WO2021164212A1 - 可快速脱附式软体机器人手爪结构 - Google Patents

可快速脱附式软体机器人手爪结构 Download PDF

Info

Publication number
WO2021164212A1
WO2021164212A1 PCT/CN2020/106973 CN2020106973W WO2021164212A1 WO 2021164212 A1 WO2021164212 A1 WO 2021164212A1 CN 2020106973 W CN2020106973 W CN 2020106973W WO 2021164212 A1 WO2021164212 A1 WO 2021164212A1
Authority
WO
WIPO (PCT)
Prior art keywords
soft
rotating shaft
robot gripper
soft robot
flexible body
Prior art date
Application number
PCT/CN2020/106973
Other languages
English (en)
French (fr)
Inventor
王琨
蔡嘉辉
董康
宁萌
章军
曹毅
Original Assignee
江南大学
南京星辰智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学, 南京星辰智能科技有限公司 filed Critical 江南大学
Publication of WO2021164212A1 publication Critical patent/WO2021164212A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors

Definitions

  • the invention relates to the technical field of soft robot grippers, in particular to a quick detachable soft robot gripper structure.
  • the tongues of vertebrates have evolved extraordinary sticking abilities through long-term natural selection. Their strong sticking abilities come from the pure soft structure of the tongue body, which has high flexibility and flexibility. It can be suitable for grabbing objects of various shapes and sizes. At the same time, the soft part of the tongue of some animals has strong adhesion, can provide great adhesion, and also has the ability to quickly detach.
  • Robot gripper structure A fast detachable soft robot gripper structure is proposed. Through the outward and inward movement of the gripper, the smooth and stable grasping and detachment of complex features can be achieved.
  • a quickly detachable soft robot gripper structure comprising a linear moving mechanism.
  • the linear moving mechanism includes two relatively open and close rotatable support arms. The end of each support arm is rotatably connected with a soft structure through a connecting component,
  • the structure of the soft structure includes a flexible body, the flexible body is in the shape of a finger, and one side of the flexible body is provided with scales uniformly arranged in a tooth shape, and a plurality of shape memory alloy bodies are penetrated in the scales.
  • the multiple shape memory alloy bodies are distributed symmetrically in a divergent shape from the finger root of the flexible body toward the fingertip, and the multiple shape memory alloy bodies are integrated at the finger root end and connected with the energy supply module arranged on the end surface of the flexible body.
  • the other side of the flexible body is a smooth structure.
  • the structure of the connecting assembly includes a first rotating shaft, one end of which is rotatably connected to the support arm, the other end is connected to one end of the second rotating shaft through a cross shaft assembly, and the other end of the second rotating shaft is connected to the end surface of the soft structure.
  • the first rotating shaft and the second rotating shaft have the same structure and are arranged oppositely.
  • the end of the second rotating shaft has a U-shaped groove, and the bottom of the U-shaped groove is equipped with a first steering gear that drives the second rotating shaft to rotate around its own axis; a cross shaft The component is installed at the notch of the U-shaped groove and is driven to rotate by the second steering gear; the support arm is connected with a third steering gear that drives the first rotating shaft to rotate around its own axis.
  • the linear moving mechanism has a symmetrical structure as a whole: it includes a top frame, a driving rod is penetrated in the middle of the top frame, the top end of the driving rod is connected with the driving part, and the bottom end is hinged with one end of the two connecting rods at the same time.
  • the other ends of the connecting rods are respectively hinged to the middle of the two support arms, and the tops of the two support arms are respectively hinged to the two ends of the top frame.
  • Two soft structures are arranged at the bottom end of each support arm, and the two soft structures are respectively arranged on two adjacent vertical surfaces of the support arm.
  • the positions of the soft structures of the two support arms correspond, and a group of soft structures are respectively located on the opposite surfaces of the two support arms.
  • the output shaft of the driving member is connected with a connecting shaft arranged in the driving rod through a rocking handle.
  • the invention has compact and reasonable structure and convenient operation.
  • the present invention adopts the combination of two different driving modes: the overall opening and closing reciprocating movement of the support arm is realized through the movement of the driving member and the driving rod; the symmetrical distributed shape memory alloy (SMA) artificial muscle is used to drive the soft structure for eversion and adduction. , And then grasp and detach the object, the angle adjustment is flexible and convenient, the grasping efficiency is high, and the grasping stability is strong. It has a wide range of application prospects in agriculture, light industry, e-commerce and other industries. Practicability and industrialization are of great significance.
  • Figure 1 is a schematic diagram of the three-dimensional structure of the present invention.
  • Figure 2 is a schematic diagram of the three-dimensional structure of the present invention (another perspective).
  • Fig. 3 is an enlarged view of part A in Fig. 2.
  • Figure 4 is a schematic diagram of the three-dimensional structure of the present invention (another perspective).
  • Figure 5 is a schematic diagram of the software structure of the present invention.
  • Fig. 6 is a front view of Fig. 5.
  • Fig. 7 is a cross-sectional view of A-A in Fig. 6.
  • Fig. 8 is a schematic structural diagram of the working state of the present invention.
  • the quick-detachable soft robot gripper structure of this embodiment includes a linear moving mechanism, and the linear moving mechanism includes two supporting arms 4 that can open and close and rotate relative to each other.
  • the end of each support arm 4 is rotatably connected with a soft structure 9 through a connecting component.
