WO2021166341A1 - Power conversion unit and power conversion device - Google Patents

Power conversion unit and power conversion device Download PDF

Info

Publication number
WO2021166341A1
WO2021166341A1 PCT/JP2020/042552 JP2020042552W WO2021166341A1 WO 2021166341 A1 WO2021166341 A1 WO 2021166341A1 JP 2020042552 W JP2020042552 W JP 2020042552W WO 2021166341 A1 WO2021166341 A1 WO 2021166341A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
conversion unit
cooling
primary side
secondary side
Prior art date
Application number
PCT/JP2020/042552
Other languages
French (fr)
Japanese (ja)
Inventor
勇一郎 吉武
亮 茂木
悟 天羽
央 上妻
中津 欣也
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021166341A1 publication Critical patent/WO2021166341A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a power conversion unit and a power conversion device.
  • CO 2 emission regulations are being tightened around the world to curb global warming.
  • electrification of power systems is being actively promoted.
  • future power electronics devices power electronics devices
  • output density power electronics device output / power electronics device volume
  • the partial discharge generation voltage drops under low pressure, which is encountered by high-altitude aircraft.
  • the partial discharge start voltage is significantly lower than that under atmospheric pressure.
  • Patent Document 1 and Patent Document 2 are related to these techniques.
  • Patent Document 1 provides a power conversion device capable of achieving both "[problem] suppression of surge voltage, high heat dissipation of SW element, and suppression of ringing.
  • Two The element modules 10H and 10L of the SW element are laminated in the thickness direction so that the side surfaces S1 are parallel to each other in the same direction via the insulating layer 20, and are already connected to the positive terminal (+) of one SW element.
  • Patent Document 1 discloses a technique of a power conversion device in which two switching elements are laminated in the height direction, a grounding conductor is provided inside, and a cooling path is provided in the grounding conductor.
  • the propulsion system (300) for an aircraft (10) includes a power supply (302) and an electric motor.
  • the propulsion system (300) is also driven by an electric motor (312), including an electric propulsion assembly (304) having (312) and a propulsion unit (314).
  • a power bus (306) that electrically connects to the electric propulsion assembly (304).
  • the power supply (302) is configured to power the power bus (306) and the power bus (306) is 800. It is configured to transmit power to the electric propulsion assembly (304) at a voltage above the volt.
  • Patent Document 2 discloses a propulsion system for an electric motor in which electric power is passed through an inverter converter controller by an electric power bus corresponding to a high voltage exceeding 800 V, and then the motor is driven by the converted electric power. ing.
  • the insulation configuration that suppresses partial discharge and the installation of a cooling mechanism to cope with the heat generation of the power bus for electric motors that operate at low pressure and high voltage.
  • the rated voltage is 1 kV or less, that is, in a power conversion device in which the inside of the unit is air-insulated, the structure is effective in consideration of the balance between the insulating property and the cooling property of the entire unit.
  • the loss cost at the time of failure is high because all the replacements are performed.
  • regular maintenance for corrosion of the cooling path is impossible.
  • Patent Document 2 the insulation structure that achieves both high cooling performance and high insulation performance is insufficient only by the partial discharge countermeasure and the cooling countermeasure of the electric power bus, and the electric motor and the electric power converter are placed in a low pressure environment (for example, high altitude). There is a problem (problem) that it is difficult to operate on an aircraft.
  • An object (object) of the present invention is to provide a power conversion unit (power conversion device) having a cooling structure for improving the output density and reliability of the power conversion unit in order to cope with the above problems.
  • the power conversion unit of the present invention includes a primary side unit having a switching element and a circuit board, a primary side housing including the primary side circuit board, and a switching element.
  • a secondary side unit including a secondary side circuit body having a circuit board, a secondary side housing for accommodating the secondary side circuit board, the primary side circuit body, and the secondary side circuit body. It is characterized in that it is provided with a cooling passage by a cooling pipe arranged between the two.
  • a power conversion unit (power conversion device) having a cooling structure for improving the output density and reliability of the power conversion unit (power conversion device).
  • FIG. 1A shows typically the structural example of the electric power conversion unit which concerns on 1st Embodiment of this invention by the cross-sectional structure of the side surface. It is a figure which shows typically the structural example in which the electric power conversion unit which concerns on 1st Embodiment of this invention is housed in the frame in a panel, in the cross-sectional structure of a side surface. It is a figure which shows typically the appearance of the power conversion unit shown in FIG. 1A as a bird's-eye view. It is a figure which shows typically the cross-sectional structure of the power conversion unit shown in FIG. 1A as a bird's-eye view.
  • FIG. 4A shows typically the appearance of the power conversion unit shown in FIG. 4A as a bird's-eye view. It is a figure which shows typically the cross-sectional structure of the power conversion unit shown in FIG. 4A as a bird's-eye view.
  • FIG. 1A is a diagram schematically showing a configuration example of the power conversion unit 100 according to the first embodiment of the present invention in a cross-sectional structure on the side surface.
  • FIG. 1B is a diagram schematically showing a configuration example in which the power conversion unit 100 according to the first embodiment of the present invention is housed in the in-panel frames 1001A and 1001B by the cross-sectional structure of the side surface.
  • FIG. 2A is a diagram schematically showing the appearance of the power conversion unit 100 shown in FIG. 1A as a bird's-eye view.
  • FIG. 2B is a diagram schematically showing a cross-sectional structure of the power conversion unit 100 shown in FIG. 1A as a bird's-eye view.
  • the power conversion unit 100 includes a primary side unit 10A, a secondary side unit 10B, and a cooling path 32 by a cooling pipe 31.
  • the primary side unit 10A includes a primary side circuit body 11A and a primary side housing 24A.
  • the primary side circuit body 11A is equipped with an electric circuit (primary side circuit board 22A, a plurality of switching elements 21A, and electric / electronic components such as capacitors and reactors (not shown in the cross section of FIG. 1)). Electronic circuit).
  • the number and arrangement of the plurality of switching elements 21A are schematically shown for convenience of notation, and do not directly correspond to the arrangement (arrangement) of the switching elements in FIG. 2B described later.
  • a portion having high electrical stress such as around the switching element of the primary circuit body 11A is sealed with silicone gel 23A.
  • the primary side circuit body 11A is housed in the primary side housing 24A.
  • the secondary side unit 10B includes a secondary side circuit body 11B and a secondary side housing 24B.
  • the secondary side circuit body 11B comprises a secondary side circuit board 22B, a plurality of switching elements 21B, and electric / electronic components such as capacitors and reactors (not shown) to form an electric circuit (electronic circuit).
  • Electric / electronic components such as capacitors and reactors (not shown) to form an electric circuit (electronic circuit).
  • Silicone gel 23B is used to seal the portion of the secondary circuit body 11B where electrical stress is high, such as around the switching element.
  • the secondary side circuit body 11B is housed in the secondary side housing 24B.
  • the cooling passage 32 provided by the cooling pipe 31 is arranged so as to be sandwiched between the primary side unit 10A and the secondary side unit 10B. Further, as shown in FIG. 1A, in the primary side unit 10A and the secondary side unit 10B, the cooling passage 32 is provided on the plane having the widest cross-sectional area. With this configuration, it is possible to secure the maximum area where the cooling medium is filled in the cooling path (liquid cooling path) 32.
  • the primary side unit 10A and the secondary side unit 10B are arranged so as to have a symmetrical shape with the center of the cooling path 32 as the center line 40. By arranging in this way, it is possible to reduce variations in temperature rise in a plurality of switching elements.
  • the cooling pipes 31 constituting the cooling passage 32 are separately provided in contact with the primary side housing 24A and the secondary side housing 24B at the upper part and the lower part of the center line 40, respectively, and are separately provided with the primary side unit 10A. Combined when assembling the secondary side unit 10B. Further, the cooling pipe 31 constituting the cooling passage 32 has a ground potential (ground potential). Metals such as aluminum, stainless steel, and copper are applied to the structural members of the cooling pipe 31 constituting the cooling passage 32.
  • the refrigerant flowing in the cooling passage (liquid cooling passage) 32 is a liquid, and examples thereof include water, mineral oil, fluorinert, and vegetable oil.
  • a solid, liquid, or gel-like material is used, and an air region (gas region) does not exist.
  • the silicone gel 23A is applied to a portion having high electrical stress such as around the switching element 21A.
  • the electrical stress is slightly low in the area where high voltage is directly applied or in the unit (primary side unit 10A, secondary side unit 10B) that does not come into contact with the grounding part.
  • a simpler insulating material is used. It is also possible to apply.
  • the simple insulating material include PPS (Polyphenylene sulfide) resin, epoxy resin, and unsaturated polyester.
  • FIG. 1B is a diagram schematically showing a configuration example in the case where the power conversion unit 100 shown in FIG. 1A is housed in the in-panel frames 1001A and 1001B as a power conversion device, in a cross-sectional structure on the side surface, as described above. Is.
  • the power conversion unit 100 is actually used by being housed in and fixed to the in-panel frames 1001A and 1001B as the power conversion device.
  • FIG. 1B is different from FIG. 1A in that the in-panel frames 1001A and 1001B are shown, and the other parts are the same as those in FIG. 1A.
  • FIG. 2A is a diagram schematically showing the appearance of the power conversion unit 100 shown in FIG. 1A as a bird's-eye view.
  • the power conversion unit 100 is configured by combining the primary side unit 10A and the secondary side unit 10B.
  • the joint (joint with a built-in liquid cooling tube) 61 serves to join the primary side unit 10A and the secondary side unit 10B, and is also connected to the cooling passage 32 (FIG. 1) inside to pass the cooling medium through the liquid cooling tube (non-liquid cooling tube). (Shown).
  • a plurality of power conversion units are connected between the plurality of power conversion units 100 via a joint (joint with a built-in liquid cooling tube) 61 and a cooling pipeline (62: FIG. 3). 100 is also cooled.
  • a joint joint with a built-in liquid cooling tube
  • a cooling pipeline 62: FIG. 3
  • 100 is also cooled.
  • the IA-IA axis shows the cross section of FIG. 1A
  • the IIB-IIB axis shows the cross section of FIG. 2B described later.
  • FIG. 2B is a diagram schematically showing a cross-sectional structure of the power conversion unit 100 shown in FIG. 1A as a bird's-eye view, as described above.
  • the cooling passage 32 provided by the cooling pipe 31 is provided on a vertically symmetrical dividing surface of the primary side unit 10A and the secondary side unit 10B.
  • the plurality of switching elements 21A are housed in the primary side housing 24A.
  • the primary side housing 24A is provided with a wiring hole 71 through which electrical wiring from the outside of the primary side unit 10A is passed.
  • the number and arrangement of the plurality of switching elements 21A are schematically shown for convenience of notation, and do not directly correspond to the arrangement (arrangement) of the switching elements in FIG. 1A described above.
  • a cooling path (liquid cooling path) 32 is provided between the primary side unit 10A (input side) and the secondary side unit 10B (output side) to cool the power conversion unit 100. ..
  • the cooling performance for increasing the output density of the power conversion unit 100 (power conversion device) and the insulation reliability under low atmospheric pressure are ensured.
  • the output density of the power conversion unit 100 (power conversion device) is 10 [kW / cc] or more, and the rated voltage is 1 [kV] or more.
  • a circuit configuration example of the power conversion unit 100 and a circuit configuration example of a power conversion device combining the power conversion unit 100 will be described later.
  • FIG. 3 is a diagram schematically showing an outline of a device configuration for flowing a cooling medium (cooling liquid) through a cooling passage (liquid cooling passage) 32 by a cooling pipe 31 (FIG. 1A) of the power conversion unit 100.
  • the in-panel frames 1001A and 1001B (FIG. 1B) are not shown.
  • the joint (joint with a built-in liquid cooling tube) 61 of the power conversion unit 100 is connected to one of the cooling pipelines (cooling pipe connecting portion) 62. Further, the other end of the cooling pipeline 62 is connected to the pump 65.
  • the pump 65 sends a cooling medium (cooling liquid) to the heat exchanger 66 via the cooling pipeline 63.
  • the heat exchanger 66 cools the cooling medium and sends the cooling medium from the other joint (liquid cooling tube built-in joint) 61 of the power conversion unit 100 to the inside of the power conversion unit 100 via the cooling pipeline 64.
  • the power conversion unit 100 is cooled by the above device configuration. In addition, in FIG. 3, the case of one power conversion unit 100 is shown. When there are a plurality of power conversion units 100 (multiple units), a plurality of power conversion units are connected between the plurality of power conversion units 100 via a joint (joint with a built-in liquid cooling tube) 61 and a cooling pipeline (62, 64). 100 is also cooled.
  • a cooling passage (liquid cooling passage) 32 is provided between the primary side unit 10A and the secondary side unit 10B to provide the power conversion unit 100. Cooling. Further, the cooling passage 32 is provided on the plane having the widest cross-sectional area at the boundary surface between the primary side unit 10A and the secondary side unit 10B. With this configuration, it is possible to secure the maximum area filled with the cooling medium. By adopting such a structure, the cooling performance for increasing the output density of the power conversion unit 100 (power conversion device) and the insulation reliability under a low pressure are ensured. Further, it is possible to reduce the variation in temperature rise in the plurality of switching elements 21A and 21B.
  • the above-mentioned configuration has an effect of sharing the cooling path 32 to improve the output density of the power conversion device and reducing the weight.
  • the cooling path 32 is provided with the divided surface (40), the corrosion state can be monitored and repaired in order to prevent the cooling path surface in contact with the cooling medium from being corroded.
  • the unit is provided with a dividing surface in the cross section including the cooling passage 32, even if the switching element becomes defective, only one of the divided units can be replaced, as compared with the case where all of the divided units are replaced. The loss cost can be reduced.
  • it is easy to inspect parts other than switching elements and replace defective parts.
  • the silicone gels 23A and 23B are used in the parts having high electrical stress such as around the switching elements 21A and 21B, even if a partial discharge occurs and the solid insulation deteriorates, there is fluidity. Insulation repair can be easily performed by replacing the silicone gel.
  • ⁇ Effect of the first embodiment> According to the power conversion unit of the first embodiment of the present invention, since a cooling path (liquid cooling path) is provided between the primary side unit and the secondary side unit, cooling for increasing the output density is provided. In addition to ensuring improved performance and insulation reliability under low pressure, the output density of the power conversion unit is improved. In addition, it is possible to reduce variations in temperature rise in a plurality of switching elements. Since insulation reliability can be ensured, partial discharge in the space where the substrate of the power conversion unit is arranged can be suppressed, and a highly reliable power conversion unit and a power conversion device can be provided. Further, the cooling path (liquid cooling path) is shared to improve the output density of the power conversion device, which has the effect of reducing the weight.
  • the cooling path (liquid cooling path) is provided with a divided surface, it is possible to monitor and repair the corrosion state of the cooling path surface in contact with the cooling medium. Further, even if the switching element becomes defective, only one of the divided units can be replaced, and the loss cost can be reduced as compared with the case where all of the divided units are replaced. In addition, parts inspection, repair, and replacement of defective parts are easy.
  • FIG. 4A is a diagram schematically showing a configuration example of the power conversion unit 200 according to the second embodiment of the present invention in cross-sectional structure on the side surface.
  • FIG. 4B is a diagram schematically showing a configuration example in which the power conversion unit 200 according to the second embodiment of the present invention is housed in the in-panel frames 1001A and 1001B by the cross-sectional structure of the side surface.
  • FIG. 5A is a diagram schematically showing the appearance of the power conversion unit 200 shown in FIG. 4A as a bird's-eye view.
  • FIG. 5B is a diagram schematically showing a cross-sectional structure of the power conversion unit 200 shown in FIG. 4A as a bird's-eye view.
  • the power conversion unit 200 of the second embodiment in FIG. 4A differs from the power conversion unit 100 of the first embodiment in FIG. 1A at the boundary (division surface) between the primary side unit 10A and the secondary side unit 10B.
  • the leak sensor (leakage detecting means) 51 shown in FIG. 4A is provided, and the O-ring 52 for preventing the leak is further provided.
  • the waterproof mechanism may be mechanically broken due to vibration due to load fluctuation or impact at the time of takeoff and landing, and liquid may leak. Therefore, by providing the liquid leakage sensor (liquid leakage detecting means) 51, it is possible to detect an abnormality at an early stage and perform maintenance. Further, two O-rings are arranged so as to sandwich the liquid leakage sensor (liquid leakage detecting means) 51. By arranging the O-rings in duplicate, the risk of liquid leakage is reduced.
  • the power conversion unit 200 in FIG. 4A differs from the power conversion unit 100 in FIG. 1A in that it is provided with a liquid leakage sensor (leakage detecting means) 51 and an O-ring 52, and the others are shown in FIG. Since it is the same as 1A, a duplicate description will be omitted.
  • FIG. 4B is a diagram schematically showing a configuration example in the case where the power conversion unit 200 shown in FIG. 4A is housed in the in-panel frames 1001A and 1001B as the power conversion device, in a cross-sectional structure on the side surface, as described above. Is. It is used by accommodating and fixing the power conversion unit 200 in the in-panel frames 1001A and 1001B as the power conversion device.
  • FIG. 4B is different from FIG. 4A in that the in-panel frames 1001A and 1001B are shown, and the other parts are the same as those in FIG. 4A, so that the duplicated description will be omitted.
  • FIG. 5A is a diagram schematically showing the appearance of the power conversion unit 200 shown in FIG. 4A as a bird's-eye view.
  • the power conversion unit 200 in FIG. 5A differs from the power conversion unit 100 in FIG. 2A in that the liquid leakage sensor (liquid leakage detecting means) 51 is shown in FIG. 5A. Since the O-ring 52 is arranged inside the power conversion unit 200 and cannot be seen from the outside, it is not shown in FIG. 5A. Further, in FIG. 5A, the IVA-IVA axis shows the cross section of FIG. 4A, and the VB-VB axis shows the cross section of FIG. 5B described later. Others are the same as those in FIG. 2A, so duplicate description will be omitted.
  • the power conversion unit 200 in FIG. 5B differs from the power conversion unit 100 in FIG. 2B in that the liquid leakage sensor (leakage detecting means) 51 and the O-ring 52 are shown in FIG. 5B. Others are the same as in FIG. 2B, so duplicate description will be omitted.
  • FIG. 6 is a diagram schematically showing a configuration example of the power conversion unit 300 according to the third embodiment of the present invention in cross-sectional structure on the side surface.
  • the power conversion unit 300 of the third embodiment in FIG. 6 is different from the power conversion unit 100 of the first embodiment in FIG. 1B (FIG. 1A) at the boundary between the primary side unit 10A and the secondary side unit 10B (the boundary between the primary side unit 10A and the secondary side unit 10B).
  • the split surface) is provided with the liquid leakage detection sheet (liquid leakage detecting means) 53 shown in FIG. 6 on the outer side surfaces of the units (primary side unit 10A and secondary side unit 10B).
  • the liquid leakage detection sheet 53 detects the liquid leakage in the cooling medium of the cooling passage 32 including the cooling pipe 31 of the power conversion unit 300 as discoloration of the sheet or other changes.
  • the liquid leakage detection sheet 53 provided as shown in FIG. 6 has an advantage that it is relatively easy to install, and can be performed as a part of the work in an application in which a periodic inspection is performed on a daily basis. Further, in the power conversion unit 300 as shown in FIG. 6, since the dividing surface (boundary) between the primary side unit 10A and the secondary side unit 10B is wide, if liquid leakage occurs in a part, the entire divided surface is covered. Leakage can be detected. Therefore, the liquid leakage detection sheet 53 exerts its function if it is provided on a part of the divided surface. Others are the same as those in FIG. 1B (FIG. 1A), so duplicate description will be omitted.
  • liquid leakage detection sheet (liquid leakage detection means) of the third embodiment of the present invention it is relatively easy to install, and it is performed as a part of work in an application in which periodic inspection is performed on a daily basis. Can be done. Further, if the liquid leakage detection sheet 53 is provided on a part of the divided surface, it has an effect of exerting a function.
  • FIG. 7 is a diagram schematically showing a configuration example of the power conversion unit 400 according to the fourth embodiment of the present invention in cross-sectional structure on the side surface.
  • the power conversion unit 400 of the fourth embodiment in FIG. 7 is different from the power conversion unit 300 of the third embodiment in FIG. 6 as a liquid leakage detection means, instead of the liquid leakage detection sheet 53, an IC tag type liquid leakage. It is equipped with a detector 54.
  • the IC tag type leak detector 54 has an IC (Integrated Circuit) built-in and has a wireless function. It is also possible to eliminate the need for batteries by utilizing the ionizing action of the leaked liquid. In the case of a structure that does not require a battery, it is possible to save the trouble of battery replacement.
  • the IC tag type liquid leakage detector has an IC built-in and has a wireless function, so that it can be constantly monitored. In addition, since no power supply or wiring work is required, the installation cost can be reduced. Others are the same as those in FIG. 1B (FIG. 1A), so duplicate description will be omitted.
  • FIG. 8 is a diagram schematically showing a configuration example of liquid leakage detection of the power conversion unit according to the fifth embodiment of the present invention as a bird's-eye view.
  • the sound listening rod 55 is attached to a joint (joint with a built-in liquid cooling tube) 61 of a power conversion unit (for example, a power conversion unit 100), and the signal detected by the sound listening rod 55 is transmitted by sound waves or radio waves to the sound listening analysis unit. Communicate to 56. That is, the diagnosis is performed using the sound listening rod 55 as the liquid leakage detection means (leakage detection method).
  • the sound listening rod 55 has the housings 24A and 24B as the sound in the normal state where there is no leakage and the sound in the abnormal state where the leakage is generated. It detects as a sign that it changes subtly due to vibrations exerted on it.
  • the sound listening analysis unit 56 can detect a slight change in the sound, and the liquid generated before the leakage occurs. It is also possible to detect subtle cracks in cold channels. Others are the same as those in FIG. 2A, so duplicate description will be omitted.
  • the sound listening rod 55 and the sound listening analysis unit 56 can be provided to monitor the leakage. Furthermore, by applying machine learning or the like to the sound and hearing analysis unit 56, it is possible to detect a delicate crack in the liquid cooling path that occurs before the leakage occurs.
