WO2021164298A1 - 一种基于机械臂的磁流变抛光加工系统 - Google Patents

一种基于机械臂的磁流变抛光加工系统 Download PDF

Info

Publication number
WO2021164298A1
WO2021164298A1 PCT/CN2020/123914 CN2020123914W WO2021164298A1 WO 2021164298 A1 WO2021164298 A1 WO 2021164298A1 CN 2020123914 W CN2020123914 W CN 2020123914W WO 2021164298 A1 WO2021164298 A1 WO 2021164298A1
Authority
WO
WIPO (PCT)
Prior art keywords
mechanical arm
joint
recovery
magnetorheological
pump
Prior art date
Application number
PCT/CN2020/123914
Other languages
English (en)
French (fr)
Inventor
张学军
李龙响
薛栋林
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Publication of WO2021164298A1 publication Critical patent/WO2021164298A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/005Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes using a magnetic polishing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/0018Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor for plane optical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/01Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • B25J11/0065Polishing or grinding

Definitions

  • the invention relates to the field of magnetorheological polishing technology, and more specifically, to a magnetorheological polishing processing system based on a mechanical arm.
  • Magnetorheological Finishing is an advanced optical manufacturing technology developed in recent years. It has stable removal function, controllable edge effect, small damage layer on the lower surface, no copying effect, strong modification ability and processing Many advantages such as high precision. Therefore, magnetorheological polishing technology has been widely concerned and applied in high-precision optical processing, especially in the processing of aspheric and free-form surfaces.
  • the motion carriers of magnetorheological polishing equipment or processing systems at home and abroad are mainly CNC machining centers or CNC machining machines based on multi-axis linkage. Due to the large load capacity of the machine tools, the magnetorheological fluid circulation system and other components are highly integrated Installed on the machine. However, when the motion carrier is replaced with a robotic arm, the motion of the robotic arm mechanically interferes with the magnetorheological polishing module, which affects the speed, acceleration, and accuracy of the manipulator. Therefore, the integrated module of the magnetorheological fluid circulation system is no longer applicable. Robotic arm.
  • the integrated module components of the magnetorheological fluid circulation system are relatively heavy, and when installed at a certain position of the robotic arm, it affects the operating performance of the robotic arm such as speed, acceleration and motion accuracy, and cannot perform accurate optics. Processing. At the same time, the movement of the mechanical arm will mechanically interfere with the integrated module of the magnetorheological fluid circulation system.
  • the integrated modules of the magnetorheological fluid circulation system are randomly arranged on the robotic arm, the parameters of the magnetorheological fluid circulation system will fluctuate greatly, and the parameter monitoring cannot be effectively performed, and the magnetorheological fluid cannot be stably performed in a long period. Circulation, that is, supply, mixing, parameter monitoring and recovery, etc.
  • the purpose of the present invention is to provide a magnetorheological polishing processing system based on a mechanical arm, by optimizing the distribution mode of the magnetorheological fluid circulation system on the mechanical arm, so that the magnetorheological fluid circulation system is suitable for multiple applications.
  • a magnetorheological polishing processing system based on a mechanical arm comprising a multi-joint series-connected mechanical arm and a magnetorheological fluid circulation system distributed on the mechanical arm;
  • the mechanical arm includes: a base fixed on the foundation, a main arm rotatably connected to the base, an end joint, and a number of intermediate joints arranged between the main arm and the end joint, the intermediate joint Including a first joint close to the end joint and a second joint close to the main arm;
  • the magnetorheological fluid circulation system includes: a recovery pump provided on the first joint, a storage tank and a supply pump provided on the second joint, a magnetic field generating device provided on the end joint, Polishing wheels, nozzles, dampers and reclaimers;
  • It also includes a first supply pipe connecting the liquid storage tank and the supply pump head, a second supply pipe connecting the supply pump and the damper, and a third supply pipe connecting the damper and the nozzle , Connecting the recovery device and the first recovery pipe of the recovery pump, and connecting the recovery pump and the second recovery pipe of the liquid storage tank.
  • the spray direction of the nozzle is set along the tangential direction of the polishing wheel.
  • the damper is installed on a side close to the nozzle through a bracket, and a vertical relationship is formed between the damper and the nozzle in the direction of gravity.
  • the first supply pipe, the second supply pipe, the third supply pipe, the first recovery pipe and the second recovery pipe are fixed to the mechanical arm by a fixture.
  • the third supply pipe is equipped with a viscosity sensor and a flow sensor.
  • a stirrer and a temperature sensor are provided in the liquid storage tank.
  • the liquid storage tank and the supply pump are arranged on the side of the second joint close to the main arm, and the liquid storage tank and the supply pump are distributed along the radial direction of the second joint On both sides of the second joint.
  • the recovery pump is arranged on a side of the first joint close to the polishing wheel.
  • the magnetorheological polishing processing system based on the mechanical arm provided by the present invention adopts a distributed arrangement, that is, the magnetorheological fluid circulation system is divided into sub-components, and the characteristics of the mechanical arm and the magnetorheological fluid circulation system are combined ,
  • the sub-components of the magnetorheological fluid circulation system are arranged on the robotic arm in a distributed layout, and the effective and stable circulation of the magnetorheological fluid can be realized, and a stable and efficient magnetorheological polishing "grinding head" can be formed.
  • the magnetorheological fluid circulation system is arranged on a multi-joint series-connected mechanical arm.
  • the present invention solves the problem that the magnetorheological fluid circulation system cannot be applied to the multi-joint series manipulator by means of a distributed layout.
  • the magnetorheological fluid circulation system can achieve true meaning