  • the structure of the soft structure 9 is: a flexible body 93, which is in the shape of fingers, and one side of which is provided with scales uniformly arranged in teeth.
  • a plurality of shape memory alloy bodies 91 are penetrated in the scale portion 92.
  • a plurality of shape memory alloy bodies 91 are distributed symmetrically from the finger root of the flexible body 93 toward the fingertip, and a plurality of shape memory alloy bodies 91 are integrated at the finger root end, and are provided on the end surface of the flexible body 93. Module 10 is connected.
  • the other side of the flexible body 93 has a smooth structure.
  • the structure of the connecting assembly is as follows: includes a first rotating shaft 6, one end of which is rotatably connected to the support arm 4, and the other end is connected to one end of the second rotating shaft 8 through the cross shaft assembly 7, and the other end of the second rotating shaft 8 Connect with the end face of the soft structure 9.
  • the first rotating shaft 6 and the second rotating shaft 8 have the same structure and are arranged oppositely.
  • the end of the second rotating shaft 8 has a U-shaped groove, and the bottom of the U-shaped groove is equipped with a first rudder that drives the second rotating shaft 8 to rotate around its own axis.
  • the cross shaft assembly 7 is installed at the notch of the U-shaped groove and is driven to rotate by the second steering gear 12; the support arm 4 is connected with a third steering gear 11 that drives the first rotating shaft 6 to rotate around its own axis.
  • the linear moving mechanism has a symmetrical structure as a whole: it includes a top frame 3, a drive rod 2 is penetrated in the middle of the top frame 3. One end is hinged, the other ends of the two connecting rods 5 are hinged to the middle of the two support arms 4 respectively, and the tops of the two support arms 4 are hinged to the two ends of the top frame 3 respectively.
  • each support arm 4 is provided with two soft structures 9, and the two soft structures 9 are respectively arranged on two adjacent vertical surfaces of the support arm 4.
  • the positions of the soft structures 9 of the two support arms 4 correspond, and a group of soft structures 9 are respectively located on the opposite surfaces of the two support arms 4.
  • the output shaft of the driving member 1 is connected to the connecting shaft 14 provided in the driving rod 2 through a rocker 15. As shown in Figure 1 and Figure 2,
  • the drive 1 can be a motor or other drive device, the output shaft drives the rocker 15 to rotate, so that the connecting shaft 14 is used to realize the linear movement of the driving rod 2 and the two supports are respectively driven by the two connecting rods 5.
  • the arms 4 move apart and reciprocate, as shown in Fig. 8 during grasping, the distance between the two supporting arms 4 is reduced;
  • the third steering gear 11 controls the first rotating shaft 6 to rotate around its own axis.
  • the first rotating shaft 6 and the second rotating shaft 8 have the same structure and are connected by a U-shaped groove and a cross shaft assembly 7 to rotate.
  • the assembly 7 is driven to rotate by the second steering gear 12 to realize the adjustment of the rotation angle of the second rotating shaft 8 relative to the first rotating shaft;
  • the first steering gear 13 drives the second rotating shaft 8 to rotate around its own axis, thereby driving the angle of the software structure 9 , So as to rotate to align the smooth side of the main body 93 with the object to be grasped;
  • the entire flexible body 93 (including the scales 92) can be made of polyurethane or other flexible materials.
  • the energy supply module 10 can be a power supply module to drive the strip-shaped shape memory alloy body 91 to bend and deform to drive the inner buckle of the flexible body 93 (fingertips facing The light surface of the main body 93 is bent at the base of the finger) or eversion (the fingertip is bent toward the base of the finger at the side where the scale 92 of the main body 93 is located), thereby achieving grasping or detachment of the object.
  • the shape memory alloy body 91 of the present invention is embedded in the flexible body 93 of the soft structure 9.
  • field effects such as electric field, thermal field, and magnetic field
  • the shape memory alloys (SMA) used in the present invention are composed of two or more metal elements that have a shape memory effect (SME) through thermoelastic and martensitic transformation and its inversion.
  • Shape memory alloy has a shape memory effect. Take a spring made of memory alloy as an example. Put this kind of spring in hot water, and the length of the spring will immediately extend, and then put it in cold water, it will immediately recover Undisturbed.
  • the shape memory alloy spring can be used to control the water temperature of the bathroom water pipe: when the hot water temperature is too high, the "memory" function can be used to adjust or close the water supply pipe to avoid burns. It can also be made into a fire alarm device and a safety device for electrical equipment.
  • shape memory alloy When a fire occurs, the spring made of memory alloy deforms, and the fire alarm device is activated to achieve the purpose of alarm. You can also put a spring made of memory alloy in the heating valve to maintain the temperature of the heating room. When the temperature is too low or too high, the heating valve is automatically opened or closed.
  • shape memory effect of shape memory alloys is also widely used in various temperature sensor triggers.
  • pseudoelasticity prseudoelasticity, also known as superelasticity
  • shape memory alloy has a much larger deformation recovery capacity than ordinary metals, which is generated during the loading process. The large strain will be restored with uninstallation. This performance has been widely used in medicine and building shock absorption and daily life.
  • Spectacle frames made of shape memory alloy can withstand much larger deformation than ordinary materials without damage (it is not the application of shape memory effect, which is heated and restored after deformation).

