WO2021164762A1 - 物理下行控制信道的检测方法、发送方法、终端及基站 - Google Patents

物理下行控制信道的检测方法、发送方法、终端及基站 Download PDF

Info

Publication number
WO2021164762A1
WO2021164762A1 PCT/CN2021/077042 CN2021077042W WO2021164762A1 WO 2021164762 A1 WO2021164762 A1 WO 2021164762A1 CN 2021077042 W CN2021077042 W CN 2021077042W WO 2021164762 A1 WO2021164762 A1 WO 2021164762A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
pdcch
pdcch monitoring
monitoring window
window
Prior art date
Application number
PCT/CN2021/077042
Other languages
English (en)
French (fr)
Inventor
王磊
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US17/796,840 priority Critical patent/US20230057472A1/en
Priority to EP21756588.6A priority patent/EP4109989A4/en
Publication of WO2021164762A1 publication Critical patent/WO2021164762A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0039Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver other detection of signalling, e.g. detection of TFCI explicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a detection method, a transmission method, a terminal, and a base station of a physical downlink control channel.
  • low-capacity terminals introduced in the network have low hardware costs, long standby time, large number of terminals, and small transmission bandwidth, such as several MHz.
  • PDCCH Physical Downlink Control Channel
  • the network side can configure the downlink control channel resource set (control resource set, CORESET) for the terminal within the bandwidth according to the configuration needs, and configure the search space in it; in addition, it can configure a smaller PDCCH monitoring Period, through more transmission opportunities in the time domain, reduce the probability of PDCCH collision of different terminals.
  • the network side in order to reduce the collision probability of the downlink control channel, the network side generally needs to be improved in the following two ways: one is to configure a larger search space for the terminal, which requires a larger bandwidth; the other is to configure more densely for the terminal Time domain monitoring position, thereby increasing the power consumption of the terminal side.
  • the present disclosure provides a detection method, a transmission method, a terminal, and a base station of a physical downlink control channel, so as to solve the problems that the PDCCH is prone to collision and the terminal power consumption is large.
  • the embodiment of the present disclosure provides a method for detecting a physical downlink control channel, which is applied to a terminal, and includes:
  • the PDCCH is detected and received within the PDCCH listening window.
  • the parameters include at least one of the following:
  • the number of monitoring occasions MO included in the PDCCH monitoring window is the number of monitoring occasions MO included in the PDCCH monitoring window.
  • the relevant parameters of the receiving physical downlink control channel PDCCH monitoring window include:
  • the parameters are received through terminal-specific radio resource control RRC signaling.
  • determining the PDCCH monitoring window includes:
  • the monitoring time domain positions of all search spaces included in the PDCCH monitoring window are determined.
  • the first association relationship is the following formula:
  • n is the number of the time domain unit where the MO of the search space is located
  • W is the number of time domain units included in the PDCCH listening window i
  • i is the quotient of n divided by W
  • i is an integer greater than or equal to 0 ;
  • the MOs of the search space included in the PDCCH monitoring window i are all MOs whose timeslot numbers in which the MOs are located satisfy the formula.
  • the number of time domain units included in the PDCCH monitoring window is a positive integer multiple of the search space monitoring period.
  • the relevant parameters of the receiving physical downlink control channel PDCCH listening window include:
  • the parameters are received through terminal-specific radio resource control RRC signaling.
  • determining the PDCCH monitoring window includes:
  • the second association relationship is the following formula:
  • m is the time domain unit number
  • W is the number of time domain units included in the PDCCH monitoring window j
  • j is the quotient of m divided by W
  • j is an integer greater than or equal to 0;
  • the time domain units included in the PDCCH monitoring window j are all time domain units whose time domain unit numbers satisfy the formula, and the time domain units are consecutive multiple time slots or consecutive multiple orthogonal frequency division multiplexing OFDM symbols.
  • the relevant parameters of the receiving physical downlink control channel PDCCH listening window include:
  • the parameters are received through terminal-specific RRC signaling or cell-specific RRC signaling.
  • the structure of the search space in each MO included in the PDCCH monitoring window is the same; or,
  • One search space is distributed on multiple MOs included in the PDCCH listening window.
  • the method further includes:
  • the method further includes:
  • the embodiment of the present disclosure also provides a method for sending a physical downlink control channel, which is applied to a base station, and includes:
  • the PDCCH is sent within the PDCCH monitoring window.
  • the parameters include at least one of the following:
  • the number of monitoring occasions MO included in the PDCCH monitoring window is the number of monitoring occasions MO included in the PDCCH monitoring window.
  • the relevant parameters of the PDCCH monitoring window for sending the physical downlink control channel include:
  • the parameters are sent through terminal-specific radio resource control RRC signaling.
  • determining the PDCCH monitoring window includes:
  • the monitoring time domain positions of all search spaces included in the PDCCH monitoring window are determined.
  • the first association relationship is the following formula:
  • n is the number of the time domain unit where the MO of the search space is located
  • W is the number of time domain units included in the PDCCH listening window i
  • i is the quotient of n divided by W
  • i is an integer greater than or equal to 0 ;
  • the MOs of the search space included in the PDCCH monitoring window i are all MOs whose timeslot numbers in which the MOs are located satisfy the formula.
  • the number of time domain units included in the PDCCH monitoring window is a positive integer multiple of the search space monitoring period.
  • the related parameters of the PDCCH listening window for sending the physical downlink control channel include:
  • the parameters are sent through terminal-specific radio resource control RRC signaling.
  • determining the PDCCH monitoring window includes:
  • the second association relationship is the following formula:
  • m is the time domain unit number
  • W is the number of time domain units included in the PDCCH monitoring window j
  • j is the quotient of m divided by W
  • j is an integer greater than or equal to 0;
  • the time domain units included in the PDCCH monitoring window j are all time domain units whose time domain unit numbers satisfy the formula, and the time domain units are consecutive time slots or consecutive multiple orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing). , OFDM) symbol.
  • the relevant parameters of the PDCCH listening window for sending the physical downlink control channel include:
  • the parameters are received through terminal-specific RRC signaling or cell-specific RRC signaling.
  • the embodiment of the present disclosure also provides a terminal, including: a transceiver, a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor implements the following steps when the computer program is executed :
  • the PDCCH is detected and received within the PDCCH listening window.
  • the parameters include at least one of the following:
  • the number of monitoring occasions MO included in the PDCCH monitoring window is the number of monitoring occasions MO included in the PDCCH monitoring window.
  • the processor implements the following steps when executing the computer program:
  • the parameters are received through terminal-specific radio resource control RRC signaling.
  • the processor when the parameter includes the number of time domain units included in the PDCCH listening window, the processor implements the following steps when executing the computer program:
  • the monitoring time domain positions of all search spaces included in the PDCCH monitoring window are determined.
  • the first association relationship is the following formula:
  • n is the number of the time domain unit where the MO of the search space is located
  • W is the number of time domain units included in the PDCCH listening window i
  • i is the quotient of n divided by W
  • i is an integer greater than or equal to 0 ;
  • the MOs of the search space included in the PDCCH monitoring window i are all MOs whose timeslot numbers in which the MOs are located satisfy the formula.
  • the number of time domain units included in the PDCCH monitoring window is a positive integer multiple of the search space monitoring period.
  • the relevant parameters of the receiving physical downlink control channel PDCCH listening window include:
  • the parameters are received through terminal-specific radio resource control RRC signaling.
  • the processor when the parameter includes the number of time domain units included in the PDCCH listening window, the processor implements the following steps when executing the computer program:
  • the second association relationship is the following formula:
  • m is the time domain unit number
  • W is the number of time domain units included in the PDCCH monitoring window j
  • j is the quotient of m divided by W
  • j is an integer greater than or equal to 0;
  • the time domain units included in the PDCCH monitoring window j are all time domain units whose time domain unit numbers satisfy the formula, and the time domain units are consecutive multiple time slots or consecutive multiple orthogonal frequency division multiplexing OFDM symbols.
  • the processor implements the following steps when executing the computer program:
  • the parameters are received through terminal-specific RRC signaling or cell-specific RRC signaling.
  • the structure of the search space in each MO included in the PDCCH monitoring window is the same; or,
  • One search space is distributed on multiple MOs included in the PDCCH listening window.
  • the processor implements the following steps when executing the computer program:
  • the processor when one search space is distributed on multiple MOs included in the PDCCH listening window, the processor implements the following steps when executing the computer program:
  • the embodiment of the present disclosure also provides a base station, including: a transceiver, a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor implements the following steps when the computer program is executed :
  • the PDCCH is sent within the PDCCH monitoring window.
  • the parameters include at least one of the following:
  • the number of monitoring occasions MO included in the PDCCH monitoring window is the number of monitoring occasions MO included in the PDCCH monitoring window.
  • the processor implements the following steps when executing the computer program:
  • the parameters are sent through terminal-specific radio resource control RRC signaling.
  • the processor when the parameter includes the number of time domain units included in the PDCCH listening window, the processor implements the following steps when executing the computer program:
  • the monitoring time domain positions of all search spaces included in the PDCCH monitoring window are determined.
  • the first association relationship is the following formula:
  • n is the number of the time domain unit where the MO of the search space is located
  • W is the number of time domain units included in the PDCCH listening window i
  • i is the quotient of n divided by W
  • i is an integer greater than or equal to 0 ;
  • the MOs of the search space included in the PDCCH monitoring window i are all MOs whose timeslot numbers in which the MOs are located satisfy the formula.
  • the number of time domain units included in the PDCCH monitoring window is a positive integer multiple of the search space monitoring period.
  • the related parameters of the PDCCH listening window for sending the physical downlink control channel include:
  • the parameters are sent through terminal-specific radio resource control RRC signaling.
  • the processor when the parameter includes the number of time domain units included in the PDCCH listening window, the processor implements the following steps when executing the computer program:
  • the second association relationship is the following formula:
  • m is the time domain unit number
  • W is the number of time domain units included in the PDCCH monitoring window j
  • j is the quotient of m divided by W
  • j is an integer greater than or equal to 0;
  • the time domain units included in the PDCCH monitoring window j are all time domain units whose time domain unit numbers satisfy the formula, and the time domain units are consecutive multiple time slots or consecutive multiple orthogonal frequency division multiplexing OFDM symbols.
  • the processor implements the following steps when executing the computer program:
  • the parameters are received through terminal-specific RRC signaling or cell-specific RRC signaling.
  • the embodiment of the present disclosure also provides a terminal, including:
  • the first receiving module is configured to receive relevant parameters of the PDCCH listening window of the physical downlink control channel;
  • a first determining module configured to determine the PDCCH listening window according to the parameter
  • the first processing module is configured to detect and receive the PDCCH in the PDCCH listening window.
  • the embodiment of the present disclosure also provides a base station, including:
  • the first sending module is configured to send relevant parameters of the PDCCH listening window of the physical downlink control channel;
  • a second determining module configured to determine the PDCCH monitoring window according to the parameter
  • the second sending module is configured to send the PDCCH in the PDCCH monitoring window.
  • the embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored.
  • the steps of the method for detecting a physical downlink control channel applied to a terminal as described above are realized. Or implement the steps of the method for transmitting the physical downlink control channel applied to the base station as described above.