  • the six-degree-of-freedom movement has the characteristics of good movement performance, high speed and acceleration, and flexible movement. It can effectively improve the efficiency and accuracy of magnetorheological processing, and can realize high-efficiency and high-precision processing of flat, spherical and complex curved optical elements.
  • the cost of a robotic arm-based magnetorheological polishing system is much lower than that of a multi-axis CNC machining machine tool, and it occupies a small area. It is suitable for building a production line for high-precision processing of complex curved optical elements in batches.
  • FIG. 1 is a schematic front view of the structure of a specific embodiment of a magnetorheological polishing processing system based on a mechanical arm provided by the present invention
  • FIG. 2 is a schematic top view of the structure of a specific embodiment of a magnetorheological polishing processing system based on a mechanical arm provided by the present invention.
  • 1- base 2- main arm, 3- second joint, 4- first supply pipe, 5- storage tank, 6-supply pump, 7- second supply pipe, 8- second recovery pipe, 9 -Recovery pump, 10-damper, 11-third supply tube, 12-nozzle, 13-polishing wheel, 14-first joint, 15-end joint, 16-first recovery tube, 17-magnetic field generator, 18 -Workpiece to be processed, 19-Recoverer 19.
  • the core of the present invention is to provide a magnetorheological polishing processing system based on a mechanical arm.
  • the magnetorheological fluid circulation system is suitable for multi-joint machines in series. arm.
  • Figure 1 is a schematic front view of the structure of a specific embodiment of a robotic arm-based magnetorheological polishing processing system provided by the present invention
  • Figure 2 is a robotic arm-based magnetorheological polishing processing system provided by the present invention The schematic top view of the structure of the specific embodiment.
  • the magnetorheological polishing processing system based on the mechanical arm includes a multi-joint series-connected mechanical arm and a magnetorheological fluid circulation system distributed on the mechanical arm;
  • the robotic arm includes: a base for fixing on the foundation 1, a main arm rotatably connected to the base 1, an end joint 15 and a number of intermediate joints arranged between the main arm 2 and the end joint 15.
  • the intermediate joints include The end joint 15 is the first joint 14 and the second joint 3 close to the main arm 2;
  • the magnetorheological fluid circulation system includes: a recovery pump 9 arranged on the first joint 14, a liquid storage tank 5 and a supply pump 6 arranged on the second joint 3, a magnetic field generator 17 arranged on the end joint 15, and polishing Wheel 13, nozzle 12, damper 10 and reclaimer 19;
  • It also includes a first supply pipe 4 connecting the reservoir 5 and the head of the supply pump 6, a second supply pipe 7 connecting the supply pump 6 and the damper 10, and a third supply pipe 11 connecting the damper 10 and the nozzle 12, which are connected to recover
  • the device 19 and the first recovery pipe 16 of the recovery pump 9 are connected to the recovery pump 9 and the second recovery pipe 8 of the liquid storage tank 5.
  • the magnetorheological fluid circulation system consists of the following parts: nozzle 12, damper 10, recovery pump 9, liquid storage tank 5, supply pump 6, first supply pipe 4 connecting liquid storage tank 5 and supply pump 6, The second supply pipe 7 connecting the supply pump 6 and the damper 10, the third supply pipe 11 connecting the damper 10 and the nozzle 12, the first recovery pipe 16 connecting the recovery device 19 and the recovery pump 9, and the recovery pump 9 and the storage The second recovery pipe 8 of the liquid tank 5, the recovery device 19, and the like.
  • the polishing wheel 13 and the magnetic field generating device 17 are installed at the end of the end joint 15.
  • the polishing wheel 13 corresponds to the processed element and should meet the optical processing conditions.
  • the nozzle 12 and the recovery device 19 should be installed in the vicinity of the polishing wheel 13, and
  • the nozzle 12 and the polishing wheel 13 are at a certain angle so that the magnetorheological fluid sprayed from the nozzle 12 can enter the magnetic field of the polishing wheel 13, which is beneficial to the formation of ribbon protrusions in the magnetic field of the magnetorheological fluid, thereby removing the function
  • the shape is regular to ensure high removal efficiency.
  • the damper 10 is installed in the attachment of the polishing wheel 13.
  • the damper 10 is used to reduce the pulsation effect generated by the supply pump 6 and make the supply of magnetorheological fluid more stable, thereby making the magnetorheological fluid sprayed from the nozzle 12 more uniform and ensuring Polishing accuracy.
  • the recovery device 19 is used to recover the magnetorheological fluid on the polishing wheel 13, and the recovery device 19 is also installed near the polishing wheel 13 to facilitate the recovery of the magnetorheological fluid on the polishing wheel 13.
  • the recovery pump 9 is installed on the middle joint near the end joint 15, that is, the recovery pump 9 is installed on the first joint 14.
  • the recovery pump 9 can be installed on the side of the first joint 14 close to the polishing wheel 13, so that the recovery The pump 9 is as close to the recovery device 19 as possible.
  • the distance between the recovery pump 9 and the recovery device 19 can be ensured, so that the recovery power is sufficient and the recovery effect is good.
  • the recovery pump 9 can be installed on the first joint 14.
  • the gravity load of the end joint 15 is reduced, and the recovery pump 9 does not affect the operation of the end joint 15.
  • the first recovery pipe 16 can also perform normal work without mechanical interference.
  • the liquid storage tank 5 and the supply pump 6 can be installed on the second joint 3 through a bracket, that is, the liquid storage tank 5 and the supply pump 6 are installed on the middle joint close to the main arm 2.
  • the position of the nozzle 12, which is close to the second joint 3 of the main arm 2 is closer to the base 1 of the robot arm, so that placing the heavy liquid storage tank 5 and the supply pump 6 at this position has an impact on the motion accuracy and speed of the robot arm. And acceleration.
  • the liquid storage tank 5 and the supply pump 6 are arranged on the second joint 3 close to the main arm 2, the liquid storage tank 5 and the supply pump 6 can always be relatively high in the direction of gravity. The position of, in this way, facilitates the supply of magnetorheological fluid and the flow of magnetorheological fluid in the second supply pipe 7.
