WO2021164579A1 - 更新定时偏移量的方法及装置 - Google Patents

更新定时偏移量的方法及装置 Download PDF

Info

Publication number
WO2021164579A1
WO2021164579A1 PCT/CN2021/075536 CN2021075536W WO2021164579A1 WO 2021164579 A1 WO2021164579 A1 WO 2021164579A1 CN 2021075536 W CN2021075536 W CN 2021075536W WO 2021164579 A1 WO2021164579 A1 WO 2021164579A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing offset
message
duration
offset
koffset
Prior art date
Application number
PCT/CN2021/075536
Other languages
English (en)
French (fr)
Inventor
王晓鲁
罗禾佳
乔云飞
杜颖钢
徐晨蕾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011105437.3A external-priority patent/CN113347697A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21756788.2A priority Critical patent/EP4099602A4/en
Priority to JP2022549416A priority patent/JP7488346B2/ja
Publication of WO2021164579A1 publication Critical patent/WO2021164579A1/zh
Priority to US17/820,408 priority patent/US20220408389A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to the field of communication technologies, and in particular, to a method and device for updating a timing offset.
  • NR New Radio
  • the NR standard is designed for terrestrial communications.
  • non-terrestrial networks Non-Terrestrial Networks, NTN
  • NTN non-Terrestrial Networks
  • the altitude difference between the base station and the terminal equipment is not large, but the altitude difference between the base station/satellite and the terminal equipment in the non-terrestrial network is large (generally greater than 500km), as shown in Figure 1. Therefore, the round-trip delay and round-trip delay difference of terminal equipment in the same beam/cell in NTN are much larger than the round-trip delay and round-trip delay difference of terminal equipment in the same cell of NR.
  • the maximum round-trip delay in the cell is 1.17ms.
  • the maximum round-trip delay can reach about 13ms (the UE's communication angle is 10 degrees).
  • the terminal device needs to adjust the timing in advance before sending the uplink signal.
  • the amount that the terminal equipment can make timing advance adjustment is much less than 13ms.
  • the embodiments of the present application provide a method and device for updating a timing offset. On the basis of ensuring that the terminal device has enough time for timing advance adjustment, the timing offset is updated in a timely and effective manner, thereby avoiding the waste of time-frequency resources.
  • this application provides a method for updating a timing offset, the method including:
  • the terminal device sends a third message to the network device according to the first timing offset; wherein, the first timing offset is used to indicate the degree of delay for the terminal device to delay sending the third message, and the third The message includes indication information, the indication information is used to indicate a second timing offset, and the second timing offset is the updated first timing offset;
  • the terminal device sends a fifth message to the network device according to the second timing offset.
  • the terminal device has enough time to make timing advance adjustment; on the other hand, by updating the timing offset, the terminal device can use the appropriate timing offset in time quantity. Compared with not updating the timing offset, the embodiment of the present application can also reduce the end-to-end delay and avoid waste of resources on the basis of satisfying that the terminal device has enough time to adjust the timing advance.
  • the method before the terminal device sends the third message to the network device according to the first timing offset, the method further includes: the terminal device sends the first message to the network device, so The first message includes a random access preamble; the terminal device receives a second message sent by the network device, and the second message includes a random access response message; the terminal device sends directions according to the first timing offset
  • the method further includes: the terminal device receives a fourth message sent by the network device, where the fourth message includes a random access contention resolution message.
  • the first message can be understood as Msg1 in the four-step random access process
  • the second message can be understood as Msg2 in the four-step random access process
  • the third message can be understood as the four-step random access process
  • the Msg3 in and the fourth message can be understood as Msg4 in the four-step random access process.
  • the indication information used to indicate the second timing offset includes: the indication information includes the second timing offset.
  • the indication information used to indicate the second timing offset includes: the indication information includes a first adjustment parameter set, and the first adjustment parameter set is used to determine the second timing offset. Timing offset.
  • the number of bits used by the terminal device when sending the first adjustment parameter set is much smaller than the number of bits used when directly sending the second timing offset, which saves signaling overhead.
  • the first adjustment parameter set includes any one or more of the following:
  • a parameter determined based on the delay start duration of the RAR reception window of the random access response and the duration of the RAR reception window; or based on the delay start duration of the random access contention resolution timer and the random access contention resolution timer A parameter determined by the duration; or a parameter determined based on a common timing advance; or a parameter determined based on the orbit height where the network device is located; or a parameter determined based on the round trip delay between the terminal device and the network device.
  • the indication information used to indicate the second timing offset includes: the indication information includes a change amount between the second timing offset and a reference timing offset.
  • the reference timing offset is the timing offset currently used by the terminal device or a preset timing offset.
  • the fourth message includes the second timing offset; or,
  • the fourth message includes a change based on the second timing offset and a reference timing offset; wherein, the reference timing offset is the timing offset currently used by the terminal device or The preset timing offset.
  • the method further includes:
  • the terminal device receives the effective information sent by the network device, where the effective information is used to indicate the effective time of the second timing offset; or the terminal device sends the effective information to the network device, and the effective The information is used to indicate the effective time of the second timing offset; or the second timing offset takes effect m time slots after the terminal device sends the third message, and the m is preset Or the second timing offset takes effect n time slots after the terminal device receives the fourth message, and the n is a preset integer.
  • the method before the terminal device sends the third message to the network device according to the timing offset, the method further includes: the terminal device receives the broadcast message sent by the network device; wherein, The broadcast message includes any one or more of the following: the delay start duration of the RAR receiving window and the duration of the RAR receiving window; or
  • the delayed start duration of the random access contention resolution timer and the duration of the random access contention resolution timer are the delayed start duration of the random access contention resolution timer and the duration of the random access contention resolution timer.
  • the common timing advance or the orbit height where the network device is located.
  • the first timing offset satisfies the following conditions:
  • the K offset is the value of the first timing offset
  • the RAR_window is the duration of the RAR receiving window, and the duration of the RAR receiving window is used to indicate that the terminal device receives the RAR Duration
  • the RAR_offset is the delay start duration of the RAR reception window, and the delay start duration of the RAR reception window is used to indicate that after the terminal device sends the first message, the RAR reception window is delayed
  • the delay time of ⁇ K is a time length unit
  • the ⁇ K offset is the timing offset difference
  • the ⁇ K offset is an integer.
  • the first timing offset satisfies the following conditions:
  • the RCR_timer is the duration of the random access contention resolution timer, and the duration of the random access contention resolution timer indicates that the terminal device starts the random access contention resolution after sending the third message
  • the RCR_offset is the delay start time of the random access contention resolution timer, and the delay of the random access contention resolution timer
  • the start duration is used to indicate the delay duration for delaying the start of the random access contention resolution timer after the terminal device sends the third message
  • the slot_duration is the duration unit
  • the ⁇ K offset is the timing offset
  • the ⁇ K offset is an integer.
  • the fifth message includes any one of data information, a feedback message, or a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the feedback message includes the feedback message of the fourth message.
  • the method further includes: the terminal device receives a timing advance adjustment instruction sent by the network device, where the timing advance adjustment instruction is used to instruct to update the second timing offset; The terminal device sends an updated second timing offset or a second set of adjustment parameters to the network device according to the second timing offset, where the second set of adjustment parameters is used to determine the updated The second timing offset.
  • the method further includes: when any one or more of the following conditions is met, the terminal device receives the updated second timing offset sent by the network device or is based on the The amount of change between the updated second timing offset and the reference timing offset; wherein any one or more of the conditions include: the terminal device switches cells; or the terminal device switches Beam; or the terminal device switches part of the bandwidth (bandwidth part, BWP).
  • the present application provides a method for updating a timing offset, characterized in that the method includes:
  • the network device receives the third message sent by the terminal device according to the first timing offset; wherein, the first timing offset is used to indicate the degree of delay for the network device to delay receiving the third message; and the first timing offset
  • the third message includes indication information, the indication information is used to indicate the second timing offset, and the second timing offset is the updated first timing offset; the network device receives the terminal device sent The fifth news.
  • the method before the network device receives the third message sent by the terminal device according to the first timing offset, the method further includes: the network device receives the first message sent by the terminal device , The first message includes a random access preamble; the network device sends a second message to the terminal device, and the second message includes a random access response message; the network device is based on the first timing offset
  • the method further includes: the network device sends a fourth message to the terminal device, where the fourth message includes a random access contention resolution message.
  • the indication information used to indicate the second timing offset includes: the indication information includes the second timing offset.
  • the indication information used to indicate the second timing offset includes: the indication information includes a first adjustment parameter set, and the first adjustment parameter set is used to determine the second timing offset. Timing offset.
  • the first adjustment parameter set includes any one or more of the following: a parameter determined based on the delay start duration of a random access response RAR receiving window and the duration of the RAR receiving window; Or a parameter determined based on the delayed start duration of the random access contention resolution timer and the duration of the random access contention resolution timer; or
  • the indication information used to indicate the second timing offset includes: the indication information includes a change amount between the second timing offset and a reference timing offset.
  • the reference timing offset is the timing offset currently used by the terminal device or a preset timing offset.
  • the fourth message includes the second timing offset; or, the fourth message includes one based on the second timing offset and the reference timing offset.
  • the reference timing offset is a timing offset currently used by the terminal device or a preset timing offset.
  • the method further includes: the network device sends effective information to the terminal device, the effective information being used to indicate the effective time of the second timing offset; or The network device receives the effective information sent by the terminal device, where the effective information is used to indicate the effective time of the second timing offset; or the second timing offset is received when the network device receives the first M time slots after the three messages take effect, where m is a preset integer; or the second timing offset takes effect at n time slots after the network device sends the fourth message, and the n Is a preset integer.
  • the method before the network device receives the third message sent by the terminal device according to the first timing offset, the method further includes: the network device sends a broadcast message; wherein, the broadcast message Includes any one or more of the following: the delay start duration of the RAR reception window and the duration of the RAR reception window; or the delay start duration of the random access contention resolution timer and the random access The duration of the contention resolution timer; or the common timing advance; or the orbit height where the network device is located.
  • the first timing offset satisfies the following conditions:
  • the K offse1t is the value of the first timing offset
  • the RAR_window is the duration of the RAR receiving window, and the duration of the RAR receiving window is used to indicate that the terminal device receives the RAR Duration
  • the RAR_offset is the delay start duration of the RAR reception window, and the delay start duration of the RAR reception window is used to indicate that after the terminal device sends the first message, the RAR reception window is delayed
  • the delay time of ⁇ K is a time length unit
  • the ⁇ K offset is the timing offset difference, and the ⁇ K offset is an integer.
  • the first timing offset satisfies the following conditions:
  • the K offse1t is the value of the first timing offset
  • the RCR_timer is the duration of the random access contention resolution timer, and the duration of the random access contention resolution timer represents the terminal
  • the device starts the random access contention resolution timer and the maximum time interval allowed between receiving the fourth message
  • the RCR_offset is the value of the random access contention resolution timer Delayed start duration, the delayed start duration of the random access contention resolution timer is used to indicate the delay duration for delaying the start of the random access contention resolution timer after the terminal device sends the third message
  • the slot_duration is a time length unit
  • the ⁇ K offset is a timing offset difference
  • the ⁇ K offset is an integer.
  • the fifth message includes any one of data information, feedback message, or sounding reference signal SRS.
  • the method further includes: the network device sends a timing advance adjustment instruction to the terminal device, where the timing advance adjustment instruction is used to instruct to update the second timing offset;
  • the network device receives an updated second timing offset or a second adjustment parameter set sent by the terminal device, where the second adjustment parameter set is used to determine the updated second timing offset.
  • the method further includes: when any one or more of the following conditions is met, the network device sends an updated second timing offset to the terminal device or is based on the The amount of change between the updated second timing offset and the reference timing offset; wherein any one or more of the conditions include: the terminal device switches cells; or the terminal device switches beams Or the terminal device switches part of the bandwidth BWP.
  • beneficial effects of the second aspect can be referred to the beneficial effects of the first aspect, which will not be repeated here.
  • the present application provides a communication device, the device including:
  • the processing unit is configured to generate a third message; the third message includes indication information, the indication information is used to indicate a second timing offset, and the second timing offset is the updated first timing offset
  • the first timing offset is used to indicate the degree of delay by which the communication device delays sending the third message; the sending unit is used to send the third message to the network device according to the first timing offset
  • the sending unit is further configured to send a fifth message to the network device according to the second timing offset.
  • the sending unit is further configured to send a first message to the network device, and the first message includes a random access preamble;
  • the receiving unit is further configured to receive the A second message sent by a network device, where the second message includes a random access response message; and the receiving unit is further configured to receive a fourth message sent by the network device, where the fourth message includes a random access contention Resolve the message.
  • the indication information used to indicate the second timing offset includes: the indication information includes the second timing offset.
  • the indication information used to indicate the second timing offset includes: the indication information includes a first adjustment parameter set, and the first adjustment parameter set is used to determine the second timing offset. Timing offset.
  • the first adjustment parameter set includes any one or more of the following: a parameter determined based on the delay start duration of a random access response RAR receiving window and the duration of the RAR receiving window; Or a parameter determined based on the delayed start duration of the random access contention resolution timer and the duration of the random access contention resolution timer; or
  • the indication information used to indicate the second timing offset includes: the indication information includes a change amount between the second timing offset and a reference timing offset.
  • the reference timing offset is the timing offset currently used by the terminal device or a preset timing offset.
  • the fourth message includes the second timing offset; or, the fourth message includes one based on the second timing offset and the reference timing offset.
  • the reference timing offset is a timing offset currently used by the communication device or a preset timing offset.
  • the receiving unit is further configured to receive the effective information sent by the network device, where the effective information is used to indicate the effective time of the second timing offset; or the sending Unit, further configured to send validation information to the network device, where the validation information is used to indicate the validation time of the second timing offset; or the second timing offset is sent by the communication device M time slots after the third message take effect, where m is a preset integer; or the second timing offset takes effect in n time slots after the communication device receives the fourth message, so Said n is a preset integer.
  • the receiving unit is further configured to receive a broadcast message sent by the network device; wherein, the broadcast message includes any one or more of the following: the extension of the RAR receiving window Or the duration of the random access contention resolution timer and the duration of the random access contention resolution timer; or the common timing advance; or State the orbital height where the network equipment is located.
  • the first timing offset satisfies the following conditions:
  • the K offset1 is the value of the first timing offset
  • the RAR_window is the duration of the RAR receiving window, and the duration of the RAR receiving window is used to indicate that the communication device receives the RAR Duration
  • the RAR_offset is the delay start duration of the RAR reception window, and the delay start duration of the RAR reception window is used to indicate that after the communication device sends the first message, the RAR reception window is delayed
  • the delay time of ⁇ K is the slot_duration is a time length unit
  • the ⁇ K offset is the timing offset difference
  • the ⁇ K offset is an integer.
  • the first timing offset satisfies the following conditions:
  • the K offse1t is the value of the first timing offset
  • the RCR_timer is the duration of the random access contention resolution timer, and the duration of the random access contention resolution timer represents the communication
  • the device starts the random access contention resolution timer and the maximum time interval allowed between receiving the fourth message
  • the RCR_offset is the value of the random access contention resolution timer Delayed start duration, the delay start duration of the random access contention resolution timer is used to indicate the delay duration of starting the random access contention resolution timer after the communication device sends the third message
  • the slot_duration is a time length unit
  • the ⁇ K offset is a timing offset difference
  • the ⁇ K offset is an integer.
  • the fifth message includes any one of data information, feedback message, or sounding reference signal SRS.
  • the receiving unit is further configured to receive a timing advance adjustment instruction sent by the network device, and the timing advance adjustment instruction is used to instruct to update the second timing offset;
  • the sending unit is further configured to send an updated second timing offset or a second set of adjustment parameters to the network device according to the second timing offset, where the second set of adjustment parameters is used to determine the update After the second timing offset.
  • the receiving unit is further configured to receive an updated second timing offset sent by the network device or based on the update when any one or more of the following conditions is met.
  • the present application provides a communication device, the device including:
  • a receiving unit configured to receive a third message sent by a terminal device according to a first timing offset; wherein, the first timing offset is used to indicate the degree of delay for the network device to delay receiving the third message; and
  • the third message includes indication information, the indication information is used to indicate a second timing offset, and the second timing offset is the updated first timing offset; the receiving unit further uses To receive the fifth message sent by the terminal device.
  • the apparatus further includes a sending unit; wherein, the receiving unit is configured to receive a first message sent by the terminal device, and the first message includes a random access preamble; The sending unit is configured to send a second message to the terminal device, and the second message includes a random access response message; the sending unit is further configured to send a fourth message to the terminal device, and the fourth message The message includes a random access contention resolution message.
  • the indication information used to indicate the second timing offset includes: the indication information includes the second timing offset.
  • the indication information used to indicate the second timing offset includes: the indication information includes a first adjustment parameter set, and the first adjustment parameter set is used to determine the second timing offset. Timing offset.
  • the first adjustment parameter set includes any one or more of the following: a parameter determined based on the delay start duration of a random access response RAR receiving window and the duration of the RAR receiving window; Or a parameter determined based on the delayed start duration of the random access contention resolution timer and the duration of the random access contention resolution timer; or
  • the indication information used to indicate the second timing offset includes: the indication information includes a change amount between the second timing offset and a reference timing offset.
  • the reference timing offset is the timing offset currently used by the terminal device or a preset timing offset.
  • the fourth message includes the second timing offset; or, the fourth message includes one based on the second timing offset and the reference timing offset.
  • the reference timing offset is a timing offset currently used by the terminal device or a preset timing offset.
  • the sending unit is further configured to send effective information to the terminal device, where the effective information is used to indicate the effective time of the second timing offset; or the receiving unit , Is also used to receive validation information sent by the terminal device, where the validation information is used to indicate the valid time of the second timing offset; or the second timing offset is received by the communication device M time slots after the third message take effect, where m is a preset integer; or the second timing offset takes effect in n time slots after the communication device sends the fourth message, so Said n is a preset integer.
  • the sending unit is further configured to send a broadcast message; wherein, the broadcast message includes any one or more of the following: the delay start duration of the RAR receiving window and the The duration of the RAR reception window; or the delayed start duration of the random access contention resolution timer and the duration of the random access contention resolution timer; or the common timing advance; or the track where the communication device is located high.
  • the first timing offset satisfies the following conditions:
  • the K offset1 is the value of the first timing offset
  • the RAR_window is the duration of the RAR receiving window, and the duration of the RAR receiving window is used to indicate that the terminal device receives the RAR Duration
  • the RAR_offset is the delay start duration of the RAR reception window, and the delay start duration of the RAR reception window is used to indicate that after the terminal device sends the first message, the RAR reception window is delayed
  • the delay time of ⁇ K is a time length unit
  • the ⁇ K offset is the timing offset difference
  • the ⁇ K offset is an integer.
  • the first timing offset satisfies the following conditions:
  • the K offset1 is the value of the first timing offset
  • the RCR_timer is the duration of the random access contention resolution timer, and the duration of the random access contention resolution timer represents the terminal After the device sends the third message, the maximum duration between when the random access contention resolution timer is started and the fourth message is received
  • the RCR_offset is the delay of the random access contention resolution timer Starting duration, the delayed starting duration of the random access contention resolution timer is used to indicate that after the terminal device sends the third message, the delay duration for starting the random access contention resolution timer is delayed
  • the slot_duration is a time length unit
  • the ⁇ K offset is a timing offset difference, and the ⁇ K offset is an integer.
  • the fifth message includes any one of data information, feedback message, or sounding reference signal SRS.
  • the sending unit is further configured to send a timing advance adjustment instruction to the terminal device, where the timing advance adjustment instruction is used to instruct to update the second timing offset;
  • the receiving The unit is further configured to receive an updated second timing offset or a second adjustment parameter set sent by the terminal device, where the second adjustment parameter set is used to determine the updated second timing offset.
  • the sending unit is further configured to send an updated second timing offset to the terminal device or based on the updated second timing offset when any one or more of the following conditions are met.
  • the present application provides a communication device that includes a processor, and when the processor executes a computer program or instruction in a memory, the method described in the first aspect is executed.
  • the present application provides a communication device.
  • the communication device includes a processor.
  • the processor invokes a computer program or instruction in a memory, the method described in the second aspect is executed.
  • the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory to enable The communication device executes the method as described in the first aspect.
  • the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory to enable The communication device executes the method as described in the second aspect.
  • the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive or send a signal;
  • the memory is used to store program code;
  • the processor is configured to execute the program code, so that the communication device executes the method described in the first aspect.
  • the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive signals or send signals;
  • the memory is used to store program codes;
  • the processor is configured to execute the program code, so that the communication device executes the method described in the second aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code Instructions to cause the method shown in the first aspect to be executed.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code Instructions to cause the method shown in the second aspect to be executed.
  • the present application provides a computer-readable storage medium for storing instructions or computer programs. When the instructions or the computer program are executed, the The method is implemented.
  • the present application provides a computer-readable storage medium for storing instructions or computer programs. When the instructions or the computer program are executed, the The method is implemented.
  • the present application provides a computer program product, the computer program product comprising instructions or a computer program, and when the instructions or the computer program are executed, the method described in the first aspect is realized.
  • the present application provides a computer program product, the computer program product includes an instruction or a computer program, and when the instruction or the computer program is executed, the method described in the second aspect is realized.
  • this application provides a computer program for executing the method described in the first aspect.
  • this application provides a computer program for executing the method described in the second aspect.
  • the present application provides a communication system, including a terminal device and a network device, the terminal device is configured to perform the method described in the first aspect, and the network device is configured to perform the method described in the second aspect.
  • FIG. 1 is a schematic diagram of the architecture of an NTN communication system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of the relationship between the round-trip delay and the minimum elevation angle provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the architecture of an NTN communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a four-step random access method provided by an embodiment of the present application.
  • FIG. 5a is a schematic diagram of a relationship between a timing advance and a signal according to an embodiment of the present application.
  • FIG. 5b is a schematic diagram of the relationship between a timing advance and a signal according to an embodiment of the present application.
  • FIG. 5c is a schematic diagram of a relationship between a timing advance and a signal according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for updating a timing offset provided by an embodiment of the present application.
  • Fig. 7a is a schematic diagram of a relationship between a timing advance and a signal provided by an embodiment of the present application.
  • FIG. 7b is a schematic diagram of a relationship between a timing advance and a signal according to an embodiment of the present application.
  • Fig. 8a is a schematic diagram of a reference perspective of a service link and a feeder link provided by an embodiment of the present application;
  • 8b is a schematic diagram of the relationship between the maximum round-trip delay difference and the minimum elevation angle provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a relationship between m and effective time according to an embodiment of the present application.
  • FIG. 10a is a schematic flowchart of a method for updating a timing offset provided by an embodiment of the present application.
  • FIG. 10b is a schematic flowchart of a method for updating a timing offset provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a two-step random access method provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a method for updating a timing offset provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • 15 is a schematic diagram of a reference point-based NTN communication system provided by an embodiment of the present application.
  • FIG. 16 is an architecture diagram of an NTN system based on the coordinate of a reference point to replace the Koffset value according to an embodiment of the present application
  • FIG. 17 is a schematic diagram A of a Koffset value/Koffset reference point coordinate indication bit provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram B of a Koffset value/Koffset reference point coordinate indication bit provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a Koffset angle provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a relationship between signaling and time slots provided by an embodiment of the present application.
  • FIG. 21 is a schematic diagram of a relationship between signaling and time slots provided by an embodiment of the present application.
  • At least one (item) refers to one or more
  • multiple refers to two or more than two
  • at least two (item) refers to two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships.
  • a and/or B can mean: there is only A, only B, and both A and B. In this case, A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the communication system can be composed of terminal equipment, satellites (or satellite base stations), and ground stations (or gateways, gateways).
  • terminal equipment may also be referred to as user equipment (UE), terminal, and so on.
  • a terminal device is a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water, such as a ship, etc.; it can also be deployed in the air, for example, Airplanes, balloons, or satellites.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device may also be a terminal device in a future 5G network or a terminal device in a future evolved public land mobile network (PLMN).
  • PLMN public land mobile network
  • the terminal device and the terminal device can be connected through device-to-device (D2D), vehicle-to-everything (V2X), or machine-to-machine Communication technologies such as machine to machine (M2M) are used for communication, and the embodiment of the present application does not limit the communication method between terminal devices.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine Communication technologies
  • M2M machine to machine
  • Satellites can provide wireless access services for terminal devices, dispatch wireless resources to connected terminal devices, and provide reliable wireless transmission protocols and data encryption protocols.
  • Satellites may be base stations that use artificial earth satellites and high-altitude aircraft as wireless communications, such as evolutional NodeB (eNB) and 5G base stations (gNB).
  • the satellite can also be used as a relay of these base stations to transparently transmit the wireless signals of these base stations to the terminal equipment.
  • the ground station can be regarded as a base station for wireless communication. Therefore, in the embodiments of the present application, in some embodiments, such as in a satellite regeneration scenario, the network device may be the satellite base station shown in FIG. 3; in other embodiments, such as in a satellite transparent transmission scenario, The network device may be the ground station shown in FIG. 3. Therefore, for ease of description, the following uses a network device as a base station as an example to illustrate the methods involved in this application.
  • the network device may include, but is not limited to, the base station shown above.
  • the base station may also be a base station in a future communication system such as a sixth-generation communication system.
  • the network device may also be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless fidelity (WiFi) system.
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a wearable device or a vehicle-mounted device.
  • the network device may also be a small station, a transmission reception point (TRP) (or may also be referred to as a transmission reception point), etc. It can be understood that the network device may also be a base station in a PLMN that will evolve in the future, and so on.
  • TRP transmission reception point
  • the network device may also be a base station in a PLMN that will evolve in the future, and so on.
  • the satellite may be a geostationary (geostationary earth orbit, GEO) satellite, or a non-geostationary (none-geostationary earth orbit, NGEO) medium orbit (MEO) satellite and low earth orbit (low earth orbit).
  • GEO geostationary earth orbit
  • NGEO non-geostationary earth orbit
  • MEO medium orbit
  • low earth orbit low earth orbit
  • LEO high altitude communication platform
  • HAPS High Altitude Platform Station
  • the ground station can be used to connect the satellite and the core network.
  • the ground station can transparently transmit the signaling between the satellite and the core network.
  • the ground station can be used as a base station for wireless communication, and the satellite can transparently transmit the signaling between the terminal equipment and the ground station.
  • the ground station can send the signaling from the core network to the satellite through the feedback link (or feeder link); and the satellite passes through the satellite and the terminal equipment.
  • the inter-service link (service link) sends the signaling to the terminal device.
  • the terminal device can also send signaling to the satellite through the service link, and the satellite sends the signaling to the core network through the ground station.
  • FIG. 3 only shows one satellite and one ground station.
  • a multi-satellite and/or multi-ground station architecture can be adopted as needed.
  • each satellite can provide services to one or more terminal devices, each satellite can correspond to one or more ground stations, and each ground station can correspond to one or more satellites, etc., which are not specified in this application. limited.
  • the UE sends a random access preamble (random access preamble) to a base station, which may also be referred to as a first message (Msg1).
  • Msg1 random access preamble
  • the role of the random access preamble is to inform the base station that there is a random access request, and enable the base station to estimate the transmission delay between it and the UE, so that the base station can calibrate the uplink timing and pass the calibration information through the timing advance.
  • TA The command (timing advance command) informs the UE.
  • the base station sends a random access response (random access response, RAR) to the UE after detecting the random access preamble, which may also be referred to as a second message (Msg2).
  • RAR random access response
  • Msg2 second message
  • the random access response may include the sequence number of the random access preamble received in 401, the timing advance command, the uplink resource allocation information, and the temporary cell-radionetwork temporary identifier (TC-RNTI), etc.
  • the UE receives a random access response. If the random access preamble indicated by the sequence number of the random access preamble in the random access response is the same as the random access preamble sent by the UE to the base station in 401, the UE considers this
  • the random access response is a random access response to the UE, that is, the UE receives the random access response of the UE.
  • the UE sends uplink messages on the uplink resources indicated by the random access response, for example, sending uplink data on the physical uplink shared channel (PUSCH), also known as the third message (Msg3). ).
  • PUSCH physical uplink shared channel
  • Msg3 can carry a unique user identification.
  • the base station receives the uplink message of the UE, and returns a conflict resolution message to the UE that has successfully accessed, which is also called a fourth message (Msg4).
  • Msg4 a fourth message
  • the base station will carry the unique user identifier in Msg3 in the conflict resolution message to indicate the UE that has successfully accessed, and other UEs that have not successfully accessed will re-initiate random access.
  • the UE in order to align the timing of the uplink signal with the downlink signal when the uplink signal arrives at the satellite base station, the UE needs to adjust the timing advance when sending the uplink signal, as shown in Figure 5a.
  • the large round-trip delay in NTN will cause the timing of the uplink signal received by the satellite base station side to differ greatly from the timing of the downlink signal. Therefore, in the NTN system, the amount of the uplink signal timing advance adjustment will be relatively large.
  • the UE needs to send a hybrid automatic repeat request (hybrid automatic repeat) to the base station.
  • request HARQ-acknowledgement (acknowledge, ACK) (HARQ-ACK) message feedback that the PDSCH was received correctly.
  • HARQ-ACK hybrid automatic repeat request
  • the UE receives PDSCH data in a time slot (slot) n, the UE needs to feed back the HARQ-ACK message in slot n + K 1. That is, the maximum value that the UE can adjust the timing advance is K 1 time slot length. Generally, the maximum value of K 1 is 15. When the subcarrier spacing (SCS) is 30 KHz and the length of a time slot is 0.5 ms, the maximum timing advance adjustment that the UE can make is 7.5 ms. It can be seen from Figure 2 that the round-trip delay between the UE and the base station in NTN will be much greater than 7.5 ms.
  • SCS subcarrier spacing
  • the length of the K 1 time slot cannot provide enough time for the UE to adjust the timing advance, that is, it cannot meet the timing advance requirement of the NTN for beam or round-trip delay compensation in the cell.
  • the timing advance adjustment amount of the uplink data sent by the UE is greater than the length of K 1 time slot (slot)
  • the UE cannot send the HARQ-ACK message on time.
  • Timing offset K offset so that there is enough time between the UE receiving the PDSCH data and the UE sending the HARQ-ACK message for timing advance adjustment. That is, on the satellite base station side, the HARQ-ACK message is received in the n+K 1 +K offset time slot. As shown in Figure 5c, the K offset value is introduced, and the UE can adjust the time slot in which the UE sends the HARQ-ACK message through the K offset value, so that the UE has enough time to adjust the timing advance.
  • Fig. 6 is a schematic flowchart of a method for updating a timing offset provided by the present application.
  • this method is applicable to a four-step random access scenario.
  • the method specifically includes:
  • the UE sends a third message (Msg3) to the base station according to the first timing offset K offset1 ; where the first timing offset is used to indicate the delay by which the UE delays sending the third message, and the third
  • the message includes indication information, the indication information is used to indicate the second timing offset, and the second timing offset is the updated first timing offset.
  • the base station receives the third message sent by the UE according to the first timing offset; the first timing offset is used to indicate the degree of delay for the base station to delay receiving the third message.
  • the UE sends a third message to the base station according to the first timing offset, which can be understood as: For example, if the UE receives the RAR message in the time slot n when the base station sends a signal, it will be in the signal time slot n+K 2 + Send the third message on ⁇ +K offset1. Similarly, the base station receives the third message in the signal time slot n+K 2 + ⁇ +K offset1 sent by the UE.
  • K 2 is a parameter indicated by the base station to the UE through broadcast or downlink control information (DCI)
  • is a value agreed by the system in advance. The specific values or sources of K 2 and ⁇ are not limited in this application.
  • the first timing offset may also be referred to as an initial timing offset.
  • the UE may obtain the first timing offset from a broadcast message; or, the UE may determine the first timing offset according to related adjustment parameters broadcast in the broadcast message. It can be understood that as to how the UE obtains the first timing offset according to the relevant adjustment parameters, reference may be made to the following, which will not be described in detail here. And how the UE indicates the second timing offset to the base station can also refer to the following, which will not be described in detail here.
  • step 603 the method shown in FIG. 6 further includes:
  • the UE sends a first message (Msg1) to the base station, where the first message includes a random access preamble.
  • the satellite base station receives the first message sent by the UE.
  • the base station in a satellite transparent transmission scenario, is equivalent to the ground station shown in FIG. 3; in the satellite regeneration scenario, the base station is equivalent to the satellite base station shown in FIG. 3.
  • the base station sends a second message (Msg2) to the UE, where the second message includes a random access response (RAR) message.
  • Msg2 a second message
  • RAR random access response
  • the UE receives the second message sent by the base station.
  • step 605 the method shown in FIG. 6 further includes:
  • the base station sends a fourth message to the UE, where the fourth message includes a random access contention resolution message.
  • the UE receives the fourth message.
  • the UE can obtain the timing advance according to the timing advance command contained in the second message and the common timing advance (or the timing advance used by the UE before) (That is, TA value or TA_New); further, the UE adjusts the timing advance of the transmitted signal according to the timing advance. Furthermore, according to the timing advance, the UE may also determine the second timing offset.
  • the timing advance TA_New and the second timing offset may satisfy the following formula (1):
  • TA_New is the timing advance used when the UE sends the third message
  • slot_duration is the duration unit
  • symbol Indicates rounding up.
  • the time length unit may be the time slot length, such as the time slot length of uplink data or the time slot length of downlink data.
  • the duration unit may also be any one of 0.5ms, 1ms, symbol length, subframe length, frame length, and so on.
  • a fixed value such as ⁇ t
  • TA_New namely ⁇ t is the time value, which can be the value agreed in advance through the agreement.
  • the dimension of ⁇ t can be different from the dimension of TA_New.
  • the formula (1) uses rounding up as an example to illustrate the relationship between the timing advance and the second timing offset.
  • the second timing can also be determined by rounding down. Offset.
  • the UE may determine whether to update the first timing offset with the second timing offset according to the update threshold. For example, if the update threshold is 1, if the difference between the timing offset obtained according to formula (1) and the first timing offset is less than or equal to 1, the UE may determine not to update the first timing offset . Conversely, if the difference between the timing offset obtained according to formula (1) and the first timing offset value is greater than or equal to 1, the UE may determine to update the first timing offset, and according to formula (1) The obtained timing offset is the second timing offset. It can be understood that the above application does not limit whether the UE updates the first timing offset when the update threshold value is 1. For another example, the update threshold may also be 2 and so on. When the value of the update threshold is large, the frequency of updating the first timing offset will be reduced, thereby reducing signaling overhead and avoiding frequent third messages and other messages carrying indication information during the RRC connection phase.
  • the UE sends indication information to the base station; the base station receives the indication information sent by the UE.
  • the update threshold may be preset by the base station or preset by the protocol.
  • the UE may obtain it through a broadcast message, which may include any of the system information block (system information block, SIB) 1, the master system information block (master information block, MIB), and other system information (other system information, OSI).
  • SIB system information block
  • MIB master system information block
  • OSI other system information
  • the UE can also use radio resource control (RRC) messages, downlink control information (DCI), group DCI, media access control (MAC), and timing advance commands (timing advance commands). command, TAC) to obtain the update threshold.
  • RRC radio resource control
  • DCI downlink control information
  • MAC media access control
  • TAC timing advance commands
  • the update threshold may also be carried along with data transmission or in a separately allocated PDSCH.
  • the base station may also determine whether to update with the second timing offset according to the update threshold.
  • the first timing offset For how to update the base station, please refer to the description of the UE, which will not be described in detail here.
  • the base station may also send the second timing offset, the amount of change between the second timing offset and the reference timing offset to the UE through an Msg4 message Or an adjustment parameter used to indicate the second timing offset.
  • the reference timing offset is a timing offset being used by the UE or a timing offset configured by a base station (for example, a timing offset configured through a broadcast message) or a preset fixed timing offset.
  • the timing offset currently used by the UE is the foregoing first timing offset.
  • the preset timing offset can be understood as: the reference timing offset is predetermined by the base station or predetermined by the protocol. It can be understood that for the description of the reference timing offset, the reference timing offset appearing below in this application is also used.
  • the amount of change may be +1.
  • the amount of change may be -1.
  • the amount of change can also be zero.
  • the example shown above is based on the second timing offset-reference timing offset as an example, but in the embodiment of the present application, the change amount may also be obtained from the reference timing offset-the second timing offset.
  • the adjustment parameter indicating the second timing offset included in Msg4 may be different from the adjustment parameter indicating the second timing offset in the third message.
  • the third message is used to indicate the second timing offset.
  • the first adjustment parameter of the second timing offset may be the timing advance used by the UE to send the third message
  • the adjustment parameter that indicates the second timing offset included in Msg4 may be the second timing offset and the first adjustment parameter.
  • the UE can then update the first timing offset. After the second timing offset takes effect, the UE may send a fifth message according to the second timing offset.
  • the UE obtains that the second timing offset is 15, the first timing offset is 14, and the update threshold is 2, and the UE determines whether to update the first timing offset with the second timing offset.
  • the timing offset since the difference between the first timing offset and the second timing offset is less than 2, the UE can determine not to update the first timing offset. Therefore, in order to save signaling overhead, the UE may not send indication information to the base station. In the case where the base station determines whether to update the first timing offset with the second timing offset, the UE can indicate that the second timing offset is 15 through the indication information.
  • the base station may determine not to update the first timing offset according to the difference between the first timing offset and the second timing offset being less than 2, and the update threshold value is 2. Further, the second timing offset may not be included in Msg4.
  • the UE obtains that the second timing offset is 17, the first timing offset is 14, and the update threshold is 2; the UE determines whether to update the first timing offset with the second timing offset. In the case of the timing offset, since the difference between the first timing offset and the second timing offset is greater than 2, the UE can determine to update the first timing offset. Further, the UE sends instruction information to the base station. In the case where the base station determines whether to update the first timing offset with the second timing offset, the UE may indicate that the second timing offset is 17 through the indication information. Therefore, after the base station receives the indication information, The base station may determine to update the first timing offset according to the difference between the first timing offset and the second timing offset being greater than 2, and the update threshold is 2. Further, Msg4 may include a second timing offset.
  • the UE sends a fifth message to the base station according to the second timing offset.
  • the base station receives the fifth message.
  • the fifth message may include a HARQ-ACK message, and the HARQ-ACK message may be a HARQ-ACK message of the fourth message.
  • the fifth message may also include an uplink data message or an uplink reference signal (for example, a sounding reference signal) and so on.
  • the description of the UE sending the fifth message to the base station according to the second timing offset can refer to the description of the UE sending the third message to the base station according to the first timing offset, which will not be described in detail here.
  • the effective time of the second timing offset please refer to the following.
  • the UE can have enough time to make timing advance adjustment; on the other hand, by updating the timing offset, for example, updating the first timing offset or updating The second timing offset, etc., may enable the UE to use an appropriate timing offset.
  • the embodiments of the present application can also reduce the end-to-end delay and avoid resource waste on the basis of satisfying that the UE has enough time to make timing advance adjustments.
  • the relative distance between the LEO satellite and the UE will always change, which also means that the round trip delay is always changing.
  • the UE needs to use a larger K offset value to ensure normal communication. Therefore, if the K offset is not updated, the delay length of the UE delaying sending the feedback message (K 1 +K offset as shown in FIG. 7a) may be far greater than the timing advance.
  • the base station after the base station sends data 1, it can continue to send data 2-10 before receiving the HARQ-ACK of data 1 (A/N in the figure represents ACK or NACK) to fill the entire time domain resources. Therefore, the base station needs to use 10 processes to avoid waste of time domain resources.
  • the UE uses a more appropriate K offset , and the number of downlink processes on the base station side can be reduced to 7.
  • the base station can receive HARQ-ACK feedback after sending data 1 and waiting for 6 data lengths. Compared with waiting for 9 data lengths before updating, the end-to-end delay is reduced. Therefore, the solution of the present application can optimize the reduction of the number of processes for the base station to send downlink data and reduce the end-to-end delay.
  • timing offset K offset shown in this application, unless otherwise specified, may include the first timing offset K offset1 or the second timing offset K offset2 or the updated first timing offset. 2. Timing offset and so on.
  • the timing offset K offset is a general term and has no special meaning.
  • the method for the UE to obtain the first timing offset from the broadcast message is as follows:
  • the base station determines the timing offset according to the maximum round-trip delay, such as
  • max_RTD represents the round-trip delay of the point farthest from the base station in the beam or cell area covered by the base station, that is, the maximum round-trip delay.
  • the subcarrier interval in the example shown below is 120KHz, and if the duration unit slot_duration is the slot length, then the duration unit is 0.125ms.
  • the cell diameter D 100km
  • the maximum round-trip delay is 25.8ms
  • the cell diameter D 100km
  • the maximum round-trip delay is 25.8ms
  • the maximum round-trip delay in the transparent transmission scenario shown above may represent the maximum round-trip delay between the reference point-the satellite-the ground station.
  • the maximum round-trip delay of the regeneration scenario shown above may represent the maximum round-trip delay between the reference point and the satellite.
  • the reference point may be a reference point in the coverage area of a beam or a cell.
  • the base station may send the value of the first timing offset to the UE in a broadcast manner.
  • the base station can use the formula The value of the first timing offset is calculated.
  • a fixed value such as ⁇ t
  • max_RTD namely ⁇ t is the time value, which can be the value agreed in advance through the agreement.
  • the dimension of ⁇ t can be different from the dimension of max_RTD.
  • the base station directly broadcasts the specific value of K offset1 , which requires more bits. Therefore, in order to reduce the signaling overhead, the UE may obtain the relevant adjustment parameter from the broadcast message, so that the UE obtains the first timing offset according to the relevant adjustment parameter.
  • the method for determining the first timing offset according to the relevant adjustment parameters broadcast in the broadcast message is as follows:
  • the UE needs to obtain one or some parameters, such as S K , ⁇ K offset , ⁇ K offset_time , ⁇ , ⁇ .
  • the base station sends the above parameters to the UE through a broadcast message.
  • the broadcast message may include system information block (system information block, SIB) 1, master system information block (master information block, MIB), and other system information (other system information, OSI). Any one or more of.
  • RRC radio resource control
  • the base station can also use RRC messages and downlink control information (DCI) ), group DCI, media access control (media access control, MAC), timing advance command (timing advance command, TAC) any one or more of them to send the above parameters to the UE.
  • the base station may also send the above parameters along with data transmission or in a separately allocated PDSCH.
  • the base station may also send the above parameters through multicast. It can be understood that the above description of each parameter is also applicable to other embodiments of the present application.
  • the UE will receive the RAR related information issued by the base station through a preset receiving window.
  • the round-trip delay is relatively large, so after the UE sends the random access preamble, it delays for a certain period of time before opening the receiving window to detect the RAR related information.
  • the delay start time of the RAR receiving window is related to the round-trip delay of the point closest to the base station in the beam/cell covered by the base station, that is, related to the minimum round-trip delay; the timing offset is related to the beam/cell covered by the base station The maximum round-trip delay is related.
  • the delay start duration of the RAR reception window may be notified to the UE by the base station. Therefore, in order to save signaling overhead, the first timing offset may be determined according to the delay start duration of the RAR reception window.
  • the first timing offset and the delay start duration of the RAR receiving window may satisfy the following formula (2):
  • K offset1 is the first timing offset
  • S K is the scale factor
  • the scale factor is a non-negative number
  • RAR_delay is the delay start duration of the RAR receiving window
  • slot_duration is the duration unit.
  • the first timing offset and the delay start duration of the RAR receiving window may satisfy the following formula (3):
  • ⁇ K offset is the timing offset difference
  • the timing offset difference is an integer value
  • the base station may determine the value of the first timing offset K offset1 according to the coverage area of the beam/cell, for example, according to the above formula get. Then, the base station substitutes K offset1 and RAR_delay into formula (3) to calculate the value of ⁇ K offset according to the value of RAR_delay broadcasted to the UE.
  • the base station can send the ⁇ K offset value to the UE in a broadcast manner.
  • the UE receives the values of RAR_delay and ⁇ K offset , and substitutes formula (3) to obtain the value of the first timing offset.
  • slot_duration can be pre-arranged or stipulated in the agreement. It can be understood that the method of how the base station and the UE obtain and use the ⁇ K offset described above is also applicable to the parameter S K and the parameters used to derive the first timing offset in the formulas described below.
  • the first timing offset and the delay start duration of the RAR receiving window may satisfy the following formula (4):
  • ⁇ K offset_time is the duration difference
  • the duration difference can be positive, negative or zero.
  • the dimension of the duration difference can also be different from RAR_delay, thereby saving signaling overhead.
  • the value of the duration difference can be any value, such as a positive number, a negative number, or zero.
  • the first timing offset and the delay start duration of the RAR receiving window may satisfy the following formula (5):
  • the relationship between the first timing offset and the delay start duration of the RAR receiving window may also have different forms according to the above parameters, which is not limited in this application.
  • the first timing offset and the delay start duration of the RAR receiving window can also be satisfied, such as:
  • the UE receives the RAR related information issued by the base station through a preset receiving window. Therefore, the base station needs to inform the UE of the duration of the RAR receiving window (RAR_window). After the UE sends the preamble, within the duration of the RAR receiving window Detect RAR related information. Theoretically, the duration of the RAR receiving window is related to the round trip delay difference in the beam/cell covered by the base station. Therefore, in order to save signaling overhead, the first timing offset may be determined according to the duration of the RAR receiving window.
  • the first timing offset and the duration of the RAR receiving window may satisfy the following formula (6):
  • the first timing offset and the duration of the RAR receiving window may satisfy the following formula (7):
  • the first timing offset and the duration of the RAR receiving window may satisfy the following formula (8):
  • the first timing offset and the duration of the RAR receiving window may satisfy the following formula (9):
  • the relationship between the first timing offset and the duration of the RAR receiving window may also have different forms based on the above parameters, which is not limited in this application.
  • the first timing offset and the duration of the RAR receiving window can be satisfied, such as: and many more.
  • the first timing offset can also be based on the RAR reception window
  • the duration of the RAR and the delay start duration of the RAR receiving window are determined.
  • the first timing offset and the duration of the RAR receiving window and the delayed start duration of the RAR receiving window may satisfy the following formula (10):
  • the first timing offset and the duration of the RAR receiving window and the delayed start duration of the RAR receiving window may satisfy the following formula (11):
  • formula (10) and formula (11) can be modified according to the parameters shown in method one and method two to obtain other methods for deriving the first timing offset, for example, or and many more.
  • the UE After the UE sends Msg3 in the four-step random access process, it starts the random access contention resolution timer (ra-ContentionResolutionTimer) and starts to detect Msg4. If the Msg4 is successfully received before the random access contention resolution timer expires, the access is considered successful.
  • the value range of the random access contention resolution timer includes ⁇ 8ms, 16ms, 24ms, 32ms, 40ms, 48ms, 56ms, 64ms ⁇ .
  • the round-trip delay in NTN is relatively large, for example, the round-trip delay in the GEO scenario is about 250 ms.
  • the delay start time of the random access contention resolution timer is related to the round trip delay of the point closest to the base station in the beam/cell covered by the base station, that is, related to the minimum round trip delay.
  • the base station can send the delayed start duration RCR_offset of the random access contention resolution timer to the UE through SIB1.
  • the first timing offset may be determined according to the delayed start duration of the random access contention resolution timer.
  • the first timing offset and the delayed start duration of the random access contention resolution timer may satisfy the following formula (12):
  • the first timing offset and the delayed start duration of the random access contention resolution timer may satisfy the following formula (13):
  • the first timing offset and the delayed start duration of the random access contention resolution timer may satisfy the following formula (14):
  • the first timing offset and the delayed start duration of the random access contention resolution timer may satisfy the following formula (15):
  • the base station will inform the UE of the duration RCR_timer of the random access contention resolution timer.
  • the duration of the random access contention resolution timer is related to the round trip delay difference in the beam/cell covered by the base station. Therefore, in order to save overhead, the first timing offset may be determined according to the duration of the random access contention resolution timer.
  • the first timing offset and the duration of the random access contention resolution timer may satisfy the following formula (16):
  • the first timing offset and the duration of the random access contention resolution timer may satisfy the following formula (17):
  • the first timing offset and the duration of the random access contention resolution timer may satisfy the following formula (18):
  • the first timing offset and the duration of the random access contention resolution timer may satisfy the following formula (19):
  • the first timing offset can also be determined according to the duration of the random access contention resolution timer and the delayed start duration of the random access contention resolution timer.
  • the first timing offset and the duration of the random access contention resolution timer and the delayed start duration of the random access contention resolution timer may satisfy the following formula (20):
  • the first timing offset and the duration of the random access contention resolution timer and the delayed start duration of the random access contention resolution timer may satisfy the following formula (21):
  • formula (20) and formula (21) can be modified according to the parameters shown in method one and method two to obtain other methods for deriving the first timing offset, for example, or and many more.
  • the base station broadcasts a common timing advance (common TA) to the beam or cell, and the UE uses the common timing advance to determine the timing advance used when sending the random access preamble.
  • the common timing advance can be calculated according to the following methods: select a reference point in the coverage area of the beam or cell (the point closest to the base station can be selected), and calculate the reference point-satellite (satellite regeneration scenario); or, reference point-satellite -The round-trip delay between ground stations (transparent transmission scenarios of satellites), the common timing advance is equal to the round-trip delay or equal to the round-trip delay plus/minus a fixed value.
  • the reference point can be a point on the service link or a point on the feeder link, which is not limited here.
  • the base station may also send a reference point position coordinate to the UE, and the UE calculates the common timing advance according to the round-trip delay between the satellite position and the reference point position.
  • the common timing advance can be positive or negative.
  • the UE can calculate the timing advance that can be used when sending the random access preamble according to the location information of the UE and the location information of the satellite (which can be obtained from the ephemeris information).