  • FIG. 9 is a diagram schematically showing a configuration example of the power conversion unit 500 according to the sixth embodiment of the present invention in cross-sectional structure on the side surface.
  • the power conversion unit 500 of the sixth embodiment in FIG. 9 is different from the power conversion unit 200 of the second embodiment in FIG. 4B (FIG. 4A) in that the power conversion unit 500 is divisible in FIG. It has structural surfaces 81A and 81B.
  • a plurality of switching elements (21A, 21B) existing in the unit (power conversion unit 500) and associated members for example, the copper plate and the heat conductive layer of FIG. 11 described later
  • the structure should be divisible by the unit of peripheral insulation). With this structure, even if one switching element is broken, the range of replacing parts can be minimized, and the loss cost can be minimized. Others are the same as those in FIG. 4B (FIG. 4A), so duplicate description will be omitted.
  • the switching element is one by forming a structure that can be divided into units of a plurality of switching elements existing in the unit and members associated therewith. Even if it breaks, the range of parts replacement can be minimized, and the loss cost can be minimized.
  • FIG. 10 is a diagram schematically showing a configuration example of the power conversion unit 600 according to the seventh embodiment of the present invention in a cross-sectional structure on the side surface.
  • the power conversion unit 60 of the seventh embodiment in FIG. 10 is different from the power conversion unit 200 of the second embodiment in FIG. 4B (FIG. 4A) in that the cooling pipe 31 constituting the cooling passage (32) is different from the power conversion unit 200 of the second embodiment.
  • the cooling fins (cooling pipe protrusions) 31B or the concavo-convex structure of the cooling fins 31B on the inner surface of the above, the surface area inside the cooling pipe 31 for liquid cooling is increased. With this structure, the cooling function of the cooling pipe 31 constituting the cooling passage (32) is improved.
  • Others are the same as those in FIG. 4B (FIG. 4A), so duplicate description will be omitted.
  • the surface area inside the cooling pipe to be liquid-cooled is increased by providing an uneven structure with cooling fins on the inner surface of the cooling pipe. , The cooling function of the cooling pipes constituting the cooling path is improved.
  • FIG. 11 is a diagram schematically showing a configuration example of the power conversion unit 700 according to the eighth embodiment of the present invention with a cross-sectional structure on the side surface.
  • the power conversion unit 700 includes a primary side unit (10A: FIG. 4A), a secondary side unit (10B: FIG. 4A), and a cooling path (32: FIG. 1A) by a cooling pipe 31.
  • the primary side unit (10A) includes a primary side circuit body 11A9.
  • the secondary side unit (10B) includes a secondary side circuit body 11B9.
  • the power conversion unit 700 is characterized by the primary side circuit body 11A9 and the secondary side circuit body 11B9.
  • the primary side circuit body 11A9 includes a primary side circuit board (22A: FIG. 4A) and a plurality of switching elements 21A.
  • a copper plate (first conductor) 91A is provided on the surface of the switching element 21A on the cooling pipe 31 side.
  • a heat conductive layer 92A composed of an insulating member is provided between the copper plate 91A and the cooling pipe 31.
  • the cooling pipe 31 is connected to the ground potential (ground potential).
  • the member used for the heat conductive layer 92A shall have a heat conductivity of 0.5 [W / mK] or more.
  • an epoxy resin or a ceramic plate is applied for the member of the heat conductive layer 92A.
  • the secondary circuit body 11B9 of the secondary unit also has a copper plate (second conductor) 91B and a heat conductive layer 92B on the surface of the switching element 21B on the cooling pipe 31 side. It is provided. Since the secondary circuit body 11B9 and the primary circuit body 11A9 are substantially the same with respect to these copper plates and the heat conductive layer, overlapping description will be omitted.
  • the heat generated by the plurality of switching elements 21A and 21B is transferred to the cooling pipe 31 (cooling path 32), and the temperatures of the primary side circuit body 11A9 and the secondary side circuit body 11B9, that is, the power conversion unit 700. Reduce the rise.
  • the temperature rise of the power conversion unit is further increased by providing a copper plate (first conductor, second conductor) and a heat conductive layer between the plurality of switching elements and the cooling pipe. Reduce.
  • the power conversion unit does not include the in-panel frames 1001A and 1001B shown in FIGS. 1B and 4B, respectively.
  • an in-panel frame is provided to structurally protect the power conversion unit.
  • metals such as aluminum, stainless steel, and iron are applied to the frame inside the panel. In this way, by using metal for the in-panel frame, it is possible to electrically fix the potential of the in-panel frame.
  • a structure in which the power conversion unit is provided with an in-panel frame may be treated as a “power conversion unit”.
  • FIG. 3 schematically shows an outline of a device configuration for flowing a cooling medium (cooling liquid) through a cooling passage (liquid cooling passage) 32 by a cooling pipe 31 (FIG. 1A) of the power conversion unit 100.
  • the joint (joint with a built-in liquid cooling tube) 61 of the power conversion unit 100 is connected to one of the cooling pipelines (cooling pipe connecting portion) 62.
  • the metal constituting the cooling pipeline (cooling pipe connecting portion) 62 As the metal constituting the cooling pipeline (cooling pipe connecting portion) 62, a metal different from the metal constituting the cooling pipe 31 of the power conversion unit 100 is adopted.
  • the metal constituting the cooling pipe line (cooling pipe connecting portion) 62 a metal having a higher ionization tendency than the metal constituting the cooling pipe 31 is applied. That is, the metal constituting the cooling pipe 31 has a lower ionization tendency than the metal forming the cooling pipeline (cooling pipe connecting portion) 62.
  • the cooling pipe line (cooling pipe connection portion) 62 outside the power conversion unit 100 is first used. Corrodes quickly, so it is possible to know whether or not the cooling pipe 31 in the power conversion unit has corroded without opening the dividing surface of the power conversion unit 100. Therefore, maintenance of the power conversion unit 100 becomes easy.
  • FIG. 12 is a diagram showing a first circuit configuration example of the power conversion unit 100 according to the first embodiment of the present invention.
  • the circuit configuration 810 shown in FIG. 12 is an example of a circuit having a function of a DC-DC converter.
  • the four switching elements 21A and the four switching elements 21B in FIG. 12 are the four switching elements 21A of the primary side circuit body 11A and the four switching elements 21B of the secondary side circuit body 11B, respectively, in FIG. It corresponds to.
  • diodes are connected in antiparallel to each of the switching elements 21A and 21B.
  • diodes parasitic on the internal structure of the elements of the switching elements 21A and 21B may be used, or they may be provided externally. Further, the diode connected in antiparallel to the switching element is described in FIGS. 13 and 14 described later, but the duplicate description of the diode in FIGS. 13 and 14 is omitted.
  • a primary side circuit is configured by including four switching elements 21A, capacitors 1211, 1212, and a reactor 1213.
  • a secondary side circuit is configured by including four switching elements 21B and a capacitor 1221.
  • a transformer 1201 is provided between the primary side circuit and the secondary side circuit, and electrically connects the primary side circuit and the secondary side circuit.
  • the four switching elements 21A are configured in a bridge type, and the four switching elements are controlled by PWM (Pulse Width Modulation) by a control circuit (not shown) to control the DC between the DC input terminals 12D1P and 12D1N. Converts the voltage to a sine wave and outputs it from the terminal of the bridge. The output voltage of this sine wave passes through the capacitor (resonant capacitor) 1212 and the reactor 1213, and the voltage is converted by the transformer 1201 and transmitted to the secondary circuit.
  • PWM Pulse Width Modulation
  • the four switching elements 21B are configured in a bridge type, and by controlling each of the four switching elements by a control circuit (not shown), a sine wave (alternating current) of the input terminal of the bridge is generated. It rectifies and outputs a DC voltage between the DC output terminals 12D2P and 12D2N. Further, the output side capacitor 1221 and the input side capacitor 1211 both act as smoothing capacitors for smoothing the ripple voltage.
  • the switching elements 21A and 21B are composed of any of semiconductor elements such as IGBT (Insulated Gate Bipolar Transistor), IEGT (Injection Enhanced Gate Transistor), MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor), and Super Junction MOSFET. NS.
  • IGBT Insulated Gate Bipolar Transistor
  • IEGT Insertidirectional Gate Transistor
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • Super Junction MOSFET Super Junction MOSFET.
  • the circuit configuration 810 may be embodied by using any of the power conversion units 200, 300, 400, 500, 600, and 700.
  • the power conversion unit whose circuit is configured by the circuit configuration 810 is referred to as a power conversion unit 1810, and is used in FIG. 16 described later.
  • FIG. 13 is a diagram showing a second circuit configuration example of the power conversion unit 100 according to the first embodiment of the present invention.
  • the circuit configuration 820 shown in FIG. 13 is an example of a circuit having a function of a single-phase AC-3 phase AC converter.
  • the switching elements 21A and 21B in the power conversion unit 100 shown in FIG. 1 are described as four. However, in FIG. 1A, for convenience of notation, the number is shown as four, and the number is not limited to four. In FIG. 13, six switching elements 21B will be described.
  • a primary side circuit is configured by including four switching elements 21A, a capacitor 1313, and reactors 1311, 1312.
  • a secondary side circuit is configured by including six switching elements 21B.
  • the four switching elements 21A are configured in a bridge type and are controlled by a control circuit (not shown).
  • the AC voltage input to the input terminal of the bridge via the reactors 1311, 1312 is rectified by the four bridge-type switching elements 21A and converted into a DC voltage.
  • This DC voltage is smoothed by the capacitor 1313 and supplied as a DC power supply for the secondary side circuit (output side circuit).
  • the two switching elements 21B are PWM-controlled by a control circuit (not shown), so that the AC voltage of one phase (for example, U phase) is generated. can get. Further, in the series circuit of the other two switching elements 21B, by PWM-controlling the two switching elements 21B with a control circuit (not shown), the AC voltage of the other one phase (for example, V phase) can be increased. can get. Further, in the series circuit of the two switching elements 21B, the two switching elements 21B are PWM-controlled by a control circuit (not shown), so that an alternating current for another one phase (for example, W phase) is obtained. The voltage is obtained.
  • a control circuit not shown
  • the three-phase AC voltage is output to the AC output terminals 13A2U, 13A2V, 13A2W on the secondary side. That is, by configuring the power conversion unit 100 as a circuit configuration 820, a conversion circuit (power conversion device) that converts single-phase alternating current to three-phase alternating current can be configured.
  • a conversion circuit power conversion device
  • FIG. 14 is a diagram showing a third circuit configuration example of the power conversion unit 100 according to the first embodiment of the present invention.
  • the circuit configuration 830 shown in FIG. 14 is an example of a circuit having a function of an AC-DC converter.
  • the four switching elements 21A and the four switching elements 21B in FIG. 14 are the four switching elements 21A of the primary side circuit body 11A and the four switching elements 21B of the secondary side circuit body 11B, respectively, in FIG. It corresponds to.
  • FIG. 14 the primary side circuit and the secondary side
  • the circuits in the primary side circuit body 11A and the secondary side circuit body 11B in FIG. 1 are used in parallel.
  • the four switching elements 21A are configured in a bridge type, and a sine wave input between the input terminals 14AP and 14AQ of the bridge by controlling each of the four switching elements by a control circuit (not shown). Is rectified, and a DC voltage is output between the DC output terminals 14DP and 14DN. Further, the four switching elements 21B are configured in a bridge type, and the sine wave input between the input terminals 14AP and 14AQ of the bridge is rectified by controlling each of the four switching elements by a control circuit (not shown). Then, a DC voltage is output between the DC output terminals 14DP and 14DN.
  • the two rectifier circuits each composed of the four switching elements are used by connecting the input and the output in parallel.
  • the capacitors 1411, 1421 are connected between the DC output terminals 14DP and 14DN to smooth the rectified DC voltage.
  • the power conversion unit 100 is embodied in an AC-DC conversion circuit (AC-DC power conversion device).
  • the circuit configuration 830 may be embodied by using any of the power conversion units 200, 300, 400, 500, 600, and 700.
  • the power conversion unit whose circuit is configured by the circuit configuration 830 is referred to as a power conversion unit 1830, and is used in FIG. 15 described later.
  • the power conversion unit 100 includes a primary side circuit body 11A and a secondary side circuit body 11B, and the circuit configuration in these primary side circuit body 11A and the secondary side circuit body 11B has a high degree of freedom.
  • various power conversion units power conversion devices
  • FIG. 12 shows an example of a DC-DC conversion circuit
  • FIG. 13 shows an example of a single-phase AC-3 phase AC conversion circuit
  • FIG. 14 shows an example of an AC-DC conversion circuit.
  • various power conversion circuits can be configured by selecting elements and selecting circuits by wiring.
  • the circuit elements to be mounted are not limited to capacitors and reactors.
  • the number of switching elements in the primary side circuit body 11A and the secondary side circuit body 11B is not limited to four.
  • FIG. 14 it is not necessary to limit the primary side circuit body 11A and the secondary side circuit body 11B as an input circuit and an output circuit, and the primary side circuit body 11A and the secondary side circuit body 11B are used. It may be used in parallel.
  • the power conversion unit has been described as the power conversion unit 100 shown in FIG. 1, the power conversion units 200, 300, 400, respectively shown in FIGS. 4A, 6, 7, 9, 10, and 11, respectively. Similar circuit configurations are possible for 500, 600, and 700.
  • FIG. 15 shows a combination of a power conversion unit according to any one of the first to eighth embodiments of the present invention and a plurality of power conversion units 1830 according to the circuit configuration 830 shown in FIG. 14 to convert a three-phase AC voltage into a DC voltage. It is a figure which shows the circuit structure example of the power conversion apparatus 8000 which converts into.
  • the power conversion device 8000 includes three power conversion units (power conversion devices) 1830 having the AC-DC conversion function shown in FIG.
  • AC voltages of each phase from the U phase, V phase, and W phase of the three-phase AC power supply 1550 are input to the three power conversion units 1830, respectively.
  • Each of the three power conversion units 1830 converts an AC voltage (AC power) into a DC voltage (DC power), and outputs each DC voltage (DC power) between the output terminals 15DP and 15DN.
  • the output terminals of the three power conversion units 1830 are connected in parallel with each other.
  • the three-phase AC AC voltage is converted as a DC voltage, and the output power conversion device 8000 is embodied.
  • FIG. 16 shows that the power conversion unit according to any one of the first to eighth embodiments of the present invention is converted into a DC voltage having a different voltage by combining a plurality of power conversion units 1810 according to the circuit configuration 810 shown in FIG. It is a figure which shows the circuit structure example of the power conversion apparatus 9000.
  • the power conversion device 9000 includes three power conversion units (power conversion devices) 1810 having a DC-DC conversion function shown in FIG. Further, in FIG. 16, DC voltages are input to the three power conversion units 1810 from the input terminals 16D1P and 16DIN for inputting the voltage of the DC power supply, respectively.
  • Each of the three power conversion units 1810 converts a DC voltage (DC1: FIG. 12) into a DC voltage (DC2: FIG. 12) having a different voltage.
  • the output terminals of the three power conversion units 1810 are connected in series, and the sum of the DC voltages (3 ⁇ DC2) is output between the output terminals 16D2P and 16D2N of the power conversion device 9000.
  • the power conversion device 9000 in which the DC voltage is converted into a DC voltage having a different voltage and is output is embodied.
  • FIG. 15 shows that a three-phase AC-DC conversion circuit can be configured by using three power conversion units 1830 (830: FIG. 14) of the AC-DC conversion circuit.
  • FIG. 16 shows that a DC-DC conversion circuit that converts a DC voltage DC1 into a high-voltage DC voltage DC3 can be configured by using three power conversion units 1810 (810: FIG. 12) of the DC-DC conversion circuit.
  • the power conversion device is not limited to the above example by combining a plurality of power conversion units. Further, in the example of the power conversion device shown in FIGS. 15 and 16, the example in which three power conversion units are used is not limited to three. You may combine four or more power conversion units.
  • a power conversion device 8000 configured by combining a plurality of (three) power conversion units 1830 shown in FIG. 15 and a power conversion device 9000 configured by combining a plurality of (three) power conversion units 1810 shown in FIG.
  • there may be a plurality of in-panel frames of the power conversion unit for example, 1001A, 1001B: FIG. 1B
  • the ground voltages of the in-panel frames may differ from each other.
  • an insulating plate for ensuring insulation may be provided between different in-panel frames of different power conversion units.
  • ⁇ Number of switching elements In FIG. 1A, the number of switching elements 21A and 21B in the primary side circuit body 11A and the secondary side circuit body 11B in the power conversion unit 100 has been illustrated and described, but the number is not limited to four. It may be composed of 3 or less or 5 or more. Further, the apparent number may be changed by connecting in parallel or in series depending on the wiring. Alternatively, a part of the switching element may be left unused without wiring. Further, the open / close signal of some switching elements may be fixed at a predetermined potential and always used as an on (ON) state or an off (OFF) state.
  • FIGS. 1A and 2B An example of the arrangement of the switching element is shown in FIGS. 1A and 2B. However, for convenience of explanation, these are schematically arranged. The arrangement is not limited to the above figure. Further, as shown in FIG. 1A, the structure of the power conversion unit 100 including the switching element is shown to have a symmetrical shape with the center of the cooling path surface as the center line. This is because the symmetrical shape can reduce the variation in temperature rise in a plurality of switching elements. However, when the bias in the operation of the switching element is taken into consideration, the arrangement may be asymmetrical without this limitation.
  • semiconductor elements such as IGBTs (Insulated Gate Bipolar Transistors), IEGTs (Injection Enhanced Gate Transistors), MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors), and superjunction MOSFETs are used as switching elements. I explained that. Further, the semiconductor substrate of the semiconductor element will be described. As the semiconductor element of the switching element, a semiconductor substrate such as GaN (gallium nitride), Si (silicon), or SiC (silicon carbide) is used.
  • GaN gallium nitride
  • Si silicon
  • SiC silicon carbide
  • FIG. 6 shows an example in which the liquid leakage detection sheet 53 is provided on the side surface of the dividing surface (joining surface) of the primary side unit 10A and the secondary side unit 10B. This is because, in the power conversion unit 300 shown in FIG. 6, since the divided surface is wide, if a liquid leak occurs in a part of the power conversion unit 300, the liquid leak can be detected on the entire surface of the divided surface. However, it is also effective to apply a sheet to the entire surface of the divided surface on the safety side.
  • the sound listening rod 55 was attached to the joint (joint with a built-in liquid cooling tube) 61 of the power conversion unit (for example, the power conversion unit 100) to detect the leakage of the liquid refrigerant body.
  • the listening rod 55 may be attached to the power conversion unit 300 of FIG. 6 provided with the above, and the power conversion unit may be provided with double detection means. In this case, there is an effect that the leakage detection becomes more accurate.
  • the number of O-rings 52 is not limited to two. It may be one or three or more.
  • the liquid leakage sensor 51 is arranged between the two O-rings, but the arrangement is not limited to this.
  • the liquid leakage sensor 51 may be provided at a location other than between the two O-rings.
  • the shape in which the O-ring 52 is arranged is not limited to the circular shape.
  • the primary side circuit body 11A may be arranged in a shape other than the circular shape.
  • the copper plate (first conductor) 91A is provided on the surface of the switching element (21A) on the cooling pipe 31 side. Further, it has been described that the copper plate (second conductor) 91B is provided on the surface of the switching element (21B) on the cooling pipe 31 side.
  • the first conductor (91A) and the second conductor (91B) may be a metal other than copper. For example, silver, aluminum, or an alloy having high thermal conductivity may be used.
  • the heat conductive layers 92A and 92B an epoxy resin or a ceramic plate has been given as an example, but other materials may be used as long as they have good insulation and heat conductivity. If the voltage difference between the copper plates 91A and 91B and the cooling pipe 31 is small and the silicone gels 23A and 23B have a withstand voltage, the heat conductive layers 92A and 92B can be omitted.
  • FIGS. 1A and 4A examples of filling the space of the primary side circuit body 11A and the secondary side circuit body 11B with the silicone gel are shown, but the present invention is not limited to the silicone gel.
  • Another gel-like insulating substance may be used as a filling substance instead of the silicone gel.
  • the power conversion unit 200 shown in FIG. 4A has a structure in which the divisible structural surfaces 81A and 81B shown in FIG. 9 are provided.
  • the basis is not limited to the power conversion unit 200.
  • the separable structural surfaces 81A and 81B may be provided for each of the power conversion units shown in FIGS. 1A, 6, 7, 10, and 11.
  • the power conversion unit 200 shown in FIG. 4A has a structure in which the uneven structure of the cooling pipe 31 by the cooling fins 31B shown in FIG. 10 is provided.
  • the basis is not limited to the power conversion unit 200.
  • each of the power conversion units shown in FIGS. 1A, 6, 7, 9, and 11 may be provided with an uneven structure of the cooling pipe 31 by the cooling fins 31B, respectively.
  • the cooling pipe 31 constituting the cooling passage 32 has been described as a configuration in which the upper and lower cooling pipes 31 are combined on the dividing surface (center line) 40, but the cooling pipes 31 are integrally formed to generate electric power.
  • a method of inserting into the divided portion of the conversion unit 100 may be adopted. In this case, leakage of the cooling medium from the cooling pipe 31 can be reduced.
  • the power conversion unit 200 shown in FIG. 4A has a structure in which the switching element shown in FIG. 11 has a copper plate and a heat conductive layer.
  • the basis is not limited to the power conversion unit 200.
  • each power conversion unit shown in FIGS. 1A, 6, 7, 9, and 10 may be provided with a structure having a copper plate and a heat conductive layer in the switching element, respectively.
  • FIGS. 12, 13, and 14 The circuit example of the power conversion unit is shown in FIGS. 12, 13, and 14, but is not limited thereto as described above.
  • a power conversion unit (power conversion device) having an AC-DC conversion function can be configured by the primary side circuit body 11A (8 switching elements) and the secondary side circuit body 11B.
  • Power conversion unit (power conversion device) 1001A, 1001B, 1002A, 1002B In-panel frame 10A Primary side unit 10B Secondary side unit 11A Primary side circuit board 11B Secondary side circuit board 21A, 21B Switching element 22A Primary side circuit board 22B Secondary side circuit board 23A , 23B Silicone gel 24A Primary side housing 24B Secondary side housing 31 Cooling pipe 31B Cooling fin (cooling pipe protrusion) 32 Cooling path (liquid cooling path) 40 Divided surface (center line) 51 Leakage sensor (leakage detection means) 52 O-ring 53 Leakage detection sheet (leakage detection means) 54 IC tag type leak detector (leakage detection means) 55 Sound listening stick (leakage detection means) 56 Sound analysis unit 61 Fitting (joint with built-in liquid cooling tube) 62 Cooling pipeline (cooling pipe connection) 63, 64 Cooling pipeline 8000, 9000 Power converter 81A, 81B Dividable structural surface 810,

