JP2022019040A - Electric power conversion device - Google Patents

Electric power conversion device Download PDF

Info

Publication number
JP2022019040A
JP2022019040A JP2020122581A JP2020122581A JP2022019040A JP 2022019040 A JP2022019040 A JP 2022019040A JP 2020122581 A JP2020122581 A JP 2020122581A JP 2020122581 A JP2020122581 A JP 2020122581A JP 2022019040 A JP2022019040 A JP 2022019040A
Authority
JP
Japan
Prior art keywords
flow path
refrigerant flow
refrigerant
protrusion
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020122581A
Other languages
Japanese (ja)
Other versions
JP6961047B1 (en
Inventor
知徳 山田
Tomonori Yamada
誠司 石橋
Seiji Ishibashi
直也 安部
Naoya Abe
祐次郎 中田
Yujiro Nakata
敏 和知
Satoshi Wachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020122581A priority Critical patent/JP6961047B1/en
Priority to CN202110777182.3A priority patent/CN113965049A/en
Application granted granted Critical
Publication of JP6961047B1 publication Critical patent/JP6961047B1/en
Publication of JP2022019040A publication Critical patent/JP2022019040A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

To provide an electric power conversion device that improves heat dissipation of a heat generation member while prevented from being large-sized, and makes heat dissipation of a power module uniform.SOLUTION: An electric power conversion device comprises: a power module; a heat sink having one surface thermally connected to the power module; a cooling refrigerant flow passage where a refrigerant flows in a direction along the other surface of the heat sink; a supply refrigerant flow passage which extends from a refrigerant inflow port in a direction along the other surface of the heat sink and also extends in a normal direction of the other surface to be connected to the cooling refrigerant flow passage; a discharge refrigerant flow passage which extends from a refrigerant outflow port in the direction along the other surface of the heat sink and also extends in the normal direction of the other surface to be connected to the cooling refrigerant flow passage; and a heat generation member which is electrically connected to the power module and also thermally connected to a side wall of the supply refrigerant flow passage or discharge refrigerant flow passage. The device has one or both of a first projection part and a second projection part provided apart from surfaces on fourth side faces of the supply refrigerant flow passage and discharge refrigerant flow passage at a part on the side of the fourth side face and on the side in the normal direction.SELECTED DRAWING: Figure 1

Description

本願は、電力変換装置に関するものである。 The present application relates to a power conversion device.

電気自動車またはハイブリッド自動車のように、駆動源にモータが用いられている電動車両には、複数の電力変換装置が搭載されている。電力変換装置は、入力電流を直流から交流、交流から直流、または入力電圧を異なる電圧に変換する装置である。具体的には、商用の交流電源から直流電源に変換して高圧バッテリに充電する充電器、高圧バッテリの直流電源から補助機器用のバッテリの電圧(例えば12V)に変換するDC/DCコンバータ、バッテリからの直流電力をモータへの交流電力に変換するインバータ等が挙げられる。 Electric vehicles, such as electric vehicles or hybrid vehicles, in which a motor is used as a drive source, are equipped with a plurality of electric power conversion devices. A power conversion device is a device that converts an input current from direct current to alternating current, from alternating current to direct current, or an input voltage to a different voltage. Specifically, a charger that converts a commercial AC power supply to a DC power supply to charge a high-voltage battery, a DC / DC converter that converts the DC power supply of a high-pressure battery to the voltage of a battery for auxiliary equipment (for example, 12V), and a battery. Examples thereof include an inverter that converts DC power from a battery into AC power to a motor.

電気自動車またはハイブリッド自動車に搭載される電力変換装置は、小型化及び高出力化が求められている。電力変換装置の高出力化に伴って電力変換装置に収容されたコンデンサは大電流を扱うことになり、コンデンサの発熱量は増大している。コンデンサの耐熱温度は、電力変換装置を構成する他の部品と比べて低い。また、コンデンサの温度上昇は、コンデンサの寿命を低下させるため、コンデンサ素子の温度上昇への対策としてコンデンサの冷却方法が課題となっている。 Power conversion devices mounted on electric vehicles or hybrid vehicles are required to be smaller and have higher output. As the output of the power conversion device increases, the capacitor housed in the power conversion device handles a large current, and the amount of heat generated by the capacitor is increasing. The heat resistant temperature of the capacitor is lower than that of other components constituting the power conversion device. Further, since the temperature rise of the capacitor shortens the life of the capacitor, a method of cooling the capacitor has become an issue as a countermeasure against the temperature rise of the capacitor element.

コンデンサの温度上昇を抑制するために、電力変換に寄与するパワーモジュールを冷媒で冷却する冷却構造と同様に、コンデンサを冷却する構造が開示されている(例えば特許文献1参照)。開示された構造では、パワーモジュールとコンデンサのそれぞれに冷却流路が設けられている。また、パワーモジュールを冷媒で冷却する冷却構造として、パワーモジュールと接した冷却構造の場所によらずパワーモジュールの放熱性を均一にするため、流速が遅くなる冷媒流入口から遠い箇所でも流速を高めることができる構造が開示されている(例えば特許文献2参照)。開示された構造では、流路部の幅が均一ではなく、流路部を構成する壁の厚みを増して流路部の幅を狭める構造としているため、冷媒流入口から遠い箇所でも流速を高めることができる。 In order to suppress the temperature rise of the capacitor, a structure for cooling the capacitor is disclosed as well as a cooling structure for cooling the power module contributing to power conversion with a refrigerant (see, for example, Patent Document 1). In the disclosed structure, cooling channels are provided in each of the power module and the capacitor. In addition, as a cooling structure that cools the power module with refrigerant, in order to make the heat dissipation of the power module uniform regardless of the location of the cooling structure in contact with the power module, the flow velocity is increased even at a place far from the refrigerant inlet where the flow velocity becomes slow. A structure that can be used is disclosed (see, for example, Patent Document 2). In the disclosed structure, the width of the flow path portion is not uniform, and the wall thickness of the flow path portion is increased to narrow the width of the flow path portion. Therefore, the flow velocity is increased even at a location far from the refrigerant inlet. be able to.

特開2013-31330号公報Japanese Unexamined Patent Publication No. 2013-31330 国際公開第2013/054887号International Publication No. 2013/05/4887

上記特許文献1においては、コンデンサにも冷却流路が設けられているため、コンデンサもパワーモジュールと同様に冷却することができる。しかしながら、パワーモジュールとコンデンサのそれぞれに別々の冷却流路が設けられているため、部品点数が増加し、電力変換装置が大型化するという課題があった。 In Patent Document 1, since the capacitor is also provided with a cooling flow path, the capacitor can be cooled in the same manner as the power module. However, since separate cooling channels are provided for each of the power module and the capacitor, there is a problem that the number of parts increases and the power conversion device becomes large.

また、上記特許文献2においては、流路部の壁の厚みを変えたため、パワーモジュールと接した冷却構造の場所によらずパワーモジュールの放熱性を均一にすることができる。しかしながら、開示された構造においてパワーモジュールとコンデンサの冷却流路を共通化するために流路部の側壁の側にコンデンサを配置した場合、流路部の壁の厚みを増した箇所が流路部の端部まで連続して設けられているため、厚みが増して冷媒と接しない箇所ではコンデンサの放熱性が悪くなり、特に最も壁の厚みが増加した流路部の端部においてコンデンサが十分に冷えないという課題があった。 Further, in Patent Document 2, since the thickness of the wall of the flow path portion is changed, the heat dissipation of the power module can be made uniform regardless of the location of the cooling structure in contact with the power module. However, in the disclosed structure, when the capacitor is arranged on the side wall of the flow path portion in order to make the cooling flow path of the power module and the capacitor common, the portion where the wall thickness of the flow path portion is increased is the flow path portion. Since the capacitor is continuously provided up to the end of the wall, the heat dissipation of the capacitor deteriorates in the place where the thickness increases and does not come into contact with the refrigerant, and the capacitor is sufficiently provided at the end of the flow path where the wall thickness is the largest. There was a problem that it did not get cold.

そこで、本願は、大型化を抑制しつつ、コンデンサ等の発熱部材の放熱性を向上させると共に、場所によらずパワーモジュールの放熱性を均一にすることができる電力変換装置を得ることを目的としている。 Therefore, an object of the present application is to obtain a power conversion device capable of improving the heat dissipation of a heat generating member such as a capacitor while suppressing the increase in size and making the heat dissipation of a power module uniform regardless of the location. There is.

本願に開示される電力変換装置は、半導体素子を有したパワーモジュールと、一方の面がパワーモジュールと熱的に接続された矩形板状のヒートシンクと、ヒートシンクの他方の面に沿って、ヒートシンクの第1の側面の側から第1の側面とは反対側の第2の側面の側に向かう第1第2方向に冷媒が流れる冷却冷媒流路と、冷却冷媒流路の第1の側面の側を、ヒートシンクの第3の側面の側に設けられた冷媒流入口から、第3の側面の側から第3の側面とは反対側の第4の側面の側に向かう第3第4方向に延びる共に、ヒートシンクの他方の面の法線方向に延び、冷却冷媒流路における第1の側面の側の部分に接続される供給冷媒流路と、冷却冷媒流路の第2の側面の側を、第3の側面に設けられた冷媒流出口から、第3第4方向に延びる共に、ヒートシンクの他方の面の法線方向に延び、冷却冷媒流路における第2の側面の側の部分に接続される排出冷媒流路と、パワーモジュールと電気的に接続されると共に、供給冷媒流路における第1の側面の側又は第2の側面の側の側壁、又は排出冷媒流路における第1の側面の側又は第2の側面の側の側壁と熱的に接続された発熱部材とを備え、供給冷媒流路における第4の側面の側及び法線方向の側の部分に供給冷媒流路の第4の側面の側の面と離間して設けられた第1の突起部、及び排出冷媒流路における第4の側面の側及び法線方向の側の部分に排出冷媒流路の第4の側面の側の面と離間して設けられた第2の突起部の一方又は双方を有するものである。 The power conversion device disclosed in the present application includes a power module having a semiconductor element, a rectangular plate-shaped heat sink in which one surface is thermally connected to the power module, and a heat sink along the other side of the heat sink. A cooling refrigerant flow path in which the refrigerant flows in the first second direction from the side of the first side surface to the side of the second side surface opposite to the first side surface, and the side of the first side surface of the cooling refrigerant flow path. Extends from the refrigerant inlet provided on the third side surface side of the heat sink in the third and fourth directions from the side of the third side surface toward the side of the fourth side surface opposite to the third side surface. Both the supply refrigerant flow path, which extends in the normal direction of the other surface of the heat sink and is connected to the side portion of the first side surface of the cooling refrigerant flow path, and the side of the second side surface of the cooling refrigerant flow path. From the refrigerant outlet provided on the third side surface, it extends in the third and fourth directions and extends in the normal direction of the other surface of the heat sink, and is connected to the side portion of the second side surface in the cooling refrigerant flow path. The discharge refrigerant flow path is electrically connected to the power module, and the side wall on the side of the first side surface or the side of the second side surface in the supply refrigerant flow path, or the first side surface in the discharge refrigerant flow path. A fourth side of the supply refrigerant flow path is provided with a heat generating member thermally connected to the side wall on the side or the second side surface, and is provided on the side of the fourth side surface and the portion on the side in the normal direction in the supply refrigerant flow path. The fourth side surface of the discharge refrigerant flow path is provided on the side of the fourth side surface and the portion on the side in the normal direction in the first protrusion portion provided apart from the side surface of the side surface of the discharge refrigerant flow path. It has one or both of the second protrusions provided apart from the side surface.