  • the circulation process of the magnetorheological fluid in the magnetorheological polishing system based on the mechanical arm provided by the present invention is as follows: the magnetorheological fluid is stored in the storage tank 5, and the supply pump 6 provides power to transfer the magnetism through the first supply pipe 4. The rheological fluid is sucked out of the liquid storage tank 5, and provides power to transport the magnetorheological fluid to the damper 10 through the second supply pipe 7. The magnetorheological fluid is buffered by the damper 10 and then passes through the third supply pipe 11 Enter the nozzle 12.
  • the nozzle 12 ejects the magnetorheological fluid and sprays it onto the surface of the polishing wheel 13 at a certain angle.
  • the magnetorheological fluid is subjected to the magnetic field of the magnetic field generator 17, and is brought into the effective magnetic field by the rotating polishing wheel 13 to form
  • a satin ribbon protrusion with a certain hardness is equivalent to a grinding head contacting the surface of the workpiece 18 to be processed to realize material removal.
  • the magnetorheological fluid leaves the effective magnetic field area, and becomes a non-hardness liquid again, and is brought to the recovery device 19 by the polishing wheel 13, and the magnetorheological fluid in the recovery device 19 is recovered
  • the pump 9 is sucked in through the recovery pipe, and then transported to the liquid storage tank 5 again through the recovery pipe, and the above process is repeated to form a complete circulation of the magnetorheological fluid.
  • the magnetorheological polishing processing system based on the mechanical arm adopts a distributed arrangement, that is, the magnetorheological fluid circulation system is divided into various sub-components, and the mechanical arm and the magnetorheological fluid are combined.
  • the characteristics of the fluid circulation system, the various sub-components of the magnetorheological fluid circulation system are arranged on the robot arm in a distributed layout, and the effective and stable circulation of the magnetorheological fluid can be realized, and a stable and efficient magnetorheological polishing "grinding" can be formed. “Head”, thus realizing the arrangement of the magnetorheological fluid circulation system on the multi-joint series-connected mechanical arm.
  • the present invention solves the problem that the magnetorheological fluid circulation system cannot be applied to the multi-joint series manipulator by means of a distributed layout.
  • the magnetorheological fluid circulation system can achieve true meaning
  • the six-degree-of-freedom movement has the characteristics of good movement performance, high speed and acceleration, and flexible movement. It can effectively improve the efficiency and accuracy of magnetorheological processing, and can realize high-efficiency and high-precision processing of flat, spherical and complex curved optical elements.
  • the cost of a robotic arm-based magnetorheological polishing system is much lower than that of a multi-axis CNC machining machine tool, and it occupies a small area. It is suitable for building a production line for high-precision processing of complex curved optical elements in batches.
  • the nozzle 12 is arranged along the tangential direction of the polishing wheel 13. That is, in this embodiment, by optimizing the arrangement of the nozzle 12, the line of defense for spraying the magnetorheological fluid from the nozzle 12 is arranged along the tangential direction of the polishing wheel 13, so as to improve the efficiency of the nozzle 12 spraying the magnetorheological fluid to the polishing wheel 13. sex.
  • the damper 10 is installed on the side close to the nozzle 12 through a bracket, and a gravitational force is formed between the damper 10 and the nozzle 12 The upper-lower relationship. That is, in this embodiment, the gravitational upward and downward relationship is formed between the damper 10 and the nozzle 12, which is beneficial for the damper 10 to reduce the pulsation effect generated by the supply pump 6, thereby making the supply of the magnetorheological fluid more stable.
  • the first supply pipe 4, the second supply pipe 7, the third supply pipe 11, the first recovery pipe 16 and the second recovery pipe 8 are fixed in a preferred manner.
  • the pipe 4, the second supply pipe 7, the third supply pipe 11, the first recovery pipe 16, and the second recovery pipe 8 are fixed to the robot arm by a fixture. That is, in this embodiment, the first supply pipe 4, the second supply pipe 7, the third supply pipe 11, the first recovery pipe 16, and the second recovery pipe 8 are fixed on the robot arm by clamps to prevent the robot arm from moving During the process, entanglement occurs between the various pipes.
  • the lengths of the first supply pipe 4, the second supply pipe 7, the third supply pipe 11, the first recovery pipe 16 and the second recovery pipe 8 should be set to be longer to prevent movement of the robot arm.
  • the pipe bends and affects the flow of magnetorheological fluid in the pipe.
  • the third supply pipe 11 is equipped with a viscosity sensor and a flow sensor. In order to detect whether the viscosity and flow rate of the magnetorheological fluid sprayed from the nozzle 12 meet the processing requirements, so as to facilitate timely adjustment in the event of a problem.
  • a stirrer and temperature sensor can also be provided in the liquid storage tank 5 to Use a stirrer to continuously stir the magnetorheological fluid in the storage tank 5 to ensure the homogeneity of the magnetorheological fluid, and use a temperature sensor to detect the temperature of the magnetorheological fluid in the storage tank 5 in real time to ensure the magnetorheological fluid The viscosity meets the requirements.
  • the liquid storage tank 5 and the supply pump 6 are arranged on the second joint 3 close to the main arm 2 and the liquid storage tank 5 and the supply pump 6 are distributed on both sides of the second joint 3 along the radial direction of the second joint 3. That is, in this embodiment, the heavy liquid storage tank 5 and the supply pump 6 are further arranged on the side of the second joint 3 close to the main arm 2, and the liquid storage tank 5 and the supply pump 6 are along the radial direction of the second joint 3. Distributed on both sides of the second joint 3, so that the liquid storage tank 5 and the supply pump 6 are closer to the base 1, further reducing the impact on the movement of the mechanical arm.
  • the recovery pump 9 can be installed on the side of the first joint 14 close to the polishing wheel 13, so that the recovery pump 9 is as close as possible to the recovery device. 19.
  • the first recovery pipe 16 It can also work normally without mechanical interference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种基于机械臂的磁流变抛光加工系统,包括多关节串联的机械臂以及分布于机械臂上的磁流变液循环系统;磁流变液循环系统包括:设于第一关节(14)上的回收泵(9)、设于第二关节(3)上的储液罐(5)和供给泵(6)、设于末端关节(15)上的磁场发生装置(17)、抛光轮(13)、喷嘴(12)、阻尼器(10)以及回收器(19);还包括连接储液罐(5)与供给泵(6)头的第一供给管(4)、连接供给泵(6)与阻尼器(10)的第二供给管(7)、连接阻尼器(10)与喷嘴(12)的第三供给管(11),连接回收器(19)与回收泵(9)的第一回收管(16),连接回收泵(9)与储液罐(5)的第二回收管(8)。将磁流变液循环系统拆分为各个子部件,并结合机械臂与磁流变液循环系统的特点,将磁流变液循环系统的各个子部件采用分布式布局的方式布置在机械臂,在机械臂的带动下,磁流变循环系统实现六自由度运动,具有运动性能好,速度和加速度大,运动灵活、占地面积小等特点。