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本发明涉及一种可快速脱附式软体机器人手爪结构,包括线性移动机构,包括两个可相对开合转动的支撑臂,每个支撑臂的末端通过连接组件转动连接有软体结构,其结构为:包括柔性本体,柔性本体成指状,其一侧面上设有成齿状均匀排列的鳞部,鳞部中穿设有多条形状记忆合金体。多条形状记忆合金体由柔性本体指根向指尖方向成发散状对称分布,且多条形状记忆合金体在指根端汇合成一体,与设于柔性本体端面上的供能模块相连。本发明使用对称分布式形状记忆合金(SMA)人工肌肉驱动软体结构进行外翻、内收动作,进而对物体进行抓取和脱附,抓取效率高抓取力稳定,在农业、轻工、电商等行业具有广泛的应用前景。

Description

可快速脱附式软体机器人手爪结构 技术领域
本发明涉及软体机器人手爪技术领域,尤其是一种可快速脱附式软体机器人手爪结构。
背景技术
脊椎动物(如老虎、牛等)的舌头经过长期自然选择进化出了非凡的黏取能力,其强大的黏取能力来源于其舌本体的纯软体结构,具有很高的灵活性和柔顺性,能够适用于各种形状和大小的物体抓取。同时,一些动物的舌软体部分具有强黏附性,能够提供很大的黏附力,此外还具有快速脱附的能力。
得益于仿生力学、生物学、智能材料、微电子等科学技术的进步,软体机器人在近十几年得到了突飞猛进的发展。国外对软体机器人研究开展较早,典型代表有美国的哈佛大学、麻省理工学院,欧洲的牛津大学、比萨圣安娜生物机器人研究所等研究的软体机器人。根据不同的仿生对象,哈佛大学基于Pneu-Net 架构研制了仿海星软体机器人手。Festo 公司仿蜥蜴舌研制了一款FlexShapeGripper,根据驱动方式不同,Calisti 等人研制的仿章鱼机器人,在硅胶制备软体本体中嵌入腱绳,通过张紧腱绳实现目标的抓取。
技术问题
但是,目前的软体机器人手爪研究中,尚未考虑软体机器人手爪在具有较高黏附性高黏附力时快速脱附的方法。
技术解决方案
本申请人针对上述现有生产技术中的缺点,针对现有的软体机器人爪柔顺性,负载能力和表面材料黏附作用下的脱附困难的问题,提供一种结构合理的可快速脱附式软体机器人手爪结构,提出一种可快速脱附式软体机器人手爪结构,通过手爪的外翻、内收动作,可以实现复杂特征物体柔顺、稳定的抓取和脱附。
本发明所采用的技术方案如下:
一种可快速脱附式软体机器人手爪结构,包括线性移动机构,所述线性移动机构包括两个可相对开合转动的支撑臂,每个支撑臂的末端通过连接组件转动连接有软体结构,所述软体结构的结构为:包括柔性本体,柔性本体成指状,其一侧面上设有成齿状均匀排列的鳞部,所述鳞部中穿设有多条形状记忆合金体。
作为上述技术方案的进一步改进:
多条形状记忆合金体由柔性本体指根向指尖方向成发散状对称分布,且多条形状记忆合金体在指根端汇合成一体,与设于柔性本体端面上的供能模块相连。
柔性本体另一侧面为光面结构。
所述连接组件的结构为:包括第一转轴,其一端与支撑臂转动连接,另一端通过十字轴组件与第二转轴的一端连接,第二转轴的另一端与所述软体结构的端面连接。