  • a UE with positioning function can still obtain the common timing advance that the base station will broadcast to the beam or cell.
  • the first timing offset can be obtained according to the common timing advance TA_common.
  • the first timing offset and the common timing advance TA_common may satisfy the following formula (22):
  • the first timing offset and the common timing advance may satisfy the following formula (23):
  • the first timing offset and the common timing advance may satisfy the following formula (24):
  • the first timing offset and the common timing advance may satisfy the following formula (25):
  • the first timing offset can also be determined according to the orbital height H of the satellite.
  • the orbital height of the satellite is related to the minimum round-trip delay in the coverage area of the base station.
  • the orbit height can be the round-trip time delay of the sub-satellite point in Figure 8a.
  • the orbital height of the satellite can be obtained from the ephemeris information.
  • the first timing offset and the track height H may satisfy the following formula (26):
  • H is the orbital height
  • c is the speed of light
  • the first timing offset and the track height H may satisfy the following formula (27):
  • the first timing offset and the track height H may satisfy the following formula (28):
  • the first timing offset and the track height H may satisfy the following formula (29):
  • the reference angle of the serving link and/or the reference angle of the feeder link corresponding to the coverage beam/cell sent by the base station to the UE can be determined according to the angle composed of the reference angle reference point of the service link-satellite-sub-satellite point, and the reference angle reference point of the service link can be selected within the coverage beam/cell range
  • the point farthest from the satellite (or the location of the reference point is determined according to the specific network deployment).
  • the sub-satellite point is the line connecting the satellite and the center of the earth's sphere, and the intersection of the line and the surface of the earth. Therefore, the UE can calculate the round-trip delay of the serving link according to the reference angle ⁇ of the serving link: 2*H/cos( ⁇ )/c.
  • the base station can send the reference angle of the feeder link to the UE to calculate the round-trip delay of the feeder link.
  • the reference angle of the feeder link can be determined according to the angle composed of the reference angle reference point of the feeder link-satellite-under-satellite point, and the reference angle reference point of the feeder link can select the location of the ground station. Therefore, the UE can calculate the round-trip delay in the feeder link according to the reference angle ⁇ of the feeder link: 2*H/cos( ⁇ )/c.
  • the UE can calculate K offset1 according to the reference angle ⁇ of the serving link and/or the reference angle ⁇ of the feeder link sent by the base station.
  • the first timing offset and the reference angle ⁇ of the service link may satisfy the following formula (30):
  • the first timing offset and the reference angle ⁇ of the feeder link may satisfy the following formula (31):
  • the first timing offset and the reference angle ⁇ of the service link and the reference angle ⁇ of the feeder link may satisfy the following formula (32):
  • the indication information may be used to indicate the second timing offset, where the method for the UE to indicate the second timing offset to the base station includes:
  • the indication information includes the second timing offset.
  • the second timing offset may occupy the same number of bits as the first timing offset, and may be 13bit, 12bit, 9bit, 8bit, 7bit, and so on.
  • the indication information includes a first adjustment parameter set, and the first adjustment parameter set is used to determine the second timing offset. That is, the indication information includes the first adjustment parameter set, and the base station determines the second timing offset according to the first adjustment parameter set.
  • the first adjustment parameter set may include any one or more of the following parameters:
  • the timing advance used when the UE sends the third message (in different scenarios, it can also be understood as the latest timing advance used by the UE); or
  • the difference of the timing offset may be the difference between the second timing offset and the reference timing offset.
  • the reference timing offset is a timing offset currently used by the UE or a preset timing offset.
  • the timing offset currently used by the UE may be the foregoing first timing offset.
  • the first adjustment parameter set includes the timing advance TA_New used when the UE sends the third message.
  • the base station can determine the second timing offset according to the formula:
  • the method for the UE to send TA_New to the base station for example, the UE sends the quantized value of TA used by the UE to the base station , N TA , and the base station receives the N TA and multiplies it with an agreed quantization factor S to obtain the actual TA value used by the UE (unit can be Seconds or milliseconds).
  • the length of the signaling that represents the TA can be reduced, and the signaling overhead can be reduced.
  • the quantization factor S is 100/(15000*2048) ⁇ 3.25us.
  • TA_New 4ms.
  • the UE may send a parameter value based on the round-trip time delay of the satellite orbit height to the base station for the base station to calculate the TA value actually used by the UE.
  • the UE sends a time amount V TA to the base station (V TA can be a positive value or a negative value )
  • V TA can be a positive value or a negative value
  • the base station adds/subtracts the round-trip delay of the sub-satellite point to the time amount V TA to obtain the TA value used by the UE.
  • the satellite orbit height is H (unit meters)
  • the round-trip delay of the satellite sub-satellite point is 2*H/c, where c represents the speed of light 3* 108 meters/second.
  • the UE receives the RAR related information issued by the base station through a preset receiving window. Due to the large round-trip delay in satellite communication, after the UE sends the preamble, the RAR_delay delays for a certain period of time to open the receiving window and start detection RAR related information. The delay duration RAR_delay of the RAR receiving window is notified to the UE by the base station side. Therefore, in order to save signaling overhead, the UE may send a parameter value based on the delay time RAR_delay of the RAR receiving window to the base station for the base station side to calculate the TA value actually used by the UE.
  • the UE may send a parameter value based on common TA to the base station for the base station side to calculate the TA value actually used by the UE. It is understandable that the above methods can also be used in combination. It is understandable that the present application applies to the method for the UE to send the timing advance used by the UE to the base station, when the same method is involved in the following, it is applicable. For example, in the subsequent communication process, when the UE needs to update the second timing offset, this method can also be used to send the timing advance used by the UE to the base station.
  • the UE may use the method in the method in which the UE obtains the first timing offset from the broadcast message in this application to send the first adjustment parameter set to the base station.
  • K offset1 in the method in which the UE obtains the first timing offset from the broadcast message with the updated K offset1 (that is, the second timing offset K offset2 ), including formulas (2) to Formula (32) and other formulas listed.
  • the UE sends to the base station at least one parameter value among S K , ⁇ K offset , ⁇ K offset_time , ⁇ , ⁇ , etc.; correspondingly, the base station uses the formula ( 2) A method from formula (32) to calculate the second timing offset.
  • the UE refers to The formula determines the value of ⁇ K offset. Then the indication information includes the ⁇ K offset value, and the UE sends it to the base station. Correspondingly, after the base station receives the ⁇ K offset , according to The formula calculates the value of K offset2.
  • the formula K offset1 (27) is replaced with the K offset2, with reference to the UE
  • the formula determines the value of ⁇ K offset.
  • the indication information includes the ⁇ K offset value, and the UE sends the ⁇ K offset value to the base station.
  • the base station receives the ⁇ K offset , according to The formula calculates the value of K offset2.
  • the use of the formula here is only an illustrative example, and it is also applicable to other formulas.
  • ⁇ K offset is the same as the symbol in (3) above, the meaning is different.
  • the value of ⁇ K offset in formula (3) can be broadcasted by the base station.
  • the ⁇ K offset is obtained after deformation based on the above formula (11) and formula (27), and the UE sends the ⁇ K offset value to the base station.
  • the UE sends the change value of at least one parameter value among S K , ⁇ K offset , ⁇ K offset_time , ⁇ , ⁇ and the like to the base station, and the base station uses the change value to calculate the second timing offset .
  • the use of the formula here is only an exemplary example, and the formula used is not limited.
  • the indication information may also include the index number of ⁇ K offset , such as 001.
  • ⁇ K offset can correspond to different index numbers, such as the table look-up method in the following method 3.
  • the indication information may also include the latest location information of the UE, and the latest location information may include the latest three-dimensional location coordinates. Therefore, the base station side can calculate the round-trip delay between the satellite and the UE based on the position of the satellite and the position of the UE, and then obtain the TA value TA_New that the UE is using, according to the formula Get the latest timing offset, namely K offset2 .
  • the difference between K offset or K offset and the reference timing offset can also be a fixed discrete value, such as K offset ⁇ ⁇ 1,3,5,7 ⁇ or K offset ⁇ 1.5, 3.5, 5.5, 7.5 ⁇ .
  • K offset ⁇ ⁇ 1,3,5,7 ⁇ or K offset ⁇ 1.5, 3.5, 5.5, 7.5 ⁇ By setting discrete timing offsets, the signaling overhead of K offset can be reduced.
  • the timing offset here may include the first timing offset, the second timing offset, the updated second timing offset, and so on.
  • the maximum round-trip delay difference in the beam covered by the base station is 2.28 ms.
  • the UE or the base station needs 5 bits to send the K offset.
  • the K offset is quantized. For example, if K offset ⁇ 0,3,6,9,12,15,18,21 ⁇ , the UE or the base station requires 3 bits to transmit the K offset.
  • the UE or the base station may send the K offset , which is 100, according to the mapping relationship, as shown in Table 1.
  • K offset bit representation K offset value 000 0 001 3 010 6 011 9 100 12 101 15 110 18
  • mapping relationship shown above is only an example, and should not be construed as a limitation to the embodiments of the present application.
  • difference between K offset and the reference timing offset can also be represented by a discrete value.
  • the method for the base station to indicate the updated first timing offset to the UE includes:
  • the base station can also send the second timing offset, the difference between the second timing offset and the reference timing offset to the UE through an Msg4 message.
  • the amount of change or the adjustment parameter used to indicate the second timing offset is the amount of change or the adjustment parameter used to indicate the second timing offset.
  • the base station after determining to update the first timing offset, the base station sends an adjustment parameter indicating the second timing offset to the UE.
  • the adjustment parameter For sending the adjustment parameter, reference may be made to the UE to obtain the first timing offset from the broadcast message.
  • K offset1 in the method in which the UE obtains the first timing offset from the broadcast message needs to be replaced with the updated K offset1 (that is, the second timing offset K offset2 ), including formulas (2) to Formula (32) and other formulas listed.
  • the base station sends to the UE at least one parameter value among S K , ⁇ K offset , ⁇ K offset_time , ⁇ , ⁇ , etc.; accordingly, the UE can use the "method for the UE to obtain the first timing offset from the broadcast message"
  • a method in formula (2) to formula (32) calculates the second timing offset.
  • the adjustment parameter used to indicate the second timing offset sent by the base station to the UE includes a change value of at least one parameter value among S K , ⁇ K offset , ⁇ K offset_time, ⁇ , ⁇ and the like.
  • the UE receives the variation value, and uses the variation value to calculate the second timing offset. Reference may be made to the specific example in Method 2 in which the UE indicates the second timing offset to the base station.
  • the effective information sent by the base station to the UE is used to indicate the effective time of the second timing offset, that is, the time when the UE and the base station start to use the second timing offset; correspondingly, the UE receives the effective information.
  • the base station after receiving the third message (including indication information), sends the validation information to the UE.
  • the validation information may be ACK or NACK information.
  • the UE After the UE receives the ACK information, it can agree The time to update the timing offset. For example, it can be agreed to update the timing offset immediately after the UE receives the ACK information. Or, it may be agreed that the timing offset will be updated after the length of q time slots after the UE receives the ACK information, and q is a non-negative integer.
  • the effective information may also be K offset2 update complete information.
  • K offset2 update complete information refer to the method in which the effective information is sending an ACK.
  • the UE sends the updated timing offset to the base station, and after the base station receives the updated timing offset sent by the UE, the base station may send the effective information to the UE.
  • the updated timing offset includes: the updated first timing offset, that is, the second timing offset; or, the updated second timing offset.
  • the effective information may also be included in the fourth message.
  • the base station may further indicate an effective time to the UE before receiving the third message, and the effective time may be used to determine the effective time of the second timing offset; or, it may also be applied to the updated first 2. Timing offset and so on.
  • the base station may send the effective information to the UE through a broadcast message.
  • the broadcast message may include a system information block (SIB) 1, a master information block (MIB), and other system messages (other system information). information, any one or more of OSI).
  • SIB system information block
  • MIB master information block
  • other system messages other system information
  • information any one or more of OSI.
  • RRC radio resource control
  • the base station can also use RRC messages, downlink control information (DCI), group DCI, media access control (MAC), and timing advance. Any one or more of commands (timing advance command, TAC) are used to send effective information to the UE.
  • the base station may also send effective information along with data transmission or in a separately allocated PDSCH.
  • TAC timing advance command
  • the base station may also send effective information through multicast.
  • the embodiment of the present application does not limit when the base station sends the effective information to the UE.
  • the specific form of the effective information is not limited in the embodiment of the present application.
  • the UE sends validation information to the base station, where the validation information is used to indicate the validation time of the second timing offset; correspondingly, the base station receives the validation information.
  • the UE may send the validation information to the base station after (or before) sending the third message to the base station.
  • the UE may also send the validation information to the base station after (or before) receiving the fourth message sent by the base station.
  • the effective information may also be included in the third message
  • the effective information may also be included in physical uplink control channel (PUCCH) information, and so on.
  • PUCCH physical uplink control channel
  • Method 2 For the specific method of Method 2, please refer to the description of Method 1, which will not be described in detail here.
  • the second timing offset takes effect m time slots after the UE sends the third message, and m is a preset integer; or, the second timing offset is n times after the UE receives the fourth message The time slot takes effect, and n is a preset integer.
  • the second timing offset may take effect m time slots after receiving the third message; or, the second timing offset may take effect n time slots after the base station sends the fourth message.
  • time slot As a unit, and it is not limited. For example, it can be agreed to take effect after m subframes or frame time lengths. Alternatively, the unit of m can also be agreed to be milliseconds or microseconds.
  • the second timing offset or the updated second timing offset starts to take effect. That is, the m-th time slot after the UE sends the third message starts to use the second timing offset or the updated second timing offset to send the signal by the base station.
  • the base station starts at the m-th time slot after receiving the third message, and the second timing offset or the updated second timing offset starts to take effect. That is, the base station starts to use the second timing offset or the updated second timing offset to receive the signal sent by the UE in the m-th time slot after receiving the third message.
  • the above m and n may be preset by the base station; or, preset by the protocol, etc., which are not limited in the embodiment of the present application.
  • the base station may send the value of m or n to the UE through a broadcast message, a multicast message, or a unicast message.
  • the foregoing m value or n value may be notified to the UE or the base station by the sending method of the effective information in the method 1 described above, that is, the effective information includes the m value or the n value.
  • the effective time is related to the channel delay, and can be a value related to the one-way or round-trip delay. Therefore, in addition to notifying the UE or the base station of the effective time through the effective information sending methods described in Method 2 and Method 3, the effective time can also be agreed by using known parameters related to one-way or round-trip delay. For example, the calculation method is agreed upon by the agreement, and the UE and the base station use the same method to obtain the effective time.
  • the calculation method of the effective time is as follows:
  • the UE and the base station when the base station and the UE agree with the formula Calculating the effective time, the UE and the base station respectively substitute RAR_window and RAR_offset values (which can be obtained from the broadcast message) into the equations, respectively calculate the same value of m, and use the value of m to obtain the effective time of the updated timing offset.
  • This method can avoid adding a new signaling indication m value; and can adjust the m value according to the round-trip delay between the beam/cell and the base station, and has higher flexibility.
  • the effective time can also be specified in absolute time.
  • the base station sends effective information to the UE.
  • the effective information includes the effective time.
  • the effective time indicates that the UE starts to use the updated timing offset value in the first time slot of the 98th frame of the signal. .
  • the base station starts to receive the signal using the updated timing offset value in the first time slot of the 98th frame when receiving the signal sent by the UE.
  • the effective time of the absolute time can be sent to the UE in the above-mentioned manner of sending the values of m and n, which will not be described in detail here.
  • the UE After the UE obtains the latest timing offset, that is, the second timing offset, it can use the second timing offset to send data information or control channels scheduled by the base station to the base station after the second timing offset takes effect. Information and so on. The following specifically describes the types included in the fifth message.
  • the fifth message includes the HARQ-ACK feedback message of Physical Downlink Shared Channel (PDSCH) data, such as the HARQ-ACK message of the fourth message (Msg4).
  • step 605 may be: the UE sends a HARQ-ACK message to the base station according to the second timing offset, and the HARQ-ACK message is used to confirm that the conflicting access message is received correctly; accordingly, the base station receives the HARQ-ACK message. For example, when the UE receives the PDSCH signal and ends in time slot x, the UE sends corresponding HARQ-ACK feedback in time slot x+K 1 +K offset.
  • the fifth message includes uplink data.
  • step 605 may be: the UE sends the uplink data scheduled by the base station to the base station according to the second timing offset (uplink data scheduled by the base station through RAR authorization and DCI indication); correspondingly, the base station receives the uplink data .
  • the base station schedules the UE to send physical uplink shared channel PUSCH data through the DCI instruction, and the DCI signaling is in the time slot x, then the UE is in the time slot x.
  • the fifth message includes a sounding reference signal (sounding reference signal, SRS), and the base station sends DCI signaling in time slot x to trigger an aperiodic SRS signal.
  • SRS sounding reference signal
  • the base station After the UE receives the trigger signaling, it will Send an aperiodic SRS signal.
  • the above communication steps using the updated timing offset are only examples for illustration, and do not limit the communication steps using the updated timing offset or the timing offset.
  • the base station will use the updated timing offset or timing offset when determining to send the channel state information reference resource timing information.
  • the following describes how to update the timing offset in subsequent communications after the UE accesses the system.
  • the UE and the satellite will move relative to each other (it will also cause changes in the round-trip delay between the UE and the base station), so the timing advance used by the UE needs to be Adjustment. Therefore, one way is that the UE can obtain the timing advance according to the timing advance adjustment instruction (TA adjustment) sent by the base station.
  • TA adjustment timing advance adjustment instruction
  • the UE can obtain the timing advance according to the location information of the UE and the location information of the base station.
  • the method of updating the timing offset in subsequent communication includes the following two methods:
  • the difference between the two methods is that the UE side or the base station side decides whether to update the timing offset being used (the timing offset being used includes the second timing offset).
  • Method 1 The UE side decides whether to update the timing offset, including:
  • the UE When the UE receives a timing advance adjustment instruction (for example, timing advance change rate or timing advance adjustment value, etc.) sent by the base station, it can use the timing advance adjustment instruction to adjust the timing advance used by its signal sent, and according to the adjusted timing
  • the advance amount determines whether to update the second timing offset; or, the UE adjusts the used timing advance according to its own location information and ephemeris information, and determines whether to update the second timing offset according to the timing advance.
  • the second timing offset here is a general term for the timing offset being used by the UE after accessing the system, and can be understood as the timing offset being used by the UE and the base station. This feature is also applicable to other embodiments of the present application.
  • the UE can determine whether to update the second timing offset according to the adjusted timing advance (that is, the latest timing advance adjustment used by the UE): refer to the timing offset obtained by formula (1) and the timing offset being used Determine whether to update the timing offset (at this time, substitute the latest timing advance adjustment amount into TA_New). For specific operations, refer to Figure 6 for the UE to determine whether to use the second timing offset according to the update threshold. The description of the first timing offset is not detailed here. If the UE determines to update the timing offset, it sends the updated second timing offset to the base station or is based on the change between the updated second timing offset and the reference timing offset or the second set of adjustment parameters and many more. For the specific sending mode and parameters, refer to the above-mentioned "Method for UE to indicate the second timing offset to the base station". It should be noted that the second timing offset needs to be replaced with the updated second timing offset and other related corresponding replacements.
  • the UE replaces K offset1 in formula (11) with updated K offset2 , the UE refers to the updated The formula determines the value of ⁇ K offset. Then the second adjustment parameter set includes the ⁇ K offset value, and the UE sends the ⁇ K offset value to the base station. Correspondingly, after receiving the ⁇ K offset , the base station will use the updated The formula calculates the updated K offset2 value.
  • the UE sends at least one parameter value among S K , ⁇ K offset , ⁇ K offset_time , ⁇ , ⁇ and other parameters to the base station, and the base station uses the above formula (2) to formula (32) to calculate The corresponding updated second timing offset.
  • the UE sends the change value of at least one parameter value among S K , ⁇ K offset , ⁇ K offset_time , ⁇ , ⁇ and so on to the base station, and the base station uses the change value to calculate the updated timing offset value (That is, the updated second timing offset).
  • Method 2 refer to Method 2 in the "Method for UE to Indicate the Second Timing Offset to the Base Station" above.
  • the base station receives the updated second timing offset or second adjustment parameter sent by the UE. And after the updated second timing offset takes effect, the UE sends the uplink data scheduled by the base station to the base station according to the updated second timing offset.
  • the relevant method for the effective time of the updated second timing offset can refer to the description of the method for determining the effective time of the second timing offset, which will not be described in detail here.
  • Method 2 The base station side decides whether to update the timing offset, including:
  • the timing advance adjustment instruction (for example, the timing advance change rate or the timing advance adjustment value, etc.) sent by the base station
  • the timing advance adjustment instruction is used to instruct the UE to update the timing advance amount.
  • the UE may adjust the timing advance used by the UE for sending signals according to the timing advance adjustment instruction to obtain the adjusted timing advance.
  • the UE sends the second timing offset to the base station according to the adjusted timing advance, or based on the change between the updated second timing offset and the reference timing offset, or the second adjustment parameter set, etc. (refer to the above Method 1);
  • the base station receives the corresponding information sent by the UE, and obtains the second timing offset, and then determines whether to update the timing offset, that is, whether to update the second timing offset.
  • the base station determines whether to update the first timing offset with the second timing offset according to the update threshold, which is not described in detail here.
  • the base station sends the updated second timing offset to the UE or is based on the change between the updated second timing offset and the reference timing offset or is used to indicate The updated adjustment parameter of the second timing offset.
  • the relevant design for the base station to send the above-mentioned parameters to the UE may refer to the above-mentioned method for the UE to obtain the first timing offset from the broadcast message, the method for the UE to indicate the second timing offset to the base station, and the base station to indicate the updated first timing offset to the UE. The description in the method of certain time offset will not be detailed here.
  • the base station sends to the UE at least one parameter value among S K , ⁇ K offset , ⁇ K offset_time , ⁇ , ⁇ , etc.; correspondingly, the UE can use the "method for the UE to obtain the first timing offset from the broadcast message"
  • a method in formula (2) to formula (32) calculates the updated second timing offset.
  • the UE obtains the updated second timing offset based on the received amount based on the change between the updated second timing offset and the reference timing offset or the adjustment parameter used to indicate the updated second timing offset.
  • the timing offset after the updated second timing offset takes effect, the UE sends the uplink data scheduled by the base station to the base station according to the updated second timing offset.
  • the relevant method for the effective time of the updated second timing offset can refer to the description of the method for determining the effective time of the second timing offset, which will not be described in detail here.
  • the uplink data in the above two methods is only a general term, and it can be any information sent by the UE.
  • the UE also needs to update the second timing offset.
  • the scenario is such as: when the UE switches cells; or, when the UE switches beams; or, when the UE switches a part of the bandwidth BWP.
  • different beams can be distinguished according to a bandwidth part (BWP), a transmission configuration indicator (TCI), or a synchronization signal block (SSB).
  • BWP bandwidth part
  • TCI transmission configuration indicator
  • SSB synchronization signal block
  • the beam can be indicated according to BWP, TCI or SSB. Therefore, the BWP, TCI, or SSB switch can be used between the UE and the base station to instruct the beam switch, so for the UE and/or the base station, the actual handover may be the BWP, TCI, or SSB switch. Therefore, the beam described in this application can also be replaced with BWP, TCI or SSB.
  • the beam before the switching may be referred to as the serving beam
  • the beam after the switching may be referred to as the target beam
  • the base station that transmits the service beam may be called the serving base station (or the serving base station is the base station to which the service beam belongs)
  • the base station that transmits the target beam may be called the target base station (or the target base station is the base station to which the target beam belongs).
  • the current terminal device is in the coverage of beam #2
  • beam #2 is the serving beam of the terminal device.
  • the beam #3 (or beam #1) after the UE handover is the target beam.
  • the serving beam can be replaced with a serving BWP, a serving TCI, or a serving SSB; accordingly, the target beam can be replaced with a target BWP, a target TCI, or a target SSB.
  • the following will take a beam as an example to introduce the embodiments of the present application.
  • the timing offset used in the serving beam or the target beam may be different. Therefore, the UE needs to update the second timing offset.
  • the updated second timing offset referred to here can be understood as: the timing offset used by the target beam. The following will take the timing offset used by the target beam as an example to illustrate the present application.
  • the base station informs the UE of the timing offset used in the target beam in advance through the following two methods:
  • the UE uses the base station to inform it of the timing advance used in the target beam or cell to calculate the timing offset.
  • TA_value is the timing advance used by the UE in the target cell or beam
  • K offset represents the timing offset to be used by the UE in the target cell or beam.
  • the base station can also calculate the timing offset to be used by the UE according to this formula.
  • the UE needs to inform the base station of the timing offset to be used in the target beam or cell. For example, when the UE performs an inter-satellite handover, the UE can calculate the timing advance used after the handover by using the position information and the position information of the target satellite (which can be obtained from the ephemeris information). In this case, the UE needs to report that it is in the target beam or cell The timing offset to be used in. Including the following two methods:
  • the UE informs the base station of the timing offset value it will use in the target beam or cell.
  • the UE sends the timing advance that it will use in the target beam or cell to the base station.
  • the base station receives the timing advance sent by the UE, and then according to the formula
  • the timing offset used by the UE in the target beam or cell is calculated.
  • the UE can also calculate the timing offset it will use according to this formula.
  • the UE may obtain the timing offset or the difference of the timing offset used by the target beam or cell through a broadcast message, and the broadcast message may include any one or more of SIB1, MIB, and OSI.
  • the UE may also obtain the timing offset used by the target beam through any one or more of the RRC message, DCI, group DCI, MAC, and TAC.
  • the UE may also obtain the timing offset used by the target beam in a multicast manner.
  • the timing offset used by the target beam may also be carried along with data transmission or in a separately allocated PDSCH. It can be understood that the UE may also obtain the amount of change between the timing offset used by the target beam and the reference timing offset through the above method.
  • the initial BWP signaling or BWP downlink common signaling (BWP-DownlinkCommon) or BWP uplink common signaling (BWP-UplinkCommon) or BWP downlink dedicated signaling can also be used.
  • Let (BWP-DownlinkDedicated) or BWP uplink dedicated signaling (BWP-UplinkDedicated) or measurement signaling (MeasObjectNR) transmit the timing offset used by the UE in the target beam.
  • K offset is issued in BWP-DownlinkCommon or BWP-UplinkCommon.
  • K offset may also be information related to obtaining the timing offset, such as the timing offset value, S K , ⁇ K offset , ⁇ K offset_time , ⁇ , ⁇ and other parameter values or parameter differences.
  • the base station may send the K offset used in the target beam to the UE through BWP-DownlinkDedicated and BWP-UplinkDedicated signaling ; or send the K offset used in the target beam and the K used in the service beam.
  • the offset difference is sent to the UE.
  • the signaling format sent by the base station is as follows:
  • K offset may indicate the UE Koffset used in the target beam; or K offset represents a difference K offset beam and services used in the target beam used.
  • the UE receives the BWP-DownlinkDedicated signaling sent by the base station, and then reads Koffset in the signaling, where the value of Koffset is a value determined by the base station from an integer between 0 and 16.
  • the base station Before initiating BWP or beam or cell handover, the measurement process needs to be triggered. Therefore, the base station can also send the K offset used by the UE in the target beam to the UE through the corresponding RRC signaling in the measurement configuration and handover; or use it in the target beam. the difference between the offset K K offset beam used in service.
  • the signaling format sent by the base station is as follows:
  • the inter-cell handover signaling flow K offset by the RRC reconfiguration (Reconfiguration) message within the serving cell the UE transmits the beam in the beam in the target; and K offset K offset serving beam transmitting beams used in the target used to the UE Difference.
  • an embodiment of the present application provides a method for updating a timing offset, as shown in FIG. 10a and FIG. 10b.
  • the method for updating the timing offset includes:
  • the base station broadcasts a common timing advance (common TA) and a first timing offset (K offset1 ).
  • common TA common timing advance
  • K offset1 first timing offset
  • the UE sends a random access preamble to the base station; correspondingly, the base station receives the random access preamble.
  • the UE without positioning function may use the common timing advance to send the random access preamble.
  • the UE with the positioning function can use the timing advance obtained from the location information of the UE and the satellite information to send the random access preamble; or the UE with the positioning function can also use the common timing advance to send the random access preamble.
  • the base station sends a random access response to the UE, where the random access response includes a timing advance command; correspondingly, the UE receives the random access response.
  • the UE determines the second timing offset according to the used timing advance (that is, the latest timing advance), as shown in formula (1).
  • the UE may obtain the second timing offset according to formula (1), and use the above update threshold to determine to update the first timing offset with the second timing offset.
  • the UE sends an Msg3 message to the base station according to the broadcasted first timing offset; correspondingly, the base station receives the Msg3 message according to the first timing offset; wherein the Msg3 includes the second timing offset.
  • the base station sends a contention resolution message or a conflict resolution message to the UE; correspondingly, the UE receives the contention resolution message or conflict resolution message.
  • the base station sends a timing advance adjustment instruction to the UE; correspondingly, the UE receives the timing advance adjustment instruction.
  • the UE determines the latest timing advance according to the timing advance adjustment instruction; or, the location information of the UE and the location information of the satellites. Further, after the UE determines the latest timing advance, it can calculate the updated second timing offset according to the latest timing advance. And the UE sends the updated second timing offset to the base station.
  • the UE sends the uplink data scheduled by the base station to the base station according to the second timing offset; correspondingly, the base station receives the uplink data according to the second timing offset.
  • the UE may also send the uplink data scheduled by the base station to the base station according to the updated second timing offset.
  • the uplink subcarrier interval is 15 kHz.
  • the UE calculates whether K offset1 needs to be updated according to the latest TA value to be used when sending Msg3.
  • the UE After the UE successfully accesses the system, in the subsequent communication process between the UE and the base station, the distance between the UE and the satellite will change, and the timing advance of the UE will also change accordingly.
  • the UE calculates the latest timing advance according to the TA adjustment instruction or TA rate instruction issued by the base station or according to its own location information and ephemeris information, the timing advance of the UE sending uplink data has changed. Assume that the UE is now The TA value used is 18.9ms, according to If it is found to be different from the K offset2 currently in use, the UE reports the K offset2 to the base station.
  • step 1101 to step 1103 may correspond to step 1001 to step 1003.
  • the UE sends Msg3 to the base station according to the broadcasted first timing offset; correspondingly, the base station receives the Msg3 according to the first timing offset; wherein, the Msg3 includes the timing advance used by the UE.
  • the base station determines the second timing offset according to the timing advance used by the UE.
  • the base station may also use the above update threshold to determine to update the first timing offset with the second timing offset.
  • the base station sends a contention resolution message or a conflict resolution message to the UE; correspondingly, the UE receives the contention resolution message or the conflict resolution message; wherein the contention resolution message or the conflict resolution message includes the second timing offset.
  • the base station sends a timing advance adjustment instruction to the UE; correspondingly, the UE receives the timing advance adjustment instruction.
  • the UE determines the latest timing advance according to the timing advance adjustment instruction; or, the location information of the UE and the location information of the base station.
  • the UE sends the latest timing advance to the base station; correspondingly, the base station receives the latest timing advance.
  • the base station determines the updated second timing offset according to the latest timing advance; and the base station sends the updated second timing offset to the UE.
  • the UE sends uplink data to the base station according to the second timing offset; correspondingly, the base station receives the uplink data according to the second timing offset.
  • the UE may also send uplink data to the base station according to the updated second timing offset.
  • Fig. 10a and Fig. 10b are only two examples.
  • the various classification methods shown in this application can also be combined according to internal logic, and these solutions fall into the protection scope of this application.
  • the method shown above can be applied to a scenario: the area (beam or cell or BWP) covered by the base station may include UEs with positioning functions, UEs without positioning functions, or UEs not using positioning functions.
  • the method shown above can also be applied to a scenario: the UE in the area covered by the base station has no positioning function or does not use the positioning function. For example, because the UE does not have a positioning function or does not use a positioning function, the UE needs to determine the first timing offset according to the common timing advance broadcast by the base station.
  • formula (1) can be replaced by formula (33):
  • TA_common is the common timing advance
  • TA_command is the timing advance adjustment included in the random access response
  • the method shown above can also be applied to scenarios: the UE adjusts the timing advance in strict accordance with the timing advance command sent by the base station, and the UE adjusts the timing advance in strict accordance with the timing advance adjustment instruction of the base station, so that the UE and The base station knows the timing advance adjustment value used by the UE in real time.
  • the UE adjusts the timing advance strictly according to the method indicated by the base station, after the UE receives the Msg2 sent by the base station, the Msg3 sent by the UE may not include indication information. And after the base station sends the timing advance adjustment instruction to the UE, the UE does not send the updated second timing offset to the base station; or the second set of adjustment parameters, and so on.
  • the UE will adjust the timing advance strictly according to the timing advance command (included in Msg2) and the timing advance adjustment instruction sent by the base station. Therefore, the base station and the UE will adjust the timing advance for changes in the timing offset. All know.
  • the base station and the UE may agree on a formula for updating the timing offset, and the base station and the UE may update the timing offset according to the formula and the update threshold.
  • this method proposes a method to avoid signaling interaction and update the timing offset, which can save signaling overhead. Specifically:
  • the UE adjusts the used timing advance according to the timing advance adjustment instruction of the base station.
  • the UE can refer to the difference between the timing offset obtained by formula (1) and the timing offset being used to determine whether to update the timing offset (at this time, Substitute the latest timing advance adjustment amount into TA_New).
  • the UE determines whether to update the first timing offset with the second timing offset according to the update threshold, which is not described in detail here. If the UE determines to update the timing offset, the new timing offset is adopted according to the effective time.
  • the method for determining the effective time of the second timing offset which will not be described in detail here.
  • the base station While sending the timing advance adjustment instruction to the UE, the base station can also calculate the timing advance that the UE is currently using. Therefore, you can also refer to the difference between the timing offset obtained by formula (1) and the timing offset being used to determine whether to update the timing offset. For the specific operation, refer to Figure 6 for the base station according to the update threshold. It is determined whether to use the second timing offset to update the description of the first timing offset, which is not described in detail here. If the base station determines to update the timing offset, the new timing offset is adopted according to the effective time. For the relevant design of the effective time of the updated timing offset, reference may be made to the description of the method for determining the effective time of the second timing offset, which will not be described in detail here.
  • This method achieves the purpose of saving signaling by making the UE and the base station use the same formula to calculate and update the timing offset. It is understandable that the method is illustrated with formula (1) as an example, and the specific form of the formula is not limited.
  • the UE and the base station can respectively determine the updated timing offset according to the same formula or method, so that the updated timing offset can be directly at the agreed time or the preset time or the time specified in the agreement. Take effect.
  • This method avoids signaling interaction between the UE and the base station, and saves signaling overhead.
  • a two-step random access process is currently proposed, as shown in Figure 11, in which the terminal device simultaneously sends a random access preamble and a random access preamble to the base station in the first step.
  • Data the second step, the base station sends a random access response to the terminal device.
  • the terminal device sends the random access preamble and data in the first step, which can reduce the delay of uplink data transmission.
  • the base station does not need to send the scheduling information corresponding to Msg3 for the terminal equipment, so that the signaling overhead can be reduced.
  • MsgA can be used to represent the first interactive message of two-step random access.
  • the MsgA is sent by the terminal device to the base station.
  • the MsgA message includes the MsgA preamble part and the MsgA data part.
  • the preamble is carried on the MsgA physical random access channel (physical random access channel). , PRACH) physical channel
  • the data part is carried on the MsgA PUSCH physical channel for transmission.
  • FIG. 12 is a schematic flowchart of a method for updating a timing offset provided by an embodiment of the present application.
  • the method can be applied to two-step random access. As shown in Figure 12, the method includes:
  • the base station broadcasts a first timing offset K offset1 .
  • the base station broadcasts any one or more of the common timing advance (common TA), the orbit height where the base station is located, the duration of the MsgB receiving window, and the delayed start duration of the MsgB receiving window.
  • common TA common timing advance
  • the UE refers to the aforementioned method for the UE to obtain the first timing offset from the broadcast message, which will not be described in detail here.
  • the UE uses the broadcast common TA or the TA value calculated by the UE to send an MsgA to the base station to apply for access to the system; correspondingly, the base station receives the MsgA.
  • the base station sends an MsgB to the UE; correspondingly, the UE receives the MsgB.
  • MsgB includes timing advance command, preamble ID and so on.
  • the UE sends an MsgB HARQ-ACK message to the base station according to the first timing offset K offset1 ; correspondingly, the base station receives the HARQ-ACK message.
  • the UE may also determine the second timing offset K offset2 according to the used timing advance.
  • K offset2 and K offset1 reference may be made to the update threshold in FIG. 6 described above.
  • the timing advance used by the UE can be understood as: the timing advance determined according to the timing advance command included in the MsgB.
  • the UE sends instruction information to the base station; correspondingly, the base station receives the instruction information.
  • the indication information is used to indicate the second timing offset. It can be understood that as to how to indicate the second timing offset, reference may be made to the aforementioned method for the UE to indicate the second timing offset to the base station.
  • the base station After the UE sends the indication information to the base station, the base station receives the indication information sent by the UE and obtains the second timing offset. After the second timing offset takes effect, the UE sends the uplink data scheduled by the base station to the base station according to the updated second timing offset.
  • the relevant method for the effective time of the second timing offset can refer to the description of the method for determining the effective time of the second timing offset, which will not be described in detail here.
  • the base station may also only broadcast the common timing advance common TA; in this case, the UE without the positioning function can use the common TA to send the preamble to apply for access, and the UE with the positioning function may according to the location of the UE.
  • Information and satellite position information (which can be obtained from the ephemeris information) obtain a more accurate TA value, which can be used to adjust the timing in advance to send the preamble. Therefore, the UE with positioning function can carry the TA value used by it in the PUSCH data when sending MsgA.
  • the method of sending the TA value can refer to the method of reporting the latest TA value used by oneself in Msg3 in the four-step random access.
  • the base station can determine whether to update the timing offset according to the latest TA value of the UE, and the relevant design for determining whether to update can refer to the update threshold in FIG. 6 described above.
  • the base station can distinguish whether the UE uses the positioning function
  • the UE without the positioning function may not carry the TA value it uses in the MsgA.
  • the method of distinguishing whether the UE uses the positioning function such as distinguishing by different preamble groups, by the identifier in the uplink signal, or by whether the UE carries the used TA value in Msg A, to distinguish whether the UE has/used positioning Function etc.
  • the UE without the positioning function also carries the TA value used in the PUSCH data when sending the MsgA.
  • the method of sending the TA value can refer to the method of reporting the latest TA value used by oneself in Msg3 in the four-step random access.
  • TAC_value is the adjustment value included in the timing advance adjustment instruction to be sent by the base station to the UE. It can be understood that the TA value used by the UE carried in the MsgA can be used to determine the second timing offset K offset2 or to determine whether to update the timing offset. Or the base station sends the K offset2 value to the UE through MsgB.
  • the TA value used by the UE is not carried in the MsgA, it means that the UE uses the broadcast common TA value to send the preamble, so both the UE and the base station use the formula or K offset2 is obtained by calculation.
  • both the base station side and the UE side know the K offset2 used by the UE.
  • the MsgB sent by the base station to the UE may not carry K offset2 .
  • the base station side can also inform the UE of K offset2 through MsgB.
  • the method shown in FIG. 12 may further include:
  • the base station sends a timing advance adjustment instruction to the UE, and the UE receives the timing advance adjustment instruction.
  • the UE sends data information to the base station according to the timing advance adjustment instruction, the data information includes the updated second timing offset; or, the data information includes a second adjustment parameter set, and the second adjustment parameter set is used for Determine the updated second timing offset.
  • the method of updating the timing offset in the two-step random access method shown above can also be applied to the UE in the area covered by the base station that has no positioning function or does not use the positioning function. And it can also be applied to the UE to adjust the timing advance in strict accordance with the timing advance command sent by the base station, so that both the UE and the base station know the timing advance adjustment value used by the UE in real time.
  • the UE performs timing advance adjustment.
  • the base station side compensates for a part of the time delay, and the UE makes timing advance adjustment for the remaining time delay.
  • the parameters related to the timing advance introduced above can all be subtracted from the value of the delay compensation for the uplink signal on the base station side when the UE determines the timing offset.
  • max_RTDD represents the maximum round-trip delay difference of the beam or cell covered by the satellite
  • delay_compensated represents the value of delay compensation for the uplink signal on the base station side. It can be seen that the maximum round-trip delay difference is the difference between the maximum round-trip delay between the UE and the base station in the beam or cell and the delay compensation value on the base station side.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application. As shown in FIG. 13, the communication device includes a processing unit 1301, a sending unit 1302, and a receiving unit 1303.
  • the processing unit 1301 is configured to generate a third message; the third message includes indication information, the indication information is used to indicate a second timing offset, and the second timing offset is an updated A first timing offset, where the first timing offset is used to indicate the degree of delay by which the communication device delays sending the third message;
  • the sending unit 1302 is configured to send a third message to the network device according to the first timing offset; the sending unit 1302 is further configured to send a fifth message to the network device according to the second timing offset.
  • the sending unit 1302 is further configured to send a first message to the network device, and the first message includes a random access preamble; the receiving unit 1303 is also configured to receive The second message includes a random access response message; and the receiving unit 1303 is further configured to receive a fourth message sent by the network device, and the fourth message includes a random access contention resolution message.
  • the indication information used to indicate the second timing offset includes: the indication information includes the second timing offset.
  • the indication information used to indicate the second timing offset includes: the indication information includes a first adjustment parameter set, and the first adjustment parameter set is used to determine the second timing offset .
  • the first adjustment parameter set includes any one or more of the following: a parameter determined based on the delay start duration of the RAR receiving window of the random access response and the duration of the RAR receiving window; or A parameter determined by the delay start duration of the random access contention resolution timer and the duration of the random access contention resolution timer; or a parameter determined based on the common timing advance; or a parameter determined based on the orbit height where the network device is located; Or a parameter determined based on the round-trip delay between the communication device and the network device.
  • the fourth message includes the second timing offset; or, the fourth message includes a change based on the second timing offset and the reference timing offset ;
  • the reference timing offset is a timing offset currently used by the communication device or a preset timing offset.
  • the receiving unit 1303 is further configured to receive validation information sent by the network device, where the validation information is used to indicate the valid time of the second timing offset; or the sending unit 1302 is further configured to Used to send effective information to the network device, where the effective information is used to indicate the effective time of the second timing offset; or the second timing offset is m time slots after the communication device sends the third message If effective, the m is a preset integer; or the second timing offset takes effect n time slots after the communication device receives the fourth message, and the n is a preset integer.
  • the receiving unit 1303 is further configured to receive a broadcast message sent by the network device; wherein, the broadcast message includes any one or more of the following: the delay start duration of the RAR receiving window And the length of the RAR reception window; or the delayed start duration of the random access contention resolution timer and the duration of the random access contention resolution timer; or the common timing advance; or the orbit height where the network device is located.
  • the first timing offset satisfies the following conditions:
  • the K offset1 is the value of the first timing offset
  • the RAR_window is the duration of the RAR receiving window, and the duration of the RAR receiving window is used to indicate the duration of the communication device receiving the RAR
  • the RAR_offset is the RAR
  • the delay start duration of the receiving window is used to indicate the delay time for delaying the opening of the RAR receiving window after the communication device sends the first message
  • the slot_duration is the duration unit
  • the ⁇ K offset is the timing offset difference, and the ⁇ K offset is an integer.
  • the first timing offset satisfies the following condition:
  • the RCR_timer is the duration of the random access contention resolution timer, and the duration of the random access contention resolution timer indicates that after the communication device sends the third message, the random access contention resolution timer is started and the random access contention resolution timer is received.
  • the maximum time interval allowed between the fourth messages; the RCR_offset is the delayed start duration of the random access contention resolution timer, and the delayed start duration of the random access contention resolution timer is used to indicate that the communication device sends the After the third message, delay the delay time for starting the random access contention resolution timer; the slot_duration is the duration unit; the ⁇ K offset is the timing offset difference, and the ⁇ K offset is an integer.
  • the fifth message includes any one of data information, feedback message, or sounding reference signal SRS.
  • the receiving unit 1303 is further configured to receive a timing advance adjustment instruction sent by the network device, and the timing advance adjustment instruction is used to instruct to update the second timing offset; the sending unit 1302 is further configured to Used to send an updated second timing offset or a second set of adjustment parameters to the network device according to the second timing offset, where the second set of adjustment parameters is used to determine the updated second timing offset .
  • the sending unit 1302 is further configured to receive an updated second timing offset sent by the network device or based on the updated second timing offset when any one or more of the following conditions is met.
  • the processing unit 1301 can be one or more processors
  • the sending unit 1302 can be a transmitter
  • the receiving unit 1302 can be a receiver.
  • the sending unit 1302 and the receiving unit 1303 can be integrated into one device, such as a transceiver.
  • the processing unit 1301 can be one or more processors or logic circuits, etc.
  • the sending unit 1302 can be an output interface
  • the receiving unit 1303 can be an input interface
  • the sending unit 1302 and the receiving unit 1303 are integrated In a unit, such as an input/output interface or a communication interface, etc.
  • the communication device in the embodiment of the present application has any function of the terminal device in the above method, and will not be repeated here.
  • the receiving unit 1303 is configured to receive the third message sent by the terminal device according to the first timing offset; wherein, the first timing offset is used to indicate the delay of the network device The degree of delay in receiving the third message; and the third message includes indication information, the indication information is used to indicate a second timing offset, and the second timing offset is the updated first timing offset; The receiving unit 1303 is further configured to receive the fifth message sent by the terminal device.
  • the receiving unit 1303 is configured to receive a first message sent by the terminal device, and the first message includes a random access preamble; the sending unit 1302 is configured to send a second message to the terminal device. Message, the second message includes a random access response message; the sending unit 1302 is further configured to send a fourth message to the terminal device, and the fourth message includes a random access contention resolution message.
  • the indication information used to indicate the second timing offset includes: the indication information includes the second timing offset.
  • the indication information used to indicate the second timing offset includes: the indication information includes a first adjustment parameter set, and the first adjustment parameter set is used to determine the second timing offset .
  • the first adjustment parameter set includes any one or more of the following: a parameter determined based on the delay start duration of the RAR receiving window of the random access response and the duration of the RAR receiving window; or A parameter determined by the delayed start duration of the random access contention resolution timer and the duration of the random access contention resolution timer; or a parameter determined based on the common timing advance; or a parameter determined based on the height of the orbit where the communication device is located; Or a parameter determined based on the round-trip delay between the terminal device and the communication device.
  • the fourth message includes the second timing offset; or, the fourth message includes a change based on the second timing offset and the reference timing offset ;
  • the reference timing offset is a timing offset currently used by the terminal device or a preset timing offset.
  • the sending unit 1302 is further configured to send validation information to the terminal device, where the validation information is used to indicate the valid time of the second timing offset; or the receiving unit 1303 also uses When receiving the effective information sent by the terminal device, the effective information is used to indicate the effective time of the second timing offset; or the second timing offset is m times after the communication device receives the third message When the slot is valid, the m is a preset integer; or the second timing offset is valid n time slots after the communication device sends the fourth message, and the n is a preset integer.
  • the sending unit 1302 is also used to send a broadcast message; wherein, the broadcast message includes any one or more of the following: the delay start duration of the RAR receiving window and the RAR receiving window Or the duration of the random access contention resolution timer and the duration of the random access contention resolution timer; or the common timing advance; or the orbit height where the communication device is located.
  • the first timing offset satisfies the following conditions:
  • the K offset1 is the value of the first timing offset
  • the RAR_window is the duration of the RAR receiving window, the duration of the RAR receiving window is used to indicate the duration of the terminal device receiving the RAR
  • the RAR_offset is the RAR
  • the delay start duration of the receiving window is used to indicate the delay time for delaying the opening of the RAR receiving window after the terminal device sends the first message
  • the slot_duration is the duration unit
  • the ⁇ K offset is the timing offset difference
  • the ⁇ K offset is an integer.
  • the first timing offset satisfies the following condition:
  • the RCR_timer is the duration of the random access contention resolution timer, and the duration of the random access contention resolution timer indicates that after the terminal device sends the third message, the random access contention resolution timer is started and the random access contention resolution timer is received.
  • the maximum time interval allowed between the fourth messages; the RCR_offset is the delayed start duration of the random access contention resolution timer, and the delayed start duration of the random access contention resolution timer is used to indicate that the terminal device sends the After the third message, delay the delay time for starting the random access contention resolution timer; the slot_duration is the duration unit; the ⁇ K offset is the timing offset difference, and the ⁇ K offset is an integer.
  • the fifth message includes any one of data information, feedback message, or sounding reference signal SRS.
  • the sending unit 1302 is further configured to send a timing advance adjustment instruction to the terminal device, where the timing advance adjustment instruction is used to instruct to update the second timing offset; the receiving unit 1303 also It is used to receive the updated second timing offset or the second adjustment parameter set sent by the terminal device, where the second adjustment parameter set is used to determine the updated second timing offset.
  • the sending unit 1302 is further configured to send an updated second timing offset to the terminal device or based on the updated first timing offset when any one or more of the following conditions are met. 2.
  • the processing unit 1301 can be one or more processors, the sending unit 1302 can be a transmitter, and the receiving unit 1302 can be a receiver. Or, the sending unit 1302 and the receiving unit 1303 can be integrated into one device, such as a transceiver.
  • the processing unit 1301 can be one or more processors or logic circuits, etc.
  • the sending unit 1302 can be an output interface
  • the receiving unit 1303 can be an input interface
  • the sending unit 1302 and the receiving unit 1303 are integrated In a unit, such as an input/output interface or a communication interface, etc.
  • the communication device in the embodiment of the present application has any function of the network device in the above method, and will not be repeated here.
  • the communication device 140 includes at least one processor 1420, which is used to implement the function of the terminal device in the method provided in the embodiment of the present application; or, is used to implement the function of the network device in the method provided in the embodiment of the present application. And the communication device 140 may also include a transceiver 1410. The transceiver is used to communicate with other devices/devices through the transmission medium.
  • the processor 1420 uses the transceiver 1410 to send and receive data and/or signaling, and is used to implement the corresponding method in the foregoing method embodiment.
  • the communication device 140 may further include at least one memory 1430 for storing program instructions and/or data.
  • the memory 1430 and the processor 1420 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1420 may operate in cooperation with the memory 1430.
  • the processor 1420 may execute program instructions stored in the memory 1430. At least one of the at least one memory may be included in the processor.
  • the embodiment of the present application does not limit the specific connection medium between the transceiver 1410, the processor 1420, and the memory 1430.
  • the memory 1430, the processor 1420, and the transceiver 1410 are connected by a bus 1440.
  • the bus is represented by a thick line in FIG. 14.
  • the connection mode between other components is only for schematic illustration , Is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 14, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the specific implementation of the communication device shown in FIG. 14 can refer to the function of the terminal device shown in FIG. 13; alternatively, the specific implementation method of the communication device shown in FIG. 14 can also refer to the network device shown in FIG. Function.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be realized in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium. It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • the present application also provides a computer program for executing the operations and/or processing performed by the terminal device in the method provided by the present application. .
  • This application also provides a computer program, which is used to execute the operations and/or processing performed by the network device in the method provided in this application.