本願に開示される電力変換装置によれば、第3第4方向に延びる共にヒートシンクの他方の面の法線方向に延び、冷却冷媒流路における第1の側面の側の部分に接続される供給冷媒流路と、第3第4方向に延びる共にヒートシンクの他方の面の法線方向に延び、冷却冷媒流路における第2の側面の側の部分に接続される排出冷媒流路と、パワーモジュールと電気的に接続されると共に、供給冷媒流路又は排出冷媒流路における第1の側面の側又は第2の側面の側の側壁と熱的に接続された発熱部材とを備え、供給冷媒流路における第4の側面の側及び法線方向の側の部分に供給冷媒流路の第4の側面の側の面と離間して設けられた第1の突起部、及び排出冷媒流路における第4の側面の側及び法線方向の側の部分に排出冷媒流路の第4の側面の側の面と離間して設けられた第2の突起部の一方又は双方を有するため、パワーモジュールとコンデンサ等の発熱部材のそれぞれに別々の冷却流路を設けることなく大型化が抑制され、供給冷媒流路又は排出冷媒流路の側壁とコンデンサ等の発熱部材とを熱的に接続して発熱部材の放熱性を向上させると共に、突起部を備えたことで場所によらずパワーモジュールの放熱性を均一にすることができる。 According to the power conversion apparatus disclosed in the present application, a supply extending in the third and fourth directions and extending in the normal direction of the other surface of the heat sink and connected to a portion on the side of the first side surface in the cooling refrigerant flow path. A refrigerant flow path, a discharge refrigerant flow path that extends in the third and fourth directions and extends in the normal direction of the other surface of the heat sink and is connected to a side portion of the second side surface of the cooling refrigerant flow path, and a power module. A heating member that is electrically connected to and thermally connected to the side wall on the side of the first side surface or the side of the second side surface in the supply refrigerant flow path or the discharge refrigerant flow path is provided, and the supply refrigerant flow is provided. A first protrusion provided on the side of the fourth side surface and a portion on the side in the normal direction of the road away from the surface on the side of the fourth side surface of the supply refrigerant flow path, and a second in the discharge refrigerant flow path. Since one or both of the second protrusions provided apart from the surface on the side of the fourth side surface of the discharged refrigerant flow path are provided on the side surface side and the side portion in the normal direction of the fourth, the power module and the power module. The size increase is suppressed without providing a separate cooling flow path for each of the heat generating members such as the condenser, and the side wall of the supply refrigerant flow path or the discharge refrigerant flow path is thermally connected to the heat generation member such as the condenser to generate heat. In addition to improving the heat dissipation of the power module, the provision of protrusions makes it possible to make the heat dissipation of the power module uniform regardless of the location.

実施の形態1に係る電力変換装置の概略を示す断面図である。It is sectional drawing which shows the outline of the power conversion apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る電力変換装置の要部の概略を示す平面図である。It is a top view which shows the outline of the main part of the power conversion apparatus which concerns on Embodiment 1. FIG. 図1のA-A断面位置で切断した電力変換装置の要部断面図である。It is sectional drawing of the main part of the power conversion apparatus cut at the cross-sectional position AA of FIG. 実施の形態1に係る別の電力変換装置の概略を示す断面図である。It is sectional drawing which shows the outline of another power conversion apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る別の電力変換装置の概略を示す断面図である。It is sectional drawing which shows the outline of another power conversion apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る電力変換装置の概略を示す断面図である。It is sectional drawing which shows the outline of the power conversion apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る電力変換装置の要部の概略を示す平面図である。It is a top view which shows the outline of the main part of the power conversion apparatus which concerns on Embodiment 2. FIG. 実施の形態3に係る電力変換装置の概略を示す断面図である。It is sectional drawing which shows the outline of the power conversion apparatus which concerns on Embodiment 3. FIG. 実施の形態3に係る電力変換装置の要部の概略を示す平面図である。It is a top view which shows the outline of the main part of the power conversion apparatus which concerns on Embodiment 3. FIG. 実施の形態3に係る別の電力変換装置の概略を示す断面図である。It is sectional drawing which shows the outline of another power conversion apparatus which concerns on Embodiment 3. FIG. 実施の形態4に係る電力変換装置の概略を示す断面図である。It is sectional drawing which shows the outline of the power conversion apparatus which concerns on Embodiment 4. FIG. 実施の形態4に係る電力変換装置の要部の概略を示す平面図である。It is a top view which shows the outline of the main part of the power conversion apparatus which concerns on Embodiment 4. FIG.

以下、本願の実施の形態による電力変換装置を図に基づいて説明する。なお、各図において同一、または相当部材、部位については同一符号を付して説明する。 Hereinafter, the power conversion device according to the embodiment of the present application will be described with reference to the drawings. In each figure, the same or corresponding members and parts will be described with the same reference numerals.

実施の形態1.
図1は実施の形態1に係る電力変換装置100の概略を示す断面図、図2は電力変換装置100の要部の概略を示す平面図、図3は図1のA-A断面位置で切断した電力変換装置100の要部断面図、図4は実施の形態1に係る別の電力変換装置100の概略を示す断面図、図5は実施の形態1に係る別の電力変換装置100の概略を示す断面図である。図1は図2のB-B断面位置で切断した電力変換装置100の断面図である。図2は筐体70に配置された一部の部品を取り去って示した構成図で、ヒートシンク90の外形を破線で示す。図3はコンデンサモジュール30の一部を省略して示した図、図4及び図5は図2のB-B断面位置と同等の位置で切断した別の電力変換装置100の断面図である。電力変換装置100は、入力電流を直流から交流、交流から直流、または入力電圧を異なる電圧に変換する装置である。
Embodiment 1.
1 is a cross-sectional view showing an outline of the power conversion device 100 according to the first embodiment, FIG. 2 is a plan view showing an outline of a main part of the power conversion device 100, and FIG. 3 is cut at the AA cross-sectional position of FIG. FIG. 4 is a sectional view of a main part of the power conversion device 100, FIG. 4 is a sectional view showing an outline of another power conversion device 100 according to the first embodiment, and FIG. 5 is a schematic view of another power conversion device 100 according to the first embodiment. It is a cross-sectional view which shows. FIG. 1 is a cross-sectional view of the power conversion device 100 cut at the BB cross-sectional position of FIG. FIG. 2 is a configuration diagram showing a part of the parts arranged in the housing 70 removed, and the outer shape of the heat sink 90 is shown by a broken line. FIG. 3 is a diagram showing a part of the capacitor module 30 omitted, and FIGS. 4 and 5 are sectional views of another power conversion device 100 cut at a position equivalent to the BB cross-sectional position of FIG. The power conversion device 100 is a device that converts an input current from direct current to alternating current, from alternating current to direct current, or an input voltage to a different voltage.

電力変換装置100は、図1に示すように、半導体素子11を有したパワーモジュール10、発熱部材である平滑コンデンサを有したコンデンサモジュール30、ACバスバー50、端子台51、筐体70、電流センサ80、一方の面がパワーモジュール10と熱的に接続された矩形板状のヒートシンク90、及びヒートシンク90の他方の面に設けられたヒートシンクフィン91を備える。電力変換装置100は、コンデンサモジュール30を介して外部からパワーモジュール10に平滑化された直流電力が伝わり、パワーモジュール10で電力変換してACバスバー50に交流電力を送り、外部へ交流電力を出力する装置である。パワーモジュール10は、例えば、3相交流を出力する。電力変換装置100は、上述した経路とは逆の経路で直流電力を外部へ送ることもできる。ACバスバー50は端子台51に取り付けられ、ACバスバー50に電流センサ80が搭載されている。 As shown in FIG. 1, the power conversion device 100 includes a power module 10 having a semiconductor element 11, a capacitor module 30 having a smoothing capacitor as a heat generating member, an AC bus bar 50, a terminal block 51, a housing 70, and a current sensor. 80, a rectangular plate-shaped heat sink 90 having one surface thermally connected to the power module 10, and a heat sink fin 91 provided on the other surface of the heat sink 90. In the power conversion device 100, smoothed DC power is transmitted from the outside to the power module 10 via the condenser module 30, power is converted by the power module 10, AC power is sent to the AC bus bar 50, and AC power is output to the outside. It is a device to do. The power module 10 outputs, for example, three-phase alternating current. The power conversion device 100 can also send DC power to the outside by a route opposite to the above-mentioned route. The AC bus bar 50 is attached to the terminal block 51, and the current sensor 80 is mounted on the AC bus bar 50.

<パワーモジュール10>
パワーモジュール10は、半導体素子11、半導体素子用配線部材12、パワーモジュール用配線部材13a、13b、導電性接合材14、モールド樹脂15、絶縁部材16を備える。パワーモジュール10は、通電時に発熱する。パワーモジュール用配線部材13aは、一方の面で導電性接合材14を介して半導体素子11と電気的かつ熱的に接続される。パワーモジュール用配線部材13aは、他方の面で絶縁部材16と熱的に接続される。パワーモジュール用配線部材13aの一部はモールド樹脂15から外部に延出し、ACバスバー50と電気的に接続される。パワーモジュール用配線部材13bは、一方の面で導電性接合材14を介して半導体素子用配線部材12の一端と電気的かつ熱的に接続される。パワーモジュール用配線部材13bは、他方の面で絶縁部材16と熱的に接続される。パワーモジュール用配線部材13bの一部はモールド樹脂15から外部に延出し、コンデンサ用配線部材34と電気的に接続される。半導体素子用配線部材12の他端は、導電性接合材14を介して半導体素子11と電気的かつ熱的に接続される。半導体素子11等のパワーモジュール10の構成要素は、モールド樹脂15により封止される。絶縁部材16のパワーモジュール用配線部材13a、13bと接続されていない側の面はモールド樹脂15から露出して、ヒートシンク90の一方の面と熱的に接続される。ヒートシンク90及びヒートシンクフィン91は、アルミニウム等の熱伝導率の高い金属で形成される。パワーモジュール用配線部材13aとACバスバー50との接続、及びパワーモジュール用配線部材13bとコンデンサ用配線部材34との接続には、ネジ締結または溶接などが用いられる。
<Power module 10>
The power module 10 includes a semiconductor element 11, a wiring member 12 for a semiconductor element, wiring members 13a and 13b for a power module, a conductive bonding material 14, a mold resin 15, and an insulating member 16. The power module 10 generates heat when energized. The power module wiring member 13a is electrically and thermally connected to the semiconductor element 11 via the conductive joining material 14 on one surface. The power module wiring member 13a is thermally connected to the insulating member 16 on the other surface. A part of the power module wiring member 13a extends from the mold resin 15 to the outside and is electrically connected to the AC bus bar 50. The power module wiring member 13b is electrically and thermally connected to one end of the semiconductor element wiring member 12 via the conductive bonding material 14 on one surface. The power module wiring member 13b is thermally connected to the insulating member 16 on the other surface. A part of the power module wiring member 13b extends from the mold resin 15 to the outside and is electrically connected to the capacitor wiring member 34. The other end of the semiconductor element wiring member 12 is electrically and thermally connected to the semiconductor element 11 via the conductive joining material 14. The components of the power module 10 such as the semiconductor element 11 are sealed with the mold resin 15. The surface of the insulating member 16 on the side not connected to the power module wiring members 13a and 13b is exposed from the mold resin 15 and is thermally connected to one surface of the heat sink 90. The heat sink 90 and the heat sink fin 91 are made of a metal having high thermal conductivity such as aluminum. Screw fastening or welding is used for the connection between the power module wiring member 13a and the AC bus bar 50 and the connection between the power module wiring member 13b and the capacitor wiring member 34.