Description

一种基于机械臂的磁流变抛光加工系统
本申请要求于2020年2月20日提交至中国专利局、申请号为202010105180.5、发明名称为“一种基于机械臂的磁流变抛光加工系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及磁流变抛光技术领域,更具体地说,涉及一种基于机械臂的磁流变抛光加工系统。
背景技术
磁流变抛光(Magnetorheological Finishing,MRF)是近年来发展起来的一种先进光学制造技术,其具有去除函数稳定、边缘效应可控、下表面破坏层小、无复印效应、修形能力强及加工精度高等诸多优点。因此,磁流变抛光技术在高精度光学加工中,尤其是非球面及自由曲面加工中得到了广泛的关注和应用。
目前国内外的磁流变抛光设备或加工系统的运动载体主要是基于多轴联动的数控加工中心或数控加工机床,由于机床负载能力较大等原因,磁流变液循环系统等部件以高集成度安装到机床上。但是当运动载体更换为机械臂时,机械臂运动与磁流变抛光模块发生机械干涉,影响了机械手的运动速度、加速度及运动精度等,因此磁流变液循环系统的集成模块便不再适用机械臂。
这种不适用主要如下:磁流变液循环系统的集成模块部件的重量较大,安装在机械臂的某一位置时影响机械臂的速度、加速度及运动精度等运行性能,无法进行精确的光学加工。同时,机械臂的运动会与磁流变液循环系统的集成模块发生机械干涉。另外,如果磁流变液循环系统的集成模块随意布局在机械臂上,会导致磁流变液循环系统参数波动较大,无法有效 地进行参数监控,进而无法长周期稳定地进行磁流变液循环,即供给、搅拌、参数监控及回收等。
因此,如何解决磁流变模块的布局不适用机械臂的问题,是目前本领域技术人员亟待解决的问题。
发明内容
有鉴于此,本发明的目的是提供一种基于机械臂的磁流变抛光加工系统,通过优化磁流变液循环系统在机械臂上的分布方式,以使磁流变液循环系统适用于多关节串联的机械臂。
为了实现上述目的,本发明提供如下技术方案:
一种基于机械臂的磁流变抛光加工系统,包括多关节串联的机械臂以及分布于所述机械臂上的磁流变液循环系统;
所述机械臂包括:固定在地基上的底座、转动连接于所述底座上的主臂、末端关节以及设于所述主臂与所述末端关节之间的若干个中间关节,所述中间关节包括靠近所述末端关节为第一关节、靠近所述主臂的第二关节;
所述磁流变液循环系统包括:设于所述第一关节上的回收泵、设于所述第二关节上的储液罐和供给泵、设于所述末端关节上的磁场发生装置、抛光轮、喷嘴、阻尼器以及回收器;
还包括连接所述储液罐与所述供给泵头的第一供给管、连接所述供给泵与所述阻尼器的第二供给管、连接所述阻尼器与所述喷嘴的第三供给管,连接所述回收器与所述回收泵的第一回收管,连接所述回收泵与所述储液罐的第二回收管。
优选的,所述喷嘴的喷射方向沿所述抛光轮的切线方向设置。
优选的,所述阻尼器通过支架安装在靠近所述喷嘴的一侧,并使所述阻尼器和所述喷嘴之间形成沿重力方向的上下关系。
优选的,所述第一供给管、第二供给管、第三供给管、第一回收管以及第二回收管通过卡具固定所述机械臂上。
优选的,所述第三供给管安装有粘度传感器与流量传感器。
优选的,所述储液罐内设有搅拌器与温度传感器。
优选的,所述储液罐与所述供给泵设于所述第二关节靠近所述主臂的一侧,且所述储液罐与所述供给泵沿所述第二关节的径向分布于所述第二关节的两侧。
优选的,所述回收泵设于所述第一关节靠近所述抛光轮的一侧。
本发明所提供的基于机械臂的磁流变抛光加工系统,采用分布式的布置方式,即将磁流变液循环系统拆分为各个子部件,并结合机械臂与磁流变液循环系统的特点,将磁流变液循环系统的各个子部件采用分布式布局的方式布置在机械臂,且能够实现磁流变液的有效稳定循环,形成稳定高效的磁流变抛光“磨头”,从而实现了将磁流变液循环系统布置在多关节串联的机械臂上。
因此,本发明通过分布式布局的方式解决了磁流变液循环系统在多关节串联的机械臂上无法适用的问题,在机械臂运动的带动下,磁流变液循环系统能够实现真正意义的六自由度运动,具有运动性能好,速度和加速度大,运动灵活的特点,能够有效提高磁流变加工的效率及精度,可实现对平面、球面及复杂曲面光学元件的高效高精度加工,另外,对于同样加工范围,基于机械臂的磁流变抛光系统的造价远低于基于多轴数控加工机床的设备,而且占地面积小,适合建设生产线进行批量化复杂曲面光学元件的高精度加工。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明所提供基于机械臂的磁流变抛光加工系统具体实施例的结构正视示意图;