  • This application also provides a computer-readable storage medium that stores computer instructions, which when the computer instructions run on the computer, cause the computer to perform the operations and operations performed by the terminal device in the method provided in this application. /Or processing.
  • This application also provides a computer-readable storage medium that stores computer instructions, which when the computer instructions run on a computer, cause the computer to perform the operations and/or operations performed by the network device in the method provided in this application Or deal with.
  • the application also provides a computer program product.
  • the computer program product includes computer code or instructions. When the computer code or instructions are run on a computer, the method in the method embodiment of the application is implemented.
  • the application also provides a computer program product.
  • the computer program product includes computer code or instructions. When the computer code or instructions are run on a computer, the method in the method embodiment of the application is implemented.
  • This application also provides a wireless communication system, including the terminal device and the network device in the embodiment of this application.
  • Msg2 can carry an adjustment parameter ⁇ K, which is determined based on the coverage of the beam where the UE is located.
  • the Koffset adjustment parameter ⁇ K value can also be determined based on the coverage of the cell where the UE is located.
  • Koffset f ⁇ Max_RTD_cell, time_duration ⁇
  • Max_RTD_cell is the maximum round-trip delay between the UE and the base station in the coverage area of the cell where the UE is located.
  • Koffset is determined by the coverage of the beam, Similarly, optionally, the Koffset is determined based on the coverage area of the cell, and the above formula can be changed to
  • Carrying ⁇ K in Msg2 can be changed to be transmitted in RRCSetup signaling, that is, transmitted in Msg4.
  • RRCSetup signaling msg4
  • the Koffset used by the UE when sending Msg3 can work (that is, it is ensured that the initial Koffset obtained by the UE according to the broadcast message is greater than the maximum round-trip delay).
  • Koffset may be beam-level or cell-level Koffset.
  • the broadcast parameters can also use the duration of the RAR reception window, the duration of the delayed start of the RAR reception window, the duration of the random access contention resolution timer, and the delayed start duration of the random access contention resolution timer.
  • RAR_window is the duration of the RAR receiving window
  • RAR_delay is the delayed start duration of the RAR receiving window.
  • RCR_timer is the duration of the random access contention resolution timer
  • RCR_offset is the delayed start duration of the random access contention resolution timer
  • TA_common is the broadcast common timing advance.
  • the signaling overhead can be saved through joint broadcast parameters and ⁇ K.
  • the cell-level Koffset, beam-level Koffset, and UE-level Koffset are compared from the perspective of signaling overhead and end-to-end delay. It can be seen that the beam-level Koffset has a smaller end-to-end delay than the cell-level Koffset, and the beam-level Koffset has a smaller signaling overhead than the UE-level Koffset.
  • FIG. 15 is a schematic diagram of a reference point-based NTN communication system provided by the present application, and the timing offset can be updated in the reference point-based NTN communication system.
  • the method for updating the timing offset is applicable to a four-step random access scenario, and the method specifically includes:
  • a satellite broadcasts multiple Koffset value information to the coverage area of a cell.
  • the UE After receiving the broadcast message, the UE determines the corresponding Koffset value according to the received SSB index number (SSB index).
  • the multiple Koffset value information in step 1501 may be Koffset numbers or IDs, such as Koffset1, Koffset2, Koffset3, and so on.
  • Koffset1 value is used.
  • the Koffset3 value is used.
  • the Koffset value is associated with the SSB index number (for example, a mapping relationship), so that the UE can use the beam-level Koffset value, which can reduce the end-to-end delay.
  • the satellite can broadcast Koffset1, ⁇ Koffset2, ⁇ Koffset3, ⁇ Koffset4,... and other information.
  • the UE can obtain the corresponding Koffset value through the following formula:
  • Koffset2 Koffset1+ ⁇ Koffset2
  • Koffset3 Koffset1+ ⁇ Koffset3
  • Koffset4 Koffset1+ ⁇ Koffset4
  • Koffset2 Koffset1+ ⁇ Koffset2
  • Koffset3 Koffset1+ ⁇ Koffset2+ ⁇ Koffset3
  • Koffset4 Koffset1+ ⁇ Koffset2+ ⁇ Koffset3+ ⁇ Koffset4
  • SSB synchronous broadcast blocks
  • Table 3 The relationship between the number of synchronous broadcast blocks, subcarrier spacing and carrier frequency
  • Subcarrier spacing Carrier frequency Number of simultaneous broadcast blocks 15k f ⁇ 3GHz 4 15k 3GHz ⁇ f ⁇ 6GHz 8 30k f ⁇ 3GHz 4 30k 3GHz ⁇ f ⁇ 6GHz 8 120k f>6GHz 64 240k f>6GHz 64
  • the multiple Koffset value information in step 1501 may be multiple Koffset reference point coordinates, such as Koffset reference point coordinates 1, Koffset reference point coordinates 2, Koffset reference point coordinates 3, and so on.
  • the UE uses the corresponding Koffset reference point coordinates to calculate the Koffset value to be used according to the received SSB index number (SSB index).
  • SSB index SSB index number
  • the Koffset reference point coordinate 3 is used to obtain the Koffset value to be used.
  • the UE calculates the round-trip delay RTD_reference between the Koffset reference point 3 and the satellite according to the Koffset reference point coordinates 3 and the satellite position coordinates (which can be obtained from the ephemeris information), and then calculates the Koffset value to be used according to the round-trip time delay, optional , Can be calculated using the following formula:
  • the multiple Koffset value information may be multiple Koffset reference point coordinates and one Koffset feeder link reference point coordinate (refer to the design described in FIG. 8a and its method), for example, Koffset feeder link reference point coordinates , Koffset reference point coordinate 1, Koffset reference point coordinate 2, Koffset reference point coordinate 3, etc.
  • determining the corresponding Koffset value according to the received SSB index number includes: using the Koffset feeder link reference according to the received SSB index number (SSB index) Point coordinates and the corresponding Koffset reference point coordinates are used to calculate the Koffset value to be used. For example, when the SSB index number received by the UE is 1, the Koffset feeder link reference point coordinate and the corresponding Koffset reference point coordinate 1 are used to obtain the Koffset value to be used.
  • the UE calculates the round-trip delay RTD_reference between the Koffset reference point and the satellite according to the Koffset reference point coordinate 1 and the satellite position coordinates (which can be obtained from the ephemeris information).
  • the UE calculates the round-trip delay RTD_reference_feeder between the Koffset feeder link reference point and the satellite according to the Koffset feeder link reference point coordinates and the satellite position coordinates. Then calculate the Koffset value to be used according to RTD_reference and RTD_reference_feeder.
  • an indicator bit is added to indicate whether multiple Koffset values or multiple Koffset reference point coordinates are transmitted.
  • a Koffset value/Koffset reference point coordinate indication bit is introduced to indicate whether at least one Koffset value or at least one Koffset reference point coordinate is transmitted later. For example, if the indicator bit is 0, it means that at least one Koffset value is transmitted later, and if the indicator bit is 1, it means that at least one Koffset reference point coordinate is transmitted later.
  • the Koffset value transmitted later can be: Koffset1, Koffset2, Koffset3.
  • the Koffset reference point coordinates transmitted later can be: Koffset reference point coordinates 1, Koffset reference point coordinates 2, Koffset reference point coordinates 3.
  • the Koffset feeder link reference point coordinates can be transmitted together with the Koffset reference point coordinates, as shown in Figure 18-Koffset value/Koffset reference point coordinate indicator diagram B.
  • Steerable mode When the system is working in the staring mode, the coverage area of the satellite beam will remain unchanged for a period of time, and the broadcast Koffset reference point will not change.
  • the system can be configured to broadcast the Koffset reference point through the indicator bit, so the system does not need to update the value, which reduces the complexity of the system broadcast update.
  • Non-gaze mode When the system is working in non-gaze mode, the coverage area of the satellite beam will move with the movement of the satellite. At this time, the Koffset value of the beam will not change, so the system can be configured to broadcast the Koffset value through the indicator bit .
  • the Koffset value or the Koffset reference point can also be replaced with the corresponding Koffset angle value.
  • the UE uses the angle value of Koffset to calculate the round-trip delay value, and then uses a method similar to the above to calculate the Koffset value.
  • Koffset feeder link angle Koffset feeder link angle
  • the satellite (gNB) broadcasts at least one Koffset angle (corresponding to the beam) and Koffset feeder chain to the UE Road angle.
  • the Koffset angle can replace the aforementioned Koffset value or Koffset reference point
  • the Koffset feeder link angle can replace the aforementioned Koffset value or Koffset feeder link reference point.
  • the Koffset to be used can be calculated according to the following formula (for other formula symbols, refer to the above embodiment):
  • the Koffset to be used can be calculated according to the following formula:
  • the Koffset angle is used to represent Koffset. Compared with the Koffset value, frequent updates can be avoided and the complexity of the system broadcast process can be reduced.
  • the method for determining the initial timing offset of the cell level and the initial timing offset of the beam level, as well as the updating method of the timing offset, etc. are introduced above.
  • the method for determining the initial timing offset of the beam level and the method of determining the initial timing offset of the cell level will be further introduced below.
  • the method for determining the initial timing offset of the beam level (such as beam-specific or beam-specific) is as follows:
  • the base station broadcasts multiple Koffset (also written as K offset in this article) value information to the cell coverage area, and then the UE determines the corresponding Koffset value according to the SSB index number or TCI number or beam number, etc. .
  • the base station broadcasting multiple Koffset value information within the cell coverage includes: the base station broadcasts multiple timing offset Koffset values through SIB1 messages, or the base station broadcasts Koffset values corresponding to multiple beams through broadcast messages, such as SIB1 messages.
  • the beam level timing offset refers to that the UEs in the beams corresponding to the offset all use the same timing offset value, that is, they all use the beam level timing offset.
  • the timing offset of the beam level may be determined by the maximum round-trip delay between the gNB and the UE in the beam.
  • the timing offset of the beam level includes the initial timing offset of the beam level.
  • the "initial" in the initial timing offset means the initial (or the first n times, such as the first or second time, etc.) of the beam. Parameters or basic parameters used in the beam.
  • the base station may broadcast multiple Koffset values through random access configuration general RACH-ConfigGeneric signaling or signaling with similar functions in the SIB1 message.
  • the RACH-ConfigGeneric signaling bears the parameter set that needs to be used during the random access system of the terminal.
  • it can also be understood as adding multiple Koffset values to the RACH-ConfigGeneric parameter (or called signaling, etc.) in the SIB1 signal.
  • the RACH-ConfigGeneric signaling may include one or more variable fields, and the one or more variable fields are used to indicate the aforementioned multiple Koffset values.
  • the RACH-ConfigGeneric parameter may include a variable field Koffset-list, and the variable field Koffset-list may indicate multiple Koffset values, that is, indicate timing offset values corresponding to multiple beams.
  • the variable domain Koffset-list may include two variable domains Koffset1 and a variable domain Koffset-diff.
  • the variable domain Koffset1 represents the timing offset value of beam 1
  • the variable domain Koffset-diff represents the timing offset of other beams and beam 1. The difference in the amount of movement.
  • variable domain Koffset-list can represent the Koffset of 64 beams, that is, the difference of 63 timing offsets can be used to determine the timing corresponding to the 63 beams
  • the offset and Koffset1 can be used to determine the timing offset corresponding to one beam.
  • variable domain Koffset-diff in the embodiment of the present application can be understood as ⁇ Koffset2, ⁇ Koffset3, or ⁇ Koffset4 in the foregoing embodiment.
  • the RACH-ConfigGeneric signaling format in the SIB1 message is as follows:
  • the value range of the variable domain Koffset1 and the variable domain Koffset-diff may be based on the maximum round-trip delay between the cells or beams in the communication scenario supported by the standard protocol (for example, related to the orbit height and the minimum communication angle), the cell Or it is related to the determination of the maximum round-trip delay difference between beams and the unit slot_duration for calculating the timing offset.
  • the variable field Koffset1 needs 13 bits to indicate 0 ⁇ 4332.
  • the 13bit of the variable domain Koffset1 can represent the range from 0 to 8191. In the above signaling example, only the range from 0 to 4332 is used. The unused range from 4333 to 8191 can be reserved or reserved for other indications. use.
  • the value range of the variable domain Koffset-diff can be determined by the maximum round-trip delay difference between the beams, the satellite orbit height, the cell size, or the minimum communication angle.
  • the cell diameter is 450km
  • the minimum communication angle is 10 degrees
  • the 6 bits of a certain timing offset difference in the variable field Koffset-diff can represent -31 to +31. Among them, only-is used in the above signaling examples.
  • the range of 24 ⁇ +24, the unused range of -31 ⁇ +-25 and +25 ⁇ +31 can be reserved (reserved), and can also be reserved for other indication purposes.
  • the UE can obtain the Koffset value of beam 1 corresponding to Koffset1 according to the variable domain Koffset1 and the variable domain Koffset-diff. If Koffset-diff has 63 timing offset differences, then It can be obtained that the Koffset value of beam 2 is Koffset1+the first Koffset-diff value (that is, Koffset1+the first timing offset difference), and the Koffset value of beam 3 is Koffset1+the second Koffset-diff value (that is, Koffset1+the second). Timing offset difference), and so on.
  • the beam number such as beam 1, beam 2, etc.
  • the beam number can be linked with the SSB index number or the TCI number, for example, the SSB index number or the TCI number is the beam number.
  • Such a signaling transmission method not only provides flexibility, but also saves signaling bit overhead in a multi-beam scenario.
  • the Koffset-diff variable field uses 6 bits to represent 0 ⁇ 48.
  • the UE When the UE receives the Koffset-diff value, it will subtract a fixed value (assuming the fixed value is 24), so that the timing offset difference used by the UE is expressed in the range -24 ⁇ +24. For a specific example, a value in the Koffset-diff variable field is 8. After the UE receives this value, it subtracts the fixed value of 24 to get -16. The UE uses -16 as the difference in the timing offset of the beam corresponding to the value. use.
  • the method for determining the cell-specific or cell-specific initial timing offset is as follows:
  • the base station broadcasts the initial Koffset value of the cell through a broadcast message (such as SIB1) or sends the initial Koffset value to the UE through RRC signaling (such as RRC setup RRCSetup signaling, RRC reconfiguration RRCReconfiguration signaling, or RRC resume RRCResume signaling, etc.).
  • RRC signaling such as RRC setup RRCSetup signaling, RRC reconfiguration RRCReconfiguration signaling, or RRC resume RRCResume signaling, etc.
  • the base station can enable the UE in the cell to obtain the initial Koffset value through the foregoing method, so that the UE in the cell uses the initial Koffset value.
  • the cell-level timing offset refers to that the UEs in the cells corresponding to the timing offset all use the same timing offset value, that is, they all use the cell-level timing offset.
  • the cell-level timing offset can be determined by the maximum round-trip delay between the gNB and the UE in the cell.
  • the cell-level timing offset includes the cell-level initial timing offset, and the "initial" in the initial timing offset refers to the parameters used in the initial period of access to the cell or the basic parameters used in the cell.
  • the base station may broadcast the Koffset value corresponding to the cell (cell) through the RACH-ConfigGeneric signaling in the SIB1 message.
  • one or more variable fields may be seen in the RACH-ConfigGeneric signaling, and the one or more variable fields may be used to indicate the aforementioned Koffset value.
  • the one or more variable domains may be the variable domains Koffset_initial, Koffset-LEO and Koffset-complement, Koffset-LEO-600, Koffset-LEO-1200 and Koffset-GEO in the following embodiments.
  • RACH-ConfigGeneric signaling The specific description of the RACH-ConfigGeneric signaling can be as follows:
  • a new variable field Koffset_initial is added to the RACH-ConfigGeneric parameter to indicate the initial timing offset used by the UE in the cell.
  • the value range of the variable field Koffset_initial may be determined according to the maximum round-trip delay in the communication scenario supported by the standard protocol (for example, related to the orbit height and the minimum communication angle). It can be understood that for the description of the value range of the variable field Koffset_initial, reference may be made to the above description of the variable field Koffset1. Compared with beam-level Koffset signaling transmission, this signaling transmission method saves signaling overhead.
  • the RACH-ConfigGeneric signaling format in the SIB1 message is as follows:
  • variable domains Koffset-LEO and Koffset-complement are added to the RACH-ConfigGeneric parameter.
  • the variable domains Koffset-LEO and Koffset-complement can be used to determine the initial timing offset.
  • the value range of Koffset-LEO and Koffset-complement may be determined according to the orbital height range of the satellite and the minimum communication angle. Therefore, in order to further save signaling bits, the initial timing offset can be combined and indicated according to the track height range.
  • the RACH-ConfigGeneric signaling format in the SIB1 message is as follows:
  • variable field Koffset-complement is optional, which means that it can be sent or not.
  • Koffset-complement parameter of the variable domain you can refer to the following example.
  • the network side can only send Koffset-LEO signaling (9 bits), that is, not send Koffset-complement.
  • Koffset-LEO signaling 9 bits
  • the range used to indicate is 0 ⁇ +334.
  • the range that 9 bits can indicate is: 0 ⁇ +511, of which only used in the above signaling examples In the range of 0 ⁇ +334, the unused range of +335 ⁇ +511 can be reserved (reserved) or reserved for other indication purposes.
  • the network side may send Koffset-LEO and Koffset-complement signaling (4 bits) to the UE, where Koffset-complement represents high-order bits, and Koffset-LEO represents low-order bits.
  • Koffset-LEO and Koffset-complement together form 13-bit signaling, representing the range of 0 to 4332.
  • the range that can be represented by 13 bits is: 0 to 8191.
  • the range of 0 to 4332 is used in the above signaling examples, and the unused range of 4333 to 8191 can be reserved or reserved for other indication purposes.
  • the indication range of the combination of Koffset-LEO and Koffset-complement please refer to the above description of the variable domain Koffset1.
  • the UE After the UE obtains the Koffset-LEO or Koffset-LEO and Koffset-complement signaling, it can obtain the timing offset to be used according to the signaling.
  • Such a signaling transmission method not only provides flexibility, but also saves some signaling bits in scenarios where the track height is not high.
  • Koffset range in the above example of signaling is only exemplary, and this application does not limit the value range of Koffset, and the value range of Koffset may be agreed upon according to actual deployment conditions.
  • Koffset-LEO-600, Koffset-LEO-1200, and Koffset-GEO are added to the RACH-ConfigGeneric parameter to indicate the timing offset used by the UE in the cell.
  • the value range of Koffset-LEO-600, Koffset-LEO-1200 or Koffset-GEO can be determined according to the orbital height range of the satellite and the minimum communication angle.
  • Koffset-LEO-600 represents the timing offset related parameters with orbit height not greater than 600km
  • Koffset-LEO-1200 represents the timing offset related parameters with orbit height greater than 600km and not greater than 1200km
  • Koffset-GEO represents the timing offset related parameters with orbit height not greater than 600km. Parameters related to timing offset greater than 36000km.
  • the Koffset-LEO-600, Koffset-LEO-1200 or Koffset-GEO parameters can be set to optional (optional). For how to send signaling, please refer to the following example.
  • the network side may only send Koffset-LEO-600 signaling, that is, not send Koffset-LEO-1200 and Koffset-GEO.
  • the minimum elevation angle is 10 degrees
  • the maximum round-trip delay of the LEO-600 scene is 25.755ms
  • the corresponding number of bits is 8 bits (corresponding to the above implementation The description in the LEO-600 transparent transmission scenario in the example).
  • it only needs to send 8-bit signaling for the UE to determine the timing offset, and the range used to indicate is 0...+207.
  • the range that 8 bits can indicate is: 0 ⁇ +255, of which, the above signaling example Only the range of 0 ⁇ +207 is used in, the unused range of 208 ⁇ 255 can be reserved (reserved), or it can be reserved for other indication purposes.
  • the network side may send Koffset-LEO-1200 signaling to the UE, that is, Koffset-LEO-600 and Koffset-GEO are not sent.
  • Koffset-LEO-600 and Koffset-GEO are not sent.
  • 9-bit signaling corresponding to the description in the LEO-1200 transparent transmission scenario in the foregoing embodiment
  • the description of the value range of the Koffset-LEO-1200 signaling can refer to the above description of Koffset-LEO, which will not be described in detail here.
  • Koffset-GEO signaling that is, Koffset-LEO-600 and Koffset-LEO-1200 are not sent.
  • 13-bit signaling (corresponding to the description in the GEO transparent transmission scenario in the foregoing embodiment) needs to be sent so that the UE can determine the timing offset, and the range used to represent it is 0 to +4332.
  • the description of the value range of Koffset-GEO signaling can refer to the above description of Koffset-LEO, Koffset-complement, and Koffset-LEO-600, which will not be described in detail here.
  • the RACH-ConfigGeneric signaling format in the SIB1 message is as follows:
  • the base station can also increase the timing offset corresponding to the PUSCH-ConfigCommon physical layer uplink shared channel common configuration signaling in SIB1 or the PUSCH-Config physical layer uplink shared channel configuration signaling in RRC signaling. New variable fields, etc.
  • the specific description of the new variable field corresponding to the timing offset can be added. Refer to the above method 1 to method 3, which will not be described in detail here.
  • the cell-level Koffset, the beam-level Koffset, or the UE-level Koffset shown above can be used in combination.
  • UE-specific (UE-specific or UE-specific) timing offset means that different timing offset values can be used between UEs in a cell/beam.
  • the UE obtains the cell level Koffset value through a broadcast message.
  • the base station updates the Koffset value used by the UE to the beam level according to the beam where the UE is located.
  • updating Koffset from the cell level to the beam level can reduce the end-to-end delay.
  • the base station and the UE may update the Koffset used to the Koffset value at the UE level.
  • updating Koffset to UE level has a smaller end-to-end delay (including scheduling delay) than using cell-level and beam-level Koffset, so it is suitable for scenarios with low delay requirements.
  • the UE obtains the cell level Koffset value through a broadcast message.
  • the gNB determines whether the Koffset value used by the UE needs to be updated according to the service type of the UE and/or different requirements for delay.
  • the base station can make this type of UE continue to use cell-level Koffset, or update to beam-level Koffset.
  • the base station can update the timing offset value used by the UE to Koffset at the UE level.
  • the procedure of this solution requires the gNB to send signaling to the UE to instruct to update Koffset to beam level or Koffset to UE level, or the UE to apply to gNB to update Koffset to beam level or Koffset to UE level.
  • the UE can autonomously determine and report to the base station to update the cell-level Koffset value to the UE-level Koffset value; or the UE can autonomously determine and report to the base station the updated beam-level Koffset value to the UE The Koffset value of the level.
  • the UE may send indication information to the base station.
  • the indication information may be used to indicate the UE's delay requirement or indicate the level of timing offset required by the UE (e.g., cell level, Beam level or UE level). Therefore, the base station receives the instruction information, and determines whether to update the timing offset value used by the UE according to the instruction information; if updated, the base station sends information for instructing to update the Koffset value. For example, the base station can instruct the UE to update to the Koffset value of the beam level or the Koffset value of the UE level.
  • the base station may indicate to the UE whether to enable the Koffset update mechanism or which update mechanism to use. If it is not turned on, the cell-level Koffset will not be updated to the beam-level Koffset or the UE-level Koffset, and the UE does not need to report TA or delay requirements or the Koffset level to be used.
  • the base station may send the following signaling to the UE, or the UE may send the following signaling to the base station to indicate whether to enable a certain Koffset update mechanism:
  • the signaling indicates whether to enable the UE-specific Koffset update mechanism. If it is turned on, it means that the base station and the UE can update the Koffset from the cell level or beam level to the UE level Koffset. If it is not turned on, it means that the UE continues to use the Koffset level being used.
  • the advantage is that different Koffset update mechanisms can be selected according to the service requirements of the UE and the scheduling delay requirements, which can avoid the extra overhead of updating Koffset signaling.
  • the signaling indicates whether to enable the beam-specific Koffset update mechanism. If it is turned on, it means that the base station and UE can update Koffset from cell level or UE level to beam level Koffset. If it is not turned on, it means that the UE continues to use the Koffset level being used.
  • the advantage is that different Koffset update mechanisms can be selected according to the service requirements of the UE and the scheduling delay requirements, which can avoid the extra overhead of updating Koffset signaling.
  • the signaling indicates whether to use beam-specific Koffset or UE-specific Koffset update mechanism, or does not support updating Koffset to other levels.
  • the signaling indication method is to indicate whether the base station and/or the UE supports updating the Koffset level to the beam level or the UE level in this scenario, or does not change the used Koffset level.
  • the signaling indication can avoid the ambiguity of the Koffset update mechanism between the base station and the UE. In addition, it will also bring benefits including the choice of different Koffset update mechanisms according to the service requirements of the UE and the scheduling delay requirements, which can avoid updating the Koffset signaling. Additional overhead.
  • Scenario 1 Update the Koffset value at the cell level to the Koffset value at the beam level.
  • Koffset_old represents the Koffset value or the reference timing offset value or the initial Koffset being used by the gNB and the UE.
  • Koffset_new represents the updated Koffset value to be used by the gNB and the UE, that is, the timing offset value obtained by updating on the basis of Koffset_old.
  • the gNB can transmit ⁇ Koffset through signaling such as Msg2, Msg4, or RRCsetup. In the signaling, ⁇ Koffset is set to optional (indicating that it can be sent or not). It is considered that if the network side decides not to update Koffset, gNB may not send the UE to the UE. Send ⁇ Koffset, that is, gNB and UE do not update the Koffset being used.
  • the base station can use the serving cell configuration ServingCellConfig signaling in the RRCsetup signaling to transmit ⁇ Koffset, and the RRCReconfiguration and RRCResume signaling also includes the ServingCellConfig signaling, or it can be sent through the RRCReconfiguration and RRCResume signaling. Koffset value.
  • the serving cell configuration ServingCellConfig signaling includes one or more variable fields, and the one or more variable fields may be used to indicate ⁇ Koffset.
  • a new variable field Koffset-difference is added to the ServingCellConfig parameter of the serving cell configuration, which represents the timing offset difference ⁇ Koffset, and the UE can use the timing offset difference Koffset-difference to update Koffset.
  • the value range of the Koffset-difference (such as the representation range or the number of corresponding bits, etc.) can be determined according to the maximum round-trip delay difference between the beams, the satellite orbit height, the cell size, and the minimum communication angle.
  • the 8bit of Koffset-difference can represent: -127 ⁇ +127, where only the range of -83 ⁇ 83 is used in the above signaling example, and the unused range of -127 ⁇ -84 and +84 ⁇ +127 can be reserved ( reserved), can also be reserved for other indication purposes.
  • the transmission timing offset difference scheme can save signaling overhead.
  • the above signaling format may be as follows:
  • a new variable field Koffset-difference-list is added to the ServingCellConfig parameter or a parameter with similar functions, which represents the difference between the Koffset value used by the UE in multiple beams in the cell and the cell level Koffset. That is, the Koffset-difference-list represents multiple Koffset differences, for example, it can represent the difference between the Koffset value corresponding to 64 beams and the cell level Koffset corresponding to the cell where it is located.
  • the above signaling format may be as follows:
  • the value range of the variable field Koffset-difference-list may be based on the maximum round-trip delay of the cell or beam in the communication scenario supported by the standard protocol (for example, related to the orbit height and the minimum communication angle), the cell and the beam.
  • the standard protocol for example, related to the orbit height and the minimum communication angle
  • the determination of the maximum round-trip delay difference and the calculation of the timing offset time unit slot_duration are related.
  • the cell diameter is 450km
  • the minimum communication angle is 10 degrees
  • the 6 bits of a certain timing offset difference in the variable domain Koffset-difference-list can represent -31 ⁇ +31. Among them, only used in the above signaling examples In the range of -24 ⁇ +24, the unused ranges of -31 ⁇ +-25 and +25 ⁇ +31 can be reserved (reserved), or they can be reserved for other indication purposes.
  • the UE can be based on the difference between the Koffset value being used (or the Koffset value received before or the cell-level Koffset value being used) and the Koffset indicated by the variable field Koffset-difference-list The value determines the beam level Koffset value corresponding to the beam in which it is located. For example, if the Koffset-difference-list indicates 64 Koffset differences, the UE selects the corresponding Koffset in the Koffset-difference-list according to the beam number (for example, the corresponding relationship between the beam number and the SSB number or TCI number).
  • the beam number for example, the corresponding relationship between the beam number and the SSB number or TCI number.
  • the UE can obtain the beam level Koffset value corresponding to its beam according to the Koffset value it is using + the selected Koffset-difference-list value (that is, the Koffset value that the UE is using + the timing offset difference selected according to the beam number).
  • Both the UE and the gNB calculate and obtain and update the Koffset value of the beam level according to the method.
  • Such a signaling transmission method not only provides flexibility, but also saves signaling bit overhead in a multi-beam scenario.
  • Koffset-difference-GEO and Koffset-difference-LEO are added to the ServingCellConfig parameter to indicate the timing offset difference ⁇ Koffset used in different track ranges, and the UE can use the timing offset difference to perform Koffset renew.
  • Koffset-difference-GEO represents the timing offset difference used when the orbital height is greater than 1200km and less than 36000km in the communication scenario.
  • the range is determined according to the maximum round-trip delay difference between the beams, which is related to the satellite orbital height, cell size, and The least common belief angle is related.
  • Koffset-difference-GEO When the orbit height of the communication scene is greater than 1200km and less than 36000km, the network side only needs to send Koffset-difference-GEO signaling, that is, Koffset-difference-LEO signaling is not sent. At this time, 8-bit signaling needs to be sent for the terminal to determine the timing offset.
  • the 6bit of Koffset-difference-LEO can represent: -31 ⁇ +31, among which, only the range of -26 ⁇ 26 is used in the above signaling example, and the unused range of -31 ⁇ -27 and +27 ⁇ +31 can be used. Reserved (reserved), can also be reserved for other instructions.
  • the transmission timing offset difference scheme not only provides flexibility, but also saves some signaling bits in a scene where the track height is not high.
  • the above signaling format may be as follows:
  • the MAC CE signaling please refer to the above description, which will not be described in detail here.
  • Scenario 2 Update the Koffset value of the beam level.
  • the beam-specific Koffset of the beam where the UE is located will change.
  • the gNB can update the beam-specific Koffset through the following signaling methods, that is, the gNB and the UE still use the beam-specific Koffset, but the specific Koffset value changes and updates. That is, in a possible implementation manner, the network device may indicate the updated Koffset (that is, beam-specific Koffset) through RRC signaling, RRC reconfiguration signaling, or MAC CE signaling.
  • the RRC reconfiguration signaling includes one or more variable fields (such as Koffset-list), and the one or more variable fields are used to indicate the updated Koffset.
  • ServingCellConfig in RRC signaling includes ⁇ Koffset.
  • the MAC CE signaling includes ⁇ Koffset. The following are introduced in detail:
  • Manner 1 RRC reconfiguration (RRCReconfiguration) signaling, for example, using RRC reconfiguration (RRCReconfiguration) signaling to update Koffset.
  • the base station sends the RRC reconfiguration signaling to the UE, and after the UE receives the RRC reconfiguration signaling, the UE selects the corresponding Koffset value according to the beam where it is located, and updates the Koffset value in use.
  • the RRC reconfiguration signaling includes the updated value of the above-mentioned Koffset-list variable field, and the specific signaling length design can refer to the above-mentioned description of the Koffset-list variable field parameter.
  • RRC signaling For example, in RRC signaling, ServingCellConfig adds a Koffset difference such as a ⁇ Koffset parameter. ⁇ Koffset can be determined according to the Koffset value Koffset_new to be updated. For example, the gNB determines the updated Koffset value Koffset_new to be used by the UE according to the latest position relationship between the beam of the UE and the satellite and gateway (for example, the gNB determines the updated Koffset value Koffset_new according to the beam coverage of the UE.
  • the signaling design of the Koffset difference can refer to the description of the Koffset-difference variable domain parameter.
  • the gNB can send the timing offset difference ⁇ Koffset value, that is, the Koffset difference value, to the UE through MAC CE signaling.
  • the Koffset difference please refer to the description of the Koffset-difference parameter above.
  • the gNB and UE use the cell-level initial Koffset solution
  • the gNB and UE update the Koffset from the cell level to the beam level.
  • the beam level Koffset of the beam where the UE is located will also change, that is, the value of the beam level Koffset will change, and it needs to be updated.
  • the gNB can update the beam-specific Koffset value through the following two signaling methods.
  • RRC signaling for example, using ServingCellConfig signaling in RRC signaling to carry ⁇ Koffset
  • the gNB sends the ⁇ Koffset value, that is, the difference Koffset, to the UE through MAC CE signaling.
  • Scenario 3 Update the Koffset value of the UE level.
  • the gNB When the UE can report TA, it indicates that the UE has established a connection with the gNB at this time and has obtained a usable Koffset value. Therefore, the gNB only needs to update the Koffset on the basis of this value.
  • the UE may use Msg3 to report the TA value to indicate the second timing offset. That is, the UE may send its own TA information or location information to the gNB in the Msg3 (or other messages, etc., such as a message sent when the timing offset needs to be updated later) in the RACH process. If the TA value is sent, it can be the TA value or the quantized TA value, or the updated Koffset value or Koffset difference. After accessing the system, the UE can also report the value related to the TA value used by itself in other uplink messages, and the gNB is used to determine the updated Koffset value.
  • the common TA value can be a positive value or (Negative value or zero) or you can subtract the absolute value of common TA from the TA value being used by the UE (that is, obtain the difference between the absolute value of the TA being used and the common TA)
  • TA-applied for example, TA_app
  • TA_use represents the TA value that the UE is or will use
  • TA_common represents the common TA value
  • TA_applied represents the difference between TA_use and TA_common.
  • the UE or gNB can or The TA correlation value sent by the UE to the gNB is calculated.
  • Ts 1 / (15e3 * 2048) seconds
  • [mu] For subcarrier spacing, i.e., subcarrier spacing of 2 ⁇ ⁇ 15kHz.
  • the UE may indicate the TA or the relevant value of the TA through the third message or the fifth message or other uplink messages (for example, authorized PUSCH resources, uplink physical layer control channel messages, etc.).
  • the above-mentioned third message or fifth message or other uplink message may include one or more variable fields (TA-applied, TA-applied-LEO-600, TA-applied-LEO-1200 and TA in the following text). -applied-GEO, Koffset_difference_UE, etc.), the one or more variable fields can be used to indicate the above TA or TA related values.
  • TA-applied (timing advance used) to indicate the TA related value reported by the UE.
  • the gNB After the gNB receives the TA-applied, it is used to determine the TA value used or about to be used by the UE.
  • the representation range and the number of bits of the TA-applied signaling are determined by the orbit height, the minimum communication angle and the time dimension in the communication scene.
  • the TA-applied representation range is required to be 0 to 4,155,513, and 22 bits are required for representation.
  • the range that 22 bits can represent is: 0-4194303.
  • only the range of 0-4155513 is used.
  • the unused range of 4155514-4194303 can be reserved or reserved for other indication purposes.
  • the TA-applied parameter after gNB receives the TA-applied parameter, it can be added to the common TA (quantized commonTA value) and multiplied by the time dimension unit to obtain the TA value that the UE is using, or TA-applied means
  • the TA value that the UE is using, that is, the TA-applied multiplied by the time dimension unit is the time length of the TA used by the UE. It is understandable that the protocol supports different satellite orbit heights, minimum communication angles and time dimension units, so the indication range that TA-applied needs to support may be different.
  • the indication range and bit number of TA-applied can be defined according to specific communication scenarios.
  • TA-applied-LEO-600 TA-applied-LEO-1200
  • TA-applied-GEO which represent the timing advance value used by gNB to determine the UE being used.
  • the representation range and number of bits of TA-applied-LEO-600, TA-applied-LEO-1200 and TA-applied-GEO can be determined according to the satellite’s orbital height range, possible minimum communication angle and time dimension unit.
  • TA-applied-LEO-600 represents the parameters related to the timing advance value used by the UE in the communication scenario with the orbit height not greater than 600km
  • TA-applied-LEO-1200 represents the timing used by the UE in the communication scenario with the orbit height not greater than 1200km
  • the parameter related to the advance value, TA-applied-GEO indicates the parameter related to the timing advance value used by the UE in the communication scenario where the orbit height is not greater than 36000km.
  • the relevant signaling of the UE to report TA is added, TA-applied-LEO-600/TA-applied-LEO-1200/TA-applied-GEO, and the UE obtains it according to ephemeris information or satellite orbit information The orbit height of the satellite, and then select the corresponding TA-applied-LEO-600/TA-applied-LEO-1200/TA-applied-GEO signal to send the TA value.
  • the UE can use TA-applied-LEO-600 signaling instead of sending TA-applied-LEO-1200 and TA-applied-GEO.
  • the advantage brought by this is that in the low-orbit satellite communication system, the UE can use a smaller signaling length to send TA related values.
  • the signaling format of TA-applied-LEO-600, TA-applied-LEO-1200 and TA-applied-GEO is as follows:
  • the UE may report the Koffset value or the Koffset difference to be updated instead of reporting the TA related value, for example, take the Koffset difference as an example.
  • a new variable field Koffset_difference_UE is added to indicate the difference in timing offset reported by the UE to the gNB, and the difference between the Koffset value that the UE wants to update and the Koffset being used. It can be understood that the UE can also report the Koffset difference in other uplink messages.
  • the indication range of Koffset_difference_UE and the number of occupied bits are related to the frequency and threshold of the updated Koffset reported by the UE.
  • Koffset_difference_UE needs to occupy 3 bits.
  • the signaling format of the above Koffset_difference_UE is as follows:
  • the UE may report its location information to the gNB.
  • the gNB For example, you can use the Earth-Centered, Earth-Fixed, ECEF, assuming that the range is up to 20km from the surface of the earth, and the radius of the earth is 6371km, then each dimension of the three-dimensional coordinate position needs to represent -6391 ⁇ 6391km.
  • adding a variable field UE-Position represents the location coordinates of the UE.
  • the variable field UE-Position includes three variable values, representing the relevant values of the UE's three-dimensional coordinates.
  • the representation range and the number of occupied bits of the UE-Position signaling are related to the radius of the earth, the highest possible distance from the horizontal plane of the UE, and the resolution of the position coordinate representation.
  • the location information signaling sent by the UE can be expressed as:
  • the above TA-applied-LEO-600 or TA-applied-LEO-1200 or TA-applied-GEO or UE-Position or Koffset_difference_UE signaling may be carried in the RRCSetupRequest message.
  • the position coordinates sent by the UE may be sent after a fixed value is subtracted from the coordinate difference. For example, after subtracting 6371 km from each latitude of the three-dimensional coordinates sent by the UE, the coordinate difference is sent. After the gNB receives the coordinate difference, add 6371km to each latitude to obtain the UE's coordinate value.
  • the above-mentioned design signaling can save signaling overhead.
  • the gNB and the UE may agree that the UE reports TA related parameters to the gNB through an uplink physical layer control channel (PUCCH) message.
  • the UE may send the TA related signaling parameters reported in the methods and embodiments described in this application or the indication information sent by the UE (used to indicate the second timing offset) through the uplink physical layer control channel message.
  • This method can prevent the UE from applying for uplink resources in order to report TA related parameters, and save the uplink resource application scheduling time.
  • the UE can send the TA value to the gNB through an uplink MAC CE message or PUSCH, and the above-mentioned method for designing the reported TA-related signaling length can be referred to.
  • the above methods and embodiments introduce the method of updating Koffset in cell handover.
  • the following is an example of the signaling process of a specific communication scenario:
  • the measurement is performed first, and then the source gNB sends RRCReconfiguration signaling to the UE. It can be seen from the above signaling that the cell level or beam level Koffset exists in RRCReconfiguration. Therefore, the UE can obtain the Koffset value of the target cell/beam through RRCReconfiguration.
  • the source cell will also send RRCReconfiguration signaling to the UE. The UE will receive the SIB1 of the target cell and can also obtain the Koffset of the target cell/beam.
  • the UE After the UE completes the handover, it can update Koffset from the cell level to the beam level. Or update to the UE-level Koffset, which is the same as the signaling process after the UE randomly accesses a certain cell.
  • Satellite switch can be equivalent to cell handover, refer to the above-mentioned handover signaling process.
  • the UE can continue to use the cell-level or UE-level Koffset currently in use.
  • the Koffset used by the UE is at the beam level, it needs to be divided into two categories for discussion:
  • gNB can update beam-specific Koffset through the following two signaling methods.
  • the UE selects the corresponding Koffset value according to the beam where it is located, that is, updates the Koffset value being used.
  • the UE needs to select the Koffset value to be used by the corresponding target beam according to the Koffset group (for example, the Koffset-list message) sent in the broadcast signal.
  • the Koffset group for example, the Koffset-list message
  • the gNB can update the beam-specific Koffset through the following two signaling methods.
  • the gNB sends the ⁇ Koffset value, that is, the Koffset difference value, to the UE through MAC CE signaling.
  • Gateway switch
  • the UE can receive signals from two gateways at the same time, which can be equivalent to a cell handover process.
  • the UE can only receive a signal from one gateway at a time, and the UE instantly switches from the source gateway to the target gateway. At this time, the delay of the feeder link part changes.
  • the gNB can send to the UE the Koffset used in the target gateway or the difference between the Koffset currently used, that is, ⁇ Koffset.
  • the RRCReconfiguration signaling can be used to carry ⁇ Koffset to update Koffset.
  • the gNB uses MAC CE signaling to send the Koffset or ⁇ Koffset of the target gateway to the UE.
  • ⁇ Koffset is sent, it may also need the same number of bits as the complete Koffset. For example, in some special scenarios, when the network side does timing compensation for the uplink signal before handover, but the network side does not do timing compensation for the uplink signal after the handover, then ⁇ Koffset needs to include the complete round-trip delay, at this time ⁇ Koffset The number of bits required is the same as that of representing the complete Koffset. If the protocol does not support this type of special scene, the number of bits required to indicate ⁇ Koffset will be less than the number of bits that indicate complete Koffset, which can save signaling bits.
  • the UE sends a TA related value to the gNB.
  • the following will give an example of how the UE reports the TA it is using or its related value.
  • the UE reports the TA or TA related values it is using, and the gNB determines the TA value of the UE and determines the Koffset value that the UE needs to update accordingly, as described above: Therefore, the following shows several methods of how the UE indicates the TA that it is using to the base station.
  • Method 1 UE reports TA rate
  • the UE can report the TA rate TA_R and the TA value TA_Va that it is using to the gNB.
  • the UE can report the location of the UE, the location of the satellite, and the speed direction to the gNB. Calculate the TA change rate with information such as speed and speed.
  • Both the UE and the gNB can calculate the TA value to be subsequently used by the UE according to TA_R and TA_Va, and then calculate the Koffset value.
  • t represents the time when Koffset is to be calculated or used
  • t0 represents the time when the UE uses the TA_Va value.
  • TAC_ac represents the cumulative value of the TAC command sent by the gNB to the UE.
  • the gNB sends TAC twice to the UE, and the sum of the two TAC adjustments is TAC_ac.
  • both the UE and the gNB calculate the Koffset value according to the above formula, and update to the latest Koffset value at the same time.
  • the gNB calculates the Koffset value according to the above formula, and if it needs to be updated, it indicates the updated latest Koffset value or the difference between the latest Koffset and the original Koffset to the UE.
  • each time the UE reports the TA value in use it can report the difference between the TA value in use and the TA value reported last time, or the TA value in use and the previous gNB reporting time.
  • the difference between the TA values indicated by the UE which can reduce the indication range and signaling bits required to report the TA.
  • the TA value reported by the UE to the gNB last time is TA1
  • the TA value being used by the UE at this time is TA2
  • the TA value reported by the UE to the gNB at this time is TA2-TA1.
  • the gNB receives the (TA2-TA1) value reported by the UE, it can be added to the TA value TA1 reported by the UE last time to obtain the TA value TA2 being used by the UE.
  • the UE periodically reports the TA value: the gNB configures the UE to periodically report the TA resource, so that the UE can report the TA being used by the UE according to the TA resource configured by the base station (the reporting method can refer to the foregoing embodiments). For example, in the RRC signaling, the gNB configures the TA reporting period to the UE as 8 seconds, and the time domain and frequency domain resources with the period of 8 seconds as the period. The UE periodically reports the TA value on the resource.
  • the gNB In addition to configuring periodic reporting of TA resources to the UE, the gNB also needs to send activation or deactivation (deactivation) signaling to the UE to indicate to the UE whether to start the periodic reporting of TA values. For example, the gNB can report the TA function through the MAC CE activation or deactivation period. After the UE receives the activation or deactivation (deactivation) signaling, it will start or stop periodically reporting the TA value.
  • the UE reports the TA value aperiodicly: the gNB configures the uplink resource for reporting the TA value to the UE, and sends an instruction to trigger the reporting of the TA value to the UE.
  • the UE reports the TA value being used once to the gNB.
  • the gNB can trigger the UE to report the TA value through the DCI instruction.
  • the UE reports the TA value immediately or after an agreed period of time. For example, when the UE receives a DCI trigger command in the downlink time slot n, the UE may report the TA value being used by the UE in the uplink time slot n+M.
  • M is a non-zero integer
  • M is related to the TA value used by the UE, for example or delta is a non-negative integer agreed upon between the gNB and the UE in consideration of the processing delay or a non-negative integer variable configured by the gNB to the UE.
  • Koffset can solve the problem that the timing of receiving uplink data on the network side is later than the timing of sending corresponding downlink data.
  • the gNB receives the uplink HARQ-ACK corresponding to the PDSCH carrying a MAC-CE command (or MAC-CE signaling) in the uplink time slot n.
  • the MAC-CE command is a configuration command for the downlink signal, and the UE assumes that the downlink configuration takes effect in the downlink time slot
  • the configuration instruction of the MAC CE carried in the PDSCH for the downlink signal may be the resource configuration of the downlink ZP CSI-RS, or the deactivation (deactivation) of the downlink ZP CSI-RS resource configuration that has taken effect.
  • the instruction carried in the PDSCH may indicate the mapping relationship between the TCI state and the code point ('Transmission Configuration Indication') in the DCI domain.
  • the instruction carried in the PDSCH may be to activate/deactivate the semi-static CSI reporting configuration.
  • the instruction carried in the PDSCH may be to activate/deactivate the CSI-RS/CSI-IM configuration.
  • the timing compensation value of the network side or gNB for the uplink data mentioned here means the size of the compensation value that the network side or gNB delays the receiving window when receiving the uplink data.
  • a Koffset related to the timing compensation value of the uplink data from the network side can be introduced.
  • the UE assumes that the downlink configuration takes effect on Time slot, as shown in Figure 21, it can be seen that when an appropriate Koffset value is used (delay the effective time of the downlink signal configuration command to ensure that the command takes effect only after the gNB receives the corresponding ACK, that is, the length of time indicated by Koffset should not be less than After the time length indicated by the timing compensation value of the uplink data by the network side), the gNB can take effect on the downlink configuration command after receiving the HARQ ACK corresponding to the downlink configuration command sent by the UE, ensuring that both the UE and the gNB are in the same downlink time slot.
  • the downstream configuration command takes effect.
  • time_compensated is the timing compensation value made by the network side to receive the uplink data sent by the UE, and the unit can be seconds, milliseconds, microseconds, time slot length, symbol length, or other time units. time_compensate is equivalent to the above delay_compensated.
  • the gNB can send the Koffset value to the UE. In this way, both the gNB and the UE obtain the Koffset value, and both can determine the effective time of the downlink signal configuration command according to the Koffset value.
  • gNB can also calculate Koffset according to the following formula:
  • ⁇ K represents an integer agreed by the agreement to adjust the Koffset value (considering calculation error or/and processing delay, etc.).
  • gNB can send to UE Value and ⁇ K value, gNB determines ⁇ K according to system error or/and processing time delay.
  • UE and gNB calculate the timing offset value Koffset_new to be used according to the following formula
  • both gNB and UE After the UE receives Koffset and ⁇ K, both gNB and UE obtain the effective time of the downlink signal configuration command according to Koffset_new, that is, the UE assumes that the downlink configuration takes effect at Time slot.
  • the gNB can send the time_compensated value to the UE, and the UE and gNB can calculate the Koffset value to be used according to the formula:
  • a fixed value can be added/subtracted based on the formula given in this application, for example, considering the duplex mode (time-division duplex (TDD) and frequency division duplex).
  • TDD time-division duplex
  • FDD frequency-division duplex
  • TDD time-division duplex
  • FDD frequency-division duplex
  • gNB can send time_compensated and ⁇ K value to UE, UE and gNB can calculate the Koffset value to be used according to the formula:
  • time_compensated may be the amount of time or a quantized amount of time, that is, the time unit of time_compensated may be determined according to actual usage conditions, which is not limited here.
  • the gNB can send the time_compensated and ⁇ timing_offset values to the UE, and the UE and gNB can calculate the Koffset value to be used according to the formula:
  • ⁇ timing_offset is the adjustment value of time_compensated by gNB considering processing delay and calculation error, etc., which can be the amount of time or the quantized amount of time, that is, the time unit of ⁇ timing_offset can be determined according to actual usage.
  • gNB can be related to a value of other time (the UE and gNB both know the time-related value, such as a time-related value agreed upon by the gNB and the UE Or a time-related value sent by the gNB to the UE, or a time-related value sent by the UE to the gNB) and send a timing offset difference ⁇ Koffset, and the UE and gNB will calculate it according to the agreed formula.
  • Koffset which is
  • gNB can send a time difference component ⁇ timing ( ⁇ timing is a time length value) on the basis of other time-related quantities, UE and gNB calculate the Koffset to be used according to the agreed formula, namely
  • the gNB can send a scale factor S (S is a non-negative number) on the basis of other time-related values, and the UE and gNB calculate the Koffset to be used according to the agreed formula, namely
  • gNB can jointly send ⁇ Koffset and/or ⁇ timing and/or S, UE and gNB calculate the Koffset to be used according to the agreed formula, for example
  • the time_related parameter can be 2H/c or 4H/c, where H represents the orbital height of the satellite (the UE can obtain it from the ephemeris information sent by the network side), and c represents the speed of light.
  • the time_related parameter may be a common TA (common TA) amount.
  • the common timing advance can be obtained according to but not limited to the following ways: select a reference point in the coverage area of the beam or cell (for example, you can select the point closest to the base station), and calculate the reference point-satellite; or, reference point-satellite-ground
  • the round-trip delay between stations, the common timing advance is equal to the round-trip delay or equal to the round-trip delay plus/minus a fixed value (the fixed value takes into account the inaccuracy of satellite position information or the processing delay or the height of the UE location
  • the fixed value is fixed relative to a period of time, and the value can also be changed).
  • the reference point may be a point on the service link or a point on the feeder link.
  • the commonTA value sent may be positive or negative or zero, which is not limited here.
  • the base station may also send a reference point position coordinate to the UE, and the UE calculates the common timing advance according to the round-trip delay between the satellite position and the reference point position.
  • the time_related parameter may be the existing timer or reception window parameter in the above method and embodiment and multiple combinations thereof, because these timer time length and reception window time length parameters are related to the round-trip delay and processing of the UE and gNB. Time delay and other related.
  • these parameters gNB will be sent to the UE through broadcast, unicast, etc., so that both the UE and the gNB know the length of these timers and the length of the receiving window.
  • some round-trip delay-related timer durations agreed or sent between the UE and the gNB can be used as or composed of time_related parameters, as shown below:
  • Discontinuous reception downlink retransmission round-trip time timer (drx-HARQ-RTT-TimerDL) delay start time (Timer offset) offset_of_drx-HARQ-RTT-TimerDL
  • Discontinuous reception uplink retransmission round-trip time timer (drx-HARQ-RTT-TimerUL) delay start time (Timer offset) offset_of_drx-HARQ-RTT-TimerUL
  • Random access contention resolution timer (ra-ContentionResolutionTimer) delayed start time (Timer offset) offset_of_ra-ContentionResolutionTimer or RCR_offset
  • Discard timer (discardTimer) timer_discardTimer
  • Receive RAR Random Access Response
  • window length ra-ResponseWindow
  • the time_related parameters may include one or more of the above-mentioned parameters.
  • the time_related parameter may be the time length indicated by offset_of_drx-HARQ-RTT-TimerDL.
  • both the gNB and the UE can calculate the Koffset to be used according to the following formula
  • the time_related parameter may be the sum of the time length indicated by offset_of_drx-HARQ-RTT-TimerDL and timer_t-Reassembly.
  • the first timing offset can also be based on the RAR reception The length of the window and the delay start time of the RAR receiving window are determined.
  • Koffset can be calculated based on the sum of the length of the RAR receiving window and the length of time indicated by the delay start time of the RAR receiving window, that is This method also applies here.
  • the method of obtaining Koffset in the above formula (10) or (11) is also applicable here.
  • ⁇ Koffset_time or ⁇ Koffset can be equal to 0.
  • ⁇ Koffset_time or ⁇ Koffset may not be equal to zero, which is not limited here.
  • the first timing offset can also be determined according to the length of the random access contention resolution timer and the delay start duration of the random access contention resolution timer.
  • Koffset can be determined according to the length of the random access contention resolution timer and random access. The sum of the delay start duration of the contention resolution timer is calculated, namely This method is also applicable here.
  • the method of obtaining Koffset from the above formula (20) or (21) is also applicable here,
  • the information that has been sent to the UE can be used.
  • the gNB and the UE agree on a formula for calculating Koffset to obtain Koffset.
  • the relationship between the uplink compensation value on the network side, the TA value used by the UE side, and the round-trip delay between the UE and gNB can be described by the following formula:
  • time_compensated RTD(UE,gNB)-TA_related
  • the TA_related parameter represents a parameter related to the size of the TA value used by the UE.
  • TA_related may be equal to the TA value used by the UE.
  • RTD UE, gNB
  • RCR_offset indicates that the gNB is related to the minimum round-trip delay in the beam/cell where the UE is located.
  • the time length represented by RCR_offset can be substituted into the above equation to obtain the time_compensated value, and then use the above equation to calculate Koffset.
  • TA_related may indicate the timing offset scheduling_offset used by the UE and related to the uplink scheduling delay.
  • the UE receives an uplink scheduling instruction in time slot n, the UE sends uplink data in time slot n+K2+scheduling_offset.
  • various parameters may include system information block (SIB) 1, other system messages (other system messages).
  • SIB system information block
  • At least one of broadcast information such as information (OSI) and master information block (MIB) is broadcast and sent by the network device to the terminal. It can also be unicast or multicast sent to the terminal.
  • OSI information
  • MIB master information block
  • the network device can use RRC information, RRCReconfiguration message, downlink control information (DCI), group DCI, media access control (MAC)
  • DCI downlink control information
  • MAC media access control
  • At least one of a control element (CE) and a timing advance command (timing advance command, TAC) carries or indicates this information, or is sent to the UE along with data transmission or carried in a separately allocated PDSCH.
  • K 1 is a value obtained from the PDSCH-to-HARQ-timing-indicator instruction index table (table for dl-DataToUL-ACK signaling transmission) in the DCI.
  • K 2 0,..., 32, and the value of K 2 is indicated by the DCI command.
  • ⁇ SRS 0, the SRS signal sub-carrier spacing is 15KHz.
  • the k value is configured by the high-level parameter slot Offset (slotOffset) that triggers the SRS resource group each time.
  • the UE receives the uplink grant/scheduling information in the downlink time slot n, then the PUSCH data of the UE must be in the uplink time slot send.
  • K 2 0,...,32 the value of K 2 is indicated by the DCI instruction.
  • ⁇ PUSCH and ⁇ PDCCH are related to the sub-carrier spacing of PUSCH and PDCCH, namely
  • Koffset In addition to DCI, there is another method for scheduling PUSCH: configured grant. In this scheduling method, Koffset also needs to be used, and the scheme of automatically updating Koffset of the present invention can be used.
  • the UE receives the PDSCH data carrying the RAR message in the downlink time slot n, and the UE shall send the random access message 3 (Msg3) in the uplink PUSCH time slot n+K 2 + ⁇ +Koffset, where ⁇ is agreed by the protocol A numerical value. 3) PUSCH transmission timing carrying CSI
  • the UE When the UE receives the DCI requested by channel state information (CSI) in the downlink time slot n, the UE needs to send the CSI in the uplink PUSCH time slot n+K+Koffset. Among them, the K value is indicated by the DCI command.
  • CSI channel state information
  • n CSI_ref is a value related to the type of CSI report agreed by the protocol.
  • ⁇ DL and ⁇ UL are related to the uplink and downlink sub-carrier spacing, namely
  • the gNB receives the uplink HARQ-ACK corresponding to the PDSCH carrying a MAC-CE command in the uplink time slot n.
  • the MAC-CE indication is the configuration of the downlink signal.
  • the UE assumes that the MAC-CE command for the downlink configuration takes effect in the downlink. Gap The first time slot after that. in Is the subcarrier spacing 2 ⁇ * 15KHz, the number of slots of one subframe (subframe) contained, X is a non-negative integer parameter agreement or protocol configuration.
  • the configuration instruction of the MAC CE carried in the PDSCH for the downlink signal may be the resource configuration of the downlink ZP CSI-RS, or the deactivation (deactivation) of the downlink ZP CSI-RS resource configuration that has taken effect.
  • the gNB receives the uplink HARQ-ACK corresponding to the PDSCH carrying a command in the uplink time slot n.
  • the command is the configuration of the uplink signal.
  • the UE assumes that the command for the uplink configuration takes effect in the uplink time slot.
  • the first time slot after that. in Is the subcarrier spacing 2 ⁇ * 15KHz, the number of slots of one subframe (subframe) contained, X is a non-negative integer parameter agreement or protocol configuration.
  • the instruction carried in the PDSCH may be to activate/deactivate the SRS resource configuration.
  • the expression of the initial timing offset may also be expressed by the first timing offset or Koffset1 or K offset1 .
  • Koffset and K offset can be understood as the same parameter
  • time_duration and slot_duration can also be understood as the same parameter
  • ⁇ Koffset and ⁇ K can also be understood as the same parameter.
  • Koffset or timing offset can be understood as the initial timing offset, and can also be understood as the updated timing offset, etc.
  • the amount of displacement can be determined according to the specific conditions of the specific embodiment.
  • the above Max_RTD_beam can be understood as the maximum round-trip delay between the UE and the base station in the beam coverage area.
  • the execution sequence of updating the timing offset and using the timing offset shown above is not limited in the embodiment of the present application.
  • the message for updating the timing offset may not be sent according to the timing offset.
  • the certain message may not include information for indicating the updated timing offset.
  • the uplink message may not include the updated second timing offset.
  • the above methods and embodiments are explained using four-step random access and two-step random access as examples.
  • the above methods such as the timing offset acquisition and update method, are not limited to the random access step. It can be used at any stage of communication.
  • the second message, the third message, etc. described in this application can be replaced with a certain downlink message or a certain uplink message.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种更新定时偏移量的方法及装置,尤其适用于卫星通信等NTN网络,该方法包括:终端设备根据第一定时偏移量向网络设备发送第三消息;其中,该第一定时偏移量用于指示该终端设备延迟发送该第三消息的延迟程度,且该第三消息中包括指示信息,该指示信息用于指示第二定时偏移量,该第二定时偏移量为更新后的第一定时偏移量。该终端设备根据该第二定时偏移量向网络设备发送第五消息。该方法可以在保证终端设备有足够时间做定时提前调整的基础上,及时有效更新定时偏移量,避免了时频资源的浪费。