Abstract

The present invention comprises: a primary-side unit (10A) having a primary-side circuit body (11A) having a switching element (21A) and a circuit board (22A), and a primary-side housing (24A) that accommodates the primary-side circuit body (11A); a secondary-side unit (10B) having a secondary-side circuit body (11B) having a switching element (21B) and a circuit board (22B), and a secondary-side housing (24B) that accommodates the secondary-side circuit body (11B); and a cooling path (32) formed from a cooling pipe (31) positioned between the primary-side circuit body (11A) and the secondary-side circuit body (11B).

Description

電力変換ユニット、および電力変換装置Power conversion unit and power conversion device
 本発明は、電力変換ユニット、および電力変換装置に関する。 The present invention relates to a power conversion unit and a power conversion device.
 地球温暖化を抑止するため、全世界においてCO2排出規制が強化されつつある。そして、化石燃料を使用するエンジンの代替として、動力系統の電動化が盛んに進められている。その一方で、将来のパワーエレクトロニクス機器(パワエレ機器)に対して、その出力密度(パワエレ機器出力/パワエレ機器容積)は、現行の2倍以上を要求されている。そのため、その関連技術として、抜本的な冷却性能向上、および高電圧化への対応技術が求められている。
 また、高高度の航空機が遭遇するような低気圧下では、部分放電発生電圧が低下する。例えば、低気圧環境下において部分放電開始電圧は大気圧下に比べ大きく低下する。よって、電圧が印加される面と接地される面においては、空気よりも部分放電開始電圧が10倍程度高い固体もしくは液体を適用する必要がある。ただし、個々の部品に故障が生じた場合に、特に固体で囲まれた部品を補修することが一般的には難しい。
 これらの技術に関連して、特許文献1と特許文献2がある。
CO 2 emission regulations are being tightened around the world to curb global warming. As an alternative to engines that use fossil fuels, electrification of power systems is being actively promoted. On the other hand, future power electronics devices (power electronics devices) are required to have an output density (power electronics device output / power electronics device volume) that is more than double the current output density. Therefore, as the related technology, a technology for drastically improving the cooling performance and increasing the voltage is required.
In addition, the partial discharge generation voltage drops under low pressure, which is encountered by high-altitude aircraft. For example, in a low pressure environment, the partial discharge start voltage is significantly lower than that under atmospheric pressure. Therefore, it is necessary to apply a solid or liquid having a partial discharge start voltage about 10 times higher than that of air on the surface to which the voltage is applied and the surface to be grounded. However, when a failure occurs in an individual part, it is generally difficult to repair the part surrounded by a solid.
Patent Document 1 and Patent Document 2 are related to these techniques.
 特許文献1の[要約]には、「[課題]サージ電圧の抑制、SW素子の高い放熱性、およびリンギングの抑制の3つを両立しうる電力変換装置を提供する。[解決手段]2つのSW素子の素子モジュール10H,10Lが、絶縁層20を介して、側面S1が同じ向きで平行になるようにして厚さ方向に積層されると共に、一方のSW素子の正端子(+)ともう一方のSW素子の負端子(-)が、それぞれ、厚さ方向において互いに重なるように配置されてなる電力変換装置100とする。」と記載され、電力変換装置の技術が開示されている。このように、特許文献1では、二つのスイッチング素子が高さ方向に積層され、内部に接地導体を設け、接地導体の中に冷却路を有した電力変換装置の技術が開示されている。 [Summary] of Patent Document 1 provides a power conversion device capable of achieving both "[problem] suppression of surge voltage, high heat dissipation of SW element, and suppression of ringing. [Solution] Two The element modules 10H and 10L of the SW element are laminated in the thickness direction so that the side surfaces S1 are parallel to each other in the same direction via the insulating layer 20, and are already connected to the positive terminal (+) of one SW element. A power conversion device 100 in which the negative terminals (-) of one of the SW elements are arranged so as to overlap each other in the thickness direction. ", And the technology of the power conversion device is disclosed. As described above, Patent Document 1 discloses a technique of a power conversion device in which two switching elements are laminated in the height direction, a grounding conductor is provided inside, and a cooling path is provided in the grounding conductor.
 特許文献2の[要約]には、「[課題]航空機のための推進システムを提供する。[解決手段]航空機(10)のための推進システム(300)は、電源(302)と、電動モータ(312)および推進器(314)を有する電気推進アセンブリ(304)と、を含み、推進器(314)は電動モータ(312)によって駆動される。推進システム(300)はまた、電源(302)を電気推進アセンブリ(304)に電気的に接続する電力バス(306)を含む。電源(302)は、電力バス(306)に電力を供給するように構成され、電力バス(306)は、800ボルトを超える電圧で電気推進アセンブリ(304)に電力を伝送するように構成される。」と記載され、航空機のための推進システムの技術が開示されている。このように、特許文献2には、800Vを超える高電圧に対応した電力バスにより、インバータ・コンバータ・コントローラに電力を通じ、次いで変換後の電力によりモータを駆動する電動機のための推進システムが開示されている。また、低気圧、高電圧で運用する電動機のための、部分放電を抑制する絶縁構成、電力バスの発熱に対応するための冷却機構の設置に関する記載がある。 In the [Summary] of Patent Document 2, "[Problem] Propulsion system for an aircraft is provided. [Solution] The propulsion system (300) for an aircraft (10) includes a power supply (302) and an electric motor. The propulsion system (300) is also driven by an electric motor (312), including an electric propulsion assembly (304) having (312) and a propulsion unit (314). Includes a power bus (306) that electrically connects to the electric propulsion assembly (304). The power supply (302) is configured to power the power bus (306) and the power bus (306) is 800. It is configured to transmit power to the electric propulsion assembly (304) at a voltage above the volt. ", Disclosing the technology of propulsion systems for aircraft. As described above, Patent Document 2 discloses a propulsion system for an electric motor in which electric power is passed through an inverter converter controller by an electric power bus corresponding to a high voltage exceeding 800 V, and then the motor is driven by the converted electric power. ing. In addition, there is a description about the insulation configuration that suppresses partial discharge and the installation of a cooling mechanism to cope with the heat generation of the power bus for electric motors that operate at low pressure and high voltage.
特開2015-056925号公報JP 2015-056925 特開2018-184162号公報Japanese Unexamined Patent Publication No. 2018-184162
 特許文献1では、定格電圧1kV以下、つまり、ユニット内を空気絶縁とした電力変換装置では、ユニット全体の絶縁性と冷却性のバランスを考慮すると有効な構造である。しかし、空気絶縁の適用が難しい高電圧の電力変換装置に対しては、固体もしくは液体で絶縁された電力変換ユニットにおいて、漏液などの冷却機構の異常が生じた場合に、部品交換が困難であるため、全取り換えとなり故障時のロスコストが高いという課題(問題)がある。さらに、冷却路の腐食に対する定期的なメンテナンスが不可能であるという課題(問題)がある。 In Patent Document 1, the rated voltage is 1 kV or less, that is, in a power conversion device in which the inside of the unit is air-insulated, the structure is effective in consideration of the balance between the insulating property and the cooling property of the entire unit. However, for high-voltage power converters for which it is difficult to apply air insulation, it is difficult to replace parts in a solid or liquid-insulated power conversion unit when an abnormality occurs in the cooling mechanism such as leakage. Therefore, there is a problem (problem) that the loss cost at the time of failure is high because all the replacements are performed. Further, there is a problem (problem) that regular maintenance for corrosion of the cooling path is impossible.
 特許文献2では、電力バスの部分放電対策及び冷却対策のみで、高冷却性と高絶縁性を両立する絶縁構造が不充分であって、電動機と電力変換機を低気圧環境(例えば高高度の航空機)で運用することが困難であるという課題(問題)がある。 In Patent Document 2, the insulation structure that achieves both high cooling performance and high insulation performance is insufficient only by the partial discharge countermeasure and the cooling countermeasure of the electric power bus, and the electric motor and the electric power converter are placed in a low pressure environment (for example, high altitude). There is a problem (problem) that it is difficult to operate on an aircraft.
 本発明は、前記課題に対応するために、電力変換ユニットの出力密度と信頼性を向上するための冷却構造を有する電力変換ユニット(電力変換装置)を提供することを課題(目的)とする。 An object (object) of the present invention is to provide a power conversion unit (power conversion device) having a cooling structure for improving the output density and reliability of the power conversion unit in order to cope with the above problems.
 前記の課題を解決するために、本発明を以下のように構成した。
 すなわち、本発明の電力変換ユニットは、スイッチング素子と回路基板を有する1次側回路体と、前記1次側回路体を収納する1次側筐体とを具備する1次側ユニットと、スイッチング素子と回路基板を有する2次側回路体と、前記2次側回路体を収納する2次側筐体とを具備する2次側ユニットと、前記1次側回路体と前記2次側回路体との間に配置される冷却管による冷却路と、を備えることを特徴とする。
In order to solve the above-mentioned problems, the present invention was configured as follows.
That is, the power conversion unit of the present invention includes a primary side unit having a switching element and a circuit board, a primary side housing including the primary side circuit board, and a switching element. A secondary side unit including a secondary side circuit body having a circuit board, a secondary side housing for accommodating the secondary side circuit board, the primary side circuit body, and the secondary side circuit body. It is characterized in that it is provided with a cooling passage by a cooling pipe arranged between the two.
 また、その他の手段は、発明を実施するための形態のなかで説明する。 In addition, other means will be described in the form for carrying out the invention.
 本発明によれば、電力変換ユニット(電力変換装置)の出力密度と信頼性を向上するための冷却構造を有する電力変換ユニット(電力変換装置)を提供できる。 According to the present invention, it is possible to provide a power conversion unit (power conversion device) having a cooling structure for improving the output density and reliability of the power conversion unit (power conversion device).
本発明の第1実施形態に係る電力変換ユニットの構成例を、側面の断面構造で模式的に示す図である。It is a figure which shows typically the structural example of the electric power conversion unit which concerns on 1st Embodiment of this invention by the cross-sectional structure of the side surface. 本発明の第1実施形態に係る電力変換ユニットを、盤内フレームに収納した構成例を、側面の断面構造で模式的に示す図である。It is a figure which shows typically the structural example in which the electric power conversion unit which concerns on 1st Embodiment of this invention is housed in the frame in a panel, in the cross-sectional structure of a side surface. 図1Aに示す電力変換ユニットの外観を鳥瞰図として模式的に示す図である。It is a figure which shows typically the appearance of the power conversion unit shown in FIG. 1A as a bird's-eye view. 図1Aに示す電力変換ユニットの断面構造を鳥瞰図として模式的に示す図である。It is a figure which shows typically the cross-sectional structure of the power conversion unit shown in FIG. 1A as a bird's-eye view. 電力変換ユニットの冷却管による冷却路に冷却媒体を流す装置構成の概略を模式的に示す図である。It is a figure which shows the outline of the device structure which flows the cooling medium through the cooling path by the cooling pipe of a power conversion unit schematically. 本発明の第2実施形態に係る電力変換ユニットの構成例を、側面の断面構造で模式的に示す図である。It is a figure which shows typically the structural example of the electric power conversion unit which concerns on 2nd Embodiment of this invention by the cross-sectional structure of the side surface. 本発明の第2実施形態に係る電力変換ユニットを、盤内フレームに収納した構成例を、側面の断面構造で模式的に示す図である。It is a figure which shows typically the structural example which housed the electric power conversion unit which concerns on 2nd Embodiment of this invention in the frame in a panel by the cross-sectional structure of the side surface. 図4Aに示す電力変換ユニットの外観を鳥瞰図として模式的に示す図である。It is a figure which shows typically the appearance of the power conversion unit shown in FIG. 4A as a bird's-eye view. 図4Aに示す電力変換ユニット断面構造を鳥瞰図として模式的に示す図である。It is a figure which shows typically the cross-sectional structure of the power conversion unit shown in FIG. 4A as a bird's-eye view. 本発明の第3実施形態に係る電力変換ユニットの構成例を、側面の断面構造で模式的に示す図である。It is a figure which shows typically the structural example of the electric power conversion unit which concerns on 3rd Embodiment of this invention by the cross-sectional structure of the side surface. 本発明の第4実施形態に係る電力変換ユニットの構成例を、側面の断面構造で模式的に示す図である。It is a figure which shows typically the structural example of the electric power conversion unit which concerns on 4th Embodiment of this invention by the cross-sectional structure of the side surface. 本発明の第5実施形態に係る電力変換ユニットの漏液検知の構成例を、鳥瞰図として模式的に示す図である。It is a figure which shows typically the structural example of the liquid leakage detection of the power conversion unit which concerns on 5th Embodiment of this invention as a bird's-eye view. 本発明の第6実施形態に係る電力変換ユニットの構成例を、側面の断面構造で模式的に示す図である。It is a figure which shows typically the structural example of the electric power conversion unit which concerns on 6th Embodiment of this invention by the cross-sectional structure of the side surface. 本発明の第7実施形態に係る電力変換ユニットの構成例を、側面の断面構造で模式的に示す図である。It is a figure which shows typically the structural example of the electric power conversion unit which concerns on 7th Embodiment of this invention by the cross-sectional structure of the side surface. 本発明の第8実施形態に係る電力変換ユニットの構成例を、側面の断面構造で模式的に示す図である。It is a figure which shows typically the structural example of the electric power conversion unit which concerns on 8th Embodiment of this invention by the cross-sectional structure of the side surface. 本発明の第1実施形態に係る電力変換ユニットの第1の回路構成例を示す図である。It is a figure which shows the 1st circuit configuration example of the power conversion unit which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る電力変換ユニットの第2の回路構成例を示す図である。It is a figure which shows the 2nd circuit configuration example of the power conversion unit which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る電力変換ユニットの第3の回路構成例を示す図である。It is a figure which shows the 3rd circuit configuration example of the power conversion unit which concerns on 1st Embodiment of this invention. 本発明の実施形態のいずれかの電力変換ユニットを、図14で示した回路構成で組み合わせて、3相交流電圧を直流電圧に変換する電力変換装置の回路構成例を示す図である。It is a figure which shows the circuit structure example of the power conversion apparatus which combines any power conversion unit of the embodiment of this invention with the circuit structure shown in FIG. 14 and converts a three-phase AC voltage into a DC voltage. 本発明の実施形態のいずれかの電力変換ユニットを、図12で示した回路構成で組み合わせて、異なる電圧の直流電圧に変換する電力変換装置の回路構成例を示す図である。It is a figure which shows the circuit structure example of the power conversion apparatus which combines any power conversion unit of the embodiment of this invention with the circuit structure shown in FIG. 12, and converts it into the DC voltage of a different voltage.
 以下、本発明を実施するための形態(以下においては「実施形態」と表記する)を、適宜、図面を参照して説明する。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described as appropriate with reference to the drawings.
≪第1実施形態≫
 本発明の第1実施形態に係る電力変換ユニット100の構成について、図1A、図1B、図2A、図2Bを参照して説明する。
 図1Aは、本発明の第1実施形態に係る電力変換ユニット100の構成例を、側面の断面構造で模式的に示す図である。
 図1Bは、本発明の第1実施形態に係る電力変換ユニット100を、盤内フレーム1001A,1001Bに収納した構成例を、側面の断面構造で模式的に示す図である。
 図2Aは、図1Aに示す電力変換ユニット100の外観を鳥瞰図として模式的に示す図である。
 図2Bは、図1Aに示す電力変換ユニット100の断面構造を鳥瞰図として模式的に示す図である。
<< First Embodiment >>
The configuration of the power conversion unit 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1A, 1B, 2A, and 2B.
FIG. 1A is a diagram schematically showing a configuration example of the power conversion unit 100 according to the first embodiment of the present invention in a cross-sectional structure on the side surface.
FIG. 1B is a diagram schematically showing a configuration example in which the power conversion unit 100 according to the first embodiment of the present invention is housed in the in- panel frames 1001A and 1001B by the cross-sectional structure of the side surface.
FIG. 2A is a diagram schematically showing the appearance of the power conversion unit 100 shown in FIG. 1A as a bird's-eye view.
FIG. 2B is a diagram schematically showing a cross-sectional structure of the power conversion unit 100 shown in FIG. 1A as a bird's-eye view.
 図1Aにおいて、電力変換ユニット100は、1次側ユニット10Aと2次側ユニット10B、および冷却管31による冷却路32を備えて構成されている。
 1次側ユニット10Aは、1次側回路体11Aと1次側筐体24Aとを備えて構成されている。
 1次側回路体11Aは、1次側回路基板22Aと複数のスイッチング素子21A、および、図1の断面には図示していないコンデンサやリアクトルなどの電気・電子部品を搭載して、電気回路(電子回路)を構成している。なお、図1Aにおいて、複数のスイッチング素子21Aの個数や配列は、表記上の都合により模式的に示したもので、後記する図2Bにおけるスイッチング素子の配列(配置)にそのまま対応するものではない。
 また、図1Aにおいて、1次側回路体11Aのスイッチング素子周辺のような電気的ストレスの高い部分においては、シリコーンゲル23Aを用いて封止する。
 1次側回路体11Aは、1次側筐体24Aに収納されている。
In FIG. 1A, the power conversion unit 100 includes a primary side unit 10A, a secondary side unit 10B, and a cooling path 32 by a cooling pipe 31.
The primary side unit 10A includes a primary side circuit body 11A and a primary side housing 24A.
The primary side circuit body 11A is equipped with an electric circuit (primary side circuit board 22A, a plurality of switching elements 21A, and electric / electronic components such as capacitors and reactors (not shown in the cross section of FIG. 1)). Electronic circuit). In FIG. 1A, the number and arrangement of the plurality of switching elements 21A are schematically shown for convenience of notation, and do not directly correspond to the arrangement (arrangement) of the switching elements in FIG. 2B described later.
Further, in FIG. 1A, a portion having high electrical stress such as around the switching element of the primary circuit body 11A is sealed with silicone gel 23A.
The primary side circuit body 11A is housed in the primary side housing 24A.
 2次側ユニット10Bは、2次側回路体11Bと2次側筐体24Bとを備えて構成されている。
 2次側回路体11Bは、2次側回路基板22Bと複数のスイッチング素子21B、および図示していないコンデンサやリアクトルなどの電気・電子部品を搭載して、電気回路(電子回路)を構成している。
 2次側回路体11Bのスイッチング素子周辺のような電気的ストレスの高い部分においては、シリコーンゲル23Bを用いて封止する。
 2次側回路体11Bは、2次側筐体24Bに収納されている。
The secondary side unit 10B includes a secondary side circuit body 11B and a secondary side housing 24B.
The secondary side circuit body 11B comprises a secondary side circuit board 22B, a plurality of switching elements 21B, and electric / electronic components such as capacitors and reactors (not shown) to form an electric circuit (electronic circuit). There is.
Silicone gel 23B is used to seal the portion of the secondary circuit body 11B where electrical stress is high, such as around the switching element.
The secondary side circuit body 11B is housed in the secondary side housing 24B.
 冷却管31による冷却路32は、1次側ユニット10Aと2次側ユニット10Bとに挟まれるように配置される。また、図1Aに示すように、1次側ユニット10A、2次側ユニット10Bにおいて、断面積がもっとも広くなる平面に冷却路32を設けている。この構成より、冷却路(液冷路)32に冷却媒体が満たされる面積を最大限に確保することが可能となる。
 1次側ユニット10Aと2次側ユニット10Bは、冷却路32の中心を中心線40として、対称形を有するように配置される。このように配置することによって、複数のスイッチング素子における温度上昇のばらつきを低減できる。
The cooling passage 32 provided by the cooling pipe 31 is arranged so as to be sandwiched between the primary side unit 10A and the secondary side unit 10B. Further, as shown in FIG. 1A, in the primary side unit 10A and the secondary side unit 10B, the cooling passage 32 is provided on the plane having the widest cross-sectional area. With this configuration, it is possible to secure the maximum area where the cooling medium is filled in the cooling path (liquid cooling path) 32.
The primary side unit 10A and the secondary side unit 10B are arranged so as to have a symmetrical shape with the center of the cooling path 32 as the center line 40. By arranging in this way, it is possible to reduce variations in temperature rise in a plurality of switching elements.
 冷却路32を構成する冷却管31は、中心線40の上部と下部で、それぞれ1次側筐体24Aと2次側筐体24Bに接して別々に設けられていて、1次側ユニット10Aと2次側ユニット10Bの組み立て時に合体する。
 また、冷却路32を構成する冷却管31は、グラウンド電位(接地電位)とする。冷却路32を構成する冷却管31の構造部材は、アルミ、ステンレス、銅などの金属が適用される。
 冷却路(液冷路)32に流れる冷媒は液体とし、その例として、水、鉱油、フロリナート、植物油などが挙げられる。
The cooling pipes 31 constituting the cooling passage 32 are separately provided in contact with the primary side housing 24A and the secondary side housing 24B at the upper part and the lower part of the center line 40, respectively, and are separately provided with the primary side unit 10A. Combined when assembling the secondary side unit 10B.
Further, the cooling pipe 31 constituting the cooling passage 32 has a ground potential (ground potential). Metals such as aluminum, stainless steel, and copper are applied to the structural members of the cooling pipe 31 constituting the cooling passage 32.
The refrigerant flowing in the cooling passage (liquid cooling passage) 32 is a liquid, and examples thereof include water, mineral oil, fluorinert, and vegetable oil.
 1次側ユニット10Aおよび2次側ユニット10Bの領域においては、固体もしくは液体もしくはゲル状の素材を用いて空気領域(気体領域)が存在しない構造となっている。例えば、スイッチング素子21A周辺のような電気的ストレスの高い部分においては、シリコーンゲル23Aを適用している。
 これらの構造により、絶縁性を高めるとともに、仮に部分放電が発生し固体絶縁が劣化したとしても、流動性のあるシリコーンゲルを取り換えることで容易に絶縁補修することができる。
 また、直接、高電圧がかかる部分や接地部と接しないユニット(1次側ユニット10A、2次側ユニット10B)内の領域においては、電気的ストレスが若干低いため、より簡易的な絶縁材を適用することも可能である。簡易的な絶縁材としては、例えば、PPS(Polyphenylenesulfide)樹脂、エポキシ樹脂、不飽和ポリエステルなどある。
In the regions of the primary side unit 10A and the secondary side unit 10B, a solid, liquid, or gel-like material is used, and an air region (gas region) does not exist. For example, the silicone gel 23A is applied to a portion having high electrical stress such as around the switching element 21A.
With these structures, the insulating property is improved, and even if a partial discharge occurs and the solid insulation is deteriorated, the insulating property can be easily repaired by replacing the fluid silicone gel.
In addition, since the electrical stress is slightly low in the area where high voltage is directly applied or in the unit (primary side unit 10A, secondary side unit 10B) that does not come into contact with the grounding part, a simpler insulating material is used. It is also possible to apply. Examples of the simple insulating material include PPS (Polyphenylene sulfide) resin, epoxy resin, and unsaturated polyester.
 図1Bは、前記したように、図1Aで示した電力変換ユニット100を、電力変換装置としての盤内フレーム1001A,1001Bに収納した場合の構成例を、側面の断面構造で模式的に示す図である。
 電力変換ユニット100を電力変換装置としての盤内フレーム1001A,1001Bに収納し、固定することによって、実際には用いられる。
 図1Bが図1Aと異なるのは、盤内フレーム1001A,1001Bを示したことであって、その他は、図1Aと同一であるので、重複する説明は省略する。
FIG. 1B is a diagram schematically showing a configuration example in the case where the power conversion unit 100 shown in FIG. 1A is housed in the in- panel frames 1001A and 1001B as a power conversion device, in a cross-sectional structure on the side surface, as described above. Is.
The power conversion unit 100 is actually used by being housed in and fixed to the in- panel frames 1001A and 1001B as the power conversion device.
FIG. 1B is different from FIG. 1A in that the in- panel frames 1001A and 1001B are shown, and the other parts are the same as those in FIG. 1A.
 図2Aは、前記したように、図1Aに示す電力変換ユニット100の外観を鳥瞰図として模式的に示す図である。
 図2Aにおいて、電力変換ユニット100は、1次側ユニット10A、2次側ユニット10Bが合わさって構成されている。継手(液冷チューブ内蔵継手)61は、1次側ユニット10Aと2次側ユニット10Bを接合する役目をするとともに、内部に冷却路32(図1)に繋がり冷却媒体を通す液冷チューブ(不図示)を有している。
 なお、電力変換ユニット100が複数台ある場合には、複数の電力変換ユニット100間を継手(液冷チューブ内蔵継手)61と冷却管路(62:図3)を介して、複数の電力変換ユニット100を併せて冷却する。
 また、図2Aにおいて、IA-IA軸は、図1Aの断面を示し、IIB-IIB軸は、後記する図2Bの断面を示している。
As described above, FIG. 2A is a diagram schematically showing the appearance of the power conversion unit 100 shown in FIG. 1A as a bird's-eye view.
In FIG. 2A, the power conversion unit 100 is configured by combining the primary side unit 10A and the secondary side unit 10B. The joint (joint with a built-in liquid cooling tube) 61 serves to join the primary side unit 10A and the secondary side unit 10B, and is also connected to the cooling passage 32 (FIG. 1) inside to pass the cooling medium through the liquid cooling tube (non-liquid cooling tube). (Shown).