第一转轴和第二转轴的结构相同且相对设置,第二转轴的端部具有U形槽,U形槽的槽底处安装有驱动第二转轴绕自身轴线转动的第一舵机;十字轴组件安装于U形槽的槽口处,并通过第二舵机驱动旋转;支撑臂上连接有驱动第一转轴绕其自身轴线转动的第三舵机。
所述线性移动机构整体成对称式结构:包括顶架,所述顶架中部穿设一根驱动杆,所述驱动杆的顶端连接驱动件,底端同时和两根连杆一端铰接,两根连杆另一端分别铰接于两支撑臂中部,两支撑臂的顶部分别铰接于顶架的两端。
每个支撑臂底端设有两个软体结构,所述两个软体结构分别设于支撑臂的相邻两垂直面上。
两支撑臂的软体结构的位置对应,其中一组软体结构分别位于两支撑臂的相对面上。
驱动件的输出轴通过一摇柄与设于驱动杆中的连轴连接。
有益效果
本发明结构紧凑、合理,操作方便。本发明采用两种不同驱动方式的结合:整体通过驱动件、驱动杆运动实现支撑臂的开合往复运动;使用对称分布式形状记忆合金(SMA)人工肌肉驱动软体结构进行外翻、内收动作,进而对物体进行抓取和脱附,角度调节灵活方便,抓取效率高、抓取稳定性强,在农业、轻工、电商等行业具有广泛的应用前景,对于促进灵巧末端执行器的实用化和工业化具有重要的意义。
附图说明
图1为本发明的立体结构示意图。
图2为本发明立体结构示意图(另一视角)。
图3为图2中A部的放大图。
图4为本发明的立体结构示意图(另一视角)。
图5为本发明软体结构的示意图。
图6为图5的主视图。
图7为图6中A-A截面剖视图。
图8为本发明工作状态的结构示意图。
其中:1、驱动件;2、驱动杆;3、顶架;4、支撑臂;5、连杆;6、第一转轴;7、十字轴组件;8、第二转轴;9、软体结构;10、供能模块;11、第三舵机;12、第二舵机;13、第一舵机;14、连轴;15、摇柄;91、形状记忆合金体;92、鳞部;93、柔性本体。
本发明的实施方式
下面结合附图,说明本发明的具体实施方式。
如图1-图3以及图5-图7所示,本实施例的可快速脱附式软体机器人手爪结构,包括线性移动机构,线性移动机构包括两个可相对开合转动的支撑臂4,每个支撑臂4的末端通过连接组件转动连接有软体结构9,软体结构9的结构为:包括柔性本体93,柔性本体93成指状,其一侧面上设有成齿状均匀排列的鳞部92,鳞部92中穿设有多条形状记忆合金体91。
多条形状记忆合金体91由柔性本体93指根向指尖方向成发散状对称分布,且多条形状记忆合金体91在指根端汇合成一体,与设于柔性本体93端面上的供能模块10相连。
如图4和图7所示,柔性本体93另一侧面为光面结构。
如图3所示,连接组件的结构为:包括第一转轴6,其一端与支撑臂4转动连接,另一端通过十字轴组件7与第二转轴8的一端连接,第二转轴8的另一端与软体结构9的端面连接。
第一转轴6和第二转轴8的结构相同且相对设置,第二转轴8的端部具有U形槽,U形槽的槽底处安装有驱动第二转轴8绕自身轴线转动的第一舵机13;十字轴组件7安装于U形槽的槽口处,并通过第二舵机12驱动旋转;支撑臂4上连接有驱动第一转轴6绕其自身轴线转动的第三舵机11。
如图1所示线性移动机构整体成对称式结构:包括顶架3,顶架3中部穿设一根驱动杆2,驱动杆2的顶端连接驱动件1,底端同时和两根连杆5一端铰接,两根连杆5另一端分别铰接于两支撑臂4中部,两支撑臂4的顶部分别铰接于顶架3的两端。