Description

更新定时偏移量的方法及装置
本申请要求于2020年02月18日提交中国专利局、申请号为202010100465.X、申请名称为“更新定时偏移量的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中,本申请要求于2020年04月07日提交中国专利局、申请号为202010299099.5、申请名称为“更新定时偏移量的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中,本申请要求于2020年10月15日提交中国专利局、申请号为202011105437.3、申请名称为“更新定时偏移量的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种更新定时偏移量的方法及装置。
背景技术
目前,新空口(New Radio,NR)技术已经从标准化阶段进入到商业部署阶段。NR标准是针对于陆地通信而研究设计的,相比于陆地通信,非陆地网络(Non-Terrestrial Networks,NTN)通信具有覆盖区域大、组网灵活等特点。
陆地通信网络中,基站与终端设备的海拔高度相差不大,但是非陆地网络中的基站/卫星与终端设备的海拔高度相差较大(一般会大于500km),如图1所示。因此,NTN中同一个波束/小区内终端设备的往返时延和往返时延差远大于NR同一小区中终端设备的往返时延和往返时延差。例如,当陆地蜂窝网中小区直径为350km时,小区内的最大往返时延为1.17ms。然而,当NTN中卫星轨道高度为600km,波束直径为350km时,如图2所示,最大的往返时延可以达到约13ms(UE的通信仰角为10度)。
一般的,为保证基站在规定时间接收到终端设备发送的上行信号,因此终端设备在发送上行信号之前,需要做定时提前调整。然而,根据上下行定时关系,终端设备能够做定时提前调整的量远小于13ms。
因此,如何使得终端设备有足够的时间做定时提前调整是需要解决的问题。
发明内容
本申请实施例提供一种更新定时偏移量的方法及装置,在保证终端设备有足够时间做定时提前调整的基础上,及时有效更新定时偏移量,避免了时频资源的浪费。
第一方面,本申请提供一种更新定时偏移量的方法,所述方法包括:
终端设备根据第一定时偏移量向网络设备发送第三消息;其中,所述第一定时偏移量用于指示所述终端设备延迟发送所述第三消息的延迟程度,且所述第三消息中包括指示信息,所述指示信息用于指示第二定时偏移量,所述第二定时偏移量为更新后的第一定时偏移量;
所述终端设备根据所述第二定时偏移量向所述网络设备发送第五消息。
本申请所提供的技术方案:一方面,通过设置定时偏移量,终端设备有足够时间做定时提前调整;另一方面,通过更新定时偏移量,该终端设备可以及时使用合适的定时偏移 量。相对于不更新定时偏移量来说,本申请实施例在满足终端设备有足够时间做定时提前调整的基础上,还能够降低端到端时延和避免资源浪费。
在一种可能的实现方式中,所述终端设备根据第一定时偏移量向网络设备发送第三消息之前,所述方法还包括:所述终端设备向所述网络设备发送第一消息,所述第一消息中包括随机接入前导;所述终端设备接收所述网络设备发送的第二消息,所述第二消息包括随机接入响应消息;所述终端设备根据第一定时偏移量向网络设备发送第三消息之后,所述方法还包括:所述终端设备接收所述网络设备发送的第四消息,所述第四消息包括随机接入竞争解决消息。
本申请实施例中,第一消息可以理解为四步随机接入过程中的Msg1,第二消息可以理解为四步随机接入过程中的Msg2,第三消息可以理解为四步随机接入过程中的Msg3,以及第四消息可以理解为四步随机接入过程中的Msg4。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括所述第二定时偏移量。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括第一调整参数集合,所述第一调整参数集合用于确定所述第二定时偏移量。
本申请实施例中,终端设备发送该第一调整参数集合时使用的比特数远远小于直接发送第二定时偏移量时使用的比特数,节省了信令开销。
在一种可能的实现方式中,所述第一调整参数集合包括以下任一项或多项:
基于随机接入响应RAR接收窗的延时启动时长和所述RAR接收窗的时长确定的参数;或者基于随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长确定的参数;或者基于公共定时提前量确定的参数;或者基于所述网络设备所在的轨道高度确定的参数;或者基于所述终端设备与所述网络设备之间的往返时延确定的参数。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括所述第二定时偏移量与基准定时偏移量之间的变化量。
本申请中,基准定时偏移量为所述终端设备当前使用的定时偏移量或预先设置的定时偏移量。
在一种可能的实现方式中,所述第四消息中包括所述第二定时偏移量;或者,
所述第四消息中包括基于所述第二定时偏移量和基准定时偏移量之间的变化量;其中,所述基准定时偏移量为所述终端设备当前使用的定时偏移量或预先设置的定时偏移量。
在一种可能的实现方式中,所述方法还包括:
所述终端设备接收所述网络设备发送的生效信息,所述生效信息用于指示所述第二定时偏移量的生效时间;或者所述终端设备向所述网络设备发送生效信息,所述生效信息用于指示所述第二定时偏移量的生效时间;或者所述第二定时偏移量在所述终端设备发送所述第三消息之后的m个时隙生效,所述m为预先设置的整数;或者所述第二定时偏移量在所述终端设备接收到所述第四消息之后的n个时隙生效,所述n为预先设置的整数。
在一种可能的实现方式中,所述终端设备根据定时偏移量向网络设备发送第三消息之前,所述方法还包括:所述终端设备接收所述网络设备发送的广播消息;其中,所述广播消息中包括以下任一项或多项:所述RAR接收窗的延时启动时长和所述RAR接收窗的时 长;或者
所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长;或者
所述公共定时提前量;或者所述网络设备所在的轨道高度。
在一种可能的实现方式中,当所述广播消息中包括所述RAR接收窗的延时启动时长和所述RAR接收窗的时长时,所述第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000001
其中,所述K offset为所述第一定时偏移量的取值;所述RAR_window为所述RAR接收窗的时长,所述RAR接收窗的时长用于表示所述终端设备接收所述RAR的时长;所述RAR_offset为所述RAR接收窗的延时启动时长,所述RAR接收窗的延时启动时长用于表示所述终端设备发送所述第一消息之后,延时开启所述RAR接收窗的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
在一种可能的实现方式中,当所述广播消息中包括所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长时,所述第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000002
其中,所述RCR_timer为所述随机接入竞争解决定时器的时长,所述随机接入竞争解决定时器的时长表示所述终端设备发送所述第三消息之后,启动所述随机接入竞争解决定时器与接收到所述第四消息之间所允许的最大时间间隔;所述RCR_offset为所述随机接入竞争解决定时器的延时启动时长,所述随机接入竞争解决定时器的延时启动时长用于表示所述终端设备发送所述第三消息之后,延时开启所述随机接入竞争解决定时器的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
在一种可能的实现方式中,所述第五消息包括数据信息、反馈消息或探测参考信号(sounding reference signal,SRS)中的任一项。
可选的,所述反馈消息包括所述第四消息的反馈消息。
在一种可能的实现方式中,所述方法还包括:所述终端设备接收所述网络设备发送的定时提前调整指令,所述定时提前调整指令用于指示更新所述第二定时偏移量;所述终端设备根据所述第二定时偏移量向所述网络设备发送更新后的第二定时偏移量或者第二调整参数集合,所述第二调整参数集合用于确定所述更新后的第二定时偏移量。
在一种可能的实现方式中,所述方法还包括:在满足以下任一项或多项条件时,所述终端设备接收所述网络设备发送的更新后的第二定时偏移量或基于所述更新后的第二定时偏移量和所述基准定时偏移量之间的变化量;其中,所述任一项或多项条件包括:所述终端设备切换小区;或者所述终端设备切换波束;或者所述终端设备切换部分带宽(bandwidth part,BWP)。
第二方面,本申请提供一种更新定时偏移量的方法,其特征在于,所述方法包括:
网络设备根据第一定时偏移量接收终端设备发送的第三消息;其中,所述第一定时偏移量用于指示所述网络设备延迟接收所述第三消息的延迟程度;且所述第三消息中包括指示信息,所述指示信息用于指示第二定时偏移量,所述第二定时偏移量为更新后的第一定 时偏移量;所述网络设备接收所述终端设备发送的第五消息。
在一种可能的实现方式中,所述网络设备根据第一定时偏移量接收终端设备发送的第三消息之前,所述方法还包括:所述网络设备接收所述终端设备发送的第一消息,所述第一消息中包括随机接入前导;所述网络设备向所述终端设备第二消息,所述第二消息中包括随机接入响应消息;所述网络设备根据第一定时偏移量接收终端设备发送的第三消息之后,所述方法还包括:所述网络设备向所述终端设备发送第四消息,所述第四消息包括随机接入竞争解决消息。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括所述第二定时偏移量。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括第一调整参数集合,所述第一调整参数集合用于确定所述第二定时偏移量。
在一种可能的实现方式中,所述第一调整参数集合包括以下任一项或多项:基于随机接入响应RAR接收窗的延时启动时长和所述RAR接收窗的时长确定的参数;或者基于随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长确定的参数;或者
基于公共定时提前量确定的参数;或者基于所述网络设备所在的轨道高度确定的参数;或者基于所述终端设备与所述网络设备之间的往返时延确定的参数。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括所述第二定时偏移量与基准定时偏移量之间的变化量。
本申请中,基准定时偏移量为所述终端设备当前使用的定时偏移量或预先设置的定时偏移量。
在一种可能的实现方式中,所述第四消息中包括所述第二定时偏移量;或者,所述第四消息中包括基于所述第二定时偏移量和基准定时偏移量之间的变化量;其中,所述基准定时偏移量为所述终端设备当前使用的定时偏移量或预先设置的定时偏移量。
在一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送生效信息,所述生效信息用于指示所述第二定时偏移量的生效时间;或者所述网络设备接收所述终端设备发送的生效信息,所述生效信息用于指示所述第二定时偏移量的生效时间;或者所述第二定时偏移量在所述网络设备接收到所述第三消息之后的m个时隙生效,所述m为预先设置的整数;或者所述第二定时偏移量在所述网络设备发送所述第四消息之后的n个时隙生效,所述n为预先设置的整数。
在一种可能的实现方式中,所述网络设备根据第一定时偏移量接收终端设备发送的第三消息之前,所述方法还包括:所述网络设备发送广播消息;其中,所述广播消息中包括以下任一项或多项:所述RAR接收窗的延时启动时长和所述RAR接收窗的时长;或者所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长;或者所述公共定时提前量;或者所述网络设备所在的轨道高度。
在一种可能的实现方式中,当所述广播消息中包括所述RAR接收窗的延时启动时长和所述RAR接收窗的时长时,所述第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000003
其中,所述K offse1t为所述第一定时偏移量的取值;所述RAR_window为所述RAR接收窗的时长,所述RAR接收窗的时长用于表示所述终端设备接收所述RAR的时长;所述RAR_offset为所述RAR接收窗的延时启动时长,所述RAR接收窗的延时启动时长用于表示所述终端设备发送所述第一消息之后,延时开启所述RAR接收窗的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
在一种可能的实现方式中,当所述广播消息中包括所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长时,所述第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000004
其中,所述K offse1t为所述第一定时偏移量的取值;所述RCR_timer为所述随机接入竞争解决定时器的时长,所述随机接入竞争解决定时器的时长表示所述终端设备发送所述第三消息之后,启动所述随机接入竞争解决定时器与接收到所述第四消息之间所允许的最大时间间隔;所述RCR_offset为所述随机接入竞争解决定时器的延时启动时长,所述随机接入竞争解决定时器的延时启动时长用于表示所述终端设备发送所述第三消息之后,延时开启所述随机接入竞争解决定时器的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
在一种可能的实现方式中,所述第五消息包括数据信息、反馈消息或探测参考信号SRS中的任一项。
在一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送定时提前调整指令,所述定时提前调整指令用于指示更新所述第二定时偏移量;所述网络设备接收所述终端设备发送的更新后的第二定时偏移量或者第二调整参数集合,所述第二调整参数集合用于确定所述更新后的第二定时偏移量。
在一种可能的实现方式中,所述方法还包括:在满足以下任一项或多项条件时,所述网络设备向所述终端设备发送更新后的第二定时偏移量或基于所述更新后的第二定时偏移量和所述基准定时偏移量之间的变化量;其中,所述任一项或多项条件包括:所述终端设备切换小区;或者所述终端设备切换波束;或者所述终端设备切换部分带宽BWP。
第二方面的有益效果可参见第一方面的有益效果,在此不赘述。
第三方面,本申请提供一种通信装置,所述装置包括:
处理单元,用于生成第三消息;所述第三消息中包括指示信息,所述指示信息用于指示第二定时偏移量,所述第二定时偏移量为更新后的第一定时偏移量,所述第一定时偏移量用于指示所述通信装置延迟发送所述第三消息的延迟程度;发送单元,用于根据所述第一定时偏移量向网络设备发送第三消息;所述发送单元,还用于根据所述第二定时偏移量向所述网络设备发送第五消息。
在一种可能的实现方式中,所述发送单元,还用于向所述网络设备发送第一消息,所述第一消息中包括随机接入前导;所述接收单元,还用于接收所述网络设备发送的第二消息,所述第二消息包括随机接入响应消息;以及所述接收单元,还用于接收所述网络设备发送的第四消息,所述第四消息包括随机接入竞争解决消息。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信 息中包括所述第二定时偏移量。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括第一调整参数集合,所述第一调整参数集合用于确定所述第二定时偏移量。
在一种可能的实现方式中,所述第一调整参数集合包括以下任一项或多项:基于随机接入响应RAR接收窗的延时启动时长和所述RAR接收窗的时长确定的参数;或者基于随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长确定的参数;或者
基于公共定时提前量确定的参数;或者基于所述网络设备所在的轨道高度确定的参数;或者基于所述通信装置与所述网络设备之间的往返时延确定的参数。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括所述第二定时偏移量与基准定时偏移量之间的变化量。
本申请中,基准定时偏移量为所述终端设备当前使用的定时偏移量或预先设置的定时偏移量。
在一种可能的实现方式中,所述第四消息中包括所述第二定时偏移量;或者,所述第四消息中包括基于所述第二定时偏移量和基准定时偏移量之间的变化量;其中,所述基准定时偏移量为所述通信装置当前使用的定时偏移量或预先设置的定时偏移量。
在一种可能的实现方式中,所述接收单元,还用于接收所述网络设备发送的生效信息,所述生效信息用于指示所述第二定时偏移量的生效时间;或者所述发送单元,还用于向所述网络设备发送生效信息,所述生效信息用于指示所述第二定时偏移量的生效时间;或者所述第二定时偏移量在所述通信装置发送所述第三消息之后的m个时隙生效,所述m为预先设置的整数;或者所述第二定时偏移量在所述通信装置接收到所述第四消息之后的n个时隙生效,所述n为预先设置的整数。
在一种可能的实现方式中,所述接收单元,还用于接收所述网络设备发送的广播消息;其中,所述广播消息中包括以下任一项或多项:所述RAR接收窗的延时启动时长和所述RAR接收窗的时长;或者所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长;或者所述公共定时提前量;或者所述网络设备所在的轨道高度。
在一种可能的实现方式中,当所述广播消息中包括所述RAR接收窗的延时启动时长和所述RAR接收窗的时长时,所述第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000005
其中,所述K offset1为所述第一定时偏移量的取值;所述RAR_window为所述RAR接收窗的时长,所述RAR接收窗的时长用于表示所述通信装置接收所述RAR的时长;所述RAR_offset为所述RAR接收窗的延时启动时长,所述RAR接收窗的延时启动时长用于表示所述通信装置发送所述第一消息之后,延时开启所述RAR接收窗的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
在一种可能的实现方式中,当所述广播消息中包括所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长时,所述第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000006
其中,所述K offse1t为所述第一定时偏移量的取值;所述RCR_timer为所述随机接入竞 争解决定时器的时长,所述随机接入竞争解决定时器的时长表示所述通信装置发送所述第三消息之后,启动所述随机接入竞争解决定时器与接收到所述第四消息之间所允许的最大时间间隔;所述RCR_offset为所述随机接入竞争解决定时器的延时启动时长,所述随机接入竞争解决定时器的延时启动时长用于表示所述通信装置发送所述第三消息之后,延时开启所述随机接入竞争解决定时器的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
在一种可能的实现方式中,所述第五消息包括数据信息、反馈消息或探测参考信号SRS中的任一项。
在一种可能的实现方式中,所述接收单元,还用于接收所述网络设备发送的定时提前调整指令,所述定时提前调整指令用于指示更新所述第二定时偏移量;所述发送单元,还用于根据所述第二定时偏移量向所述网络设备发送更新后的第二定时偏移量或者第二调整参数集合,所述第二调整参数集合用于确定所述更新后的第二定时偏移量。
在一种可能的实现方式中,所述接收单元,还用于在满足以下任一项或多项条件时,接收所述网络设备发送的更新后的第二定时偏移量或基于所述更新后的第二定时偏移量和所述基准定时偏移量之间的变化量;其中,所述任一项或多项条件包括:所述通信装置切换小区;或者所述通信装置切换波束;或者所述通信装置切换部分带宽BWP。
第四方面,本申请提供一种通信装置,所述装置包括:
接收单元,用于根据第一定时偏移量接收终端设备发送的第三消息;其中,所述第一定时偏移量用于指示所述网络设备延迟接收所述第三消息的延迟程度;且所述第三消息中包括指示信息,所述指示信息用于指示第二定时偏移量,所述第二定时偏移量为更新后的第一定时偏移量;所述接收单元,还用于接收所述终端设备发送的第五消息。
在一种可能的实现方式中,所述装置还包括发送单元;其中,所述接收单元,用于接收所述终端设备发送的第一消息,所述第一消息中包括随机接入前导;所述发送单元,用于向所述终端设备第二消息,所述第二消息中包括随机接入响应消息;所述发送单元,还用于向所述终端设备发送第四消息,所述第四消息包括随机接入竞争解决消息。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括所述第二定时偏移量。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括第一调整参数集合,所述第一调整参数集合用于确定所述第二定时偏移量。
在一种可能的实现方式中,所述第一调整参数集合包括以下任一项或多项:基于随机接入响应RAR接收窗的延时启动时长和所述RAR接收窗的时长确定的参数;或者基于随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长确定的参数;或者
基于公共定时提前量确定的参数;或者基于所述通信装置所在的轨道高度确定的参数;或者基于所述终端设备与所述通信装置之间的往返时延确定的参数。
在一种可能的实现方式中,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括所述第二定时偏移量与基准定时偏移量之间的变化量。
本申请中,基准定时偏移量为所述终端设备当前使用的定时偏移量或预先设置的定时偏移量。
在一种可能的实现方式中,所述第四消息中包括所述第二定时偏移量;或者,所述第四消息中包括基于所述第二定时偏移量和基准定时偏移量之间的变化量;其中,所述基准定时偏移量为所述终端设备当前使用的定时偏移量或预先设置的定时偏移量。
在一种可能的实现方式中,所述发送单元,还用于向所述终端设备发送生效信息,所述生效信息用于指示所述第二定时偏移量的生效时间;或者所述接收单元,还用于接收所述终端设备发送的生效信息,所述生效信息用于指示所述第二定时偏移量的生效时间;或者所述第二定时偏移量在所述通信装置接收到所述第三消息之后的m个时隙生效,所述m为预先设置的整数;或者所述第二定时偏移量在所述通信装置发送所述第四消息之后的n个时隙生效,所述n为预先设置的整数。
在一种可能的实现方式中,所述发送单元,还用于发送广播消息;其中,所述广播消息中包括以下任一项或多项:所述RAR接收窗的延时启动时长和所述RAR接收窗的时长;或者所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长;或者所述公共定时提前量;或者所述通信装置所在的轨道高度。
在一种可能的实现方式中,当所述广播消息中包括所述RAR接收窗的延时启动时长和所述RAR接收窗的时长时,所述第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000007
其中,所述K offset1为所述第一定时偏移量的取值;所述RAR_window为所述RAR接收窗的时长,所述RAR接收窗的时长用于表示所述终端设备接收所述RAR的时长;所述RAR_offset为所述RAR接收窗的延时启动时长,所述RAR接收窗的延时启动时长用于表示所述终端设备发送所述第一消息之后,延时开启所述RAR接收窗的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
在一种可能的实现方式中,当所述广播消息中包括所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长时,所述第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000008
其中,所述K offset1为所述第一定时偏移量的取值;所述RCR_timer为所述随机接入竞争解决定时器的时长,所述随机接入竞争解决定时器的时长表示所述终端设备发送所述第三消息之后,启动所述随机接入竞争解决定时器的与接收到所述第四消息之间的最大时长;所述RCR_offset为所述随机接入竞争解决定时器的延时启动时长,所述随机接入竞争解决定时器的延时启动时长用于表示所述终端设备发送所述第三消息之后,延时开启所述随机接入竞争解决定时器的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
在一种可能的实现方式中,所述第五消息包括数据信息、反馈消息或探测参考信号SRS中的任一项。
在一种可能的实现方式中,所述发送单元,还用于向所述终端设备发送定时提前调整指令,所述定时提前调整指令用于指示更新所述第二定时偏移量;所述接收单元,还用于 接收所述终端设备发送的更新后的第二定时偏移量或者第二调整参数集合,所述第二调整参数集合用于确定所述更新后的第二定时偏移量。
在一种可能的实现方式中,所述发送单元,还用于在满足以下任一项或多项条件时,向所述终端设备发送更新后的第二定时偏移量或基于所述更新后的第二定时偏移量和所述基准定时偏移量之间的变化量;其中,所述任一项或多项条件包括:所述终端设备切换小区;或者所述终端设备切换波束;或者所述终端设备切换部分带宽BWP。
第五方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序或指令时,如第一方面所述的方法被执行。
第六方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序或指令时,如第二方面所述的方法被执行。
第七方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面所述的方法。
第八方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第二方面所述的方法。
第九方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于执行所述程序代码,以使所述通信装置执行如第一方面所述的方法。
第十方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于执行所述程序代码,以使所述通信装置执行如第二方面所述的方法。
第十一方面,本申请提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以使如第一方面所示的方法被执行。
第十二方面,本申请提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以使如第二方面所示的方法被执行。
第十三方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储指令或计算机程序,当所述指令或所述计算机程序被执行时,使得第一方面所述的方法被实现。
第十四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储指令或计算机程序,当所述指令或所述计算机程序被执行时,使得第二方面所述的方法被实现。
第十五方面,本申请提供一种计算机程序产品,所述计算机程序产品包括指令或计算机程序,当所述指令或所述计算机程序被执行时,使得第一方面所述的方法被实现。
第十六方面,本申请提供一种计算机程序产品,所述计算机程序产品包括指令或计算 机程序,当所述指令或所述计算机程序被执行时,使得第二方面所述的方法被实现。
第十七方面,本申请提供一种计算机程序,用于执行第一方面所述的方法。
第十八方面,本申请提供一种计算机程序,用于执行第二方面所述的方法。
第十九方面,本申请提供一种通信系统,包括终端设备和网络设备,所述终端设备用于执行第一方面所述的方法,所述网络设备用于执行第二方面所述的方法。
附图说明
图1是本申请实施例提供的一种NTN通信系统的架构示意图;
图2是本申请实施例提供的一种往返时延与最小仰角的关系示意图;
图3是本申请实施例提供的一种NTN通信系统的架构示意图;
图4是本申请实施例提供的一种四步随机接入方法的流程示意图;
图5a是本申请实施例提供的一种定时提前量与信号之间的关系示意图;
图5b是本申请实施例提供的一种定时提前量与信号之间的关系示意图;
图5c是本申请实施例提供的一种定时提前量与信号之间的关系示意图;
图6是本申请实施例提供的一种更新定时偏移量的方法流程示意图;
图7a是本申请实施例提供的一种定时提前量与信号之间的关系示意图;
图7b是本申请实施例提供的一种定时提前量与信号之间的关系示意图;
图8a是本申请实施例提供的一种服务链路与馈电链路的参考角度示意图;
图8b是本申请实施例提供的一种最大往返时延差与最小仰角的关系示意图;
图9是本申请实施例提供的一种m与生效时间的关系示意图;
图10a是本申请实施例提供的一种更新定时偏移量的方法流程示意图;
图10b是本申请实施例提供的一种更新定时偏移量的方法流程示意图;
图11是本申请实施例提供的一种两步随机接入方法的流程示意图;
图12是本申请实施例提供的一种更新定时偏移量的方法流程示意图;
图13是本申请实施例提供的一种通信装置的结构示意图;
图14是本申请实施例提供的一种通信装置的结构示意图;
图15是本申请实施例提供的一种基于参考点的NTN通信系统示意图;
图16是本申请实施例提供的一种基于参考点坐标替换Koffset值的NTN系统架构图;
图17是本申请实施例提供的一种Koffset值/Koffset参考点坐标指示位示意图A;
图18是本申请实施例提供的一种Koffset值/Koffset参考点坐标指示位示意图B;
图19是本申请实施例提供的一种Koffset角度示意图;
图20是本申请实施例提供的一种信令与时隙之间的关系示意图;
图21是本申请实施例提供的一种信令与时隙之间的关系示意图。
具体实施方式
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们 任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
下面结合附图对本申请的实施例进行描述。
本申请提供的方法可以应用于NTN通信系统,如图3所示,该通信系统可由终端设备、卫星(或称卫星基站)以及地面站(或称关口站、信关站)(gateway)组成。
其中,终端设备,也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。可理解,该终端设备还可是未来5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。为便于描述,以下将以终端设备为UE为例,来说明本申请实施例所涉及的方法。
可选的,图3所示的通信系统中,终端设备和终端设备之间可以通过设备到设备(device to device,D2D)、车与任何事物(vehicle-to-everything,V2X)或机器到机器(machine to machine,M2M)等通信技术进行通信,本申请实施例对于终端设备之间的通信方法不作限定。
其中,卫星可为终端设备提供无线接入服务,调度无线资源给接入的终端设备,提供可靠的无线传输协议和数据加密协议等。卫星可以是将人造地球卫星和高空飞行器等作为无线通信的基站,例如演进型基站(evolutional NodeB,eNB)和5G基站(gNB)等。或者,卫星也可以作为这些基站的中继,向终端设备透传这些基站的无线信号,此时,地面站可视为无线通信的基站。因此,本申请实施例中,在一些实施例中,比如在卫星的再生场景下,网络设备可以为图3所示的卫星基站;在另一些实施例中,比如在卫星的透传场景下, 该网络设备可以为图3所示的地面站。因此,为便于描述,下文中以网络设备为基站为例说明本申请所涉及的方法。
本申请实施例中,网络设备可以包括但不限于以上所示的基站,例如该基站还可以是未来通信系统如第六代通信系统中的基站。可选的,该网络设备还可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该网络设备还可以是可穿戴设备或车载设备等。可选的,该网络设备还可以是小站,传输节点(transmission reception point,TRP)(或也可以称为传输接收点)等。可理解,该网络设备还可以是未来演进的PLMN中的基站等等。
可选的,卫星可以是静止轨道(geostationary earth orbit,GEO)卫星,也可以是非静止轨道(none-geostationary earth orbit,NGEO)的中轨道(medium earth orbit,MEO)卫星和低轨道(low earth orbit,LEO)卫星,还可以是高空通信平台(High Altitude Platform Station,HAPS)等。
其中,地面站可用于连接卫星与核心网。例如,当卫星作为无线通信的基站时,地面站可透传卫星与核心网之间的信令。又或者,地面站可作为无线通信的基站,卫星可透传终端设备与地面站之间的信令。示例性的,当进行通信时,地面站可将来自于核心网的信令通过反馈链路(或称馈电链路)(feeder link)发送至卫星;并由卫星通过该卫星与终端设备之间的服务链路(service link)向该终端设备发送该信令。相应的,终端设备也可以通过服务链路向卫星发送信令,由该卫星通过地面站向核心网发送该信令。
可理解,图3仅示出了一个卫星以及一个地面站,在实际使用中,可根据需要采取多卫星和/或多地面站的架构。其中,每个卫星可向一个或多个终端设备提供服务,每个卫星可对应于一个或多个地面站,每个地面站可对应于一个或多个卫星等等,本申请中不予具体限定。
为充分理解本申请所示的方法,以下详细介绍本申请实施例所涉及的四步随机接入方法。如图4所示:
401、UE向基站发送随机接入前导(random access preamble),也可以称为第一消息(Msg1)。随机接入前导的作用是通知基站有一个随机接入请求,并使得基站能估计其与UE之间的传输时延,以便基站校准上行定时(uplink timing)并将校准信息通过定时提前(timing advance,TA)命令(timing advance command)告知UE。
402、基站在检测到随机接入前导后向UE发送随机接入响应(random access response,RAR),也可以称为第二消息(Msg2)。随机接入响应可以包括上述401中所收到随机接入前导的序列编号、定时提前命令、上行资源分配信息和临时小区无线网络临时标识(temporary cell-radionetworktemporaryidentifier,TC-RNTI)等。
403、UE接收随机接入响应,如果该随机接入响应中的随机接入前导的序列编号所指示的随机接入前导和上述401中UE向基站发送的随机接入前导相同,则UE认为该随机接入响应是针对该UE的随机接入响应,即UE接收到了该UE的随机接入响应。UE接收到随机接入响应后,在随机接入响应指示的上行资源上发送上行消息,例如在物理上行共享信道(physical uplink shared channel,PUSCH)上发送上行数据,也称为第三消息(Msg3)。其中, Msg3可以携带唯一的用户标识。
404、基站接收到UE的上行消息,向接入成功的UE返回冲突解决消息,也称为第四消息(Msg4)。基站在冲突解决消息中将携带Msg3中的唯一用户标识以指示接入成功的UE,而其他没有接入成功的UE将重新发起随机接入。
从上面介绍可以看出:为了令上行信号到达卫星基站时与下行信号的定时对齐,需要UE在发送上行信号时做定时提前调整,如图5a所示。NTN中较大的往返时延会造成卫星基站侧接收到的上行信号定时与下行信号定时相差较大。因此,NTN系统中对上行信号定时提前调整的量值会比较大。
为引出本申请需要解决的问题:示例性的,当UE接收到基站发送的物理下行共享信道(physical downlink shared channel,PDSCH)数据之后,该UE需要向基站发送混合自动重传请求(hybrid automatic repeat request,HARQ)-确认应答(acknowledge,ACK)(HARQ-ACK)消息反馈该PDSCH被正确接收。
例如,UE在时隙(slot)n收到PDSCH数据,则UE需要在n+K 1时隙上反馈HARQ-ACK消息。即UE可做定时提前调整的最大值为K 1个时隙长度。一般的,该K 1的最大值为15,当子载波宽度(subcarrier spacing,SCS)为30KHz时,一个时隙长度为0.5ms,那么UE可做最大的定时提前调整量为7.5ms。由图2可知,NTN中UE与基站之间的往返时延会远大于7.5ms。因此,K 1个时隙长度不能够为UE提供足够的时间来做定时提前调整,即不能满足NTN中对波束或小区中往返时延补偿的定时提前的需求。具体的,如图5b所示,UE发送的上行数据的定时提前调整量大于K 1个时隙(slot)长度时,UE已经无法按时发送HARQ-ACK消息。
一个解决该问题的方法是引入一个定时偏移量(timing offset)K offset,使得UE接收到PDSCH数据和UE发送HARQ-ACK消息之间有足够的时间来做定时提前调整。即在卫星基站侧,在n+K 1+K offset时隙中接收HARQ-ACK消息。如图5c所示,引入K offset值,UE可以通过K offset值来调整UE发送HARQ-ACK消息所在的时隙,使得UE有足够的时间来做定时提前调整。
因此,下文将从以下几个方面介绍本申请所提供的方法。首先,介绍本申请所涉及的一种更新定时偏移量的方法;其次,介绍该方法中所涉及的第一定时偏移量的发送方法、第二定时偏移量的发送方法、生效时间以及更新方法等等;接着,介绍本申请所涉及的切换场景;最后介绍本申请所涉及的另一种更新定时偏移量的方法。
图6是本申请提供的一种更新定时偏移量的方法流程示意图。可选的,该方法可适用于四步随机接入场景。如图6所示,该方法具体包括:
603、UE根据第一定时偏移量K offset1向基站发送第三消息(Msg3);其中,该第一定时偏移量用于指示该UE延迟发送该第三消息的延迟程度,且该第三消息中包括指示信息,该指示信息用于指示第二定时偏移量,该第二定时偏移量为更新后的第一定时偏移量。
相应的,该基站根据该第一定时偏移量接收该UE发送的第三消息;该第一定时偏移量用于指示该基站延迟接收该第三消息的延迟程度。
该UE根据第一定时偏移量向基站发送第三消息,可以理解为:例如,UE在基站发送信号的时隙n接收到RAR消息,则在向基站发送的信号时隙n+K 2+Δ+K offset1上发送第三消息。同样的,该基站在接收UE发送的信号时隙n+K 2+Δ+K offset1上接收该第三消息。其中,K 2是基站通过广播或下行控制信息(downlink control information,DCI)向UE指示的参数,Δ是系统提前约定好的一个值。对于该K 2和Δ的具体取值或来源,本申请不作限定。
其中,该第一定时偏移量还可以称为初始(initial)定时偏移量。可选的,该UE可以从广播消息中获取该第一定时偏移量;或者,该UE可以根据广播消息中所广播的相关调整参数来确定该第一定时偏移量。可理解,至于该UE如何根据相关调整参数得到该第一定时偏移量的方法可参考下文,这里先不详述。以及该UE如何向基站指示第二定时偏移量,也可参考下文,这里先不详述。
可选的,在上述步骤603之前,图6所示的方法还包括:
601、UE向基站发送第一消息(Msg1),该第一消息中包括随机接入前导。
相应的,该卫星基站接收该UE发送的第一消息。
本申请实施例中,在卫星的透传场景下,基站相当于图3所示的地面站;在卫星的再生场景下,基站相当于图3所示的卫星基站。
602、基站向UE发送第二消息(Msg2),该第二消息中包括随机接入响应(random access response,RAR)消息。
相应的,该UE接收该基站发送的第二消息。
可选的,在步骤605之前,图6所示的方法还包括:
604、基站向UE发送第四消息,该第四消息包括随机接入竞争解决消息。
相应的,该UE接收该第四消息。
具体的,UE接收到基站发送的第二消息后,该UE便可以根据该第二消息中所包含的定时提前命令以及公共定时提前量(或该UE之前使用的定时提前量)得到定时提前量(即TA值或TA_New);进一步的,该UE根据该定时提前量对发送的信号做定时提前调整。更进一步的,根据该定时提前量,该UE还可以确定第二定时偏移量。可选的,定时提前量TA_New与第二定时偏移量可满足如下公式(1):
Figure PCTCN2021075536-appb-000009
其中,TA_New为UE发送第三消息时使用的定时提前量;slot_duration为时长单位;符号
Figure PCTCN2021075536-appb-000010
表示向上取整。可理解,该时长单位可以是时隙长度,如上行数据的时隙长度或下行数据的时隙长度。或者,该时长单位还可以是0.5ms、1ms、符号长度、子帧长度、帧长度等等中的任一个。
可选的,考虑到处理时延和UE所在海拔高度的影响,在计算第二定时偏移量时,可以在TA_New的基础上加上或减去一个固定量值,例如△t,即
Figure PCTCN2021075536-appb-000011
Figure PCTCN2021075536-appb-000012
△t为时间量值,可以是通过协议预先约定的值。△t的量纲可以与TA_New的量纲不同。或者,在K offset2的基础上加上或减去一个固定量值,例如△D,即
Figure PCTCN2021075536-appb-000013
Figure PCTCN2021075536-appb-000014
△D是一个整数值,可以是通过协议预先约定的值。
可理解,公式(1)中是以向上取整为例来说明定时提前量与第二定时偏移量的关系的,在具体实现中,还可以通过向下取整的方式来确定第二定时偏移量。
可理解,以上对于向上取整、向下取整的说明,下文同样适用。
UE在根据公式(1)得到第二定时偏移量之后,在一些实施例中,该UE可以根据更新阈值来确定是否利用第二定时偏移量更新第一定时偏移量。例如,该更新阈值为1,则若根据公式(1)得到的定时偏移量与第一定时偏移值之间的差值小于或等于1,则UE可以确定不更新第一定时偏移量。相反的,若根据公式(1)得到的定时偏移量与第一定时偏移值之间的差值大于或等于1,则UE可以确定更新第一定时偏移量,且根据公式(1)得到的定时偏移量即为第二定时偏移量。可理解,以上对于更新阈值为1时,该UE是否更新第一定时偏移量,本申请不作限定。又例如,该更新阈值还可以为2等等。当该更新阈值取值较大时,更新第一定时偏移量的频率会降低,由此,可以减少信令开销,避免了频繁通过第三消息以及RRC连接阶段通过其它消息来承载指示信息。
进一步的,UE确定更新第一定时偏移量后,UE向基站发送指示信息;该基站接收该UE发送的指示信息。
可理解,对于该更新阈值,可以由基站预先设置或协议预先设置。或者UE可以通过广播消息获取,该广播消息可以包括系统信息块(system information block,SIB)1、主系统信息块(master information block,MIB)、其他系统消息(other system information,OSI)中的任一项或多项。或者,该UE还可以通过无线控制资源(radio resource control,RRC)消息、下行控制信息(downlink control information,DCI)、组DCI、介质访问控制(media access control,MAC)、定时提前命令(timing advance command,TAC)中的任一项或多项来获取该更新阈值。可选的,该UE除了通过广播消息或单播消息获取该更新阈值之外,该UE还可以通过组播方式获取该更新阈值。可选的,该更新阈值还可随数据传输或在单独分配的PDSCH中承载。
以上仅为示例,对于该UE如何获取更新阈值以及该更新阈值的具体取值,本申请不作限定。
UE在根据公式(1)得到第二定时偏移量之后,在另一些实施例中,该UE向基站发送指示信息后,还可以由基站根据更新阈值来确定是否利用第二定时偏移量更新第一定时偏移量。对于该基站如何更新,可参考UE的描述,这里不再详述。
可选的,在基站确定更新第一定时偏移量之后,该基站还可以通过Msg4消息向UE发送第二定时偏移量、第二定时偏移量与基准定时偏移量之间的变化量或用于指示第二定时偏移量的调整参数。其中,该基准定时偏移量为UE正在使用的定时偏移量或基站配置的定时偏移量(例如通过广播消息配置的定时偏移量)或预先设置的固定的定时偏移量。该UE当前使用的定时偏移量如为上述第一定时偏移量。其中,预先设置的定时偏移量可以理解为:该基准定时偏移量是由基站预先规定或协议预先规定等。可理解,对于基准定时偏移量的说明,本申请下文中出现的基准定时偏移量同样使用。
举例来说,基准定时偏移量为20,第二定时偏移量为21,则该变化量可以为+1。又例如,基准定时偏移量为20,第二定时偏移量为19,则该变化量可以为-1。又或者,该变化量还可以为0。以上示出的例子是以第二定时偏移量-基准定时偏移量为例,但是本申请实施例中,该变化量还可以由基准定时偏移量-第二定时偏移量得到。
需要注意的是,Msg4中所包括的指示第二定时偏移量的调整参数可以不同于第三消息中用于指示第二定时偏移量的调整参数,例如,第三消息中用于指示第二定时偏移量的第 一调整参数可以是UE发送第三消息使用的定时提前量,而Msg4中包括的指示第二定时偏移量的调整参数可以是与第二定时偏移量与第一定时偏移量之间的差值相关的一些调整参数。进一步的,该UE接收到Msg4中包括的该第二定时偏移量或指示第二定时偏移量的调整参数或第二定时偏移量与基准定时偏移量之间的变化量后,该UE便可以更新第一定时偏移量。在该第二定时偏移量生效后,UE便可以根据该第二定时偏移量发送第五消息。
为更形象的说明UE或基站根据更新阈值来确定是否利用第二定时偏移量更新第一定时偏移量的方法,以下举例说明。
示例性的,比如UE根据公式(1)得到第二定时偏移量为15,第一定时偏移量为14,且更新阈值为2;由UE确定是否利用第二定时偏移量更新第一定时偏移量的情况下,由于第一定时偏移量与第二定时偏移量之间的差值小于2,由此UE可确定不更新第一定时偏移量。由此,为节省信令开销,该UE可以不向基站发送指示信息。在由基站确定是否利用第二定时偏移量更新第一定时偏移量的情况下,该UE可以通过指示信息指示第二定时偏移量为15,由此,基站接收到该指示信息后,该基站可以根据第一定时偏移量与第二定时偏移量之间的差值小于2,且更新阈值为2,则基站确定不更新第一定时偏移量。进一步的,Msg4中可以不包括第二定时偏移量。
示例性的,比如UE根据公式(1)得到第二定时偏移量为17,第一定时偏移量为14,且更新阈值为2;由UE确定是否利用第二定时偏移量更新第一定时偏移量的情况下,由于第一定时偏移量与第二定时偏移量之间的差值大于2,由此UE可确定更新第一定时偏移量。进一步的,该UE向基站发送指示信息。在由基站确定是否利用第二定时偏移量更新第一定时偏移量的情况下,该UE可以通过指示信息指示第二定时偏移量为17,由此,基站接收到该指示信息后,该基站可以根据第一定时偏移量与第二定时偏移量之间的差值大于2,且更新阈值为2,则基站确定更新第一定时偏移量。进一步的,Msg4中可以包括第二定时偏移量。
可理解,以上仅为示例,不应将其中的数字理解为对本申请的限定。
605、UE根据第二定时偏移量向基站发送第五消息。
相应的,该基站接收该第五消息。
该第五消息可以包括HARQ-ACK消息,该HARQ-ACK消息可以为第四消息的HARQ-ACK消息。或者,该第五消息还可以包括上行数据消息或上行参考信号(例如,探测参考信号)等等。
可理解,该UE根据第二定时偏移量向基站发送第五消息的说明,可参考该UE根据第一定时偏移量向基站发送第三消息的描述,这里不再详述。以及对于该第二定时偏移量的生效时间的描述,可参考下文。
本申请所提供的技术方案:一方面,通过设置定时偏移量,可使得UE有足够时间做定时提前调整;另一方面,通过更新定时偏移量,例如更新第一定时偏移量或更新第二定时偏移量等,可使得该UE使用合适的定时偏移量。相对于不更新定时偏移量来说,本申请实施例在满足UE有足够时间做定时提前调整的基础上,还能够降低端到端时延和避免资源浪费。
示例性的,在NTN系统中,LEO卫星与UE间的相对距离会一直变化,这也意味着往 返时延在一直变化。如果不更新定时偏移量K offset,那么UE需要使用较大的K offset值来保证通信的正常进行。因此,如果不更新K offset,UE延迟发送反馈消息的延迟长度(如图7a所示的K 1+K offset)可能会存在远大于定时提前量的情况。如图7a所示,基站在发送数据1后,在收到数据1的HARQ-ACK(图中A/N表示ACK或NACK)之前继续发送数据2~10才能填满整个时域资源。因此,基站需要使用10个进程才能避免时域资源浪费。
如果K offset可以被更新,那么UE延迟发送HARQ-ACK的延时长度不会远大于UE使用的定时提前量。如图7b所示,UE使用较为合适的K offset,此时基站侧的下行进程数可以减少到7个。并且,更新K offset后基站发送完数据1后等待6个数据长度就能收到HARQ-ACK反馈,相比于更新前等待9个数据长度,降低了端到端时延。因此,本申请方案可以优化减少基站发送下行数据的进程数和降低端到端时延。
可理解,本申请所示的定时偏移量K offset,如无特别说明,则该定时偏移量可以包括第一定时偏移量K offset1或第二定时偏移量K offset2或更新后的第二定时偏移量等等。也就是说,定时偏移量K offset是个泛称,无特殊含义。
以下将详细介绍图6所示的方法中可能涉及到的其他方法。
可理解,以下所示的各个方法可以相互参照,或者,各个方法还可以进行组合,这些方案都落入本申请的保护范围中。
UE从广播消息中获得第一定时偏移量的方法如下所示:
示例性的,若基站根据最大往返时延来确定定时偏移量,如
Figure PCTCN2021075536-appb-000015
Figure PCTCN2021075536-appb-000016
其中,max_RTD表示基站覆盖的波束或小区区域中距离基站最远的点的往返时延,即最大往返时延。则不同场景下传输该定时偏移量的比特数(bit)如下所示:
可理解,以下所示的例子中子载波间隔为120KHz,如果时长单位slot_duration是时隙长度,那么时长单位是0.125ms。
GEO透传(transparent)场景中小区直径D=200km最大往返时延为541.1ms;需要指示K offset的最大值为541.1/0.125=4329=13bit。
GEO再生(regenerative)场景中小区直径D=200km最大往返时延为270.5ms;需要指示K offset的最大值为270.5/0.125=2164=12bit。
LEO-1200透传场景中小区直径D=100km最大往返时延为25.8ms;需要指示K offset的最大值为41.7/0.125=334=9bit。
LEO-1200再生场景中小区直径D=100km最大往返时延为12.9ms;需要指示K offset的最大值为20.9/0.125=168=8bit。
LEO-600透传场景中小区直径D=100km最大往返时延为25.8ms;需要指示K offset的最大值为25.8/0.125=207=8bit。
LEO-600再生场景中小区直径D=100km最大往返时延为12.9ms;需要指示K offset的最大值为12.9/0.125=104=7bit。
可理解,以上所示的透传场景的最大往返时延可表示参考点-卫星-地面站之间的最大往返时延。以上所示的再生场景的最大往返时延可表示参考点-卫星之间的最大往返时延。该 参考点可以为波束或小区的覆盖区域中的参考点。
可选的,基站可以通过广播的方式向UE发送第一定时偏移量的值。例如,基站可以通过式子
Figure PCTCN2021075536-appb-000017
计算得到第一定时偏移量的值。考虑到处理时延和UE所在海拔高度的影响,在计算第一定时偏移量时,可以在max_RTD的基础上加上或减去一个固定量值,例如△t,即
Figure PCTCN2021075536-appb-000018
△t为时间量值,可以是通过协议预先约定的值。△t的量纲可以与max_RTD的量纲不同。或者,在K offset1的基础上加上或减去一个固定量值,例如△D,即
Figure PCTCN2021075536-appb-000019
Figure PCTCN2021075536-appb-000020
△D是一个整数值,可以是通过协议预先约定的值。可理解,本申请对于△t和△D的取值或来源不作限定。
由上面的举例可以看出,不同场景下基站直接广播K offset1的具体取值都需要较多的比特数。因此,为了降低信令开销,UE可以从广播消息中获取相关调整参数,从而该UE根据相关调整参数得到该第一定时偏移量。
根据广播消息中所广播的相关调整参数来确定第一定时偏移量的方法如下所示:
可理解,本申请各方法中UE为了得到第一定时偏移量需要获取某个或某些参数,例如S K、△K offset、△K offset_time、α、β,基站可以通过以下信令方式向UE发送:
基站通过广播消息向UE发送以上参数,该广播消息可以包括系统信息块(system information block,SIB)1、主系统信息块(master information block,MIB)、其他系统消息(other system information,OSI)中的任一项或多项。或者,在无线控制资源(radio resource control,RRC)连接阶段,基站需要向UE告知其它小区或波束的第一定时偏移量时,基站还可以通过RRC消息、下行控制信息(downlink control information,DCI)、组DCI、介质访问控制(media access control,MAC)、定时提前命令(timing advance command,TAC)中的任一项或多项来向UE发送以上参数。可选的,基站还可随数据传输或在单独分配的PDSCH中发送以上参数。可选的,基站除了通过广播消息或单播消息发送以上参数之外,基站还可以通过组播方式发送以上参数。可理解,以上对于各个参数的说明也适用于本申请的其他实施例。
方法一、
一般的,UE会通过一个预设的接收窗口来接收基站下发的RAR相关信息。然而在卫星通信中往返时延较大,因此UE在发送随机接入前导后,延时一定时间长度才开启接收窗来检测该RAR相关信息。理论上,该RAR接收窗的延时启动时长与基站覆盖的波束/小区中距离基站最近的点的往返时延有关,即与最小往返时延有关;定时偏移量与基站覆盖的波束/小区的最大往返时延相关。该RAR接收窗的延时启动时长可以由基站告知UE,因此为了节省信令开销,第一定时偏移量可根据该RAR接收窗的延时启动时长确定。
可选的,该第一定时偏移量与RAR接收窗的延时启动时长可满足如下公式(2):
Figure PCTCN2021075536-appb-000021
其中,K offset1为第一定时偏移量,S K为尺度因子,且该尺度因子为非负数;RAR_delay为RAR接收窗的延时启动时长;slot_duration为时长单位。
可选的,该第一定时偏移量与RAR接收窗的延时启动时长可满足如下公式(3):
Figure PCTCN2021075536-appb-000022
其中,△K offset为定时偏移量差值,该定时偏移量差值是整数值。
示例性的,基站可根据波束/小区的覆盖区域确定第一定时偏移量K offset1的取值,例如根据如上所述公式
Figure PCTCN2021075536-appb-000023
得到。然后,基站根据其向UE广播的RAR_delay的取值,将K offset1和RAR_delay代入公式(3)计算得到△K offset的值。基站可以将该△K offset值通过广播的方式发送给UE。相应的,UE接收到RAR_delay和△K offset的值,代入公式(3)得到第一定时偏移量的值。其中,slot_duration可以是协议预先约定或协议规定。可理解,如上所述的基站、UE如何获得以及使用△K offset的方法同样适用于参数S K,以及下面描述的各公式中用来推导第一定时偏移量的参数。
可选的,该第一定时偏移量与RAR接收窗的延时启动时长可满足如下公式(4):
Figure PCTCN2021075536-appb-000024
其中,△K offset_time为时长差值,该时长差值可以为正数、负数或0。进一步的,该时长差值的量纲还可以与RAR_delay不同,由此可节省信令开销。
可理解,对于该时长差值的取值可以是任意值,如正数、负数或0。
可选的,该第一定时偏移量与RAR接收窗的延时启动时长可满足如下公式(5):
Figure PCTCN2021075536-appb-000025
可理解,对于公式(5)中各个参数的说明,可参考公式(2)、(3)和(4)。
可理解,对于第一定时偏移量与RAR接收窗的延时启动时长之间的关系,根据以上各个参数,还可以有不同的形式,本申请不作限定。示例性的,根据公式(2)和公式(3),该第一定时偏移量与RAR接收窗的延时启动时长还可以满足,如:
Figure PCTCN2021075536-appb-000026
Figure PCTCN2021075536-appb-000027
方法二、
如上所述UE通过一个预设的接收窗口来接收基站下发的RAR相关信息,因此,基站需要将RAR接收窗的时长(RAR_window)告知UE,UE在发送preamble后,在RAR接收窗的时长内检测RAR相关信息。理论上,该RAR接收窗的时长与基站覆盖的波束/小区内的往返时延差有关。因此,为了节省信令开销,第一定时偏移量可根据该RAR接收窗的时长确定。
可选的,该第一定时偏移量与RAR接收窗的时长可满足如下公式(6):
Figure PCTCN2021075536-appb-000028
可选的,该第一定时偏移量与RAR接收窗的时长可满足如下公式(7):
Figure PCTCN2021075536-appb-000029
可选的,第一定时偏移量与RAR接收窗的时长可满足如下公式(8):
Figure PCTCN2021075536-appb-000030
可选的,该第一定时偏移量与RAR接收窗的时长可满足如下公式(9):
Figure PCTCN2021075536-appb-000031
可理解,对于第一定时偏移量与RAR接收窗的时长之间的关系,根据以上参数,还可以有不同的形式,本申请不作限定。示例性的得到其它推导公式,第一定时偏移量与RAR 接收窗的时长可满足,如:
Figure PCTCN2021075536-appb-000032
等等。
可理解,对于方法二中各公式中各个参数的说明,可参考方法一中所示的参数。
方法三、
结合方法一和方法二,由于基站不仅需要将RAR接收窗的时长告知UE,还需要将RAR接收窗的延时启动时长告知UE,因此,该第一定时偏移量还可以根据该RAR接收窗的时长和该RAR接收窗的延时启动时长确定。
可选的,该第一定时偏移量与该RAR接收窗的时长和该RAR接收窗的延时启动时长可满足如下公式(10):
Figure PCTCN2021075536-appb-000033
可选的,该第一定时偏移量与该RAR接收窗的时长和该RAR接收窗的延时启动时长可满足如下公式(11):
Figure PCTCN2021075536-appb-000034
可理解,可以根据方法一和方法二中所示的参数对于公式(10)和公式(11)进行修改得到其它推导第一定时偏移量的方法,例如,
Figure PCTCN2021075536-appb-000035
Figure PCTCN2021075536-appb-000036
Figure PCTCN2021075536-appb-000037
等等。
可理解,对于方法三中各公式的各个参数的说明,可参考方法一和方法二中所示的参数。
方法四、
在四步随机接入过程中UE发送Msg3后,启动随机接入竞争解决定时器(ra-ContentionResolutionTimer),并开始检测Msg4。如果在随机接入竞争解决定时器过期前成功接收Msg4,则认为接入成功。例如,随机接入竞争解决定时器的取值范围包括{8ms,16ms,24ms,32ms,40ms,48ms,56ms,64ms}。而NTN中往返时延较大,例如GEO场景中的往返时延大约为250ms。这时需要为随机接入竞争解决定时器引入一个延时启动量,才能保证在定时器失效前接收到Msg4。理论上,该随机接入竞争解决定时器的延时启动时长与基站覆盖的波束/小区中距离基站最近的点的往返时延有关,即与最小往返时延有关。一般的,基站可以通过SIB1向UE发送随机接入竞争解决定时器的延时启动时长RCR_offset。为了节省信令开销,该第一定时偏移量可以根据随机接入竞争解决定时器的延时启动时长确定。
可选的,该第一定时偏移量与随机接入竞争解决定时器的延时启动时长可满足如下公式(12):
Figure PCTCN2021075536-appb-000038
可选的,该第一定时偏移量与随机接入竞争解决定时器的延时启动时长可满足如下公式(13):
Figure PCTCN2021075536-appb-000039
可选的,该第一定时偏移量与随机接入竞争解决定时器的延时启动时长可满足如下公式(14):
Figure PCTCN2021075536-appb-000040
可选的,该第一定时偏移量与随机接入竞争解决定时器的延时启动时长可满足如下公式(15):
Figure PCTCN2021075536-appb-000041
可理解,对于第一定时偏移量与随机接入竞争解决定时器的延时启动时长之间的推导关系,还可以通过以上参数得到其它推导公式,例如:
Figure PCTCN2021075536-appb-000042
Figure PCTCN2021075536-appb-000043
等等。
可理解,对于方法四中各公式的各个参数的说明,可参考前述方法中所示的参数。
方法五、
同样的,基站会将随机接入竞争解决定时器的时长RCR_timer告知UE。理论上,该随机接入竞争解决定时器的时长与基站覆盖的波束/小区中的往返时延差有关。因此,为了节省开销,该第一定时偏移量可根据该随机接入竞争解决定时器的时长确定。
可选的,该第一定时偏移量与随机接入竞争解决定时器的时长可满足如下公式(16):
Figure PCTCN2021075536-appb-000044
可选的,该第一定时偏移量与随机接入竞争解决定时器的时长可满足如下公式(17):
Figure PCTCN2021075536-appb-000045
可选的,第一定时偏移量与随机接入竞争解决定时器的时长可满足如下公式(18):
Figure PCTCN2021075536-appb-000046
可选的,该第一定时偏移量与随机接入竞争解决定时器的时长可满足如下公式(19):
Figure PCTCN2021075536-appb-000047
可理解,对于第一定时偏移量与随机接入竞争解决定时器的时长之间的推导关系,还可以通过以上参数得到其它推导公式,例如:
Figure PCTCN2021075536-appb-000048
Figure PCTCN2021075536-appb-000049
等等。
可理解,对于方法五中各公式的各个参数的说明,可参考前述方法中所示的参数。
方法六、
结合方法四和方法五,由于基站不仅需要将随机接入竞争解决定时器的时长告知UE,还需要将随机接入竞争解决定时器的延时启动时长告知UE,因此,该第一定时偏移量还可以根据该随机接入竞争解决定时器的时长和该随机接入竞争解决定时器的延时启动时长确定。
可选的,该第一定时偏移量与该随机接入竞争解决定时器的时长和该随机接入竞争解决定时器的延时启动时长可满足如下公式(20):
Figure PCTCN2021075536-appb-000050
可选的,该第一定时偏移量与该随机接入竞争解决定时器的时长和该随机接入竞争解决定时器的延时启动时长可满足如下公式(21):
Figure PCTCN2021075536-appb-000051
可理解,可以根据方法一和方法二中所示的参数对于公式(20)和公式(21)进行修改得到其它推导第一定时偏移量的方法,例如,
Figure PCTCN2021075536-appb-000052
Figure PCTCN2021075536-appb-000053
Figure PCTCN2021075536-appb-000054
等等。
可理解,对于方法六中各公式中各个参数的说明,可参考前述方法中所示的参数。
方法七、
在初始接入阶段,为了提供给无定位功能的UE发送随机接入前导时使用的定时提前量。基站会向波束或小区广播公共定时提前(common TA)量,UE利用该公共定时提前量确定发送随机接入前导时使用的定时提前量。公共定时提前量可以根据以下方式计算:在波束或小区的覆盖区域中选择一个参考点(可以选择距离基站最近的点),计算参考点-卫星(卫星的再生场景);或,参考点-卫星-地面站(卫星的透传场景)之间的往返时延,公共定时提前等于该往返时延或等于该往返时延加/减一个固定值。参考点可以是服务链路上的点或馈电链路上的点,此处不做限定。类似地,基站也可能发送给UE一个参考点位置坐标,UE根据卫星的位置和参考点位置间的往返时延计算得到公共定时提前量。其中,公共定时提前量可以为正值或负值。
对于有定位功能的UE,UE可以根据该UE的位置信息和卫星的位置信息(可以从星历信息中获得)计算得到在发送随机接入前导时可以使用的定时提前量。不过,有定位功能的UE仍然可以获得基站会向波束或小区广播的公共定时提前量。
因此,该第一定时偏移量可以根据公共定时提前量TA_common得到。
可选的,该第一定时偏移量与公共定时提前量TA_common可满足如下公式(22):
Figure PCTCN2021075536-appb-000055
可选的,该第一定时偏移量与公共定时提前量可满足如下公式(23):
Figure PCTCN2021075536-appb-000056
可选的,该第一定时偏移量与公共定时提前量可满足如下公式(24):
Figure PCTCN2021075536-appb-000057
可选的,该第一定时偏移量与公共定时提前量可满足如下公式(25):
Figure PCTCN2021075536-appb-000058
可理解,对于第一定时偏移量与公共定时提前量之间的推导关系,还可以通过以上参数得到其它推导公式,例如:
Figure PCTCN2021075536-appb-000059
等等。
可理解,对于方法七中各公式的各个参数的说明,可参考前述方法。
方法八、
第一定时偏移量还可根据卫星的轨道高度H确定。卫星的轨道高度与基站覆盖区域的最小往返时延有关系。该轨道高度可为图8a中的星下点往返时延。该卫星的轨道高度可以从星历信息中获得。
可选的,该第一定时偏移量与轨道高度H可满足如下公式(26):
Figure PCTCN2021075536-appb-000060
其中,H为轨道高度,c为光速。
可选的,该第一定时偏移量与轨道高度H可满足如下公式(27):
Figure PCTCN2021075536-appb-000061
可选的,该第一定时偏移量与轨道高度H可满足如下公式(28):
Figure PCTCN2021075536-appb-000062
可选的,该第一定时偏移量与轨道高度H可满足如下公式(29):
Figure PCTCN2021075536-appb-000063
可理解,对于第一定时偏移量与轨道高度之间的推导关系,还可以通过以上参数得到其它推导公式,例如:
Figure PCTCN2021075536-appb-000064
等等。
可理解,针对于透传模式,会有馈电链路和服务链路两部分时延,因此对公式(26)至公式(29)以及变形公式可以做进一步优化,即将2*H/c替换为4*H/c。
可理解,对于方法八中各公式的各个参数的说明,可参考前述方法。
方法九、
基站发送给UE对应覆盖波束/小区的服务链路的参考角度和/或馈电链路的参考角度。如图8a所示,服务链路的参考角度可以根据服务链路的参考角度参考点-卫星-星下点组成的角度确定,服务链路的参考角度参考点可选择该覆盖波束/小区范围内距离卫星最远的点(或根据具体网络部署确定参考点位置)。星下点是卫星与地球球心的连线,该连线与地球表面的交点。因此,UE可以根据服务链路的参考角度α计算服务链路的往返时延:2*H/cos(α)/c。
同理,如图8a所示,基站可以发送给UE馈电链路的参考角度来计算馈电链路的往返时延。馈电链路的参考角度可以根据馈电链路的参考角度参考点-卫星-星下点组成的角度确定,馈电链路的参考角度参考点可选择地面站所在的位置。因此,UE可以根据馈电链路的参考角度β计算馈电链路中的往返时延:2*H/cos(β)/c。
最终,UE可以根据基站发送的服务链路的参考角度α和/或馈电链路的参考角度β计算K offset1
可选的,该第一定时偏移量与服务链路的参考角度α可满足如下公式(30):
Figure PCTCN2021075536-appb-000065
可选的,该第一定时偏移量与馈电链路的参考角度β可满足如下公式(31):
Figure PCTCN2021075536-appb-000066
可选的,第一定时偏移量与服务链路的参考角度α和馈电链路的参考角度β可满足如下公式(32):
Figure PCTCN2021075536-appb-000067
可理解,对于第一定时偏移量与参考角度之间的推导关系,还可以通过以上方法中其它参数得到其它推导公式,例如:
Figure PCTCN2021075536-appb-000068
Figure PCTCN2021075536-appb-000069
等等。
可理解,对于上述公式的各个参数的说明,可参考前述各个方法。
图6所示的方法中,指示信息可用于指示第二定时偏移量,其中,UE向基站指示第二定时偏移量的方法包括:
方法一、
该指示信息中包括第二定时偏移量。示例性的,如上文所示的例子,该第二定时偏移量可以占用与第一定时偏移量相同的比特数,可以为13bit、12bit、9bit、8bit或7bit等等。
方法二、
指示信息中包括第一调整参数集合,该第一调整参数集合用于确定该第二定时偏移量。也就是说,该指示信息中包括第一调整参数集合,基站根据该第一调整参数集合确定第二定时偏移量。
其中,该第一调整参数集合中可以包括以下任一项或多项参数:
基于第二定时偏移量K offset2和RAR接收窗的延时启动时长RAR_delay确定的参数;或者
基于第二定时偏移量K offset2和该RAR接收窗的时长RAR_window确定的参数;或者
基于第二定时偏移量K offset2和RAR接收窗的延时启动时长RAR_delay、该RAR接收窗的时长RAR_window确定的参数;或者
基于第二定时偏移量K offset2和机接入竞争解决定时器的延时启动时长RCR_offset确定的参数;或者
基于第二定时偏移量K offset2和该随机接入竞争解决定时器的时长RCR_timer确定的参数;或者
基于第二定时偏移量K offset2和随机接入竞争解决定时器的延时启动时长RCR_offset、该随机接入竞争解决定时器的时长RCR_timer确定的参数;或者
基于第二定时偏移量K offset2和公共定时提前量TA_common确定的参数;或者
基于第二定时偏移量K offset2和该网络设备所在的轨道高度H确定的参数;或者
基于第二定时偏移量K offset2和该终端设备与该网络设备之间的往返时延确定的参数;或者
基于第二定时偏移量K offset2和服务链路的参考角度α确定的参数;或者
基于第二定时偏移量K offset2和馈电链路的参考角度β确定的参数;或者
基于第二定时偏移量K offset2和服务链路的参考角度α、馈电链路的参考角度β确定的参数;或者,
UE发送第三消息时使用的定时提前量(在不同场景下,也可以理解为UE最新使用的定时提前量);或者
定时偏移量的差值,该定时偏移量的差值可以是第二定时偏移量与基准定时偏移量之间的差值。其中,该基准定时偏移量为该UE当前使用的定时偏移量或预先设置的定时偏移量。该UE当前使用的定时偏移量可以是上述第一定时偏移量。
示例性的,第一调整参数集合中包括UE发送第三消息时使用的定时提前量TA_New。基站收到TA_New后可以根据式子确定第二定时偏移量:
Figure PCTCN2021075536-appb-000070
UE向基站发送TA_New的方法,例如,UE向基站发送使用的TA的量化值N TA,基站收到N TA后与一个约定好的量化因子S相乘得到UE实际使用的TA数值(单位可以为秒或毫秒)。这样可以降低表示TA的信令长度、降低信令开销。举例说明,假设量化因子S为100/(15000*2048)≈3.25us。TA_New=4ms。量化值N TA=4ms/3.25us≈1231,需要11比特。 如果使用LTE中使用的Ts=32.5ns来量化TA值,那么4ms/32.5ns≈123077,需要17比特。可以看出节省了6比特。
又例如,为了节省信令开销,UE可以发给基站一个以卫星轨道高度往返时延为基础的一个参数值,供基站计算出UE实际使用的TA数值。例如,UE向基站发送一个时间量V TA(V TA可以为正值或负值 ),基站将星下点往返时延与该时间量V TA相加/减得到UE使用的TA数值。卫星轨道高度为H(单位米),则卫星星下点的往返时延为2*H/c,其中c表示光速3*10 8米/秒。那么基站可以根据式子TA_New=2*H/c+V TA计算得到UE使用的TA数值。
又例如,UE向基站发送一个与卫星轨道高度有关(例如卫星的星下点往返时延)的倍数值或尺度因子M TA,基站将星下点往返时延与该倍数值相乘得到UE使用的TA数值。即,基站可以根据式子TA_New=2*H/c*M TA计算得到UE使用的TA数值。举例说明,假设卫星的轨道高度为600km,那么卫星轨道高度的往返时延为600e3*2/3e8=4ms。UE使用的TA值为4.2ms时,只需要向基站发送V TA=2ms的时间量即可,基站根据4+0.2=4.2ms计算得到UE实际使用的TA值。如果不使用该方法,UE需要向基站发送4.2ms,会占用更多的比特位。或者UE向基站发送基于星下点往返时延的倍数值M TA,M TA=4.2/4=1.05。不需要向基站发送4.2,节省了信令开销。
又例如,UE通过一个预设的接收窗口来接收基站下发的RAR相关信息,由于卫星通信中往返时延较大,因此UE在发送preamble后,延时一定时间RAR_delay才开启接收窗,开始检测RAR相关信息。RAR接收窗的延时时长RAR_delay由基站侧告知UE。因此,为了节省信令开销,UE可以发给基站一个以RAR接收窗的延时时长RAR_delay为基础的一个参数值,供基站侧计算出UE实际使用的TA数值。
又例如,为了节省信令开销,UE可以发给基站一个以common TA为基础的一个参数值,供基站侧计算出UE实际使用的TA数值。可理解,以上方法也可以联合起来使用。可理解,本申请对于UE向基站发送UE使用的定时提前量的方法,下文涉及到同样的方法时,均适用。例如,在后续通信过程中,UE需要更新第二定时偏移量时,也可以利用该方法向基站发送该UE使用的定时提前量。
示例性的,UE向基站发送的指示信息中包括△K=K offset2-K offset1,即△K表示定时偏移量的差值。相应的,基站接收到△K后,根据式子K offset2=K offset1+△K得到K offset2值。
可选的,UE可以利用本申请中UE从广播消息中获得第一定时偏移量的方法中的方法向基站发送第一调整参数集合。需要注意的是,需要将UE从广播消息中获得第一定时偏移量的方法中的K offset1替换为更新后的K offset1(即第二定时偏移量K offset2),包括公式(2)至公式(32)以及列出的其它公式。UE向基站发送S K、△K offset、△K offset_time、α、β等等参数中的至少一个参数值;相应的,基站利用UE从广播消息中获得第一定时偏移量的方法中公式(2)至公式(32)中的某一方法计算得到第二定时偏移量。
示例性的,将公式(11)中的K offset1替换为K offset2,则UE参考
Figure PCTCN2021075536-appb-000071
式子确定△K offset的值。则该指示信息中包括△K offset值,UE向基站发送。相应的,基站接收到△K offset后,根据
Figure PCTCN2021075536-appb-000072
式子计算得到K offset2的值。
示例性的,将公式(27)中的K offset1替换为K offset2,则UE参考
Figure PCTCN2021075536-appb-000073
Figure PCTCN2021075536-appb-000074
式子确定△K offset的值。则该指示信息中包括△K offset值,UE向基站发送△K offset值。相应的,基站接收到△K offset后,根据
Figure PCTCN2021075536-appb-000075
式子计算得到K offset2的值。此处对公式的使用只是示例性举例,同样适用于其它公式。
可理解,尽管该△K offset的符号与上文如(3)中的符号相同,但是含义不同。公式(3)中的△K offset的值可以由基站广播等。本申请方法中,该△K offset则根据上述基于公式(11)和公式(27)变形后得到,且是UE向基站发送该△K offset值。
可选的,UE向基站发送S K、△K offset、△K offset_time、α、β等等参数中的至少一个参数值的变化量值,基站利用该变化量值计算得到第二定时偏移量。
示例性的,UE向基站发送参数S K的变化量值为0.2,而UE上一次向基站发送的S k值是1.3或上一次基站向UE发送的S k值是1.3或约定的基准S k值是1.3,此时基站可以获得更新后的S k值是1.3+0.2=1.5。基站根据式
Figure PCTCN2021075536-appb-000076
Figure PCTCN2021075536-appb-000077
计算得到第二定时偏移量,此处对公式的使用只是示例性举例,并不限定使用的公式。
可选的,指示信息中还可以包括△K offset的索引号如001。也就是说,不同的△K offset,可以对应不同的索引号,如下述方法三中查表方法。
可选的,指示信息中还可以包括该UE的最新位置信息,该最新位置信息可以包括最新的三维位置坐标。由此,基站侧便可以通过卫星的位置和UE的位置计算卫星与UE的往返时延,进而获得UE正在使用的TA值TA_New,根据式子
Figure PCTCN2021075536-appb-000078
得到最新的定时偏移量即K offset2
方法三、
上文各个方法中,K offset或K offset与基准定时偏移量之间的差值还可以为固定的离散值,如K offset∈{1,3,5,7}或K offset∈{1.5,3.5,5.5,7.5}。通过设置离散的定时偏移量,可以降低K offset的信令开销。可理解,这里的定时偏移量可以包括第一定时偏移量,也可以包括第二定时偏移量,以及更新后的第二定时偏移量等等。
如图8b所示,基站覆盖的波束中最大往返时延差为2.28ms。如果以时隙为时长单位表示K offset,当子载波宽度为120KHz时,最小的时隙长度为0.125ms,则K offset=2.28/0.125=18.24。则UE或基站发送该K offset需要5个比特。将K offset进行量化,例如,K offset∈{0,3,6,9,12,15,18,21},则UE或基站发送该K offset需要3个比特。例如,UE或基站可以根据映射关系,如表1,来发送该K offset即100。
表1
K offset比特表示 K offset
000 0
001 3
010 6
011 9
100 12
101 15
110 18
111 21
可理解,以上所示的映射关系,仅为一种示例,不应将其理解为对本申请实施例的限定。同样的,K offset与基准定时偏移量之间的差值也可以通过离散值表示。
基站向UE指示更新后的第一定时偏移量的方法包括:
如上文所述,“在基站确定更新第一定时偏移量之后,该基站还可以通过Msg4消息向UE发送第二定时偏移量、第二定时偏移量与基准定时偏移量之间的变化量或用于指示第二定时偏移量的调整参数。”
其中,基站在确定更新第一定时偏移量之后,向UE发送的用于指示第二定时偏移量的调整参数,发送该调整参数可以参考上述UE从广播消息中获得第一定时偏移量的方法和UE向基站指示第二定时偏移量的方法中的方法。需要注意的是,需要将UE从广播消息中获得第一定时偏移量的方法中的K offset1替换为更新后的K offset1(即第二定时偏移量K offset2),包括公式(2)至公式(32)以及列出的其它公式。基站向UE发送S K、△K offset、△K offset_time、α、β等等参数中的至少一个参数值;相应的,UE可以利用“UE从广播消息中获得第一定时偏移量的方法”中公式(2)至公式(32)中的某一方法计算得到第二定时偏移量。
例如,基站向UE发送的用于指示第二定时偏移量的调整参数包括S K、△K offset、△K offset_time、α、β等等参数中的至少一个参数值的变化量值。相应的,UE接收该变化量值,并利用该变化量值计算得到第二定时偏移量。可参考UE向基站指示第二定时偏移量的方法二中的具体举例。
第二定时偏移量的生效时间的确定方法包括以下方法:
方法一、
基站向UE发送的生效信息,该生效信息用于指示第二定时偏移量的生效时间,即UE和基站开始使用第二定时偏移量的时间;相应的,该UE接收该生效信息。
可选的,该基站在接收到第三消息之后(包括指示信息),向该UE发送该生效信息,例如,该生效信息可以为ACK或NACK信息,UE在接收到ACK信息后,以约定好的时间更新定时偏移量。例如,可以约定当UE收到ACK信息后立即更新定时偏移量。或者,可以约定当UE收到ACK信息后q个时隙长度后更新定时偏移量,q为非负整数。
可选的,该生效信息还可以为第二定时偏移量更新完成(K offset2 update complete)信息。该方法的示例可参考上述生效信息为发送ACK的方法。
可扩展地,该UE向基站发送更新后的定时偏移量,该基站接收到UE发送的更新后的定时偏移量之后,该基站可以向UE发送生效信息。更新后的定时偏移量包括:更新后的第一定时偏移量即第二定时偏移量;或者,更新后的第二定时偏移量。
可选的,该生效信息还可以包含于第四消息中。
可选的,基站还可以在接收到第三消息之前,先向UE指示一个生效时间,该生效时间可以应用于确定第二定时偏移量的生效时间;或者,还可以应用于更新后的第二定时偏移量等等。
可选的,基站可以通过广播消息向UE发送生效信息,该广播消息可以包括系统信息 块(system information block,SIB)1、主系统信息块(master information block,MIB)、其他系统消息(other system information,OSI)中的任一项或多项。或者,在无线控制资源(radio resource control,RRC)连接阶段,基站还可以通过RRC消息、下行控制信息(downlink control information,DCI)、组DCI、介质访问控制(media access control,MAC)、定时提前命令(timing advance command,TAC)中的任一项或多项来向UE发送生效信息。可选的,基站还可随数据传输或在单独分配的PDSCH中发送生效信息。可选的,基站除了通过广播消息或单播消息发送以上参数之外,基站还可以通过组播方式发送生效信息。
可理解,对于该基站何时向UE发送生效信息,本申请实施例不作限定。以及对于该生效信息的具体形式,本申请实施例也不作限定。
方法二、
UE向基站发送生效信息,该生效信息用于指示第二定时偏移量的生效时间;相应的,该基站接收该生效信息。
可选的,UE可以在向基站发送了第三消息之后(或之前),向该基站发送生效信息。或者,该UE还可以在接收到基站发送的第四消息之后(或之前),该UE向基站发送生效信息。
可选的,该生效信息还可以包含于第三消息中;
可选的,该生效信息还可以包含于物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)信息中等等。
对于方法二的具体方式,可参考方法一的说明,这里不再详述。
方法三、
对于UE来说,第二定时偏移量在UE发送第三消息之后的m个时隙生效,m为预先设置的整数;或者,第二定时偏移量在UE接收第四消息之后的n个时隙生效,n为预先设置的整数。
对于基站来说,第二定时偏移量可以在接收到第三消息之后的m个时隙生效;或者,该第二定时偏移量在该基站发送第四消息之后的n个时隙生效。
可以理解的,此处以时隙为单位进行举例说明,并不限定。例如,可以约定m个子帧或帧时间长度后生效。或者,也可以约定m的单位为毫秒或微秒等。
以图9为例,如果UE发送第三消息之后的第m个时隙开始,第二定时偏移量或更新后的第二定时偏移量开始生效。即UE在发送第三消息之后的第m个时隙开始使用第二定时偏移量或更新后的第二定时偏移量来基站发送信号。相应的,基站在接收到第三消息之后的第m个时隙开始,第二定时偏移量或更新后的第二定时偏移量开始生效。即基站在接收到第三消息之后的第m个时隙开始使用第二定时偏移量或更新后的第二定时偏移量来接收UE发送的信号。
可理解,以上m、n可以由基站预先设置;或者,由协议预先设置等等,本申请实施例不作限定。在由基站预先设置时,该基站可以将该m或n的取值通过广播消息、组播消息或单播消息发送给该UE。例如,上述m值或n值可以通过上文所述的方法一中生效信息的发送方法告知UE或基站,即生效信息包括m值或n值。
可理解,生效时间与信道时延有关,可以是与单程或往返时延有关的值。因此,除了通过方法二和方法三中所述的生效信息发送方法来通知UE或基站生效时间,还可以利用 已知的与单程或往返时延有关的参数来约定生效时间。例如,通过协议约定计算方法,UE和基站例用相同的方法获得生效时间。如下所示为生效时间的计算方法:
Figure PCTCN2021075536-appb-000079
或者
Figure PCTCN2021075536-appb-000080
或者
Figure PCTCN2021075536-appb-000081
或者
Figure PCTCN2021075536-appb-000082
或者
Figure PCTCN2021075536-appb-000083
或者
Figure PCTCN2021075536-appb-000084
或者
Figure PCTCN2021075536-appb-000085
或者
Figure PCTCN2021075536-appb-000086
在以上计算方式基础上增加一个修正值△T(该修正值可以通过协议约定或者由基站向UE发送,△T为整数),例如:
Figure PCTCN2021075536-appb-000087
或者
Figure PCTCN2021075536-appb-000088
或者
Figure PCTCN2021075536-appb-000089
或者
Figure PCTCN2021075536-appb-000090
示例性的,当基站和UE约定以式子
Figure PCTCN2021075536-appb-000091
计算生效时间,则UE和基站分别将RAR_window和RAR_offset值(可以从广播消息中获取)代入式子中,分别计算得到相同的m值,并利用该m值得到更新定时偏移量的生效时间。该方法能够避免增加新的信令指示m值;并且能够根据波束/小区与基站间的往返时延调整m值,具有更高的灵活性。
可理解,以上m、n值的方式是以相对于发送和接收信号的时间方式约定生效时间。同样可以绝对时间规定生效时间,例如,基站向UE发送生效信息,生效信息包括生效时间,生效时间指示UE在发送信号的第98帧的第一个时隙开始使用更新后的定时偏移量值。相应的,基站在接收UE发送的信号的第98帧的第一个时隙开始使用更新后的定时偏移量值接收信号。该绝对时间的生效时间可以使用上述发送m、n值的方式向UE发送,此处不再详述。
在UE得到最新的定时偏移量即第二定时偏移量后,便可以在该第二定时偏移量生效后,使用该第二定时偏移量向基站发送基站调度的数据信息或控制信道信息等等。以下具体说明第五消息包括的类型。
方法一、
第五消息包括物理下行链路共享信道(PhysicalDownlink Shared Channel,PDSCH)数据的HARQ-ACK反馈消息,如第四消息(Msg4)的HARQ-ACK消息。如图6中,步骤605可以为:该UE根据第二定时偏移量向基站发送HARQ-ACK消息,该HARQ-ACK消息用于确认冲突接入消息被正确接收;相应的,该基站接收该HARQ-ACK消息。例如,UE收到PDSCH信号结束于时隙x,那么在UE在时隙x+K 1+K offset发送相应的HARQ-ACK反馈。
方法二、
第五消息包括上行数据。如图6中,步骤605可以为:该UE根据第二定时偏移量向基站发送基站调度的上行数据(基站通过RAR授权和DCI指示调度的上行数据);相应的,该基站接收该上行数据。例如,基站通过DCI指令调度UE发送物理上行链路共享信道PUSCH数据,DCI信令在时隙x,那么UE在时隙
Figure PCTCN2021075536-appb-000092
发送PUSCH数据。其中,μ PUSCH与PUSCH的子载波间隔有关,μ PUSCH=0时,PUSCH子载波间隔为15KHz。μ PDCCH与物理下行链路控制信道PDCCH的子载波间隔有关,μ PDCCH=0时,PDCCH子载波间隔为15KHz。
方法三、
第五消息包括探测参考信号(sounding reference signal,SRS),基站在时隙x发送DCI信令,用来触发非周期SRS信号。UE收到触发信令后,在时隙
Figure PCTCN2021075536-appb-000093
发送非周期SRS信号。μ SRS与SRS信号的子载波间隔有关,μ PDCCH=0时,SRS信号子载波间隔为15KHz。
可以理解,以上使用更新后的定时偏移量的通信步骤只是举例说明,并不限定使用更新后的定时偏移量或定时偏移量的通信步骤。例如基站在确定发送信道状态信息参考资源定时信息时就会使用更新后的定时偏移量或定时偏移量。
以下介绍UE接入系统后,在进行后续通信中如何更新定时偏移量。
在UE与基站间后续的通信过程中(即UE接入基站后),UE和卫星会产生相对运动(也会造成UE与基站间往返时延的变化),由此UE使用的定时提前量需要调整。因此,一种方式是:该UE可以根据基站发送的定时提前调整指令(TA adjustment)获得该定时提前量。一种方式是:该UE可以根据该UE的位置信息和基站的位置信息来获得该定时提前量。
后续通信中更新定时偏移量的方法包括以下两种方法:
两种方法的区别是由UE侧还是由基站侧决定是否更新正在使用的定时偏移量(该正在使用的定时偏移量包括第二定时偏移量)。
方法一、UE侧决定是否更新定时偏移量,包括:
当UE接收到基站发送的定时提前调整指令(例如,定时提前变化率或定时提前调整值等等),可以使用该定时提前调整指令调整其发送信号使用的定时提前量,并根据调整后的定时提前量判断是否更新第二定时偏移量;或者,UE根据自己的位置信息和星历信息等调整使用的定时提前量,并根据该定时提前量判断是否更新第二定时偏移量。
可理解的,此处的第二定时偏移量是对UE接入系统后正在使用的定时偏移量的泛称,可以理解为UE和基站正在使用的定时偏移量。该特征也适用于本申请的其他实施例。
UE可根据调整后的定时提前量(即UE使用的最新的定时提前调整量)判断是否更新第二定时偏移量:可参考公式(1)得到的定时偏移量与正在使用的定时偏移量之间的差值来判断是否更新定时偏移量(此时,将最新的定时提前调整量代入TA_New),具体操作可参考图6中对UE根据更新阈值来确定是否利用第二定时偏移量更新第一定时偏移量的描述,此处不详述。如果UE确定更新定时偏移量,则向基站发送更新后的第二定时偏移量或基 于更新后的第二定时偏移量和基准定时偏移量之间的变化量或第二调整参数集合等等。具体的发送方式和参数可参考上述“UE向基站指示第二定时偏移量的方法”。需要注意的是,需要将其中的第二定时偏移量替换为更新后的第二定时偏移量以及其它相关的相应替换。
示例性的,将公式(11)中的K offset1替换为更新后的K offset2,则UE参考更新后的
Figure PCTCN2021075536-appb-000094
式子确定△K offset的值。则该第二调整参数集合中包括△K offset值,UE向基站发送△K offset值。相应的,基站接收到△K offset后,根据更新后的
Figure PCTCN2021075536-appb-000095
式子计算得到更新后的K offset2值。
示例性的,UE向基站发送S K、△K offset、△K offset_time、α、β等等参数中的至少一个参数值,基站利用上文公式(2)至公式(32)中的方法来计算相应的更新后的第二定时偏移量。或者,UE向基站发送S K、△K offset、△K offset_time、α、β等等参数中的至少一个参数值的变化量值,基站利用该变化量值计算得到更新后的定时偏移量值(即更新后的第二定时偏移量)。具体示例可参考上述“UE向基站指示第二定时偏移量的方法”中的方法二。
进一步的,UE向基站发送更新后的第二定时偏移量或第二调整参数后,该基站接收该UE发送的更新后的第二定时偏移量或第二调整参数。以及在该更新后的第二定时偏移量生效后,该UE根据该更新后的第二定时偏移量向基站发送基站调度的上行数据。
可理解,对于该更新后的第二定时偏移量的生效时间的相关方法可参考第二定时偏移量的生效时间的确定方法的说明,这里不再详述。
方法二、基站侧决定是否更新定时偏移量,包括:
当UE接收到基站发送的定时提前调整指令(例如,定时提前变化率或定时提前调整值等等),定时提前调整指令用于向UE指示更新定时提前量。该UE可以根据该定时提前调整指令调整其发送信号使用的定时提前量,得到调整后的定时提前量。
UE根据调整后的定时提前量向基站发送第二定时偏移量或基于更新后的第二定时偏移量和基准定时偏移量之间的变化量或第二调整参数集合等等(参考上述方法一);相应的,基站接收UE发送的相应信息,并得到第二定时偏移量,进而判断是否更新定时偏移量,即是否更新第二定时偏移量。具体操作可参考图6中对基站根据更新阈值来确定是否利用第二定时偏移量更新第一定时偏移量的描述,此处不详述。
如果基站确定需要更新定时偏移量,那么基站向UE发送更新后的第二定时偏移量或基于更新后的第二定时偏移量和基准定时偏移量之间的变化量或用于指示更新后的第二定时偏移量的调整参数。基站向UE发送以上所述参量的相关设计可以参考上述UE从广播消息中获得第一定时偏移量的方法、UE向基站指示第二定时偏移量的方法以及基站向UE指示更新后的第一定时偏移量的方法中的说明,这里不再详述。
示例性的,将UE从广播消息中获得第一定时偏移量的方法中的K offset1替换为更新后的K offset2(即更新后的第二定时偏移量),包括公式(2)至公式(32)以及列出的其它公式。基站向UE发送S K、△K offset、△K offset_time、α、β等等参数中的至少一个参数值;相应的,UE可以利用“UE从广播消息中获得第一定时偏移量的方法”中公式(2)至公式(32)中的某一方法计算得到更新后的第二定时偏移量。
进一步的,UE根据接收到基于更新后的第二定时偏移量和基准定时偏移量之间的变化量或用于指示更新后的第二定时偏移量的调整参数得到更新后的第二定时偏移量,在更新后的第二定时偏移量生效后,该UE根据该更新后的第二定时偏移量向基站发送基站调度的上行数据。
可理解,对于该更新后的第二定时偏移量的生效时间的相关方法可参考第二定时偏移量的生效时间的确定方法的说明,这里不再详述。
可理解,上述两种方式中的上行数据仅为一种泛称,其可以是UE发送的任意信息。
在如下场景下,该UE也需要更新第二定时偏移量。该场景如:在UE切换小区的情况下;或者,在UE切换波束的情况下;或者,在UE切换部分带宽BWP的情况下。
应理解,不同的波束在协议中可根据部分带宽(bandwidth part,BWP)、传输配置指示(transmission configuration indicator,TCI)或同步信号块(synchronization signal block,SSB)进行区分。换句话说,波束可根据BWP、TCI或SSB进行指示。因此,UE和基站之间可以通过BWP、TCI或者SSB的切换,来指示波束的切换,从而对于UE和/或基站来说,实际进行的可能是BWP、TCI或者SSB的切换。因此,本申请中所述的波束也可替换为BWP、TCI或者SSB。
对于波束切换的场景,本申请实施例中可将切换前的波束称为服务波束,切换后的波束称为目标波束。此外,发射服务波束的基站可称为服务基站(或者说,服务基站为服务波束所属的基站),发射目标波束的基站可称为目标基站(或者说,目标基站为目标波束所属的基站)。以图3为例,当前终端设备处于波束#2的覆盖范围内,波束#2即终端设备的服务波束。UE切换后的波束#3(或波束#1)即目标波束。可理解,服务波束可替换为服务BWP、服务TCI或者服务SSB;相应地,目标波束,可替换为目标BWP、目标TCI或者目标SSB。为便于描述,下文将以波束为例,介绍本申请实施例。
在切换场景下,服务波束或目标波束中使用的定时偏移量可能会不同。因此,该UE就需要更新第二定时偏移量。可理解,这里所指的更新后的第二定时偏移量,可理解为:目标波束使用的定时偏移量。以下将以目标波束使用的定时偏移量为例说明本申请。
基站在切换前提前告知UE在目标波束中使用的定时偏移量,可以通过以下两种方式:
1)向UE发送UE在目标波束或小区中要使用的定时偏移量与在服务波束或小区中UE使用的定时偏移量的差值。
2)UE利用基站告知其在目标波束或小区中使用的定时提前量来计算得到定时偏移量。即
Figure PCTCN2021075536-appb-000096
其中,TA_value为UE在目标小区或波束中使用的定时提前量,K offset表示UE在目标小区或波束中要使用的定时偏移量。基站也可以根据该式子计算UE将要使用的定时偏移量。
在某些场景下,需要UE告知基站在目标波束或小区中它将要使用的定时偏移量。例如,UE做星间切换时,UE利用位置信息和目标卫星的位置信息(可以从星历信息中获得)可以计算出切换后使用的定时提前量,此时需要UE上报其在目标波束或小区中将要使用的定时偏移量。包括以下两个方法:
1)UE告知基站在目标波束或小区中它将要使用的定时偏移量值。
2)UE向基站发送其在目标波束或小区中将要使用的定时提前量。基站接收UE发送的定时提前量,然后根据式子
Figure PCTCN2021075536-appb-000097
计算得到UE在目标波束或小区中使用的定时偏移量。UE也可以根据该式计算其将要使用的定时偏移量。
对于该目标波束或小区使用的定时偏移量或定时偏移量的差值,UE可以通过广播消息获取,该广播消息可以包括SIB1、MIB、OSI中的任一项或多项。或者,该UE还可以通过RRC消息、DCI、组DCI、MAC、TAC中的任一项或多项来获取该目标波束使用的定时偏移量。可选的,该UE除了通过广播消息或单播消息获取该目标波束使用的定时偏移量之外,该UE还可以通过组播方式获取该目标波束使用的定时偏移量。可选的,该目标波束使用的定时偏移量还可随数据传输或在单独分配的PDSCH中承载。可理解,UE也可以通过以上方法获取目标波束使用的定时偏移量与基准定时偏移量之间的变化量。
此外,当UE进行波束切换时,也可以在初始BWP信令或BWP下行链路公共信令(BWP-DownlinkCommon)或BWP上行链路公共信令(BWP-UplinkCommon)或BWP下行链路专有信令(BWP-DownlinkDedicated)或BWP上行链路专有信令(BWP-UplinkDedicated)或测量信令(MeasObjectNR)中发送UE在目标波束中使用的定时偏移量。下面举一些具体的例子:
例如:当UE做波束切换时,切换到初始BWP在BWP对应的RRC信令中下发K offset,其它非初始BWP,在BWP-DownlinkCommon或BWP-UplinkCommon中下发K offset。这里K offset也可以是与获得定时偏移量相关的信息,例如定时偏移量值、S K、△K offset、△K offset_time、α、β等等参数值或参数差值。
示例性的,当UE做波束切换时,基站可以通过BWP-DownlinkDedicated和BWP-UplinkDedicated信令向UE发送目标波束中使用的K offset;或者发送目标波束中使用的K offset与服务波束中使用的K offset差值发送给UE。例如:
示例性的,基站下发信令格式如:
Figure PCTCN2021075536-appb-000098
或者,
Figure PCTCN2021075536-appb-000099
Figure PCTCN2021075536-appb-000100
其中,参数Koffset可以表示UE在目标波束中使用的K offset;或者表示目标波束中使用的K offset与服务波束中使用的K offset差值。上述信令中m表示正整数,例如m=16。示例性的,UE接收到基站发送的BWP-DownlinkDedicated信令,然后读取该信令中的Koffset,其中,该Koffset的取值为是基站从0至16之间的整数确定出的一个值。
当发起BWP或波束或小区切换之前,需要触发测量流程,因此基站还可以通过测量配置及切换中相应的RRC信令向UE发送该UE在目标波束中使用的K offset;或者发送目标波束中使用的K offset与服务波束中使用的K offset差值。
示例性的,基站下发信令格式如:
Figure PCTCN2021075536-appb-000101
根据小区间切换信令流程,通过RRC重配置(Reconfiguration)消息在服务小区波束内向UE发送在目标波束中使用的K offset;向UE发送目标波束中使用的K offset与服务波束中使用的K offset差值。
可理解,以上所示的各个分类方法可以相互组合,示例性的,本申请实施例提供了一种更新定时偏移量的方法,如图10a和图10b所示。
如图10a所示,该更新定时偏移量的方法包括:
1001、基站广播公共定时提前量(common TA)以及第一定时偏移量(K offset1)。
1002、UE向基站发送随机接入前导;相应的,该基站接收该随机接入前导。
可选的,无定位功能UE可以利用公共定时提前量发送随机接入前导。有定位功能的UE可以利用该UE的位置信息和卫星的卫星信息得到的定时提前量来发送随机接入前导;或者,有定位功能的UE也可以利用公共定时提前量来发送随机接入前导。
1003、基站向UE发送随机接入响应,该随机接入响应中包括定时提前命令;相应的,该UE接收该随机接入响应。
1004、UE根据使用的定时提前量(即最新的定时提前量)确定第二定时偏移量,如公式(1)。
可选的,该UE可以根据公式(1)来得到第二定时偏移量,以及利用上文中的更新阈值来确定利用第二定时偏移量更新第一定时偏移量。
1005、UE根据广播的第一定时偏移量向基站发送Msg3消息;相应的,该基站根据该第一定时偏移量接收该Msg3消息;其中,该Msg3中包括第二定时偏移量。
1006、基站向UE发送竞争解决消息或冲突解决消息;相应的,该UE接收该竞争解决消息或冲突解决消息。
1007、基站向UE发送定时提前调整指令;相应的,该UE接收该定时提前调整指令。
1008、UE根据定时提前调整指令;或者,该UE的位置信息和卫星的位置信息,确定最新的定时提前量。进一步的,该UE确定出最新的定时提前量之后,便可以根据该最新的定时提前量计算更新后的第二定时偏移量。以及该UE将该更新后的第二定时偏移量发送给基站。
1009、UE根据第二定时偏移量向基站发送基站调度的上行数据;相应的,该基站根据该第二定时偏移量接收该上行数据。
可选的,在更新后的第二定时偏移量生效后,该UE还可以根据该更新后的第二定时偏移量向基站发送基站调度的上行数据。
示例性说明本申请所示的方法,假设上行子载波间隔为15kHz。随机接入过程中,基站侧根据波束覆盖的范围计算得到的最大往返时延为20.87ms,根据该值计算得到的K offset1=21。基站侧将该K offset1=21通过广播或Msg2发送给UE,UE使用K offset1=21发送Msg 3。同时,UE根据发送Msg3时将要使用的最新TA值来计算K offset1是否需要更新,假设UE发送Msg3时使用的TA值为19.9ms,即TA_New=19.9ms,此时计算K offset2
Figure PCTCN2021075536-appb-000102
K offset1发生变化,则UE在Msg3中向基站发送新的K offset2=20。
在UE成功接入系统后,UE与基站间后续通信过程中,UE和卫星间的距离会发生变化,UE的定时提前量也会随之发生改变。当UE根据基站侧下发的TA调整指令或TA rate指令或根据自己位置信息和星历信息自己计算得到最新的定时提前量后,UE发送上行数据的定时提前量发生了变化,假设UE此时使用的TA值为18.9ms,根据
Figure PCTCN2021075536-appb-000103
发现与现在正在使用的K offset2不同,则UE将该K offset2上报给基站。
为避免赘述,以下仅示出图10b中与图10a中所示的方法有差别的地方。
其中,步骤1101至步骤1103可对应参考步骤1001至步骤1003。
1104、UE根据广播的第一定时偏移量向基站发送Msg3;相应的,该基站根据该第一定时偏移量接收该Msg3;其中,该Msg3中包括该UE使用的定时提前量。
1105、基站根据该UE使用的定时提前量确定第二定时偏移量。
可选的,该基站在根据UE使用的定时提前量得到第二定时偏移量后,该基站还可以利用上文中的更新阈值来确定利用第二定时偏移量更新第一定时偏移量。
1106、基站向UE发送竞争解决消息或冲突解决消息;相应的,该UE接收该竞争解决消息或冲突解决消息;其中,该竞争解决消息或冲突解决消息中包括第二定时偏移量。
1107、基站向UE发送定时提前调整指令;相应的,该UE接收该定时提前调整指令。
进一步的,该UE根据定时提前调整指令;或者,该UE的位置信息和基站的位置信息,确定最新的定时提前量。
1108、UE将该最新的定时提前量发送给基站;相应的,该基站接收该最新的定时提前量。
进一步的,该基站根据该最新的定时提前量确定更新后的第二定时偏移量;以及该基 站将该更新后的第二定时偏移量发送给UE。
1109、该UE根据第二定时偏移量向基站发送上行数据;相应的,该基站根据该第二定时偏移量接收该上行数据。
可选的,在更新后的第二定时偏移量生效后,该UE还可以根据该更新后的第二定时偏移量向基站发送上行数据。