When there are a plurality of power conversion units 100, a plurality of power conversion units are connected between the plurality of power conversion units 100 via a joint (joint with a built-in liquid cooling tube) 61 and a cooling pipeline (62: FIG. 3). 100 is also cooled.
Further, in FIG. 2A, the IA-IA axis shows the cross section of FIG. 1A, and the IIB-IIB axis shows the cross section of FIG. 2B described later.
 図2Bは、前記したように、図1Aに示す電力変換ユニット100の断面構造を鳥瞰図として模式的に示す図である。
 図2Bにおいて、冷却管31による冷却路32は、1次側ユニット10A、2次側ユニット10Bの上下対称な分割面に設けられている。
 また、複数のスイッチング素子21Aは、1次側筐体24Aに収納されている。また、1次側筐体24Aには、1次側ユニット10Aの外部からの電気配線を通す配線孔71が設けられている。
 なお、前記したように、複数のスイッチング素子21Aの個数や配列は、表記上の都合により模式的に示したもので、前記した図1Aにおけるスイッチング素子の配列(配置)にそのまま対応していない。
FIG. 2B is a diagram schematically showing a cross-sectional structure of the power conversion unit 100 shown in FIG. 1A as a bird's-eye view, as described above.
In FIG. 2B, the cooling passage 32 provided by the cooling pipe 31 is provided on a vertically symmetrical dividing surface of the primary side unit 10A and the secondary side unit 10B.
Further, the plurality of switching elements 21A are housed in the primary side housing 24A. Further, the primary side housing 24A is provided with a wiring hole 71 through which electrical wiring from the outside of the primary side unit 10A is passed.
As described above, the number and arrangement of the plurality of switching elements 21A are schematically shown for convenience of notation, and do not directly correspond to the arrangement (arrangement) of the switching elements in FIG. 1A described above.
 図2Bに示すように、1次側ユニット10A(入力側)と2次側ユニット10B(出力側)との間に、冷却路(液冷路)32を設けて、電力変換ユニット100を冷却する。
 このような構造をとることによって、電力変換ユニット100(電力変換装置)の高出力密度化のための冷却性向上と低気圧下での絶縁信頼性を確保する。例えば、電力変換ユニット100(電力変換装置)の出力密度は10[kW/cc]以上、定格電圧は1[kV]以上を満たすための電力変換ユニット100(電力変換装置)の構成となる。
As shown in FIG. 2B, a cooling path (liquid cooling path) 32 is provided between the primary side unit 10A (input side) and the secondary side unit 10B (output side) to cool the power conversion unit 100. ..
By adopting such a structure, the cooling performance for increasing the output density of the power conversion unit 100 (power conversion device) and the insulation reliability under low atmospheric pressure are ensured. For example, the output density of the power conversion unit 100 (power conversion device) is 10 [kW / cc] or more, and the rated voltage is 1 [kV] or more.
 なお、電力変換ユニット100の回路構成例と、電力変換ユニット100を組み合わせた電力変換装置の回路構成例については、後記する。 A circuit configuration example of the power conversion unit 100 and a circuit configuration example of a power conversion device combining the power conversion unit 100 will be described later.
<電力変換ユニットの冷却路に冷却媒体を流す装置構成>
 図3は、電力変換ユニット100の冷却管31(図1A)による冷却路(液冷路)32に冷却媒体(冷却液)を流す装置構成の概略を模式的に示す図である。なお、図3においては、盤内フレーム1001A,1001B(図1B)は図示していない。
 図3において、電力変換ユニット100の継手(液冷チューブ内蔵継手)61を冷却管路(冷却管接続部)62の一方に接続する。また、冷却管路62の他方をポンプ65に接続する。ポンプ65は、冷却管路63を介して、熱交換器66に冷却媒体(冷却液)を送る。熱交換器66は、冷却媒体を冷却し、冷却管路64を介して、電力変換ユニット100の他方の継手(液冷チューブ内蔵継手)61から冷却媒体を電力変換ユニット100の内部に送る。
<Device configuration in which a cooling medium flows through the cooling path of the power conversion unit>
FIG. 3 is a diagram schematically showing an outline of a device configuration for flowing a cooling medium (cooling liquid) through a cooling passage (liquid cooling passage) 32 by a cooling pipe 31 (FIG. 1A) of the power conversion unit 100. In FIG. 3, the in- panel frames 1001A and 1001B (FIG. 1B) are not shown.
In FIG. 3, the joint (joint with a built-in liquid cooling tube) 61 of the power conversion unit 100 is connected to one of the cooling pipelines (cooling pipe connecting portion) 62. Further, the other end of the cooling pipeline 62 is connected to the pump 65. The pump 65 sends a cooling medium (cooling liquid) to the heat exchanger 66 via the cooling pipeline 63. The heat exchanger 66 cools the cooling medium and sends the cooling medium from the other joint (liquid cooling tube built-in joint) 61 of the power conversion unit 100 to the inside of the power conversion unit 100 via the cooling pipeline 64.
 以上の装置構成によって、電力変換ユニット100は、冷却される。
 なお、図3においては、電力変換ユニット100は、1台の場合を示している。電力変換ユニット100が複数(複数台)ある場合には、複数の電力変換ユニット100間を継手(液冷チューブ内蔵継手)61と冷却管路(62,64)を介して、複数の電力変換ユニット100を併せて冷却する。
The power conversion unit 100 is cooled by the above device configuration.
In addition, in FIG. 3, the case of one power conversion unit 100 is shown. When there are a plurality of power conversion units 100 (multiple units), a plurality of power conversion units are connected between the plurality of power conversion units 100 via a joint (joint with a built-in liquid cooling tube) 61 and a cooling pipeline (62, 64). 100 is also cooled.
<第1実施形態の総括>
 図1Aで示した第1実施形態の電力変換ユニット100においては、1次側ユニット10Aと2次側ユニット10Bとの間に、冷却路(液冷路)32を設けて、電力変換ユニット100を冷却する。また、1次側ユニット10Aと2次側ユニット10Bの境界面において断面積がもっとも広くなる平面に冷却路32を設けている。この構成により、冷却媒体が満たされる面積を最大限に確保することが可能となる。
 このような構造をとることによって、電力変換ユニット100(電力変換装置)の高出力密度化のための冷却性向上と低気圧下での絶縁信頼性を担保する。また、複数存在するスイッチング素子21A,21Bにおける温度上昇のばらつきを低減できる。
 絶縁信頼性を確保できるので、電力変換ユニットの基板が配置される空間内での部分放電を抑え、信頼性の高い電力変換ユニット、および電力変換装置が実現する。
 また、前記のような構成には、冷却路32を共有化して電力変換装置の出力密度を向上させて、重量を低減する効果がある。
<Summary of the first embodiment>
In the power conversion unit 100 of the first embodiment shown in FIG. 1A, a cooling passage (liquid cooling passage) 32 is provided between the primary side unit 10A and the secondary side unit 10B to provide the power conversion unit 100. Cooling. Further, the cooling passage 32 is provided on the plane having the widest cross-sectional area at the boundary surface between the primary side unit 10A and the secondary side unit 10B. With this configuration, it is possible to secure the maximum area filled with the cooling medium.
By adopting such a structure, the cooling performance for increasing the output density of the power conversion unit 100 (power conversion device) and the insulation reliability under a low pressure are ensured. Further, it is possible to reduce the variation in temperature rise in the plurality of switching elements 21A and 21B.
Since insulation reliability can be ensured, partial discharge in the space where the substrate of the power conversion unit is arranged is suppressed, and a highly reliable power conversion unit and power conversion device are realized.
Further, the above-mentioned configuration has an effect of sharing the cooling path 32 to improve the output density of the power conversion device and reducing the weight.
 また、冷却路32に分割面(40)を設けているため、冷却媒体と接する冷却路面の腐食を防止するために、腐食状態の監視や補修することができる。
 また、冷却路32を含んだ断面においてユニットに分割面を設けているので、仮にスイッチング素子が不良となっても、分割されたユニットの片方のみを交換することができ、すべて取り換えた場合に比べてロスコストを減らすことができる。また、スイッチング素子以外の部品検査や、故障部品の交換が容易である。
 また、スイッチング素子21A,21Bの周辺のような電気的ストレスの高い部分においては、シリコーンゲル23A,23Bを用いているので、仮に部分放電が発生し固体絶縁が劣化したとしても、流動性のあるシリコーンゲルを取り換えることで容易に絶縁補修することができる。
Further, since the cooling path 32 is provided with the divided surface (40), the corrosion state can be monitored and repaired in order to prevent the cooling path surface in contact with the cooling medium from being corroded.
Further, since the unit is provided with a dividing surface in the cross section including the cooling passage 32, even if the switching element becomes defective, only one of the divided units can be replaced, as compared with the case where all of the divided units are replaced. The loss cost can be reduced. In addition, it is easy to inspect parts other than switching elements and replace defective parts.
Further, since the silicone gels 23A and 23B are used in the parts having high electrical stress such as around the switching elements 21A and 21B, even if a partial discharge occurs and the solid insulation deteriorates, there is fluidity. Insulation repair can be easily performed by replacing the silicone gel.
<第1実施形態の効果>
 本発明の第1実施形態の電力変換ユニットによれば、1次側ユニットと2次側ユニットとの間に、冷却路(液冷路)を設けているので、高出力密度化のための冷却性向上と低気圧下での絶縁信頼性を担保できるとともに、電力変換ユニットの出力密度が向上する。
 また、複数のスイッチング素子における温度上昇のばらつきを低減できる。
 絶縁信頼性を確保できるので、電力変換ユニットの基板が配置される空間内での部分放電を抑え、信頼性の高い電力変換ユニット、および電力変換装置を提供できる。
 また、冷却路(液冷路)を共有化して電力変換装置の出力密度を向上させて、重量を低減する効果がある。
 また、冷却路(液冷路)に分割面を設けているため、冷却媒体と接する冷却路面の腐食状態の監視や補修することができる。
 また、仮にスイッチング素子が不良となっても、分割されたユニットの片方のみを交換することができ、すべて取り換えた場合に比べロスコストを減らすことができる。また、部品検査や、補修や、故障部品の交換が容易である。
<Effect of the first embodiment>
According to the power conversion unit of the first embodiment of the present invention, since a cooling path (liquid cooling path) is provided between the primary side unit and the secondary side unit, cooling for increasing the output density is provided. In addition to ensuring improved performance and insulation reliability under low pressure, the output density of the power conversion unit is improved.
In addition, it is possible to reduce variations in temperature rise in a plurality of switching elements.
Since insulation reliability can be ensured, partial discharge in the space where the substrate of the power conversion unit is arranged can be suppressed, and a highly reliable power conversion unit and a power conversion device can be provided.
Further, the cooling path (liquid cooling path) is shared to improve the output density of the power conversion device, which has the effect of reducing the weight.
Further, since the cooling path (liquid cooling path) is provided with a divided surface, it is possible to monitor and repair the corrosion state of the cooling path surface in contact with the cooling medium.
Further, even if the switching element becomes defective, only one of the divided units can be replaced, and the loss cost can be reduced as compared with the case where all of the divided units are replaced. In addition, parts inspection, repair, and replacement of defective parts are easy.
≪第2実施形態≫
 本発明の第2実施形態に係る電力変換ユニット200の構成について、図4A、図4B、図5A、図5Bを参照して説明する。
 図4Aは、本発明の第2実施形態に係る電力変換ユニット200の構成例を、側面の断面構造で模式的に示す図である。
 図4Bは、本発明の第2実施形態に係る電力変換ユニット200を、盤内フレーム1001A,1001Bに収納した構成例を、側面の断面構造で模式的に示す図である。
 図5Aは、図4Aに示す電力変換ユニット200の外観を鳥瞰図として模式的に示す図である。
 図5Bは、図4Aに示す電力変換ユニット200の断面構造を鳥瞰図として模式的に示す図である。
<< Second Embodiment >>
The configuration of the power conversion unit 200 according to the second embodiment of the present invention will be described with reference to FIGS. 4A, 4B, 5A, and 5B.
FIG. 4A is a diagram schematically showing a configuration example of the power conversion unit 200 according to the second embodiment of the present invention in cross-sectional structure on the side surface.
FIG. 4B is a diagram schematically showing a configuration example in which the power conversion unit 200 according to the second embodiment of the present invention is housed in the in- panel frames 1001A and 1001B by the cross-sectional structure of the side surface.
FIG. 5A is a diagram schematically showing the appearance of the power conversion unit 200 shown in FIG. 4A as a bird's-eye view.
FIG. 5B is a diagram schematically showing a cross-sectional structure of the power conversion unit 200 shown in FIG. 4A as a bird's-eye view.
 図4Aにおける第2実施形態の電力変換ユニット200が、図1Aにおける第1実施形態の電力変換ユニット100と異なるのは、1次側ユニット10Aと2次側ユニット10Bとの境界(分割面)において、図4Aに示す漏液センサ(漏液検知手段)51を備えたことであり、さらに漏液を防止するOリング52を備えたことである。
 移動体などに搭載される電力変換装置は、負荷変動による振動や離発着時における衝撃により、防水機構が機械的に壊れてしまい、漏液する可能性がある。
 そのため、漏液センサ(漏液検知手段)51を備えることで、早期に異常を検知し、メンテナンスすることが可能になる。
 また、漏液センサ(漏液検知手段)51を挟んで2つのOリングを配置している。Oリングを2重に配置することで、漏液のリスクを低減している。
The power conversion unit 200 of the second embodiment in FIG. 4A differs from the power conversion unit 100 of the first embodiment in FIG. 1A at the boundary (division surface) between the primary side unit 10A and the secondary side unit 10B. , The leak sensor (leakage detecting means) 51 shown in FIG. 4A is provided, and the O-ring 52 for preventing the leak is further provided.
In the power conversion device mounted on a moving body or the like, the waterproof mechanism may be mechanically broken due to vibration due to load fluctuation or impact at the time of takeoff and landing, and liquid may leak.
Therefore, by providing the liquid leakage sensor (liquid leakage detecting means) 51, it is possible to detect an abnormality at an early stage and perform maintenance.
Further, two O-rings are arranged so as to sandwich the liquid leakage sensor (liquid leakage detecting means) 51. By arranging the O-rings in duplicate, the risk of liquid leakage is reduced.
 前記したように、図4Aにおける電力変換ユニット200が図1Aにおける電力変換ユニット100と異なるのは、漏液センサ(漏液検知手段)51とOリング52を備えたことであって、その他は図1Aと同一であるので、重複する説明は省略する。 As described above, the power conversion unit 200 in FIG. 4A differs from the power conversion unit 100 in FIG. 1A in that it is provided with a liquid leakage sensor (leakage detecting means) 51 and an O-ring 52, and the others are shown in FIG. Since it is the same as 1A, a duplicate description will be omitted.
 図4Bは、前記したように、図4Aで示した電力変換ユニット200を、電力変換装置としての盤内フレーム1001A,1001Bに収納した場合の構成例を、側面の断面構造で模式的に示す図である。
 電力変換ユニット200を電力変換装置としての盤内フレーム1001A,1001Bに収納し、固定することによって用いられる。
 図4Bが図4Aと異なるのは、盤内フレーム1001A,1001Bを示したことであって、その他は、図4Aと同一であるので、重複する説明は省略する。
FIG. 4B is a diagram schematically showing a configuration example in the case where the power conversion unit 200 shown in FIG. 4A is housed in the in- panel frames 1001A and 1001B as the power conversion device, in a cross-sectional structure on the side surface, as described above. Is.
It is used by accommodating and fixing the power conversion unit 200 in the in- panel frames 1001A and 1001B as the power conversion device.
FIG. 4B is different from FIG. 4A in that the in- panel frames 1001A and 1001B are shown, and the other parts are the same as those in FIG. 4A, so that the duplicated description will be omitted.
 図5Aは、前記したように、図4Aに示す電力変換ユニット200の外観を鳥瞰図として模式的に示す図である。
 図5Aにおける電力変換ユニット200が図2Aにおける電力変換ユニット100と異なるのは、図5Aにおいて漏液センサ(漏液検知手段)51が表記されていることである。なお、Oリング52は、電力変換ユニット200の内部に配置され、外部からは見えないので、図5Aには表記されていない。
 また、図5Aにおいて、IVA-IVA軸は、図4Aの断面を示し、VB-VB軸は、後記する図5Bの断面を示している。
 その他は、図2Aと同一であるので、重複する説明は省略する。
As described above, FIG. 5A is a diagram schematically showing the appearance of the power conversion unit 200 shown in FIG. 4A as a bird's-eye view.
The power conversion unit 200 in FIG. 5A differs from the power conversion unit 100 in FIG. 2A in that the liquid leakage sensor (liquid leakage detecting means) 51 is shown in FIG. 5A. Since the O-ring 52 is arranged inside the power conversion unit 200 and cannot be seen from the outside, it is not shown in FIG. 5A.
Further, in FIG. 5A, the IVA-IVA axis shows the cross section of FIG. 4A, and the VB-VB axis shows the cross section of FIG. 5B described later.
Others are the same as those in FIG. 2A, so duplicate description will be omitted.
 図5Bにおける電力変換ユニット200が図2Bにおける電力変換ユニット100と異なるのは、図5Bにおいて漏液センサ(漏液検知手段)51とOリング52が表記されていることである。その他は、図2Bと同一であるので、重複する説明は省略する。 The power conversion unit 200 in FIG. 5B differs from the power conversion unit 100 in FIG. 2B in that the liquid leakage sensor (leakage detecting means) 51 and the O-ring 52 are shown in FIG. 5B. Others are the same as in FIG. 2B, so duplicate description will be omitted.
<第2実施形態の効果>
 本発明の第2実施形態によれば、第1実施形態の効果に加え、漏液センサ(漏液検知手段)を備えることで、早期に異常を検知し、メンテナンスすることが可能になる。
 また、Oリングを2重に配置することで、漏液のリスクを低減している。
<Effect of the second embodiment>
According to the second embodiment of the present invention, in addition to the effect of the first embodiment, by providing a liquid leakage sensor (liquid leakage detecting means), it becomes possible to detect an abnormality at an early stage and perform maintenance.
In addition, the risk of liquid leakage is reduced by arranging the O-rings in duplicate.
≪第3実施形態≫
 図6は、本発明の第3実施形態に係る電力変換ユニット300の構成例を、側面の断面構造で模式的に示す図である。
 図6における第3実施形態の電力変換ユニット300が、図1B(図1A)における第1実施形態の電力変換ユニット100と異なるのは、1次側ユニット10Aと2次側ユニット10Bとの境界(分割面)がユニット(1次側ユニット10Aと2次側ユニット10B)外部の側面において、図6に示す漏液検知シート(漏液検知手段)53を備えたことである。
 漏液検知シート53は、電力変換ユニット300の冷却管31からなる冷却路32の冷却媒体の漏液を、シートの変色、もしくは、その他の変化として検知する。
<< Third Embodiment >>
FIG. 6 is a diagram schematically showing a configuration example of the power conversion unit 300 according to the third embodiment of the present invention in cross-sectional structure on the side surface.
The power conversion unit 300 of the third embodiment in FIG. 6 is different from the power conversion unit 100 of the first embodiment in FIG. 1B (FIG. 1A) at the boundary between the primary side unit 10A and the secondary side unit 10B (the boundary between the primary side unit 10A and the secondary side unit 10B). The split surface) is provided with the liquid leakage detection sheet (liquid leakage detecting means) 53 shown in FIG. 6 on the outer side surfaces of the units (primary side unit 10A and secondary side unit 10B).
The liquid leakage detection sheet 53 detects the liquid leakage in the cooling medium of the cooling passage 32 including the cooling pipe 31 of the power conversion unit 300 as discoloration of the sheet or other changes.
 図6のように設けた漏液検知シート53は、設置が比較的に容易であるメリットがあり、日常的に定期点検を実施するようなアプリケーションにおいては、作業の一環として行うことができる。
 また、図6に示すような電力変換ユニット300においては、1次側ユニット10Aと2次側ユニット10Bとの分割面(境界)が広いので、一部分で漏液が発生すれば、分割面全面で漏液し検知できる。そのため、漏液検知シート53は、分割面の一部に設ければ機能を発揮する。
 その他は、図1B(図1A)と同一であるので、重複する説明は省略する。
The liquid leakage detection sheet 53 provided as shown in FIG. 6 has an advantage that it is relatively easy to install, and can be performed as a part of the work in an application in which a periodic inspection is performed on a daily basis.
Further, in the power conversion unit 300 as shown in FIG. 6, since the dividing surface (boundary) between the primary side unit 10A and the secondary side unit 10B is wide, if liquid leakage occurs in a part, the entire divided surface is covered. Leakage can be detected. Therefore, the liquid leakage detection sheet 53 exerts its function if it is provided on a part of the divided surface.
Others are the same as those in FIG. 1B (FIG. 1A), so duplicate description will be omitted.
<第3実施形態の効果>
 本発明の第3実施形態の漏液検知シート(漏液検知手段)によれば、設置が比較的に容易であり、日常的に定期点検を実施するようなアプリケーションにおいては作業の一環として行うことができる。
 また、漏液検知シート53は、分割面の一部に設ければ機能を発揮する効果がある。
<Effect of the third embodiment>
According to the liquid leakage detection sheet (liquid leakage detection means) of the third embodiment of the present invention, it is relatively easy to install, and it is performed as a part of work in an application in which periodic inspection is performed on a daily basis. Can be done.
Further, if the liquid leakage detection sheet 53 is provided on a part of the divided surface, it has an effect of exerting a function.
≪第4実施形態≫
 図7は、本発明の第4実施形態に係る電力変換ユニット400の構成例を、側面の断面構造で模式的に示す図である。
 図7における第4実施形態の電力変換ユニット400が、図6における第3実施形態の電力変換ユニット300と異なるのは、漏液検知手段として、漏液検知シート53の代わりにICタグ型漏液検知器54を備えたことである。
 ICタグ型漏液検知器54は、IC(Integrated Circuit)を内蔵して無線機能を有している。また、漏れた液の電離作用を利用して電池を不要とすることも可能である。電池を不要とする構造の場合には、電池交換の手間を省くことが可能となる。
 また、前記のようにICタグ型漏液検知器は、ICを内蔵して無線機能を有しているので、常時監視が可能である。また、電源や配線工事なども不要であることから、設置コストも低減が可能である。
 その他は、図1B(図1A)と同一であるので、重複する説明は省略する。
<< Fourth Embodiment >>
FIG. 7 is a diagram schematically showing a configuration example of the power conversion unit 400 according to the fourth embodiment of the present invention in cross-sectional structure on the side surface.
The power conversion unit 400 of the fourth embodiment in FIG. 7 is different from the power conversion unit 300 of the third embodiment in FIG. 6 as a liquid leakage detection means, instead of the liquid leakage detection sheet 53, an IC tag type liquid leakage. It is equipped with a detector 54.
The IC tag type leak detector 54 has an IC (Integrated Circuit) built-in and has a wireless function. It is also possible to eliminate the need for batteries by utilizing the ionizing action of the leaked liquid. In the case of a structure that does not require a battery, it is possible to save the trouble of battery replacement.
Further, as described above, the IC tag type liquid leakage detector has an IC built-in and has a wireless function, so that it can be constantly monitored. In addition, since no power supply or wiring work is required, the installation cost can be reduced.
Others are the same as those in FIG. 1B (FIG. 1A), so duplicate description will be omitted.
<第4実施形態の効果>
 本発明の第4実施形態によれば、第1実施形態の効果に加え、ICタグ型漏液検知器54を備えることで、漏液の常時監視が可能である。また、電源や配線工事なども不要であることから、設置コストも低減が可能である。
<Effect of Fourth Embodiment>
According to the fourth embodiment of the present invention, in addition to the effect of the first embodiment, by providing the IC tag type leak detector 54, it is possible to constantly monitor the leak. In addition, since no power supply or wiring work is required, the installation cost can be reduced.
≪第5実施形態≫
 図8は、本発明の第5実施形態に係る電力変換ユニットの漏液検知の構成例を、鳥瞰図として模式的に示す図である。
 図8において、音聴棒55を電力変換ユニット(例えば電力変換ユニット100)の継手(液冷チューブ内蔵継手)61に取り付け、音聴棒55の検知する信号を、音波もしくは電波で音聴分析部56に伝達する。
 すなわち、漏液検知手段(漏液検知手法)として音聴棒55を用いた診断を行うものである。
<< Fifth Embodiment >>
FIG. 8 is a diagram schematically showing a configuration example of liquid leakage detection of the power conversion unit according to the fifth embodiment of the present invention as a bird's-eye view.
In FIG. 8, the sound listening rod 55 is attached to a joint (joint with a built-in liquid cooling tube) 61 of a power conversion unit (for example, a power conversion unit 100), and the signal detected by the sound listening rod 55 is transmitted by sound waves or radio waves to the sound listening analysis unit. Communicate to 56.
That is, the diagnosis is performed using the sound listening rod 55 as the liquid leakage detection means (leakage detection method).
 音聴棒55は、電力変換ユニット100の冷却路32からの冷却媒体の漏液に関して、漏液がない正常時における音と漏液が発生している異常時における音が、筐体24A,24Bに及ぼす振動などで微妙に変化することを兆候として検知するものである。
 音聴棒55で入手した音に対して、音聴分析部56が機械学習などを適用することで、わずかな音の変化を検知することが可能であり、漏液が発生する前に生じる液冷路の微妙な亀裂の検知も可能である。
 その他は、図2Aと同一であるので、重複する説明は省略する。
Regarding the leakage of the cooling medium from the cooling path 32 of the power conversion unit 100, the sound listening rod 55 has the housings 24A and 24B as the sound in the normal state where there is no leakage and the sound in the abnormal state where the leakage is generated. It detects as a sign that it changes subtly due to vibrations exerted on it.
By applying machine learning or the like to the sound obtained by the sound listening rod 55, the sound listening analysis unit 56 can detect a slight change in the sound, and the liquid generated before the leakage occurs. It is also possible to detect subtle cracks in cold channels.
Others are the same as those in FIG. 2A, so duplicate description will be omitted.
<第5実施形態の効果>
 本発明の第5実施形態によれば、第1実施形態の効果に加え、音聴棒55および音聴分析部56を備えることで、漏液の監視が可能である。さらには、音聴分析部56が機械学習などを適用することで、漏液が発生する前に生じる液冷路の微妙な亀裂の検知も可能である。
<Effect of the fifth embodiment>