每个支撑臂4底端设有两个软体结构9,两个软体结构9分别设于支撑臂4的相邻两垂直面上。
两支撑臂4的软体结构9的位置对应,其中一组软体结构9分别位于两支撑臂4的相对面上。
如图4所示,驱动件1的输出轴通过一摇柄15与设于驱动杆2中的连轴14连接。如图1和图2所示,
本发明在实施过程中:
调整两支撑臂4的位置:驱动件1可采用电机或其他驱动装置,输出轴带动摇柄15旋转,从而利用连轴14实现驱动杆2的升降直线运动,通过两连杆5分别带动两支撑臂4分开合往复运动,抓取时如图8所示,两支撑臂4间距缩小;
调整软体结构9的方向:第三舵机11控制第一转轴6绕其自身轴线转动,第一转轴6和第二转轴8的结构相同,通过U形槽及十字轴组件7 转动连接,十字轴组件7通过第二舵机12驱动旋转,从而实现第二转轴8相对于第一转轴旋转角度的调整;第一舵机13驱动第二转轴8绕自身轴线转动的,从而驱动软体结构9的角度,从而旋转将本体93的光面一侧对准被抓取物体;
柔性本体93整体(包括鳞部92)可采用聚氨酯材质或其他柔性材质,供能模块10可采用供电模块,驱动条状的形状记忆合金体91弯曲变形,带动柔性本体93内扣(指尖朝着本体93的光面向指根部弯曲)或外翻(指尖朝着本体93的鳞部92所在侧面向指根部弯曲),从而实现对物体的抓取或脱附。
本发明的形状记忆合金体91嵌入到软体结构9的柔性本体93中,通过控制智能材料在场效应(如电场、热场和磁场)作用下的变形,实现软体机器人手爪的驱动控制并实现外翻、内收的效果;使用舵机带动相应的转动轴进行软体结构9的多方位移动和转动,可满足软体黏附时所需要的位置需求,进行调整位姿实现软体机器人手爪对物体的抓取。
本发明采用的形状记忆合金(shape memory alloys,SMA)是通过热弹性与马氏体相变及其逆变而具有形状记忆效应(shape memory effect,SME)的由两种以上金属元素所构成的材料。形状记忆合金具有形状记忆效应(shape memory effect),以记忆合金制成的弹簧为例,把这种弹簧放在热水中,弹簧的长度立即伸长,再放到冷水中,它会立即恢复原状。利用形状记忆合金弹簧可以控制浴室水管的水温:在热水温度过高时通过"记忆"功能,调节或关闭供水管道,避免烫伤。也可以制作成消防报警装置及电器设备的保险装置。当发生火灾时,记忆合金制成的弹簧发生形变,启动消防报警装置,达到报警的目的。还可以把用记忆合金制成的弹簧放在暖气的阀门内,用以保持暖房的温度,当温度过低或过高时,自动开启或关闭暖气的阀门。形状记忆合金的形状记忆效应还广泛应用于各类温度传感器触发器中。形状记忆合金另一种重要性质是伪弹性(pseudoelasticity,又称超弹性,superelasticity),表现为在外力作用下,形状记忆合金具有比一般金属大的多的变形恢复能力,即加载过程中产生的大应变会随着卸载而恢复。这一性能在医学和建筑减震以及日常生活方面得到了普遍应用。例如前面提到的人造骨骼、伤骨固定加压器、牙科正畸器等。用形状记忆合金制造的眼镜架,可以承受比普通材料大得多的变形而不发生破坏(并不是应用形状记忆效应,发生变形后再加热而恢复)。