图2为本发明所提供基于机械臂的磁流变抛光加工系统具体实施例的结构俯视示意图。
其中,1-底座、2-主臂、3-第二关节、4-第一供给管、5-储液罐、6-供给泵、7-第二供给管、8-第二回收管、9-回收泵、10-阻尼器、11-第三供给管、12-喷嘴、13-抛光轮、14-第一关节、15-末端关节、16-第一回收管、17-磁场发生装置、18-被加工工件、19-回收器19。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的核心是提供一种基于机械臂的磁流变抛光加工系统,通过优化磁流变液循环系统在机械臂上的分布方式,以使磁流变液循环系统适用于多关节串联的机械臂。
请参考图1和图2,图1为本发明所提供基于机械臂的磁流变抛光加工系统具体实施例的结构正视示意图;图2为本发明所提供基于机械臂的磁流变抛光加工系统具体实施例的结构俯视示意图。
本发明所提供的基于机械臂的磁流变抛光加工系统,包括多关节串联的机械臂以及分布于机械臂上的磁流变液循环系统;
机械臂包括:用于固定在地基上的底座1、转动连接于底座1上的主臂2、末端关节15以及设于主臂2与末端关节15之间的若干个中间关节,中间关节包括靠近末端关节15为第一关节14、靠近主臂2的第二关节3;
磁流变液循环系统包括:设于第一关节14上的回收泵9、设于第二关节3上的储液罐5和供给泵6、设于末端关节15上的磁场发生装置17、抛光轮13、喷嘴12、阻尼器10以及回收器19;
还包括连接储液罐5与供给泵6头的第一供给管4、连接供给泵6与阻尼器10的第二供给管7、连接阻尼器10与喷嘴12的第三供给管11,连接回收器19与回收泵9的第一回收管16,连接回收泵9与储液罐5的第二回收管8。
其中,磁流变液循环系统由以下部分组成:喷嘴12、阻尼器10、回收泵9、储液罐5、供给泵6、连接储液罐5与供给泵6头的第一供给管4、连接供给泵6与阻尼器10的第二供给管7、连接阻尼器10与喷嘴12的第三供给管11、连接回收器19与回收泵9的第一回收管16、连接回收泵9与储液罐5的第二回收管8以及回收器19等。
抛光轮13以及磁场发生装置17安装到末端关节15的末端,抛光轮13与被加工元件相对应,应当满足光学加工条件,喷嘴12及回收器19应当安装在靠近抛光轮13的附近区域,且喷嘴12与抛光轮13成一定角度,以便使喷嘴12喷出的磁流变液能够进入抛光轮13的磁场作用区域,有利于磁流变液在磁场中缎带凸起的形成,进而去除函数形状规则,以保证去除的高效率。
阻尼器10安装在抛光轮13附件,阻尼器10用于降低供给泵6产生的脉动效应,使磁流变液的供给更加平稳,从而使从喷嘴12喷出的磁流变液更加均匀,保证抛光的精确性。回收器19用于回收抛光轮13上的磁流变液,回收器19也安装在靠近抛光轮13的附近,以有利于回收抛光轮13上的磁流变液。
回收泵9安装在靠近末端关节15的中间关节上,即回收泵9安装在第一关节14上,具体的,回收泵9可安装在第一关节14靠近抛光轮13的一侧,以使回收泵9尽量靠近回收器19,一方面,能够保证回收泵9与回收器19的距离较近,进而回收动力足、回收效果好,另一方面,将回收泵9设置在第一关节14上可减轻末端关节15的重力负担,又能够保证回收泵9不影响末端关节15的运行,同时,第一回收管16也能够进行正常工作,不发生机械干涉。
储液罐5和供给泵6可通过支架安装在第二关节3上,即储液罐5与供给泵6安装在靠近主臂2的中间关节上,首先,相对于设在末端关节15上的喷嘴12,靠近主臂2的第二关节3的位置更加接近机械臂的底座1,从而,将重量较重的储液罐5及供给泵6布局在此位置对机械臂的运动精度、运动速度及加速度等影响较小;其次,由于储液罐5和供给泵6设在靠近主臂2的第二关节3上,因此,储液罐5与供给泵6总能处于重力方 向上相对较高的位置,如此,有利于磁流变液的供给及磁流变液在第二供给管7中的流动。
本发明所提供的基于机械臂的磁流变抛光加工系统中磁流变液的循环过程如下:磁流变液存储在储液罐5中,供给泵6提供动力通过第一供给管4将磁流变液从储液罐5中吸出,并提供动力通过第二供给管7将磁流变液输送到阻尼器10中,磁流变液经过阻尼器10的缓冲,再经过第三供给管11进入喷嘴12。