  • the beneficial effects of the above technical solutions of the present disclosure are: determining the PDCCH monitoring window according to the relevant parameters of the received PDCCH monitoring window, and detecting and receiving the PDCCH in the PDCCH monitoring window, which can effectively reduce the PDCCH collision probability, and reduce the energy overhead of the terminal.
  • FIG. 1 shows a schematic flowchart of a physical downlink control channel detection method according to an embodiment of the present disclosure
  • FIG. 2 shows one of the schematic diagrams of the structure of the PDCCH monitoring window in an embodiment of the present disclosure
  • FIG. 3 shows the second structural diagram of the PDCCH monitoring window of the embodiment of the present disclosure
  • FIG. 4 shows a schematic flowchart of a method for sending a physical downlink control channel according to an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of modules of a terminal according to an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of modules of a base station according to an embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of the implementation structure of a terminal according to an embodiment of the present disclosure.
  • FIG. 8 shows a schematic diagram of an implementation structure of a base station according to an embodiment of the present disclosure.
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present disclosure. Therefore, the appearances of "in one embodiment” or “in an embodiment” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures or characteristics can be combined in one or more embodiments in any suitable manner.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the form of the access network is not limited, and may include macro base station (Macro Base Station), micro base station (Pico Base Station), Node B (name of 3G mobile base station), enhanced base station (eNB), Home enhanced base station (Femto eNB or Home eNode B or Home eNB or HeNB), relay station, access point, remote radio unit (RRU), remote radio head (RRH), etc. Access to the network.
  • macro base station Micro Base Station
  • micro base station Pico Base Station
  • Node B name of 3G mobile base station
  • eNB enhanced base station
  • eNB Home enhanced base station
  • Femto eNB or Home eNode B or Home eNB or HeNB relay station
  • access point remote radio unit
  • RRU remote radio unit
  • RRH remote radio head
  • the user terminal can be a mobile phone (or cell phone), or other equipment capable of sending or receiving wireless signals, including user equipment, personal digital assistants (PDA), wireless modems, wireless communication devices, handheld devices, laptop computers, cordless phones , Wireless Local Loop (WLL) stations, Customer Premise Equipment (CPE) that can convert mobile signals into WiFi signals, or mobile smart hotspots, smart home appliances, or other spontaneous communication with mobile communication networks without human operation Equipment, etc.
  • PDA personal digital assistants
  • WLL Wireless Local Loop
  • CPE Customer Premise Equipment
  • the embodiment of the present disclosure provides a method for detecting a physical downlink control channel, which is applied to a terminal, and includes:
  • Step 11 Receive the relevant parameters of the PDCCH listening window of the physical downlink control channel.
  • the terminal receives the relevant parameters of the PDCCH listening window configured by the base station through high-level signaling.
  • the high-level signaling may be terminal-specific UE-specific radio resource control (Radio Resource Control, RRC) signaling or cell-specific cell-specific RRC signaling, etc.
  • RRC Radio Resource Control
  • the parameters include but are not limited to at least one of the following:
  • Step 12 Determine the PDCCH monitoring window according to the parameters.
  • the terminal determines the composition of the PDCCH listening window according to the parameter.
  • the parameters can be configured according to the type of the terminal.
  • Step 13 Detect and receive the PDCCH in the PDCCH monitoring window.
  • the base station configures the period of the PDCCH monitoring window, and the terminal detects and receives the PDCCH within the time domain range determined by the PDCCH monitoring window period.
  • the PDCCH monitoring window is determined according to the relevant parameters of the received PDCCH monitoring window, and the PDCCH is detected to be received in the PDCCH monitoring window, which can effectively reduce the PDCCH collision probability in a small bandwidth scenario. And reduce the energy consumption of the terminal.
  • the step 11 may specifically include:
  • the parameters are received through terminal-specific radio resource control RRC signaling.
  • the base station configures the number of MOs included in the PDCCH monitoring window through UE-specific RRC signaling, and the terminal determines the composition of the PDCCH monitoring window according to the number of MOs.
  • the step 12 may specifically include:
  • the monitoring time domain positions of all search spaces included in the PDCCH monitoring window are determined.
  • the first association relationship may be the following formula:
  • n is the number of the time domain unit where the MO of the search space is located
  • W is the number of time domain units included in the PDCCH listening window i
  • i is the quotient of n divided by W
  • i is an integer greater than or equal to 0 ;
  • the MOs of the search space included in the PDCCH monitoring window i are all MOs whose timeslot numbers in which the MOs are located satisfy the formula.
  • the number of the time domain unit where the MO of the search space is located is n, and all MOs satisfying the above formula belong to the PDCCH listening window.
  • the monitoring time domain position in the search space is called a monitoring occasion (MO).
  • MO monitoring occasion
  • n 2
  • W 10
  • i 0
  • n 5
  • W 10
  • i 0
  • the MOs in the search space where the MO in the time domain unit number is 2 and 5 belong to a PDCCH monitoring Window
  • the PDCCH monitoring window number can be defined according to the value of i (for example: all MOs with i being 0 belong to PDCCH monitoring window #0, and all MOs with i being 1 belong to PDCCH monitoring window #1).
  • the number of time domain units included in the PDCCH monitoring window is a positive integer multiple of the search space monitoring period.
  • W is the product of N and T, where N is a positive integer greater than or equal to 1.
  • step 11 may specifically include:
  • the parameters are received through terminal-specific radio resource control RRC signaling.
  • the terminal can receive the number of time domain units included in the PDCCH monitoring window configured by the base station through UE-specific RRC signaling, so that the terminal can monitor the PDCCH according to the number of the time domain unit where the monitoring opportunity MO is located in the search space.
  • the first association relationship of the number of time domain units included in the window determines the composition of the PDCCH listening window.
  • the step 12 may specifically include:
  • the second association relationship is the following formula:
  • m is the time domain unit number
  • W is the number of time domain units included in the PDCCH monitoring window j
  • j is the quotient of m divided by W
  • j is an integer greater than or equal to 0;
  • the time domain units included in the PDCCH monitoring window j are all time domain units whose time domain unit numbers satisfy the formula, and the time domain units are consecutive multiple time slots or consecutive multiple orthogonal frequency division multiplexing OFDM symbols.
  • the composition of the PDCCH monitoring window can be divided according to the absolute number of the time domain unit, that is, all time domain units satisfying the above formula belong to one PDCCH monitoring window. For example, when W is 10 and m is 0-9, j is 0. Therefore, all time-domain units with time-domain unit numbers 0-9 belong to one PDCCH monitoring window, and j is the number of the PDCCH monitoring window.
  • step 11 may specifically include:
  • the parameters are received through terminal-specific RRC signaling or cell-specific RRC signaling.
  • the terminal can receive the number of time domain units included in the PDCCH monitoring window configured by the base station through high-level signaling, so that the terminal can use the second of the time domain unit number and the number of time domain units included in the PDCCH monitoring window.
  • the association relationship determines the composition of the PDCCH monitoring window.
  • the high-level signaling may be UE-specific RRC signaling, cell-specific RRC signaling, or signaling valid for a group of terminals (multiple terminals).
  • the structure of the search space in each MO included in the PDCCH monitoring window is the same; or,
  • One search space is distributed on multiple MOs included in the PDCCH listening window.
  • the structure of the search space in each MO is the same, for example: a search space contains multiple candidate positions, and each MO contains multiple candidate positions; or a search space is distributed among multiple candidate positions in the PDCCH listening window.
  • a search space contains multiple candidate positions, and one candidate position is distributed on one MO.
  • the method may further include:
  • DCI Downlink Control Information
  • the terminal stops detecting the PDCCH in the subsequent MO in the search space.
  • the method may further include:
  • the terminal After the terminal detects and receives the expected DCI format on any P candidate positions PDCCH candidate, it stops detecting the PDCCH on other PDCCH candidates in the search space.
  • P is a positive integer greater than or equal to 1, which is determined by the terminal capability.
  • the base station configures the PDCCH listening window for the terminal through UE-specific RRC signaling.
  • the base station configures the search space SS#1 for the terminal, and the monitoring period of SS#1 is T time slot slots, and the base station also configures the number of slots included in the PDCCH monitoring window for the terminal, assuming that the PDCCH monitoring window includes The number of slots and the monitoring period of SS#1 satisfy the following relationship:
  • the search space monitoring time domain position offset value configured by the base station for the terminal is 0, and the terminal detects and receives the PDCCH in the configured search space on slots #0, slot#10, and slot#2; among them,
  • the search space monitoring time domain location is called an MO.
  • Each PDCCH monitoring window can be determined by the following methods:
  • the slot in which the MO of the search space is located (also referred to as the slot in which the search space is monitored) is numbered #n
  • PDCCH monitoring window #0 is composed of slots #0 ⁇ #49
  • the PDCCH monitoring slot included in PDCCH monitoring window #0 is ⁇ #0, #10, #20, #30, #40 ⁇
  • the PDCCH monitoring slots included in PDCCH monitoring window #1 are ⁇ #50, #60, #70, #80, #90 ⁇
  • PDCCH monitoring The PDCCH monitoring slots included in window #3 are ⁇ #100, #110, #120, #130, #140 ⁇ , etc.
  • the terminal detects the PDCCH according to the configured DCI format in each PDCCH monitoring window. For example, if the DCI format configured by the base station for the terminal in the search space is one or more specific DCI formats, the terminal will follow the configured DCI format in the PDCCH monitoring window. DCI format is detected. If the terminal detects and receives a desired DCI format at any monitoring position in the PDCCH monitoring window, the terminal will no longer perform PDCCH detection according to the DCI format at the remaining monitoring positions in the PDCCH monitoring window. That is, if the terminal detects that a certain expected DCI format is received in the PDCCH monitoring window, the terminal will no longer perform PDCCH detection according to the DCI format at the subsequent monitoring position in the PDCCH monitoring window. Among them, the relevant parameters of the PDCCH listening window are configured according to each search space.
  • the base station configures the length of the PDCCH listening window (consisting of W slots) for the terminal, where W is a positive integer greater than or equal to 1.
  • W is a positive integer greater than or equal to 1.
  • the transmission bandwidth is 5MHz
  • the slot included in each PDCCH listening window is determined by the following method:
  • the terminal After the terminal detects and receives the corresponding expected DCI in any search space on any slot in a PDCCH monitoring window, it skips the remaining slots in the window Above the search space detection.
  • the base station configures search spaces SS#1 and SS#2 for the terminal, and the monitoring period of SS#1 is 2 slots, and the monitoring period of SS#2 is 5 slots, and assuming the time of SS#1 and SS#2
  • the domain offset values are all 0, then the monitoring slot number of SS#1 is ⁇ #0, #2, #4, #6... ⁇ , and the monitoring slot number of SS#2 is ⁇ #0, #5, #10, #15... ⁇ , the schematic diagram of the PDCCH monitoring window is shown in Figure 3.
  • the terminal detects and receives the PDCCH in each search space in a PDCCH monitoring window. If the terminal detects and receives the desired DCI format in a certain search space in the PDCCH monitoring window, the terminal is in the subsequent slot in the PDCCH monitoring window. No longer should search space. For example, if the terminal detects that the corresponding expected DCI format is received in SS#1 on slot#0, it will no longer monitor SS#1 at the subsequent monitoring position in the PDCCH monitoring window; the terminal is in SS#2 of slot#0 If the corresponding expected DCI format is not detected, the SS#2 will continue to be monitored at the subsequent position in the PDCCH monitoring window.
