記載の情報処理装置。
  6.  前記カメラは、第2のコネクテッドカーの車載カメラであることを特徴とする請求項1乃至4のいずれか一項に記載の情報処理装置。
  7.  前記第2の受信部は、前記非コネクテッドカーと共に前記カメラで検出された第3のコネクテッドカーの第4の位置情報を受信し、
     前記推定部は、前記第4の位置情報にさらに基づいて、前記第2の到達時間を推定することを特徴とする請求項1乃至5のいずれか一項に記載の情報処理装置。
  8.  前記第2の受信部は、前記非コネクテッドカーと共に前記カメラで検出された第3のコネクテッドカーの第4の位置情報を受信し、
     前記推定部は、前記第4の位置情報にさらに基づいて、前記第2の到達時間を推定することを特徴とする請求項6に記載の情報処理装置。
  9.  前記第1の受信部は、前記第3の位置情報として、前記コネクテッドカーが全地球型航法衛星システム(GNSS)から受信した第1のGNSS位置情報を受信し、
     前記第2の受信部は、前記第4の位置情報として、前記第3のコネクテッドカーがGNSSから受信した第2のGNSS位置情報を受信する
     ことを特徴とする請求項7に記載の情報処理装置。
  10.  前記第1の受信部は、前記第3の位置情報として、前記コネクテッドカーが全地球型航法衛星システム(GNSS)から受信した第1のGNSS位置情報を受信し、
     前記第2の受信部は、前記第4の位置情報として、前記第3のコネクテッドカーがGNSSから受信した第2のGNSS位置情報を受信する
     ことを特徴とする請求項8に記載の情報処理装置。
  11.  前記第3の位置情報および前記第2の到達時間に少なくとも基づいて、通知が必要な第4のコネクテッドカーを検索し、前記第4のコネクテッドカーに前記非コネクテッドカーに関する情報を通知する通知部をさらに備えたことを特徴とする請求項1乃至4のいずれか一項に記載の情報処理装置。
  12.  前記第3の位置情報および前記第2の到達時間に少なくとも基づいて、通知が必要な第4のコネクテッドカーを検索し、前記第4のコネクテッドカーに前記非コネクテッドカーに関する情報を通知する通知部をさらに備えたことを特徴とする請求項5に記載の情報処理装置。
  13.  前記第3の位置情報および前記第2の到達時間に少なくとも基づいて、通知が必要な第4のコネクテッドカーを検索し、前記第4のコネクテッドカーに前記非コネクテッドカーに関する情報を通知する通知部をさらに備えたことを特徴とする請求項6に記載の情報処理装置。
  14.  前記第3の位置情報および前記第2の到達時間に少なくとも基づいて、通知が必要な第4のコネクテッドカーを検索し、前記第4のコネクテッドカーに前記非コネクテッドカーに関する情報を通知する通知部をさらに備えたことを特徴とする請求項7に記載の情報処理装置。
  15.  前記第3の位置情報および前記第2の到達時間に少なくとも基づいて、通知が必要な第4のコネクテッドカーを検索し、前記第4のコネクテッドカーに前記非コネクテッドカーに関する情報を通知する通知部をさらに備えたことを特徴とする請求項8に記載の情報処理装置。
  16.  前記第3の位置情報および前記第2の到達時間に少なくとも基づいて、通知が必要な第4のコネクテッドカーを検索し、前記第4のコネクテッドカーに前記非コネクテッドカーに関する情報を通知する通知部をさらに備えたことを特徴とする請求項9に記載の情報処理装置。
  17.  前記第3の位置情報および前記第2の到達時間に少なくとも基づいて、通知が必要な第4のコネクテッドカーを検索し、前記第4のコネクテッドカーに前記非コネクテッドカーに関する情報を通知する通知部をさらに備えたことを特徴とする請求項10に記載の情報処理装置。
  18.  情報処理装置が、
     カメラで検出されたコネクテッドカーの第1の位置情報および第1の速度を前記カメラから受信し、
     前記カメラで検出された非コネクテッドカーの第2の位置情報および第2の速度を前記カメラから受信し、
     前記コネクテッドカーから第3の位置情報を受信し、
     前記第1の位置情報が示す位置から前記第3の位置情報が示す位置までの第1の到達時間を算出し、
     前記第1の速度、前記第1の到達時間、前記第2の位置情報、および前記第2の速度に基づいて、前記第2の位置情報が示す位置から前記第3の位置情報が示す位置までの前記非コネクテッドカーの第2の到達時間を推定する
     処理を実行することを特徴とする情報処理方法。
  19.  情報処理装置に、
     カメラで検出されたコネクテッドカーの第1の位置情報および第1の速度を前記カメラから受信し、
     前記カメラで検出された非コネクテッドカーの第2の位置情報および第2の速度を前記カメラから受信し、
     前記コネクテッドカーから第3の位置情報を受信し、
     前記第1の位置情報が示す位置から前記第3の位置情報が示す位置までの第1の到達時間を算出し、
     前記第1の速度、前記第1の到達時間、前記第2の位置情報、および前記第2の速度に基づいて、前記第2の位置情報が示す位置から前記第3の位置情報が示す位置までの前記非コネクテッドカーの第2の到達時間を推定する
     処理を実行させるコンピュータ実行可能プログラムを記録したことを特徴とする記録媒体。
  20.  カメラで検出された非コネクテッドカーの第2の位置情報および第2の速度をカメラから受信する受信部と、
     前記カメラで検出されたコネクテッドカーの第1の位置情報および第1の速度、ならびに前記第1の位置情報が示す位置から、前記コネクテッドカーから受信された第3の位置情報が示す位置までの第1の到達時間に基づいて生成された学習モデルを用いて、前記第2の位置情報が示す位置から前記第3の位置情報が示す位置までの前記非コネクテッドカーの第2の到達時間を推定する推定部と
     を備えたことを特徴とする車両到達時間推定装置。
PCT/JP2021/001723 2020-02-19 2021-01-19 情報処理装置、情報処理方法、および記録媒体、ならびに車両到達時間推定装置 WO2021166527A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020026665A JP6986584B2 (ja) 2020-02-19 2020-02-19 情報処理装置、情報処理方法、および情報処理プログラム、ならびに車両到達時間推定装置
JP2020-026665 2020-02-19