喷嘴12将磁流变液喷出,以一定的角度喷射到抛光轮13表面,同时,磁流变液受到磁场发生装置17的磁场作用,被转动的抛光轮13带入有效磁场作用区域,形成有一定硬度的缎带凸起,这一“缎带凸起”相当于一个磨头与被加工工件18表面接触,实现材料去除。
随着抛光轮13的转动,磁流变液离开有效磁场作用区域,又再次变为无硬度的液体,并被抛光轮13带到回收器19中,回收器19中的磁流变液被回收泵9通过回收管吸入,然后通过回收管再次输送到储液罐5中,重复上述过程,形成磁流变液完整的循环。
综上所述,本发明所提供的基于机械臂的磁流变抛光加工系统,采用分布式的布置方式,即将磁流变液循环系统拆分为各个子部件,并结合机械臂与磁流变液循环系统的特点,将磁流变液循环系统的各个子部件采用分布式布局的方式布置在机械臂,且能够实现磁流变液的有效稳定循环,形成稳定高效的磁流变抛光“磨头”,从而实现了将磁流变液循环系统布置在多关节串联的机械臂上。
因此,本发明通过分布式布局的方式解决了磁流变液循环系统在多关节串联的机械臂上无法适用的问题,在机械臂运动的带动下,磁流变液循环系统能够实现真正意义的六自由度运动,具有运动性能好,速度和加速度大,运动灵活的特点,能够有效提高磁流变加工的效率及精度,可实现对平面、球面及复杂曲面光学元件的高效高精度加工,另外,对于同样加工范围,基于机械臂的磁流变抛光系统的造价远低于基于多轴数控加工机床的设备,而且占地面积小,适合建设生产线进行批量化复杂曲面光学元件的高精度加工。
在上述实施例的基础之上,考虑到喷嘴12的具体布置方式,作为一种优选,喷嘴12沿抛光轮13的切线方向设置。即本实施例中,通过优化喷嘴12的布置方式,将喷嘴12的喷射磁流变液的防线沿抛光轮13的切向方向布置,从而提高喷嘴12向抛光轮13喷射磁流变液的高效性。
在上述实施例的基础之上,考虑到阻尼器10的具体设置方式,作为一种优选,阻尼器10通过支架安装在靠近喷嘴12的一侧,并使阻尼器10和喷嘴12之间形成重力上的上下关系。即本实施例中,阻尼器10和喷嘴12之间形成重力上的上下关系,如此,有利于阻尼器10降低供给泵6产生的脉动效应,从而使磁流变液的供给更加平稳。
在上述实施例的基础之上,第一供给管4、第二供给管7、第三供给管11、第一回收管16以及第二回收管8的固定方式,作为一种优选,第一供给管4、第二供给管7、第三供给管11、第一回收管16以及第二回收管8通过卡具固定机械臂上。即本实施例中,第一供给管4、第二供给管7、第三供给管11、第一回收管16以及第二回收管8通过卡具固定在机械臂上,以避免机械臂在运动的过程,各个管道之间产生缠绕。
需要指出的是,第一供给管4、第二供给管7、第三供给管11、第一回收管16以及第二回收管8的长度应该设置应当设置的长一些,以防止在机械臂运动的过程中,管道产生弯折而影响磁流变液在管道中的流动。
在上述实施例的基础之上,为便于对磁流变液输送的实时检测,作为一种优选,第三供给管11安装有粘度传感器与流量传感器。以便于检测从喷嘴12喷出的磁流变液的粘度与流量是否满足加工需求,从而便于在出现问题时及时调整,另外,还可在储液罐5内设有搅拌器与温度传感器,以利用搅拌器持续搅拌储液罐5内的磁流变液,保证磁流变液的均匀性,利用温度传感器实时检测储液罐5内的磁流变液的温度,以保证磁流变液的粘度满足要求。
在上述任意实施例的基础之上,为进一步降低储液罐5与供给泵6对机械臂运动的影响,作为一种优选,储液罐5与供给泵6设于第二关节3靠近主臂2的一侧,且储液罐5与供给泵6沿第二关节3的径向分布于第二关节3的两侧。即本实施中,将重量较重的储液罐5与供给泵6进一步 设置在第二关节3靠近主臂2的一侧,且储液罐5与供给泵6沿第二关节3的径向分布于第二关节3的两侧,从而使储液罐5与供给泵6进一步靠近底座1,进一步降低对机械臂运动的影响。
在上述实施例的基础之上,为进一步降低对机械臂运动影响,作为一种优选,回收泵9可安装在第一关节14靠近抛光轮13的一侧,以使回收泵9尽量靠近回收器19,一方面,能够保证回收泵9与回收器19的距离较近,进一步保证回收动力足、回收效果好,又能够保证回收泵9不影响末端关节15的运行,同时,第一回收管16也能够进行正常工作,不发生机械干涉。
以上对本发明所提供的基于机械臂的磁流变抛光加工系统进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (8)