  • the listening window is configured through cell-specific RRC signaling or UE-specific RRC signaling. Among them, the base station may also configure only one search space for the terminal, which is not limited here.
  • the base station configures the number of monitoring occasions MO included in the PDCCH monitoring window for the terminal, and determines the PDCCH monitoring window by the number of MOs, wherein the relevant parameters of the PDCCH monitoring window are configured according to each search space. For example: the base station configures the search space SS#1 for the terminal, its listening period is 10 slots, and the time domain offset value is 0, then the terminal is on the slot#0, slot#10, slot#20, etc., in the configuration PDCCH is monitored in the search space of.
  • the PDCCH monitoring window includes 5 MOs, and the MO positions included in the first PDCCH monitoring window are slot#0, slot#10, slot#20, slot#30, and slot#40, and so on .
  • the base station configures a monitoring period for the PDCCH monitoring window, and the terminal only detects and receives the PDCCH within the PDCCH monitoring window determined by the PDCCH monitoring window period.
  • the monitoring period of the PDCCH monitoring window is 40 slots
  • the time domain offset value is 0 slot
  • the PDCCH listening window offset value can be any integer greater than 0, and the specific function is similar to the offset value of the current search space, and will not be repeated here.
  • the PDCCH monitoring window is determined according to the relevant parameters of the received PDCCH monitoring window, and the PDCCH is detected to be received in the PDCCH monitoring window, and the reception is detected on any MO included in the PDCCH monitoring window.
  • stop detecting the PDCCH on the remaining MO included in the PDCCH monitoring window, or after detecting the desired DCI format at any candidate position in the search space stop in the search space Detecting the PDCCH at the remaining candidate positions can effectively reduce the PDCCH collision probability in a small bandwidth scenario, and reduce the energy overhead of the terminal.
  • an embodiment of the present disclosure also provides a method for sending a physical downlink control channel, which is applied to a base station, and includes:
  • Step 41 Send the relevant parameters of the PDCCH listening window of the physical downlink control channel.
  • the base station configures the relevant parameters of the PDCCH listening window through high-level signaling.
  • the high-level signaling may be terminal-specific UE-specific radio resource control (Radio Resource Control, RRC) signaling or cell-specific cell-specific RRC signaling, etc.
  • RRC Radio Resource Control
  • the parameters include but are not limited to at least one of the following:
  • Step 42 Determine the PDCCH monitoring window according to the parameters.
  • the base station determines the composition of the PDCCH monitoring window according to the configuration.
  • the parameters can be configured according to the type of the terminal.
  • Step 43 Send the PDCCH in the PDCCH monitoring window.
  • the base station configures the period of the PDCCH monitoring window, and the base station transmits the PDCCH within the time domain range determined by the PDCCH monitoring window period.
  • the PDCCH monitoring window is determined according to the related parameters of the configured PDCCH monitoring window, and the PDCCH is sent in the PDCCH monitoring window, so that the terminal detects and receives the PDCCH in the PDCCH monitoring window, which can be effective This reduces the PDCCH collision probability in a small bandwidth scenario, and reduces the energy overhead of the terminal.
  • the step 41 may specifically include:
  • the parameters are sent through terminal-specific radio resource control RRC signaling.
  • the base station configures the number of MOs included in the PDCCH monitoring window through UE-specific RRC signaling, and the base station determines the composition of the PDCCH monitoring window according to the number of MOs.
  • the step 42 may specifically include:
  • the monitoring time domain positions of all search spaces included in the PDCCH monitoring window are determined.
  • the first association relationship is the following formula:
  • n is the number of the time domain unit where the MO of the search space is located
  • W is the number of time domain units included in the PDCCH listening window i
  • i is the quotient of n divided by W
  • i is an integer greater than or equal to 0 ;
  • the MOs of the search space included in the PDCCH monitoring window i are all MOs whose timeslot numbers in which the MOs are located satisfy the formula.
  • the number of the time domain unit where the MO of the search space is located is n, and all MOs satisfying the above formula belong to the PDCCH listening window.
  • the monitoring time domain position in the search space is called a monitoring occasion (MO).
  • MO monitoring occasion
  • n 2
  • W 10
  • i 0
  • n 5
  • W 10
  • i 0
  • the MOs in the search space where the MO in the time domain unit number is 2 and 5 belong to a PDCCH monitoring Window
  • the PDCCH monitoring window number can be defined according to the value of i (for example: all MOs with i being 0 belong to PDCCH monitoring window #0, and all MOs with i being 1 belong to PDCCH monitoring window #1).
  • the number of time domain units included in the PDCCH monitoring window is a positive integer multiple of the search space monitoring period.
  • W is the product of N and T, where N is a positive integer greater than or equal to 1.
  • step 41 may specifically include:
  • the parameters are sent through terminal-specific radio resource control RRC signaling.
  • the base station can configure the number of time domain units included in the PDCCH monitoring window through UE-specific RRC signaling, so that both the terminal and the base station can monitor the PDCCH according to the time domain unit number where the monitoring opportunity MO is located in the search space.
  • the first association relationship of the number of time domain units included in the window determines the composition of the PDCCH listening window.
  • the step 42 may specifically include:
  • the second association relationship may be the following formula:
  • m is the time domain unit number
  • W is the number of time domain units included in the PDCCH monitoring window j
  • j is the quotient of m divided by W
  • j is an integer greater than or equal to 0;
  • the time domain units included in the PDCCH monitoring window j are all time domain units whose time domain unit numbers satisfy the formula, and the time domain units are consecutive multiple time slots or consecutive multiple orthogonal frequency division multiplexing OFDM symbols.
  • the composition of the PDCCH monitoring window can be divided according to the absolute number of the time domain unit, that is, all time domain units satisfying the above formula belong to one PDCCH monitoring window. For example, when W is 10 and m is 0-9, j is 0. Therefore, all time-domain units with time-domain unit numbers 0-9 belong to one PDCCH monitoring window, and j is the number of the PDCCH monitoring window.
  • step 41 may specifically include:
  • the parameters are received through terminal-specific RRC signaling or cell-specific RRC signaling.
  • the terminal can receive the number of time domain units included in the PDCCH monitoring window configured by the base station through high-level signaling, so that the terminal can use the second of the time domain unit number and the number of time domain units included in the PDCCH monitoring window.
  • the association relationship determines the composition of the PDCCH monitoring window.
  • the high-level signaling may be UE-specific RRC signaling, cell-specific RRC signaling, or signaling valid for a group of terminals (multiple terminals).
  • the PDCCH monitoring window is determined according to the related parameters of the configured PDCCH monitoring window, and the PDCCH is sent in the PDCCH monitoring window, so that the terminal detects and receives the PDCCH in the PDCCH monitoring window, which can be effective This reduces the PDCCH collision probability in a small bandwidth scenario, and reduces the energy overhead of the terminal.
  • an embodiment of the present disclosure further provides a terminal 50, including:
  • the first receiving module 51 is configured to receive relevant parameters of the PDCCH listening window of the physical downlink control channel;
  • the first determining module 52 is configured to determine the PDCCH listening window according to the parameters
  • the first processing module 53 is configured to detect and receive the PDCCH in the PDCCH listening window.
  • the parameters include at least one of the following:
  • the number of monitoring occasions MO included in the PDCCH monitoring window is the number of monitoring occasions MO included in the PDCCH monitoring window.
  • the first receiving module 51 includes:
  • the first receiving unit is configured to receive the parameters through terminal-specific radio resource control RRC signaling.
  • the first determining module 52 includes:
  • the first determining unit is configured to determine all searches included in the PDCCH monitoring window according to the first association relationship between the time domain unit number where the monitoring opportunity MO of the search space is located and the number of time domain units included in the PDCCH monitoring window Space monitoring time domain location.
  • the first association relationship is the following formula:
  • n is the number of the time domain unit where the MO of the search space is located
  • W is the number of time domain units included in the PDCCH listening window i
  • i is the quotient of n divided by W
  • i is an integer greater than or equal to 0 ;
  • the MOs of the search space included in the PDCCH monitoring window i are all MOs whose timeslot numbers in which the MOs are located satisfy the formula.
  • the number of time domain units included in the PDCCH monitoring window is a positive integer multiple of the search space monitoring period.
  • the first receiving module 51 includes:
  • the second receiving unit is configured to receive the parameters through terminal-specific radio resource control RRC signaling.
  • the first determining module 52 includes:
  • the second determining unit is configured to determine all the time domain units included in the PDCCH monitoring window according to the second association relationship between the time domain unit number and the number of time domain units included in the PDCCH monitoring window.
  • the second association relationship is the following formula:
  • m is the time domain unit number
  • W is the number of time domain units included in the PDCCH monitoring window j
  • j is the quotient of m divided by W
  • j is an integer greater than or equal to 0;
  • the time domain units included in the PDCCH monitoring window j are all time domain units whose time domain unit numbers satisfy the formula, and the time domain units are consecutive multiple time slots or consecutive multiple orthogonal frequency division multiplexing OFDM symbols.
  • the first receiving module 51 includes:
  • the third receiving unit is configured to receive the parameters through terminal-specific RRC signaling or cell-specific RRC signaling.
  • the structure of the search space in each MO included in the PDCCH monitoring window is the same; or,
  • One search space is distributed on multiple MOs included in the PDCCH listening window.
  • the terminal 50 further includes:
  • the second processing module is configured to stop detecting the PDCCH on the remaining MOs included in the PDCCH monitoring window after detecting that the desired downlink control information DCI format is received on any MO included in the PDCCH monitoring window.
  • the terminal 50 further includes:
  • the third processing module is configured to stop detecting the PDCCH at the remaining candidate positions in the search space after detecting and receiving the desired DCI format at any candidate position in the search space.
  • this terminal embodiment is a terminal corresponding to the above-mentioned physical downlink control channel detection method applied to the terminal. All the implementation modes of the above-mentioned embodiment are applicable to the terminal embodiment, and can also achieve the same. The technical effect will not be repeated here.
  • an embodiment of the present disclosure further provides a base station 60, including:
  • the first sending module 61 is configured to send relevant parameters of the PDCCH listening window of the physical downlink control channel;
  • the second determining module 62 is configured to determine the PDCCH listening window according to the parameters
  • the second sending module 63 is configured to send the PDCCH in the PDCCH monitoring window.
  • the parameters include at least one of the following:
  • the number of monitoring occasions MO included in the PDCCH monitoring window is the number of monitoring occasions MO included in the PDCCH monitoring window.
  • the first sending module 61 when the parameter includes the number of monitoring occasions MO included in the PDCCH monitoring window, the first sending module 61 includes:
  • the first sending unit is configured to send the parameters through terminal-specific radio resource control RRC signaling.
  • the second determining module 62 includes:
  • the third determining unit is configured to determine all searches included in the PDCCH monitoring window according to the first association relationship between the time domain unit number where the monitoring opportunity MO of the search space is located and the number of time domain units included in the PDCCH monitoring window Space monitoring time domain location.
  • the first association relationship is the following formula:
  • n is the number of the time domain unit where the MO of the search space is located
  • W is the number of time domain units included in the PDCCH listening window i
  • i is the quotient of n divided by W
  • i is an integer greater than or equal to 0 ;
  • the MOs of the search space included in the PDCCH monitoring window i are all MOs whose timeslot numbers in which the MOs are located satisfy the formula.