<コンデンサモジュール30>
コンデンサモジュール30は、直流電力を平滑化する平滑コンデンサであるコンデンサ素子32、コンデンサケース31、封止材33、コンデンサ用配線部材34、及び放熱部材35を備える。コンデンサ素子32は、封止材33を介してコンデンサケース31に収納される。コンデンサ用配線部材34は、一端がコンデンサ素子32と電気的に接続され他端がコンデンサケース31から外部に延出してパワーモジュール用配線部材13bと電気的に接続される。コンデンサケース31は筐体70に収納され、筐体70に固定される。放熱部材35は、コンデンサケース31の外側で筐体70との間に配置され、コンデンサケース31と筐体70とは熱的に接続される。本実施の形態では、図1に示すように、供給冷媒流路71の側の筐体70とコンデンサケース31との間にのみ放熱部材35を配置した例を示したが、放熱部材35の配置の構成はこれに限るものではなく、その他の筐体70とコンデンサケース31との間に放熱部材35をさらに配置しても構わない。放熱部材35は、例えば放熱用グリスであるが、放熱部材35は放熱用グリスに限るものではなく、放熱シートまたは放熱コンパウンドであっても構わない。パワーモジュール10とヒートシンク90との間に、放熱部材35を設けても構わない。
<Capacitor module 30>
The capacitor module 30 includes a capacitor element 32, which is a smoothing capacitor for smoothing DC power, a capacitor case 31, a sealing material 33, a capacitor wiring member 34, and a heat dissipation member 35. The capacitor element 32 is housed in the capacitor case 31 via the sealing material 33. One end of the capacitor wiring member 34 is electrically connected to the capacitor element 32, and the other end extends outward from the capacitor case 31 to be electrically connected to the power module wiring member 13b. The capacitor case 31 is housed in the housing 70 and fixed to the housing 70. The heat radiating member 35 is arranged between the housing 70 and the outside of the condenser case 31, and the condenser case 31 and the housing 70 are thermally connected to each other. In the present embodiment, as shown in FIG. 1, an example in which the heat radiating member 35 is arranged only between the housing 70 on the side of the supply refrigerant flow path 71 and the capacitor case 31 is shown, but the radiating member 35 is arranged. The configuration is not limited to this, and the heat radiating member 35 may be further arranged between the other housing 70 and the capacitor case 31. The heat radiating member 35 is, for example, heat radiating grease, but the heat radiating member 35 is not limited to the heat radiating grease, and may be a heat radiating sheet or a heat radiating compound. A heat radiating member 35 may be provided between the power module 10 and the heat sink 90.

<冷媒流路>
本願の要部の一つである冷媒流路について説明する。冷媒が流れる冷媒流路は、供給冷媒流路71、排出冷媒流路72、及び冷却冷媒流路73から構成される。筐体70は、冷媒流路と、冷媒流入口76と、冷媒流出口77と、第1の突起部74とを備える。冷媒には、例えば水またはエチレングリコール液が使用される。筐体70は、例えばアルミニウムからダイカストにて作製される。冷却冷媒流路73は、ヒートシンク90の他方の面に沿って、ヒートシンク90の第1の側面90aの側から第1の側面90aとは反対側の第2の側面90bの側に向かう第1第2方向に冷媒が流れる流路である。ヒートシンク90及びヒートシンクフィン91は、冷媒によって冷却される。ヒートシンクフィン91は、図3に示すように、冷媒が流れる第1第2方向に沿って設けられる。
<Refrigerant flow path>
The refrigerant flow path, which is one of the main parts of the present application, will be described. The refrigerant flow path through which the refrigerant flows is composed of a supply refrigerant flow path 71, a discharge refrigerant flow path 72, and a cooling refrigerant flow path 73. The housing 70 includes a refrigerant flow path, a refrigerant inlet 76, a refrigerant outlet 77, and a first protrusion 74. As the refrigerant, for example, water or an ethylene glycol liquid is used. The housing 70 is die-cast from, for example, aluminum. The cooling refrigerant flow path 73 is a first first along the other surface of the heat sink 90 from the side of the first side surface 90a of the heat sink 90 toward the side of the second side surface 90b opposite to the first side surface 90a. It is a flow path through which the refrigerant flows in two directions. The heat sink 90 and the heat sink fins 91 are cooled by the refrigerant. As shown in FIG. 3, the heat sink fins 91 are provided along the first and second directions in which the refrigerant flows.

供給冷媒流路71は、冷却冷媒流路73におけるヒートシンク90の第1の側面90aの側を、ヒートシンク90の第3の側面90cの側に設けられた冷媒流入口76から、第3の側面90cの側から第3の側面90cとは反対側の第4の側面90dの側に向かう第3第4方向に延びる共に、ヒートシンク90の他方の面の法線方向に延び、冷却冷媒流路73におけるヒートシンク90の第1の側面90aの側の部分に接続される流路である。排出冷媒流路72は、冷却冷媒流路73におけるヒートシンク90の第2の側面90bの側を、第3の側面90cに設けられた冷媒流出口77から、第3第4方向に延びる共に、ヒートシンク90の他方の面の法線方向に延び、冷却冷媒流路73におけるヒートシンク90の第2の側面90bの側の部分に接続される流路である。 The supply refrigerant flow path 71 has a third side surface 90c from a refrigerant inlet 76 provided on the side of the first side surface 90a of the heat sink 90 in the cooling refrigerant flow path 73 on the side of the third side surface 90c of the heat sink 90. In the third fourth direction toward the side of the fourth side surface 90d opposite to the third side surface 90c, and extending in the normal direction of the other surface of the heat sink 90, in the cooling refrigerant flow path 73. It is a flow path connected to a portion of the heat sink 90 on the side of the first side surface 90a. The discharge refrigerant flow path 72 extends from the refrigerant outlet 77 provided on the third side surface 90c to the side of the second side surface 90b of the heat sink 90 in the cooling refrigerant flow path 73 in the third and fourth directions, and is a heat sink. A flow path extending in the normal direction of the other surface of the 90 and connected to a portion of the cooling refrigerant flow path 73 on the side of the second side surface 90b of the heat sink 90.

発熱部材は、パワーモジュール10と電気的に接続されると共に、供給冷媒流路71における第1の側面90aの側又は第2の側面90bの側の側壁、もしくは排出冷媒流路72における第1の側面90aの側又は第2の側面90bの側の側壁と熱的に接続される。本実施の形態での発熱部材はコンデンサ素子32であり、コンデンサ素子32は供給冷媒流路71における第1の側面90aの側の側壁に熱的に接続される。発熱部材はコンデンサ素子32に限るものではなく、発熱部材であるDCバスバー、リアクトル、放電抵抗、ACバスバー、パワーモジュール用配線部材13a、13b、及びコンデンサ用配線部材34などの少なくとも1つを供給冷媒流路71又は排出冷媒流路72の側壁に熱的に接続しても構わない。 The heat generating member is electrically connected to the power module 10 and is a side wall on the side of the first side surface 90a or the side of the second side surface 90b in the supply refrigerant flow path 71, or a first side wall in the discharge refrigerant flow path 72. It is thermally connected to the side wall on the side of the side surface 90a or the side of the second side surface 90b. The heat generating member in the present embodiment is a condenser element 32, and the condenser element 32 is thermally connected to the side wall on the side of the first side surface 90a in the supply refrigerant flow path 71. The heat-generating member is not limited to the capacitor element 32, and at least one of the heat-generating member DC bus bar, reactor, discharge resistance, AC bus bar, power module wiring members 13a and 13b, capacitor wiring member 34, and the like is supplied as a refrigerant. It may be thermally connected to the side wall of the flow path 71 or the discharge refrigerant flow path 72.

電力変換装置100の電流経路に配置されるコンデンサモジュール30、パワーモジュール10、及びACバスバー50などの配線部材は、通電時に電力損失が生じて発熱する。パワーモジュール10及びコンデンサモジュール30の発熱は特に大きく、配線部材よりもこれらの耐熱温度は低い。これら自身の発熱及び他の部品の熱干渉による温度上昇が生じた場合、パワーモジュール10及びコンデンサモジュール30は耐熱温度を超える恐れがある。そのため、パワーモジュール10及びコンデンサモジュール30の放熱性を向上させて、パワーモジュール10及びコンデンサモジュール30を冷却する必要がある。 Wiring members such as the capacitor module 30, the power module 10, and the AC bus bar 50 arranged in the current path of the power conversion device 100 generate power due to power loss when energized. The heat generated by the power module 10 and the capacitor module 30 is particularly large, and their heat resistant temperatures are lower than those of the wiring members. When the temperature rises due to the heat generated by itself and the thermal interference of other parts, the power module 10 and the capacitor module 30 may exceed the heat resistant temperature. Therefore, it is necessary to improve the heat dissipation of the power module 10 and the capacitor module 30 to cool the power module 10 and the capacitor module 30.

この構成によれば、ヒートシンク90及びヒートシンクフィン91が冷媒によって冷却されるため、絶縁部材16でヒートシンク90に熱的に接続されたパワーモジュール10も冷媒によって冷却される。コンデンサ素子32は冷媒が流れる供給冷媒流路71の側壁に熱的に接続されるため、新たな冷媒流路を設けることなくコンデンサ素子32も冷媒によって冷却され、コンデンサ素子32の放熱性は向上する。供給冷媒流路71は第3第4方向に延びる共にヒートシンク90の他方の面の法線方向に延びて側壁が拡大されているため、コンデンサ素子32と熱的に接続された箇所も拡大されるので、コンデンサ素子32の放熱性はさらに向上する。 According to this configuration, since the heat sink 90 and the heat sink fins 91 are cooled by the refrigerant, the power module 10 thermally connected to the heat sink 90 by the insulating member 16 is also cooled by the refrigerant. Since the condenser element 32 is thermally connected to the side wall of the supply refrigerant flow path 71 through which the refrigerant flows, the condenser element 32 is also cooled by the refrigerant without providing a new refrigerant flow path, and the heat dissipation of the condenser element 32 is improved. .. Since the supply refrigerant flow path 71 extends in the third and fourth directions and extends in the normal direction of the other surface of the heat sink 90 to expand the side wall, the portion thermally connected to the capacitor element 32 is also expanded. Therefore, the heat dissipation of the capacitor element 32 is further improved.

冷媒流路を流れる冷媒の温度は、冷却冷媒流路73を通過する前の供給冷媒流路71で低く、冷却冷媒流路73を通過した後の排出冷媒流路72で高い。発熱部材であるコンデンサ素子32は、冷媒の温度が低い供給冷媒流路71に熱的に接続されるため、コンデンサ素子32の放熱性はさらに向上する。 The temperature of the refrigerant flowing through the refrigerant flow path is low in the supply refrigerant flow path 71 before passing through the cooling refrigerant flow path 73, and high in the discharge refrigerant flow path 72 after passing through the cooling refrigerant flow path 73. Since the condenser element 32, which is a heat generating member, is thermally connected to the supply refrigerant flow path 71 in which the temperature of the refrigerant is low, the heat dissipation of the condenser element 32 is further improved.

また、コンデンサモジュール30は、パワーモジュール10との間を低い配線インダクタンスで接続するために、パワーモジュール10と近接して配置している。コンデンサモジュール30とパワーモジュール10とを近接して、コンデンサモジュール30とパワーモジュール10とを低い配線インダクタンスで接続しているため、コンデンサモジュール30とパワーモジュール10とを接続する配線部材における余分な損失の発生を抑制することができる。損失の発生が抑制されるので、配線部材のジュール熱による発熱が抑制され、コンデンサ素子32を温度上昇から保護することができる。 Further, the capacitor module 30 is arranged close to the power module 10 in order to connect the capacitor module 30 to the power module 10 with a low wiring inductance. Since the capacitor module 30 and the power module 10 are close to each other and the capacitor module 30 and the power module 10 are connected with a low wiring inductance, the extra loss in the wiring member connecting the capacitor module 30 and the power module 10 is lost. The occurrence can be suppressed. Since the occurrence of loss is suppressed, heat generation due to Joule heat of the wiring member is suppressed, and the capacitor element 32 can be protected from temperature rise.

<第1の突起部74>
本願のもう一つの要部である第1の突起部74について説明する。第1の突起部74は、供給冷媒流路71における第4の側面90dの側及びヒートシンク90の他方の面の法線方向の側の部分に供給冷媒流路71の第4の側面90dの側の面と離間して設けられる。第1の突起部74は、コンデンサ素子32が熱的に接続された側壁に形成されている。冷媒の流れを阻害しないように、第1の突起部74における第3の側面90cの側及びヒートシンク90の他方の面の側は傾斜している。
<First protrusion 74>
The first protrusion 74, which is another main part of the present application, will be described. The first protrusion 74 is located on the side of the fourth side surface 90d of the supply refrigerant flow path 71 and the side of the other surface of the heat sink 90 in the normal direction, on the side of the fourth side surface 90d of the supply refrigerant flow path 71. It is provided apart from the surface of. The first protrusion 74 is formed on the side wall to which the capacitor element 32 is thermally connected. The side of the third side surface 90c of the first protrusion 74 and the side of the other side of the heat sink 90 are inclined so as not to obstruct the flow of the refrigerant.