可理解,图10a和图10b仅为两种示例。本申请所示的各个分类方法,还可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
以上所示的方法,可以应用于场景:基站覆盖的区域(波束或小区或BWP)中,可以包括有定位功能的UE,也可以包括没有定位功能的UE或者包括不使用定位功能的UE。或者,以上所示的方法,还可以应用于场景:基站覆盖的区域中的UE没有定位功能或者不使用定位功能。例如,由于该UE没有定位功能或不使用定位功能,因此,该UE需要根据基站广播的公共定时提前量确定第一定时偏移量。以及上文中的公式(1)可替换为公式(33):
Figure PCTCN2021075536-appb-000104
其中,TA_common为公共定时提前量,TA_command为随机接入响应中包括的定时提前调整量。
进一步的,以上所示的方法,还可以应用于场景:UE严格按照基站发送的定时提前命令来调整定时提前量,以及UE严格按照基站的定时提前调整指令来调整定时提前量,由此UE和基站都实时知道该UE使用的定时提前调整值。该情况下,由于UE是严格按照基站所指示的方法来调整定时提前量,因此UE接收到基站发送的Msg2之后,该UE发送的Msg3中,还可以不包括指示信息。以及在基站向UE发送定时提前调整指令后,该UE也不向基站发送更新后的第二定时偏移量;或第二调整参数集合等等。也就是说,该场景下,UE会严格按照基站发送的定时提前命令(包含于Msg2中)以及定时提前调整指令来调整定时提前量,由此,对于定时偏移量的变化情况,基站和UE均知道。基站和UE可以约定一个更新定时偏移量的公式,该基站和UE可以根据该公式和更新阈值来更新定时偏移量。
因此,在UE无定位功能或不使用定位功能的情况下,本方法提出一种避免信令交互而更新定时偏移量的方法,可以节省信令开销。具体包括:
UE按照基站的定时提前调整指令对使用的定时提前量进行调整。当UE使用的定时提前调整量发生变化时,UE可参考公式(1)得到的定时偏移量与正在使用的定时偏移量之间的差值来判断是否更新定时偏移量(此时,将最新的定时提前调整量代入TA_New),具体操作可参考图6中对UE根据更新阈值来确定是否利用第二定时偏移量更新第一定时偏移量的描述,此处不详述。如果UE确定更新定时偏移量,那么根据生效时间采用新的定时偏移量。对于该更新后的定时偏移量的生效时间的相关设计可参考第二定时偏移量的生效时间的确定方法的说明,这里不再详述。
基站向UE发送定时提前调整指令的同时,同样可以计算出UE此时正在使用的定时提前量。因此,也可以参考公式(1)得到的定时偏移量与正在使用的定时偏移量之间的差值来判断是否更新定时偏移量,具体操作可参考图6中对基站根据更新阈值来确定是否利用 第二定时偏移量更新第一定时偏移量的描述,此处不详述。如果基站确定更新定时偏移量,那么根据生效时间采用新的定时偏移量。对于该更新后的定时偏移量的生效时间的相关设计可参考第二定时偏移量的生效时间的确定方法的说明,这里不再详述。
该方法通过令UE和基站采用相同的公式计算并更新定时偏移量,达到节省信令的目的。可理解的,该方法以公式(1)进行举例说明,并不限定公式的具体形式。
也就是说,UE和基站可以分别根据相同的公式或方法来确定更新后的定时偏移量,从而该更新后的定时偏移量可以在约定的时间或预先设置的时间或协议规定的时间直接生效。该方法,避免了UE与基站之间的信令交互,节省了信令开销。
以下介绍本申请所提供的另一种更新定时偏移量的方法。
为了降低接入延时和信令开销,目前提出了一种两步随机接入过程,如图11所示,其中,终端设备在第一步中同时向基站发送随机接入前导(preamble)和数据,第二步,基站向终端设备发送随机接入响应。在两步随机接入过程中,一方面终端设备在第一步中发送随机接入前导码和数据,从而可以降低上行数据传输的时延。另一方面,基站不需要为终端设备发送Msg3对应的调度信息,从而可以降低信令开销。通常可以使用MsgA表示两步随机接入的第一条交互消息,MsgA由终端设备发送给基站,MsgA消息包括MsgA preamble部分和MsgA数据部分,preamble承载在MsgA物理随机接入信道(physical random access channel,PRACH)物理信道上传输,数据部分承载在MsgA PUSCH物理信道上传输。
图12是本申请实施例提供的一种更新定时偏移量的方法流程示意图,可选的,该方法可应用于两步随机接入。如图12所示,该方法包括:
1201、基站广播第一定时偏移量K offset1。或者,该基站广播公共定时提前量(common TA)、该基站所在的轨道高度、MsgB接收窗的时长和MsgB接收窗的延时启动时长中的任一项或多项。对于该方法,可参考前述UE从广播消息中获得第一定时偏移量的方法,这里不再详述。
1202、UE使用广播的common TA或自己计算的TA值向基站发送MsgA申请接入系统;相应的,该基站接收该MsgA。
1203、基站向UE发送MsgB;相应的,该UE接收该MsgB。
其中,MsgB包括定时提前命令、前导ID等。
1204、UE根据第一定时偏移量K offset1向基站发送MsgB的HARQ-ACK消息;相应的,该基站接收该HARQ-ACK消息。
可选的,该UE还可以根据使用的定时提前量来确定第二定时偏移量K offset2。对于该K offset2与K offset1之间的关系可参考前述图6中的更新阈值。该情况下,UE使用的定时提前量可以理解为:根据MsgB中包括的定时提前命令确定的定时提前量。
1205、UE向基站发送指示信息;相应的,该基站接收该指示信息。
该指示信息用于指示第二定时偏移量。可理解,至于如何指示第二定时偏移量,可参考前述UE向基站指示第二定时偏移量的方法。
UE向基站发送指示信息后,该基站接收该UE发送的指示信息,并获得第二定时偏移 量。在该第二定时偏移量生效后,该UE根据该更新后的第二定时偏移量向基站发送基站调度的上行数据。
可理解,对于该第二定时偏移量的生效时间的相关方法可参考第二定时偏移量的生效时间的确定方法的说明,这里不再详述。
可选的,上述步骤1201中,该基站还可能只广播公共定时提前量common TA;该情况下,无定位功能UE可以使用该common TA发送preamble申请接入,有定位功能UE根据该UE的位置信息和卫星的位置信息(可以从星历信息中获取)获得较为准确的TA值,以此来做定时提前调整来发送preamble。因此,有定位功能的UE在发送MsgA时可以在PUSCH数据中携带其使用的TA值。发送TA值的方法可以参考四步随机接入中Msg3中的上报自己使用的最新TA值的方法。基站接收到该TA值后,可以根据UE的最新TA值判断是否更新定时偏移量,确定是否更新的相关设计可参考前述图6中的更新阈值。
可选的,如果基站可以区分出UE是否使用定位功能,则在一些实施例中,无定位功能的UE可以在MsgA中不携带其使用的TA值。该区分UE是否使用定位功能的方法,例如通过不同preamble分组来区分、通过上行信号中的标识符、或者通过UE是否在Msg A中携带了使用的TA值来区分该UE是否具有/使用了定位功能等。
可选的,如果基站无法区分出UE是否具有定位功能,则无定位功能的UE同样在发送MsgA时在PUSCH数据中携带其使用的TA值。发送TA值的方法可以参考四步随机接入中Msg3中的上报自己使用的最新TA值的方法。
在一些实施例中,基站在收到MsgA后,如果MsgA中携带有UE使用的TA值,那么基站根据式子
Figure PCTCN2021075536-appb-000105
Figure PCTCN2021075536-appb-000106
确定K offset1是否需要更新,比如根据上述更新阈值来确定。其中,TAC_value是基站要发送给UE的定时提前调整指令中包括的调整值。可理解,MsgA中携带的UE使用的TA值可以用于确定第二定时偏移量K offset2或者用于判别是否要更新定时偏移量。或者基站将K offset2值通过MsgB发送给UE。
在另一些实施例中,如果MsgA中未携带UE使用的TA值,则表示该UE使用广播的common TA值发送的preamble,由此UE和基站均使用式子
Figure PCTCN2021075536-appb-000107
Figure PCTCN2021075536-appb-000108
计算得到K offset2,此时基站侧和UE侧均知道该UE使用的K offset2。该情况下,基站发给该UE的MsgB中可以不携带K offset2。不过,如果考虑卫星的移动以及UE使用的TA的变化,基站侧也可以将K offset2通过MsgB告知UE。
可理解,对于第二定时偏移量的指示方法,以及生效时间等的具体描述,可参考前述方法。
可选的,图12所示的方法还可以包括:
基站向UE发送定时提前调整指令,该UE接收该定时提前调整指令。
该UE根据该定时提前调整指令向基站发送数据信息,该数据信息包括更新后的第二定时偏移量;或者,所述数据信息包括第二调整参数集合,所述第二调整参数集合用于确定所述更新后的第二定时偏移量。
可理解,以上所示的两步随机接入方法中的更新定时偏移量的方法,也可以应用于基 站覆盖的区域中的UE没有定位功能或者不使用定位功能。以及也可以应用于UE严格按照基站发送的定时提前命令来调整定时提前量,由此UE和基站都实时知道该UE使用的定时提前调整值。
以上所示各个方法中,介绍的均是UE做定时提前调整。然而,也可能存在一种场景:基站侧补偿一部分时延,UE针对剩余的时延做定时提前调整。
该情况下,上文中所介绍的与定时提前量相关的参数,由UE确定定时偏移量时,均可以减去基站侧对上行信号做时延补偿的值。
示例性的,上文的公式
Figure PCTCN2021075536-appb-000109
可以替换为如下公式:
Figure PCTCN2021075536-appb-000110
max_RTDD=max_RTD–delay_compensated    (35)
其中,max_RTDD表示卫星覆盖的波束或小区的最大往返时延差值;delay_compensated表示基站侧对上行信号做时延补偿的值。可以看出,最大往返时延差值为波束或小区中UE与基站间的最大往返时延与基站侧的时延补偿值的差值。
示例性的,上述公式(11)可以替换为如下公式(36):
Figure PCTCN2021075536-appb-000111
示例性的,上述公式(33)可以替换为如下公式(37):
Figure PCTCN2021075536-appb-000112
以上对本申请的实施例进行了详细介绍,以下介绍本申请的通信装置。
图13是本申请实施例提供的一种通信装置的结构示意图,如图13所示,该通信装置包括处理单元1301、发送单元1302和接收单元1303。
在一个实施例中,处理单元1301,用于生成第三消息;该第三消息中包括指示信息,该指示信息用于指示第二定时偏移量,该第二定时偏移量为更新后的第一定时偏移量,该第一定时偏移量用于指示该通信装置延迟发送该第三消息的延迟程度;
发送单元1302,用于根据该第一定时偏移量向网络设备发送第三消息;该发送单元1302,还用于根据该第二定时偏移量向该网络设备发送第五消息。
在一种可能的实现方式中,该发送单元1302,还用于向该网络设备发送第一消息,该第一消息中包括随机接入前导;该接收单元1303,还用于接收该网络设备发送的第二消息,该第二消息包括随机接入响应消息;以及该接收单元1303,还用于接收该网络设备发送的第四消息,该第四消息包括随机接入竞争解决消息。
在一种可能的实现方式中,该指示信息用于指示第二定时偏移量包括:该指示信息中包括该第二定时偏移量。
在一种可能的实现方式中,该指示信息用于指示第二定时偏移量包括:该指示信息中包括第一调整参数集合,该第一调整参数集合用于确定该第二定时偏移量。
在一种可能的实现方式中,该第一调整参数集合包括以下任一项或多项:基于随机接入响应RAR接收窗的延时启动时长和该RAR接收窗的时长确定的参数;或者基于随机接入竞争解决定时器的延时启动时长和该随机接入竞争解决定时器的时长确定的参数;或者 基于公共定时提前量确定的参数;或者基于该网络设备所在的轨道高度确定的参数;或者基于该通信装置与该网络设备之间的往返时延确定的参数。
在一种可能的实现方式中,该第四消息中包括该第二定时偏移量;或者,该第四消息中包括基于该第二定时偏移量和基准定时偏移量之间的变化量;其中,该基准定时偏移量为该通信装置当前使用的定时偏移量或预先设置的定时偏移量。
在一种可能的实现方式中,该接收单元1303,还用于接收该网络设备发送的生效信息,该生效信息用于指示该第二定时偏移量的生效时间;或者该发送单元1302,还用于向该网络设备发送生效信息,该生效信息用于指示该第二定时偏移量的生效时间;或者该第二定时偏移量在该通信装置发送该第三消息之后的m个时隙生效,该m为预先设置的整数;或者该第二定时偏移量在该通信装置接收到该第四消息之后的n个时隙生效,该n为预先设置的整数。
在一种可能的实现方式中,该接收单元1303,还用于接收该网络设备发送的广播消息;其中,该广播消息中包括以下任一项或多项:该RAR接收窗的延时启动时长和该RAR接收窗的时长;或者该随机接入竞争解决定时器的延时启动时长和该随机接入竞争解决定时器的时长;或者该公共定时提前量;或者该网络设备所在的轨道高度。
在一种可能的实现方式中,当该广播消息中包括该RAR接收窗的延时启动时长和该RAR接收窗的时长时,该第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000113
其中,该K offset1为该第一定时偏移量的取值;该RAR_window为该RAR接收窗的时长,该RAR接收窗的时长用于表示该通信装置接收该RAR的时长;该RAR_offset为该RAR接收窗的延时启动时长,该RAR接收窗的延时启动时长用于表示该通信装置发送该第一消息之后,延时开启该RAR接收窗的延时时长;该slot_duration为时长单位;该△K offset为定时偏移量差值,该△K offset为整数。
在一种可能的实现方式中,当该广播消息中包括该随机接入竞争解决定时器的延时启动时长和该随机接入竞争解决定时器的时长时,该第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000114
其中,该RCR_timer为该随机接入竞争解决定时器的时长,该随机接入竞争解决定时器的时长表示该通信装置发送该第三消息之后,启动该随机接入竞争解决定时器与接收到该第四消息之间所允许的最大时间间隔;该RCR_offset为该随机接入竞争解决定时器的延时启动时长,该随机接入竞争解决定时器的延时启动时长用于表示该通信装置发送该第三消息之后,延时开启该随机接入竞争解决定时器的延时时长;该slot_duration为时长单位;该△K offset为定时偏移量差值,该△K offset为整数。
在一种可能的实现方式中,该第五消息包括数据信息、反馈消息或探测参考信号SRS中的任一项。
在一种可能的实现方式中,该接收单元1303,还用于接收该网络设备发送的定时提前调整指令,该定时提前调整指令用于指示更新该第二定时偏移量;发送单元1302,还用于根据该第二定时偏移量向该网络设备发送更新后的第二定时偏移量或者第二调整参数集合,该第二调整参数集合用于确定该更新后的第二定时偏移量。
在一种可能的实现方式中,该发送单元1302,还用于在满足以下任一项或多项条件时,接收该网络设备发送的更新后的第二定时偏移量或基于该更新后的第二定时偏移量和该基准定时偏移量之间的变化量;其中,该任一项或多项条件包括:该通信装置切换小区;或者该通信装置切换波束;或者该通信装置切换部分带宽BWP。
需要理解的是,当上述通信装置是终端设备或终端设备中实现上述功能的部件时,处理单元1301可以是一个或多个处理器,发送单元1302可以是发送器,接收单元1302可以是接收器,或者,发送单元1302和接收单元1303可以集成于一个器件,例如收发器。
当上述通信装置是芯片时,处理单元1301可以是一个或多个处理器或逻辑电路等等,发送单元1302可以是输出接口,接收单元1303可以是输入接口,或者发送单元1302和接收单元1303集成于一个单元,例如输入输出接口或通信接口等等。
本申请实施例的通信装置具有上述方法中终端设备的任意功能,此处不再赘述。
复用图13,在另一个实施例中,接收单元1303,用于根据第一定时偏移量接收终端设备发送的第三消息;其中,该第一定时偏移量用于指示该网络设备延迟接收该第三消息的延迟程度;且该第三消息中包括指示信息,该指示信息用于指示第二定时偏移量,该第二定时偏移量为更新后的第一定时偏移量;该接收单元1303,还用于接收该终端设备发送的第五消息。
在一种可能的实现方式中,该接收单元1303,用于接收该终端设备发送的第一消息,该第一消息中包括随机接入前导;该发送单元1302,用于向该终端设备第二消息,该第二消息中包括随机接入响应消息;该发送单元1302,还用于向该终端设备发送第四消息,该第四消息包括随机接入竞争解决消息。
在一种可能的实现方式中,该指示信息用于指示第二定时偏移量包括:该指示信息中包括该第二定时偏移量。
在一种可能的实现方式中,该指示信息用于指示第二定时偏移量包括:该指示信息中包括第一调整参数集合,该第一调整参数集合用于确定该第二定时偏移量。
在一种可能的实现方式中,该第一调整参数集合包括以下任一项或多项:基于随机接入响应RAR接收窗的延时启动时长和该RAR接收窗的时长确定的参数;或者基于随机接入竞争解决定时器的延时启动时长和该随机接入竞争解决定时器的时长确定的参数;或者基于公共定时提前量确定的参数;或者基于该通信装置所在的轨道高度确定的参数;或者基于该终端设备与该通信装置之间的往返时延确定的参数。
在一种可能的实现方式中,该第四消息中包括该第二定时偏移量;或者,该第四消息中包括基于该第二定时偏移量和基准定时偏移量之间的变化量;其中,该基准定时偏移量为该终端设备当前使用的定时偏移量或预先设置的定时偏移量。
在一种可能的实现方式中,该发送单元1302,还用于向该终端设备发送生效信息,该生效信息用于指示该第二定时偏移量的生效时间;或者该接收单元1303,还用于接收该终端设备发送的生效信息,该生效信息用于指示该第二定时偏移量的生效时间;或者该第二定时偏移量在该通信装置接收到该第三消息之后的m个时隙生效,该m为预先设置的整数;或者该第二定时偏移量在该通信装置发送该第四消息之后的n个时隙生效,该n为预先设 置的整数。
在一种可能的实现方式中,该发送单元1302,还用于发送广播消息;其中,该广播消息中包括以下任一项或多项:该RAR接收窗的延时启动时长和该RAR接收窗的时长;或者该随机接入竞争解决定时器的延时启动时长和该随机接入竞争解决定时器的时长;或者该公共定时提前量;或者该通信装置所在的轨道高度。
在一种可能的实现方式中,当该广播消息中包括该RAR接收窗的延时启动时长和该RAR接收窗的时长时,该第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000115
其中,该K offset1为该第一定时偏移量的取值;该RAR_window为该RAR接收窗的时长,该RAR接收窗的时长用于表示该终端设备接收该RAR的时长;该RAR_offset为该RAR接收窗的延时启动时长,该RAR接收窗的延时启动时长用于表示该终端设备发送该第一消息之后,延时开启该RAR接收窗的延时时长;该slot_duration为时长单位;该△K offset为定时偏移量差值,该△K offset为整数。
在一种可能的实现方式中,当该广播消息中包括该随机接入竞争解决定时器的延时启动时长和该随机接入竞争解决定时器的时长时,该第一定时偏移量满足如下条件:
Figure PCTCN2021075536-appb-000116
其中,该RCR_timer为该随机接入竞争解决定时器的时长,该随机接入竞争解决定时器的时长表示该终端设备发送该第三消息之后,启动该随机接入竞争解决定时器与接收到该第四消息之间所允许的最大时间间隔;该RCR_offset为该随机接入竞争解决定时器的延时启动时长,该随机接入竞争解决定时器的延时启动时长用于表示该终端设备发送该第三消息之后,延时开启该随机接入竞争解决定时器的延时时长;该slot_duration为时长单位;该△K offset为定时偏移量差值,该△K offset为整数。
在一种可能的实现方式中,该第五消息包括数据信息、反馈消息或探测参考信号SRS中的任一项。
在一种可能的实现方式中,该发送单元1302,还用于向该终端设备发送定时提前调整指令,该定时提前调整指令用于指示更新该第二定时偏移量;该接收单元1303,还用于接收该终端设备发送的更新后的第二定时偏移量或者第二调整参数集合,该第二调整参数集合用于确定该更新后的第二定时偏移量。
在一种可能的实现方式中,该发送单元1302,还用于在满足以下任一项或多项条件时,向该终端设备发送更新后的第二定时偏移量或基于该更新后的第二定时偏移量和该基准定时偏移量之间的变化量;其中,该任一项或多项条件包括:该终端设备切换小区;或者该终端设备切换波束;或者该终端设备切换部分带宽BWP。
需要理解的是,当上述通信装置是网络设备或网络设备中实现上述功能的部件时,处理单元1301可以是一个或多个处理器,发送单元1302可以是发送器,接收单元1302可以是接收器,或者,发送单元1302和接收单元1303可以集成于一个器件,例如收发器。
当上述通信装置是芯片时,处理单元1301可以是一个或多个处理器或逻辑电路等等,发送单元1302可以是输出接口,接收单元1303可以是输入接口,或者发送单元1302和接收单元1303集成于一个单元,例如输入输出接口或通信接口等等。
本申请实施例的通信装置具有上述方法中网络设备的任意功能,此处不再赘述。
进一步的,当上述处理单元用处理器实现,接收单元和发送单元集成于一个单元,用收发器实现时,如图14所示。该通信装置140包括至少一个处理器1420,用于实现本申请实施例提供的方法中终端设备的功能;或者,用于实现本申请实施例提供的方法中网络设备的功能。以及该通信装置140还可以包括收发器1410。收发器用于通过传输介质和其他设备/装置进行通信。处理器1420利用收发器1410收发数据和/或信令,并用于实现上述方法实施例该的相应的方法。
可选的,通信装置140还可以包括至少一个存储器1430,用于存储程序指令和/或数据。存储器1430和处理器1420耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1420可能和存储器1430协同操作。处理器1420可能执行存储器1430中存储的程序指令。该至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1410、处理器1420以及存储器1430之间的具体连接介质。本申请实施例在图14中以存储器1430、处理器1420以及收发器1410之间通过总线1440连接,总线在图14中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
可理解,对于图14所示的通信装置的具体实现方式可参考图13所示的终端设备的功能;或者,图14所示的通信装置的具体实现方法还可以参考图13所示的网络设备的功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元 既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
此外,根据本申请实施例所提供的更新定时偏移量的方法,本申请还提供一种计算机程序,所述计算机程序用于执行本申请提供的方法中由终端设备执行的操作和/或处理。
本申请还提供一种计算机程序,所述计算机程序用于执行本申请提供的方法中由网络设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行本申请提供的方法中由终端设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行本申请提供的方法由网络设备执行的操作和/或处理。
本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机代码或指令,当所述计算机代码或指令在计算机上运行时,本申请方法实施例的方法被实现。
本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机代码或指令,当所述计算机代码或指令在计算机上运行时,本申请方法实施例的方法被实现。
本申请还提供一种无线通信系统,包括本申请实施例中的终端设备和网络设备。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
基于上述附图6及相关方法的描述,Msg2中可以携带调整参数△K,该△K是以UE所在波束(beam)的覆盖范围进行确定的。类似地,还能够以UE所在小区(cell)的覆盖范围确定Koffset的调整参数△K值。相应的,通过Koffset的确定公式(Koffset=f{Max_RTD_cell,time_duration})得出,例如,可选的,
Figure PCTCN2021075536-appb-000117
Figure PCTCN2021075536-appb-000118
其中Max_RTD_cell为UE所在小区覆盖区域中与基站间的最大往返时延。
如果基站侧在接收UE发送的信号时,对其做时延补偿。那么基于上述方法和公式对Koffset的确定公式进行改写,例如,可选的,以波束的覆盖范围确定Koffset,
Figure PCTCN2021075536-appb-000119
Figure PCTCN2021075536-appb-000120
同样,可选的,以小区的覆盖范围确定Koffset,上述公式可以改为
Figure PCTCN2021075536-appb-000121
在Msg2中携带△K,可以改为在RRCSetup信令中传输,即在Msg4中传输。优选的, 在RRCSetup信令(msg4)携带△K相关信息时,UE在发送Msg3时使用的Koffset能够工作(即保证UE根据广播消息获取的初始Koffset大于最大往返时延)。
可选的,上述涉及的方法中也可以只使用Msg2携带Koffset,即UE直接使用Msg2传输的Koffset发送Msg3。此时,Koffset可以是波束级别或者小区级别的Koffset。
上述附图6及相关方法是基于四步(four-step)随机接入过程的Koffset的发送。如果是两步(two-step)随机接入过程,可以利用MsgB发送△K或Koffset,参考上述公式进行设计,UE根据约定的公式联合使用广播参数和△K来计算得到Koffset。
可理解,上述公式只是示例性的举例说明,并不限定得到Koffset和△K的具体公式形式。例如,广播参数还可以使用RAR接收窗的时长、RAR接收窗延时启动的时长、随机接入竞争解决定时器的时长、随机接入竞争解决定时器延时启动时长等。
例如,可选的,使用如下公式得到Koffset和△K:
Figure PCTCN2021075536-appb-000122
其中,RAR_window为RAR接收窗的时长;RAR_delay为RAR接收窗的延时启动时长。或者,
Figure PCTCN2021075536-appb-000123
或者,
Figure PCTCN2021075536-appb-000124
其中,RCR_timer为利用随机接入竞争解决定时器的时长;RCR_offset为随机接入竞争解决定时器的延时启动时长。
或者,
Figure PCTCN2021075536-appb-000125
或者,
Figure PCTCN2021075536-appb-000126
其中,TA_common为广播的公共定时提前量。
与直接向UE发送Koffset值相比,通过联合广播参数和△K能够节省信令开销。另外,如表2所示,从信令开销和端到端时延的角度对比小区级Koffset、波束级Koffset以及UE级Koffset。可以看出波束级Koffset与小区级Koffset相比,波束级Koffset具有更小的端到端时延,波束级Koffset与UE级Koffset相比,波束级Koffset具有更小的信令开销。
表2 不同Koffset更新机制的对比
  小区级Koffset 波束级Koffset UE级Koffset
信令开销
端到端时延
图15是本申请提供的一种基于参考点的NTN通信系统示意图,可以在基于参考点的NTN通信系统中更新定时偏移量。可选的,更新定时偏移量的方法可适用于四步随机接入场景,该方法具体包括:
1501、卫星(gNB)向小区覆盖范围内广播多个Koffset值信息。
1502、UE接收到广播消息后,根据接收到的SSB索引号(SSB index)来确定对应的Koffset值。
可选的,在步骤1501中多个Koffset值信息可以是Koffset编号或ID,例如Koffset1,Koffset2,Koffset3等。在步骤1502中,例如,当UE接收到的SSB索引号为1时,使用Koffset1值。当UE接收到的SSB索引号为3时,使用Koffset3值。该方法通过将Koffset值与SSB索引号建立联系(例如,映射关系),可以让UE使用波束级别的Koffset值,可以降低端到端时延。
可选择的,卫星可以广播Koffset1,△Koffset2,△Koffset3,△Koffset4,…等信息。UE可以通过以下式子获得相应的Koffset值:
Koffset1=Koffset1
Koffset2=Koffset1+△Koffset2
Koffset3=Koffset1+△Koffset3
Koffset4=Koffset1+△Koffset4
…(基础值+特定该变量)
或者,
Koffset1=Koffset1
Koffset2=Koffset1+△Koffset2
Koffset3=Koffset1+△Koffset2+△Koffset3
Koffset4=Koffset1+△Koffset2+△Koffset3+△Koffset4
…(基础值+累加该变量)
由表3-同步广播块数量与子载波间隔、载频之间的关系可以看出,当载频大于6GHz时,最多可以广播64个同步广播块(SSB)。SSB索引通过PBCH的3比特和PBCH加扰模式隐式表示的3比特共同指示的64个同步广播块索引。
表3 同步广播块数量与子载波间隔、载频之间的关系
子载波间隔 载频 同步广播块数量
15k f<3GHz 4
15k 3GHz<f<6GHz 8
30k f<3GHz 4
30k 3GHz<f<6GHz 8
120k f>6GHz 64
240k f>6GHz 64
可选的,在步骤1501中多个Koffset值信息可以是多个Koffset参考点坐标,例如Koffset参考点坐标1,Koffset参考点坐标2,Koffset参考点坐标3等。在步骤1502中,UE接收到广播消息后,根据接收到的SSB索引号(SSB index)来使用对应的Koffset参考点坐标来计算要使用的Koffset值。
例如,在图16所示的基于参考点坐标替换Koffset值的NTN系统架构图中,当UE接收到的SSB索引号为3时,使用Koffset参考点坐标3来获取要使用的Koffset值。UE根 据Koffset参考点坐标3和卫星位置坐标(可以由星历信息获取)计算Koffset参考点3与卫星之间的往返时延RTD_reference,然后根据该往返时延计算要使用的Koffset值,可选的,可以利用下式计算:
Figure PCTCN2021075536-appb-000127
可选地,如果考虑服务链路(service link)和馈电链路(feeder link)时延对计算Koffset的影响,例如卫星工作在透传模式(transparent)时,每个UE需要使用两个参考点来计算要使用的Koffset值:
在步骤1501中多个Koffset值信息可以是多个Koffset参考点坐标和一个Koffset馈电链路参考点坐标(可以参考图8a及其方法描述的设计),例如,Koffset馈电链路参考点坐标,Koffset参考点坐标1,Koffset参考点坐标2,Koffset参考点坐标3等。
在步骤1502中,UE接收到广播消息后,根据接收到的SSB索引号(SSB index)来确定对应的Koffset值包括:根据接收到的SSB索引号(SSB index)来使用Koffset馈电链路参考点坐标和对应的Koffset参考点坐标来计算要使用的Koffset值。例如,当UE接收到的SSB索引号为1时,使用Koffset馈电链路参考点坐标和对应的Koffset参考点坐标1来获取要使用的Koffset值。UE根据Koffset参考点坐标1和卫星位置坐标(可以由星历信息获取)计算Koffset参考点与卫星之间的往返时延RTD_reference。UE根据Koffset馈电链路参考点坐标和卫星位置坐标计算Koffset馈电链路参考点与卫星之间的往返时延RTD_reference_feeder。然后根据RTD_reference和RTD_reference_feeder计算要使用的Koffset值,可选的,可以利用下式计算:
Figure PCTCN2021075536-appb-000128
可选择地,为了网络侧灵活配置广播Koffset值或Koffset参考点,增加一个指示位,用来指示传输的多个Koffset值还是多个Koffset参考点坐标。如图17-Koffset值/Koffset参考点坐标指示位示意图A所示,引入一个Koffset值/Koffset参考点坐标指示位用来指示后面传输的是至少一个Koffset值还是至少一个Koffset参考点坐标。例如,指示位为0表示后面传输的是至少一个Koffset值,指示位为1表示后面传输的是至少一个Koffset参考点坐标。当指示位为0时,后面传输的Koffset值可以为:Koffset1,Koffset2,Koffset3……。当指示位为1时,后面传输的Koffset参考点坐标可以为:Koffset参考点坐标1,Koffset参考点坐标2,Koffset参考点坐标3……。Koffset值和参考点的具体使用方法可以参考上述实施例。如果考虑馈电链路时延对确定Koffset值的影响,可以与Koffset参考点坐标一同传输Koffset馈电链路参考点坐标,如图18-Koffset值/Koffset参考点坐标指示位示意图B所示。
灵活配置广播Koffset值和/或Koffset参考点对系统工作在不同模式带来好处:
1.凝视模式(steerable):当系统工作在凝视模式时,卫星波束的覆盖区域会在一段时间内保持不变,广播的Koffset参考点也不会变。系统可以通过指示位配置为广播Koffset参考点,因此系统不用更新该值,这为系统广播更新降低复杂度。
2.非凝视模式:当系统工作在非凝视模式时,卫星波束的覆盖区域会随着卫星的移动而移动,此时波束的Koffset值不发生改变,因此系统可以通过指示位配置为广播Koffset值。
可选的,基于上述类似的思想,还可以将Koffset值或Koffset参考点替换为相应的Koffset角度值。UE利用Koffset的角度值计算往返时延值,再利用类似上述的方法计算得到Koffset值。
如图19-Koffset角度(Koffset馈电链路角度)示意图所示,假设卫星沿运动方向的速度为V,卫星(gNB)向UE广播至少一个Koffset角度(与波束相对应)和Koffset馈电链路角度。Koffset角度可以替换前面所述Koffset值或Koffset参考点,Koffset馈电链路角度可以替换前面所述Koffset值或Koffset馈电链路参考点。
当UE根据SSB索引获取相应的Koffset角度α和Koffset馈电链路角度β后,可选的,可以根据下式计算要使用的Koffset(其他公式符号参考上述实施例):
Figure PCTCN2021075536-appb-000129
如果UE根据SSB索引只获取到相应Koffset角度α,那么可选的,可以根据下式计算要使用的Koffset:
Figure PCTCN2021075536-appb-000130
在凝视模式下,使用Koffset角度的方式来表示Koffset,相比于Koffset值的方式可以避免频繁更新,降低系统广播流程的复杂度。
上面介绍了小区级别的初始定时偏移量和波束级别的初始定时偏移量的确定方法,以及定时偏移量的更新方法等。以下将进一步的介绍波束级别的初始定时偏移量的确定方法以及小区级别的初始定时偏移量的确定方法。
波束级别(如beam specific或beam-specific)的初始定时偏移量的确定方法如下所示:
示例性的,如上述图15的介绍,基站向小区覆盖范围内广播多个Koffset(本文中也写作K offset)值信息,然后UE根据SSB索引号或TCI号或波束号等确定对应的Koffset值。基站向小区覆盖范围内广播多个Koffset值信息包括:基站通过SIB1消息广播多个定时偏移量Koffset值,或者,基站通过广播消息,例如SIB1消息,广播多个波束分别对应的Koffset值。其中,波束级别定时偏移量指该偏移量相应的波束中UE都使用相同的定时偏移量值,即都使用该波束级别定时偏移量。示例性的,可以通过波束中gNB与UE的最大往返时延确定该波束级别的定时偏移量。波束级别的定时偏移量包括波束级别初始定时偏移量,初始定时偏移量中的“初始”表示接入该波束初期(或前n次,如第一次或第二次等)使用的参数或在该波束使用的基础参数。
在一种可能的实现方式中,基站可以通过SIB1消息中的随机接入配置通用RACH-ConfigGeneric信令或者具有类似功能的信令广播多个Koffset值。RACH-ConfigGeneric信令承载于终端随机接入系统过程中需要使用的参数集。或者,也可以理解为在SIB1信号中RACH-ConfigGeneric参数(或称为信令等)中加入多个Koffset值。示例性的,该RACH-ConfigGeneric信令中可以包括一个或多个变量域,该一个或多个变量域即用于指示上述多个Koffset值。
例如,RACH-ConfigGeneric参数中可以包括变量域Koffset-list,该变量域Koffset-list可以表示多个Koffset值,即表示多个波束对应的定时偏移量值。又例如,变量域Koffset-list 中可以包括两个变量域Koffset1和变量域Koffset-diff,变量域Koffset1表示波束1的定时偏移量值,变量域Koffset-diff表示其它波束与波束1的定时偏移量的差值。又例如,最多可以有63个定时偏移量的差值,即变量域Koffset-list可以表示64个波束的Koffset,即63个定时偏移量的差值可以用来确定63个波束对应的定时偏移量以及Koffset1可以用来确定1个波束对应的定时偏移量。
换句话说,本申请实施例中的变量域Koffset-diff可以理解为上述实施例中的△Koffset2、△Koffset3或△Koffset4等。
示例性的,SIB1消息中的RACH-ConfigGeneric信令格式如下所示:
Figure PCTCN2021075536-appb-000131
本申请实施例中,变量域Koffset1和变量域Koffset-diff的取值范围可以根据标准协议支持的通信场景中小区或波束间的最大往返时延(例如与轨道高度和最小通信仰角有关)、小区或波束间的最大往返时延差确定以及计算定时偏移量时长单位slot_duration有关。
例如,在GEO透传场景中,最小通信仰角为10度时,最大往返时延为541.46ms,时长单位slot_duration以最小时隙长度为例,即0.125e-3s。下述其它部分信令示例时也采用最小时隙长度作为时长单位举例,不再赘述。由于541.46e-3/0.125e-3=4331.68,因此,变量域Koffset1需要13bit指示0~4332。变量域Koffset1的13bit可以表示:0~8191范围,其中,上述信令举例中只使用了0~4332范围,可以对未使用的将4333~8191范围进行保留(reserved),也可以留作其它指示用途。
变量域Koffset-diff的取值范围可以由波束间的最大往返时延差值、卫星轨道高度、小区大小或最小通信仰角确定。
例如,在GEO透传场景中,小区直径为450km,最小通信仰角为10度,小区内的最大往返时延差为2.933e-3s,由于2.933e-3/0.125e-3=23.464,因此需要6比特指示-24~+24的取值范围,变量域Koffset-diff中的某个定时偏移量差值的6比特可以表示-31~+31,其中,上述信令举例中只使用了-24~+24范围,可以将未使用的-31~+-25和+25~+31范围进行保留(reserved),也可以留作其它指示用途。
例如,UE获取到Koffset-list信令后,可以根据变量域Koffset1和变量域Koffset-diff分别获得:Koffset1对应波束1的Koffset值,如Koffset-diff有63个定时偏移量差值,则还可以获得波束2的Koffset值为Koffset1+第1个Koffset-diff值(即Koffset1+第1个定时偏移量差值),波束3的Koffset值为Koffset1+第2个Koffset-diff值(即Koffset1+第2个 定时偏移量差值),依此类推。如上所述,波束号,例如波束1,波束2等,可以与SSB索引号或者TCI号建立联系,例如SSB索引号或TCI号即为波束号。这样的信令传输方法既提供了灵活性,又能在多波束的场景中节省信令比特开销。
可选的,可以约定UE接收到Koffset-diff值后减去一个固定值,得到UE可以使用的某个波束对应的定时偏移量的差值。与上述直接向UE发送可以直接使用的定时偏移量差值方案相比,该方法由UE计算得到可以使用的某个波束对应的定时偏移量的差值,将计算量留给UE,减轻基站侧计算复杂度。例如,Koffset-diff变量域使用6bit表示0~48,当UE接收到Koffset-diff值后将其减去固定值(假设固定值为24),这样UE使用的定时偏移量差值表示范围为-24~+24。具体举例,Koffset-diff变量域中的某一个值为8,UE接收到该值后将其减去固定值24得到-16,UE以-16作为该值对应波束的定时偏移量差值来使用。
小区级别(cell specific或cell-specific)的初始定时偏移量的确定方法如下所示:
基站通过广播消息(例如SIB1)广播小区的初始Koffset值或通过RRC信令(例如RRC建立RRCSetup信令、RRC重配置RRCReconfiguration信令或RRC恢复RRCResume信令等)向UE发送初始Koffset值。换句话说,基站可以通过上述方法使得小区内的UE获得初始Koffset值,以使得小区内的UE使用该初始Koffset值。其中,小区级别定时偏移量指该定时偏移量相应的小区中UE都使用相同的定时偏移量值,即都使用该小区级别定时偏移量。示例性的,可以通过小区中gNB与UE的最大往返时延确定小区级别的定时偏移量。小区级别的定时偏移量包括小区级别初始定时偏移量,初始定时偏移量中的“初始”表示接入该小区初期使用的参数或在该小区使用的基础参数。
在一种可能的实现方式中,基站可以通过SIB1消息中的RACH-ConfigGeneric信令广播该小区(cell)对应的Koffset值。示例性的,该RACH-ConfigGeneric信令中可以看一个或多个变量域,该一个或多个变量域可以用于指示上述Koffset值。例如,该一个或多个变量域可以为下述实施例中的变量域Koffset_initial、Koffset-LEO和Koffset-complement、Koffset-LEO-600、Koffset-LEO-1200和Koffset-GEO。
该RACH-ConfigGeneric信令的具体描述可如下所示:
方式一、
在RACH-ConfigGeneric参数中加入一个新的变量域Koffset_initial表示小区内的UE使用的初始定时偏移量。示例性的,该变量域Koffset_initial的取值范围可以根据标准协议支持的通信场景中最大往返时延(例如与轨道高度和最小通信仰角有关)确定。可理解,对于该变量域Koffset_initial的取值范围的说明可以参考上述对变量域Koffset1的描述。该信令传输方法较波束级Koffset信令传输相比,更节省信令开销。
示例性的,SIB1消息中的RACH-ConfigGeneric信令格式如下所示:
Figure PCTCN2021075536-appb-000132
方式二、
在RACH-ConfigGeneric参数中加入两个新的变量域Koffset-LEO和Koffset-complement,该变量域Koffset-LEO和Koffset-complement可以用来确定初始定时偏移量。示例性的,Koffset-LEO和Koffset-complement的取值范围(包括表示范围和/或表示的比特数)可以根据卫星的轨道高度范围和最小通信仰角确定。由此,为了进一步节省信令比特,可以根据轨道高度范围对初始定时偏移量进行组合指示。
示例性的,SIB1消息中的RACH-ConfigGeneric信令格式如下所示:
Figure PCTCN2021075536-appb-000133
其中,新增的变量域Koffset-complement是可选择的(optional),表示可以发送也可以不发送。是否发送或什么条件下发送变量域Koffset-complement参数,可以参考下述举例。
例如,对于轨道高度不高于1200km的场景,最小通信仰角为10度时,最大往返时延为41.745895ms,初始定时偏移量为41.745895e-3/0.125e-3=333.9672,对应的比特数为9比特。因此,网络侧可以只发送Koffset-LEO信令(9比特),即不发送Koffset-complement。此时只需要发送9比特的信令表示定时偏移量参数,用来表示的范围为0~+334。9比特可以指示的范围为:0~+511,其中,上述信令举例中只使用了0~+334范围,可以将未使用的+335~+511范围进行保留(reserved),也可以留作其它指示用途。
又例如,对于轨道高度大于1200km的场景,网络侧可以向UE发送Koffset-LEO和Koffset-complement信令(4比特),Koffset-complement表示高位比特,Koffset-LEO表示低位比特。Koffset-LEO和Koffset-complement共同组成13比特信令,表示0~4332范围。13比特可以表示的范围为:0~8191。其中,上述信令举例中只使用了0~4332范围,可以将未使用的4333~8191范围进行保留(reserved),也可以留作其它指示用途。Koffset-LEO和Koffset-complement组合的指示范围,可以参考上述对变量域Koffset1的描述。
由此,UE获取到Koffset-LEO或者Koffset-LEO和Koffset-complement信令后,可以根据该信令获得要使用的定时偏移量。这样的信令传输方法既提供了灵活性,又能在轨道高度不高的场景中节省一部分信令比特。
可理解,上述举例的信令中的Koffset范围只是示例性的,本申请并不限定Koffset的取值范围,可以根据实际部署条件,约定Koffset的取值范围。
方式三、
在RACH-ConfigGeneric参数中加入三个新的变量域Koffset-LEO-600、Koffset-LEO-1200和Koffset-GEO,表示小区内的UE使用的定时偏移量。Koffset-LEO-600、Koffset-LEO-1200或Koffset-GEO的取值范围(包括表示范围和/或表示的比特数)可以根据卫星的轨道高度范围和最小通信仰角确定。其中,Koffset-LEO-600表示轨道高度不大于600km的定时偏移量相关参数、Koffset-LEO-1200表示轨道高度大于600km且不大于 1200km的定时偏移量相关参数、Koffset-GEO表示轨道高度不大于36000km的定时偏移量相关参数。Koffset-LEO-600、Koffset-LEO-1200或Koffset-GEO参数可以设置为可选择的(optional),如何发送信令可参考下述举例。
例如,对于轨道高度不高于600km的场景,网络侧可以只发送Koffset-LEO-600信令,即不发送Koffset-LEO-1200和Koffset-GEO。当最小仰角为10度时,LEO-600场景的最大往返时延为25.755ms,最大定时偏移量为25.755e-3/0.125e-3=206.04,对应的比特数为8比特(对应上述实施例中LEO-600透传场景中的描述)。此时只需要发送8比特的信令供UE用来确定定时偏移量,用来表示的范围为0…+207。8比特可以指示的范围为:0~+255,其中,上述信令举例中只使用了0~+207范围,可以将未使用的208~255范围进行保留(reserved),也可以留作其它指示用途。
又例如,对于轨道高度大于600km且不大于1200km的场景,网络侧可以向UE发送Koffset-LEO-1200信令,即不发送Koffset-LEO-600和Koffset-GEO。此时需要发送9比特(对应上述实施例中LEO-1200透传场景中的描述)的信令以便于UE用来确定定时偏移量。可理解,对Koffset-LEO-1200信令的取值范围的描述可参考上述Koffset-LEO的描述,这里不再详述。
又例如,对于轨道高度高于1200km的场景,网络侧只需要发送Koffset-GEO信令,即不发送Koffset-LEO-600和Koffset-LEO-1200。此时需要发送13比特(对应上述实施例中GEO透传场景中的描述)的信令以便于UE用来确定定时偏移量,用来表示的范围为0~+4332。可理解,对Koffset-GEO信令的取值范围的描述可参考上述Koffset-LEO、Koffset-complement和Koffset-LEO-600的描述,这里不再详述。
示例性的,SIB1消息中的RACH-ConfigGeneric信令格式如下所示:
Figure PCTCN2021075536-appb-000134
可理解,上述信令格式的取值仅为示例,不应理解为对本申请实施例的限定。
本申请实施例中,基站还可以通过SIB1中的PUSCH-ConfigCommon物理层上行共享信道通用配置信令或RRC信令中的PUSCH-Config物理层上行共享信道配置信令中增加定时偏移量对应的新的变量域等。对于在SIB1中的PUSCH-ConfigCommon物理层上行共享信道通用配置信令或RRC信令中的PUSCH-Config物理层上行共享信道配置信令中增加定时偏移量对应的新的变量域的具体描述可参考上述方式一至方式三,这里不再详述。
可理解,本申请实施例中示出的各个信令的取值仅为示例,不应理解为对本申请实施例的限定。
上述各个方法和各个实施例可以相互组合,可以组合出不同场景中对定时偏移量的更 新方法与流程。示例性的,以下将结合不同场景对小区级别的定时偏移量、波束级别的定时偏移量或UE级别的定时偏移量的组合更新进行举例。
换句话说,上文示出的小区级别的Koffset、波束级别的Koffset或UE级别的Koffset可以联合使用。
可以理解,UE级别(UE specific或UE-specific)定时偏移量表示小区/波束中的UE间可以使用不同的定时偏移量值。
示例性的,UE在初始接入时,通过广播消息获取小区级别Koffset值。当UE发起随机接入后,基站根据UE所在的波束将其使用的Koffset值更新到波束级别。如表2所示,将Koffset由小区级别更新到波束级别可以降低端到端时延。进一步地,当UE对时延要求更高时,如要求低时延的场景下,基站和UE可以将使用的Koffset更新到UE级别的Koffset值。如表2所示,将Koffset更新到UE级别后具有比采用小区级别和波束级别Koffset更小的端到端时延(包括调度时延),因此适合低时延要求的场景。
示例性的,UE在初始接入时,通过广播消息获取小区级别Koffset值。当UE发起随机接入后,gNB根据UE的业务类型和/或对时延的不同需求,判断是否需要对UE使用的Koffset值进行更新。
1)当UE对时延性能要求不高,对时延不敏感,基站可以令该类型UE继续使用小区级别的Koffset,或者更新到波束级别Koffset。
2)当UE对时延性能要求高,要求低时延,基站可以对UE使用的定时偏移量值更新到UE级别的Koffset。该方案流程需要gNB向UE发送信令指示将Koffset更新到波束级别或将Koffset更新到UE级别,或者UE向gNB申请将Koffset更新到波束级别或将Koffset更新到UE级别。
例如,UE要求低时延的情况下,UE可以自主确定并向基站报告更新小区级别的Koffset值到UE级别的Koffset值;或者,UE可以自主确定并向基站报告更新波束级别的Koffset值到UE级别的Koffset值。
又例如,当UE对时延性能有要求时,UE可以向基站发送指示信息,该指示信息可以用于指示该UE的时延要求或指示UE要求使用定时偏移量的级别(例如小区级别,波束级别或UE级别)。由此,基站接收该指示信息,根据该指示信息确定是否更新UE使用的定时偏移量值;如果更新,基站发送用于指示更新Koffset值的信息。如基站可以指示UE更新到波束级别的Koffset值或UE级别的Koffset值。
可选择的,基站可以向UE指示是否开启Koffset更新机制或使用哪种更新Koffset机制。如果不开启,将不会使用小区级别Koffset更新到波束级别Koffset或UE级别Koffset,UE也无需上报TA或时延需求或要使用的Koffset级别。例如:基站可以向UE发送以下信令,或者UE向基站发送以下信令用以指示是否开启某个Koffset更新机制:
信令指示是否开启UE-specific Koffset更新机制。如果开启,表示基站与UE可以将Koffset由小区级别或波束级别更新到UE级别Koffset。如果不开启,则表示UE继续使用正在使用的Koffset级别。带来好处是可以根据UE的业务需求、对调度时延要求的选择不同Koffset更新机制,可以避免更新Koffset信令的额外开销。