Publications (1)

Publication Number Publication Date
WO2021166527A1 true WO2021166527A1 (ja) 2021-08-26

Family

ID=77391927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001723 WO2021166527A1 (ja) 2020-02-19 2021-01-19 情報処理装置、情報処理方法、および記録媒体、ならびに車両到達時間推定装置

Country Status (2)

Country Link
JP (1) JP6986584B2 (ja)
WO (1) WO2021166527A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7449983B2 (ja) 2022-07-06 2024-03-14 ソフトバンク株式会社 サーバ、コネクティッド車両及び車両制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058100A (ja) * 2004-08-19 2006-03-02 Fujitsu Ten Ltd 運転支援装置、運転支援システムおよび運転支援方法
WO2018163407A1 (ja) * 2017-03-10 2018-09-13 三菱電機株式会社 情報処理装置、情報処理方法及び情報処理プログラム
JP2019114042A (ja) * 2017-12-22 2019-07-11 Kddi株式会社 移動対象物における所定事象の発生傾向を推定するプログラム、装置及び方法
JP2019175004A (ja) * 2018-03-27 2019-10-10 Necプラットフォームズ株式会社 車両誘導制御装置、車両誘導システム、車両誘導制御方法及びプログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3160438B2 (ja) * 1993-09-29 2001-04-25 株式会社東芝 交通流予測装置
JP3099934B2 (ja) * 1994-09-08 2000-10-16 株式会社東芝 走行所要時間予測装置
JPH09212788A (ja) * 1996-02-01 1997-08-15 Toshiba Corp 所要時間予測装置
JP3904629B2 (ja) * 1996-04-01 2007-04-11 松下電器産業株式会社 旅行時間予測装置及び旅行時間予測方法
JPH1083496A (ja) * 1996-09-09 1998-03-31 Mitsubishi Electric Corp 旅行時間予測装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058100A (ja) * 2004-08-19 2006-03-02 Fujitsu Ten Ltd 運転支援装置、運転支援システムおよび運転支援方法
WO2018163407A1 (ja) * 2017-03-10 2018-09-13 三菱電機株式会社 情報処理装置、情報処理方法及び情報処理プログラム
JP2019114042A (ja) * 2017-12-22 2019-07-11 Kddi株式会社 移動対象物における所定事象の発生傾向を推定するプログラム、装置及び方法
JP2019175004A (ja) * 2018-03-27 2019-10-10 Necプラットフォームズ株式会社 車両誘導制御装置、車両誘導システム、車両誘導制御方法及びプログラム

Also Published As

Publication number Publication date
JP6986584B2 (ja) 2021-12-22
JP2021131731A (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
US20200026289A1 (en) Distributed traffic safety consensus
JP7088000B2 (ja) 交通情報処理装置
US11685371B2 (en) Extension to safety protocols for autonomous vehicle operation
BR112014006445B1 (pt) Plataforma computadorizada para o desenvolvimento e implementação de aplicações e serviços telemétricos de veículos acionados a sensor
US11408739B2 (en) Location correction utilizing vehicle communication networks
US20230154332A1 (en) Predicting traffic violation hotspots using map features and sensors data
US11587366B1 (en) Systems and methods for selecting locations to validate automated vehicle data transmission
US11904854B2 (en) Systems and methods for modeling pedestrian activity
US20230204378A1 (en) Detecting and monitoring dangerous driving conditions
US20210370984A1 (en) System and method for estimating take-over time
WO2021166527A1 (ja) 情報処理装置、情報処理方法、および記録媒体、ならびに車両到達時間推定装置
US20230033672A1 (en) Determining traffic violation hotspots
US11935417B2 (en) Systems and methods for cooperatively managing mixed traffic at an intersection
KR102144778B1 (ko) 실시간 업데이트된 도로정보 제공방법 및 시스템
US20240025394A1 (en) System for parking an autonomous vehicle
CN113424209A (zh) 使用深度学习多预测器融合和贝叶斯优化的轨迹预测
US20230090338A1 (en) Method and system for evaluation and development of automated driving system features or functions
KR102350197B1 (ko) 주행경로 설정장치 및 주행경로 설정방법
US20210341926A1 (en) Dynamic tire rotation during collision
KR20220153708A (ko) 제어기를 제어하는 방법 및 이를 위한 차량용 통합제어기
CN113170092A (zh) 图像处理装置、图像处理方法以及图像处理系统
US20240184258A1 (en) Systems and techniques for validating a simulation framework
US20230298469A1 (en) Apparatus and method for cooperative escape zone detection
US20240109558A1 (en) Modification of the planned path of an autonomous vehicle to converge to the actual position
US20240144743A1 (en) Transducer-based suspension health monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757453

Country of ref document: EP

Kind code of ref document: A1