この構成によれば、コンデンサ素子32が熱的に接続された側壁の冷媒が接する面積が増加するため、コンデンサ素子32の放熱性をさらに高めることができる。また、第1の突起部74は供給冷媒流路71の第4の側面90dの側の面と離間しているため、供給冷媒流路71の第4の側面90dの側において側壁の厚みが増加することがなく、側壁の冷媒が接する面積が確実に増加されるので、コンデンサ素子32の放熱性を高めることができる。なお、第1の突起部74をコンデンサ素子32が熱的に接続された供給冷媒流路71の側壁に垂直な壁面に形成しても構わないが、コンデンサ素子32が熱的に接続された側壁に形成した場合、コンデンサ素子32の放熱性を高める効果が大きい。 According to this configuration, the area in contact with the refrigerant on the side wall to which the condenser element 32 is thermally connected increases, so that the heat dissipation of the condenser element 32 can be further improved. Further, since the first protrusion 74 is separated from the surface of the supply refrigerant flow path 71 on the side of the fourth side surface 90d, the thickness of the side wall increases on the side of the fourth side surface 90d of the supply refrigerant flow path 71. Since the area in contact with the refrigerant on the side wall is surely increased, the heat dissipation of the capacitor element 32 can be improved. The first protrusion 74 may be formed on the wall surface perpendicular to the side wall of the supply refrigerant flow path 71 to which the condenser element 32 is thermally connected, but the side wall to which the condenser element 32 is thermally connected may be formed. When formed in, the effect of enhancing the heat dissipation of the capacitor element 32 is great.

本実施の形態では第1の突起部74そのものが一つの冷却フィンである例を示したが、第1の突起部74の構成はこれに限るものではなく、図4に示すように、第1の突起部74は複数の冷却フィン74aを備えていても構わない。複数の冷却フィン74aを第1の突起部74が備えることで側壁と冷媒との接する面積がさらに増加するため、コンデンサ素子32の放熱性をさらに高めることができる。なお、冷却フィン74aの配置は図4に示したヒートシンク90の他方の面に平行な配置に限るものではなく、冷却冷媒流路73に向けて傾斜させて設けても構わない。 In the present embodiment, an example is shown in which the first protrusion 74 itself is one cooling fin, but the configuration of the first protrusion 74 is not limited to this, and as shown in FIG. 4, the first protrusion 74 is the first. The protrusion 74 may be provided with a plurality of cooling fins 74a. When the first protrusion 74 includes the plurality of cooling fins 74a, the area in contact between the side wall and the refrigerant is further increased, so that the heat dissipation of the condenser element 32 can be further improved. The arrangement of the cooling fins 74a is not limited to the arrangement parallel to the other surface of the heat sink 90 shown in FIG. 4, and may be provided so as to be inclined toward the cooling refrigerant flow path 73.

冷媒の流速は、供給冷媒流路71の幅が均一な場合、供給冷媒流路71の冷媒流入口76に近い箇所よりも遠い箇所である第4の側面90dの側において遅くなる。冷媒の流速が遅くなる第4の側面90dの側に第1の突起部74を設けることで、第1の突起部74付近の冷媒の流路が狭くなるため、冷媒の流路が狭くなった箇所を流れる冷媒の流速が増す。供給冷媒流路71の第4の側面90dの側においても冷媒の流速が遅くならないため、冷媒流入口76から遠い箇所、近い箇所に関わらず安定して冷却冷媒流路73に冷媒が流れるので、冷却冷媒流路73の場所によらずパワーモジュール10の放熱性を均一にすることができる。また、第1の突起部74は供給冷媒流路71における法線方向の側の部分に設けられるので、冷媒の流れる方向を冷却冷媒流路73に向けることができる。 When the width of the supply refrigerant flow path 71 is uniform, the flow velocity of the refrigerant becomes slower on the side of the fourth side surface 90d, which is a location farther than the location near the refrigerant inlet 76 of the supply refrigerant flow path 71. By providing the first protrusion 74 on the side of the fourth side surface 90d where the flow velocity of the refrigerant becomes slow, the flow path of the refrigerant near the first protrusion 74 is narrowed, so that the flow path of the refrigerant is narrowed. The flow velocity of the refrigerant flowing through the location increases. Since the flow velocity of the refrigerant does not slow down on the side of the fourth side surface 90d of the supply refrigerant flow path 71, the refrigerant flows stably to the cooling refrigerant flow path 73 regardless of the location far from or near the refrigerant inlet 76. The heat dissipation of the power module 10 can be made uniform regardless of the location of the cooling refrigerant flow path 73. Further, since the first protrusion 74 is provided on the portion of the supply refrigerant flow path 71 on the side in the normal direction, the direction in which the refrigerant flows can be directed to the cooling refrigerant flow path 73.

本実施の形態では、コンデンサ素子32は供給冷媒流路71における第1の側面90aの側の側壁に熱的に接続される配置としたが、コンデンサ素子32の配置はこれに限るものではない。例えば、図5に示すように、コンデンサ素子32は供給冷媒流路71における第2の側面90bの側の側壁に熱的に接続される配置としても構わない。このような配置であっても、コンデンサ素子32は冷媒が流れる供給冷媒流路71の側壁に熱的に接続されるため、新たな冷媒流路を設けることなくコンデンサ素子32も冷媒によって冷却され、コンデンサ素子32の放熱性は向上する。供給冷媒流路71は第3第4方向に延びる共にヒートシンク90の他方の面の法線方向に延びて側壁が拡大されているため、コンデンサ素子32と熱的に接続された箇所も拡大されるので、コンデンサ素子32の放熱性はさらに向上する。また、コンデンサ素子32は冷媒が流れる排出冷媒流路72の側壁にも熱的に接続されるため、コンデンサ素子32の放熱性はさらに向上する。また、コンデンサ用配線部材34は絶縁部材(図示せず)を介して供給冷媒流路71における第1の側面90aの側の側壁に熱的に接続されているため、コンデンサ用配線部材34の放熱性も向上する。 In the present embodiment, the condenser element 32 is arranged to be thermally connected to the side wall on the side of the first side surface 90a in the supply refrigerant flow path 71, but the arrangement of the condenser element 32 is not limited to this. For example, as shown in FIG. 5, the capacitor element 32 may be arranged to be thermally connected to the side wall on the side of the second side surface 90b in the supply refrigerant flow path 71. Even with such an arrangement, since the condenser element 32 is thermally connected to the side wall of the supply refrigerant flow path 71 through which the refrigerant flows, the condenser element 32 is also cooled by the refrigerant without providing a new refrigerant flow path. The heat dissipation of the capacitor element 32 is improved. Since the supply refrigerant flow path 71 extends in the third and fourth directions and extends in the normal direction of the other surface of the heat sink 90 to expand the side wall, the portion thermally connected to the capacitor element 32 is also expanded. Therefore, the heat dissipation of the capacitor element 32 is further improved. Further, since the condenser element 32 is thermally connected to the side wall of the discharge refrigerant flow path 72 through which the refrigerant flows, the heat dissipation of the condenser element 32 is further improved. Further, since the capacitor wiring member 34 is thermally connected to the side wall on the side of the first side surface 90a in the supply refrigerant flow path 71 via an insulating member (not shown), heat is dissipated from the capacitor wiring member 34. Sex also improves.

以上のように、実施の形態1による電力変換装置100において、第3第4方向に延びる共にヒートシンク90の他方の面の法線方向に延び、冷却冷媒流路73における第1の側面90aの側の部分に接続される供給冷媒流路71と、第3第4方向に延びる共にヒートシンク90の他方の面の法線方向に延び、冷却冷媒流路73における第2の側面90bの側の部分に接続される排出冷媒流路72と、パワーモジュール10と電気的に接続されると共に、供給冷媒流路71における第1の側面90aの側又は第2の側面90bの側の側壁と熱的に接続されたコンデンサ素子32とを備え、供給冷媒流路71における第4の側面90dの側及びヒートシンク90の他方の面の法線方向の側の部分に供給冷媒流路71の第4の側面90dの側の面と離間して設けられた第1の突起部74を有するため、パワーモジュール10とコンデンサ素子32のそれぞれに別々の冷却流路を設けることなく大型化が抑制され、供給冷媒流路71の側壁とコンデンサ素子32とを熱的に接続してコンデンサ素子32の放熱性を向上させると共に、第1の突起部74を備えたことで冷却冷媒流路73の場所によらずパワーモジュール10の放熱性を均一にすることができる。 As described above, in the power conversion device 100 according to the first embodiment, both extending in the third and fourth directions and extending in the normal direction of the other surface of the heat sink 90, the side of the first side surface 90a in the cooling refrigerant flow path 73. In the portion of the cooling refrigerant flow path 73 on the side of the second side surface 90b, which extends in the third and fourth directions and extends in the normal direction of the other surface of the heat sink 90. The discharged cooling flow path 72 to be connected is electrically connected to the power module 10 and is thermally connected to the side wall of the supply cooling flow path 71 on the side of the first side surface 90a or the side of the second side surface 90b. 4 Since it has the first protrusion 74 provided apart from the side surface, it is possible to suppress the increase in size without providing separate cooling flow paths for the power module 10 and the condenser element 32, and the supply refrigerant flow path 71. The side wall of the power module 32 and the condenser element 32 are thermally connected to improve the heat dissipation of the condenser element 32, and the first protrusion 74 is provided to provide the power module 10 regardless of the location of the cooling refrigerant flow path 73. The heat dissipation can be made uniform.

また、供給冷媒流路71は第3第4方向に延びる共にヒートシンク90の他方の面の法線方向に延びて側壁が拡大されているため、コンデンサ素子32と熱的に接続された箇所も拡大されるので、コンデンサ素子32の放熱性はさらに向上する。また、第1の突起部74は供給冷媒流路71の第4の側面90dの側の面と離間しているため、供給冷媒流路71の第4の側面90dの側において側壁の厚みが増加することがなく、側壁の冷媒と接する面積が確実に増加されるので、コンデンサ素子32の放熱性を高めることができる。また、第1の突起部74をコンデンサ素子32と熱的に接続された供給冷媒流路71の側壁に備えた場合、コンデンサ素子32が熱的に接続された側壁において冷媒と接する面積が増加するため、コンデンサ素子32の放熱性をさらに高めることができる。また、第1の突起部74が複数の冷却フィン74aを備えた場合、側壁と冷媒との接する面積がさらに増加するため、コンデンサ素子32の放熱性をさらに高めることができる。 Further, since the supply refrigerant flow path 71 extends in the third and fourth directions and extends in the normal direction of the other surface of the heat sink 90 to expand the side wall, the portion thermally connected to the capacitor element 32 also expands. Therefore, the heat dissipation of the capacitor element 32 is further improved. Further, since the first protrusion 74 is separated from the surface of the supply refrigerant flow path 71 on the side of the fourth side surface 90d, the thickness of the side wall increases on the side of the fourth side surface 90d of the supply refrigerant flow path 71. Since the area of the side wall in contact with the refrigerant is surely increased, the heat dissipation of the capacitor element 32 can be improved. Further, when the first protrusion 74 is provided on the side wall of the supply refrigerant flow path 71 thermally connected to the capacitor element 32, the area in contact with the refrigerant on the side wall to which the capacitor element 32 is thermally connected increases. Therefore, the heat dissipation of the capacitor element 32 can be further improved. Further, when the first protrusion 74 is provided with a plurality of cooling fins 74a, the area in contact between the side wall and the refrigerant is further increased, so that the heat dissipation of the condenser element 32 can be further improved.