信令指示是否开启beam-specific Koffset更新机制。如果开启,表示基站与UE可以将 Koffset由小区级别或UE级别更新到波束级别Koffset。如果不开启,则表示UE继续使用正在使用的Koffset级别。带来好处是可以根据UE的业务需求、对调度时延要求的选择不同Koffset更新机制,可以避免更新Koffset信令的额外开销。
信令指示是使用beam-specific Koffset还是UE-specific Koffset更新机制,或者不支持更新Koffset到其它级别。该信令指示方法为指示该场景中基站和/或UE支持将Koffset的级别更新到波束级别还是UE级别或者不改变使用的Koffset级别。该信令指示能够避免基站与UE间出现Koffset更新机制的歧义,此外还会带来的好处包括可以根据UE的业务需求、对调度时延要求的选择不同Koffset更新机制,可以避免更新Koffset信令的额外开销。
以下将结合上述方法和各个实施例的组合在具体场景中进行举例说明。
场景一、更新小区级别的Koffset值到波束级别的Koffset值。
该场景中假设UE初始接入时,获取小区级别的Koffset值。
示例性的,当UE申请接入系统后,基站如gNB在Msg2或Msg4或RRCsetup信令中传输定时偏移量差值△Koffset,UE收到△Koffset后可以更新Koffset即Koffset_new=Koffset_old+△Koffset。其中,Koffset_old表示gNB和UE正在使用的Koffset值或者基准定时偏移量值或初始Koffset。Koffset_new表示gNB和UE要使用的更新的Koffset值,即在Koffset_old基础上更新得到的定时偏移量值。gNB可以根据波束级别Koffset确定此处的△Koffset值,即gNB根据UE所在波束确定UE要使用更新的Koffset值Koffset_new(例如,gNB根据UE所在波束覆盖范围中UE与gNB的最大往返时延确定Koffset_new值),然后根据△Koffset=Koffset_old-Koffset_new得到△Koffset值。gNB可以通过Msg2或Msg4或RRCsetup等信令传输△Koffset,信令中对△Koffset设定为optional(表示可以发送也可以不发送)是考虑到如果网络侧决定不更新Koffset,gNB可以不向UE发送△Koffset,即gNB和UE不更新正在使用的Koffset。
在一种可能的实现方式中,基站可以使用RRCsetup信令中的服务小区配置ServingCellConfig信令传输△Koffset,并且RRCReconfiguration和RRCResume信令中也包含ServingCellConfig信令,也可以通过RRCReconfiguration和RRCResume信令发送△Koffset值。示例性的,该服务小区配置ServingCellConfig信令中包括一个或多个变量域,该一个或多个变量域可以用于指示△Koffset。
方式一、
在服务小区配置ServingCellConfig参数中加入一个新的变量域Koffset-difference,表示定时偏移量差值△Koffset,UE可以使用该定时偏移量差值Koffset-difference对Koffset进行更新。该Koffset-difference的取值范围(如表示范围或对应的比特数等)可以根据波束间的最大往返时延差值、卫星轨道高度、小区大小以及最小通信仰角确定。
例如,GEO透传/再生场景中小区中最大往返时延差为10.3ms,10.3e-3/0.125e-3=82.4,变量域Koffset-difference需要8bit指示-83~83。Koffset-difference的8bit可以表示:-127~+127,其中,上述信令举例中只使用了-83~83范围,可以将未使用的-127~-84和+84~+127范围进行保留(reserved),也可以留作其它指示用途。该传输定时偏移量差值方案与直接传输Koffset完整值相比,能够节省信令开销。
示例性的,上述信令格式可如下所示:
Figure PCTCN2021075536-appb-000135
方式二、
在ServingCellConfig参数或具有类似功能的参数中加入一个新的变量域Koffset-difference-list,表示小区中多个波束中UE使用的Koffset值与该小区级别Koffset的差值。即Koffset-difference-list表示多个Koffset差值,例如最多可以表示64个波束对应的Koffset值与其所在小区对应小区级别Koffset的差值。
示例性的,上述信令格式可如下所示:
Figure PCTCN2021075536-appb-000136
本申请实施例中,变量域Koffset-difference-list的取值范围可以根据标准协议支持的通信场景中小区或波束的最大往返时延(例如与轨道高度和最小通信仰角有关)、小区与波束间的最大往返时延差确定以及计算定时偏移量时长单位slot_duration有关。
例如,在GEO透传场景中,小区直径为450km,最小通信仰角为10度,小区内的最大往返时延差为2.933e-3s,由于2.933e-3/0.125e-3=23.464,因此需要6比特指示-24~+24的取值范围,变量域Koffset-difference-list中的某个定时偏移量差值的6比特可以表示-31~+31,其中,上述信令举例中只使用了-24~+24范围,可以将未使用的-31~+-25和+25~+31范围进行保留(reserved),也可以留作其它指示用途。
例如,UE获取到Koffset-difference-list信令后,可以根据正在使用的Koffset值(或之前接收到的Koffset值或正在使用的小区级别Koffset值)与变量域Koffset-difference-list指示的Koffset差值确定其所在波束对应的波束级别Koffset值。例如,Koffset-difference-list指示了64个Koffset差值,则UE根据其所在的波束号(例如根据波束号与SSB号或TCI号的对应关系确定),选择Koffset-difference-list中相应的Koffset差值,例如波束号为5,那么选择Koffset-difference-list指示的第5个Koffset差值(假设波束号从1开始)或者选择Koffset-difference-list指示的第4个Koffset差值(假设波束号从0开始)。UE可以根据其正在使用的Koffset值+选择的Koffset-difference-list值(即UE正在使用的Koffset值+根据波束号选择的定时偏移量差值)获得其所在波束对应的波束级别Koffset值。UE和gNB均根据该方法计算获取并更新使用该波束级别Koffset值。这样的信令传输方法既提供了灵活性,又能在多波束的场景中节省信令比特开销。
方式三、
在ServingCellConfig参数中加入两个新的变量域Koffset-difference-GEO和Koffset-difference-LEO表示不同轨道范围使用的定时偏移量差值△Koffset,UE可以使用该 定时偏移量差值对Koffset进行更新。gNB根据通信场景(轨道高度范围)选择发送Koffset-difference-GEO或Koffset-difference-LEO。由此UE获得Koffset-difference-GEO或Koffset-difference-LEO后可以得到△Koffset值,然后根据Koffset_new=Koffset_old+△Koffset更新Koffset值。
其中,Koffset-difference-GEO表示通信场景中轨道高度大于1200km小于36000km时使用的定时偏移量差值,根据波束间的最大往返时延差值确定其表示范围,与卫星轨道高度、小区大小以及最小通信仰角有关。具体说明可以参考上述对Koffset-difference的描述。当通信场景的轨道高度大于1200km小于36000km时,网络侧只需要发送Koffset-difference-GEO信令,即不发送Koffset-difference-LEO信令。此时需要发送8比特的信令供终端用来确定定时偏移量。
Koffset-difference-LEO表示轨道高度不大于1200km的定时偏移量差值参数。根据波束间的最大往返时延差值确定其表示范围。例如,LEO-1200场景中小区中最大往返时延差为3.18ms,3.18e-3/0.125e-3=25.44,变量域Koffset-difference-LEO需要6bit指示-26~26范围。Koffset-difference-LEO的6bit可以表示:-31~+31,其中,上述信令举例中只使用了-26~26范围,可以将未使用的-31~-27和+27~+31范围进行保留(reserved),也可以留作其它指示用途。该传输定时偏移量差值方案既提供了灵活性,又能在轨道高度不高的场景中节省一部分信令比特。
示例性的,上述信令格式可如下所示:
Koffset-difference-GEO     INTEGER(-83..83)   OPTIONAL,
Koffset-difference-LEO     INTEGER(-26..26)   OPTIONAL,
可选的,gNB还可以通过MAC CE信令向UE发送定时偏移量差值△Koffset值,即Koffset差值。由此,UE收到Koffset差值后根据Koffset_new=Koffset_old+△Koffset更新Koffset。例如,可以通过MAC CE信令向UE发送上述8bit的Koffset-difference信令或6bit的Koffset-difference-LEO信令表示△Koffset值。对于该MAC CE信令的具体描述可参考上述说明,这里不再详述。
场景二、更新波束级别的Koffset值。
在凝视模式中,随着卫星与UE相对位置的变化,UE所在波束的波束级别(beam-specific)Koffset会发生变化。
当系统使用波束级初始Koffset时,gNB可以通过以下几种信令方式对beam-specific Koffset进行更新,即gNB和UE仍然使用beam-specificKoffset,但是具体的Koffset值发生变化更新。即在一种可能的实现方式中,网络设备可以通过RRC信令或RRC重配置信令或MAC CE信令指示更新后的Koffset(即beam-specificKoffset)。示例性的,RRC重配置信令中包括一个或多个变量域(如Koffset-list),该一个或多个变量域用于指示更新后的Koffset。示例性的,RRC信令中ServingCellConfig中包括△Koffset。示例性的,MAC CE信令中包括△Koffset。以下分别详细介绍:
方式一、RRC重配置(RRCReconfiguration)信令,例如使用RRC重配置(RRCReconfiguration)信令对Koffset进行更新。由此,基站向UE发送该RRC重配置信 令,UE接收到该RRC重配置信令后,UE根据所在波束选择对应的Koffset值,对正在使用的Koffset值进行更新。例如,RRC重配置信令中包含上述Koffset-list变量域的更新值,具体信令长度设计可以参考上述对Koffset-list变量域参数的描述。
方式二、RRC信令,例如在RRC信令中ServingCellConfig增加Koffset差值如△Koffset参数。△Koffset可以根据要更新到的Koffset值Koffset_new确定,例如gNB根据UE所在波束与卫星、gateway之间的最新位置关系来确定UE要使用的更新Koffset值Koffset_new(例如,gNB根据UE所在波束覆盖范围中UE与gNB的最大往返时延确定Koffset_new值),然后根据△Koffset=Koffset_old-Koffset_new得到△Koffset值。由此,基站向UE发送该RRC信令,UE接收到该RRC信令后,根据Koffset_new=Koffset_old+△Koffset更新Koffset。Koffset差值的信令设计可以参考上述Koffset-difference变量域参数的描述。
方式三、MAC CE信令,例如gNB可以通过MAC CE信令向UE发送定时偏移量差值△Koffset值,即Koffset差值。Koffset差值的信令设计可以参考上述Koffset-difference参数的描述
在上述场景一中,当gNB和UE使用cell级别初始Koffset方案,UE申请接入系统后,gNB和UE将Koffset由cell级别更新到beam级别后,随着卫星与UE和gateway相对位置的变化,UE所在波束的波束级别Koffset也会发生变化,即波束级别Koffset值会发生变化,需要对其更新。gNB可以通过以下两种信令方式对beam-specific Koffset值进行更新。
通过RRC信令,例如使用RRC信令中的ServingCellConfig信令中携带△Koffset
Koffset-difference   INTEGER(-83..83)   OPTIONAL,
对于Koffset-difference变量域的介绍可以参考上述的ServingCellConfig参数中加入一个新的变量域Koffset-difference的描述。
gNB通过MAC CE信令向UE发送△Koffset值,即差值Koffset。
场景三、更新UE级别的Koffset值。
当UE能够上报TA时,说明UE此时已经与gNB建立连接,并且已经获得一个能够使用的Koffset值,因此,gNB只需要在此值的基础上更新Koffset。
例如,如图6所示实施例中,UE可以使用Msg3上报TA值用于指示第二定时偏移量。即,UE可以在RACH过程中的Msg3(或者其他消息等,如后续需要更新定时偏移量时发送的消息)中向gNB发送自己使用的TA信息或位置信息。如果发送TA值,可以是TA值或量化后的TA值,或者更新的Koffset值或Koffset差值。接入系统后,UE同样可以在其它上行消息中上报与自己使用的TA值的相关值,gNB用以确定更新的Koffset值。
如上述UE发送指示信息用于指示第二定时偏移量的方法中,UE向gNB发送TA相关值,可以将UE正在使用的TA值减去common TA(此处common TA值可以是正值或负值或零)或者可以将UE正在使用的TA值减去common TA的绝对值(即获得正在使用的TA与commonTA取绝对值的差值),即将TA-applied(例如TA_applied=TA_use-TA_common)发送给gNB或者将TA_applied值的一半发送给gNB(gNB收到后乘以2获得TA_applied值)。其中,TA_use表示UE正在或即将使用的TA值,TA_common表示common TA值,TA_applied表示TA_use与TA_common的差值。gNB收到UE发送的TA相关值 后,根据TA_use=TA_applied+TA_common获得UE正在使用或即将使用的TA值。
例如,如果以16Ts/2 u为时间量纲来发送TA值,如果TA_use–TA_common不是整数倍的16Ts/2 u,UE或gNB可以根据
Figure PCTCN2021075536-appb-000137
Figure PCTCN2021075536-appb-000138
Figure PCTCN2021075536-appb-000139
计算得到UE向gNB发送的TA相关值。其中,Ts表示1/(15e3*2048)秒,μ与子载波间隔有关,即子载波间隔为2 μ·15kHz。
在一种可能的实现方式中,UE可以通过第三消息或第五消息或其他上行消息(例如,授权的PUSCH资源、上行物理层控制信道消息等等)指示TA或TA的相关值。示例性的,上述第三消息或第五消息或其他上行消息中可以包括一个或多个变量域(如下文中的TA-applied、TA-applied-LEO-600、TA-applied-LEO-1200和TA-applied-GEO、Koffset_difference_UE等),该一个或多个变量域可以用于指示上述TA或TA的相关值。
方式一、
增加一个变量域TA-applied(使用的定时提前)表示UE上报的TA相关值。gNB收到TA-applied后用来确定UE使用的或即将使用的TA值。TA-applied信令的表示范围和比特数由通信场景中轨道高度、最小通信仰角以及时间量纲确定。
例如,当卫星轨道高度不高于GEO轨道,最小仰角为10度时,以16Ts/2 u为时间量纲单位,需要TA-applied的表示范围为0~4155513,需要22比特来表示。22比特可以表示的范围为:0~4194303,其中,上述信令举例中只使用了0~4155513范围,可以将未使用的4155514~4194303范围进行保留(reserved),也可以留作其它指示用途。例如,gNB接收到TA-applied参数后,可以将其与common TA(量化后的commonTA值)相加后,与时间量纲单位相乘获得UE正在使用的TA值,或者TA-applied表示的就是UE正在使用的TA值,即TA-applied与时间量纲单位相乘后就是UE使用的TA的时间长度。可以理解,协议支持不同的卫星轨道高度、最小通信仰角和时间量纲单位,那么TA-applied需要支持的指示范围可能会不同。可以根据具体通信场景对TA-applied的指示范围和比特数进行定义。
示例性的,上述TA-applied的信令格式如下所示:
TA-applied        INTEGER(0..4155513)   OPTIONAL,
方式二、
增加三个新的变量域TA-applied-LEO-600、TA-applied-LEO-1200和TA-applied-GEO,表示用来供gNB确定UE正在使用的定时提前值。TA-applied-LEO-600、TA-applied-LEO-1200和TA-applied-GEO的表示范围和比特数可以根据卫星的轨道高度范围、可能的最小通信仰角以及时间量纲单位确定。其中,TA-applied-LEO-600表示轨道高度不大于600km的通信场景中UE使用的定时提前值相关的参数、TA-applied-LEO-1200表示轨道高度不大于1200km的通信场景中UE使用的定时提前值相关的参数、TA-applied-GEO表示轨道高度不大于36000km的通信场景中UE使用的定时提前值相关的参数。参考上述参数TA-applied的表示范围和比特数的设计原则,可以获得TA-applied-LEO-600、TA-applied-LEO-1200和TA-applied-GEO的表示范围和比特数。
例如,在Msg3的RRCSetupRequest信令中增加UE上报TA的相关信令,TA-applied-LEO-600/TA-applied-LEO-1200/TA-applied-GEO,UE根据星历信息或卫星轨道 信息获取卫星的轨道高度,进而选择相应的TA-applied-LEO-600/TA-applied-LEO-1200/TA-applied-GEO中的一个信令来发送TA值。对于轨道高度不高于600km的场景,UE可以采用TA-applied-LEO-600信令,而不发送TA-applied-LEO-1200和TA-applied-GEO。这样带来的好处是在低轨卫星通信系统中UE可以使用较小信令长度来发送TA相关值。
示例性的,TA-applied-LEO-600、TA-applied-LEO-1200和TA-applied-GEO的信令格式如下所示:
TA-applied-LEO-600            INTEGER(0..197800)   OPTIONAL,
TA-applied-LEO-1200           INTEGER(0..320609)   OPTIONAL,
TA-applied-GEO                INTEGER(0..4155513)   OPTIONAL,
方式三、
如上述UE发送指示信息用于指示第二定时偏移量的方法中,UE可以上报要更新到的Koffset值或Koffset差值以替代上报TA相关值,例如以Koffset差值为例。增加一个新的变量域Koffset_difference_UE,表示UE向gNB上报的定时偏移差值,UE要更新的Koffset值与正在使用的Koffset间的差值。可以理解,UE同样可以在其它上行消息中上报Koffset差值。
Koffset_difference_UE指示范围与占用的比特数与UE上报更新的Koffset的频率和阈值有关,这里以Koffset差值不大于7为例,Koffset_difference_UE需要占用3比特。gNB收到Koffset_difference_UE后,可以根据Koffset_new=Koffset_old+Koffset_difference_UE获得gNB和UE要更新的Koffset值。
示例性的,上述Koffset_difference_UE的信令格式如下所示:
Koffset_difference_UE                  INTEGER(0..7)   OPTIONAL
如上述UE发送指示信息用于指示第二定时偏移量的方法中,UE可以向gNB上报自己的位置信息。例如,可以使用地心地固坐标系(Earth-Centered,Earth-Fixed,ECEF),假设表示的范围为距离地球表面最高20km,地球半径为6371km,那么三维坐标位置的每一个维度需要表示-6391~6391km。当三维坐标每个维度的表示分辨率为0.125m时,需要27比特,那么三个维度需要27*3=81比特。当三维坐标每个维度的表示分辨率为0.25m时,需要26比特,那么三个维度需要26*3=78比特。例如,增加一个变量域UE-Position表示UE的位置坐标。变量域UE-Position包括了三个变量值,表示UE的三维坐标相关值。UE-Position信令的表示范围和占用比特数与地球半径、UE可能距离水平面的最高距离以及位置坐标表示的分辨率有关。例如,UE发送的位置信息信令可以表示为:
UE-Position     SEQUENCE(3 OF INTEGER(-67108863..67108863))   OPTIONAL,
或者
UE-Position    SEQUENCE(3 OF INTEGER(-33554431..33554431))   OPTIONAL,
示例性的,可以在RRCSetupRequest消息中携带上述TA-applied-LEO-600或TA-applied-LEO-1200或TA-applied-GEO或UE-Position或Koffset_difference_UE信令。
当gNB收到UE-Position信令后,根据收到的三维坐标相关值乘以坐标分辨率。例如,假设坐标分辨率为0.125m,gNB收到UE-Position信令数值为(50976000,1688000,1592000), gNB可以获得UE的实际ECEF三维坐标为(50976000*0.125=6372km,1688000*0.125=211km,1592000*0.125=199km)。
可选的,为了降低信令开销,可以约定UE发送的位置坐标可以减去一个固定值后发送坐标差值。例如,UE发送的三维坐标的每一个纬度都减去6371km后,发送坐标差值。gNB接收到坐标差值后,每一个纬度加上6371km后得到UE的坐标值。上述设计信令可以节省信令开销。
方式四、
gNB和UE可以约定UE通过上行物理层控制信道(PUCCH)消息向gNB上报TA相关参数。例如,UE可以通过上行物理层控制信道消息发送本申请中所述方法和实施例中所述上报TA相关信令参数或UE发送的指示信息(用于指示第二定时偏移量)。该方法可以避免UE为了上报TA相关参数而申请上行资源,节省了上行资源申请调度时间。
本申请实施例中,当UE接入系统后,UE可以通过上行MAC CE消息或PUSCH向gNB发送TA值,可以参考上面上报TA相关信令长度设计方法。
上述方法以及实施例中介绍了小区切换(Cell handover)中更新Koffset的方法,下面以具体通信场景的信令流程举例:
1)handover流程中,先测量,然后由源gNB向UE发送RRCReconfiguration信令。由上面信令可知,cell级别或波束级别Koffset存在于RRCReconfiguration。因此,UE可以通过RRCReconfiguration获取目标cell/beam的Koffset值。对于免随机接入切换(RACHless handover),也会由源cell向UE发送RRCReconfiguration信令。UE会接收目标cell的SIB1,同样能够获取目标cell/beam的Koffset。
2)UE完成handover后,可以进行由cell级别到beam级别Koffset的更新。或者更新到UE级别的Koffset,同UE随机接入到某个cell后的信令流程一样。
卫星切换(satellite switch)可以等效于cell handover,参考上述handover信令流程。
上述方法以及实施例中介绍了波束切换(Beam switch)中更新Koffset的方法,下面以具体通信场景的信令流程举例:
当源beam和目标beam属于同一个小区时,beam switch并没有切换卫星,那么UE可以继续使用目前的正在使用的cell级别或UE级别Koffset。
如果UE使用的Koffset是波束级别的,那么需要分成两类进行讨论:
一、当系统使用波束级初始Koffset方案时,gNB可以通过以下两种信令方式对beam-specific Koffset进行更新。
1)通过RRC信令,例如使用RRCReconfiguration信令对Koffset-list列表进行更新,UE根据所在波束选择对应的Koffset值,即对正在使用的Koffset值进行更新。
或者,
UE需要根据广播信号中的发送的Koffset组(例如Koffset-list消息),选择对应目标波束要使用的Koffset值。
2)gNB可以通过MAC CE信令向UE发送△Koffset值,即Koffset差值。UE收到后根据Koffset_new=Koffset_old+△Koffset更新Koffset。例如,可以通过MAC CE信令向 UE发送上述8bit或6bit信令表示△Koffset值。
二、当系统使用cell级别初始Koffset方案,UE接入系统后使用beam级别Koffset后,gNB可以通过以下两种信令方式对beam-specific Koffset进行更新。
1)通过RRC信令,例如使用RRC信令中的ServingCellConfig信令中携带△Koffset(例如使用上述Koffset-difference信令)
2)gNB通过MAC CE信令向UE发送△Koffset值,即Koffset差值。
关口站切换(Gateway switch):
当发生关口站软切换(soft gateway switch)时,UE能够同时收到两个gateway的信号,可以等效为cell handover过程。
当发生关口站硬切换(hard gateway switch)时,UE在同一时刻只能收到一个gateway的信号,UE瞬间从源gateway切换到目标gateway。此时,feeder link部分时延发生变化。gNB可以向UE发送在目标gateway使用的Koffset或与现在使用的Koffset差值,即△Koffset。
由于整个波束或小区的UE都要更新Koffset值,因此可以使用RRCReconfiguration信令携带△Koffset对Koffset更新。
或者,
gNB使用MAC CE信令向UE发送目标gateway的Koffset或△Koffset。
如果发送△Koffset,或许也需要与完整Koffset相同的比特数。例如,在一些特殊的场景中,当切换前网络侧对上行信号做定时补偿,而切换后网络侧对上行信号不做定时补偿,那么需要△Koffset需要包含完整的往返时延,此时△Koffset需要的比特数就与表示完整Koffset相同。如果协议不支持这一类特殊场景,那么表示△Koffset需要的比特数会小于表示完整Koffset比特数,可以节省信令比特。
上述UE发送指示信息用于指示第二定时偏移量的方法中,UE向gNB发送TA相关值,以下将举例介绍UE如何上报其正在使用的TA或其相关值。
UE上报自己正在使用的TA或TA相关值,gNB确定该UE的TA值并据此确定UE需要更新的Koffset值,如上述介绍:
Figure PCTCN2021075536-appb-000140
由此,以下示出了几种UE如何向基站指示其正在使用的TA的方法。
方式一、UE上报TA rate
为了节省UE上报TA值的信令开销,UE可以向gNB上报自己正在使用的TA变化率(TA rate)TA_R和正在使用的TA值TA_Va,其中UE可以根据UE的位置、卫星的位置、速度方向、速度大小等信息计算得到TA变化率。UE和gNB均可以根据TA_R和TA_Va计算UE随后要使用的TA值,然后计算Koffset值。例如,
Figure PCTCN2021075536-appb-000141
Figure PCTCN2021075536-appb-000142
其中t表示要计算或要使用Koffset的时刻,t0表示UE使用TA_Va值的时刻。如果gNB后续向UE发送TAC指令调整TA值,那么计算Koffset式子可以调整为
Figure PCTCN2021075536-appb-000143
其中TAC_ac表示gNB向UE发送的TAC指令的累积值。例如,gNB向UE发送了2次TAC,两次TAC调整的和为TAC_ac。可以约定,UE和gNB都根据上述式子计算Koffset值,同时更新为最新Koffset值。或者,gNB根据上述式子计算Koffset值,如果需要更新,向UE指示更新到的最新Koffset值或 最新Koffset与原Koffset的差值。
方式二、上报TA的差值
为了节省UE上报TA的信令开销,每次UE上报正在使用的TA值的时候,可以上报正在使用的TA值与上一次上报的TA值的差值或者正在使用的TA值与上一次gNB向UE指示的TA值的差值,这样可以降低上报TA需要的指示范围和信令比特。例如,上次UE向gNB上报的TA值是TA1,此时UE正在使用的TA值是TA2,那么此时UE向gNB上报的TA值为TA2-TA1。当gNB收到UE上报的(TA2-TA1)值时,可以将其与UE上次上报的TA值TA1相加,即可得到UE正在使用的TA值TA2。
方式三、上报TA值的方式
UE周期性上报TA值:gNB向UE配置周期性上报TA的资源,由此,UE可以根据基站配置的上报TA的资源上报该UE正在使用的TA(上报方法可以参考上述各个实施例)。例如,gNB在RRC信令中向UE配置TA上报的周期为8秒,以及8秒为周期的时域、频域资源。UE在该资源上周期上报TA值。
UE半静态上报TA值:gNB除了向UE配置周期上报TA的资源外,还需要向UE发送激活或者去激活(关闭)的信令向UE指示是否开始周期上报TA值功能。例如,gNB可以通过MAC CE激活或者去激活周期上报TA功能,UE收到激活或者去激活(关闭)的信令后,开始或停止周期性上报TA值。
UE非周期上报TA值:gNB向UE配置上报TA值的上行资源,并且向UE发送触发上报TA值指令。UE收到指令(或信令)后向gNB上报一次正在使用的TA值。例如,gNB可以通过DCI指令触发UE上报TA值。UE接收到触发指令后,立即上报TA值或在一段约定的时间后上报TA值。具体举例来说,UE在下行时隙n接收到DCI触发指令,UE可以在上行时隙n+M上报UE正在使用的TA值。其中,M为非零整数,M与UE使用的TA值大小相关,例如
Figure PCTCN2021075536-appb-000144
Figure PCTCN2021075536-appb-000145
delta是考虑处理时延gNB与UE约定的非负整数或gNB向UE配置的一个非负整数变量。
上述上报TA和TA相关值的方法可以相互结合使用,此处不再详述。
本申请实施例中Koffset可以解决网络侧接收上行数据定时晚于发送相应下行数据定时的问题。例如,如图20所示,gNB在上行时隙n接收到对应于承载一个MAC-CE指令(或MAC-CE信令)的PDSCH的上行HARQ-ACK。该MAC-CE指令是对下行信号配置指令,且UE假设对于下行配置生效于下行时隙
Figure PCTCN2021075536-appb-000146
之后的第一个时隙,即时隙
Figure PCTCN2021075536-appb-000147
其中
Figure PCTCN2021075536-appb-000148
是在子载波间隔为2 μ*15KHz时,一个子帧(subframe)中包含的时隙数量,X是协议中约定或通过参数配置的非负整数,如X=3。
例如,承载在PDSCH中的MAC CE对下行信号的配置指令可以是对下行ZP CSI-RS的资源配置,或者去激活(deactivation)已经生效的下行ZP CSI-RS资源配置。又例如,承载在PDSCH中的指令可以是指示TCI状态与DCI域中码点('Transmission Configuration Indication')的映射关系。又例如,承载在PDSCH中的指令可以是激活/去激活半静态CSI 上报配置。又例如,承载在PDSCH中的指令可以是激活/去激活CSI-RS/CSI-IM配置。
由图20可以看出,当网络侧或gNB对上行数据的定时补偿大于等于
Figure PCTCN2021075536-appb-000149
时,网络侧接收到UE发送的针对承载在PDSCH中指令的HARQ ACK/NACK不会早于该指令对下行信号配置的生效时间,gNB将不能及时知道UE是否正确解码承载该指令的PDSCH或MAC CE,即当MAC CE对下行数据的配置生效时,网络侧还未接收到UE反馈的MAC CE的HARQ ACK/NACK。而UE在时隙n发送HARQ ACK后,将认为从下行时隙
Figure PCTCN2021075536-appb-000150
开始指令开始生效,这样会造成UE和gNB两侧对该指令的生效时间的理解不同,造成通信冲突。此处所述的网络侧或gNB对上行数据的定时补偿值表示网络侧或gNB在接收上行数据时将接收窗延后补偿值大小。
为改善上述问题,可以引入一个根据网络侧对上行数据定时补偿值相关的Koffset。UE假设对于下行配置生效于
Figure PCTCN2021075536-appb-000151
时隙,如图21所示,可以看出当使用适当的Koffset值(延后下行信号配置指令生效时间,保证gNB在接收到相应ACK后,指令才生效,即Koffset表示的时间长度应不小于网络侧对上行数据的定时补偿值表示的时间长度)后,gNB可以在收到UE发送对应下行配置指令的HARQ ACK后对下行配置指令生效,保证UE和gNB均在相同的下行时隙中令下行配置指令生效。
该实施例中的Koffset可以通过以下式子获得:
例如:
Figure PCTCN2021075536-appb-000152
其中,time_compensated是网络侧接收UE发送的上行数据所做的定时补偿值,单位可以是秒、毫秒、微秒、时隙长度、符号长度或其它时间单位。time_compensate等同于上述delay_compensated。gNB可以向UE发送Koffset值。这样gNB和UE都获得了Koffset值,都能根据Koffset值确定对下行信号配置指令的生效时间。
或者,gNB还可以根据下式计算Koffset:
Figure PCTCN2021075536-appb-000153
其中,△K表示协议约定的一个整数用来调整Koffset值(考虑计算误差或/和处理时延等)。
或者,gNB可以向UE发送
Figure PCTCN2021075536-appb-000154
值和△K值,gNB根据系统误差或/和处理时延来确定△K。UE和gNB根据下式计算得到要使用的定时偏移量值Koffset_new
Koffset_new=Koffset+△K
UE接收到Koffset和△K后,gNB和UE均根据Koffset_new得到对下行信号配置指令的生效时间,即UE假设对于下行配置生效于
Figure PCTCN2021075536-appb-000155
时隙。
或者,gNB可以向UE发送time_compensated值,UE和gNB可以根据式子计算得到要使用的Koffset值:
Figure PCTCN2021075536-appb-000156
可选择的,在计算Koffset时,可以在本申请给出计算式子的基础上加/减一个固定值,例如,考虑到双工模式(时分双工(time-divisionduplex,TDD)和频分双工(frequency-division duplex,FDD))的不同或网络设备位置/定位误差等影响,在计算Koffset时加/减时间偏移值TA_offset,例如
Figure PCTCN2021075536-appb-000157
当采用FDD时,TA_offset=0;当采用TDD时,TA_offset=624。又例如,
Figure PCTCN2021075536-appb-000158
Figure PCTCN2021075536-appb-000159
或者,gNB可以向UE发送time_compensated和△K值,UE和gNB可以根据式子计算得到要使用的Koffset值:
Figure PCTCN2021075536-appb-000160
其中,time_compensated可以是时间量,也可以是量化后的时间量,即time_compensated的时间单位可以根据实际使用情况确定,此处不做限定。
或者,gNB可以向UE发送time_compensated和△timing_offset值,UE和gNB可以根据式子计算得到要使用的Koffset值:
Figure PCTCN2021075536-appb-000161
其中,△timing_offset是gNB考虑处理时延和计算误差等对time_compensated的调整值,可以是时间量,也可以是量化后的时间量,即对△timing_offset的时间单位可以根据实际使用情况确定。
或者,为了节省信令开销,降低传输Koffset相关信息的信息比特数,gNB可以在一个其它时间相关量值(UE和gNB都知道该时间相关量值,例如gNB和UE约定的一个时间相关量值或gNB向UE发送的一个时间相关量值,或UE向gNB发送的一个时间相关量值)的基础上发送一个定时偏移量差值△Koffset,UE和gNB根据约定的式子计算得到要使用的Koffset,即
Figure PCTCN2021075536-appb-000162
或者,直接使用time_related参数计算得到Koffset,即
Figure PCTCN2021075536-appb-000163
或者,gNB可以在一个其它时间相关量值的基础上发送一个时间差分量△timing(△timing是一个时间长度值),UE和gNB根据约定的式子计算得到要使用的Koffset,即
Figure PCTCN2021075536-appb-000164
或者,gNB可以在一个其它时间相关量值的基础上发送一个尺度因子S(S为非负数),UE和gNB根据约定的式子计算得到要使用的Koffset,即
Figure PCTCN2021075536-appb-000165
或者,gNB可以联合发送△Koffset和/或△timing和/或S,UE和gNB根据约定的式子计算得到要使用的Koffset,例如
Figure PCTCN2021075536-appb-000166
例如,time_related参数可以是2H/c或4H/c,其中H表示卫星的轨道高度(UE可以从网络侧发送的星历信息中获得),c表示光速。
或者,time_related参数可以是公共定时提前(common TA)量。公共定时提前量可以 根据但不限于以下方式获得:在波束或小区的覆盖区域中选择一个参考点(例如可以选择距离基站最近的点),计算参考点-卫星;或,参考点-卫星-地面站之间的往返时延,公共定时提前等于该往返时延或等于该往返时延加/减一个固定值(固定值是考虑卫星位置信息的不准确性或处理时延或UE所在位置的高度对使用TA的影响,该固定值是相对一段时间而言固定的,也可以改变该值)。参考点可以是服务链路上的点或馈电链路上的点,根据参考点位置不同,发送的commonTA值可能为正值或负值或零,此处不做限定。类似地,基站也可能发送给UE一个参考点位置坐标,UE根据卫星的位置和参考点位置间的往返时延计算得到公共定时提前量。
或者,time_related参数可以是上述方法和实施例中现有的定时器或接收窗参数及其多个组合,因为这些定时器时间长度和接收窗时间长度参数都与UE和gNB的往返时延和处理时延等相关。并且,这些参数gNB会通过广播、单播等方式向UE发送,这样UE和gNB都知道这些定时器时间长度和接收窗时间长度。例如,UE和gNB之间会约定或发送的一些与往返时延有关的定时器时长,都可以用作或组成time_related参数,如下所示:
非连续接收下行重传往返时间定时器(drx-HARQ-RTT-TimerDL)的延时启动时长(Timer offset)offset_of_drx-HARQ-RTT-TimerDL
非连续接收上行重传往返时间定时器(drx-HARQ-RTT-TimerUL)的延时启动时长(Timer offset)offset_of_drx-HARQ-RTT-TimerUL
随机接入竞争解决定时器(ra-ContentionResolutionTimer)的延时启动时长(Timer offset)offset_of_ra-ContentionResolutionTimer或RCR_offset
调度请求禁止定时器(sr-ProhibitTimer)timer_sr-ProhibitTimer
重组定时器(t-Reassembly)timer_t-Reassembly
丢弃定时器(discardTimer)timer_discardTimer
接收RAR(Random Access Response随机接入响应)信号接收窗长度(ra-ResponseWindow)timer_ra-ResponseWindow
time_related参数可以包括上述参数中的一个或多个。举例说明,time_related参数可以是offset_of_drx-HARQ-RTT-TimerDL表示的时间长度。当UE接收到gNB发送的△Koffset后,gNB和UE均可以根据下式计算得到要使用的Koffset
Figure PCTCN2021075536-appb-000167
同理,当UE接收到gNB发送的S后,gNB和UE均可以根据下式计算得到要使用的Koffset
Figure PCTCN2021075536-appb-000168
又例如,time_related参数可以是offset_of_drx-HARQ-RTT-TimerDL和timer_t-Reassembly表示的时间长度的和。当UE接收到gNB发送的△Koffset后,gNB和UE均可以根据下式计算得到要使用的Koffset
Figure PCTCN2021075536-appb-000169
可理解,根据上述介绍的“由于基站不仅需要将RAR接收窗的时长告知UE,还需要将RAR接收窗的延时启动时长告知UE,因此,该第一定时偏移量还可以根据该RAR接收 窗的时长和该RAR接收窗的延时启动时长确定。”可知:Koffset可以根据RAR接收窗的时长和该RAR接收窗的延时启动时长表示的时间长度的和计算得到,即
Figure PCTCN2021075536-appb-000170
Figure PCTCN2021075536-appb-000171
该种方式也适用于此处。另外,上述式子(10)或(11)获得Koffset的方法同样适用于此处,如△Koffset_time或△Koffset可以等于0当然,△Koffset_time或△Koffset可以不等于零,此处不做限定。
可理解,根据上述介绍的“由于基站不仅需要将随机接入竞争解决定时器的时长告知UE,还需要将随机接入竞争解决定时器的延时启动时长告知UE,因此,该第一定时偏移量还可以根据该随机接入竞争解决定时器的时长和该随机接入竞争解决定时器的延时启动时长确定。”可知:Koffset可以根据随机接入竞争解决定时器的时长和随机接入竞争解决定时器的延时启动时长的和计算得到,即
Figure PCTCN2021075536-appb-000172
该种方法也适用于此处。另外,上述式子(20)或(21)获得Koffset的方法也同样适用于此处,
利用上述方法和实施例中的公式、参数和方法,可以得到不同的获得Koffset的方案,此处不赘述。
为了节省信令开销,降低传输Koffset相关信息的信息比特数,可以利用已经发送给UE的信息,gNB与UE约定好一个计算Koffset的公式来获得Koffset。网络侧的上行补偿值与UE侧使用的TA值、UE与gNB间的往返时延关系可以利用式子说明,如下:
time_compensated=RTD(UE,gNB)-TA_related
其中,TA_related参数表示与UE使用的TA值大小相关的参数。例如,TA_related可以是等于UE使用的TA值。RTD(UE,gNB)是UE与gNB的往返时延,或者UE与卫星间的往返时延。例如,上述参数RCR_offset表示gNB与UE所在波束/小区内最小往返时延相关,可以将RCR_offset表示的时间长度代替RTD(UE,gNB)代入上式获得time_compensated值,进而使用上述式子计算得到Koffset,例如,式子
Figure PCTCN2021075536-appb-000173
Figure PCTCN2021075536-appb-000174
或者,TA_related可以是表示UE使用的与上行调度时延相关的定时偏移量scheduling_offset。当UE在时隙n接收到上行调度指令,UE在时隙n+K2+scheduling_offset发送上行数据。那么可以将scheduling_offset表示的时间长度替代TA_related,代入上述式子得到time_compensated值,进而使用上述式子计算得到Koffset,例如,使用式子
Figure PCTCN2021075536-appb-000175
如果将与RTD(UE,gNB)相关的量化值(使用slot_duration量化)和与TA_related相关的量化值(使用slot_duration量化)代入上式,可以直接获得Koffset值,因为此时获得的time_compensated也是一个根据slot_duration的量化值。
可理解,本申请实施例中的各个参数(包括Koffset、△、time_compensated、△timing_offset、△timing、S等等)可以在包括系统信息块(system information block,SIB)1、其他系统消息(other system information,OSI)、主系统信息块(mater information block,MIB)等的广播信息中的至少一种,由网络设备向终端广播发送。也可以向终端单播或组播发送。如果在无线资源控制(radio resource control,RRC)连接阶段发送,网络设备可以在RRC信息、RRCReconfiguration消息、下行控制信息(downlink control information,DCI)、组DCI、介质访问控制(media access control,MAC)控制元素(control element,CE)、 定时提前命令(timing advance command,TAC)中的至少一种信息中携带或指示这些信息,或者随数据传输或在单独分配的PDSCH中承载向UE发送。
如上述实施例中的描述:在UE得到最新的定时偏移量即第二定时偏移量后,便可以在该第二定时偏移量生效后,使用该第二定时偏移量向基站发送基站调度的数据信息或控制信道信息等等。上面介绍的三种方法中,如方法一中K 1是由DCI中的PDSCH-to-HARQ-timing-indicator指令索引表格(dl-DataToUL-ACK信令传输的表格)得到的值。方法二中,K 2=0,…,32,由DCI指令指示K 2的值。
Figure PCTCN2021075536-appb-000176
Figure PCTCN2021075536-appb-000177
方法三中
Figure PCTCN2021075536-appb-000178
μ SRS=0时,SRS信号子载波间隔为15KHz。k值由每次触发SRS资源组的高层参数时隙偏移(slotOffset)配置。
除了上面介绍的三种方法之外,本申请实施例还提供了几种方法,分别如下所示:
1)DCI调度的PUSCH发送定时
UE在下行时隙n接收到上行授权/调度信息,那么UE的PUSCH数据要在上行时隙
Figure PCTCN2021075536-appb-000179
发送。其中,K 2=0,…,32由DCI指令指示K 2的值。μ PUSCH和μ PDCCH与PUSCH和PDCCH的子载波间隔有关,即
Figure PCTCN2021075536-appb-000180
Figure PCTCN2021075536-appb-000181
调度PUSCH除了DCI还有另一种方式:配置授权(configured grant),在该种调度方式中同样需要使用Koffset,可以使用本发明的自动更新Koffset的方案。
2)RAR授权调度的PUSCH发送定时
UE在下行时隙n接收到承载由RAR消息的PDSCH数据,UE要在上行PUSCH的时隙n+K 2+Δ+Koffset发送随机接入的消息3(Msg3),其中Δ是通过协议约定的一个数值。3)承载CSI的PUSCH发送定时
当UE在下行时隙n接收到信道状态信息(channel state information,CSI)请求的DCI时,UE需要在上行PUSCH的时隙n+K+Koffset发送CSI。其中,K值是由DCI指令指示的。
4)CSI参考资源定时
UE要在上行时隙n’发送CSI报告时,CSI参考资源要在下行时隙n-n CSI_ref-Koffset向UE发送。其中,
Figure PCTCN2021075536-appb-000182
n CSI_ref是通过协议约定的与CSI报告种类有关的一个数值。μ DL和μ UL与上行和下行链路子载波间隔有关,即
Figure PCTCN2021075536-appb-000183
Figure PCTCN2021075536-appb-000184
5)MAC CE生效定时
gNB在上行时隙n接收到对应于承载一个MAC-CE指令的PDSCH的上行HARQ-ACK,该MAC-CE指示是对下行信号的配置,UE假设对于下行配置的MAC-CE指令生效于下行 时隙
Figure PCTCN2021075536-appb-000185
之后的第一个时隙。其中
Figure PCTCN2021075536-appb-000186
是在子载波间隔为2 μ*15KHz时,一个子帧(subframe)中包含的时隙数量,X是协议中约定或通过参数配置的非负整数。例如,承载在PDSCH中的MAC CE对下行信号的配置指令可以是对下行ZP CSI-RS的资源配置,或者去激活(deactivation)已经生效的下行ZP CSI-RS资源配置。
gNB在上行时隙n接收到对应于承载一个指令的PDSCH的上行HARQ-ACK,该指令是对上行信号的配置,UE假设对于该上行配置的指令生效于上行时隙
Figure PCTCN2021075536-appb-000187
Figure PCTCN2021075536-appb-000188
之后的第一个时隙。其中
Figure PCTCN2021075536-appb-000189
是在子载波间隔为2 μ*15KHz时,一个子帧(subframe)中包含的时隙数量,X是协议中约定或通过参数配置的非负整数。例如,承载在PDSCH中的指令可以是激活/去激活SRS资源配置。
可理解,上述各个实施例中,对于初始定时偏移量的表达也可以用第一定时偏移量或Koffset1或K offset1等表示。Koffset和K offset可以理解为同一个参数,time_duration和slot_duration也可以理解为同一个参数,△Koffset和△K也可以理解为同一个参数等。以及上述各个实施例中,Koffset或定时偏移量可以理解为初始定时偏移量,也可以理解为更新后的定时偏移量等等,至于具体是初始定时偏移量还是更新后的定时偏移量可以根据具体实施例的具体情况确定。上述Max_RTD_beam可以理解为UE所在波束覆盖区域中与基站间的最大往返时延。
可理解,以上示出的关于更新定时偏移量与使用定时偏移量的执行顺序,本申请实施例不作限定。例如,UE或网络设备发送用于更新定时偏移量的消息时,可以不根据定时偏移量来发送该用于更新定时偏移量的消息。又例如,UE或网络设备根据定时偏移量发送某个消息时,该某个消息中可以不包括用于指示更新后的定时偏移量的信息。如以图10a为例,如UE根据第二定时偏移量向基站发送上行消息时,该上行消息中可以不包括更新的第二定时偏移量。
可理解,以上方法和实施例以四步随机接入和两步随机接入为例进行解释说明的,上述方法,例如定时偏移量的获取和更新方法,并不限定在随机接入步骤中使用,可以在通信的任何阶段使用。例如,可以将本申请所述的第二消息、第三消息等替换为某一下行消息、某一上行消息。
可理解,其中一个实施例中未描述的实现方式可以参考其他实施例等,这里不再详述。