According to the fifth embodiment of the present invention, in addition to the effect of the first embodiment, the sound listening rod 55 and the sound listening analysis unit 56 can be provided to monitor the leakage. Furthermore, by applying machine learning or the like to the sound and hearing analysis unit 56, it is possible to detect a delicate crack in the liquid cooling path that occurs before the leakage occurs.
≪第6実施形態≫
 図9は、本発明の第6実施形態に係る電力変換ユニット500の構成例を、側面の断面構造で模式的に示す図である。
 図9における第6実施形態の電力変換ユニット500が、図4B(図4A)における第2実施形態の電力変換ユニット200と異なるのは、図9において、電力変換ユニット500が分割可能となる分割可能構造面81A,81Bを有していることである。
 図9に示す電力変換ユニット500においては、ユニット(電力変換ユニット500)内に存在する複数のスイッチング素子(21A,21B)と、それに付随する部材(例えば後記する図11の銅板、熱伝導層や周辺の絶縁物)の単位で分割可能な構造とする。
 この構造により、スイッチング素子が一つ壊れても、部品を取り換える範囲を最小限とすることが可能となり、ロスコストを最小限に抑えることが可能になる。
 その他は、図4B(図4A)と同一であるので、重複する説明は省略する。
<< 6th Embodiment >>
FIG. 9 is a diagram schematically showing a configuration example of the power conversion unit 500 according to the sixth embodiment of the present invention in cross-sectional structure on the side surface.
The power conversion unit 500 of the sixth embodiment in FIG. 9 is different from the power conversion unit 200 of the second embodiment in FIG. 4B (FIG. 4A) in that the power conversion unit 500 is divisible in FIG. It has structural surfaces 81A and 81B.
In the power conversion unit 500 shown in FIG. 9, a plurality of switching elements (21A, 21B) existing in the unit (power conversion unit 500) and associated members (for example, the copper plate and the heat conductive layer of FIG. 11 described later) and the like. The structure should be divisible by the unit of peripheral insulation).
With this structure, even if one switching element is broken, the range of replacing parts can be minimized, and the loss cost can be minimized.
Others are the same as those in FIG. 4B (FIG. 4A), so duplicate description will be omitted.
<第6実施形態の効果>
 本発明の第6実施形態によれば、第2実施形態の効果に加え、ユニット内に存在する複数のスイッチング素子とそれに付随する部材の単位で分割可能な構造としたことによって、スイッチング素子が一つ壊れても、部品を取り換える範囲を最小限とすることが可能となり、ロスコストを最小限に抑えることが可能になる。
<Effect of the sixth embodiment>
According to the sixth embodiment of the present invention, in addition to the effect of the second embodiment, the switching element is one by forming a structure that can be divided into units of a plurality of switching elements existing in the unit and members associated therewith. Even if it breaks, the range of parts replacement can be minimized, and the loss cost can be minimized.
≪第7実施形態≫
 図10は、本発明の第7実施形態に係る電力変換ユニット600の構成例を、側面の断面構造で模式的に示す図である。
 図10における第7実施形態の電力変換ユニット60が、図4B(図4A)における第2実施形態の電力変換ユニット200と異なるのは、図10において、冷却路(32)を構成する冷却管31の内面において、冷却フィン(冷却管突起部)31B、あるいは冷却フィン31Bによる凹凸の構造を設けることにより、液冷する冷却管31の内部の表面積を広くとるものである。
 この構造によって、冷却路(32)を構成する冷却管31の冷却機能が向上する。
 その他は、図4B(図4A)と同一であるので、重複する説明は省略する。
<< 7th Embodiment >>
FIG. 10 is a diagram schematically showing a configuration example of the power conversion unit 600 according to the seventh embodiment of the present invention in a cross-sectional structure on the side surface.
The power conversion unit 60 of the seventh embodiment in FIG. 10 is different from the power conversion unit 200 of the second embodiment in FIG. 4B (FIG. 4A) in that the cooling pipe 31 constituting the cooling passage (32) is different from the power conversion unit 200 of the second embodiment. By providing the cooling fins (cooling pipe protrusions) 31B or the concavo-convex structure of the cooling fins 31B on the inner surface of the above, the surface area inside the cooling pipe 31 for liquid cooling is increased.
With this structure, the cooling function of the cooling pipe 31 constituting the cooling passage (32) is improved.
Others are the same as those in FIG. 4B (FIG. 4A), so duplicate description will be omitted.
<第7実施形態の効果>
 本発明の第7実施形態によれば、第2実施形態の効果に加え、冷却管の内面において、冷却フィンによる凹凸の構造を設けることにより、液冷する冷却管の内部の表面積を広くして、冷却路を構成する冷却管の冷却機能が向上する。
<Effect of the 7th embodiment>
According to the seventh embodiment of the present invention, in addition to the effect of the second embodiment, the surface area inside the cooling pipe to be liquid-cooled is increased by providing an uneven structure with cooling fins on the inner surface of the cooling pipe. , The cooling function of the cooling pipes constituting the cooling path is improved.
≪第8実施形態≫
 図11は、本発明の第8実施形態に係る電力変換ユニット700の構成例を、側面の断面構造で模式的に示す図である。
 図11において、電力変換ユニット700は、1次側ユニット(10A:図4A)と2次側ユニット(10B:図4A)、および冷却管31による冷却路(32:図1A)を備えて構成されている。
 1次側ユニット(10A)は、1次側回路体11A9を備えている。また、2次側ユニット(10B)は、2次側回路体11B9を備えている。
 電力変換ユニット700は、前記の1次側回路体11A9と2次側回路体11B9に特徴がある。
<< Eighth Embodiment >>
FIG. 11 is a diagram schematically showing a configuration example of the power conversion unit 700 according to the eighth embodiment of the present invention with a cross-sectional structure on the side surface.
In FIG. 11, the power conversion unit 700 includes a primary side unit (10A: FIG. 4A), a secondary side unit (10B: FIG. 4A), and a cooling path (32: FIG. 1A) by a cooling pipe 31. ing.
The primary side unit (10A) includes a primary side circuit body 11A9. Further, the secondary side unit (10B) includes a secondary side circuit body 11B9.
The power conversion unit 700 is characterized by the primary side circuit body 11A9 and the secondary side circuit body 11B9.
 1次側回路体11A9は、1次側回路基板(22A:図4A)と複数のスイッチング素子21Aを備えている。
 スイッチング素子21Aの冷却管31側の面に、銅板(第1導体)91Aを設ける。また、銅板91Aと冷却管31との間に絶縁部材で構成される熱伝導層92Aを設ける。
 また、冷却管31は、グラウンド電位(接地電位)に接続されている。また、熱伝導層92Aに用いる部材は、0.5[W/mK]以上の熱伝導性を有するものとする。熱伝導層92Aの部材は、例えば、エポキシ樹脂やセラミック板を適用する。
The primary side circuit body 11A9 includes a primary side circuit board (22A: FIG. 4A) and a plurality of switching elements 21A.
A copper plate (first conductor) 91A is provided on the surface of the switching element 21A on the cooling pipe 31 side. Further, a heat conductive layer 92A composed of an insulating member is provided between the copper plate 91A and the cooling pipe 31.
Further, the cooling pipe 31 is connected to the ground potential (ground potential). Further, the member used for the heat conductive layer 92A shall have a heat conductivity of 0.5 [W / mK] or more. For the member of the heat conductive layer 92A, for example, an epoxy resin or a ceramic plate is applied.
 なお、2次側ユニットの2次側回路体11B9も、1次側回路体11A9と同様に、スイッチング素子21Bの冷却管31側の面に、銅板(第2導体)91Bと熱伝導層92Bを設けている。これらの銅板と熱伝導層に関して、2次側回路体11B9と1次側回路体11A9とは、実質的に同一であるので、重複する説明は省略する。 Similarly to the primary circuit body 11A9, the secondary circuit body 11B9 of the secondary unit also has a copper plate (second conductor) 91B and a heat conductive layer 92B on the surface of the switching element 21B on the cooling pipe 31 side. It is provided. Since the secondary circuit body 11B9 and the primary circuit body 11A9 are substantially the same with respect to these copper plates and the heat conductive layer, overlapping description will be omitted.
 以上の構成により、複数のスイッチング素子21A,21Bで発生した熱を冷却管31(冷却路32)へ伝達し、1次側回路体11A9と2次側回路体11B9、すなわち電力変換ユニット700の温度上昇を軽減する。 With the above configuration, the heat generated by the plurality of switching elements 21A and 21B is transferred to the cooling pipe 31 (cooling path 32), and the temperatures of the primary side circuit body 11A9 and the secondary side circuit body 11B9, that is, the power conversion unit 700. Reduce the rise.
<第8実施形態の効果>
 本発明の第8実施形態によれば、複数のスイッチング素子と冷却管との間に、銅板(第1導体、第2導体)と熱伝導層を設けることによって、電力変換ユニットの温度上昇をより軽減する。
<Effect of the eighth embodiment>
According to the eighth embodiment of the present invention, the temperature rise of the power conversion unit is further increased by providing a copper plate (first conductor, second conductor) and a heat conductive layer between the plurality of switching elements and the cooling pipe. Reduce.
<盤内フレームについて>
 図1A、図4Aに、それぞれ電力変換ユニット100、電力変換ユニット200として示したように、電力変換ユニットには、図1B、図4Bに示した盤内フレーム1001A,1001Bは含まれていない。
 ただし、電力変換装置として用いる場合には、盤内フレームを設けて、電力変換ユニットを構造的に保護する。また、盤内フレームには、アルミ、ステンレス、鉄などの金属を適用する。このように、盤内フレームに金属を用いることにより、電気的には盤内フレームの電位の固定が可能になる。
 なお、電力変換ユニットに盤内フレームを設けた構造を、「電力変換ユニット」として扱ってもよい。
<About the frame in the board>
As shown as the power conversion unit 100 and the power conversion unit 200 in FIGS. 1A and 4A, the power conversion unit does not include the in- panel frames 1001A and 1001B shown in FIGS. 1B and 4B, respectively.
However, when used as a power conversion device, an in-panel frame is provided to structurally protect the power conversion unit. In addition, metals such as aluminum, stainless steel, and iron are applied to the frame inside the panel. In this way, by using metal for the in-panel frame, it is possible to electrically fix the potential of the in-panel frame.
A structure in which the power conversion unit is provided with an in-panel frame may be treated as a “power conversion unit”.
<筐体外部にある冷却管路について>
 図3において、電力変換ユニット100の冷却管31(図1A)による冷却路(液冷路)32に冷却媒体(冷却液)を流す装置構成の概略を模式的に示した。
 図3においては、電力変換ユニット100の継手(液冷チューブ内蔵継手)61を冷却管路(冷却管接続部)62の一方に接続している。
 この冷却管路(冷却管接続部)62を構成する金属を、電力変換ユニット100の冷却管31を構成する金属と別の金属を採用する。具体的には、冷却管路(冷却管接続部)62を構成する金属は、冷却管31を構成する金属よりもイオン化傾向が高い金属を適用する。すなわち、冷却管31を構成する金属は、冷却管路(冷却管接続部)62を構成する金属よりもイオン化傾向が低い。
<About the cooling conduit outside the housing>
FIG. 3 schematically shows an outline of a device configuration for flowing a cooling medium (cooling liquid) through a cooling passage (liquid cooling passage) 32 by a cooling pipe 31 (FIG. 1A) of the power conversion unit 100.
In FIG. 3, the joint (joint with a built-in liquid cooling tube) 61 of the power conversion unit 100 is connected to one of the cooling pipelines (cooling pipe connecting portion) 62.
As the metal constituting the cooling pipeline (cooling pipe connecting portion) 62, a metal different from the metal constituting the cooling pipe 31 of the power conversion unit 100 is adopted. Specifically, as the metal constituting the cooling pipe line (cooling pipe connecting portion) 62, a metal having a higher ionization tendency than the metal constituting the cooling pipe 31 is applied. That is, the metal constituting the cooling pipe 31 has a lower ionization tendency than the metal forming the cooling pipeline (cooling pipe connecting portion) 62.
 この構成によって、冷却液と周囲環境因子により、電力変換ユニット100の冷却管31に腐食が発生する際にも、まずは電力変換ユニット100の外部である冷却管路(冷却管接続部)62の方が早く腐食するため、電力変換ユニット100の分割面を開かずとも電力変換ユニット内の冷却管31が腐食したかどうか知ることが可能となる。したがって、電力変換ユニット100のメンテナンスが容易となる。 With this configuration, even when the cooling pipe 31 of the power conversion unit 100 is corroded by the coolant and ambient environment factors, the cooling pipe line (cooling pipe connection portion) 62 outside the power conversion unit 100 is first used. Corrodes quickly, so it is possible to know whether or not the cooling pipe 31 in the power conversion unit has corroded without opening the dividing surface of the power conversion unit 100. Therefore, maintenance of the power conversion unit 100 becomes easy.
<電力変換ユニットの回路構成例>
 次に、電力変換ユニット100の回路構成例を、次に説明する。
<Circuit configuration example of power conversion unit>
Next, a circuit configuration example of the power conversion unit 100 will be described below.
《電力変換ユニットの第1の回路構成例》
 図12は、本発明の第1実施形態に係る電力変換ユニット100の第1の回路構成例を示す図である。図12に示す回路構成810は、DC-DCコンバータの機能を有する回路例である。
 図12における4個のスイッチング素子21Aと4個のスイッチング素子21Bは、それぞれ図1における1次側回路体11Aの4個のスイッチング素子21Aと、2次側回路体11Bの4個のスイッチング素子21Bとに対応している。
 なお、図12において、スイッチング素子21A,21Bのそれぞれには、逆並列にダイオードが接続されている。これらのダイオードは、スイッチング素子21A,21Bの素子の内部構造に寄生するダイオードを利用してもよいし、外付けで備えてもよい。
 また、スイッチング素子に逆並列に接続されたダイオードについては、後記する図13、図14においても記載があるが、図13、図14のダイオードに関する重複する説明を省略している。
<< First circuit configuration example of power conversion unit >>
FIG. 12 is a diagram showing a first circuit configuration example of the power conversion unit 100 according to the first embodiment of the present invention. The circuit configuration 810 shown in FIG. 12 is an example of a circuit having a function of a DC-DC converter.
The four switching elements 21A and the four switching elements 21B in FIG. 12 are the four switching elements 21A of the primary side circuit body 11A and the four switching elements 21B of the secondary side circuit body 11B, respectively, in FIG. It corresponds to.
In FIG. 12, diodes are connected in antiparallel to each of the switching elements 21A and 21B. As these diodes, diodes parasitic on the internal structure of the elements of the switching elements 21A and 21B may be used, or they may be provided externally.
Further, the diode connected in antiparallel to the switching element is described in FIGS. 13 and 14 described later, but the duplicate description of the diode in FIGS. 13 and 14 is omitted.
 図12において、4個のスイッチング素子21Aとコンデンサ1211、1212、リアクトル1213を備えて1次側回路(入力側回路)が構成されている。また、4個のスイッチング素子21Bとコンデンサ1221を備えて2次側回路(出力側回路)が構成されている。またトランス1201が1次側回路と2次側回路の間に設けられ、1次側回路と2次側回路を電気的に接続している。
 4個のスイッチング素子21Aは、ブリッジ型に構成され、図示していない制御回路によって4個のスイッチング素子を、それぞれPWM(Pulse Width Modulation)制御をすることによって、直流入力端子12D1P,12D1N間のDC電圧を正弦波に変換してブリッジの端子から出力する。この正弦波の出力電圧は、コンデンサ(共振コンデンサ)1212とリアクトル1213を通り、トランス1201で電圧が変換されて2次側回路に伝達される。
In FIG. 12, a primary side circuit (input side circuit) is configured by including four switching elements 21A, capacitors 1211, 1212, and a reactor 1213. Further, a secondary side circuit (output side circuit) is configured by including four switching elements 21B and a capacitor 1221. Further, a transformer 1201 is provided between the primary side circuit and the secondary side circuit, and electrically connects the primary side circuit and the secondary side circuit.
The four switching elements 21A are configured in a bridge type, and the four switching elements are controlled by PWM (Pulse Width Modulation) by a control circuit (not shown) to control the DC between the DC input terminals 12D1P and 12D1N. Converts the voltage to a sine wave and outputs it from the terminal of the bridge. The output voltage of this sine wave passes through the capacitor (resonant capacitor) 1212 and the reactor 1213, and the voltage is converted by the transformer 1201 and transmitted to the secondary circuit.
 2次側回路において、4個のスイッチング素子21Bは、ブリッジ型に構成され、図示していない制御回路によって4個のスイッチング素子をそれぞれ制御することによって、ブリッジの入力端子の正弦波(交流)を整流して、直流出力端子12D2P,12D2N間に直流電圧を出力する。
 また、出力側のコンデンサ1221と入力側のコンデンサ1211は、ともにリプル電圧を平滑化する平滑コンデンサとして作用する。
 なお、スイッチング素子21A,21Bは、IGBT(Insulated Gate Bipolar Transistor)、IEGT(Injection Enhanced Gate Transistor),MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)、スーパージャンクションMOSFETなどの半導体素子のいずれかで構成される。
 このように図12に示す回路を構成することによって、直流電圧を変換するDC-DC変換回路(電力変換装置)が構成できる。
In the secondary side circuit, the four switching elements 21B are configured in a bridge type, and by controlling each of the four switching elements by a control circuit (not shown), a sine wave (alternating current) of the input terminal of the bridge is generated. It rectifies and outputs a DC voltage between the DC output terminals 12D2P and 12D2N.
Further, the output side capacitor 1221 and the input side capacitor 1211 both act as smoothing capacitors for smoothing the ripple voltage.
The switching elements 21A and 21B are composed of any of semiconductor elements such as IGBT (Insulated Gate Bipolar Transistor), IEGT (Injection Enhanced Gate Transistor), MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor), and Super Junction MOSFET. NS.
By configuring the circuit shown in FIG. 12 in this way, a DC-DC conversion circuit (power conversion device) that converts a DC voltage can be configured.
 なお、電力変換ユニット100として説明したが、電力変換ユニット200,300,400,500,600,700のいずれかを用いて、回路構成810を具現化してもよい。
 なお、回路構成810で回路を構成した電力変換ユニットを電力変換ユニット1810と表記して、後記する図16で用いている。
Although the power conversion unit 100 has been described, the circuit configuration 810 may be embodied by using any of the power conversion units 200, 300, 400, 500, 600, and 700.
The power conversion unit whose circuit is configured by the circuit configuration 810 is referred to as a power conversion unit 1810, and is used in FIG. 16 described later.
《電力変換ユニットの第2の回路構成例》
 図13は、本発明の第1実施形態に係る電力変換ユニット100の第2の回路構成例を示す図である。図13に示す回路構成820は、単相AC-3相ACコンバータの機能を有する回路例である。
 なお、電力変換ユニット100に対応する回路と述べたが、図1に示す電力変換ユニット100におけるスイッチング素子21A,21Bは、4個として表記している。しかし、図1Aでは表記の都合上、4個として表記したものであり、4個に限定される訳ではない。図13においては、スイッチング素子21Bが6個として、説明する。
 図13において、4個のスイッチング素子21Aとコンデンサ1313、リアクトル1311,1312を備えて1次側回路(入力側回路)が構成されている。また、6個のスイッチング素子21Bを備えて2次側回路(出力側回路)が構成されている。
<< Example of second circuit configuration of power conversion unit >>
FIG. 13 is a diagram showing a second circuit configuration example of the power conversion unit 100 according to the first embodiment of the present invention. The circuit configuration 820 shown in FIG. 13 is an example of a circuit having a function of a single-phase AC-3 phase AC converter.
Although the circuit corresponding to the power conversion unit 100 has been described, the switching elements 21A and 21B in the power conversion unit 100 shown in FIG. 1 are described as four. However, in FIG. 1A, for convenience of notation, the number is shown as four, and the number is not limited to four. In FIG. 13, six switching elements 21B will be described.
In FIG. 13, a primary side circuit (input side circuit) is configured by including four switching elements 21A, a capacitor 1313, and reactors 1311, 1312. Further, a secondary side circuit (output side circuit) is configured by including six switching elements 21B.
 4個のスイッチング素子21Aは、ブリッジ型に構成され、図示していない制御回路によって、それぞれ制御されている。
 リアクトル1311,1312を介して、ブリッジの入力端子に入力した交流電圧は、ブリッジ型の4個のスイッチング素子21Aによって、整流され直流電圧に変換される。
 この直流電圧は、コンデンサ1313で平滑化され、2次側回路(出力側回路)の直流電源として供給される。
The four switching elements 21A are configured in a bridge type and are controlled by a control circuit (not shown).
The AC voltage input to the input terminal of the bridge via the reactors 1311, 1312 is rectified by the four bridge-type switching elements 21A and converted into a DC voltage.
This DC voltage is smoothed by the capacitor 1313 and supplied as a DC power supply for the secondary side circuit (output side circuit).
 2次側回路において、2個のスイッチング素子21Bの直列回路において、2個のスイッチング素子21Bを、図示していない制御回路でPWM制御することによって、1相分(例えばU相)の交流電圧が得られる。また、他の2個のスイッチング素子21Bの直列回路において、2個のスイッチング素子21Bを、図示していない制御回路でPWM制御することによって、他の1相分(例えばV相)の交流電圧が得られる。また、さらに別の2個のスイッチング素子21Bの直列回路において、2個のスイッチング素子21Bを、図示していない制御回路でPWM制御することによって、さらに別の1相分(例えばW相)の交流電圧が得られる。
 以上のように、2次側の交流出力端子13A2U,13A2V,13A2Wには、3相交流電圧が出力する。すなわち、電力変換ユニット100を回路構成820として構成することによって、単相交流から3相交流に変換する変換回路(電力変換装置)が構成できる。
In the secondary side circuit, in the series circuit of the two switching elements 21B, the two switching elements 21B are PWM-controlled by a control circuit (not shown), so that the AC voltage of one phase (for example, U phase) is generated. can get. Further, in the series circuit of the other two switching elements 21B, by PWM-controlling the two switching elements 21B with a control circuit (not shown), the AC voltage of the other one phase (for example, V phase) can be increased. can get. Further, in the series circuit of the two switching elements 21B, the two switching elements 21B are PWM-controlled by a control circuit (not shown), so that an alternating current for another one phase (for example, W phase) is obtained. The voltage is obtained.
As described above, the three-phase AC voltage is output to the AC output terminals 13A2U, 13A2V, 13A2W on the secondary side. That is, by configuring the power conversion unit 100 as a circuit configuration 820, a conversion circuit (power conversion device) that converts single-phase alternating current to three-phase alternating current can be configured.
《電力変換ユニットの第3の回路構成例》
 図14は、本発明の第1実施形態に係る電力変換ユニット100の第3の回路構成例を示す図である。図14に示す回路構成830は、AC-DCコンバータの機能を有する回路例である。
 図14における4個のスイッチング素子21Aと4個のスイッチング素子21Bは、それぞれ図1における1次側回路体11Aの4個のスイッチング素子21Aと、2次側回路体11Bの4個のスイッチング素子21Bとに対応している。
 なお、「1次側回路体11Aの4個のスイッチング素子21Aと、2次側回路体11Bの4個のスイッチング素子21B」と表記したが、図14においては、1次側回路と2次側回路との区別はなく、図1における1次側回路体11Aと2次側回路体11Bとにおける回路を並列に用いる。
<< Third circuit configuration example of the power conversion unit >>
FIG. 14 is a diagram showing a third circuit configuration example of the power conversion unit 100 according to the first embodiment of the present invention. The circuit configuration 830 shown in FIG. 14 is an example of a circuit having a function of an AC-DC converter.
The four switching elements 21A and the four switching elements 21B in FIG. 14 are the four switching elements 21A of the primary side circuit body 11A and the four switching elements 21B of the secondary side circuit body 11B, respectively, in FIG. It corresponds to.
Although it is described as "four switching elements 21A of the primary side circuit body 11A and four switching elements 21B of the secondary side circuit body 11B", in FIG. 14, the primary side circuit and the secondary side There is no distinction from the circuit, and the circuits in the primary side circuit body 11A and the secondary side circuit body 11B in FIG. 1 are used in parallel.
 図14において、4個のスイッチング素子21Aは、ブリッジ型に構成され、図示していない制御回路によって4個のスイッチング素子をそれぞれ制御することによって、ブリッジの入力端子14AP,14AQ間に入力する正弦波を整流して、直流出力端子14DP,14DN間に直流電圧を出力する。
 また、4個のスイッチング素子21Bは、ブリッジ型に構成され、図示していない制御回路によって4個のスイッチング素子をそれぞれ制御することによって、ブリッジの入力端子14AP,14AQ間に入力する正弦波を整流して、直流出力端子14DP,14DN間に直流電圧を出力する。
In FIG. 14, the four switching elements 21A are configured in a bridge type, and a sine wave input between the input terminals 14AP and 14AQ of the bridge by controlling each of the four switching elements by a control circuit (not shown). Is rectified, and a DC voltage is output between the DC output terminals 14DP and 14DN.
Further, the four switching elements 21B are configured in a bridge type, and the sine wave input between the input terminals 14AP and 14AQ of the bridge is rectified by controlling each of the four switching elements by a control circuit (not shown). Then, a DC voltage is output between the DC output terminals 14DP and 14DN.
 すなわち、前記の4個のスイッチング素子からそれぞれ構成される2つの整流回路は、入力と出力をそれぞれ並列に接続されて用いられている。
 なお、コンデンサ1411,1421は、直流出力端子14DP,14DN間に接続され、整流した直流電圧を平滑化している。
 以上の図14に示した回路構成830により、電力変換ユニット100をAC-DC変換回路(AC-DC電力変換装置)が具現化される。
That is, the two rectifier circuits each composed of the four switching elements are used by connecting the input and the output in parallel.
The capacitors 1411, 1421 are connected between the DC output terminals 14DP and 14DN to smooth the rectified DC voltage.
With the circuit configuration 830 shown in FIG. 14 above, the power conversion unit 100 is embodied in an AC-DC conversion circuit (AC-DC power conversion device).
 なお、電力変換ユニット100として説明したが、電力変換ユニット200,300,400,500,600,700のいずれかを用いて、回路構成830を具現化してもよい。
 なお、回路構成830で回路を構成した電力変換ユニットを電力変換ユニット1830と表記して、後記する図15で用いている。
Although the power conversion unit 100 has been described, the circuit configuration 830 may be embodied by using any of the power conversion units 200, 300, 400, 500, 600, and 700.
The power conversion unit whose circuit is configured by the circuit configuration 830 is referred to as a power conversion unit 1830, and is used in FIG. 15 described later.