  1. 一种基于机械臂的磁流变抛光加工系统,其特征在于,包括多关节串联的机械臂以及分布于所述机械臂上的磁流变液循环系统;
    所述机械臂包括:用于固定在地基上的底座(1)、转动连接于所述底座(1)上的主臂(2)、末端关节(15)以及设于所述主臂(2)与所述末端关节(15)之间的若干个中间关节,所述中间关节包括靠近所述末端关节(15)为第一关节(14)和靠近所述主臂(2)的第二关节(3);
    所述磁流变液循环系统包括:设于所述第一关节(14)上的回收泵(9)、设于所述第二关节(3)上的储液罐(5)和供给泵(6)、设于所述末端关节(15)上的磁场发生装置(17)、抛光轮(13)、喷嘴(12)、阻尼器(10)以及回收器(19);
    还包括连接所述储液罐(5)与所述供给泵(6)头的第一供给管(4)、连接所述供给泵(6)与所述阻尼器(10)的第二供给管(7)、连接所述阻尼器(10)与所述喷嘴(12)的第三供给管(11),连接所述回收器(19)与所述回收泵(9)的第一回收管(16),连接所述回收泵(9)与所述储液罐(5)的第二回收管(8)。
  2. 根据权利要求1所述的基于机械臂的磁流变抛光加工系统,其特征在于,所述喷嘴(12)的喷射方向沿所述抛光轮(13)的切线方向设置。
  3. 根据权利要求2所述的基于机械臂的磁流变抛光加工系统,其特征在于,所述阻尼器(10)通过支架安装在靠近所述喷嘴(12)的一侧,并使所述阻尼器(10)和所述喷嘴(12)之间形成沿重力方向的上下关系。
  4. 根据权利要求1所述的基于机械臂的磁流变抛光加工系统,其特征在于,所述第一供给管(4)、第二供给管(7)、第三供给管(11)、第一回收管(16)以及第二回收管(8)通过卡具固定所述机械臂上。
  5. 根据权利要求4所述的基于机械臂的磁流变抛光加工系统,其特征在于,所述第三供给管(11)安装有粘度传感器与流量传感器。
  6. 根据权利要求5所述的基于机械臂的磁流变抛光加工系统,其特征在于,所述储液罐(5)内设有搅拌器与温度传感器。
  7. 根据权利要求1至6任一项所述的基于机械臂的磁流变抛光加工系统,其特征在于,所述储液罐(5)与所述供给泵(6)设于所述第二关节(3)靠近所述主臂(2)的一侧,且所述储液罐(5)与所述供给泵(6)沿所述第二关节(3)的径向分布于所述第二关节(3)的两侧。
  8. 根据权利要求7所述的基于机械臂的磁流变抛光加工系统,其特征在于,所述回收泵(9)设于所述第一关节(14)靠近所述抛光轮(13)的一侧。
PCT/CN2020/123914 2020-02-20 2020-10-27 一种基于机械臂的磁流变抛光加工系统 WO2021164298A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010105180.5 2020-02-20
CN202010105180.5A CN113352152B (zh) 2020-02-20 2020-02-20 一种基于机械臂的磁流变抛光加工系统