  • the number of time domain units included in the PDCCH monitoring window is a positive integer multiple of the search space monitoring period.
  • the first sending module 61 includes:
  • the second sending unit is configured to send the parameters through terminal-specific radio resource control RRC signaling.
  • the second determining module 62 includes:
  • the fourth determining unit is configured to determine all the time domain units included in the PDCCH monitoring window according to the second association relationship between the time domain unit number and the number of time domain units included in the PDCCH monitoring window.
  • the second association relationship is the following formula:
  • m is the time domain unit number
  • W is the number of time domain units included in the PDCCH monitoring window j
  • j is the quotient of m divided by W
  • j is an integer greater than or equal to 0;
  • the time domain units included in the PDCCH monitoring window j are all time domain units whose time domain unit numbers satisfy the formula, and the time domain units are consecutive multiple time slots or consecutive multiple orthogonal frequency division multiplexing OFDM symbols.
  • the first sending module 61 includes:
  • the third sending unit is configured to receive the parameters through terminal-specific RRC signaling or cell-specific RRC signaling.
  • this embodiment of the base station is a base station corresponding to the above-mentioned method for transmitting the physical downlink control channel applied to the base station. All the implementation modes of the above-mentioned embodiment are applicable to the embodiment of the base station, and can also achieve the same. The technical effect will not be repeated here.
  • an embodiment of the present disclosure further provides a terminal, including a processor 71; and a memory 73 connected to the processor 71 through a bus interface 72, and the memory 73 It is used to store programs and data used by the processor 71 when performing operations.
  • the processor 71 calls and executes the programs and data stored in the memory 73, the following process is executed.
  • the transceiver 74 is connected to the bus interface 72 for receiving and sending data under the control of the processor 71.
  • the processor 71 implements the following steps when executing the computer program:
  • the PDCCH is detected and received within the PDCCH listening window.
  • the parameters include at least one of the following:
  • the number of monitoring occasions MO included in the PDCCH monitoring window is the number of monitoring occasions MO included in the PDCCH monitoring window.
  • the processor 71 implements the following steps when executing the computer program:
  • the parameters are received through terminal-specific radio resource control RRC signaling.
  • the processor 71 implements the following steps when executing the computer program:
  • the monitoring time domain positions of all search spaces included in the PDCCH monitoring window are determined.
  • the first association relationship is the following formula:
  • n is the number of the time domain unit where the MO of the search space is located
  • W is the number of time domain units included in the PDCCH listening window i
  • i is the quotient of n divided by W
  • i is an integer greater than or equal to 0 ;
  • the MOs of the search space included in the PDCCH monitoring window i are all MOs whose timeslot numbers in which the MOs are located satisfy the formula.
  • the number of time domain units included in the PDCCH monitoring window is a positive integer multiple of the search space monitoring period.
  • the processor 71 implements the following steps when executing the computer program:
  • the parameters are received through terminal-specific radio resource control RRC signaling.
  • the processor 71 implements the following steps when executing the computer program:
  • the second association relationship is the following formula:
  • m is the time domain unit number
  • W is the number of time domain units included in the PDCCH monitoring window j
  • j is the quotient of m divided by W
  • j is an integer greater than or equal to 0;
  • the time domain units included in the PDCCH monitoring window j are all time domain units whose time domain unit numbers satisfy the formula, and the time domain units are consecutive multiple time slots or consecutive multiple orthogonal frequency division multiplexing OFDM symbols.
  • the processor 71 implements the following steps when executing the computer program:
  • the parameters are received through terminal-specific RRC signaling or cell-specific RRC signaling.
  • the structure of the search space in each MO included in the PDCCH monitoring window is the same; or,
  • One search space is distributed on multiple MOs included in the PDCCH listening window.
  • the processor 71 implements the following steps when executing the computer program:
  • the processor 71 implements the following steps when executing the computer program:
  • this terminal embodiment is a terminal corresponding to the above-mentioned physical downlink control channel detection method applied to the terminal. All the implementation modes of the above-mentioned embodiment are applicable to the terminal embodiment, and can also achieve the same. The technical effect will not be repeated here.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 71 and various circuits of the memory represented by the memory 73 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 74 may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 75 may also be an interface capable of connecting externally and internally with required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 71 is responsible for managing the bus architecture and general processing, and the memory 73 can store data used by the processor 71 when performing operations.
  • the computer program includes instructions for executing part or all of the steps of the above-mentioned method. ; And the computer program can be stored in a readable storage medium, and the storage medium can be any form of storage medium.
  • an embodiment of the present disclosure also provides a base station, including: a processor 80; a memory 82 connected to the processor 80 through a bus interface, and a memory 82 connected to the processor 80 through a bus interface Transceiver 81;
  • the memory 82 is used to store computer programs and data used by the processor when performing operations; Data information or pilots are sent through the transceiver 81, and uplink control is also received through the transceiver 81 Channel; when the processor 80 calls and executes the computer programs and data stored in the memory 82, the following functional modules are implemented:
  • the PDCCH is sent within the PDCCH monitoring window.
  • the transceiver 81 is used to receive and send data under the control of the processor 80.
  • the parameters include at least one of the following:
  • the number of monitoring occasions MO included in the PDCCH monitoring window is the number of monitoring occasions MO included in the PDCCH monitoring window.
  • the processor 80 implements the following steps when executing the computer program:
  • the parameters are sent through terminal-specific radio resource control RRC signaling.
  • the processor 80 implements the following steps when executing the computer program:
  • the monitoring time domain positions of all search spaces included in the PDCCH monitoring window are determined.
  • the first association relationship is the following formula:
  • n is the number of the time domain unit where the MO of the search space is located
  • W is the number of time domain units included in the PDCCH listening window i
  • i is the quotient of n divided by W
  • i is an integer greater than or equal to 0 ;
  • the MOs of the search space included in the PDCCH monitoring window i are all MOs whose timeslot numbers in which the MOs are located satisfy the formula.
  • the number of time domain units included in the PDCCH monitoring window is a positive integer multiple of the search space monitoring period.
  • the related parameters of the PDCCH listening window for sending the physical downlink control channel include:
  • the parameters are sent through terminal-specific radio resource control RRC signaling.
  • the processor 80 implements the following steps when executing the computer program:
  • the second association relationship is the following formula:
  • m is the time domain unit number
  • W is the number of time domain units included in the PDCCH monitoring window j
  • j is the quotient of m divided by W
  • j is an integer greater than or equal to 0;
  • the time domain units included in the PDCCH monitoring window j are all time domain units whose time domain unit numbers satisfy the formula, and the time domain units are consecutive multiple time slots or consecutive multiple orthogonal frequency division multiplexing OFDM symbols.
  • the processor 80 implements the following steps when executing the computer program:
  • the parameters are received through terminal-specific RRC signaling or cell-specific RRC signaling.
  • this embodiment of the base station is a base station corresponding to the above-mentioned method for transmitting the physical downlink control channel applied to the base station. All the implementation modes of the above-mentioned embodiment are applicable to the embodiment of the base station, and can also achieve the same. The technical effect will not be repeated here.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 80 and various circuits of the memory represented by the memory 82 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface provides the interface.
  • the transceiver 81 may be a plurality of elements, including a transmitter and a transceiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 80 is responsible for managing the bus architecture and general processing, and the memory 82 can store data used by the processor 80 when performing operations.
  • the embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, each process of the embodiment of the above-mentioned physical downlink control channel detection method is realized, or Each process of the embodiment of the foregoing method for sending a physical downlink control channel is implemented, and the same technical effect can be achieved. In order to avoid repetition, details are not repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the computer program includes instructions for executing part or all of the steps of the above-mentioned method. ; And the computer program can be stored in a readable storage medium, and the storage medium can be any form of storage medium.
  • the first indication information of the resource location occupied by the high-priority service transmission of the second terminal in the reference resource domain is sent to the first terminal, and whether the service transmission of the first terminal is consistent with that of the first terminal.
  • the second indication information indicating that the resource conflict occurs in the transmission of the high-priority service can enable the first terminal to control the service stop transmission at the target resource location where the resource conflict occurs according to the first indication information and the second indication information, which can avoid low A phenomenon in which priority service transmission interferes with high priority service transmission.
  • each component or each step can be decomposed and/or recombined. These decomposition and/or recombination should be regarded as equivalent solutions of the present disclosure.
  • the steps of performing the above series of processing can naturally be performed in a chronological order in the order of description, but do not necessarily need to be performed in a chronological order, and some steps can be performed in parallel or independently of each other.
  • a person of ordinary skill in the art can understand that all or any of the steps or components of the methods and devices of the present disclosure can be used in any computing device (including a processor, storage medium, etc.) or a network of computing devices with hardware and firmware. , Software, or a combination of them. This can be achieved by those of ordinary skill in the art using their basic programming skills after reading the description of the present disclosure.
  • the purpose of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device may be a well-known general-purpose device. Therefore, the purpose of the present disclosure can also be achieved only by providing a program product containing program code for implementing the method or device. That is, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any well-known storage medium or any storage medium developed in the future. It should also be pointed out that in the device and method of the present disclosure, obviously, each component or each step can be decomposed and/or recombined.