また、コンデンサ素子32に限らず発熱部材であるDCバスバー、リアクトル、放電抵抗、及びACバスバーのうち少なくとも1つをパワーモジュール10と電気的に接続すると共に、これらを供給冷媒流路71における第1の側面90aの側又は第2の側面90bの側の側壁と熱的に接続して設けた場合、これらの発熱部材の周囲に新たに冷却流路を設けることなく電力変換装置100の大型化が抑制され、供給冷媒流路71の側壁と発熱部材とを熱的に接続して発熱部材の放熱性を向上させることができる。 Further, not only the capacitor element 32 but also at least one of the DC bus bar, the reactor, the discharge resistance, and the AC bus bar, which are heat generating members, is electrically connected to the power module 10, and these are the first in the supply refrigerant flow path 71. When the side wall of the side surface 90a or the side wall of the second side surface 90b is thermally connected and provided, the size of the power conversion device 100 can be increased without newly providing a cooling flow path around these heat generating members. It is suppressed, and the side wall of the supply refrigerant flow path 71 and the heat generating member can be thermally connected to improve the heat dissipation of the heat generating member.

実施の形態2.
実施の形態2に係る電力変換装置100について説明する。図6は実施の形態2に係る電力変換装置100の概略を示す断面図、図7は電力変換装置100の要部の概略を示す平面図である。図6は図7のC-C断面位置で切断した電力変換装置100の断面図である。図7は筐体70に配置された一部の部品を取り去って示した構成図である。実施の形態2に係る電力変換装置100は、実施の形態1に示した電力変換装置100に加えて、第2の突起部75及びDCバスバー52を備えた構成になっている。
Embodiment 2.
The power conversion device 100 according to the second embodiment will be described. FIG. 6 is a cross-sectional view showing an outline of the power conversion device 100 according to the second embodiment, and FIG. 7 is a plan view showing an outline of a main part of the power conversion device 100. FIG. 6 is a cross-sectional view of the power conversion device 100 cut at the CC cross-sectional position of FIG. FIG. 7 is a configuration diagram showing a part of the parts arranged in the housing 70 removed. The power conversion device 100 according to the second embodiment is configured to include a second protrusion 75 and a DC bus bar 52 in addition to the power conversion device 100 shown in the first embodiment.

第2の突起部75は、排出冷媒流路72における第4の側面90dの側及びヒートシンク90の他方の面の法線方向の側の部分に、排出冷媒流路72の第4の側面90dの側の面と離間して設けられる。DCバスバー52は、外部の電池とコンデンサモジュール30との間で電力を授受する配線部材である。DCバスバー52は、コンデンサモジュール30の上部でコンデンサ素子32と電気的に接続され、第2の放熱部材53を介して筐体70と熱的に接続される。第2の放熱部材53は、例えば、熱伝導性に優れたシリコーン材、または放熱コンパウンドであるがこれらに限るものではない。パワーモジュール用配線部材13a及びACバスバー50も、第2の放熱部材53を介して筐体70と熱的に接続される。第2の放熱部材53が絶縁性を備えていない場合、第2の放熱部材53と筐体70との間もしくは第2の放熱部材53と各配線部材との間に絶縁部材(図示せず)が設けられる。電力変換装置100は、DCバスバー52から入力された直流電力を電力変換してACバスバー50から出力する。電力変換装置100は、逆の経路で直流電力を外部へ送ることもできる。 The second protrusion 75 is located on the side of the fourth side surface 90d of the exhaust refrigerant flow path 72 and the portion of the other surface of the heat sink 90 on the side in the normal direction of the fourth side surface 90d of the discharge refrigerant flow path 72. It is provided apart from the side surface. The DC bus bar 52 is a wiring member that transfers electric power between the external battery and the capacitor module 30. The DC bus bar 52 is electrically connected to the capacitor element 32 at the upper part of the capacitor module 30, and is thermally connected to the housing 70 via the second heat dissipation member 53. The second heat radiating member 53 is, for example, a silicone material having excellent thermal conductivity or a heat radiating compound, but is not limited thereto. The power module wiring member 13a and the AC bus bar 50 are also thermally connected to the housing 70 via the second heat dissipation member 53. When the second heat radiating member 53 does not have an insulating property, an insulating member (not shown) is provided between the second heat radiating member 53 and the housing 70 or between the second heat radiating member 53 and each wiring member (not shown). Is provided. The power conversion device 100 converts the DC power input from the DC bus bar 52 into power and outputs it from the AC bus bar 50. The power conversion device 100 can also send DC power to the outside by the reverse route.

ACバスバー50及びDCバスバー52は、電流が流れた際に発熱が生じる発熱部材である。ACバスバー50が発熱すると、ACバスバー50が取り付けられた端子台51に熱が伝わり端子台51は昇温する。端子台51が昇温すると、端子台51は耐熱温度を超える恐れがある。DCバスバー52が発熱すると、DCバスバー52に接続されたコンデンサ素子32に熱が伝わりコンデンサ素子32は昇温する。コンデンサ素子32が昇温すると、コンデンサ素子32は耐熱温度を超える恐れがある。そのため、ACバスバー50及びDCバスバー52の放熱性を向上させて、ACバスバー50及びDCバスバー52を冷却する必要がある。 The AC bus bar 50 and the DC bus bar 52 are heat-generating members that generate heat when an electric current flows. When the AC bus bar 50 generates heat, heat is transferred to the terminal block 51 to which the AC bus bar 50 is attached, and the temperature of the terminal block 51 rises. When the temperature of the terminal block 51 rises, the temperature of the terminal block 51 may exceed the heat resistant temperature. When the DC bus bar 52 generates heat, heat is transferred to the capacitor element 32 connected to the DC bus bar 52, and the temperature of the capacitor element 32 rises. When the temperature of the capacitor element 32 rises, the temperature of the capacitor element 32 may exceed the heat resistant temperature. Therefore, it is necessary to improve the heat dissipation of the AC bus bar 50 and the DC bus bar 52 to cool the AC bus bar 50 and the DC bus bar 52.

ACバスバー50は、排出冷媒流路72における第2の側面90bの側の側壁に熱的に接続される。DCバスバー52は、供給冷媒流路71における第1の側面90aの側の側壁に熱的に接続される。この構成によれば、ACバスバー50は冷媒が流れる排出冷媒流路72の側壁に熱的に接続されるため、ACバスバー50も冷媒によって冷却され、ACバスバー50の放熱性は向上する。DCバスバー52は冷媒が流れる供給冷媒流路71の側壁に熱的に接続されるため、DCバスバー52も冷媒によって冷却され、DCバスバー52の放熱性は向上する。 The AC bus bar 50 is thermally connected to the side wall on the side of the second side surface 90b in the exhaust refrigerant flow path 72. The DC bus bar 52 is thermally connected to the side wall on the side of the first side surface 90a in the supply refrigerant flow path 71. According to this configuration, since the AC bus bar 50 is thermally connected to the side wall of the discharge refrigerant flow path 72 through which the refrigerant flows, the AC bus bar 50 is also cooled by the refrigerant, and the heat dissipation of the AC bus bar 50 is improved. Since the DC bus bar 52 is thermally connected to the side wall of the supply refrigerant flow path 71 through which the refrigerant flows, the DC bus bar 52 is also cooled by the refrigerant, and the heat dissipation of the DC bus bar 52 is improved.

第1の突起部74はDCバスバー52が熱的に接続された側壁に形成され、第2の突起部75はACバスバー50が熱的に接続された側壁に形成されている。この構成によれば、ACバスバー50及びDCバスバー52が熱的に接続された側壁において冷媒と側壁との接する面積が増加するため、ACバスバー50及びDCバスバー52の放熱性をさらに高めることができる。また、第1の突起部74は供給冷媒流路71の第4の側面90dの側の面と離間しているため、供給冷媒流路71の第4の側面90dの側において側壁の厚みが増加することがなく、側壁の冷媒と接する面積が確実に増加されるので、DCバスバー52の放熱性を高めることができる。また、第2の突起部75は排出冷媒流路72の第4の側面90dの側の面と離間しているため、排出冷媒流路72の第4の側面90dの側において側壁の厚みが増加することがなく、側壁の冷媒と接する面積が確実に増加されるので、ACバスバー50の放熱性を高めることができる。 The first protrusion 74 is formed on the side wall to which the DC bus bar 52 is thermally connected, and the second protrusion 75 is formed on the side wall to which the AC bus bar 50 is thermally connected. According to this configuration, since the area in contact between the refrigerant and the side wall increases in the side wall where the AC bus bar 50 and the DC bus bar 52 are thermally connected, the heat dissipation of the AC bus bar 50 and the DC bus bar 52 can be further improved. .. Further, since the first protrusion 74 is separated from the surface of the supply refrigerant flow path 71 on the side of the fourth side surface 90d, the thickness of the side wall increases on the side of the fourth side surface 90d of the supply refrigerant flow path 71. Since the area of the side wall in contact with the refrigerant is surely increased, the heat dissipation of the DC bus bar 52 can be improved. Further, since the second protrusion 75 is separated from the surface on the side of the fourth side surface 90d of the discharged refrigerant flow path 72, the thickness of the side wall increases on the side of the fourth side surface 90d of the discharged refrigerant flow path 72. Since the area of the side wall in contact with the refrigerant is surely increased, the heat dissipation of the AC bus bar 50 can be improved.

冷媒の流速が遅くなる第4の側面90dの側に第2の突起部75を設けることで、第2の突起部75付近の冷媒の流路が狭くなるため、冷媒の流路が狭くなった箇所を流れる冷媒の流速が増す。排出冷媒流路72の第4の側面90dの側においても冷媒の流速が遅くならないため、冷媒流出口77から遠い箇所、近い箇所に関わらず安定して冷却冷媒流路73に冷媒が流れるので、冷却冷媒流路73の場所によらずパワーモジュール10の放熱性を均一にすることができる。 By providing the second protrusion 75 on the side of the fourth side surface 90d where the flow velocity of the refrigerant becomes slow, the flow path of the refrigerant near the second protrusion 75 is narrowed, so that the flow path of the refrigerant is narrowed. The flow velocity of the refrigerant flowing through the location increases. Since the flow velocity of the refrigerant does not slow down also on the side of the fourth side surface 90d of the discharge refrigerant flow path 72, the refrigerant flows stably to the cooling refrigerant flow path 73 regardless of the location far from or near the refrigerant outlet 77. The heat dissipation of the power module 10 can be made uniform regardless of the location of the cooling refrigerant flow path 73.

本実施の形態では、図7に示すように、第1の突起部74はDCバスバー52が筐体70と熱的に接続された箇所に合わせた大きさで形成されているが第1の突起部74の大きさはこれに限るものではない。コンデンサモジュール30の放熱性は向上させるために、第1の突起部74の大きさを供給冷媒流路71の側壁に沿ってコンデンサモジュール30の側に拡大しても構わない。 In the present embodiment, as shown in FIG. 7, the first protrusion 74 is formed in a size suitable for a portion where the DC bus bar 52 is thermally connected to the housing 70, but the first protrusion is formed. The size of the portion 74 is not limited to this. In order to improve the heat dissipation of the condenser module 30, the size of the first protrusion 74 may be expanded toward the condenser module 30 along the side wall of the supply refrigerant flow path 71.