Publications (1)

Publication Number Publication Date
WO2021164298A1 true WO2021164298A1 (zh) 2021-08-26

Family

ID=77390449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123914 WO2021164298A1 (zh) 2020-02-20 2020-10-27 一种基于机械臂的磁流变抛光加工系统

Country Status (2)

Country Link
CN (1) CN113352152B (zh)
WO (1) WO2021164298A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115106850A (zh) * 2022-08-24 2022-09-27 湖南工匠实创智能机器有限责任公司 磁性液体抛光装置及其公转模块的清洗方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114523408B (zh) * 2022-03-10 2022-12-27 浙江师范大学 一种基于纺锤式抛光头的机器人抛光装置及方法
CN115042022B (zh) * 2022-07-05 2023-08-18 湖南锐健科技有限公司 基于超声空化液态镓浸润增补的机械手视觉透镜磨削装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030060020A1 (en) * 2000-10-12 2003-03-27 Silicon Evolution, Inc. Method and apparatus for finishing substrates for wafer to wafer bonding
KR20170065937A (ko) * 2015-12-04 2017-06-14 인하대학교 산학협력단 자기 유변 유체를 이용한 글래스 연마 장치 및 이를 이용하는 글래스 연마 설비
CN109746814A (zh) * 2017-11-03 2019-05-14 中国科学院长春光学精密机械与物理研究所 一种磁流变抛光加工系统
CN109746769A (zh) * 2017-11-03 2019-05-14 中国科学院长春光学精密机械与物理研究所 一种磁流变抛光加工系统
CN109759905A (zh) * 2017-11-03 2019-05-17 中国科学院长春光学精密机械与物理研究所 一种磁流变抛光加工系统
CN110625629A (zh) * 2019-10-29 2019-12-31 中国科学院长春光学精密机械与物理研究所 一种大口径光学复杂曲面的立式加工检测集成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506102B2 (en) * 2001-02-01 2003-01-14 William Kordonski System for magnetorheological finishing of substrates
US7557566B2 (en) * 2007-03-02 2009-07-07 Qed Technologies International, Inc. Method and apparatus for measurement of magnetic permeability of a material
CN102501146B (zh) * 2011-12-30 2013-12-25 清华大学 一种在公自转磁流变抛光中实现回转供液与回收的装置
CN102689246A (zh) * 2012-05-24 2012-09-26 东华大学 大尺度超精密光学玻璃可控式混合磨料射流抛光装备
CN103302556B (zh) * 2013-07-10 2016-03-02 厦门大学 一种凹形曲面抛光工具
CN103302557B (zh) * 2013-07-10 2015-05-27 厦门大学 一种可持续进动的磁流变抛光装置
CN105666287B (zh) * 2016-02-23 2017-04-26 武汉大学 一种加工航空领域金属构件基于cmp的机器人磨抛系统
CN107009274B (zh) * 2017-05-12 2023-07-07 中国工程物理研究院机械制造工艺研究所 一种重力驱动传送磁流变抛光液的循环装置
CN207387243U (zh) * 2017-11-03 2018-05-22 中国科学院长春光学精密机械与物理研究所 一种磁流变抛光加工系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030060020A1 (en) * 2000-10-12 2003-03-27 Silicon Evolution, Inc. Method and apparatus for finishing substrates for wafer to wafer bonding
KR20170065937A (ko) * 2015-12-04 2017-06-14 인하대학교 산학협력단 자기 유변 유체를 이용한 글래스 연마 장치 및 이를 이용하는 글래스 연마 설비
CN109746814A (zh) * 2017-11-03 2019-05-14 中国科学院长春光学精密机械与物理研究所 一种磁流变抛光加工系统
CN109746769A (zh) * 2017-11-03 2019-05-14 中国科学院长春光学精密机械与物理研究所 一种磁流变抛光加工系统
CN109759905A (zh) * 2017-11-03 2019-05-17 中国科学院长春光学精密机械与物理研究所 一种磁流变抛光加工系统
CN110625629A (zh) * 2019-10-29 2019-12-31 中国科学院长春光学精密机械与物理研究所 一种大口径光学复杂曲面的立式加工检测集成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI LONGXIANG, ZHANG JIANWEI, SONG CHI, ZHANG XIN, YIN XIAOLIN, XUE DONGLIN: "New generation magnetorheological finishing polishing machines using robot arm", AOPC 2019: SPACE OPTICS, TELESCOPES, AND INSTRUMENTATION, SPIE, 18 December 2019 (2019-12-18) - 9 July 2019 (2019-07-09), pages 50, XP055838737, ISBN: 978-1-5106-3455-8, DOI: 10.1117/12.2544325 *
XUEJUN ZHANG, LONGXIANG LI, DONGLIN XUE, CHI SONG, BO AI: "Development and Application of MRF Based on Robot Arm", EPJ WEB OF CONFERENCES, vol. 215, 1 January 2019 (2019-01-01), XP055838741, DOI: 10.1051/epjconf/201921506001 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115106850A (zh) * 2022-08-24 2022-09-27 湖南工匠实创智能机器有限责任公司 磁性液体抛光装置及其公转模块的清洗方法

Also Published As

Publication number Publication date
CN113352152B (zh) 2022-12-06
CN113352152A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2021164298A1 (zh) 一种基于机械臂的磁流变抛光加工系统
US20210229265A1 (en) Movable Hybrid Machining Robot based on Three-Degree-of-Freedom Force-Controlled Parallel Module
CN106736992A (zh) 一种光学曲面加工用五轴三维超声抛光机床及其使用方法
CN108748086B (zh) 一种面向复杂曲面的大行程混联加工机器人装置
CN111687864B (zh) 一种吸附式并联加工机器人
JP5488037B2 (ja) 移載装置及びワーク載置装置
US10272477B2 (en) Intelligent hub cleaning device
CN113172547B (zh) 一种工业机械臂恒力柔性打磨装置
CN206316881U (zh) 一种光学曲面加工用五轴三维超声抛光机床
CN109434862B (zh) 一种面向二维空间摩擦应用的主动摩擦末端执行器
CN105666287A (zh) 一种基于cmp的机器人磨抛系统
CN102922388A (zh) 大口径复杂光学镜面精密研抛机器人系统
CN105935793B (zh) 雕铣机及其控制方法
CN113601320B (zh) 一种浮动非接触式超声增强柔性子孔径抛光装置及方法
CN105836458A (zh) 一种一体机机芯胶垫连续上料装配机
AU2020101123A4 (en) Automatic Spraying Device
US20220143837A1 (en) Robot-Assisted Grinding Device having an Integrated Maintenance Unit
CN106081611A (zh) 一种自动周转系统
CN207402799U (zh) 机械手、基底传输系统和光刻机
CN110743736B (zh) 一种悬挂式六自由度混联喷涂机器人
CN113172558A (zh) 自动调整姿态的打磨抛光轮及打磨抛光设备
CN112595368A (zh) 智能磨检一体机
CN213495358U (zh) 一种发动机缸盖凸轮轴孔清扫装置
CN219026941U (zh) 油田用钻杆焊缝外侧打磨装置
US20220388298A1 (en) Protective film removing apparatus and method each for removing a protective film from an optical lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920145

Country of ref document: EP

Kind code of ref document: A1