  • the division of the various modules of the above network equipment and the terminal is only a division of logical functions, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; some modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the determining module may be a separately established processing element, or it may be integrated in a certain chip of the above-mentioned device for implementation.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or one or Multiple microprocessors (digital signal processors, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种物理下行控制信道的检测方法、发送方法、终端及基站,检测方法包括:接收物理下行控制信道PDCCH监听窗口的相关参数;根据参数,确定PDCCH监听窗口;在PDCCH监听窗口内检测接收PDCCH。

Description

物理下行控制信道的检测方法、发送方法、终端及基站
相关申请的交叉引用
本申请主张在2020年2月21日在中国提交的中国专利申请号No.202010107811.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种物理下行控制信道的检测方法、发送方法、终端及基站。
背景技术
目前,网络中引入的低能力终端硬件成本低、待机时间长且终端数量大,并且传输带宽很小,例如:几个MHz,为了保证其待机时间,需要降低物理下行控制信道(Physical Downlink Control Channel,PDCCH)的检测。从网络侧的角度来看,在较小的带宽内为数量巨大的终端发送PDCCH,将会带来严重的PDCCH碰撞问题。
在当前的无线系统中,网络侧可以根据配置需要在带宽内为终端配置下行控制信道资源集合(control resource set,CORESET),并在其内配置搜索空间;另外,可以通过配置较小的PDCCH监听周期,通过时域上更多的传输机会降低不同终端PDCCH碰撞的几率。但是为了降低下行控制信道的碰撞概率,网络侧一般需要通过如下两种方式进行改善:其一是为终端配置较大的搜索空间,相应的需要较大的带宽;其二是为终端配置较为密集的时域监听位置,从而增加了终端侧的功耗。
发明内容
本公开提供一种物理下行控制信道的检测方法、发送方法、终端及基站,以解决PDCCH易发生碰撞以及终端功耗较大的问题。
本公开的实施例提供一种物理下行控制信道的检测方法,应用于终端,包括:
接收物理下行控制信道PDCCH监听窗口的相关参数;
根据所述参数,确定所述PDCCH监听窗口;
在所述PDCCH监听窗口内检测接收PDCCH。
可选的,所述参数包括以下至少一项:
所述PDCCH监听窗口包含的时域单元的个数;
所述PDCCH监听窗口包含的监听时机MO的个数。
可选的,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述接收物理下行控制信道PDCCH监听窗口的相关参数,包括:
通过终端特定的无线资源控制RRC信令接收所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,确定所述PDCCH监听窗口,包括:
根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
可选的,所述第一关联关系为以下公式:
mod(n,W)=i
其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
可选的,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
可选的,所述接收物理下行控制信道PDCCH监听窗口的相关参数包括:
通过终端特定的无线资源控制RRC信令接收所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,确定所述PDCCH监听窗口,包括:
根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
可选的,所述第二关联关系为以下公式:
mod(m,W)=j
其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
可选的,所述接收物理下行控制信道PDCCH监听窗口的相关参数,包括:
通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
可选的,所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同;或者,
一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上。
可选的,在所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同的情况下,所述方法还包括:
在所述PDCCH监听窗口包含的任意MO上检测接收到期望的下行控制信息DCI格式之后,停止在所述PDCCH监听窗口包含的剩余MO上检测PDCCH。
可选的,在一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上的情况下,所述方法还包括:
在所述搜索空间内的任意候选位置上检测接收到期望的DCI格式之后,停止在所述搜索空间内的剩余候选位置上检测PDCCH。
本公开的实施例还提供了一种物理下行控制信道的发送方法,应用于基站,包括:
发送物理下行控制信道PDCCH监听窗口的相关参数;
根据所述参数,确定所述PDCCH监听窗口;
在所述PDCCH监听窗口内发送PDCCH。
可选的,所述参数包括以下至少一项:
所述PDCCH监听窗口包含的时域单元的个数;
所述PDCCH监听窗口包含的监听时机MO的个数。
可选的,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数 的情况下,所述发送物理下行控制信道PDCCH监听窗口的相关参数,包括:
通过终端特定的无线资源控制RRC信令发送所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,确定所述PDCCH监听窗口,包括:
根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
可选的,所述第一关联关系为以下公式:
mod(n,W)=i
其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
可选的,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
可选的,所述发送物理下行控制信道PDCCH监听窗口的相关参数包括:
通过终端特定的无线资源控制RRC信令发送所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,确定所述PDCCH监听窗口,包括:
根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
可选的,所述第二关联关系为以下公式:
mod(m,W)=j
其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用(Orthogonal frequency division multiplex,OFDM)符号。
可选的,所述发送物理下行控制信道PDCCH监听窗口的相关参数,包括:
通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
本公开的实施例还提供了一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
接收物理下行控制信道PDCCH监听窗口的相关参数;
根据所述参数,确定所述PDCCH监听窗口;
在所述PDCCH监听窗口内检测接收PDCCH。
可选的,所述参数包括以下至少一项:
所述PDCCH监听窗口包含的时域单元的个数;
所述PDCCH监听窗口包含的监听时机MO的个数。
可选的,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
通过终端特定的无线资源控制RRC信令接收所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
可选的,所述第一关联关系为以下公式:
mod(n,W)=i
其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
可选的,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
可选的,所述接收物理下行控制信道PDCCH监听窗口的相关参数包括:
通过终端特定的无线资源控制RRC信令接收所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
可选的,所述第二关联关系为以下公式:
mod(m,W)=j
其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
可选的,所述处理器执行所述计算机程序时实现以下步骤:
通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
可选的,所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同;或者,
一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上。
可选的,在所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同的情况下,所述处理器执行所述计算机程序时实现以下步骤:
在所述PDCCH监听窗口包含的任意MO上检测接收到期望的下行控制信息DCI格式之后,停止在所述PDCCH监听窗口包含的剩余MO上检测PDCCH。
可选的,在一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上的情况下,所述处理器执行所述计算机程序时实现以下步骤:
在所述搜索空间内的任意候选位置上检测接收到期望的DCI格式之后,停止在所述搜索空间内的剩余候选位置上检测PDCCH。
本公开的实施例还提供了一种基站,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
发送物理下行控制信道PDCCH监听窗口的相关参数;
根据所述参数,确定所述PDCCH监听窗口;
在所述PDCCH监听窗口内发送PDCCH。
可选的,所述参数包括以下至少一项:
所述PDCCH监听窗口包含的时域单元的个数;
所述PDCCH监听窗口包含的监听时机MO的个数。
可选的,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
通过终端特定的无线资源控制RRC信令发送所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
可选的,所述第一关联关系为以下公式:
mod(n,W)=i
其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
可选的,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
可选的,所述发送物理下行控制信道PDCCH监听窗口的相关参数包括:
通过终端特定的无线资源控制RRC信令发送所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
可选的,所述第二关联关系为以下公式:
mod(m,W)=j
其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
可选的,所述处理器执行所述计算机程序时实现以下步骤:
通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
本公开的实施例还提供了一种终端,包括:
第一接收模块,用于接收物理下行控制信道PDCCH监听窗口的相关参数;
第一确定模块,用于根据所述参数,确定所述PDCCH监听窗口;
第一处理模块,用于在所述PDCCH监听窗口内检测接收PDCCH。
本公开的实施例还提供了一种基站,包括:
第一发送模块,用于发送物理下行控制信道PDCCH监听窗口的相关参数;
第二确定模块,用于根据所述参数,确定所述PDCCH监听窗口;
第二发送模块,用于在所述PDCCH监听窗口内发送PDCCH。
本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述的应用于终端的物理下行控制信道的检测方法的步骤,或者实现如上所述的应用于基站的物理下行控制信道的发送方法的步骤。
本公开的上述技术方案的有益效果是:根据接收的PDCCH监听窗口的相关参数,确定所述PDCCH监听窗口,并在所述PDCCH监听窗口内检测接收PDCCH,可以有效的降低在小带宽场景下的PDCCH碰撞概率,并降低终端的能量开销。
附图说明
图1表示本公开实施例的物理下行控制信道的检测方法的流程示意图;
图2表示本公开实施例的PDCCH监听窗口的结构示意图之一;
图3表示本公开实施例的PDCCH监听窗口的结构示意图之二;
图4表示本公开实施例的物理下行控制信道的发送方法的流程示意图;
图5表示本公开实施例的终端的模块示意图;
图6表示本公开实施例的基站的模块示意图;
图7表示本公开实施例的终端的实施结构示意图;
图8表示本公开实施例的基站的实施结构示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。在下面的描述中,提供诸如具体的配置和组件的特定细节仅仅是为了帮助全面理解本公开的实施例。因此,本领域技术人员应该清楚,可以对这里描述的实施例进行各种改变和修改而不脱离本公开的范围和精神。另外,为了清楚和简洁,省略了对已知功能和构造的描述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本公开的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本公开实施例中,接入网的形式不限,可以是包括宏基站(Macro Base Station)、微基站(Pico Base Station)、Node B(3G移动基站的称呼)、增强型基站(eNB)、家庭增强型基站(Femto eNB或Home eNode B或Home eNB或HeNB)、中继站、接入点、远端射频模块(Remote Radio Unit,RRU)、射 频拉远头(Remote Radio Head,RRH)等的接入网。用户终端可以是移动电话(或手机),或者其他能够发送或接收无线信号的设备,包括用户设备、个人数字助理(PDA)、无线调制解调器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为WiFi信号的客户终端(Customer Premise Equipment,CPE)或移动智能热点、智能家电、或其他不通过人的操作就能自发与移动通信网络通信的设备等。
如图1所示,本公开的实施例提供了一种物理下行控制信道的检测方法,应用于终端,包括:
步骤11:接收物理下行控制信道PDCCH监听窗口的相关参数。
具体的,所述终端通过高层信令接收基站配置的PDCCH监听窗口的相关参数。其中,所述高层信令可以为终端特定UE-specific的无线资源控制(Radio Resource Control,RRC)信令或小区特定cell-specific的RRC信令等。
可选的,所述参数包括并不限于以下至少一项:
一、所述PDCCH监听窗口包含的时域单元的个数;
二、所述PDCCH监听窗口包含的监听时机MO的个数。
步骤12:根据所述参数,确定所述PDCCH监听窗口。
具体的,终端在接收到所述参数后,根据所述参数确定PDCCH监听窗口的组成。其中,所述参数可以根据终端的类型进行配置。
步骤13:在所述PDCCH监听窗口内检测接收PDCCH。
具体的,基站配置PDCCH监听窗口的周期,终端在通过PDCCH监听窗口周期确定的时域范围内检测接收PDCCH。
本公开上述实施例中,根据接收的PDCCH监听窗口的相关参数,确定所述PDCCH监听窗口,并在所述PDCCH监听窗口内检测接收PDCCH,可以有效的降低在小带宽场景下的PDCCH碰撞概率,并降低终端的能量开销。
进一步的,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述步骤11具体可以包括:
通过终端特定的无线资源控制RRC信令接收所述参数。
具体的,基站通过UE-specific的RRC信令配置所述PDCCH监听窗口包 含的MO的个数,终端根据MO的个数确定所述PDCCH监听窗口的组成。
进一步的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述步骤12具体可以包括:
根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
可选的,所述第一关联关系可以为以下公式:
mod(n,W)=i
其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
具体的,搜索空间的MO所在的时域单元编号为n,则满足上述公式的所有的MO均属于PDCCH监听窗口。其中,搜索空间监听时域位置称之为一个监听时机(monitoring occasion,MO)。例如:n为2,W为10,则i为0;n为5,W为10,则i为0;因此搜索空间的MO所在的时域单元编号为2和5的MO均属于一个PDCCH监听窗口;其中,PDCCH监听窗口编号可以根据i的取值定义(如:i为0的所有MO均属于PDCCH监听窗口#0,i为1的所有MO均属于PDCCH监听窗口#1)。