また、本実施の形態では、発熱部材をACバスバー50及びDCバスバー52として示したが、パワーモジュール用配線部材13a、13b、及びコンデンサ用配線部材34も発熱部材である。そのため、これらを供給冷媒流路71又は排出冷媒流路72の側壁に熱的に接続しても構わない。パワーモジュール用配線部材13a、13b、及びコンデンサ用配線部材34を供給冷媒流路71又は排出冷媒流路72の側壁に熱的に接続することで、これらの放熱性は向上する。また、パワーモジュール用配線部材13a、13b、及びコンデンサ用配線部材34が熱的に接続された側壁に第1の突起部74又は第2の突起部75を形成することで、これらの放熱性はさらに向上する。また、発熱部材であるリアクトル、及び放電抵抗の少なくとも1つを供給冷媒流路71又は排出冷媒流路72の側壁に熱的に接続しても構わない。 Further, in the present embodiment, the heat generating member is shown as the AC bus bar 50 and the DC bus bar 52, but the power module wiring members 13a and 13b and the capacitor wiring member 34 are also heat generating members. Therefore, these may be thermally connected to the side wall of the supply refrigerant flow path 71 or the discharge refrigerant flow path 72. By thermally connecting the wiring members 13a and 13b for the power module and the wiring member 34 for the capacitor to the side wall of the supply refrigerant flow path 71 or the discharge refrigerant flow path 72, the heat dissipation property thereof is improved. Further, by forming the first protrusion 74 or the second protrusion 75 on the side wall to which the power module wiring members 13a and 13b and the capacitor wiring member 34 are thermally connected, the heat dissipation thereof can be improved. Further improve. Further, at least one of the reactor as a heat generating member and the discharge resistance may be thermally connected to the side wall of the supply refrigerant flow path 71 or the discharge refrigerant flow path 72.

また、本実施の形態では、ACバスバー50に流れる電流の電流値を測定する電流センサ80がACバスバー50に搭載されている。電流センサ80は、例えば、ACバスバー50を取り囲む磁性材料からなるコア部材と、コア部材のギャップ部に配置された電流センサ素子とから構成される。電流センサ80をACバスバー50に搭載することで、ACバスバー50に流れる電流の大きさを容易に測定することができる。電流センサ80の搭載箇所は、ACバスバー50に限るものではない。電流センサ80を、DCバスバー52、パワーモジュール用配線部材13a、13b、及びコンデンサ用配線部材34に搭載しても構わない。電流センサ80をDCバスバー52、パワーモジュール用配線部材13a、13b、またはコンデンサ用配線部材34に搭載した場合、電流センサ80は搭載されたこれらの配線部材に流れる電流の大きさを容易に測定することができる。また、電流センサ80が搭載された配線部材が供給冷媒流路71における第1の側面の側又は第2の側面の側の側壁、又は排出冷媒流路72における第1の側面の側又は第2の側面の側の側壁と熱的に接続されている場合、電流センサ80の放熱性を向上させることができる。供給冷媒流路71もしくは排出冷媒流路72に第1の突起部74もしくは第2の突起部75が形成されている場合、電流センサ80の放熱性をさらに向上させることができる。 Further, in the present embodiment, the AC bus bar 50 is equipped with a current sensor 80 that measures the current value of the current flowing through the AC bus bar 50. The current sensor 80 is composed of, for example, a core member made of a magnetic material surrounding the AC bus bar 50 and a current sensor element arranged in a gap portion of the core member. By mounting the current sensor 80 on the AC bus bar 50, the magnitude of the current flowing through the AC bus bar 50 can be easily measured. The mounting location of the current sensor 80 is not limited to the AC bus bar 50. The current sensor 80 may be mounted on the DC bus bar 52, the power module wiring members 13a and 13b, and the capacitor wiring member 34. When the current sensor 80 is mounted on the DC bus bar 52, the power module wiring members 13a, 13b, or the capacitor wiring member 34, the current sensor 80 easily measures the magnitude of the current flowing through these mounted wiring members. be able to. Further, the wiring member on which the current sensor 80 is mounted is a side wall on the side of the first side surface or the side of the second side surface of the supply refrigerant flow path 71, or the side of the first side surface or the second side of the discharge refrigerant flow path 72. When thermally connected to the side wall on the side surface of the current sensor 80, the heat dissipation of the current sensor 80 can be improved. When the first protrusion 74 or the second protrusion 75 is formed in the supply refrigerant flow path 71 or the discharge refrigerant flow path 72, the heat dissipation of the current sensor 80 can be further improved.

以上のように、実施の形態2による電力変換装置100において、第3第4方向に延びる共にヒートシンク90の他方の面の法線方向に延び、冷却冷媒流路73における第1の側面90aの側の部分に接続される供給冷媒流路71と、第3第4方向に延びる共にヒートシンク90の他方の面の法線方向に延び、冷却冷媒流路73における第2の側面90bの側の部分に接続される排出冷媒流路72と、パワーモジュール10と電気的に接続されると共に、供給冷媒流路71における第1の側面90aの側の側壁と熱的に接続されたDCバスバー52とを備え、供給冷媒流路71における第4の側面90dの側及びヒートシンク90の他方の面の法線方向の側の部分に供給冷媒流路71の第4の側面90dの側の面と離間して設けられた第1の突起部74を有するため、パワーモジュール10とDCバスバー52のそれぞれに別々の冷却流路を設けることなく大型化が抑制され、供給冷媒流路71の側壁とDCバスバー52とを熱的に接続してDCバスバー52の放熱性を向上させると共に、第1の突起部74を備えたことで冷却冷媒流路73の場所によらずパワーモジュール10の放熱性を均一にすることができる。 As described above, in the power conversion device 100 according to the second embodiment, both extending in the third and fourth directions and extending in the normal direction of the other surface of the heat sink 90, the side of the first side surface 90a in the cooling refrigerant flow path 73. In the portion of the cooling refrigerant flow path 73 on the side of the second side surface 90b, which extends in the third and fourth directions and extends in the normal direction of the other surface of the heat sink 90. It includes a discharged refrigerant flow path 72 to be connected, and a DC bus bar 52 electrically connected to the power module 10 and thermally connected to a side wall on the side of the first side surface 90a in the supply refrigerant flow path 71. , Provided on the side of the fourth side surface 90d of the supply refrigerant flow path 71 and the portion of the other surface of the heat sink 90 on the normal side, away from the surface on the side of the fourth side surface 90d of the supply refrigerant flow path 71. Since the power module 10 and the DC bus bar 52 are each provided with a separate cooling flow path, the increase in size is suppressed because the first protrusion 74 is provided, and the side wall of the supply refrigerant flow path 71 and the DC bus bar 52 are separated from each other. It is thermally connected to improve the heat dissipation of the DC bus bar 52, and by providing the first protrusion 74, the heat dissipation of the power module 10 can be made uniform regardless of the location of the cooling refrigerant flow path 73. can.

また、パワーモジュール10と電気的に接続されると共に、排出冷媒流路72における第2の側面90bの側の側壁と熱的に接続されたACバスバー50を備え、排出冷媒流路72における第4の側面90dの側及びヒートシンク90の他方の面の法線方向の側の部分に排出冷媒流路72の第4の側面90dの側の面と離間して設けられた第2の突起部75を有するため、パワーモジュール10とACバスバー50のそれぞれに別々の冷却流路を設けることなく大型化が抑制され、排出冷媒流路72の側壁とACバスバー50とを熱的に接続してACバスバー50の放熱性を向上させると共に、第2の突起部75を備えたことで冷却冷媒流路73の場所によらずパワーモジュール10の放熱性を均一にすることができる。 Further, the AC bus bar 50 is provided, which is electrically connected to the power module 10 and is thermally connected to the side wall on the side of the second side surface 90b in the exhaust refrigerant flow path 72, and is provided with a fourth in the exhaust refrigerant flow path 72. A second protrusion 75 is provided on the side of the side surface 90d and the portion of the other surface of the heat sink 90 in the normal direction so as to be separated from the surface on the side of the fourth side surface 90d of the discharged refrigerant flow path 72. Therefore, it is possible to suppress the increase in size without providing separate cooling channels for the power module 10 and the AC bus bar 50, and the side wall of the exhaust refrigerant flow path 72 and the AC bus bar 50 are thermally connected to the AC bus bar 50. By providing the second protrusion 75, the heat dissipation of the power module 10 can be made uniform regardless of the location of the cooling refrigerant flow path 73.

また、DCバスバー52及びACバスバー50のいずれか一方又は双方に電流センサ80が搭載されている場合、電流センサ80の搭載されたDCバスバー52もしくはACバスバー50に流れる電流の大きさを容易に測定することができる。また、電流センサ80の搭載されたDCバスバー52もしくはACバスバー50が供給冷媒流路71における第1の側面の側又は第2の側面の側の側壁、又は排出冷媒流路72における第1の側面の側又は第2の側面の側の側壁と熱的に接続されている場合、電流センサ80の放熱性を向上させることができる。また、供給冷媒流路71もしくは排出冷媒流路72に第1の突起部74もしくは第2の突起部75が形成されている場合、電流センサ80の放熱性をさらに向上させることができる。 When the current sensor 80 is mounted on either one or both of the DC bus bar 52 and the AC bus bar 50, the magnitude of the current flowing through the DC bus bar 52 or the AC bus bar 50 on which the current sensor 80 is mounted can be easily measured. can do. Further, the DC bus bar 52 or the AC bus bar 50 on which the current sensor 80 is mounted is a side wall on the side of the first side surface or the side of the second side surface in the supply refrigerant flow path 71, or the first side surface in the discharge refrigerant flow path 72. When it is thermally connected to the side wall on the side of the current sensor 80 or the side wall on the side of the second side surface, the heat dissipation of the current sensor 80 can be improved. Further, when the first protrusion 74 or the second protrusion 75 is formed in the supply refrigerant flow path 71 or the discharge refrigerant flow path 72, the heat dissipation of the current sensor 80 can be further improved.

実施の形態3.
実施の形態3に係る電力変換装置100について説明する。図8は実施の形態3に係る電力変換装置100の概略を示す断面図、図9は電力変換装置100の要部の概略を示す平面図、図10は実施の形態3に係る別の電力変換装置100の概略を示す断面図である。図8は図9のD-D断面位置で切断した電力変換装置100の断面図である。図9は筐体70に配置された一部の部品を取り去って示した構成図である。図10は図9のD-D断面位置と同等の位置で切断した別の電力変換装置100の断面図である。実施の形態3に係る電力変換装置100は、実施の形態1とは第1の突起部74が異なる位置に配置された構成になっている。
Embodiment 3.
The power conversion device 100 according to the third embodiment will be described. 8 is a cross-sectional view showing an outline of the power conversion device 100 according to the third embodiment, FIG. 9 is a plan view showing an outline of a main part of the power conversion device 100, and FIG. 10 is another power conversion according to the third embodiment. It is sectional drawing which shows the outline of the apparatus 100. FIG. 8 is a cross-sectional view of the power conversion device 100 cut at the DD cross-sectional position of FIG. FIG. 9 is a configuration diagram showing a part of the parts arranged in the housing 70 removed. FIG. 10 is a cross-sectional view of another power conversion device 100 cut at a position equivalent to the DD cross-sectional position of FIG. The power conversion device 100 according to the third embodiment has a configuration in which the first protrusion 74 is arranged at a position different from that of the first embodiment.

第1の突起部74は、供給冷媒流路71における第4の側面90dの側及びヒートシンク90の他方の面の法線方向の側の部分に供給冷媒流路71の第4の側面90dの側の面と離間して設けられる。第1の突起部74は、発熱部材であるコンデンサ素子32が熱的に接続された供給冷媒流路71の側壁に垂直な供給冷媒流路71の壁面に形成されている。第1の突起部74は、コンデンサ素子32が熱的に接続された側壁と冷媒を介して対向した面を備え、その側壁と対向した面との間に隙間流路78が形成される。 The first protrusion 74 is located on the side of the fourth side surface 90d of the supply refrigerant flow path 71 and the side of the other surface of the heat sink 90 in the normal direction on the side of the fourth side surface 90d of the supply refrigerant flow path 71. It is provided apart from the surface of. The first protrusion 74 is formed on the wall surface of the supply refrigerant flow path 71 perpendicular to the side wall of the supply refrigerant flow path 71 to which the condenser element 32, which is a heat generating member, is thermally connected. The first protrusion 74 includes a side wall to which the capacitor element 32 is thermally connected and a surface facing each other via a refrigerant, and a gap flow path 78 is formed between the side wall and the facing surface.