Claims (9)

  1. 一种可快速脱附式软体机器人手爪结构,其特征在于:包括线性移动机构,所述线性移动机构包括两个可相对开合转动的支撑臂(4),每个支撑臂(4)的末端通过连接组件转动连接有软体结构(9),所述软体结构(9)的结构为:包括柔性本体(93),柔性本体(93)成指状,其一侧面上设有成齿状均匀排列的鳞部(92),所述鳞部(92)中穿设有多条形状记忆合金体(91)。
  2. 如权利要求1所述的可快速脱附式软体机器人手爪结构,其特征在于:多条形状记忆合金体(91)由柔性本体(93)指根向指尖方向成发散状对称分布,且多条形状记忆合金体(91)在指根端汇合成一体,与设于柔性本体(93)端面上的供能模块(10)相连。
  3. 如权利要求2所述的可快速脱附式软体机器人手爪结构,其特征在于:柔性本体(93)另一侧面为光面结构。
  4. 如权利要求1所述的可快速脱附式软体机器人手爪结构,其特征在于:所述连接组件的结构为:包括第一转轴(6),其一端与支撑臂(4)转动连接,另一端通过十字轴组件(7)与第二转轴(8)的一端连接,第二转轴(8)的另一端与所述软体结构(9)的端面连接。
  5. 如权利要求4所述的可快速脱附式软体机器人手爪结构,其特征在于:第一转轴(6)和第二转轴(8)的结构相同且相对设置,第二转轴(8)的端部具有U形槽,U形槽的槽底处安装有驱动第二转轴(8)绕自身轴线转动的第一舵机(13);十字轴组件(7)安装于U形槽的槽口处,并通过第二舵机(12)驱动旋转;支撑臂(4)上连接有驱动第一转轴(6)绕其自身轴线转动的第三舵机(11)。
  6. 如权利要求4所述的可快速脱附式软体机器人手爪结构,其特征在于:线性移动机构整体成对称结构:包括顶架(3),所述顶架(3)中部穿设一根驱动杆(2),所述驱动杆(2)的顶端连接驱动件(1),底端同时和两根连杆(5)一端铰接,两根连杆(5)另一端分别铰接于两支撑臂(4)中部,两支撑臂(4)的顶部分别铰接于顶架(3)的两端。
  7. 如权利要求6所述的可快速脱附式软体机器人手爪结构,其特征在于:每个支撑臂(4)底端设有两个软体结构(9),所述两个软体结构(9)分别设于支撑臂(4)的相邻两垂直面上。
  8. 如权利要求6所述的可快速脱附式软体机器人手爪结构,其特征在于:驱动件(1)的输出轴通过一摇柄(15)与设于驱动杆(2)中的连轴(14)连接。
  9. 如权利要求1所述的可快速脱附式软体机器人手爪结构,其特征在于:两支撑臂(4)上软体结构(9)的位置相互对应,其中一组软体结构(9)分别位于两支撑臂(4)的相对面上。
PCT/CN2020/106973 2020-02-18 2020-08-05 可快速脱附式软体机器人手爪结构 WO2021164212A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010099567.4 2020-02-18
CN202010099567.4A CN111168707B (zh) 2020-02-18 2020-02-18 可快速脱附式软体机器人手爪结构

Publications (1)

Publication Number Publication Date
WO2021164212A1 true WO2021164212A1 (zh) 2021-08-26

Family

ID=70624621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106973 WO2021164212A1 (zh) 2020-02-18 2020-08-05 可快速脱附式软体机器人手爪结构

Country Status (2)