<電力変換ユニットの回路構成の総括>
 電力変換ユニット100は、1次側回路体11Aと2次側回路体11Bを搭載しているが、これらの1次側回路体11Aと2次側回路体11Bにおける回路構成は、自由度が高い。すなわち、回路基板に様々な素子を搭載し、様々な結線をすることによって、各種の電力変換ユニット(電力変換装置)が構成できる。例えば、前記したように、図12ではDC-DC変換回路、図13では単相AC-3相AC変換回路、図14ではAC-DC変換回路の例を示している。
 これらの例のように、素子の選択と配線による回路選択によって、様々な電力変換回路(電力変換ユニット、電力変換装置)が構成できる。
<Summary of circuit configuration of power conversion unit>
The power conversion unit 100 includes a primary side circuit body 11A and a secondary side circuit body 11B, and the circuit configuration in these primary side circuit body 11A and the secondary side circuit body 11B has a high degree of freedom. .. That is, various power conversion units (power conversion devices) can be configured by mounting various elements on a circuit board and making various connections. For example, as described above, FIG. 12 shows an example of a DC-DC conversion circuit, FIG. 13 shows an example of a single-phase AC-3 phase AC conversion circuit, and FIG. 14 shows an example of an AC-DC conversion circuit.
As in these examples, various power conversion circuits (power conversion unit, power conversion device) can be configured by selecting elements and selecting circuits by wiring.
 また、図12で示したように、搭載する回路素子は、コンデンサやリアクトルに限定されない。
 また、図13で示したように、1次側回路体11A、2次側回路体11Bにおいて、スイッチング素子の個数は4個に限定されない。
 また、図14で示したように、1次側回路体11A、2次側回路体11Bを入力回路、出力回路として限定する必要はなく、1次側回路体11A、2次側回路体11Bを並列にして用いてもよい。
 また、電力変換ユニットを図1に示した電力変換ユニット100として説明したが、図4A、図6、図7、図9、図10、図11で示したそれぞれ電力変換ユニット200,300,400,500,600,700でも同様の回路構成が可能である。
Further, as shown in FIG. 12, the circuit elements to be mounted are not limited to capacitors and reactors.
Further, as shown in FIG. 13, the number of switching elements in the primary side circuit body 11A and the secondary side circuit body 11B is not limited to four.
Further, as shown in FIG. 14, it is not necessary to limit the primary side circuit body 11A and the secondary side circuit body 11B as an input circuit and an output circuit, and the primary side circuit body 11A and the secondary side circuit body 11B are used. It may be used in parallel.
Further, although the power conversion unit has been described as the power conversion unit 100 shown in FIG. 1, the power conversion units 200, 300, 400, respectively shown in FIGS. 4A, 6, 7, 9, 10, and 11, respectively. Similar circuit configurations are possible for 500, 600, and 700.
<複数の電力変換ユニットによる電力変換装置の回路構成例>
 次に、複数の電力変換ユニットによる電力変換装置の回路構成例を、次に説明する。
<Circuit configuration example of a power conversion device using multiple power conversion units>
Next, an example of a circuit configuration of a power conversion device using a plurality of power conversion units will be described below.
《複数の電力変換ユニットによる電力変換装置の第1の回路構成例》
 図15は、本発明の第1~第8実施形態のいずれかに係る電力変換ユニットを、図14で示した回路構成830による複数の電力変換ユニット1830を組み合わせて、3相交流電圧を直流電圧に変換する電力変換装置8000の回路構成例を示す図である。
 図15において、電力変換装置8000は、図14で示したAC-DC変換の機能を有する電力変換ユニット(電力変換装置)1830を3台、備えている。
<< First circuit configuration example of a power conversion device using a plurality of power conversion units >>
FIG. 15 shows a combination of a power conversion unit according to any one of the first to eighth embodiments of the present invention and a plurality of power conversion units 1830 according to the circuit configuration 830 shown in FIG. 14 to convert a three-phase AC voltage into a DC voltage. It is a figure which shows the circuit structure example of the power conversion apparatus 8000 which converts into.
In FIG. 15, the power conversion device 8000 includes three power conversion units (power conversion devices) 1830 having the AC-DC conversion function shown in FIG.
 また、図15において、3相交流電源1550のU相、V相、W相から各相の交流電圧を3台の電力変換ユニット1830にそれぞれ入力している。
 3台の電力変換ユニット1830は、それぞれ交流電圧(交流電力)を直流電圧(直流電力)に変換し、それぞれの直流電圧(直流電力)を出力端子15DP,15DN間に出力している。
 図15に示すように、3台の電力変換ユニット1830のそれぞれの出力端子は、互いに並列に接続されている。
 以上のように、3相交流の交流電圧が直流電圧として変換され、出力される電力変換装置8000が具現化される。
Further, in FIG. 15, AC voltages of each phase from the U phase, V phase, and W phase of the three-phase AC power supply 1550 are input to the three power conversion units 1830, respectively.
Each of the three power conversion units 1830 converts an AC voltage (AC power) into a DC voltage (DC power), and outputs each DC voltage (DC power) between the output terminals 15DP and 15DN.
As shown in FIG. 15, the output terminals of the three power conversion units 1830 are connected in parallel with each other.
As described above, the three-phase AC AC voltage is converted as a DC voltage, and the output power conversion device 8000 is embodied.
《複数の電力変換ユニットによる電力変換装置の第2の回路構成例》
 図16は、本発明の第1~第8実施形態のいずれかに係る電力変換ユニットを、図12で示した回路構成810による複数の電力変換ユニット1810を組み合わせて、異なる電圧の直流電圧に変換する電力変換装置9000の回路構成例を示す図である。
 図16において、電力変換装置9000は、図12で示したDC-DC変換の機能を有する電力変換ユニット(電力変換装置)1810を3台、備えている。
 また、図16において、直流電源の電圧を入力する入力端子16D1P,16DINから直流電圧を3台の電力変換ユニット1810にそれぞれ入力している。
 3台の電力変換ユニット1810は、それぞれ直流電圧(DC1:図12)を異なる電圧の直流電圧(DC2:図12)に変換する。3台の電力変換ユニット1810の出力端子は、直列に接続されていて、直流電圧が合算された電圧(3×DC2)が、電力変換装置9000の出力端子16D2P,16D2N間に出力される。
 以上のように、直流電圧が異なる電圧の直流電圧に変換され、出力される電力変換装置9000が具現化される。
<< Second circuit configuration example of a power conversion device using a plurality of power conversion units >>
FIG. 16 shows that the power conversion unit according to any one of the first to eighth embodiments of the present invention is converted into a DC voltage having a different voltage by combining a plurality of power conversion units 1810 according to the circuit configuration 810 shown in FIG. It is a figure which shows the circuit structure example of the power conversion apparatus 9000.
In FIG. 16, the power conversion device 9000 includes three power conversion units (power conversion devices) 1810 having a DC-DC conversion function shown in FIG.
Further, in FIG. 16, DC voltages are input to the three power conversion units 1810 from the input terminals 16D1P and 16DIN for inputting the voltage of the DC power supply, respectively.
Each of the three power conversion units 1810 converts a DC voltage (DC1: FIG. 12) into a DC voltage (DC2: FIG. 12) having a different voltage. The output terminals of the three power conversion units 1810 are connected in series, and the sum of the DC voltages (3 × DC2) is output between the output terminals 16D2P and 16D2N of the power conversion device 9000.
As described above, the power conversion device 9000 in which the DC voltage is converted into a DC voltage having a different voltage and is output is embodied.
<複数の電力変換ユニットによる電力変換装置の総括>
 複数の電力変換ユニットを組み合わせて様々な電力変換装置が構成できる。
 例えば、前記したように、図15ではAC-DC変換回路の電力変換ユニット1830(830:図14)を3台用いて3相AC-DC変換回路が構成できることを示している。
 また、図16ではDC-DC変換回路の電力変換ユニット1810(810:図12)を3台用いて、直流電圧DC1を高い電圧の直流電圧DC3に変換するDC-DC変換回路が構成できることを示している。
 複数の電力変換ユニットを組み合わせて電力変換装置を前記の例に限定されない。また、図15、図16に示した電力変換装置の例では、電力変換ユニットを3台用いる例であったが、3台に限定されない。4台以上の電力変換ユニットを組み合わせてもよい。
<Summary of power conversion equipment using multiple power conversion units>
Various power conversion devices can be configured by combining a plurality of power conversion units.
For example, as described above, FIG. 15 shows that a three-phase AC-DC conversion circuit can be configured by using three power conversion units 1830 (830: FIG. 14) of the AC-DC conversion circuit.
Further, FIG. 16 shows that a DC-DC conversion circuit that converts a DC voltage DC1 into a high-voltage DC voltage DC3 can be configured by using three power conversion units 1810 (810: FIG. 12) of the DC-DC conversion circuit. ing.
The power conversion device is not limited to the above example by combining a plurality of power conversion units. Further, in the example of the power conversion device shown in FIGS. 15 and 16, the example in which three power conversion units are used is not limited to three. You may combine four or more power conversion units.
<複数の電力変換ユニットの盤内フレーム間の絶縁>
 図15に示した複数(3台)の電力変換ユニット1830を組み合わせて構成した電力変換装置8000や、図16に示した複数(3台)の電力変換ユニット1810を組み合わせて構成した電力変換装置9000において、電力変換ユニットの盤内フレーム(例えば1001A,1001B:図1B)が、電力変換ユニット毎に複数あって、互いの盤内フレームのグラウンド電圧が異なることがある。
 この場合には、異なる電力変換ユニットの異なる盤内フレームの間に、絶縁を確保するための絶縁板を設けることがある。
<Insulation between in-panel frames of multiple power conversion units>
A power conversion device 8000 configured by combining a plurality of (three) power conversion units 1830 shown in FIG. 15 and a power conversion device 9000 configured by combining a plurality of (three) power conversion units 1810 shown in FIG. In, there may be a plurality of in-panel frames of the power conversion unit (for example, 1001A, 1001B: FIG. 1B) for each power conversion unit, and the ground voltages of the in-panel frames may differ from each other.
In this case, an insulating plate for ensuring insulation may be provided between different in-panel frames of different power conversion units.
≪その他の実施形態≫
 なお、本発明は、以上に説明した実施形態に限定されるものでなく、さらに様々な変形例が含まれる。例えば、前記の実施形態は、本発明を分かりやすく説明するために、詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成の一部で置き換えることが可能であり、さらに、ある実施形態の構成に他の実施形態の構成の一部または全部を追加・削除・置換をすることも可能である。
 以下に、その他の実施形態や変形例について、さらに説明する。
<< Other Embodiments >>
The present invention is not limited to the embodiments described above, and further includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with a part of the configuration of another embodiment, and further, add a part or all of the configuration of another embodiment to the configuration of one embodiment. It is also possible to delete / replace.
Hereinafter, other embodiments and modifications will be further described.
≪スイッチング素子の個数≫
 図1Aにおいて、電力変換ユニット100における1次側回路体11A、2次側回路体11Bにおけるスイッチング素子21A,21Bの個数はそれぞれ4個の場合を図示して説明したが、4個に限定されない。3個以下でも、5個以上で構成してもよい。また、配線によって、並列あるいは直列に接続して見かけ上の個数を変化させてもよい。あるいは、スイッチング素子の一部を配線せずに未使用としてもよい。
 また、一部のスイッチング素子の開閉信号を所定の電位に固定して、常にオン(ON)状態、あるいはオフ(OFF)状態として用いてもよい。
≪Number of switching elements≫
In FIG. 1A, the number of switching elements 21A and 21B in the primary side circuit body 11A and the secondary side circuit body 11B in the power conversion unit 100 has been illustrated and described, but the number is not limited to four. It may be composed of 3 or less or 5 or more. Further, the apparent number may be changed by connecting in parallel or in series depending on the wiring. Alternatively, a part of the switching element may be left unused without wiring.
Further, the open / close signal of some switching elements may be fixed at a predetermined potential and always used as an on (ON) state or an off (OFF) state.
≪スイッチング素子の配置≫
 スイッチング素子の配置は、図1Aや図2Bに一例を示した。しかし、これらは、説明の都合上、模式的に配置を示したものである。前記の図の配置に限定されない。
 また、スイッチング素子を含む電力変換ユニット100の構造は、図1Aに示したように、冷却路面の中心を中心線として、対称形を有するものとして示した。対称形であれば複数存在するスイッチング素子における温度上昇のばらつきを低減できるからである。
 ただし、スイッチング素子の動作における偏りを考慮している場合は、その限りではなく、非対称の配置としてもよい。
≪Arrangement of switching elements≫
An example of the arrangement of the switching element is shown in FIGS. 1A and 2B. However, for convenience of explanation, these are schematically arranged. The arrangement is not limited to the above figure.
Further, as shown in FIG. 1A, the structure of the power conversion unit 100 including the switching element is shown to have a symmetrical shape with the center of the cooling path surface as the center line. This is because the symmetrical shape can reduce the variation in temperature rise in a plurality of switching elements.
However, when the bias in the operation of the switching element is taken into consideration, the arrangement may be asymmetrical without this limitation.
≪スイッチング素子と半導体基板≫
 図12の回路構成810において、スイッチング素子は、IGBT(Insulated Gate Bipolar Transistor)、IEGT(Injection Enhanced Gate Transistor),MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)、スーパージャンクションMOSFETなどの半導体素子が用いられることを説明した。
 さらに、半導体素子の半導体基板について説明すると、前記のスイッチング素子の半導体素子は、GaN(窒化ガリウム)、Si(シリコン)、SiC(シリコンカーバイド)などの半導体基板が用いられる。
≪Switching element and semiconductor substrate≫
In the circuit configuration 810 of FIG. 12, semiconductor elements such as IGBTs (Insulated Gate Bipolar Transistors), IEGTs (Injection Enhanced Gate Transistors), MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors), and superjunction MOSFETs are used as switching elements. I explained that.
Further, the semiconductor substrate of the semiconductor element will be described. As the semiconductor element of the switching element, a semiconductor substrate such as GaN (gallium nitride), Si (silicon), or SiC (silicon carbide) is used.
《漏液検知シート》
 図6において、漏液検知シート53は、1次側ユニット10Aと2次側ユニット10Bの分割面(接合面)の側面に設けた例を示した。これは図6に示す電力変換ユニット300においては、前記の分割面が広いため、一部分で漏液が発生すれば分割面全面で漏液し検知できるためである。
 ただし、安全サイドに分割面の全面にシートを施すことも有効である。
<< Leakage detection sheet >>
FIG. 6 shows an example in which the liquid leakage detection sheet 53 is provided on the side surface of the dividing surface (joining surface) of the primary side unit 10A and the secondary side unit 10B. This is because, in the power conversion unit 300 shown in FIG. 6, since the divided surface is wide, if a liquid leak occurs in a part of the power conversion unit 300, the liquid leak can be detected on the entire surface of the divided surface.
However, it is also effective to apply a sheet to the entire surface of the divided surface on the safety side.
《音聴棒55》
 図8において、音聴棒55を電力変換ユニット(例えば電力変換ユニット100)の継手(液冷チューブ内蔵継手)61に取り付けて液冷媒体の漏洩を検知していたが、例えば、漏液検知シートを備えた図6の電力変換ユニット300に音聴棒55を取り付け、二重の検知手段を電力変換ユニットに備えてもよい。
 この場合には、漏洩検知がより確度が高まる効果がある。
Sound Listening Stick 55》
In FIG. 8, the sound listening rod 55 was attached to the joint (joint with a built-in liquid cooling tube) 61 of the power conversion unit (for example, the power conversion unit 100) to detect the leakage of the liquid refrigerant body. The listening rod 55 may be attached to the power conversion unit 300 of FIG. 6 provided with the above, and the power conversion unit may be provided with double detection means.
In this case, there is an effect that the leakage detection becomes more accurate.
《Oリング》
 図4Aにおいては、Oリング52は2本に限定されない。1本でもよいし、3本以上でもよい。
 図4Aに示したように、2本のOリングの間に、漏液センサ51を配置しているが、この配置に限定されない。例えば、構造的な制約により、2本のOリングの間以外の場所に漏液センサ51を設けてもよい。
 また、Oリング52を配置する形状は、円形状に限定されない。構造的な制約や1次側回路体11A、2次側回路体11Bの形状や配置によって、円形以外の形状で配置してもよい。
《O-ring》
In FIG. 4A, the number of O-rings 52 is not limited to two. It may be one or three or more.
As shown in FIG. 4A, the liquid leakage sensor 51 is arranged between the two O-rings, but the arrangement is not limited to this. For example, due to structural restrictions, the liquid leakage sensor 51 may be provided at a location other than between the two O-rings.
Further, the shape in which the O-ring 52 is arranged is not limited to the circular shape. Depending on the structural restrictions and the shape and arrangement of the primary side circuit body 11A and the secondary side circuit body 11B, the primary side circuit body 11A may be arranged in a shape other than the circular shape.
《銅板と熱伝導層》
 図11に示した第5実施形態においては、スイッチング素子(21A)の冷却管31側の面に銅板(第1導体)91Aを設けることを説明した。また、スイッチング素子(21B)の冷却管31側の面に銅板(第2導体)91Bを設けることを説明した。
 ただし、第1導体(91A)、そして第2導体(91B)は、銅以外の金属でもよい。例えば銀やアルミニウム、あるいは熱伝導率の高い合金でもよい。
 また、熱伝導層92A,92Bについては、エポキシ樹脂やセラミック板を例にあげたが、絶縁性と熱伝導性が良好であれば、他の材質でもよい。
 なお、銅板91A,91Bと冷却管31との電圧差が小さく、シリコーンゲル23A,23Bで耐圧がもつ場合には、熱伝導層92A,92Bを省略することも可能である。
《Copper plate and heat conductive layer》
In the fifth embodiment shown in FIG. 11, it has been described that the copper plate (first conductor) 91A is provided on the surface of the switching element (21A) on the cooling pipe 31 side. Further, it has been described that the copper plate (second conductor) 91B is provided on the surface of the switching element (21B) on the cooling pipe 31 side.
However, the first conductor (91A) and the second conductor (91B) may be a metal other than copper. For example, silver, aluminum, or an alloy having high thermal conductivity may be used.
As for the heat conductive layers 92A and 92B, an epoxy resin or a ceramic plate has been given as an example, but other materials may be used as long as they have good insulation and heat conductivity.
If the voltage difference between the copper plates 91A and 91B and the cooling pipe 31 is small and the silicone gels 23A and 23B have a withstand voltage, the heat conductive layers 92A and 92B can be omitted.
《ゲル状の物質》
 図1A、図4Aなどにおいては、1次側回路体11Aや2次側回路体11Bの空間部にシリコーンゲルを充填する例を示したが、シリコーンゲルに限定されない。他のゲル状の絶縁性の物質をシリコーンゲルの代わりに充填する物質としてもよい。
 また、シリコーンゲルに他の物質を添加する方法もある。
《Gel-like substance》
In FIGS. 1A and 4A, examples of filling the space of the primary side circuit body 11A and the secondary side circuit body 11B with the silicone gel are shown, but the present invention is not limited to the silicone gel. Another gel-like insulating substance may be used as a filling substance instead of the silicone gel.
There is also a method of adding another substance to the silicone gel.
《分割可能構造面》
 図9に示した第6実施形態については、図4Aに示した電力変換ユニット200について、図9に示す分割可能構造面81A,81Bを設ける構造とした。しかし基となるのは電力変換ユニット200に限定されない。例えば、図1A、図6、図7、図10、図11に示した各電力変換ユニットに対して、それぞれ分割可能構造面81A,81Bを設けてもよい。
《Dividable structural surface》
In the sixth embodiment shown in FIG. 9, the power conversion unit 200 shown in FIG. 4A has a structure in which the divisible structural surfaces 81A and 81B shown in FIG. 9 are provided. However, the basis is not limited to the power conversion unit 200. For example, the separable structural surfaces 81A and 81B may be provided for each of the power conversion units shown in FIGS. 1A, 6, 7, 10, and 11.
《冷却フィンによる冷却管の凹凸構造》
 図10に示した第7実施形態については、図4Aに示した電力変換ユニット200について、図10に示す冷却フィン31Bによる冷却管31の凹凸構造を設ける構造とした。しかし基となるのは電力変換ユニット200に限定されない。例えば、図1A、図6、図7、図9、図11に示した各電力変換ユニットに対して、それぞれ冷却フィン31Bによる冷却管31の凹凸の構造を設けてもよい。
《Concave and convex structure of cooling pipe by cooling fins》
In the seventh embodiment shown in FIG. 10, the power conversion unit 200 shown in FIG. 4A has a structure in which the uneven structure of the cooling pipe 31 by the cooling fins 31B shown in FIG. 10 is provided. However, the basis is not limited to the power conversion unit 200. For example, each of the power conversion units shown in FIGS. 1A, 6, 7, 9, and 11 may be provided with an uneven structure of the cooling pipe 31 by the cooling fins 31B, respectively.
《冷却管、冷却路の構成》
 図1Aにおいて、冷却路32を構成する冷却管31は、分割面(中心線)40で、上側と下側の冷却管31を合わせる構成として説明したが、冷却管31を一体として形成し、電力変換ユニット100の分割部に挿入する方法をとってもよい。この場合には、冷却管31からの冷却媒体の漏洩を低減できる。
<< Configuration of cooling pipe and cooling path >>
In FIG. 1A, the cooling pipe 31 constituting the cooling passage 32 has been described as a configuration in which the upper and lower cooling pipes 31 are combined on the dividing surface (center line) 40, but the cooling pipes 31 are integrally formed to generate electric power. A method of inserting into the divided portion of the conversion unit 100 may be adopted. In this case, leakage of the cooling medium from the cooling pipe 31 can be reduced.
《スイッチング素子に銅板と熱伝導層を有する構造》
 図11に示した第7実施形態については、図4Aに示した電力変換ユニット200について、図11に示すスイッチング素子に銅板と熱伝導層を有する構造とした。しかし基となるのは電力変換ユニット200に限定されない。例えば、図1A、図6、図7、図9、図10に示した各電力変換ユニットに対して、それぞれスイッチング素子に銅板と熱伝導層を有する構造を設けてもよい。
<< Structure with a copper plate and a heat conductive layer in the switching element >>
In the seventh embodiment shown in FIG. 11, the power conversion unit 200 shown in FIG. 4A has a structure in which the switching element shown in FIG. 11 has a copper plate and a heat conductive layer. However, the basis is not limited to the power conversion unit 200. For example, each power conversion unit shown in FIGS. 1A, 6, 7, 9, and 10 may be provided with a structure having a copper plate and a heat conductive layer in the switching element, respectively.
《電力変換ユニット、電力変換装置のその他の回路構成例》
 電力変換ユニットの回路例については、図12、図13、図14に示したが前記したように、これらに限定されない。例えば、1次側回路体11Aのスイッチング素子の個数を8個にすれば、スイッチング素子4個で整流回路機能によるAC-DC変換をして、そのDC出力を図12の入力端子12D1P、12D1Nに入力すれば、1次側回路体11A(8個のスイッチング素子)と2次側回路体11Bとによって、AC-DC変換の機能を有する電力変換ユニット(電力変換装置)が構成できる。
 あるいは、図14に示したAC-DCコンバータの変換機能を有する回路構成830による電力変換ユニット1830と、図12に示したDC-DCコンバータの変換機能を有する回路構成810による電力変換ユニット(100)と、を組み合わせてAC電圧を高い電圧のDC電圧に変換する電力変換装置を構成することができる。
<< Other circuit configuration examples of power conversion unit and power conversion device >>
The circuit example of the power conversion unit is shown in FIGS. 12, 13, and 14, but is not limited thereto as described above. For example, if the number of switching elements of the primary circuit body 11A is set to 8, AC-DC conversion is performed by the rectifier circuit function with 4 switching elements, and the DC output is sent to the input terminals 12D1P and 12D1N in FIG. If input, a power conversion unit (power conversion device) having an AC-DC conversion function can be configured by the primary side circuit body 11A (8 switching elements) and the secondary side circuit body 11B.
Alternatively, the power conversion unit 1830 having the circuit configuration 830 having the conversion function of the AC-DC converter shown in FIG. 14 and the power conversion unit (100) having the circuit configuration 810 having the conversion function of the DC-DC converter shown in FIG. And can be combined to form a power conversion device that converts an AC voltage into a high DC voltage.
 100,200,300,400,500,600,700,1810,1830  電力変換ユニット(電力変換装置)
 1001A,1001B、1002A,1002B  盤内フレーム
 10A  1次側ユニット
 10B  2次側ユニット
 11A  1次側回路体
 11B  2次側回路体
 21A,21B  スイッチング素子
 22A  1次側回路基板
 22B  2次側回路基板
 23A,23B  シリコーンゲル
 24A  1次側筐体
 24B  2次側筐体
 31  冷却管
 31B  冷却フィン(冷却管突起部)
 32  冷却路(液冷路)
 40  分割面(中心線)
 51  漏液センサ(漏液検知手段)
 52  Oリング
 53  漏液検知シート(漏液検知手段)
 54  ICタグ型漏液検知器(漏液検知手段)
 55  音聴棒(漏液検知手段)
 56  音聴分析部
 61  継手(液冷チューブ内蔵継手)
 62  冷却管路(冷却管接続部)
 63,64  冷却管路
 8000,9000  電力変換装置
 81A,81B  分割可能構造面
 810,820,830  回路構成
 91A  第1導体(導体、銅板)
 91B  第2導体(導体、銅板)
 92A,92B  熱伝導層
100,200,300,400,500,600,700,1810,1830 Power conversion unit (power conversion device)
1001A, 1001B, 1002A, 1002B In-panel frame 10A Primary side unit 10B Secondary side unit 11A Primary side circuit board 11B Secondary side circuit board 21A, 21B Switching element 22A Primary side circuit board 22B Secondary side circuit board 23A , 23B Silicone gel 24A Primary side housing 24B Secondary side housing 31 Cooling pipe 31B Cooling fin (cooling pipe protrusion)
32 Cooling path (liquid cooling path)
40 Divided surface (center line)
51 Leakage sensor (leakage detection means)
52 O-ring 53 Leakage detection sheet (leakage detection means)
54 IC tag type leak detector (leakage detection means)
55 Sound listening stick (leakage detection means)
56 Sound analysis unit 61 Fitting (joint with built-in liquid cooling tube)
62 Cooling pipeline (cooling pipe connection)
63, 64 Cooling pipeline 8000, 9000 Power converter 81A, 81B Dividable structural surface 810, 820, 830 Circuit configuration 91A First conductor (conductor, copper plate)
91B 2nd conductor (conductor, copper plate)
92A, 92B heat conductive layer