冷媒の流速は、供給冷媒流路71の幅が均一な場合、供給冷媒流路71の冷媒流入口76に近い箇所よりも遠い箇所である第4の側面90dの側において遅くなる。冷媒の流速が遅くなる第4の側面90dの側に第1の突起部74を設けることで隙間流路78が形成され、隙間流路78において冷媒の流路が狭くなるため、隙間流路78を流れる冷媒の流速が増す。隙間流路78を流れる冷媒の流速が増すことで、コンデンサ素子32の放熱性を高めることができる。 When the width of the supply refrigerant flow path 71 is uniform, the flow velocity of the refrigerant becomes slower on the side of the fourth side surface 90d, which is a location farther than the location near the refrigerant inlet 76 of the supply refrigerant flow path 71. By providing the first protrusion 74 on the side of the fourth side surface 90d where the flow velocity of the refrigerant becomes slow, the gap flow path 78 is formed, and the flow path of the refrigerant becomes narrow in the gap flow path 78, so that the gap flow path 78 The flow velocity of the refrigerant flowing through the is increased. By increasing the flow velocity of the refrigerant flowing through the gap flow path 78, the heat dissipation of the capacitor element 32 can be improved.

また、冷媒の流速は、コンデンサ素子32が熱的に接続された供給冷媒流路71の側壁に対向する供給冷媒流路71の側壁と第1の突起部74との間の流路においても増す。そのため、冷媒流入口76から遠い箇所、近い箇所に関わらず安定して冷却冷媒流路73に冷媒が流れるので、冷却冷媒流路73の場所によらずパワーモジュール10の放熱性を均一にすることができる。 Further, the flow velocity of the refrigerant also increases in the flow path between the side wall of the supply refrigerant flow path 71 facing the side wall of the supply refrigerant flow path 71 to which the condenser element 32 is thermally connected and the first protrusion 74. .. Therefore, since the refrigerant stably flows to the cooling refrigerant flow path 73 regardless of the location far from or near the refrigerant inlet 76, the heat dissipation of the power module 10 should be uniform regardless of the location of the cooling refrigerant flow path 73. Can be done.

また、本実施の形態では、第1の突起部74をコンデンサ素子32が熱的に接続された供給冷媒流路71の側壁に垂直な供給冷媒流路71の壁面に形成したが第1の突起部74の配置はこれに限るものではない。第1の突起部74は、図10に示すように、コンデンサ素子32が熱的に接続された側壁と冷媒を介して対向した面を備え、隙間流路78が形成されていればよい。図10では、第1の突起部74はL字状に形成され、コンデンサ素子32が熱的に接続された供給冷媒流路71の側壁に配置される。 Further, in the present embodiment, the first protrusion 74 is formed on the wall surface of the supply refrigerant flow path 71 perpendicular to the side wall of the supply refrigerant flow path 71 to which the capacitor element 32 is thermally connected, but the first protrusion is formed. The arrangement of the part 74 is not limited to this. As shown in FIG. 10, the first protrusion 74 may have a side wall to which the capacitor element 32 is thermally connected and a surface facing each other via a refrigerant, and a gap flow path 78 may be formed. In FIG. 10, the first protrusion 74 is formed in an L shape and is arranged on the side wall of the supply refrigerant flow path 71 to which the condenser element 32 is thermally connected.

以上のように、実施の形態3による電力変換装置100において、第1の突起部74はコンデンサ素子32が熱的に接続された供給冷媒流路71の側壁と冷媒を介して対向した面を備え、その側壁と対向した面との間に隙間流路78が形成されるため、隙間流路78において冷媒の流速が増し、隙間流路78を流れる冷媒の流速が増すことで、コンデンサ素子32の放熱性を高めることができる。また、冷媒の流速はコンデンサ素子32が熱的に接続された供給冷媒流路71の側壁に対向する供給冷媒流路71の側壁と第1の突起部74との間の流路においても増すため、冷媒流入口76から遠い箇所、近い箇所に関わらず安定して冷却冷媒流路73に冷媒が流れるので、冷却冷媒流路73の場所によらずパワーモジュール10の放熱性を均一にすることができる。 As described above, in the power conversion device 100 according to the third embodiment, the first protrusion 74 includes a surface facing the side wall of the supply refrigerant flow path 71 to which the capacitor element 32 is thermally connected via the refrigerant. Since the gap flow path 78 is formed between the side wall and the surface facing the side wall, the flow velocity of the refrigerant in the gap flow path 78 increases, and the flow velocity of the refrigerant flowing in the gap flow path 78 increases, so that the capacitor element 32 The heat dissipation can be improved. Further, the flow velocity of the refrigerant also increases in the flow path between the side wall of the supply refrigerant flow path 71 facing the side wall of the supply refrigerant flow path 71 to which the condenser element 32 is thermally connected and the first protrusion 74. Since the refrigerant flows stably to the cooling refrigerant flow path 73 regardless of the location far from or near the refrigerant inlet 76, the heat dissipation of the power module 10 can be made uniform regardless of the location of the cooling refrigerant flow path 73. can.

実施の形態4.
実施の形態4に係る電力変換装置100について説明する。図11は実施の形態3に係る電力変換装置100の概略を示す断面図、図12は電力変換装置100の要部の概略を示す平面図である。図11は図12のE-E断面位置で切断した電力変換装置100の断面図である。図12は筐体70に配置された一部の部品を取り去って示した構成図である。実施の形態4に係る電力変換装置100は、実施の形態1に示した電力変換装置100に加えて第2の突起部75を備え、ACバスバー50の配置を変更した構成になっている。
Embodiment 4.
The power conversion device 100 according to the fourth embodiment will be described. 11 is a cross-sectional view showing an outline of the power conversion device 100 according to the third embodiment, and FIG. 12 is a plan view showing an outline of a main part of the power conversion device 100. FIG. 11 is a cross-sectional view of the power conversion device 100 cut at the EE cross-sectional position of FIG. FIG. 12 is a configuration diagram showing a part of the parts arranged in the housing 70 removed. The power conversion device 100 according to the fourth embodiment includes a second protrusion 75 in addition to the power conversion device 100 shown in the first embodiment, and has a configuration in which the arrangement of the AC bus bar 50 is changed.

第2の突起部75は、排出冷媒流路72における第4の側面90dの側及びヒートシンク90の他方の面の法線方向の側の部分に、排出冷媒流路72の第4の側面90dの側の面と離間して設けられる。発熱部材であるACバスバー50は、排出冷媒流路72における第2の側面90bの側の側壁と熱的に接続される。本実施の形態では、ACバスバー50は排出冷媒流路72における第2の側面90bの側の側壁の外壁に第2の放熱部材53を介して端子台51と共に取り付けられる。 The second protrusion 75 is located on the side of the fourth side surface 90d of the exhaust refrigerant flow path 72 and the portion of the other surface of the heat sink 90 on the side in the normal direction of the fourth side surface 90d of the discharge refrigerant flow path 72. It is provided apart from the side surface. The AC bus bar 50, which is a heat generating member, is thermally connected to the side wall on the side of the second side surface 90b in the discharged refrigerant flow path 72. In the present embodiment, the AC bus bar 50 is attached to the outer wall of the side wall on the side of the second side surface 90b in the discharged refrigerant flow path 72 together with the terminal block 51 via the second heat radiating member 53.

この構成によれば、ACバスバー50は冷媒が流れる排出冷媒流路72の側壁に近接して熱的に接続されるため、ACバスバー50はさらに冷媒によって冷却され、ACバスバー50の放熱性は向上する。また、第2の突起部75はACバスバー50が熱的に接続された排出冷媒流路72の側壁に形成され、ACバスバー50が熱的に接続された側壁の冷媒と接する面積が増加するため、ACバスバー50の放熱性をさらに高めることができる。また、第2の突起部75は排出冷媒流路72の第4の側面90dの側の面と離間しているため、排出冷媒流路72の第4の側面90dの側において側壁の厚みが増加することがなく、側壁の冷媒と接する面積が確実に増加されるので、ACバスバー50の放熱性を高めることができる。なお、発熱部材であるDCバスバー、リアクトル、放電抵抗、パワーモジュール用配線部材13a、13b、及びコンデンサ用配線部材34などの少なくとも1つを供給冷媒流路71又は排出冷媒流路72の側壁にさらに熱的に接続しても構わない。 According to this configuration, since the AC bus bar 50 is thermally connected close to the side wall of the discharge refrigerant flow path 72 through which the refrigerant flows, the AC bus bar 50 is further cooled by the refrigerant, and the heat dissipation of the AC bus bar 50 is improved. do. Further, the second protrusion 75 is formed on the side wall of the discharge refrigerant flow path 72 to which the AC bus bar 50 is thermally connected, and the area in contact with the refrigerant on the side wall to which the AC bus bar 50 is thermally connected increases. , The heat dissipation of the AC bus bar 50 can be further improved. Further, since the second protrusion 75 is separated from the surface on the side of the fourth side surface 90d of the discharged refrigerant flow path 72, the thickness of the side wall increases on the side of the fourth side surface 90d of the discharged refrigerant flow path 72. Since the area of the side wall in contact with the refrigerant is surely increased, the heat dissipation of the AC bus bar 50 can be improved. In addition, at least one of a DC bus bar, a reactor, a discharge resistance, a wiring member 13a and 13b for a power module, and a wiring member 34 for a capacitor, which are heat generating members, is further added to the side wall of the supply refrigerant flow path 71 or the discharge refrigerant flow path 72. It may be connected thermally.

以上のように、実施の形態4による電力変換装置100において、発熱部材であるACバスバー50が排出冷媒流路72における第2の側面90bの側の側壁の外壁に第2の放熱部材53を介して端子台51と共に取り付けられているため、ACバスバー50は冷媒が流れる排出冷媒流路72の側壁に近接して熱的に接続されるので、ACバスバー50はさらに冷媒によって冷却され、ACバスバー50の放熱性を向上させることができる。 As described above, in the power conversion device 100 according to the fourth embodiment, the AC bus bar 50, which is a heat generating member, passes through the second heat radiating member 53 on the outer wall of the side wall on the side of the second side surface 90b in the discharged refrigerant flow path 72. Since the AC bus bar 50 is thermally connected close to the side wall of the discharge refrigerant flow path 72 through which the refrigerant flows because it is attached together with the terminal block 51, the AC bus bar 50 is further cooled by the refrigerant, and the AC bus bar 50 is further cooled. The heat dissipation of the can be improved.

以上では、電力変換装置100は、3相交流を出力する電力変換装置とした例に説明した。しかし、電力変換装置100は、DC―DCコンバータ等の各種の電力変換装置とされてもよく、コンデンサモジュール30は、負荷に接続される出力側等、平滑化が必要な各部に設けられてもよい。また、コンデンサモジュール30が接続されるのはパワーモジュール10に限るものではなく、例えば、半導体スイッチング素子を備えた基板であっても構わない。 In the above, the power conversion device 100 has been described as an example of a power conversion device that outputs a three-phase alternating current. However, the power conversion device 100 may be various power conversion devices such as a DC-DC converter, and the capacitor module 30 may be provided in each part requiring smoothing, such as the output side connected to the load. good. Further, the capacitor module 30 is not limited to the power module 10, and may be, for example, a substrate provided with a semiconductor switching element.

また本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
The present application also describes various exemplary embodiments and examples, although the various features, embodiments, and functions described in one or more embodiments are those of a particular embodiment. It is not limited to application, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.