Country Link
CN (1) CN111168707B (zh)
WO (1) WO2021164212A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111168707B (zh) * 2020-02-18 2021-08-03 江南大学 可快速脱附式软体机器人手爪结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300189A (ja) * 1991-03-28 1992-10-23 Toshiba Corp 把持装置
CN201960109U (zh) * 2011-03-02 2011-09-07 连云港杰瑞模具技术有限公司 一种工业机器人用压铸手爪
CN102973306A (zh) * 2012-11-27 2013-03-20 上海交通大学 主动式结石微抓取器
CN104875206A (zh) * 2015-05-15 2015-09-02 中国科学技术大学 一种基于形状记忆合金-柔体复合结构的柔性操作手
CN108687794A (zh) * 2018-06-08 2018-10-23 重庆大学 形状记忆合金驱动的静电吸附柔性抓手
CN111168707A (zh) * 2020-02-18 2020-05-19 江南大学 可快速脱附式软体机器人手爪结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715637A (en) * 1985-04-17 1987-12-29 Hitachi, Ltd. Grip device for sheet-like objects
CN107214729B (zh) * 2017-07-11 2020-04-07 中南大学 一种具有多功能抓取的柔性气动机械手
CN109927070A (zh) * 2019-04-17 2019-06-25 苏州柔性智能科技有限公司 用于物体分拣的多功能软体抓手

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300189A (ja) * 1991-03-28 1992-10-23 Toshiba Corp 把持装置
CN201960109U (zh) * 2011-03-02 2011-09-07 连云港杰瑞模具技术有限公司 一种工业机器人用压铸手爪
CN102973306A (zh) * 2012-11-27 2013-03-20 上海交通大学 主动式结石微抓取器
CN104875206A (zh) * 2015-05-15 2015-09-02 中国科学技术大学 一种基于形状记忆合金-柔体复合结构的柔性操作手
CN108687794A (zh) * 2018-06-08 2018-10-23 重庆大学 形状记忆合金驱动的静电吸附柔性抓手
CN111168707A (zh) * 2020-02-18 2020-05-19 江南大学 可快速脱附式软体机器人手爪结构

Also Published As

Publication number Publication date
CN111168707B (zh) 2021-08-03
CN111168707A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
Zhou et al. Bio‐inspired soft grippers based on impactive gripping
CN206484587U (zh) 一种基于柔性轴的仿生手爪模块
CN105193525B (zh) 一种基于镍钛记忆合金的仿生五指假手
CN101804633B (zh) 腱绳并联灵巧欠驱动仿生机器人手装置
CN101486191B (zh) 变位欠驱动机器人手装置
CN107253188B (zh) 一种基于ipmc驱动的多自由度简易机械手臂
CN101422906B (zh) 基于柔性件的变位欠驱动两关节机器人手指装置
CN101444918B (zh) 预弯曲抓取欠驱动仿生手指装置
Yang et al. A novel robot hand with embedded shape memory alloy actuators
CN205799553U (zh) 绳驱磁流自适应抓持装置
CN104799982B (zh) 基于连续体差动机构的单电机欠驱动假肢手
WO2021164212A1 (zh) 可快速脱附式软体机器人手爪结构
Zhang et al. Humanoid design of mechanical fingers using a motion coupling and shape-adaptive linkage mechanism
CN113021388A (zh) 一种气磁切换的多功能柔性卡爪机械臂
Zhang et al. Research on soft manipulator actuated by shape memory alloy (SMA) springs
CN111469156B (zh) 一种刚柔结合的仿人五指机械手爪
Su et al. SAU-RFC hand: A novel self-adaptive underactuated robot hand with rigid-flexible coupling fingers
CN107186743B (zh) 一种基于网状联动结构的仿生机械手掌
CN212020824U (zh) 可内收外翻式软体机器人手爪结构
CN112720558A (zh) 一种电机直驱的软指尖机器人灵巧手
CN110538015A (zh) 一种机械假肢手臂
CN207930684U (zh) 一种带有筋式仿生手指装置的机器人机械手臂
Yamano et al. Experiments of a two-arm robot using shape memory gel
CN104688329A (zh) 形状记忆合金驱动的微创手术腕式末端执行机构
CN202365965U (zh) 机械假手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919547

Country of ref document: EP

Kind code of ref document: A1