Claims (15)

  1.  スイッチング素子と回路基板を有する1次側回路体と、前記1次側回路体を収納する1次側筐体とを具備する1次側ユニットと、
     スイッチング素子と回路基板を有する2次側回路体と、前記2次側回路体を収納する2次側筐体とを具備する2次側ユニットと、
     前記1次側回路体と前記2次側回路体との間に配置される冷却管による冷却路と、
    を備える、
    ことを特徴とする電力変換ユニット。
    A primary side unit including a primary side circuit body having a switching element and a circuit board, and a primary side housing for accommodating the primary side circuit body.
    A secondary side unit including a secondary side circuit body having a switching element and a circuit board, and a secondary side housing for accommodating the secondary side circuit body.
    A cooling path by a cooling pipe arranged between the primary side circuit body and the secondary side circuit body, and
    To prepare
    A power conversion unit characterized by that.
  2.  請求項1において、
     前記冷却路における冷却媒体として液体を用い、
     前記1次側ユニットと前記2次側ユニットとが接する箇所において、前記冷却媒体の漏洩を検知する漏液検知手段を備える、
    ことを特徴とする電力変換ユニット。
    In claim 1,
    A liquid is used as a cooling medium in the cooling path, and the liquid is used.
    A liquid leakage detecting means for detecting leakage of the cooling medium is provided at a position where the primary side unit and the secondary side unit are in contact with each other.
    A power conversion unit characterized by that.
  3.  請求項2において、
     前記漏液検知手段は、前記1次側ユニットと前記2次側ユニットとの接合面に設置され、
     前記1次側ユニットと前記2次側ユニットとの接合面においてOリングが備えられる、
    ことを特徴とする電力変換ユニット。
    In claim 2,
    The liquid leakage detecting means is installed on the joint surface between the primary side unit and the secondary side unit.
    An O-ring is provided at the joint surface between the primary side unit and the secondary side unit.
    A power conversion unit characterized by that.
  4.  請求項2において、
     前記漏液検知手段は、シートの変色によって前記冷却媒体の漏洩を検知する漏液検知シートである、
    ことを特徴とする電力変換ユニット。
    In claim 2,
    The liquid leakage detecting means is a liquid leakage detecting sheet that detects leakage of the cooling medium by discoloration of the sheet.
    A power conversion unit characterized by that.
  5.  請求項2において、
     前記漏液検知手段は、ICを内蔵し、前記冷却媒体の漏洩を検知するICタグ型漏液検知器である、
    ことを特徴とする電力変換ユニット。
    In claim 2,
    The liquid leakage detecting means is an IC tag type liquid leakage detector that has a built-in IC and detects leakage of the cooling medium.
    A power conversion unit characterized by that.
  6.  請求項4において、
     前記漏液検知手段は、前記冷却媒体の漏洩を振動によって検出する音聴棒である、
    ことを特徴とする電力変換ユニット。
    In claim 4,
    The liquid leakage detecting means is a sound listening rod that detects leakage of the cooling medium by vibration.
    A power conversion unit characterized by that.
  7.  請求項1において、
     前記冷却管による冷却路の内側に、冷却管の凹凸の構造を有する、
    ことを特徴とする電力変換ユニット。
    In claim 1,
    Inside the cooling path provided by the cooling pipe, the structure of the unevenness of the cooling pipe is provided.
    A power conversion unit characterized by that.
  8.  請求項1において、
     前記1次側回路体の複数のスイッチング素子の所定の部分に、それぞれ接する複数の接地された第1導体と、
     前記2次側回路体の複数のスイッチング素子の所定の部分に、それぞれ接する複数の接地された第2導体と、
    を備え、
     前記冷却管による冷却路は、複数の前記第1導体と複数の前記第2導体との間に配置される、
    ことを特徴とする電力変換ユニット。
    In claim 1,
    A plurality of grounded first conductors in contact with predetermined portions of the plurality of switching elements of the primary circuit body, respectively.
    A plurality of grounded second conductors, each of which is in contact with a predetermined portion of a plurality of switching elements of the secondary circuit body,
    With
    The cooling passage by the cooling pipe is arranged between the plurality of the first conductors and the plurality of the second conductors.
    A power conversion unit characterized by that.
  9.  請求項8において、
     複数の前記第1導体と前記冷却管との間、および複数の前記第2導体と前記冷却管との間に、絶縁部材で構成される複数の熱伝導層を備える、
    ことを特徴とする電力変換ユニット。
    In claim 8.
    A plurality of heat conductive layers composed of insulating members are provided between the plurality of the first conductors and the cooling pipes and between the plurality of the second conductors and the cooling pipes.
    A power conversion unit characterized by that.
  10.  請求項1において、
     前記1次側筐体および前記2次側筐体の外部に前記冷却路に接続する冷却管接続部が設けられ、
     前記冷却管接続部を構成する金属に対し、前記冷却管を構成する金属は、イオン化傾向が低い、
    ことを特徴とする電力変換ユニット。
    In claim 1,
    A cooling pipe connecting portion for connecting to the cooling path is provided outside the primary side housing and the secondary side housing.
    The metal constituting the cooling pipe has a lower ionization tendency than the metal constituting the cooling pipe connection portion.
    A power conversion unit characterized by that.
  11.  請求項1において、
     前記1次側回路体、および前記1次側筐体と前記1次側回路体の間を、シリコーンゲルを満たして封止され、
     前記2次側回路体、および前記2次側筐体と前記2次側回路体の間を、シリコーンゲルを満たして封止されている、
    ことを特徴とする電力変換ユニット。
    In claim 1,
    The primary side circuit body and the space between the primary side housing and the primary side circuit body are filled with silicone gel and sealed.
    A silicone gel is filled and sealed between the secondary side circuit body and the secondary side housing and the secondary side circuit body.
    A power conversion unit characterized by that.
  12.  請求項1において、
     前記1次側ユニットおよび前記2次側ユニットの内部は、個体もしくは液体もしくはゲルで構成され、空気領域が存在しない、
    ことを特徴とする電力変換ユニット。
    In claim 1,
    The inside of the primary side unit and the secondary side unit is composed of a solid, a liquid, or a gel, and there is no air region.
    A power conversion unit characterized by that.
  13.  請求項1において、
     前記スイッチング素子は、IGBTまたはMOSFETまたはIEGTで構成され、
     前記スイッチング素子を構成する半導体基板は、GaNまたはSiまたはSiCで構成されている、
    ことを特徴とする電力変換ユニット。
    In claim 1,
    The switching element is composed of an IGBT or MOSFET or IEGT.
    The semiconductor substrate constituting the switching element is made of GaN, Si, or SiC.
    A power conversion unit characterized by that.
  14.  請求項1から請求項12のいずれか一項に記載の電力変換ユニットを備えて構成される、ことを特徴とする電力変換装置。 A power conversion device comprising the power conversion unit according to any one of claims 1 to 12.
  15.  請求項14において、
     複数の電力変換ユニットと隣接する面に電力変換装置としての盤内フレームを有し、
     異なる電力変換ユニットの異なる盤内フレームの間に絶縁板を設ける、
    ことを特徴とする電力変換装置。
    In claim 14,
    It has an in-panel frame as a power conversion device on the surface adjacent to multiple power conversion units.
    Insulating plates are provided between different in-panel frames of different power conversion units.
    A power conversion device characterized by the fact that.
PCT/JP2020/042552 2020-02-19 2020-11-16 Power conversion unit and power conversion device WO2021166341A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020025821A JP7308162B2 (en) 2020-02-19 2020-02-19 Power conversion unit and power converter
JP2020-025821 2020-02-19