Claims (29)

  1. 一种更新定时偏移量的方法,其特征在于,所述方法包括:
    终端设备根据第一定时偏移量向网络设备发送第三消息;其中,所述第一定时偏移量用于指示所述终端设备延迟发送所述第三消息的延迟程度,且所述第三消息中包括指示信息,所述指示信息用于指示第二定时偏移量,所述第二定时偏移量为更新后的第一定时偏移量;
    所述终端设备根据所述第二定时偏移量向所述网络设备发送第五消息。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据第一定时偏移量向网络设备发送第三消息之前,所述方法还包括:
    所述终端设备向所述网络设备发送第一消息,所述第一消息中包括随机接入前导;
    所述终端设备接收所述网络设备发送的第二消息,所述第二消息包括随机接入响应消息;
    所述终端设备根据第一定时偏移量向网络设备发送第三消息之后,所述方法还包括:
    所述终端设备接收所述网络设备发送的第四消息,所述第四消息包括随机接入竞争解决消息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括所述第二定时偏移量。
  4. 根据权利要求1或2所述的方法,其特征在于,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括第一调整参数集合,所述第一调整参数集合用于确定所述第二定时偏移量。
  5. 根据权利要求4所述的方法,其特征在于,所述第一调整参数集合包括以下任一项或多项:
    基于随机接入响应RAR接收窗的延时启动时长和所述RAR接收窗的时长确定的参数;或者
    基于随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长确定的参数;或者
    基于公共定时提前量确定的参数;或者
    基于所述网络设备所在的轨道高度确定的参数;或者
    基于所述终端设备与所述网络设备之间的往返时延确定的参数。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,所述第四消息中包括所述第二定时偏移量;或者,
    所述第四消息中包括基于所述第二定时偏移量和基准定时偏移量之间的变化量;其中,所述基准定时偏移量为所述终端设备当前使用的定时偏移量或预先设置的定时偏移量。
  7. 根据权利要求2-6任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的生效信息,所述生效信息用于指示所述第二定时偏移量的生效时间;或者
    所述终端设备向所述网络设备发送生效信息,所述生效信息用于指示所述第二定时偏 移量的生效时间;或者
    所述第二定时偏移量在所述终端设备发送所述第三消息之后的m个时隙生效,所述m为预先设置的整数;或者
    所述第二定时偏移量在所述终端设备接收所述第四消息之后的n个时隙生效,所述n为预先设置的整数。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述终端设备根据定时偏移量向网络设备发送第三消息之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的广播消息;其中,所述广播消息中包括以下任一项或多项:
    所述RAR接收窗的延时启动时长和所述RAR接收窗的时长;或者
    所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长;或者
    所述公共定时提前量;或者
    所述网络设备所在的轨道高度。
  9. 根据权利要求8所述的方法,其特征在于,当所述广播消息中包括所述RAR接收窗的延时启动时长和所述RAR接收窗的时长时,所述第一定时偏移量满足如下条件:
    Figure PCTCN2021075536-appb-100001
    其中,所述K offset1为所述第一定时偏移量的取值;所述RAR_window为所述RAR接收窗的时长,所述RAR接收窗的时长用于表示所述终端设备接收所述RAR的时长;所述RAR_offset为所述RAR接收窗的延时启动时长,所述RAR接收窗的延时启动时长用于表示所述终端设备发送所述第一消息之后,延时开启所述RAR接收窗的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
  10. 根据权利要求8所述的方法,其特征在于,当所述广播消息中包括所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长时,所述第一定时偏移量满足如下条件:
    Figure PCTCN2021075536-appb-100002
    其中,所述K offset1为所述第一定时偏移量的取值;所述RCR_timer为所述随机接入竞争解决定时器的时长,所述随机接入竞争解决定时器的时长表示所述终端设备发送所述第三消息之后,启动所述随机接入竞争解决定时器与接收到所述第四消息之间所允许的最大时间间隔;所述RCR_offset为所述随机接入竞争解决定时器的延时启动时长,所述随机接入竞争解决定时器的延时启动时长用于表示所述终端设备发送所述第三消息之后,延时开启所述随机接入竞争解决定时器的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
  11. 根据权利要求2-10任一项所述的方法,其特征在于,所述第五消息包括数据信息、反馈消息或探测参考信号SRS中的任一项。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的定时提前调整指令,所述定时提前调整指令用 于指示更新所述第二定时偏移量;
    所述终端设备根据所述第二定时偏移量向所述网络设备发送更新后的第二定时偏移量或者第二调整参数集合,所述第二调整参数集合用于确定所述更新后的第二定时偏移量。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述方法还包括:
    在满足以下任一项或多项条件时,所述终端设备接收所述网络设备发送的更新后的第二定时偏移量或基于所述更新后的第二定时偏移量和所述基准定时偏移量之间的变化量;
    其中,所述任一项或多项条件包括:
    所述终端设备切换小区;或者
    所述终端设备切换波束;或者
    所述终端设备切换部分带宽BWP。
  14. 一种更新定时偏移量的方法,其特征在于,所述方法包括:
    网络设备根据第一定时偏移量接收终端设备发送的第三消息;其中,所述第一定时偏移量用于指示所述网络设备延迟接收所述第三消息的延迟程度;所述第三消息中包括指示信息,所述指示信息用于指示第二定时偏移量,所述第二定时偏移量为更新后的第一定时偏移量;
    所述网络设备接收所述终端设备发送的第五消息。
  15. 根据权利要求14所述的方法,其特征在于,所述网络设备根据第一定时偏移量接收终端设备发送的第三消息之前,所述方法还包括:
    所述网络设备接收所述终端设备发送的第一消息,所述第一消息中包括随机接入前导;
    所述网络设备向所述终端设备第二消息,所述第二消息中包括随机接入响应消息;
    所述网络设备根据第一定时偏移量接收终端设备发送的第三消息之后,所述方法还包括:
    所述网络设备向所述终端设备发送第四消息,所述第四消息包括随机接入竞争解决消息。
  16. 根据权利要求14或15所述的方法,其特征在于,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括所述第二定时偏移量。
  17. 根据权利要求14或15所述的方法,其特征在于,所述指示信息用于指示第二定时偏移量包括:所述指示信息中包括第一调整参数集合,所述第一调整参数集合用于确定所述第二定时偏移量。
  18. 根据权利要求17所述的方法,其特征在于,所述第一调整参数集合包括以下任一项或多项:
    基于随机接入响应RAR接收窗的延时启动时长和所述RAR接收窗的时长确定的参数;或者
    基于随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长确定的参数;或者
    基于公共定时提前量确定的参数;或者
    基于所述网络设备所在的轨道高度确定的参数;或者
    基于所述终端设备与所述网络设备之间的往返时延确定的参数。
  19. 根据权利要求16-18任一项所述的方法,其特征在于,所述第四消息中包括所述第二定时偏移量;或者,
    所述第四消息中包括基于所述第二定时偏移量和基准定时偏移量之间的变化量;其中,所述基准定时偏移量为所述终端设备当前使用的定时偏移量或预先设置的定时偏移量。
  20. 根据权利要求15-19任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送生效信息,所述生效信息用于指示所述第二定时偏移量的生效时间;或者
    所述网络设备接收所述终端设备发送的生效信息,所述生效信息用于指示所述第二定时偏移量的生效时间;或者
    所述第二定时偏移量在所述网络设备接收到所述第三消息之后的m个时隙生效,所述m为预先设置的整数;或者
    所述第二定时偏移量在所述网络设备发送所述第四消息之后的n个时隙生效,所述n为预先设置的整数。
  21. 根据权利要求14-20任一项所述的方法,其特征在于,所述网络设备根据第一定时偏移量接收终端设备发送的第三消息之前,所述方法还包括:
    所述网络设备发送广播消息;其中,所述广播消息中包括以下任一项或多项:
    所述RAR接收窗的延时启动时长和所述RAR接收窗的时长;或者
    所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长;或者
    所述公共定时提前量;或者
    所述网络设备所在的轨道高度。
  22. 根据权利要求21所述的方法,其特征在于,当所述广播消息中包括所述RAR接收窗的延时启动时长和所述RAR接收窗的时长时,所述第一定时偏移量满足如下条件:
    Figure PCTCN2021075536-appb-100003
    其中,所述K offset1为所述第一定时偏移量的取值;所述RAR_window为所述RAR接收窗的时长,所述RAR接收窗的时长用于表示所述终端设备接收所述RAR的时长;所述RAR_offset为所述RAR接收窗的延时启动时长,所述RAR接收窗的延时启动时长用于表示所述终端设备发送所述第一消息之后,延时开启所述RAR接收窗的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
  23. 根据权利要求21所述的方法,其特征在于,当所述广播消息中包括所述随机接入竞争解决定时器的延时启动时长和所述随机接入竞争解决定时器的时长时,所述第一定时偏移量满足如下条件:
    Figure PCTCN2021075536-appb-100004
    其中,所述K offset1为所述第一定时偏移量的取值;所述RCR_timer为所述随机接入竞争解决定时器的时长,所述随机接入竞争解决定时器的时长表示所述终端设备发送所述第三消息之后,启动所述随机接入竞争解决定时器与接收到所述第四消息之间所允许的最大时间间隔;所述RCR_offset为所述随机接入竞争解决定时器的延时启动时长,所述随机接入竞争解决定时器的延时启动时长用于表示所述终端设备发送所述第三消息之后,延时开 启所述随机接入竞争解决定时器的延时时长;所述slot_duration为时长单位;所述△K offset为定时偏移量差值,所述△K offset为整数。
  24. 根据权利要求15-23任一项所述的方法,其特征在于,所述第五消息包括数据信息、反馈消息或探测参考信号SRS中的任一项。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送定时提前调整指令,所述定时提前调整指令用于指示更新所述第二定时偏移量;
    所述网络设备接收所述终端设备发送的更新后的第二定时偏移量或者第二调整参数集合,所述第二调整参数集合用于确定所述更新后的第二定时偏移量。
  26. 根据权利要求14-25任一项所述的方法,其特征在于,所述方法还包括:
    在满足以下任一项或多项条件时,所述网络设备向所述终端设备发送更新后的第二定时偏移量或基于所述更新后的第二定时偏移量和所述基准定时偏移量之间的变化量;
    其中,所述任一项或多项条件包括:
    所述终端设备切换小区;或者
    所述终端设备切换波束;或者
    所述终端设备切换部分带宽BWP。
  27. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1-13任一项所述的方法;或者,所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求14-26任一项所述的方法。
  28. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以使如权利要求1-13任一项所述的方法被执行;或者,所述处理器运行所述代码指令以使如权利要求14-26任一项所述的方法被执行。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1-13任一项所述的方法被实现;或者,当所述指令被执行时,使如权利要求14-26任一项所述的方法被实现。
PCT/CN2021/075536 2020-02-18 2021-02-05 更新定时偏移量的方法及装置 WO2021164579A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21756788.2A EP4099602A4 (en) 2020-02-18 2021-02-05 METHOD AND DEVICE FOR UPDATE TIME OFFSET
JP2022549416A JP7488346B2 (ja) 2020-02-18 2021-02-05 タイミングオフセットを更新する方法及び機器
US17/820,408 US20220408389A1 (en) 2020-02-18 2022-08-17 Method and apparatus for updating timing offset

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010100465.X 2020-02-18
CN202010100465 2020-02-18
CN202010299099.5 2020-04-07
CN202010299099 2020-04-07
CN202011105437.3A CN113347697A (zh) 2020-02-18 2020-10-15 更新定时偏移量的方法及装置
CN202011105437.3 2020-10-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/820,408 Continuation US20220408389A1 (en) 2020-02-18 2022-08-17 Method and apparatus for updating timing offset

Publications (1)

Publication Number Publication Date
WO2021164579A1 true WO2021164579A1 (zh) 2021-08-26

Family

ID=77390421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075536 WO2021164579A1 (zh) 2020-02-18 2021-02-05 更新定时偏移量的方法及装置

Country Status (4)

Country Link
US (1) US20220408389A1 (zh)
EP (1) EP4099602A4 (zh)
JP (1) JP7488346B2 (zh)
WO (1) WO2021164579A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884854A (zh) * 2022-06-30 2022-08-09 成都星联芯通科技有限公司 信关站服务器报文测试方法、装置、存储介质及电子设备
US20220255682A1 (en) * 2019-07-12 2022-08-11 Datang Mobile Communications Equipment Co., Ltd. Method of determining hybrid automatic repeat request acknowledgement codebook, terminal and network device
CN115529110A (zh) * 2022-09-30 2022-12-27 潍柴动力股份有限公司 数据处理方法及装置
WO2023044703A1 (en) * 2021-09-24 2023-03-30 Apple Inc. Systems and procedures of non-terrestrial network timing relationship
WO2023060538A1 (en) * 2021-10-15 2023-04-20 Qualcomm Incorporated Signaling of scheduling offset in multiple parts for non-terrestrial networks
WO2023071591A1 (zh) * 2021-10-30 2023-05-04 华为技术有限公司 一种定时提前ta确定方法及通信装置
WO2023055890A3 (en) * 2021-09-30 2023-05-11 Ofinno, Llc Reporting timing advance information in non-terrestrial networks
WO2023113339A1 (ko) * 2021-12-14 2023-06-22 주식회사 블랙핀 비지상 네트워크에서 물리 상향링크 공유 채널을 전송하는 방법 및 장치
WO2023123002A1 (zh) * 2021-12-28 2023-07-06 北京小米移动软件有限公司 信息上报方法、装置、设备及存储介质
US20230247477A1 (en) * 2022-02-01 2023-08-03 Qualcomm Incorporated Buffering techniques for non-terrestrial networks
WO2023211933A1 (en) * 2022-04-28 2023-11-02 Qualcomm Incorporated Non-terrestrial network default value configuration
EP4325739A1 (en) * 2022-08-09 2024-02-21 Thinkware Corporation Apparatus and method for providing access in non-terrestrial network

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022067717A1 (en) * 2020-09-30 2022-04-07 Zte Corporation Method and apparatus of system information transmission
US20220131599A1 (en) * 2020-10-23 2022-04-28 Electronics And Telecommunications Research Institute Method and apparatus for timing management in communication system
EP4142383A4 (en) * 2021-01-15 2023-12-06 LG Electronics, Inc. METHOD AND DEVICE FOR TRANSMITTING A UPLINK SIGNAL THROUGH A TERMINAL IN A WIRELESS COMMUNICATIONS SYSTEM
US11929821B2 (en) * 2021-05-10 2024-03-12 Samsung Electronics Co., Ltd Method and apparatus for determining and applying timing advance in communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990236A (zh) * 2009-08-05 2011-03-23 中兴通讯股份有限公司 上报参数的方法、移动终端及随机接入参数优化的方法
CN109245876A (zh) * 2017-09-27 2019-01-18 华为技术有限公司 一种寻呼的方法、通信定时的方法和装置
CN109600785A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 Rar时间窗配置及检测方法、装置、终端、基站及存储介质
WO2019139407A1 (en) * 2018-01-11 2019-07-18 Samsung Electronics Co., Ltd. Methods and apparatuses for determining and configuring a time-frequency resource, in the random access process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10306570B2 (en) * 2014-06-10 2019-05-28 Lg Electronics Inc. Method for controlling timing advance for direct communication between terminals in wireless communication system, and apparatus therefor
JP7279640B2 (ja) 2017-11-16 2023-05-23 ソニーグループ株式会社 端末装置、基地局装置及び方法
CN110831145B (zh) * 2018-08-09 2021-05-18 华为技术有限公司 无线通信的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101990236A (zh) * 2009-08-05 2011-03-23 中兴通讯股份有限公司 上报参数的方法、移动终端及随机接入参数优化的方法
CN109245876A (zh) * 2017-09-27 2019-01-18 华为技术有限公司 一种寻呼的方法、通信定时的方法和装置
CN109600785A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 Rar时间窗配置及检测方法、装置、终端、基站及存储介质
WO2019139407A1 (en) * 2018-01-11 2019-07-18 Samsung Electronics Co., Ltd. Methods and apparatuses for determining and configuring a time-frequency resource, in the random access process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099602A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220255682A1 (en) * 2019-07-12 2022-08-11 Datang Mobile Communications Equipment Co., Ltd. Method of determining hybrid automatic repeat request acknowledgement codebook, terminal and network device
WO2023044703A1 (en) * 2021-09-24 2023-03-30 Apple Inc. Systems and procedures of non-terrestrial network timing relationship
WO2023055890A3 (en) * 2021-09-30 2023-05-11 Ofinno, Llc Reporting timing advance information in non-terrestrial networks
WO2023060538A1 (en) * 2021-10-15 2023-04-20 Qualcomm Incorporated Signaling of scheduling offset in multiple parts for non-terrestrial networks
WO2023071591A1 (zh) * 2021-10-30 2023-05-04 华为技术有限公司 一种定时提前ta确定方法及通信装置
WO2023113339A1 (ko) * 2021-12-14 2023-06-22 주식회사 블랙핀 비지상 네트워크에서 물리 상향링크 공유 채널을 전송하는 방법 및 장치
WO2023123002A1 (zh) * 2021-12-28 2023-07-06 北京小米移动软件有限公司 信息上报方法、装置、设备及存储介质
US20230247477A1 (en) * 2022-02-01 2023-08-03 Qualcomm Incorporated Buffering techniques for non-terrestrial networks
WO2023211933A1 (en) * 2022-04-28 2023-11-02 Qualcomm Incorporated Non-terrestrial network default value configuration
CN114884854B (zh) * 2022-06-30 2022-09-16 成都星联芯通科技有限公司 信关站服务器报文测试方法、装置、存储介质及电子设备
CN114884854A (zh) * 2022-06-30 2022-08-09 成都星联芯通科技有限公司 信关站服务器报文测试方法、装置、存储介质及电子设备
EP4325739A1 (en) * 2022-08-09 2024-02-21 Thinkware Corporation Apparatus and method for providing access in non-terrestrial network
CN115529110A (zh) * 2022-09-30 2022-12-27 潍柴动力股份有限公司 数据处理方法及装置

Also Published As

Publication number Publication date
EP4099602A1 (en) 2022-12-07
EP4099602A4 (en) 2023-07-05
US20220408389A1 (en) 2022-12-22
JP7488346B2 (ja) 2024-05-21
JP2023514312A (ja) 2023-04-05

Similar Documents

Publication Publication Date Title
WO2021164579A1 (zh) 更新定时偏移量的方法及装置
JP7198910B2 (ja) アップリンク送信タイミングのためのシステム及び方法
CN111565472B (zh) 一种确定定时提前量的方法及设备
CN111095820B (zh) 无线通信系统、基站和用户侧设备
CN113347697A (zh) 更新定时偏移量的方法及装置
CN114928880B (zh) 一种确定定时提前量的方法及设备
WO2021163889A1 (zh) 通信方法、装置及设备
US11671932B2 (en) Timing adjust for a non-terrestrial network
US20230388007A1 (en) Uplink Timing Maintenance for Communication Paths Including Multiple Legs Involving a Relay Entity
KR20230035062A (ko) 무선 통신 시스템에서 단말이 업링크 신호를 전송하는 방법 및 이를 위한 장치
EP3777400B1 (en) Location-based resource scheduling
US20230224843A1 (en) Timing offset parameter update method, device, and system
WO2022152132A1 (zh) 一种参数的传输方法和装置
KR20230131190A (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
WO2023078186A1 (zh) 一种无线通信的方法和装置
WO2023137643A1 (zh) 重复传输请求方法、装置、设备、系统、芯片及存储介质
US20240121737A1 (en) Method and device for uplink transmission and reception in wireless communication system
US20240179659A1 (en) Uplink Synchronization Method and Related Device
KR20230109077A (ko) 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치
KR20230109076A (ko) 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치
CN118056446A (zh) 通信方法及通信装置
KR20230118658A (ko) 무선 통신 시스템에서 단말이 피드백 신호를 전송하는방법 및 이를 위한 장치
KR20240048503A (ko) 무선 통신 시스템에서 pucch 반복 전송 방법 및 장치
KR20240093866A (ko) 위성 통신을 위한 랜덤 액세스 절차

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756788

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549416

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021756788

Country of ref document: EP

Effective date: 20220831

NENP Non-entry into the national phase

Ref country code: DE