进一步的,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
例如:搜索空间(search space,SS)的监听周期为T,则W为N与T的乘积,其中N为大于或等于1的正整数。
进一步的,所述步骤11具体可以包括:
通过终端特定的无线资源控制RRC信令接收所述参数。
具体的,终端可以通过UE-specific的RRC信令接收基站配置的PDCCH监听窗口包含的时域单元的个数,使终端可以根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联 关系,确定PDCCH监听窗口的组成。
进一步的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述步骤12具体可以包括:
根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
可选的,所述第二关联关系为以下公式:
mod(m,W)=j
其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
具体的,PDCCH监听窗口的组成可以根据时域单元的绝对编号进行划分,即满足上述公式的所有的时域单元均属于一个PDCCH监听窗口。例如:W为10,m为0~9时,j均为0,因此时域单元编号为0~9的所有时域单元均属于一个PDCCH监听窗口,j为PDCCH监听窗口的编号。
进一步的,所述步骤11具体可以包括:
通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
具体的,终端可以通过高层信令接收基站配置的PDCCH监听窗口包含的时域单元的个数,使终端可以根据时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定PDCCH监听窗口的组成。其中,高层信令可以为UE-specific的RRC信令、cell-specific的RRC信令或者针对一组终端(多个终端)有效的信令。
进一步的,所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同;或者,
一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上。
具体的,搜索空间在每一个MO内的结构均相同,例如:一个搜索空间包含多个候选位置,每一个MO上均包含有多个候选位置;或者一个搜索空间分布在PDCCH监听窗口内的多个时域监听位置上(即一个搜索空间通过时分复 用的方式分布在所述PDCCH监听窗口内)。例如:一个搜索空间包含多个候选位置,一个候选位置分布在一个MO上。
进一步的,在所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同的情况下,所述方法还可以包括:
在所述PDCCH监听窗口包含的任意MO上检测接收到期望的下行控制信息(Downlink Control Information,DCI)格式format之后,停止在所述PDCCH监听窗口包含的剩余MO上检测PDCCH。
具体的,终端在搜索空间的任何一个MO内检测接收到规定数量的期望DCI format后,停止在搜索空间的后续MO内检测PDCCH。
进一步的,在一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上的情况下,所述方法还可以包括:
在所述搜索空间内的任意候选位置上检测接收到期望的DCI格式之后,停止在所述搜索空间内的剩余候选位置上检测PDCCH。
具体的,终端在任何P个候选位置PDCCH candidate上检测接收到期望的DCI format后,停止在搜索空间内的其他PDCCH candidate上检测PDCCH。其中,P为大于或等于1的正整数,由终端能力确定。
下面通过具体的实施例对上述方法进行详细说明(终端行为与基站行为的实施例是对应的):
实施例一:
如图2所示,基站通过UE-specific的RRC信令为终端配置PDCCH监听窗口。假设基站为终端配置了搜索空间SS#1,且SS#1的监听周期为T个时隙slot,并且,基站还为该终端配置了PDCCH监听窗口包含的slot的个数,假设PDCCH监听窗口包含的slot的个数与SS#1的监听周期满足下述关系:
W=N·T
在本实施例中,假设T=10,N=5,传输带宽为5MHz。
具体的,基站为终端配置的搜索空间监听时域位置偏移值为0,则终端在slot#0、slot#10、slot#2等slot上,在配置的搜索空间内检测接收PDCCH;其中,搜索空间监听时域位置称之为一个MO。每个PDCCH监听窗口可以通过如下方法确定:
如果搜索空间的MO所在的slot(也可称为该搜索空间监听所在的slot)编号为#n,则满足公式mod(n,W)=i的所有MO均属于PDCCH监听窗口i。例如:W为50,slot为#0~#49任一个时,i均为0,则PDCCH监听窗口#0由slot#0~#49组成,则PDCCH监听窗口#0包含的PDCCH监听slot为{#0,#10,#20,#30,#40};以此类推,PDCCH监听窗口#1包含的PDCCH监听slot为{#50,#60,#70,#80,#90},PDCCH监听窗口#3包含的PDCCH监听slot为{#100,#110,#120,#130,#140}等。
终端在每个PDCCH监听窗口内按照配置的DCI format检测PDCCH,例如:基站为终端在搜索空间内配置的DCI format为某一个或者多个特定的DCI format,则终端在PDCCH监听窗口内按照配置的DCI format进行检测,如果终端在PDCCH监听窗口内的任意监听位置上检测接收到某个期望的DCI format,则终端在该PDCCH监听窗口内剩余的监听位置上不再按照该DCI format进行PDCCH的检测,即:如果终端在PDCCH监听窗口内检测接收到某个期望的DCI format,则终端在该PDCCH监听窗口内后续的监听位置上不再按照该DCI format进行PDCCH的检测。其中,PDCCH监听窗口的相关参数是根据每个搜索空间进行配置的。
实施例二:
如图3所示,基站为终端配置PDCCH监听窗口的长度(由W个slot组成),W为大于或等于1的正整数。在本实施例中,假设W=10,传输带宽为5MHz,每个PDCCH监听窗口所包含的slot通过如下方法确定:
满足mod(m,W)=j的所有slot组成PDCCH监听窗口j,终端在一个PDCCH监听窗口内的任意一个slot上的任意搜索空间内检测接收到对应的期望DCI后,跳过窗口内剩余slot上该搜索空间的检测。
假设基站为终端配置了搜索空间SS#1和SS#2,且SS#1的监听周期为2个slot,SS#2的监听周期为5个slot,并假设SS#1和SS#2的时域偏移值均为0,则SS#1的监听slot编号为{#0,#2,#4,#6…},SS#2的监听slot编号为{#0,#5,#10,#15…},PDCCH监听窗口的示意图如图3所示。
终端在一个PDCCH监听窗口内的每个搜索空间内检测接收PDCCH,如果终端在PDCCH监听窗口内的某个搜索空间内检测接收到期望的DCI format, 则终端在该PDCCH监听窗口内的后续slot上不再该搜索空间。例如终端在slot#0上的SS#1内检测接收到对应的期望的DCI format,则在该PDCCH监听窗口内的后续监听位置上不再监听SS#1;终端在slot#0的SS#2内没有检测接收到对应的期望的DCI format,则在该PDCCH监听窗口内的后续位置上继续监听SS#2。其中,所述监听窗口通过cell-specific的RRC信令或者UE-specific的RRC信令进行配置。其中,基站也可以为终端仅配置一个搜索空间,在此不做限定。
实施例三:
基站为终端配置所述PDCCH监听窗口包含的监听时机MO的个数,通过MO的个数来确定PDCCH监听窗口,其中,PDCCH监听窗口的相关参数是根据每个搜索空间进行配置的。例如:基站为终端配置了搜索空间SS#1,其监听周期为10个slot,且时域偏移值为0,则终端在slot#0、slot#10、slot#20等slot上,在配置的搜索空间内监听PDCCH。所述PDCCH监听窗口包含5个MO,则所述第一个所述PDCCH监听窗口包含的MO位置为slot#0、slot#10、slot#20、slot#30和slot#40,并以此类推。
实施例四:
基站为所述PDCCH监听窗口配置监听周期,终端只在PDCCH监听窗口周期确定的PDCCH监听窗口内检测接收PDCCH。例如:PDCCH监听窗口的监听周期为40个slot,且其时域偏移值为0个slot,则终端只在PDCCH监听窗口起始slot编号满足mod(n,40)=0的PDCCH监听窗口内检测接收PDCCH。其中,PDCCH监听窗口偏移值可以为大于0的任意整数,具体作用与当前搜索空间的偏移值类似,在此不再赘述。
本公开上述实施例中,根据接收的PDCCH监听窗口的相关参数,确定所述PDCCH监听窗口,并在所述PDCCH监听窗口内检测接收PDCCH,并且在所述PDCCH监听窗口包含的任意MO上检测接收到期望的DCI format之后,停止在所述PDCCH监听窗口包含的剩余MO上检测PDCCH,或者在所述搜索空间内的任意候选位置上检测接收到期望的DCI格式之后,停止在所述搜索空间内的剩余候选位置上检测PDCCH,可以有效的降低在小带宽场景下的PDCCH碰撞概率,并降低终端的能量开销。
如图4所示,本公开实施例还提供了一种物理下行控制信道的发送方法,应用于基站,包括:
步骤41,发送物理下行控制信道PDCCH监听窗口的相关参数。
具体的,所述基站通过高层信令配置PDCCH监听窗口的相关参数。其中,所述高层信令可以为终端特定UE-specific的无线资源控制(Radio Resource Control,RRC)信令或小区特定cell-specific的RRC信令等。
可选的,所述参数包括并不限于以下至少一项:
一、所述PDCCH监听窗口包含的时域单元的个数;
二、所述PDCCH监听窗口包含的监听时机MO的个数。
步骤42,根据所述参数,确定所述PDCCH监听窗口。
具体的,基站根据配置的确定PDCCH监听窗口的组成。其中,所述参数可以根据终端的类型进行配置。
步骤43,在所述PDCCH监听窗口内发送PDCCH。
具体的,基站配置PDCCH监听窗口的周期,基站在通过PDCCH监听窗口周期确定的时域范围内发送PDCCH。
本公开上述实施例中,根据配置的PDCCH监听窗口的相关参数,确定所述PDCCH监听窗口,并在所述PDCCH监听窗口内发送PDCCH,使终端在所述PDCCH监听窗口内检测接收PDCCH,可以有效的降低在小带宽场景下的PDCCH碰撞概率,并降低终端的能量开销。
可选的,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述步骤41具体可以包括:
通过终端特定的无线资源控制RRC信令发送所述参数。
具体的,基站通过UE-specific的RRC信令配置所述PDCCH监听窗口包含的MO的个数,基站根据MO的个数确定所述PDCCH监听窗口的组成。
进一步的在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述步骤42具体可以包括:
根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
可选的,所述第一关联关系为以下公式:
mod(n,W)=i
其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
具体的,搜索空间的MO所在的时域单元编号为n,则满足上述公式的所有的MO均属于PDCCH监听窗口。其中,搜索空间监听时域位置称之为一个监听时机(monitoring occasion,MO)。例如:n为2,W为10,则i为0;n为5,W为10,则i为0;因此搜索空间的MO所在的时域单元编号为2和5的MO均属于一个PDCCH监听窗口;其中,PDCCH监听窗口编号可以根据i的取值定义(如:i为0的所有MO均属于PDCCH监听窗口#0,i为1的所有MO均属于PDCCH监听窗口#1)。
进一步的,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
例如:搜索空间(search space,SS)的监听周期为T,则W为N与T的乘积,其中N为大于或等于1的正整数。
进一步的,所述步骤41具体可以包括:
通过终端特定的无线资源控制RRC信令发送所述参数。
具体的,基站可以通过UE-specific的RRC信令配置PDCCH监听窗口包含的时域单元的个数,使终端和基站均可以根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定PDCCH监听窗口的组成。
进一步的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述步骤42具体可以包括:
根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
可选的,所述第二关联关系可以为以下公式:
mod(m,W)=j
其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
具体的,PDCCH监听窗口的组成可以根据时域单元的绝对编号进行划分,即满足上述公式的所有的时域单元均属于一个PDCCH监听窗口。例如:W为10,m为0~9时,j均为0,因此时域单元编号为0~9的所有时域单元均属于一个PDCCH监听窗口,j为PDCCH监听窗口的编号。
进一步的,所述步骤41具体可以包括:
通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
具体的,终端可以通过高层信令接收基站配置的PDCCH监听窗口包含的时域单元的个数,使终端可以根据时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定PDCCH监听窗口的组成。其中,高层信令可以为UE-specific的RRC信令、cell-specific的RRC信令或者针对一组终端(多个终端)有效的信令。
本公开上述实施例中,根据配置的PDCCH监听窗口的相关参数,确定所述PDCCH监听窗口,并在所述PDCCH监听窗口内发送PDCCH,使终端在所述PDCCH监听窗口内检测接收PDCCH,可以有效的降低在小带宽场景下的PDCCH碰撞概率,并降低终端的能量开销。
如图5所示,本公开的实施例还提供一种终端50,包括:
第一接收模块51,用于接收物理下行控制信道PDCCH监听窗口的相关参数;
第一确定模块52,用于根据所述参数,确定所述PDCCH监听窗口;
第一处理模块53,用于在所述PDCCH监听窗口内检测接收PDCCH。
可选的,所述参数包括以下至少一项:
所述PDCCH监听窗口包含的时域单元的个数;
所述PDCCH监听窗口包含的监听时机MO的个数。
可选的,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述第一接收模块51,包括:
第一接收单元,用于通过终端特定的无线资源控制RRC信令接收所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,第一确定模块52,包括:
第一确定单元,用于根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
可选的,所述第一关联关系为以下公式:
mod(n,W)=i
其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
可选的,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
可选的,所述第一接收模块51,包括:
第二接收单元,用于通过终端特定的无线资源控制RRC信令接收所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,第一确定模块52,包括:
第二确定单元,用于根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
可选的,所述第二关联关系为以下公式:
mod(m,W)=j
其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的 个数,j为m除以W的商,且j为大于或等于0的整数;
所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
可选的,所述第一接收模块51,包括:
第三接收单元,用于通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
可选的,所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同;或者,
一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上。
可选的,在所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同的情况下,所述终端50还包括:
第二处理模块,用于在所述PDCCH监听窗口包含的任意MO上检测接收到期望的下行控制信息DCI格式之后,停止在所述PDCCH监听窗口包含的剩余MO上检测PDCCH。
可选的,在一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上的情况下,所述终端50还包括:
第三处理模块,用于在所述搜索空间内的任意候选位置上检测接收到期望的DCI格式之后,停止在所述搜索空间内的剩余候选位置上检测PDCCH。
需要说明的是,该终端实施例是与上述应用于终端的物理下行控制信道的检测方法相对应的终端,上述实施例的所有实现方式均适用于该终端实施例中,也能达到与其相同的技术效果,在此不做赘述。
如图6所示,本公开的实施例还提供一种基站60,包括:
第一发送模块61,用于发送物理下行控制信道PDCCH监听窗口的相关参数;
第二确定模块62,用于根据所述参数,确定所述PDCCH监听窗口;