Publications (1)

Publication Number Publication Date
WO2021166341A1 true WO2021166341A1 (en) 2021-08-26

Family

ID=77390591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042552 WO2021166341A1 (en) 2020-02-19 2020-11-16 Power conversion unit and power conversion device

Country Status (2)

Country Link
JP (1) JP7308162B2 (en)
WO (1) WO2021166341A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289357A (en) * 1990-04-02 1991-12-19 Toshiba Corp Thyristor valve
JP2011029480A (en) * 2009-07-28 2011-02-10 Denso Corp Power supply device
JP2011198781A (en) * 2010-03-17 2011-10-06 Nissan Motor Co Ltd Cooling device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6460921B2 (en) 2015-06-15 2019-01-30 三菱電機株式会社 Cooling device for power semiconductor device and manufacturing method thereof
JP2019134080A (en) 2018-01-31 2019-08-08 株式会社デンソー Semiconductor module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289357A (en) * 1990-04-02 1991-12-19 Toshiba Corp Thyristor valve
JP2011029480A (en) * 2009-07-28 2011-02-10 Denso Corp Power supply device
JP2011198781A (en) * 2010-03-17 2011-10-06 Nissan Motor Co Ltd Cooling device

Also Published As

Publication number Publication date
JP2021132446A (en) 2021-09-09
JP7308162B2 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
JP5925270B2 (en) Power converter
JP5702988B2 (en) SEMICONDUCTOR POWER MODULE, POWER CONVERSION DEVICE MOUNTED WITH THE SEMICONDUCTOR POWER MODULE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR POWER MODULE WATER CHANNEL FORMING BODY
KR100915778B1 (en) Microdrive
US20110221268A1 (en) Power Converter and In-Car Electrical System
AU2002224323A1 (en) Microdrive
JPWO2016189658A1 (en) Mechanical and electric integrated rotating electrical machine
JP6932225B1 (en) Power converter
JP6410972B2 (en) Power converter
JP2015100223A (en) Electric power conversion system
JP2010011671A (en) Power convertor
WO2021166341A1 (en) Power conversion unit and power conversion device
WO2018143053A1 (en) Power conversion device
WO2014024361A1 (en) Cooling structure and power conversion device
JP6867432B2 (en) Power converter
WO2019244502A1 (en) Electric power converter
JP6721066B2 (en) Power converter
WO2019159666A1 (en) Electronic component with cooler, and inverter
JP2021141792A (en) Power conversion unit and power conversion device
EP4322212A1 (en) Power module, inverter, and vehicle
JP7354004B2 (en) electronic circuit equipment
JP7428548B2 (en) Power conversion units, power conversion devices, and mobile objects
JP2022019040A (en) Electric power conversion device
JP2021145397A (en) Power conversion unit and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919929

Country of ref document: EP

Kind code of ref document: A1