10 パワーモジュール、11 半導体素子、12 半導体素子用配線部材、13a パワーモジュール用配線部材、13b パワーモジュール用配線部材、14 導電性接合材、15 モールド樹脂、16 絶縁部材、30 コンデンサモジュール、31 コンデンサケース、32 コンデンサ素子、33 封止材、34 コンデンサ用配線部材、35 放熱部材、50 ACバスバー、51 端子台、52 DCバスバー、53 第2の放熱部材、70 筐体、71 供給冷媒流路、72 排出冷媒流路、73 冷却冷媒流路、74 第1の突起部、74a 冷却フィン、75 第2の突起部、76 冷媒流入口、77 冷媒流出口、78 隙間流路、80 電流センサ、90 ヒートシンク、91 ヒートシンクフィン、100 電力変換装置 10 Power module, 11 Semiconductor element, 12 Wiring member for semiconductor element, 13a Wiring member for power module, 13b Wiring member for power module, 14 Conductive bonding material, 15 Mold resin, 16 Insulation member, 30 Condenser module, 31 Condenser case , 32 Condenser element, 33 Encapsulant, 34 Condenser wiring member, 35 Heat sink, 50 AC bus bar, 51 Terminal block, 52 DC bus bar, 53 Second heat sink member, 70 housing, 71 Supply refrigerant flow path, 72 Discharge refrigerant flow path, 73 Cooling refrigerant flow path, 74 1st protrusion, 74a Cooling fin, 75 2nd protrusion, 76 Refrigerator inlet, 77 Refrigerator outlet, 78 Gap flow path, 80 Current sensor, 90 Heat sink , 91 heat sink fins, 100 power converter

本願に開示される電力変換装置は、半導体素子を有したパワーモジュールと、一方の面がパワーモジュールと熱的に接続された矩形板状のヒートシンクと、ヒートシンクの他方の面に沿って、ヒートシンクの第1の側面の側から第1の側面とは反対側の第2の側面の側に向かう第1第2方向に冷媒が流れる冷却冷媒流路と、冷却冷媒流路の第1の側面の側を、ヒートシンクの第3の側面の側に設けられた冷媒流入口から、第3の側面の側から第3の側面とは反対側の第4の側面の側に向かう第3第4方向に延びる共に、ヒートシンクの他方の面の法線方向に延び、冷却冷媒流路における第1の側面の側の部分に接続される供給冷媒流路と、冷却冷媒流路の第2の側面の側を、第3の側面に設けられた冷媒流出口から、第3第4方向に延びる共に、ヒートシンクの他方の面の法線方向に延び、冷却冷媒流路における第2の側面の側の部分に接続される排出冷媒流路と、パワーモジュールと電気的に接続されると共に、供給冷媒流路における第1の側面の側又は第2の側面の側の側壁、又は排出冷媒流路における第1の側面の側又は第2の側面の側の側壁と熱的に接続された発熱部材とを備え、供給冷媒流路における第4の側面の側及び法線方向の側の部分に供給冷媒流路の第4の側面の側の面と離間して設けられた第1の突起部、及び排出冷媒流路における第4の側面の側及び法線方向の側の部分に排出冷媒流路の第4の側面の側の面と離間して設けられた第2の突起部の一方又は双方を有するものである。



The power conversion device disclosed in the present application includes a power module having a semiconductor element, a rectangular plate-shaped heat sink in which one surface is thermally connected to the power module, and a heat sink along the other side of the heat sink. A cooling refrigerant flow path in which the refrigerant flows in the first second direction from the side of the first side surface to the side of the second side surface opposite to the first side surface, and the side of the first side surface of the cooling refrigerant flow path. Extends from the refrigerant inlet provided on the third side surface side of the heat sink in the third and fourth directions from the side of the third side surface toward the side of the fourth side surface opposite to the third side surface. Together , the supply refrigerant flow path extending in the normal direction of the other surface of the heat sink and connected to the side portion of the first side surface of the cooling refrigerant flow path and the side of the second side surface of the cooling refrigerant flow path. , From the refrigerant outlet provided on the third side surface, extends in the third and fourth directions and extends in the normal direction of the other surface of the heat sink to the portion on the side of the second side surface in the cooling refrigerant flow path. The discharged refrigerant flow path to be connected is electrically connected to the power module, and the side wall on the side of the first side surface or the side of the second side surface in the supply refrigerant flow path, or the first side wall in the discharged refrigerant flow path. A heating member thermally connected to the side wall of the side surface or the side of the second side surface is provided, and the supply refrigerant flow path is provided on the side of the fourth side surface and the side in the normal direction in the supply refrigerant flow path. A fourth protrusion of the exhaust refrigerant flow path is provided on the side of the fourth side surface and a portion of the discharge refrigerant flow path on the side in the normal direction, and a first protrusion provided apart from the surface on the side of the fourth side surface. It has one or both of the second protrusions provided apart from the side surface of the side surface.



Claims (6)

半導体素子を有したパワーモジュールと、
一方の面が前記パワーモジュールと熱的に接続された矩形板状のヒートシンクと、
前記ヒートシンクの他方の面に沿って、前記ヒートシンクの第1の側面の側から前記第1の側面とは反対側の第2の側面の側に向かう第1第2方向に冷媒が流れる冷却冷媒流路と、
前記冷却冷媒流路の前記第1の側面の側を、前記ヒートシンクの第3の側面の側に設けられた冷媒流入口から、前記第3の側面の側から前記第3の側面とは反対側の第4の側面の側に向かう第3第4方向に延びる共に、前記ヒートシンクの他方の面の法線方向に延び、前記冷却冷媒流路における前記第1の側面の側の部分に接続される供給冷媒流路と、
前記冷却冷媒流路の前記第2の側面の側を、前記第3の側面に設けられた冷媒流出口から、前記第3第4方向に延びる共に、前記ヒートシンクの他方の面の法線方向に延び、前記冷却冷媒流路における前記第2の側面の側の部分に接続される排出冷媒流路と、
前記パワーモジュールと電気的に接続されると共に、前記供給冷媒流路における前記第1の側面の側又は前記第2の側面の側の側壁、又は前記排出冷媒流路における前記第1の側面の側又は前記第2の側面の側の側壁と熱的に接続された発熱部材と、を備え、
前記供給冷媒流路における前記第4の側面の側及び前記法線方向の側の部分に前記供給冷媒流路の前記第4の側面の側の面と離間して設けられた第1の突起部、及び前記排出冷媒流路における前記第4の側面の側及び前記法線方向の側の部分に前記排出冷媒流路の前記第4の側面の側の面と離間して設けられた第2の突起部の一方又は双方を有する電力変換装置。
A power module with a semiconductor element and
A rectangular plate-shaped heat sink with one surface thermally connected to the power module,
A cooling refrigerant flow in which the refrigerant flows in the first second direction from the side of the first side surface of the heat sink toward the side of the second side surface opposite to the first side surface along the other surface of the heat sink. The road and
The side of the first side surface of the cooling refrigerant flow path is from the side of the third side surface to the side opposite to the third side surface from the refrigerant inlet provided on the side of the third side surface of the heat sink. Extends in the third and fourth directions toward the side of the fourth side surface of the heat sink, extends in the normal direction of the other surface of the heat sink, and is connected to a portion of the cooling refrigerant flow path on the side of the first side surface. Supply refrigerant flow path and
The side of the second side surface of the cooling refrigerant flow path extends in the third and fourth directions from the refrigerant outlet provided on the third side surface, and in the normal direction of the other surface of the heat sink. A discharge refrigerant flow path that extends and is connected to a portion of the cooling refrigerant flow path on the side of the second side surface.
Electrically connected to the power module, the side wall of the first side surface or the side of the second side surface of the supply refrigerant flow path, or the side of the first side surface of the discharge refrigerant flow path. Alternatively, a heat generating member thermally connected to the side wall on the side of the second side surface is provided.
A first protrusion provided on the side of the fourth side surface of the supply refrigerant flow path and the portion on the side in the normal direction so as to be separated from the surface of the supply refrigerant flow path on the side of the fourth side surface. , And a second side of the discharged refrigerant flow path provided on the side of the fourth side surface and the portion on the side in the normal direction away from the surface on the side of the fourth side surface of the discharged refrigerant flow path. A power converter having one or both of the protrusions.
前記第1の突起部及び前記第2の突起部の一方又は双方は、前記発熱部材が熱的に接続された側壁に形成されている請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein one or both of the first protrusion and the second protrusion are formed on a side wall to which the heat generating member is thermally connected. 前記第1の突起部及び前記第2の突起部の一方又は双方は、1つ又は複数の冷却フィンを備えている請求項2に記載の電力変換装置。 The power conversion device according to claim 2, wherein one or both of the first protrusion and the second protrusion are provided with one or more cooling fins. 前記第1の突起部及び前記第2の突起部の一方又は双方は、前記発熱部材が熱的に接続された側壁と冷媒を介して対向した面を備えている請求項1に記載の電力変換装置。 The power conversion according to claim 1, wherein one or both of the first protrusion and the second protrusion have a side wall to which the heat generating member is thermally connected and a surface facing each other via a refrigerant. Device. 前記発熱部材は、平滑コンデンサ、DCバスバー、リアクトル、放電抵抗、及びACバスバーのうち少なくとも1つである請求項1から4のいずれか1項に記載の電力変換装置。 The power conversion device according to any one of claims 1 to 4, wherein the heat generating member is at least one of a smoothing capacitor, a DC bus bar, a reactor, a discharge resistance, and an AC bus bar. 前記DCバスバー及び前記ACバスバーのいずれか一方又は双方に電流センサが搭載されている請求項5に記載の電力変換装置。 The power conversion device according to claim 5, wherein a current sensor is mounted on either one or both of the DC bus bar and the AC bus bar.
JP2020122581A 2020-07-17 2020-07-17 Power converter Active JP6961047B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020122581A JP6961047B1 (en) 2020-07-17 2020-07-17 Power converter
CN202110777182.3A CN113965049A (en) 2020-07-17 2021-07-09 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020122581A JP6961047B1 (en) 2020-07-17 2020-07-17 Power converter

Publications (2)

Publication Number Publication Date
JP6961047B1 JP6961047B1 (en) 2021-11-05
JP2022019040A true JP2022019040A (en) 2022-01-27

Family

ID=78409775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020122581A Active JP6961047B1 (en) 2020-07-17 2020-07-17 Power converter

Country Status (2)

Country Link
JP (1) JP6961047B1 (en)
CN (1) CN113965049A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059550A1 (en) * 2010-11-04 2012-05-10 Bayer Materialscience Ag Method for producing polycarbonate polyols by the immortal polymerization of cyclic carbonates
WO2013054887A1 (en) * 2011-10-12 2013-04-18 富士電機株式会社 Cooler for semiconductor module, and semiconductor module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059550A1 (en) * 2010-11-04 2012-05-10 Bayer Materialscience Ag Method for producing polycarbonate polyols by the immortal polymerization of cyclic carbonates
WO2013054887A1 (en) * 2011-10-12 2013-04-18 富士電機株式会社 Cooler for semiconductor module, and semiconductor module

Also Published As

Publication number Publication date
CN113965049A (en) 2022-01-21
JP6961047B1 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
US9986665B2 (en) Power conversion apparatus
US9263367B2 (en) Semiconductor device
WO2015194259A1 (en) Cooler and cooler fixing method
WO2015079643A1 (en) Method of manufacturing cooler for semiconductor module, cooler for semiconductor module, semiconductor module, and electrically driven vehicle
JP2013094022A (en) Electric power conversion apparatus
JP6932225B1 (en) Power converter
JP5664472B2 (en) Power converter
CA3063005A1 (en) Cooling structure of power conversion device
US20220338370A1 (en) Power conversion device and motor-integrated power conversion device
US11622478B2 (en) Power converter having improved cooling
JP5581822B2 (en) Semiconductor device
CN113728546A (en) Power conversion device
JP6961047B1 (en) Power converter
WO2019244502A1 (en) Electric power converter
CN115498901A (en) Power conversion device
WO2019142543A1 (en) Power semiconductor device
WO2019159666A1 (en) Electronic component with cooler, and inverter
JP2019170158A (en) Electric power conversion system
JP2021040422A (en) Power conversion device
JP7233510B1 (en) power converter
JP7464183B1 (en) Power Conversion Equipment
WO2023188551A1 (en) Power semiconductor module and power conversion apparatus
WO2022215352A1 (en) Power module
US20230361001A1 (en) Power Semiconductor Device
CN116742918A (en) Power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211012

R151 Written notification of patent or utility model registration

Ref document number: 6961047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151