第二发送模块63,用于在所述PDCCH监听窗口内发送PDCCH。
可选的,所述参数包括以下至少一项:
所述PDCCH监听窗口包含的时域单元的个数;
所述PDCCH监听窗口包含的监听时机MO的个数。
可选的,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述第一发送模块61,包括:
第一发送单元,用于通过终端特定的无线资源控制RRC信令发送所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,第二确定模块62,包括:
第三确定单元,用于根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
可选的,所述第一关联关系为以下公式:
mod(n,W)=i
其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
可选的,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
可选的,所述第一发送模块61,包括:
第二发送单元,用于通过终端特定的无线资源控制RRC信令发送所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,第二确定模块62,包括:
第四确定单元,用于根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
可选的,所述第二关联关系为以下公式:
mod(m,W)=j
其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
可选的,所述第一发送模块61,包括:
第三发送单元,用于通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
需要说明的是,该基站实施例是与上述应用于基站的物理下行控制信道的发送方法相对应的基站,上述实施例的所有实现方式均适用于该基站实施例中,也能达到与其相同的技术效果,在此不做赘述。
为了更好的实现上述目的,如图7所示,本公开实施例还提供一种终端,包括处理器71;以及通过总线接口72与所述处理器71相连接的存储器73,所述存储器73用于存储所述处理器71在执行操作时所使用的程序和数据,当处理器71调用并执行所述存储器73中所存储的程序和数据时,执行下列过程。
其中,收发机74与总线接口72连接,用于在处理器71的控制下接收和发送数据。具体地,处理器71执行计算机程序时实现以下步骤:
接收物理下行控制信道PDCCH监听窗口的相关参数;
根据所述参数,确定所述PDCCH监听窗口;
在所述PDCCH监听窗口内检测接收PDCCH。
可选的,所述参数包括以下至少一项:
所述PDCCH监听窗口包含的时域单元的个数;
所述PDCCH监听窗口包含的监听时机MO的个数。
可选的,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述处理器71执行所述计算机程序时实现以下步骤:
通过终端特定的无线资源控制RRC信令接收所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器71执行所述计算机程序时实现以下步骤:
根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
可选的,所述第一关联关系为以下公式:
mod(n,W)=i
其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
可选的,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
可选的,所述处理器71执行所述计算机程序时实现以下步骤:
通过终端特定的无线资源控制RRC信令接收所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器71执行所述计算机程序时实现以下步骤:
根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
可选的,所述第二关联关系为以下公式:
mod(m,W)=j
其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
可选的,所述处理器71执行所述计算机程序时实现以下步骤:
通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
可选的,所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同;或者,
一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上。
可选的,在所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同的情况下,所述处理器71执行所述计算机程序时实现以下步骤:
在所述PDCCH监听窗口包含的任意MO上检测接收到期望的下行控制信息DCI格式之后,停止在所述PDCCH监听窗口包含的剩余MO上检测PDCCH。
可选的,在一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上的情况下,所述处理器71执行所述计算机程序时实现以下步骤:
在所述搜索空间内的任意候选位置上检测接收到期望的DCI格式之后,停止在所述搜索空间内的剩余候选位置上检测PDCCH。
需要说明的是,该终端实施例是与上述应用于终端的物理下行控制信道的检测方法相对应的终端,上述实施例的所有实现方式均适用于该终端实施例中,也能达到与其相同的技术效果,在此不做赘述。
需要说明的是,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器71代表的一个或多个处理器和存储器73代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机74可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端,用户接口75还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器71负责管理总线架构和通常的处理,存储器73可以存储处理器71在执行操作时所使用的数据。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
如图8所示,本公开的实施例还提供了一种基站,包括:处理器80;通过总线接口与所述处理器80相连接的存储器82,以及通过总线接口与处理器80相连接的收发机81;所述存储器82用于存储所述处理器在执行操作时 所使用的计算机程序和数据;通过所述收发机81发送数据信息或者导频,还通过所述收发机81接收上行控制信道;当处理器80调用并执行所述存储器82中所存储的计算机程序和数据时,实现如下的功能模块:
所述处理器80执行所述计算机程序时实现以下步骤:
发送物理下行控制信道PDCCH监听窗口的相关参数;
根据所述参数,确定所述PDCCH监听窗口;
在所述PDCCH监听窗口内发送PDCCH。
收发机81,用于在处理器80的控制下接收和发送数据。
可选的,所述参数包括以下至少一项:
所述PDCCH监听窗口包含的时域单元的个数;
所述PDCCH监听窗口包含的监听时机MO的个数。
可选的,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述处理器80执行所述计算机程序时实现以下步骤:
通过终端特定的无线资源控制RRC信令发送所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器80执行所述计算机程序时实现以下步骤:
根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
可选的,所述第一关联关系为以下公式:
mod(n,W)=i
其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
可选的,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
可选的,所述发送物理下行控制信道PDCCH监听窗口的相关参数包括:
通过终端特定的无线资源控制RRC信令发送所述参数。
可选的,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器80执行所述计算机程序时实现以下步骤:
根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
可选的,所述第二关联关系为以下公式:
mod(m,W)=j
其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
可选的,所述处理器80执行所述计算机程序时实现以下步骤:
通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
需要说明的是,该基站实施例是与上述应用于基站的物理下行控制信道的发送方法相对应的基站,上述实施例的所有实现方式均适用于该基站实施例中,也能达到与其相同的技术效果,在此不做赘述。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器80代表的一个或多个处理器和存储器82代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机81可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器80负责管理总线架构和通常的处理,存储器82可以存储处理器80在执行操作时所使用的数据。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述物理下行控制信道的检测方法的实施例的各个过程,或者实现上述物理下行控制信道的发送方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不 再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本领域技术人员可以理解,实现上述实施例的全部或者部分步骤可以通过硬件来完成,也可以通过计算机程序来指示相关的硬件来完成,所述计算机程序包括执行上述方法的部分或者全部步骤的指令;且该计算机程序可以存储于一可读存储介质中,存储介质可以是任何形式的存储介质。
本公开上述实施例中,通过向第一终端发送第二终端的高优先级业务传输在参考资源域中所占用的资源位置的第一指示信息,以及所述第一终端的业务传输是否与所述高优先级业务传输发生资源冲突的第二指示信息,可以使第一终端根据所述第一指示信息和第二指示信息,控制发生资源冲突的目标资源位置上的业务停止传输,可以避免低优先级的业务传输对高优先级的业务传输产生干扰的现象。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以 自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步 骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (49)

  1. 一种物理下行控制信道的检测方法,应用于终端,包括:
    接收物理下行控制信道PDCCH监听窗口的相关参数;
    根据所述参数,确定所述PDCCH监听窗口;
    在所述PDCCH监听窗口内检测接收PDCCH。
  2. 根据权利要求1所述的方法,其中,所述参数包括以下至少一项:
    所述PDCCH监听窗口包含的时域单元的个数;
    所述PDCCH监听窗口包含的监听时机MO的个数。
  3. 根据权利要求2所述的方法,其中,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述接收物理下行控制信道PDCCH监听窗口的相关参数,包括:
    通过终端特定的无线资源控制RRC信令接收所述参数。
  4. 根据权利要求2所述的方法,其中,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,确定所述PDCCH监听窗口,包括:
    根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
  5. 根据权利要求4所述的方法,其中,所述第一关联关系为以下公式:
    mod(n,W)=i
    其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
    所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
  6. 根据权利要求5所述的方法,其中,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
  7. 根据权利要求6所述的方法,其中,所述接收物理下行控制信道PDCCH监听窗口的相关参数包括:
    通过终端特定的无线资源控制RRC信令接收所述参数。
  8. 根据权利要求2所述的方法,其中,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,确定所述PDCCH监听窗口,包括:
    根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
  9. 根据权利要求8所述的方法,其中,所述第二关联关系为以下公式:
    mod(m,W)=j
    其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
    所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
  10. 根据权利要求9所述的方法,其中,所述接收物理下行控制信道PDCCH监听窗口的相关参数,包括:
    通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
  11. 根据权利要求1所述的方法,其中,所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同;或者,
    一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上。
  12. 根据权利要求11所述的方法,其中,在所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同的情况下,所述方法还包括:
    在所述PDCCH监听窗口包含的任意MO上检测接收到期望的下行控制信息DCI格式之后,停止在所述PDCCH监听窗口包含的剩余MO上检测PDCCH。
  13. 根据权利要求11所述的方法,其中,在一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上的情况下,所述方法还包括:
    在所述搜索空间内的任意候选位置上检测接收到期望的DCI格式之后,停止在所述搜索空间内的剩余候选位置上检测PDCCH。
  14. 一种物理下行控制信道的发送方法,应用于基站,包括:
    发送物理下行控制信道PDCCH监听窗口的相关参数;
    根据所述参数,确定所述PDCCH监听窗口;
    在所述PDCCH监听窗口内发送PDCCH。
  15. 根据权利要求14所述的方法,其中,所述参数包括以下至少一项:
    所述PDCCH监听窗口包含的时域单元的个数;
    所述PDCCH监听窗口包含的监听时机MO的个数。
  16. 根据权利要求15所述的方法,其中,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述发送物理下行控制信道PDCCH监听窗口的相关参数,包括:
    通过终端特定的无线资源控制RRC信令发送所述参数。
  17. 根据权利要求15所述的方法,其中,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,确定所述PDCCH监听窗口,包括:
    根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
  18. 根据权利要求17所述的方法,其中,所述第一关联关系为以下公式:
    mod(n,W)=i
    其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
    所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
  19. 根据权利要求18所述的方法,其中,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
  20. 根据权利要求19所述的方法,其中,所述发送物理下行控制信道PDCCH监听窗口的相关参数包括:
    通过终端特定的无线资源控制RRC信令发送所述参数。
  21. 根据权利要求15所述的方法,其中,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,确定所述PDCCH监听窗口,包括:
    根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
  22. 根据权利要求21所述的方法,其中,所述第二关联关系为以下公式:
    mod(m,W)=j
    其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
    所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
  23. 根据权利要求22所述的方法,其中,所述发送物理下行控制信道PDCCH监听窗口的相关参数,包括:
    通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
  24. 一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现以下步骤:
    接收物理下行控制信道PDCCH监听窗口的相关参数;
    根据所述参数,确定所述PDCCH监听窗口;
    在所述PDCCH监听窗口内检测接收PDCCH。
  25. 根据权利要求24所述的终端,其中,所述参数包括以下至少一项:
    所述PDCCH监听窗口包含的时域单元的个数;
    所述PDCCH监听窗口包含的监听时机MO的个数。
  26. 根据权利要求25所述的终端,其中,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
    通过终端特定的无线资源控制RRC信令接收所述参数。
  27. 根据权利要求25所述的终端,其中,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
    根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的所有搜索空间监听时域位置。
  28. 根据权利要求27所述的终端,其中,所述第一关联关系为以下公式:
    mod(n,W)=i
    其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
    所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
  29. 根据权利要求28所述的终端,其中,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
  30. 根据权利要求29所述的终端,其中,所述处理器执行所述计算机程序时实现以下步骤:
    通过终端特定的无线资源控制RRC信令接收所述参数。
  31. 根据权利要求25所述的终端,其中,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
    根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
  32. 根据权利要求31所述的终端,其中,所述第二关联关系为以下公式:
    mod(m,W)=j
    其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
    所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
  33. 根据权利要求32所述的终端,其中,所述处理器执行所述计算机程序时实现以下步骤:
    通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
  34. 根据权利要求24所述的终端,其中,所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同;或者,
    一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上。
  35. 根据权利要求34所述的终端,其中,在所述PDCCH监听窗口包含的每一个MO内的搜索空间的结构相同的情况下,所述处理器执行所述计算机程序时实现以下步骤:
    在所述PDCCH监听窗口包含的任意MO上检测接收到期望的下行控制信息DCI格式之后,停止在所述PDCCH监听窗口包含的剩余MO上检测PDCCH。
  36. 根据权利要求34所述的终端,其中,在一个搜索空间分布在所述PDCCH监听窗口包含的多个MO上的情况下,所述处理器执行所述计算机程序时实现以下步骤:
    在所述搜索空间内的任意候选位置上检测接收到期望的DCI格式之后,停止在所述搜索空间内的剩余候选位置上检测PDCCH。
  37. 一种基站,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现以下步骤:
    发送物理下行控制信道PDCCH监听窗口的相关参数;
    根据所述参数,确定所述PDCCH监听窗口;
    在所述PDCCH监听窗口内发送PDCCH。
  38. 根据权利要求37所述的基站,其中,所述参数包括以下至少一项:
    所述PDCCH监听窗口包含的时域单元的个数;
    所述PDCCH监听窗口包含的监听时机MO的个数。
  39. 根据权利要求38所述的基站,其中,在所述参数包括所述PDCCH监听窗口包含的监听时机MO的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
    通过终端特定的无线资源控制RRC信令发送所述参数。
  40. 根据权利要求38所述的基站,其中,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
    根据搜索空间的监听时机MO所在的时域单元编号与所述PDCCH监听窗口包含的时域单元的个数的第一关联关系,确定所述PDCCH监听窗口包含的 所有搜索空间监听时域位置。
  41. 根据权利要求40所述的基站,其中,所述第一关联关系为以下公式:
    mod(n,W)=i
    其中,n为搜索空间的MO所在的时域单元编号,W为所述PDCCH监听窗口i包含的时域单元的个数,i为n除以W的商,且i为大于或等于0的整数;
    所述PDCCH监听窗口i包含的搜索空间的MO为MO所在时隙编号满足公式的所有MO。
  42. 根据权利要求41所述的基站,其中,所述PDCCH监听窗口包含的时域单元的个数为搜索空间监听周期的正整数倍。
  43. 根据权利要求42所述的基站,其中,所述发送物理下行控制信道PDCCH监听窗口的相关参数包括:
    通过终端特定的无线资源控制RRC信令发送所述参数。
  44. 根据权利要求38所述的基站,其中,在所述参数包括所述PDCCH监听窗口包含的时域单元的个数的情况下,所述处理器执行所述计算机程序时实现以下步骤:
    根据时域单元编号和所述PDCCH监听窗口包含的时域单元的个数的第二关联关系,确定所述PDCCH监听窗口所包含的所有时域单元。
  45. 根据权利要求44所述的基站,其中,所述第二关联关系为以下公式:
    mod(m,W)=j
    其中,m为时域单元编号,W为所述PDCCH监听窗口j包含的时域单元的个数,j为m除以W的商,且j为大于或等于0的整数;
    所述PDCCH监听窗口j包含的时域单元为时域单元编号满足公式的所有时域单元,所述时域单元为连续多个时隙或者连续多个正交频分复用OFDM符号。
  46. 根据权利要求45所述的基站,其中,所述处理器执行所述计算机程序时实现以下步骤:
    通过终端特定的RRC信令或者小区特定的RRC信令接收所述参数。
  47. 一种终端,包括:
    第一接收模块,用于接收物理下行控制信道PDCCH监听窗口的相关参数;
    第一确定模块,用于根据所述参数,确定所述PDCCH监听窗口;
    第一处理模块,用于在所述PDCCH监听窗口内检测接收PDCCH。
  48. 一种基站,包括:
    第一发送模块,用于发送物理下行控制信道PDCCH监听窗口的相关参数;
    第二确定模块,用于根据所述参数,确定所述PDCCH监听窗口;
    第二发送模块,用于在所述PDCCH监听窗口内发送PDCCH。
  49. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1至13中任一项所述的物理下行控制信道的检测方法的步骤,或者实现如权利要求14至23中任一项所述的物理下行控制信道的发送方法的步骤。
PCT/CN2021/077042 2020-02-21 2021-02-20 物理下行控制信道的检测方法、发送方法、终端及基站 WO2021164762A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/796,840 US20230057472A1 (en) 2020-02-21 2021-02-20 Physical downlink control channel detection method and transmission method, user equipment and base station
EP21756588.6A EP4109989A4 (en) 2020-02-21 2021-02-20 DETECTION METHOD AND TRANSMISSION METHOD FOR PHYSICAL DOWNLINK CONTROL CHANNEL, TERMINAL AND BASE STATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010107811.7A CN113300806B (zh) 2020-02-21 2020-02-21 物理下行控制信道的检测方法、发送方法、终端及基站
CN202010107811.7 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021164762A1 true WO2021164762A1 (zh) 2021-08-26

Family

ID=77317430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077042 WO2021164762A1 (zh) 2020-02-21 2021-02-20 物理下行控制信道的检测方法、发送方法、终端及基站

Country Status (4)

Country Link
US (1) US20230057472A1 (zh)
EP (1) EP4109989A4 (zh)
CN (1) CN113300806B (zh)
WO (1) WO2021164762A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413754A (zh) * 2017-08-18 2019-03-01 维沃移动通信有限公司 一种信息接收、发送方法、终端及基站
US20190123992A1 (en) * 2017-10-25 2019-04-25 Qualcomm Incorporated Techniques for rmsi pdcch transmission and monitoring
CN109716843A (zh) * 2018-02-14 2019-05-03 Oppo广东移动通信有限公司 一种控制信道的资源确定方法及装置、计算机存储介质
WO2019184603A1 (zh) * 2018-03-28 2019-10-03 Oppo广东移动通信有限公司 监听pdcch的方法、终端设备和网络设备
CN112564751A (zh) * 2019-09-26 2021-03-26 大唐移动通信设备有限公司 一种信道传输方法以及通信设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632007B (zh) * 2017-03-22 2020-08-14 华为技术有限公司 用于传输数据的方法和终端设备
WO2019099738A1 (en) * 2017-11-17 2019-05-23 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US10993216B2 (en) * 2018-04-06 2021-04-27 Intel Corporation Flexible slot format indication (SFI) monitoring for new radio unlicensed communications
CN110611953B (zh) * 2019-08-16 2022-03-01 展讯半导体(南京)有限公司 下行波束指示方法、设备和存储介质
CN110621073A (zh) * 2019-11-08 2019-12-27 展讯通信(上海)有限公司 Pdcch监听、发送方法及装置、存储介质、终端、基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413754A (zh) * 2017-08-18 2019-03-01 维沃移动通信有限公司 一种信息接收、发送方法、终端及基站
US20190123992A1 (en) * 2017-10-25 2019-04-25 Qualcomm Incorporated Techniques for rmsi pdcch transmission and monitoring
CN109716843A (zh) * 2018-02-14 2019-05-03 Oppo广东移动通信有限公司 一种控制信道的资源确定方法及装置、计算机存储介质
WO2019184603A1 (zh) * 2018-03-28 2019-10-03 Oppo广东移动通信有限公司 监听pdcch的方法、终端设备和网络设备
CN112564751A (zh) * 2019-09-26 2021-03-26 大唐移动通信设备有限公司 一种信道传输方法以及通信设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Default Association between SSB and Paging Monitoring", 3GPP DRAFT; R2-1803578_PAGING CONFIGURATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Athens, Greece; 20180226 - 20180302, 16 February 2018 (2018-02-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051400607 *
See also references of EP4109989A4 *
ZTE, SANECHIPS: "Remaining details of RMSI", 3GPP DRAFT; R1-1800080, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 13 January 2018 (2018-01-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051384582 *

Also Published As

Publication number Publication date
CN113300806A (zh) 2021-08-24
CN113300806B (zh) 2022-10-21
US20230057472A1 (en) 2023-02-23
EP4109989A1 (en) 2022-12-28
EP4109989A4 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
US20210219155A1 (en) Interference Measurement Method and Apparatus
WO2020135400A1 (zh) 通信方法和通信装置
WO2019029383A1 (zh) Pdcch的搜索空间的配置、监听方法及设备
WO2018233513A1 (zh) 非授权频段下的信息传输方法及网络设备
WO2020029849A1 (zh) 随机接入方法、通信装置、芯片及存储介质
WO2020221078A1 (zh) 激活/去激活配置的方法、网络设备及终端
US11432274B2 (en) Data transmission method, user equipment, base station and storage medium
US20220095358A1 (en) Radio Frequency Capability Configuration Method and Apparatus
WO2019015456A1 (zh) 非授权频段下的传输方法、设备及计算机可读存储介质
WO2020199220A1 (zh) 接收信息、发送信息的方法和设备
EP3965344A1 (en) Uplink channel transmission method, terminal, and base station
CN111865535B (zh) 通信方法和装置
WO2018166400A1 (zh) 一种传输方法和装置
WO2021164762A1 (zh) 物理下行控制信道的检测方法、发送方法、终端及基站
WO2020030008A1 (zh) 一种传输信号的方法和装置
US20240097846A1 (en) Method for determining sending position, communications device and storage medium
US20220386177A1 (en) Method of controlling service transmission, terminal and network device
WO2019056974A1 (zh) 上行链路调度方式确定方法、用户设备和基站
WO2021063165A1 (zh) 波束失败恢复请求的发送、接收方法、终端及基站
US20220287074A1 (en) Resource transmission method, terminal and network device
WO2021184140A1 (zh) 一种信息处理方法及装置
KR20230045035A (ko) 접근 제어 방법, 장치, 단말 및 네트워크 기기
US11553486B2 (en) Information transmission method, network device, and terminal
WO2019029464A1 (zh) 用于灵活双工系统的数据传输方法及设备
CN111050383A (zh) 信号传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021756588

Country of ref document: EP

Effective date: 20220921